1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics common host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/init.h> 8 #include <linux/miscdevice.h> 9 #include <linux/module.h> 10 #include <linux/mutex.h> 11 #include <linux/parser.h> 12 #include <linux/seq_file.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-keyring.h> 16 17 static LIST_HEAD(nvmf_transports); 18 static DECLARE_RWSEM(nvmf_transports_rwsem); 19 20 static LIST_HEAD(nvmf_hosts); 21 static DEFINE_MUTEX(nvmf_hosts_mutex); 22 23 static struct nvmf_host *nvmf_default_host; 24 25 static struct nvmf_host *nvmf_host_alloc(const char *hostnqn, uuid_t *id) 26 { 27 struct nvmf_host *host; 28 29 host = kmalloc(sizeof(*host), GFP_KERNEL); 30 if (!host) 31 return NULL; 32 33 kref_init(&host->ref); 34 uuid_copy(&host->id, id); 35 strscpy(host->nqn, hostnqn, NVMF_NQN_SIZE); 36 37 return host; 38 } 39 40 static struct nvmf_host *nvmf_host_add(const char *hostnqn, uuid_t *id) 41 { 42 struct nvmf_host *host; 43 44 mutex_lock(&nvmf_hosts_mutex); 45 46 /* 47 * We have defined a host as how it is perceived by the target. 48 * Therefore, we don't allow different Host NQNs with the same Host ID. 49 * Similarly, we do not allow the usage of the same Host NQN with 50 * different Host IDs. This'll maintain unambiguous host identification. 51 */ 52 list_for_each_entry(host, &nvmf_hosts, list) { 53 bool same_hostnqn = !strcmp(host->nqn, hostnqn); 54 bool same_hostid = uuid_equal(&host->id, id); 55 56 if (same_hostnqn && same_hostid) { 57 kref_get(&host->ref); 58 goto out_unlock; 59 } 60 if (same_hostnqn) { 61 pr_err("found same hostnqn %s but different hostid %pUb\n", 62 hostnqn, id); 63 host = ERR_PTR(-EINVAL); 64 goto out_unlock; 65 } 66 if (same_hostid) { 67 pr_err("found same hostid %pUb but different hostnqn %s\n", 68 id, hostnqn); 69 host = ERR_PTR(-EINVAL); 70 goto out_unlock; 71 } 72 } 73 74 host = nvmf_host_alloc(hostnqn, id); 75 if (!host) { 76 host = ERR_PTR(-ENOMEM); 77 goto out_unlock; 78 } 79 80 list_add_tail(&host->list, &nvmf_hosts); 81 out_unlock: 82 mutex_unlock(&nvmf_hosts_mutex); 83 return host; 84 } 85 86 static struct nvmf_host *nvmf_host_default(void) 87 { 88 struct nvmf_host *host; 89 char nqn[NVMF_NQN_SIZE]; 90 uuid_t id; 91 92 uuid_gen(&id); 93 snprintf(nqn, NVMF_NQN_SIZE, 94 "nqn.2014-08.org.nvmexpress:uuid:%pUb", &id); 95 96 host = nvmf_host_alloc(nqn, &id); 97 if (!host) 98 return NULL; 99 100 mutex_lock(&nvmf_hosts_mutex); 101 list_add_tail(&host->list, &nvmf_hosts); 102 mutex_unlock(&nvmf_hosts_mutex); 103 104 return host; 105 } 106 107 static void nvmf_host_destroy(struct kref *ref) 108 { 109 struct nvmf_host *host = container_of(ref, struct nvmf_host, ref); 110 111 mutex_lock(&nvmf_hosts_mutex); 112 list_del(&host->list); 113 mutex_unlock(&nvmf_hosts_mutex); 114 115 kfree(host); 116 } 117 118 static void nvmf_host_put(struct nvmf_host *host) 119 { 120 if (host) 121 kref_put(&host->ref, nvmf_host_destroy); 122 } 123 124 /** 125 * nvmf_get_address() - Get address/port 126 * @ctrl: Host NVMe controller instance which we got the address 127 * @buf: OUTPUT parameter that will contain the address/port 128 * @size: buffer size 129 */ 130 int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 131 { 132 int len = 0; 133 134 if (ctrl->opts->mask & NVMF_OPT_TRADDR) 135 len += scnprintf(buf, size, "traddr=%s", ctrl->opts->traddr); 136 if (ctrl->opts->mask & NVMF_OPT_TRSVCID) 137 len += scnprintf(buf + len, size - len, "%strsvcid=%s", 138 (len) ? "," : "", ctrl->opts->trsvcid); 139 if (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR) 140 len += scnprintf(buf + len, size - len, "%shost_traddr=%s", 141 (len) ? "," : "", ctrl->opts->host_traddr); 142 if (ctrl->opts->mask & NVMF_OPT_HOST_IFACE) 143 len += scnprintf(buf + len, size - len, "%shost_iface=%s", 144 (len) ? "," : "", ctrl->opts->host_iface); 145 len += scnprintf(buf + len, size - len, "\n"); 146 147 return len; 148 } 149 EXPORT_SYMBOL_GPL(nvmf_get_address); 150 151 /** 152 * nvmf_reg_read32() - NVMe Fabrics "Property Get" API function. 153 * @ctrl: Host NVMe controller instance maintaining the admin 154 * queue used to submit the property read command to 155 * the allocated NVMe controller resource on the target system. 156 * @off: Starting offset value of the targeted property 157 * register (see the fabrics section of the NVMe standard). 158 * @val: OUTPUT parameter that will contain the value of 159 * the property after a successful read. 160 * 161 * Used by the host system to retrieve a 32-bit capsule property value 162 * from an NVMe controller on the target system. 163 * 164 * ("Capsule property" is an "PCIe register concept" applied to the 165 * NVMe fabrics space.) 166 * 167 * Return: 168 * 0: successful read 169 * > 0: NVMe error status code 170 * < 0: Linux errno error code 171 */ 172 int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 173 { 174 struct nvme_command cmd = { }; 175 union nvme_result res; 176 int ret; 177 178 cmd.prop_get.opcode = nvme_fabrics_command; 179 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 180 cmd.prop_get.offset = cpu_to_le32(off); 181 182 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 183 NVME_QID_ANY, 0, 0); 184 185 if (ret >= 0) 186 *val = le64_to_cpu(res.u64); 187 if (unlikely(ret != 0)) 188 dev_err(ctrl->device, 189 "Property Get error: %d, offset %#x\n", 190 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 191 192 return ret; 193 } 194 EXPORT_SYMBOL_GPL(nvmf_reg_read32); 195 196 /** 197 * nvmf_reg_read64() - NVMe Fabrics "Property Get" API function. 198 * @ctrl: Host NVMe controller instance maintaining the admin 199 * queue used to submit the property read command to 200 * the allocated controller resource on the target system. 201 * @off: Starting offset value of the targeted property 202 * register (see the fabrics section of the NVMe standard). 203 * @val: OUTPUT parameter that will contain the value of 204 * the property after a successful read. 205 * 206 * Used by the host system to retrieve a 64-bit capsule property value 207 * from an NVMe controller on the target system. 208 * 209 * ("Capsule property" is an "PCIe register concept" applied to the 210 * NVMe fabrics space.) 211 * 212 * Return: 213 * 0: successful read 214 * > 0: NVMe error status code 215 * < 0: Linux errno error code 216 */ 217 int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 218 { 219 struct nvme_command cmd = { }; 220 union nvme_result res; 221 int ret; 222 223 cmd.prop_get.opcode = nvme_fabrics_command; 224 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 225 cmd.prop_get.attrib = 1; 226 cmd.prop_get.offset = cpu_to_le32(off); 227 228 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 229 NVME_QID_ANY, 0, 0); 230 231 if (ret >= 0) 232 *val = le64_to_cpu(res.u64); 233 if (unlikely(ret != 0)) 234 dev_err(ctrl->device, 235 "Property Get error: %d, offset %#x\n", 236 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 237 return ret; 238 } 239 EXPORT_SYMBOL_GPL(nvmf_reg_read64); 240 241 /** 242 * nvmf_reg_write32() - NVMe Fabrics "Property Write" API function. 243 * @ctrl: Host NVMe controller instance maintaining the admin 244 * queue used to submit the property read command to 245 * the allocated NVMe controller resource on the target system. 246 * @off: Starting offset value of the targeted property 247 * register (see the fabrics section of the NVMe standard). 248 * @val: Input parameter that contains the value to be 249 * written to the property. 250 * 251 * Used by the NVMe host system to write a 32-bit capsule property value 252 * to an NVMe controller on the target system. 253 * 254 * ("Capsule property" is an "PCIe register concept" applied to the 255 * NVMe fabrics space.) 256 * 257 * Return: 258 * 0: successful write 259 * > 0: NVMe error status code 260 * < 0: Linux errno error code 261 */ 262 int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 263 { 264 struct nvme_command cmd = { }; 265 int ret; 266 267 cmd.prop_set.opcode = nvme_fabrics_command; 268 cmd.prop_set.fctype = nvme_fabrics_type_property_set; 269 cmd.prop_set.attrib = 0; 270 cmd.prop_set.offset = cpu_to_le32(off); 271 cmd.prop_set.value = cpu_to_le64(val); 272 273 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, NULL, NULL, 0, 274 NVME_QID_ANY, 0, 0); 275 if (unlikely(ret)) 276 dev_err(ctrl->device, 277 "Property Set error: %d, offset %#x\n", 278 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 279 return ret; 280 } 281 EXPORT_SYMBOL_GPL(nvmf_reg_write32); 282 283 /** 284 * nvmf_log_connect_error() - Error-parsing-diagnostic print out function for 285 * connect() errors. 286 * @ctrl: The specific /dev/nvmeX device that had the error. 287 * @errval: Error code to be decoded in a more human-friendly 288 * printout. 289 * @offset: For use with the NVMe error code 290 * NVME_SC_CONNECT_INVALID_PARAM. 291 * @cmd: This is the SQE portion of a submission capsule. 292 * @data: This is the "Data" portion of a submission capsule. 293 */ 294 static void nvmf_log_connect_error(struct nvme_ctrl *ctrl, 295 int errval, int offset, struct nvme_command *cmd, 296 struct nvmf_connect_data *data) 297 { 298 int err_sctype = errval & ~NVME_SC_DNR; 299 300 if (errval < 0) { 301 dev_err(ctrl->device, 302 "Connect command failed, errno: %d\n", errval); 303 return; 304 } 305 306 switch (err_sctype) { 307 case NVME_SC_CONNECT_INVALID_PARAM: 308 if (offset >> 16) { 309 char *inv_data = "Connect Invalid Data Parameter"; 310 311 switch (offset & 0xffff) { 312 case (offsetof(struct nvmf_connect_data, cntlid)): 313 dev_err(ctrl->device, 314 "%s, cntlid: %d\n", 315 inv_data, data->cntlid); 316 break; 317 case (offsetof(struct nvmf_connect_data, hostnqn)): 318 dev_err(ctrl->device, 319 "%s, hostnqn \"%s\"\n", 320 inv_data, data->hostnqn); 321 break; 322 case (offsetof(struct nvmf_connect_data, subsysnqn)): 323 dev_err(ctrl->device, 324 "%s, subsysnqn \"%s\"\n", 325 inv_data, data->subsysnqn); 326 break; 327 default: 328 dev_err(ctrl->device, 329 "%s, starting byte offset: %d\n", 330 inv_data, offset & 0xffff); 331 break; 332 } 333 } else { 334 char *inv_sqe = "Connect Invalid SQE Parameter"; 335 336 switch (offset) { 337 case (offsetof(struct nvmf_connect_command, qid)): 338 dev_err(ctrl->device, 339 "%s, qid %d\n", 340 inv_sqe, cmd->connect.qid); 341 break; 342 default: 343 dev_err(ctrl->device, 344 "%s, starting byte offset: %d\n", 345 inv_sqe, offset); 346 } 347 } 348 break; 349 case NVME_SC_CONNECT_INVALID_HOST: 350 dev_err(ctrl->device, 351 "Connect for subsystem %s is not allowed, hostnqn: %s\n", 352 data->subsysnqn, data->hostnqn); 353 break; 354 case NVME_SC_CONNECT_CTRL_BUSY: 355 dev_err(ctrl->device, 356 "Connect command failed: controller is busy or not available\n"); 357 break; 358 case NVME_SC_CONNECT_FORMAT: 359 dev_err(ctrl->device, 360 "Connect incompatible format: %d", 361 cmd->connect.recfmt); 362 break; 363 case NVME_SC_HOST_PATH_ERROR: 364 dev_err(ctrl->device, 365 "Connect command failed: host path error\n"); 366 break; 367 case NVME_SC_AUTH_REQUIRED: 368 dev_err(ctrl->device, 369 "Connect command failed: authentication required\n"); 370 break; 371 default: 372 dev_err(ctrl->device, 373 "Connect command failed, error wo/DNR bit: %d\n", 374 err_sctype); 375 break; 376 } 377 } 378 379 static struct nvmf_connect_data *nvmf_connect_data_prep(struct nvme_ctrl *ctrl, 380 u16 cntlid) 381 { 382 struct nvmf_connect_data *data; 383 384 data = kzalloc(sizeof(*data), GFP_KERNEL); 385 if (!data) 386 return NULL; 387 388 uuid_copy(&data->hostid, &ctrl->opts->host->id); 389 data->cntlid = cpu_to_le16(cntlid); 390 strncpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); 391 strncpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); 392 393 return data; 394 } 395 396 static void nvmf_connect_cmd_prep(struct nvme_ctrl *ctrl, u16 qid, 397 struct nvme_command *cmd) 398 { 399 cmd->connect.opcode = nvme_fabrics_command; 400 cmd->connect.fctype = nvme_fabrics_type_connect; 401 cmd->connect.qid = cpu_to_le16(qid); 402 403 if (qid) { 404 cmd->connect.sqsize = cpu_to_le16(ctrl->sqsize); 405 } else { 406 cmd->connect.sqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 407 408 /* 409 * set keep-alive timeout in seconds granularity (ms * 1000) 410 */ 411 cmd->connect.kato = cpu_to_le32(ctrl->kato * 1000); 412 } 413 414 if (ctrl->opts->disable_sqflow) 415 cmd->connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW; 416 } 417 418 /** 419 * nvmf_connect_admin_queue() - NVMe Fabrics Admin Queue "Connect" 420 * API function. 421 * @ctrl: Host nvme controller instance used to request 422 * a new NVMe controller allocation on the target 423 * system and establish an NVMe Admin connection to 424 * that controller. 425 * 426 * This function enables an NVMe host device to request a new allocation of 427 * an NVMe controller resource on a target system as well establish a 428 * fabrics-protocol connection of the NVMe Admin queue between the 429 * host system device and the allocated NVMe controller on the 430 * target system via a NVMe Fabrics "Connect" command. 431 * 432 * Return: 433 * 0: success 434 * > 0: NVMe error status code 435 * < 0: Linux errno error code 436 * 437 */ 438 int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl) 439 { 440 struct nvme_command cmd = { }; 441 union nvme_result res; 442 struct nvmf_connect_data *data; 443 int ret; 444 u32 result; 445 446 nvmf_connect_cmd_prep(ctrl, 0, &cmd); 447 448 data = nvmf_connect_data_prep(ctrl, 0xffff); 449 if (!data) 450 return -ENOMEM; 451 452 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, 453 data, sizeof(*data), NVME_QID_ANY, 1, 454 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 455 if (ret) { 456 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 457 &cmd, data); 458 goto out_free_data; 459 } 460 461 result = le32_to_cpu(res.u32); 462 ctrl->cntlid = result & 0xFFFF; 463 if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) { 464 /* Secure concatenation is not implemented */ 465 if (result & NVME_CONNECT_AUTHREQ_ASCR) { 466 dev_warn(ctrl->device, 467 "qid 0: secure concatenation is not supported\n"); 468 ret = NVME_SC_AUTH_REQUIRED; 469 goto out_free_data; 470 } 471 /* Authentication required */ 472 ret = nvme_auth_negotiate(ctrl, 0); 473 if (ret) { 474 dev_warn(ctrl->device, 475 "qid 0: authentication setup failed\n"); 476 ret = NVME_SC_AUTH_REQUIRED; 477 goto out_free_data; 478 } 479 ret = nvme_auth_wait(ctrl, 0); 480 if (ret) 481 dev_warn(ctrl->device, 482 "qid 0: authentication failed\n"); 483 else 484 dev_info(ctrl->device, 485 "qid 0: authenticated\n"); 486 } 487 out_free_data: 488 kfree(data); 489 return ret; 490 } 491 EXPORT_SYMBOL_GPL(nvmf_connect_admin_queue); 492 493 /** 494 * nvmf_connect_io_queue() - NVMe Fabrics I/O Queue "Connect" 495 * API function. 496 * @ctrl: Host nvme controller instance used to establish an 497 * NVMe I/O queue connection to the already allocated NVMe 498 * controller on the target system. 499 * @qid: NVMe I/O queue number for the new I/O connection between 500 * host and target (note qid == 0 is illegal as this is 501 * the Admin queue, per NVMe standard). 502 * 503 * This function issues a fabrics-protocol connection 504 * of a NVMe I/O queue (via NVMe Fabrics "Connect" command) 505 * between the host system device and the allocated NVMe controller 506 * on the target system. 507 * 508 * Return: 509 * 0: success 510 * > 0: NVMe error status code 511 * < 0: Linux errno error code 512 */ 513 int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid) 514 { 515 struct nvme_command cmd = { }; 516 struct nvmf_connect_data *data; 517 union nvme_result res; 518 int ret; 519 u32 result; 520 521 nvmf_connect_cmd_prep(ctrl, qid, &cmd); 522 523 data = nvmf_connect_data_prep(ctrl, ctrl->cntlid); 524 if (!data) 525 return -ENOMEM; 526 527 ret = __nvme_submit_sync_cmd(ctrl->connect_q, &cmd, &res, 528 data, sizeof(*data), qid, 1, 529 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 530 if (ret) { 531 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 532 &cmd, data); 533 } 534 result = le32_to_cpu(res.u32); 535 if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) { 536 /* Secure concatenation is not implemented */ 537 if (result & NVME_CONNECT_AUTHREQ_ASCR) { 538 dev_warn(ctrl->device, 539 "qid 0: secure concatenation is not supported\n"); 540 ret = NVME_SC_AUTH_REQUIRED; 541 goto out_free_data; 542 } 543 /* Authentication required */ 544 ret = nvme_auth_negotiate(ctrl, qid); 545 if (ret) { 546 dev_warn(ctrl->device, 547 "qid %d: authentication setup failed\n", qid); 548 ret = NVME_SC_AUTH_REQUIRED; 549 } else { 550 ret = nvme_auth_wait(ctrl, qid); 551 if (ret) 552 dev_warn(ctrl->device, 553 "qid %u: authentication failed\n", qid); 554 } 555 } 556 out_free_data: 557 kfree(data); 558 return ret; 559 } 560 EXPORT_SYMBOL_GPL(nvmf_connect_io_queue); 561 562 bool nvmf_should_reconnect(struct nvme_ctrl *ctrl) 563 { 564 if (ctrl->opts->max_reconnects == -1 || 565 ctrl->nr_reconnects < ctrl->opts->max_reconnects) 566 return true; 567 568 return false; 569 } 570 EXPORT_SYMBOL_GPL(nvmf_should_reconnect); 571 572 /** 573 * nvmf_register_transport() - NVMe Fabrics Library registration function. 574 * @ops: Transport ops instance to be registered to the 575 * common fabrics library. 576 * 577 * API function that registers the type of specific transport fabric 578 * being implemented to the common NVMe fabrics library. Part of 579 * the overall init sequence of starting up a fabrics driver. 580 */ 581 int nvmf_register_transport(struct nvmf_transport_ops *ops) 582 { 583 if (!ops->create_ctrl) 584 return -EINVAL; 585 586 down_write(&nvmf_transports_rwsem); 587 list_add_tail(&ops->entry, &nvmf_transports); 588 up_write(&nvmf_transports_rwsem); 589 590 return 0; 591 } 592 EXPORT_SYMBOL_GPL(nvmf_register_transport); 593 594 /** 595 * nvmf_unregister_transport() - NVMe Fabrics Library unregistration function. 596 * @ops: Transport ops instance to be unregistered from the 597 * common fabrics library. 598 * 599 * Fabrics API function that unregisters the type of specific transport 600 * fabric being implemented from the common NVMe fabrics library. 601 * Part of the overall exit sequence of unloading the implemented driver. 602 */ 603 void nvmf_unregister_transport(struct nvmf_transport_ops *ops) 604 { 605 down_write(&nvmf_transports_rwsem); 606 list_del(&ops->entry); 607 up_write(&nvmf_transports_rwsem); 608 } 609 EXPORT_SYMBOL_GPL(nvmf_unregister_transport); 610 611 static struct nvmf_transport_ops *nvmf_lookup_transport( 612 struct nvmf_ctrl_options *opts) 613 { 614 struct nvmf_transport_ops *ops; 615 616 lockdep_assert_held(&nvmf_transports_rwsem); 617 618 list_for_each_entry(ops, &nvmf_transports, entry) { 619 if (strcmp(ops->name, opts->transport) == 0) 620 return ops; 621 } 622 623 return NULL; 624 } 625 626 static struct key *nvmf_parse_key(int key_id) 627 { 628 struct key *key; 629 630 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) { 631 pr_err("TLS is not supported\n"); 632 return ERR_PTR(-EINVAL); 633 } 634 635 key = key_lookup(key_id); 636 if (!IS_ERR(key)) 637 pr_err("key id %08x not found\n", key_id); 638 else 639 pr_debug("Using key id %08x\n", key_id); 640 return key; 641 } 642 643 static const match_table_t opt_tokens = { 644 { NVMF_OPT_TRANSPORT, "transport=%s" }, 645 { NVMF_OPT_TRADDR, "traddr=%s" }, 646 { NVMF_OPT_TRSVCID, "trsvcid=%s" }, 647 { NVMF_OPT_NQN, "nqn=%s" }, 648 { NVMF_OPT_QUEUE_SIZE, "queue_size=%d" }, 649 { NVMF_OPT_NR_IO_QUEUES, "nr_io_queues=%d" }, 650 { NVMF_OPT_RECONNECT_DELAY, "reconnect_delay=%d" }, 651 { NVMF_OPT_CTRL_LOSS_TMO, "ctrl_loss_tmo=%d" }, 652 { NVMF_OPT_KATO, "keep_alive_tmo=%d" }, 653 { NVMF_OPT_HOSTNQN, "hostnqn=%s" }, 654 { NVMF_OPT_HOST_TRADDR, "host_traddr=%s" }, 655 { NVMF_OPT_HOST_IFACE, "host_iface=%s" }, 656 { NVMF_OPT_HOST_ID, "hostid=%s" }, 657 { NVMF_OPT_DUP_CONNECT, "duplicate_connect" }, 658 { NVMF_OPT_DISABLE_SQFLOW, "disable_sqflow" }, 659 { NVMF_OPT_HDR_DIGEST, "hdr_digest" }, 660 { NVMF_OPT_DATA_DIGEST, "data_digest" }, 661 { NVMF_OPT_NR_WRITE_QUEUES, "nr_write_queues=%d" }, 662 { NVMF_OPT_NR_POLL_QUEUES, "nr_poll_queues=%d" }, 663 { NVMF_OPT_TOS, "tos=%d" }, 664 #ifdef CONFIG_NVME_TCP_TLS 665 { NVMF_OPT_KEYRING, "keyring=%d" }, 666 { NVMF_OPT_TLS_KEY, "tls_key=%d" }, 667 #endif 668 { NVMF_OPT_FAIL_FAST_TMO, "fast_io_fail_tmo=%d" }, 669 { NVMF_OPT_DISCOVERY, "discovery" }, 670 { NVMF_OPT_DHCHAP_SECRET, "dhchap_secret=%s" }, 671 { NVMF_OPT_DHCHAP_CTRL_SECRET, "dhchap_ctrl_secret=%s" }, 672 #ifdef CONFIG_NVME_TCP_TLS 673 { NVMF_OPT_TLS, "tls" }, 674 #endif 675 { NVMF_OPT_ERR, NULL } 676 }; 677 678 static int nvmf_parse_options(struct nvmf_ctrl_options *opts, 679 const char *buf) 680 { 681 substring_t args[MAX_OPT_ARGS]; 682 char *options, *o, *p; 683 int token, ret = 0; 684 size_t nqnlen = 0; 685 int ctrl_loss_tmo = NVMF_DEF_CTRL_LOSS_TMO, key_id; 686 uuid_t hostid; 687 char hostnqn[NVMF_NQN_SIZE]; 688 struct key *key; 689 690 /* Set defaults */ 691 opts->queue_size = NVMF_DEF_QUEUE_SIZE; 692 opts->nr_io_queues = num_online_cpus(); 693 opts->reconnect_delay = NVMF_DEF_RECONNECT_DELAY; 694 opts->kato = 0; 695 opts->duplicate_connect = false; 696 opts->fast_io_fail_tmo = NVMF_DEF_FAIL_FAST_TMO; 697 opts->hdr_digest = false; 698 opts->data_digest = false; 699 opts->tos = -1; /* < 0 == use transport default */ 700 opts->tls = false; 701 opts->tls_key = NULL; 702 opts->keyring = NULL; 703 704 options = o = kstrdup(buf, GFP_KERNEL); 705 if (!options) 706 return -ENOMEM; 707 708 /* use default host if not given by user space */ 709 uuid_copy(&hostid, &nvmf_default_host->id); 710 strscpy(hostnqn, nvmf_default_host->nqn, NVMF_NQN_SIZE); 711 712 while ((p = strsep(&o, ",\n")) != NULL) { 713 if (!*p) 714 continue; 715 716 token = match_token(p, opt_tokens, args); 717 opts->mask |= token; 718 switch (token) { 719 case NVMF_OPT_TRANSPORT: 720 p = match_strdup(args); 721 if (!p) { 722 ret = -ENOMEM; 723 goto out; 724 } 725 kfree(opts->transport); 726 opts->transport = p; 727 break; 728 case NVMF_OPT_NQN: 729 p = match_strdup(args); 730 if (!p) { 731 ret = -ENOMEM; 732 goto out; 733 } 734 kfree(opts->subsysnqn); 735 opts->subsysnqn = p; 736 nqnlen = strlen(opts->subsysnqn); 737 if (nqnlen >= NVMF_NQN_SIZE) { 738 pr_err("%s needs to be < %d bytes\n", 739 opts->subsysnqn, NVMF_NQN_SIZE); 740 ret = -EINVAL; 741 goto out; 742 } 743 opts->discovery_nqn = 744 !(strcmp(opts->subsysnqn, 745 NVME_DISC_SUBSYS_NAME)); 746 break; 747 case NVMF_OPT_TRADDR: 748 p = match_strdup(args); 749 if (!p) { 750 ret = -ENOMEM; 751 goto out; 752 } 753 kfree(opts->traddr); 754 opts->traddr = p; 755 break; 756 case NVMF_OPT_TRSVCID: 757 p = match_strdup(args); 758 if (!p) { 759 ret = -ENOMEM; 760 goto out; 761 } 762 kfree(opts->trsvcid); 763 opts->trsvcid = p; 764 break; 765 case NVMF_OPT_QUEUE_SIZE: 766 if (match_int(args, &token)) { 767 ret = -EINVAL; 768 goto out; 769 } 770 if (token < NVMF_MIN_QUEUE_SIZE || 771 token > NVMF_MAX_QUEUE_SIZE) { 772 pr_err("Invalid queue_size %d\n", token); 773 ret = -EINVAL; 774 goto out; 775 } 776 opts->queue_size = token; 777 break; 778 case NVMF_OPT_NR_IO_QUEUES: 779 if (match_int(args, &token)) { 780 ret = -EINVAL; 781 goto out; 782 } 783 if (token <= 0) { 784 pr_err("Invalid number of IOQs %d\n", token); 785 ret = -EINVAL; 786 goto out; 787 } 788 if (opts->discovery_nqn) { 789 pr_debug("Ignoring nr_io_queues value for discovery controller\n"); 790 break; 791 } 792 793 opts->nr_io_queues = min_t(unsigned int, 794 num_online_cpus(), token); 795 break; 796 case NVMF_OPT_KATO: 797 if (match_int(args, &token)) { 798 ret = -EINVAL; 799 goto out; 800 } 801 802 if (token < 0) { 803 pr_err("Invalid keep_alive_tmo %d\n", token); 804 ret = -EINVAL; 805 goto out; 806 } else if (token == 0 && !opts->discovery_nqn) { 807 /* Allowed for debug */ 808 pr_warn("keep_alive_tmo 0 won't execute keep alives!!!\n"); 809 } 810 opts->kato = token; 811 break; 812 case NVMF_OPT_CTRL_LOSS_TMO: 813 if (match_int(args, &token)) { 814 ret = -EINVAL; 815 goto out; 816 } 817 818 if (token < 0) 819 pr_warn("ctrl_loss_tmo < 0 will reconnect forever\n"); 820 ctrl_loss_tmo = token; 821 break; 822 case NVMF_OPT_FAIL_FAST_TMO: 823 if (match_int(args, &token)) { 824 ret = -EINVAL; 825 goto out; 826 } 827 828 if (token >= 0) 829 pr_warn("I/O fail on reconnect controller after %d sec\n", 830 token); 831 else 832 token = -1; 833 834 opts->fast_io_fail_tmo = token; 835 break; 836 case NVMF_OPT_HOSTNQN: 837 if (opts->host) { 838 pr_err("hostnqn already user-assigned: %s\n", 839 opts->host->nqn); 840 ret = -EADDRINUSE; 841 goto out; 842 } 843 p = match_strdup(args); 844 if (!p) { 845 ret = -ENOMEM; 846 goto out; 847 } 848 nqnlen = strlen(p); 849 if (nqnlen >= NVMF_NQN_SIZE) { 850 pr_err("%s needs to be < %d bytes\n", 851 p, NVMF_NQN_SIZE); 852 kfree(p); 853 ret = -EINVAL; 854 goto out; 855 } 856 strscpy(hostnqn, p, NVMF_NQN_SIZE); 857 kfree(p); 858 break; 859 case NVMF_OPT_RECONNECT_DELAY: 860 if (match_int(args, &token)) { 861 ret = -EINVAL; 862 goto out; 863 } 864 if (token <= 0) { 865 pr_err("Invalid reconnect_delay %d\n", token); 866 ret = -EINVAL; 867 goto out; 868 } 869 opts->reconnect_delay = token; 870 break; 871 case NVMF_OPT_HOST_TRADDR: 872 p = match_strdup(args); 873 if (!p) { 874 ret = -ENOMEM; 875 goto out; 876 } 877 kfree(opts->host_traddr); 878 opts->host_traddr = p; 879 break; 880 case NVMF_OPT_HOST_IFACE: 881 p = match_strdup(args); 882 if (!p) { 883 ret = -ENOMEM; 884 goto out; 885 } 886 kfree(opts->host_iface); 887 opts->host_iface = p; 888 break; 889 case NVMF_OPT_HOST_ID: 890 p = match_strdup(args); 891 if (!p) { 892 ret = -ENOMEM; 893 goto out; 894 } 895 ret = uuid_parse(p, &hostid); 896 if (ret) { 897 pr_err("Invalid hostid %s\n", p); 898 ret = -EINVAL; 899 kfree(p); 900 goto out; 901 } 902 kfree(p); 903 break; 904 case NVMF_OPT_DUP_CONNECT: 905 opts->duplicate_connect = true; 906 break; 907 case NVMF_OPT_DISABLE_SQFLOW: 908 opts->disable_sqflow = true; 909 break; 910 case NVMF_OPT_HDR_DIGEST: 911 opts->hdr_digest = true; 912 break; 913 case NVMF_OPT_DATA_DIGEST: 914 opts->data_digest = true; 915 break; 916 case NVMF_OPT_NR_WRITE_QUEUES: 917 if (match_int(args, &token)) { 918 ret = -EINVAL; 919 goto out; 920 } 921 if (token <= 0) { 922 pr_err("Invalid nr_write_queues %d\n", token); 923 ret = -EINVAL; 924 goto out; 925 } 926 opts->nr_write_queues = token; 927 break; 928 case NVMF_OPT_NR_POLL_QUEUES: 929 if (match_int(args, &token)) { 930 ret = -EINVAL; 931 goto out; 932 } 933 if (token <= 0) { 934 pr_err("Invalid nr_poll_queues %d\n", token); 935 ret = -EINVAL; 936 goto out; 937 } 938 opts->nr_poll_queues = token; 939 break; 940 case NVMF_OPT_TOS: 941 if (match_int(args, &token)) { 942 ret = -EINVAL; 943 goto out; 944 } 945 if (token < 0) { 946 pr_err("Invalid type of service %d\n", token); 947 ret = -EINVAL; 948 goto out; 949 } 950 if (token > 255) { 951 pr_warn("Clamping type of service to 255\n"); 952 token = 255; 953 } 954 opts->tos = token; 955 break; 956 case NVMF_OPT_KEYRING: 957 if (match_int(args, &key_id) || key_id <= 0) { 958 ret = -EINVAL; 959 goto out; 960 } 961 key = nvmf_parse_key(key_id); 962 if (IS_ERR(key)) { 963 ret = PTR_ERR(key); 964 goto out; 965 } 966 key_put(opts->keyring); 967 opts->keyring = key; 968 break; 969 case NVMF_OPT_TLS_KEY: 970 if (match_int(args, &key_id) || key_id <= 0) { 971 ret = -EINVAL; 972 goto out; 973 } 974 key = nvmf_parse_key(key_id); 975 if (IS_ERR(key)) { 976 ret = PTR_ERR(key); 977 goto out; 978 } 979 key_put(opts->tls_key); 980 opts->tls_key = key; 981 break; 982 case NVMF_OPT_DISCOVERY: 983 opts->discovery_nqn = true; 984 break; 985 case NVMF_OPT_DHCHAP_SECRET: 986 p = match_strdup(args); 987 if (!p) { 988 ret = -ENOMEM; 989 goto out; 990 } 991 if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) { 992 pr_err("Invalid DH-CHAP secret %s\n", p); 993 ret = -EINVAL; 994 goto out; 995 } 996 kfree(opts->dhchap_secret); 997 opts->dhchap_secret = p; 998 break; 999 case NVMF_OPT_DHCHAP_CTRL_SECRET: 1000 p = match_strdup(args); 1001 if (!p) { 1002 ret = -ENOMEM; 1003 goto out; 1004 } 1005 if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) { 1006 pr_err("Invalid DH-CHAP secret %s\n", p); 1007 ret = -EINVAL; 1008 goto out; 1009 } 1010 kfree(opts->dhchap_ctrl_secret); 1011 opts->dhchap_ctrl_secret = p; 1012 break; 1013 case NVMF_OPT_TLS: 1014 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) { 1015 pr_err("TLS is not supported\n"); 1016 ret = -EINVAL; 1017 goto out; 1018 } 1019 opts->tls = true; 1020 break; 1021 default: 1022 pr_warn("unknown parameter or missing value '%s' in ctrl creation request\n", 1023 p); 1024 ret = -EINVAL; 1025 goto out; 1026 } 1027 } 1028 1029 if (opts->discovery_nqn) { 1030 opts->nr_io_queues = 0; 1031 opts->nr_write_queues = 0; 1032 opts->nr_poll_queues = 0; 1033 opts->duplicate_connect = true; 1034 } else { 1035 if (!opts->kato) 1036 opts->kato = NVME_DEFAULT_KATO; 1037 } 1038 if (ctrl_loss_tmo < 0) { 1039 opts->max_reconnects = -1; 1040 } else { 1041 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 1042 opts->reconnect_delay); 1043 if (ctrl_loss_tmo < opts->fast_io_fail_tmo) 1044 pr_warn("failfast tmo (%d) larger than controller loss tmo (%d)\n", 1045 opts->fast_io_fail_tmo, ctrl_loss_tmo); 1046 } 1047 1048 opts->host = nvmf_host_add(hostnqn, &hostid); 1049 if (IS_ERR(opts->host)) { 1050 ret = PTR_ERR(opts->host); 1051 opts->host = NULL; 1052 goto out; 1053 } 1054 1055 out: 1056 kfree(options); 1057 return ret; 1058 } 1059 1060 void nvmf_set_io_queues(struct nvmf_ctrl_options *opts, u32 nr_io_queues, 1061 u32 io_queues[HCTX_MAX_TYPES]) 1062 { 1063 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1064 /* 1065 * separate read/write queues 1066 * hand out dedicated default queues only after we have 1067 * sufficient read queues. 1068 */ 1069 io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1070 nr_io_queues -= io_queues[HCTX_TYPE_READ]; 1071 io_queues[HCTX_TYPE_DEFAULT] = 1072 min(opts->nr_write_queues, nr_io_queues); 1073 nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT]; 1074 } else { 1075 /* 1076 * shared read/write queues 1077 * either no write queues were requested, or we don't have 1078 * sufficient queue count to have dedicated default queues. 1079 */ 1080 io_queues[HCTX_TYPE_DEFAULT] = 1081 min(opts->nr_io_queues, nr_io_queues); 1082 nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT]; 1083 } 1084 1085 if (opts->nr_poll_queues && nr_io_queues) { 1086 /* map dedicated poll queues only if we have queues left */ 1087 io_queues[HCTX_TYPE_POLL] = 1088 min(opts->nr_poll_queues, nr_io_queues); 1089 } 1090 } 1091 EXPORT_SYMBOL_GPL(nvmf_set_io_queues); 1092 1093 void nvmf_map_queues(struct blk_mq_tag_set *set, struct nvme_ctrl *ctrl, 1094 u32 io_queues[HCTX_MAX_TYPES]) 1095 { 1096 struct nvmf_ctrl_options *opts = ctrl->opts; 1097 1098 if (opts->nr_write_queues && io_queues[HCTX_TYPE_READ]) { 1099 /* separate read/write queues */ 1100 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1101 io_queues[HCTX_TYPE_DEFAULT]; 1102 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1103 set->map[HCTX_TYPE_READ].nr_queues = 1104 io_queues[HCTX_TYPE_READ]; 1105 set->map[HCTX_TYPE_READ].queue_offset = 1106 io_queues[HCTX_TYPE_DEFAULT]; 1107 } else { 1108 /* shared read/write queues */ 1109 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1110 io_queues[HCTX_TYPE_DEFAULT]; 1111 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1112 set->map[HCTX_TYPE_READ].nr_queues = 1113 io_queues[HCTX_TYPE_DEFAULT]; 1114 set->map[HCTX_TYPE_READ].queue_offset = 0; 1115 } 1116 1117 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1118 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 1119 if (opts->nr_poll_queues && io_queues[HCTX_TYPE_POLL]) { 1120 /* map dedicated poll queues only if we have queues left */ 1121 set->map[HCTX_TYPE_POLL].nr_queues = io_queues[HCTX_TYPE_POLL]; 1122 set->map[HCTX_TYPE_POLL].queue_offset = 1123 io_queues[HCTX_TYPE_DEFAULT] + 1124 io_queues[HCTX_TYPE_READ]; 1125 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1126 } 1127 1128 dev_info(ctrl->device, 1129 "mapped %d/%d/%d default/read/poll queues.\n", 1130 io_queues[HCTX_TYPE_DEFAULT], 1131 io_queues[HCTX_TYPE_READ], 1132 io_queues[HCTX_TYPE_POLL]); 1133 } 1134 EXPORT_SYMBOL_GPL(nvmf_map_queues); 1135 1136 static int nvmf_check_required_opts(struct nvmf_ctrl_options *opts, 1137 unsigned int required_opts) 1138 { 1139 if ((opts->mask & required_opts) != required_opts) { 1140 unsigned int i; 1141 1142 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 1143 if ((opt_tokens[i].token & required_opts) && 1144 !(opt_tokens[i].token & opts->mask)) { 1145 pr_warn("missing parameter '%s'\n", 1146 opt_tokens[i].pattern); 1147 } 1148 } 1149 1150 return -EINVAL; 1151 } 1152 1153 return 0; 1154 } 1155 1156 bool nvmf_ip_options_match(struct nvme_ctrl *ctrl, 1157 struct nvmf_ctrl_options *opts) 1158 { 1159 if (!nvmf_ctlr_matches_baseopts(ctrl, opts) || 1160 strcmp(opts->traddr, ctrl->opts->traddr) || 1161 strcmp(opts->trsvcid, ctrl->opts->trsvcid)) 1162 return false; 1163 1164 /* 1165 * Checking the local address or host interfaces is rough. 1166 * 1167 * In most cases, none is specified and the host port or 1168 * host interface is selected by the stack. 1169 * 1170 * Assume no match if: 1171 * - local address or host interface is specified and address 1172 * or host interface is not the same 1173 * - local address or host interface is not specified but 1174 * remote is, or vice versa (admin using specific 1175 * host_traddr/host_iface when it matters). 1176 */ 1177 if ((opts->mask & NVMF_OPT_HOST_TRADDR) && 1178 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 1179 if (strcmp(opts->host_traddr, ctrl->opts->host_traddr)) 1180 return false; 1181 } else if ((opts->mask & NVMF_OPT_HOST_TRADDR) || 1182 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 1183 return false; 1184 } 1185 1186 if ((opts->mask & NVMF_OPT_HOST_IFACE) && 1187 (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) { 1188 if (strcmp(opts->host_iface, ctrl->opts->host_iface)) 1189 return false; 1190 } else if ((opts->mask & NVMF_OPT_HOST_IFACE) || 1191 (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) { 1192 return false; 1193 } 1194 1195 return true; 1196 } 1197 EXPORT_SYMBOL_GPL(nvmf_ip_options_match); 1198 1199 static int nvmf_check_allowed_opts(struct nvmf_ctrl_options *opts, 1200 unsigned int allowed_opts) 1201 { 1202 if (opts->mask & ~allowed_opts) { 1203 unsigned int i; 1204 1205 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 1206 if ((opt_tokens[i].token & opts->mask) && 1207 (opt_tokens[i].token & ~allowed_opts)) { 1208 pr_warn("invalid parameter '%s'\n", 1209 opt_tokens[i].pattern); 1210 } 1211 } 1212 1213 return -EINVAL; 1214 } 1215 1216 return 0; 1217 } 1218 1219 void nvmf_free_options(struct nvmf_ctrl_options *opts) 1220 { 1221 nvmf_host_put(opts->host); 1222 key_put(opts->keyring); 1223 key_put(opts->tls_key); 1224 kfree(opts->transport); 1225 kfree(opts->traddr); 1226 kfree(opts->trsvcid); 1227 kfree(opts->subsysnqn); 1228 kfree(opts->host_traddr); 1229 kfree(opts->host_iface); 1230 kfree(opts->dhchap_secret); 1231 kfree(opts->dhchap_ctrl_secret); 1232 kfree(opts); 1233 } 1234 EXPORT_SYMBOL_GPL(nvmf_free_options); 1235 1236 #define NVMF_REQUIRED_OPTS (NVMF_OPT_TRANSPORT | NVMF_OPT_NQN) 1237 #define NVMF_ALLOWED_OPTS (NVMF_OPT_QUEUE_SIZE | NVMF_OPT_NR_IO_QUEUES | \ 1238 NVMF_OPT_KATO | NVMF_OPT_HOSTNQN | \ 1239 NVMF_OPT_HOST_ID | NVMF_OPT_DUP_CONNECT |\ 1240 NVMF_OPT_DISABLE_SQFLOW | NVMF_OPT_DISCOVERY |\ 1241 NVMF_OPT_FAIL_FAST_TMO | NVMF_OPT_DHCHAP_SECRET |\ 1242 NVMF_OPT_DHCHAP_CTRL_SECRET) 1243 1244 static struct nvme_ctrl * 1245 nvmf_create_ctrl(struct device *dev, const char *buf) 1246 { 1247 struct nvmf_ctrl_options *opts; 1248 struct nvmf_transport_ops *ops; 1249 struct nvme_ctrl *ctrl; 1250 int ret; 1251 1252 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1253 if (!opts) 1254 return ERR_PTR(-ENOMEM); 1255 1256 ret = nvmf_parse_options(opts, buf); 1257 if (ret) 1258 goto out_free_opts; 1259 1260 1261 request_module("nvme-%s", opts->transport); 1262 1263 /* 1264 * Check the generic options first as we need a valid transport for 1265 * the lookup below. Then clear the generic flags so that transport 1266 * drivers don't have to care about them. 1267 */ 1268 ret = nvmf_check_required_opts(opts, NVMF_REQUIRED_OPTS); 1269 if (ret) 1270 goto out_free_opts; 1271 opts->mask &= ~NVMF_REQUIRED_OPTS; 1272 1273 down_read(&nvmf_transports_rwsem); 1274 ops = nvmf_lookup_transport(opts); 1275 if (!ops) { 1276 pr_info("no handler found for transport %s.\n", 1277 opts->transport); 1278 ret = -EINVAL; 1279 goto out_unlock; 1280 } 1281 1282 if (!try_module_get(ops->module)) { 1283 ret = -EBUSY; 1284 goto out_unlock; 1285 } 1286 up_read(&nvmf_transports_rwsem); 1287 1288 ret = nvmf_check_required_opts(opts, ops->required_opts); 1289 if (ret) 1290 goto out_module_put; 1291 ret = nvmf_check_allowed_opts(opts, NVMF_ALLOWED_OPTS | 1292 ops->allowed_opts | ops->required_opts); 1293 if (ret) 1294 goto out_module_put; 1295 1296 ctrl = ops->create_ctrl(dev, opts); 1297 if (IS_ERR(ctrl)) { 1298 ret = PTR_ERR(ctrl); 1299 goto out_module_put; 1300 } 1301 1302 module_put(ops->module); 1303 return ctrl; 1304 1305 out_module_put: 1306 module_put(ops->module); 1307 goto out_free_opts; 1308 out_unlock: 1309 up_read(&nvmf_transports_rwsem); 1310 out_free_opts: 1311 nvmf_free_options(opts); 1312 return ERR_PTR(ret); 1313 } 1314 1315 static struct class *nvmf_class; 1316 static struct device *nvmf_device; 1317 static DEFINE_MUTEX(nvmf_dev_mutex); 1318 1319 static ssize_t nvmf_dev_write(struct file *file, const char __user *ubuf, 1320 size_t count, loff_t *pos) 1321 { 1322 struct seq_file *seq_file = file->private_data; 1323 struct nvme_ctrl *ctrl; 1324 const char *buf; 1325 int ret = 0; 1326 1327 if (count > PAGE_SIZE) 1328 return -ENOMEM; 1329 1330 buf = memdup_user_nul(ubuf, count); 1331 if (IS_ERR(buf)) 1332 return PTR_ERR(buf); 1333 1334 mutex_lock(&nvmf_dev_mutex); 1335 if (seq_file->private) { 1336 ret = -EINVAL; 1337 goto out_unlock; 1338 } 1339 1340 ctrl = nvmf_create_ctrl(nvmf_device, buf); 1341 if (IS_ERR(ctrl)) { 1342 ret = PTR_ERR(ctrl); 1343 goto out_unlock; 1344 } 1345 1346 seq_file->private = ctrl; 1347 1348 out_unlock: 1349 mutex_unlock(&nvmf_dev_mutex); 1350 kfree(buf); 1351 return ret ? ret : count; 1352 } 1353 1354 static void __nvmf_concat_opt_tokens(struct seq_file *seq_file) 1355 { 1356 const struct match_token *tok; 1357 int idx; 1358 1359 /* 1360 * Add dummy entries for instance and cntlid to 1361 * signal an invalid/non-existing controller 1362 */ 1363 seq_puts(seq_file, "instance=-1,cntlid=-1"); 1364 for (idx = 0; idx < ARRAY_SIZE(opt_tokens); idx++) { 1365 tok = &opt_tokens[idx]; 1366 if (tok->token == NVMF_OPT_ERR) 1367 continue; 1368 seq_puts(seq_file, ","); 1369 seq_puts(seq_file, tok->pattern); 1370 } 1371 seq_puts(seq_file, "\n"); 1372 } 1373 1374 static int nvmf_dev_show(struct seq_file *seq_file, void *private) 1375 { 1376 struct nvme_ctrl *ctrl; 1377 1378 mutex_lock(&nvmf_dev_mutex); 1379 ctrl = seq_file->private; 1380 if (!ctrl) { 1381 __nvmf_concat_opt_tokens(seq_file); 1382 goto out_unlock; 1383 } 1384 1385 seq_printf(seq_file, "instance=%d,cntlid=%d\n", 1386 ctrl->instance, ctrl->cntlid); 1387 1388 out_unlock: 1389 mutex_unlock(&nvmf_dev_mutex); 1390 return 0; 1391 } 1392 1393 static int nvmf_dev_open(struct inode *inode, struct file *file) 1394 { 1395 /* 1396 * The miscdevice code initializes file->private_data, but doesn't 1397 * make use of it later. 1398 */ 1399 file->private_data = NULL; 1400 return single_open(file, nvmf_dev_show, NULL); 1401 } 1402 1403 static int nvmf_dev_release(struct inode *inode, struct file *file) 1404 { 1405 struct seq_file *seq_file = file->private_data; 1406 struct nvme_ctrl *ctrl = seq_file->private; 1407 1408 if (ctrl) 1409 nvme_put_ctrl(ctrl); 1410 return single_release(inode, file); 1411 } 1412 1413 static const struct file_operations nvmf_dev_fops = { 1414 .owner = THIS_MODULE, 1415 .write = nvmf_dev_write, 1416 .read = seq_read, 1417 .open = nvmf_dev_open, 1418 .release = nvmf_dev_release, 1419 }; 1420 1421 static struct miscdevice nvmf_misc = { 1422 .minor = MISC_DYNAMIC_MINOR, 1423 .name = "nvme-fabrics", 1424 .fops = &nvmf_dev_fops, 1425 }; 1426 1427 static int __init nvmf_init(void) 1428 { 1429 int ret; 1430 1431 nvmf_default_host = nvmf_host_default(); 1432 if (!nvmf_default_host) 1433 return -ENOMEM; 1434 1435 nvmf_class = class_create("nvme-fabrics"); 1436 if (IS_ERR(nvmf_class)) { 1437 pr_err("couldn't register class nvme-fabrics\n"); 1438 ret = PTR_ERR(nvmf_class); 1439 goto out_free_host; 1440 } 1441 1442 nvmf_device = 1443 device_create(nvmf_class, NULL, MKDEV(0, 0), NULL, "ctl"); 1444 if (IS_ERR(nvmf_device)) { 1445 pr_err("couldn't create nvme-fabrics device!\n"); 1446 ret = PTR_ERR(nvmf_device); 1447 goto out_destroy_class; 1448 } 1449 1450 ret = misc_register(&nvmf_misc); 1451 if (ret) { 1452 pr_err("couldn't register misc device: %d\n", ret); 1453 goto out_destroy_device; 1454 } 1455 1456 return 0; 1457 1458 out_destroy_device: 1459 device_destroy(nvmf_class, MKDEV(0, 0)); 1460 out_destroy_class: 1461 class_destroy(nvmf_class); 1462 out_free_host: 1463 nvmf_host_put(nvmf_default_host); 1464 return ret; 1465 } 1466 1467 static void __exit nvmf_exit(void) 1468 { 1469 misc_deregister(&nvmf_misc); 1470 device_destroy(nvmf_class, MKDEV(0, 0)); 1471 class_destroy(nvmf_class); 1472 nvmf_host_put(nvmf_default_host); 1473 1474 BUILD_BUG_ON(sizeof(struct nvmf_common_command) != 64); 1475 BUILD_BUG_ON(sizeof(struct nvmf_connect_command) != 64); 1476 BUILD_BUG_ON(sizeof(struct nvmf_property_get_command) != 64); 1477 BUILD_BUG_ON(sizeof(struct nvmf_property_set_command) != 64); 1478 BUILD_BUG_ON(sizeof(struct nvmf_auth_send_command) != 64); 1479 BUILD_BUG_ON(sizeof(struct nvmf_auth_receive_command) != 64); 1480 BUILD_BUG_ON(sizeof(struct nvmf_connect_data) != 1024); 1481 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_negotiate_data) != 8); 1482 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_challenge_data) != 16); 1483 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_reply_data) != 16); 1484 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success1_data) != 16); 1485 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success2_data) != 16); 1486 } 1487 1488 MODULE_LICENSE("GPL v2"); 1489 1490 module_init(nvmf_init); 1491 module_exit(nvmf_exit); 1492