1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVMe over Fabrics common host code. 4 * Copyright (c) 2015-2016 HGST, a Western Digital Company. 5 */ 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 #include <linux/init.h> 8 #include <linux/miscdevice.h> 9 #include <linux/module.h> 10 #include <linux/mutex.h> 11 #include <linux/parser.h> 12 #include <linux/seq_file.h> 13 #include "nvme.h" 14 #include "fabrics.h" 15 #include <linux/nvme-keyring.h> 16 17 static LIST_HEAD(nvmf_transports); 18 static DECLARE_RWSEM(nvmf_transports_rwsem); 19 20 static LIST_HEAD(nvmf_hosts); 21 static DEFINE_MUTEX(nvmf_hosts_mutex); 22 23 static struct nvmf_host *nvmf_default_host; 24 25 static struct nvmf_host *nvmf_host_alloc(const char *hostnqn, uuid_t *id) 26 { 27 struct nvmf_host *host; 28 29 host = kmalloc(sizeof(*host), GFP_KERNEL); 30 if (!host) 31 return NULL; 32 33 kref_init(&host->ref); 34 uuid_copy(&host->id, id); 35 strscpy(host->nqn, hostnqn, NVMF_NQN_SIZE); 36 37 return host; 38 } 39 40 static struct nvmf_host *nvmf_host_add(const char *hostnqn, uuid_t *id) 41 { 42 struct nvmf_host *host; 43 44 mutex_lock(&nvmf_hosts_mutex); 45 46 /* 47 * We have defined a host as how it is perceived by the target. 48 * Therefore, we don't allow different Host NQNs with the same Host ID. 49 * Similarly, we do not allow the usage of the same Host NQN with 50 * different Host IDs. This'll maintain unambiguous host identification. 51 */ 52 list_for_each_entry(host, &nvmf_hosts, list) { 53 bool same_hostnqn = !strcmp(host->nqn, hostnqn); 54 bool same_hostid = uuid_equal(&host->id, id); 55 56 if (same_hostnqn && same_hostid) { 57 kref_get(&host->ref); 58 goto out_unlock; 59 } 60 if (same_hostnqn) { 61 pr_err("found same hostnqn %s but different hostid %pUb\n", 62 hostnqn, id); 63 host = ERR_PTR(-EINVAL); 64 goto out_unlock; 65 } 66 if (same_hostid) { 67 pr_err("found same hostid %pUb but different hostnqn %s\n", 68 id, hostnqn); 69 host = ERR_PTR(-EINVAL); 70 goto out_unlock; 71 } 72 } 73 74 host = nvmf_host_alloc(hostnqn, id); 75 if (!host) { 76 host = ERR_PTR(-ENOMEM); 77 goto out_unlock; 78 } 79 80 list_add_tail(&host->list, &nvmf_hosts); 81 out_unlock: 82 mutex_unlock(&nvmf_hosts_mutex); 83 return host; 84 } 85 86 static struct nvmf_host *nvmf_host_default(void) 87 { 88 struct nvmf_host *host; 89 char nqn[NVMF_NQN_SIZE]; 90 uuid_t id; 91 92 uuid_gen(&id); 93 snprintf(nqn, NVMF_NQN_SIZE, 94 "nqn.2014-08.org.nvmexpress:uuid:%pUb", &id); 95 96 host = nvmf_host_alloc(nqn, &id); 97 if (!host) 98 return NULL; 99 100 mutex_lock(&nvmf_hosts_mutex); 101 list_add_tail(&host->list, &nvmf_hosts); 102 mutex_unlock(&nvmf_hosts_mutex); 103 104 return host; 105 } 106 107 static void nvmf_host_destroy(struct kref *ref) 108 { 109 struct nvmf_host *host = container_of(ref, struct nvmf_host, ref); 110 111 mutex_lock(&nvmf_hosts_mutex); 112 list_del(&host->list); 113 mutex_unlock(&nvmf_hosts_mutex); 114 115 kfree(host); 116 } 117 118 static void nvmf_host_put(struct nvmf_host *host) 119 { 120 if (host) 121 kref_put(&host->ref, nvmf_host_destroy); 122 } 123 124 /** 125 * nvmf_get_address() - Get address/port 126 * @ctrl: Host NVMe controller instance which we got the address 127 * @buf: OUTPUT parameter that will contain the address/port 128 * @size: buffer size 129 */ 130 int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size) 131 { 132 int len = 0; 133 134 if (ctrl->opts->mask & NVMF_OPT_TRADDR) 135 len += scnprintf(buf, size, "traddr=%s", ctrl->opts->traddr); 136 if (ctrl->opts->mask & NVMF_OPT_TRSVCID) 137 len += scnprintf(buf + len, size - len, "%strsvcid=%s", 138 (len) ? "," : "", ctrl->opts->trsvcid); 139 if (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR) 140 len += scnprintf(buf + len, size - len, "%shost_traddr=%s", 141 (len) ? "," : "", ctrl->opts->host_traddr); 142 if (ctrl->opts->mask & NVMF_OPT_HOST_IFACE) 143 len += scnprintf(buf + len, size - len, "%shost_iface=%s", 144 (len) ? "," : "", ctrl->opts->host_iface); 145 len += scnprintf(buf + len, size - len, "\n"); 146 147 return len; 148 } 149 EXPORT_SYMBOL_GPL(nvmf_get_address); 150 151 /** 152 * nvmf_reg_read32() - NVMe Fabrics "Property Get" API function. 153 * @ctrl: Host NVMe controller instance maintaining the admin 154 * queue used to submit the property read command to 155 * the allocated NVMe controller resource on the target system. 156 * @off: Starting offset value of the targeted property 157 * register (see the fabrics section of the NVMe standard). 158 * @val: OUTPUT parameter that will contain the value of 159 * the property after a successful read. 160 * 161 * Used by the host system to retrieve a 32-bit capsule property value 162 * from an NVMe controller on the target system. 163 * 164 * ("Capsule property" is an "PCIe register concept" applied to the 165 * NVMe fabrics space.) 166 * 167 * Return: 168 * 0: successful read 169 * > 0: NVMe error status code 170 * < 0: Linux errno error code 171 */ 172 int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) 173 { 174 struct nvme_command cmd = { }; 175 union nvme_result res; 176 int ret; 177 178 cmd.prop_get.opcode = nvme_fabrics_command; 179 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 180 cmd.prop_get.offset = cpu_to_le32(off); 181 182 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 183 NVME_QID_ANY, 0, 0); 184 185 if (ret >= 0) 186 *val = le64_to_cpu(res.u64); 187 if (unlikely(ret != 0)) 188 dev_err(ctrl->device, 189 "Property Get error: %d, offset %#x\n", 190 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 191 192 return ret; 193 } 194 EXPORT_SYMBOL_GPL(nvmf_reg_read32); 195 196 /** 197 * nvmf_reg_read64() - NVMe Fabrics "Property Get" API function. 198 * @ctrl: Host NVMe controller instance maintaining the admin 199 * queue used to submit the property read command to 200 * the allocated controller resource on the target system. 201 * @off: Starting offset value of the targeted property 202 * register (see the fabrics section of the NVMe standard). 203 * @val: OUTPUT parameter that will contain the value of 204 * the property after a successful read. 205 * 206 * Used by the host system to retrieve a 64-bit capsule property value 207 * from an NVMe controller on the target system. 208 * 209 * ("Capsule property" is an "PCIe register concept" applied to the 210 * NVMe fabrics space.) 211 * 212 * Return: 213 * 0: successful read 214 * > 0: NVMe error status code 215 * < 0: Linux errno error code 216 */ 217 int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) 218 { 219 struct nvme_command cmd = { }; 220 union nvme_result res; 221 int ret; 222 223 cmd.prop_get.opcode = nvme_fabrics_command; 224 cmd.prop_get.fctype = nvme_fabrics_type_property_get; 225 cmd.prop_get.attrib = 1; 226 cmd.prop_get.offset = cpu_to_le32(off); 227 228 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, NULL, 0, 229 NVME_QID_ANY, 0, 0); 230 231 if (ret >= 0) 232 *val = le64_to_cpu(res.u64); 233 if (unlikely(ret != 0)) 234 dev_err(ctrl->device, 235 "Property Get error: %d, offset %#x\n", 236 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 237 return ret; 238 } 239 EXPORT_SYMBOL_GPL(nvmf_reg_read64); 240 241 /** 242 * nvmf_reg_write32() - NVMe Fabrics "Property Write" API function. 243 * @ctrl: Host NVMe controller instance maintaining the admin 244 * queue used to submit the property read command to 245 * the allocated NVMe controller resource on the target system. 246 * @off: Starting offset value of the targeted property 247 * register (see the fabrics section of the NVMe standard). 248 * @val: Input parameter that contains the value to be 249 * written to the property. 250 * 251 * Used by the NVMe host system to write a 32-bit capsule property value 252 * to an NVMe controller on the target system. 253 * 254 * ("Capsule property" is an "PCIe register concept" applied to the 255 * NVMe fabrics space.) 256 * 257 * Return: 258 * 0: successful write 259 * > 0: NVMe error status code 260 * < 0: Linux errno error code 261 */ 262 int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) 263 { 264 struct nvme_command cmd = { }; 265 int ret; 266 267 cmd.prop_set.opcode = nvme_fabrics_command; 268 cmd.prop_set.fctype = nvme_fabrics_type_property_set; 269 cmd.prop_set.attrib = 0; 270 cmd.prop_set.offset = cpu_to_le32(off); 271 cmd.prop_set.value = cpu_to_le64(val); 272 273 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, NULL, NULL, 0, 274 NVME_QID_ANY, 0, 0); 275 if (unlikely(ret)) 276 dev_err(ctrl->device, 277 "Property Set error: %d, offset %#x\n", 278 ret > 0 ? ret & ~NVME_SC_DNR : ret, off); 279 return ret; 280 } 281 EXPORT_SYMBOL_GPL(nvmf_reg_write32); 282 283 /** 284 * nvmf_log_connect_error() - Error-parsing-diagnostic print out function for 285 * connect() errors. 286 * @ctrl: The specific /dev/nvmeX device that had the error. 287 * @errval: Error code to be decoded in a more human-friendly 288 * printout. 289 * @offset: For use with the NVMe error code 290 * NVME_SC_CONNECT_INVALID_PARAM. 291 * @cmd: This is the SQE portion of a submission capsule. 292 * @data: This is the "Data" portion of a submission capsule. 293 */ 294 static void nvmf_log_connect_error(struct nvme_ctrl *ctrl, 295 int errval, int offset, struct nvme_command *cmd, 296 struct nvmf_connect_data *data) 297 { 298 int err_sctype = errval & ~NVME_SC_DNR; 299 300 if (errval < 0) { 301 dev_err(ctrl->device, 302 "Connect command failed, errno: %d\n", errval); 303 return; 304 } 305 306 switch (err_sctype) { 307 case NVME_SC_CONNECT_INVALID_PARAM: 308 if (offset >> 16) { 309 char *inv_data = "Connect Invalid Data Parameter"; 310 311 switch (offset & 0xffff) { 312 case (offsetof(struct nvmf_connect_data, cntlid)): 313 dev_err(ctrl->device, 314 "%s, cntlid: %d\n", 315 inv_data, data->cntlid); 316 break; 317 case (offsetof(struct nvmf_connect_data, hostnqn)): 318 dev_err(ctrl->device, 319 "%s, hostnqn \"%s\"\n", 320 inv_data, data->hostnqn); 321 break; 322 case (offsetof(struct nvmf_connect_data, subsysnqn)): 323 dev_err(ctrl->device, 324 "%s, subsysnqn \"%s\"\n", 325 inv_data, data->subsysnqn); 326 break; 327 default: 328 dev_err(ctrl->device, 329 "%s, starting byte offset: %d\n", 330 inv_data, offset & 0xffff); 331 break; 332 } 333 } else { 334 char *inv_sqe = "Connect Invalid SQE Parameter"; 335 336 switch (offset) { 337 case (offsetof(struct nvmf_connect_command, qid)): 338 dev_err(ctrl->device, 339 "%s, qid %d\n", 340 inv_sqe, cmd->connect.qid); 341 break; 342 default: 343 dev_err(ctrl->device, 344 "%s, starting byte offset: %d\n", 345 inv_sqe, offset); 346 } 347 } 348 break; 349 case NVME_SC_CONNECT_INVALID_HOST: 350 dev_err(ctrl->device, 351 "Connect for subsystem %s is not allowed, hostnqn: %s\n", 352 data->subsysnqn, data->hostnqn); 353 break; 354 case NVME_SC_CONNECT_CTRL_BUSY: 355 dev_err(ctrl->device, 356 "Connect command failed: controller is busy or not available\n"); 357 break; 358 case NVME_SC_CONNECT_FORMAT: 359 dev_err(ctrl->device, 360 "Connect incompatible format: %d", 361 cmd->connect.recfmt); 362 break; 363 case NVME_SC_HOST_PATH_ERROR: 364 dev_err(ctrl->device, 365 "Connect command failed: host path error\n"); 366 break; 367 case NVME_SC_AUTH_REQUIRED: 368 dev_err(ctrl->device, 369 "Connect command failed: authentication required\n"); 370 break; 371 default: 372 dev_err(ctrl->device, 373 "Connect command failed, error wo/DNR bit: %d\n", 374 err_sctype); 375 break; 376 } 377 } 378 379 static struct nvmf_connect_data *nvmf_connect_data_prep(struct nvme_ctrl *ctrl, 380 u16 cntlid) 381 { 382 struct nvmf_connect_data *data; 383 384 data = kzalloc(sizeof(*data), GFP_KERNEL); 385 if (!data) 386 return NULL; 387 388 uuid_copy(&data->hostid, &ctrl->opts->host->id); 389 data->cntlid = cpu_to_le16(cntlid); 390 strscpy(data->subsysnqn, ctrl->opts->subsysnqn, NVMF_NQN_SIZE); 391 strscpy(data->hostnqn, ctrl->opts->host->nqn, NVMF_NQN_SIZE); 392 393 return data; 394 } 395 396 static void nvmf_connect_cmd_prep(struct nvme_ctrl *ctrl, u16 qid, 397 struct nvme_command *cmd) 398 { 399 cmd->connect.opcode = nvme_fabrics_command; 400 cmd->connect.fctype = nvme_fabrics_type_connect; 401 cmd->connect.qid = cpu_to_le16(qid); 402 403 if (qid) { 404 cmd->connect.sqsize = cpu_to_le16(ctrl->sqsize); 405 } else { 406 cmd->connect.sqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); 407 408 /* 409 * set keep-alive timeout in seconds granularity (ms * 1000) 410 */ 411 cmd->connect.kato = cpu_to_le32(ctrl->kato * 1000); 412 } 413 414 if (ctrl->opts->disable_sqflow) 415 cmd->connect.cattr |= NVME_CONNECT_DISABLE_SQFLOW; 416 } 417 418 /** 419 * nvmf_connect_admin_queue() - NVMe Fabrics Admin Queue "Connect" 420 * API function. 421 * @ctrl: Host nvme controller instance used to request 422 * a new NVMe controller allocation on the target 423 * system and establish an NVMe Admin connection to 424 * that controller. 425 * 426 * This function enables an NVMe host device to request a new allocation of 427 * an NVMe controller resource on a target system as well establish a 428 * fabrics-protocol connection of the NVMe Admin queue between the 429 * host system device and the allocated NVMe controller on the 430 * target system via a NVMe Fabrics "Connect" command. 431 * 432 * Return: 433 * 0: success 434 * > 0: NVMe error status code 435 * < 0: Linux errno error code 436 * 437 */ 438 int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl) 439 { 440 struct nvme_command cmd = { }; 441 union nvme_result res; 442 struct nvmf_connect_data *data; 443 int ret; 444 u32 result; 445 446 nvmf_connect_cmd_prep(ctrl, 0, &cmd); 447 448 data = nvmf_connect_data_prep(ctrl, 0xffff); 449 if (!data) 450 return -ENOMEM; 451 452 ret = __nvme_submit_sync_cmd(ctrl->fabrics_q, &cmd, &res, 453 data, sizeof(*data), NVME_QID_ANY, 1, 454 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 455 if (ret) { 456 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 457 &cmd, data); 458 goto out_free_data; 459 } 460 461 result = le32_to_cpu(res.u32); 462 ctrl->cntlid = result & 0xFFFF; 463 if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) { 464 /* Secure concatenation is not implemented */ 465 if (result & NVME_CONNECT_AUTHREQ_ASCR) { 466 dev_warn(ctrl->device, 467 "qid 0: secure concatenation is not supported\n"); 468 ret = NVME_SC_AUTH_REQUIRED; 469 goto out_free_data; 470 } 471 /* Authentication required */ 472 ret = nvme_auth_negotiate(ctrl, 0); 473 if (ret) { 474 dev_warn(ctrl->device, 475 "qid 0: authentication setup failed\n"); 476 ret = NVME_SC_AUTH_REQUIRED; 477 goto out_free_data; 478 } 479 ret = nvme_auth_wait(ctrl, 0); 480 if (ret) 481 dev_warn(ctrl->device, 482 "qid 0: authentication failed\n"); 483 else 484 dev_info(ctrl->device, 485 "qid 0: authenticated\n"); 486 } 487 out_free_data: 488 kfree(data); 489 return ret; 490 } 491 EXPORT_SYMBOL_GPL(nvmf_connect_admin_queue); 492 493 /** 494 * nvmf_connect_io_queue() - NVMe Fabrics I/O Queue "Connect" 495 * API function. 496 * @ctrl: Host nvme controller instance used to establish an 497 * NVMe I/O queue connection to the already allocated NVMe 498 * controller on the target system. 499 * @qid: NVMe I/O queue number for the new I/O connection between 500 * host and target (note qid == 0 is illegal as this is 501 * the Admin queue, per NVMe standard). 502 * 503 * This function issues a fabrics-protocol connection 504 * of a NVMe I/O queue (via NVMe Fabrics "Connect" command) 505 * between the host system device and the allocated NVMe controller 506 * on the target system. 507 * 508 * Return: 509 * 0: success 510 * > 0: NVMe error status code 511 * < 0: Linux errno error code 512 */ 513 int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid) 514 { 515 struct nvme_command cmd = { }; 516 struct nvmf_connect_data *data; 517 union nvme_result res; 518 int ret; 519 u32 result; 520 521 nvmf_connect_cmd_prep(ctrl, qid, &cmd); 522 523 data = nvmf_connect_data_prep(ctrl, ctrl->cntlid); 524 if (!data) 525 return -ENOMEM; 526 527 ret = __nvme_submit_sync_cmd(ctrl->connect_q, &cmd, &res, 528 data, sizeof(*data), qid, 1, 529 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 530 if (ret) { 531 nvmf_log_connect_error(ctrl, ret, le32_to_cpu(res.u32), 532 &cmd, data); 533 } 534 result = le32_to_cpu(res.u32); 535 if (result & (NVME_CONNECT_AUTHREQ_ATR | NVME_CONNECT_AUTHREQ_ASCR)) { 536 /* Secure concatenation is not implemented */ 537 if (result & NVME_CONNECT_AUTHREQ_ASCR) { 538 dev_warn(ctrl->device, 539 "qid 0: secure concatenation is not supported\n"); 540 ret = NVME_SC_AUTH_REQUIRED; 541 goto out_free_data; 542 } 543 /* Authentication required */ 544 ret = nvme_auth_negotiate(ctrl, qid); 545 if (ret) { 546 dev_warn(ctrl->device, 547 "qid %d: authentication setup failed\n", qid); 548 ret = NVME_SC_AUTH_REQUIRED; 549 } else { 550 ret = nvme_auth_wait(ctrl, qid); 551 if (ret) 552 dev_warn(ctrl->device, 553 "qid %u: authentication failed\n", qid); 554 } 555 } 556 out_free_data: 557 kfree(data); 558 return ret; 559 } 560 EXPORT_SYMBOL_GPL(nvmf_connect_io_queue); 561 562 bool nvmf_should_reconnect(struct nvme_ctrl *ctrl) 563 { 564 if (ctrl->opts->max_reconnects == -1 || 565 ctrl->nr_reconnects < ctrl->opts->max_reconnects) 566 return true; 567 568 return false; 569 } 570 EXPORT_SYMBOL_GPL(nvmf_should_reconnect); 571 572 /** 573 * nvmf_register_transport() - NVMe Fabrics Library registration function. 574 * @ops: Transport ops instance to be registered to the 575 * common fabrics library. 576 * 577 * API function that registers the type of specific transport fabric 578 * being implemented to the common NVMe fabrics library. Part of 579 * the overall init sequence of starting up a fabrics driver. 580 */ 581 int nvmf_register_transport(struct nvmf_transport_ops *ops) 582 { 583 if (!ops->create_ctrl) 584 return -EINVAL; 585 586 down_write(&nvmf_transports_rwsem); 587 list_add_tail(&ops->entry, &nvmf_transports); 588 up_write(&nvmf_transports_rwsem); 589 590 return 0; 591 } 592 EXPORT_SYMBOL_GPL(nvmf_register_transport); 593 594 /** 595 * nvmf_unregister_transport() - NVMe Fabrics Library unregistration function. 596 * @ops: Transport ops instance to be unregistered from the 597 * common fabrics library. 598 * 599 * Fabrics API function that unregisters the type of specific transport 600 * fabric being implemented from the common NVMe fabrics library. 601 * Part of the overall exit sequence of unloading the implemented driver. 602 */ 603 void nvmf_unregister_transport(struct nvmf_transport_ops *ops) 604 { 605 down_write(&nvmf_transports_rwsem); 606 list_del(&ops->entry); 607 up_write(&nvmf_transports_rwsem); 608 } 609 EXPORT_SYMBOL_GPL(nvmf_unregister_transport); 610 611 static struct nvmf_transport_ops *nvmf_lookup_transport( 612 struct nvmf_ctrl_options *opts) 613 { 614 struct nvmf_transport_ops *ops; 615 616 lockdep_assert_held(&nvmf_transports_rwsem); 617 618 list_for_each_entry(ops, &nvmf_transports, entry) { 619 if (strcmp(ops->name, opts->transport) == 0) 620 return ops; 621 } 622 623 return NULL; 624 } 625 626 static struct key *nvmf_parse_key(int key_id) 627 { 628 struct key *key; 629 630 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) { 631 pr_err("TLS is not supported\n"); 632 return ERR_PTR(-EINVAL); 633 } 634 635 key = key_lookup(key_id); 636 if (!IS_ERR(key)) 637 pr_err("key id %08x not found\n", key_id); 638 else 639 pr_debug("Using key id %08x\n", key_id); 640 return key; 641 } 642 643 static const match_table_t opt_tokens = { 644 { NVMF_OPT_TRANSPORT, "transport=%s" }, 645 { NVMF_OPT_TRADDR, "traddr=%s" }, 646 { NVMF_OPT_TRSVCID, "trsvcid=%s" }, 647 { NVMF_OPT_NQN, "nqn=%s" }, 648 { NVMF_OPT_QUEUE_SIZE, "queue_size=%d" }, 649 { NVMF_OPT_NR_IO_QUEUES, "nr_io_queues=%d" }, 650 { NVMF_OPT_RECONNECT_DELAY, "reconnect_delay=%d" }, 651 { NVMF_OPT_CTRL_LOSS_TMO, "ctrl_loss_tmo=%d" }, 652 { NVMF_OPT_KATO, "keep_alive_tmo=%d" }, 653 { NVMF_OPT_HOSTNQN, "hostnqn=%s" }, 654 { NVMF_OPT_HOST_TRADDR, "host_traddr=%s" }, 655 { NVMF_OPT_HOST_IFACE, "host_iface=%s" }, 656 { NVMF_OPT_HOST_ID, "hostid=%s" }, 657 { NVMF_OPT_DUP_CONNECT, "duplicate_connect" }, 658 { NVMF_OPT_DISABLE_SQFLOW, "disable_sqflow" }, 659 { NVMF_OPT_HDR_DIGEST, "hdr_digest" }, 660 { NVMF_OPT_DATA_DIGEST, "data_digest" }, 661 { NVMF_OPT_NR_WRITE_QUEUES, "nr_write_queues=%d" }, 662 { NVMF_OPT_NR_POLL_QUEUES, "nr_poll_queues=%d" }, 663 { NVMF_OPT_TOS, "tos=%d" }, 664 #ifdef CONFIG_NVME_TCP_TLS 665 { NVMF_OPT_KEYRING, "keyring=%d" }, 666 { NVMF_OPT_TLS_KEY, "tls_key=%d" }, 667 #endif 668 { NVMF_OPT_FAIL_FAST_TMO, "fast_io_fail_tmo=%d" }, 669 { NVMF_OPT_DISCOVERY, "discovery" }, 670 #ifdef CONFIG_NVME_HOST_AUTH 671 { NVMF_OPT_DHCHAP_SECRET, "dhchap_secret=%s" }, 672 { NVMF_OPT_DHCHAP_CTRL_SECRET, "dhchap_ctrl_secret=%s" }, 673 #endif 674 #ifdef CONFIG_NVME_TCP_TLS 675 { NVMF_OPT_TLS, "tls" }, 676 #endif 677 { NVMF_OPT_ERR, NULL } 678 }; 679 680 static int nvmf_parse_options(struct nvmf_ctrl_options *opts, 681 const char *buf) 682 { 683 substring_t args[MAX_OPT_ARGS]; 684 char *options, *o, *p; 685 int token, ret = 0; 686 size_t nqnlen = 0; 687 int ctrl_loss_tmo = NVMF_DEF_CTRL_LOSS_TMO, key_id; 688 uuid_t hostid; 689 char hostnqn[NVMF_NQN_SIZE]; 690 struct key *key; 691 692 /* Set defaults */ 693 opts->queue_size = NVMF_DEF_QUEUE_SIZE; 694 opts->nr_io_queues = num_online_cpus(); 695 opts->reconnect_delay = NVMF_DEF_RECONNECT_DELAY; 696 opts->kato = 0; 697 opts->duplicate_connect = false; 698 opts->fast_io_fail_tmo = NVMF_DEF_FAIL_FAST_TMO; 699 opts->hdr_digest = false; 700 opts->data_digest = false; 701 opts->tos = -1; /* < 0 == use transport default */ 702 opts->tls = false; 703 opts->tls_key = NULL; 704 opts->keyring = NULL; 705 706 options = o = kstrdup(buf, GFP_KERNEL); 707 if (!options) 708 return -ENOMEM; 709 710 /* use default host if not given by user space */ 711 uuid_copy(&hostid, &nvmf_default_host->id); 712 strscpy(hostnqn, nvmf_default_host->nqn, NVMF_NQN_SIZE); 713 714 while ((p = strsep(&o, ",\n")) != NULL) { 715 if (!*p) 716 continue; 717 718 token = match_token(p, opt_tokens, args); 719 opts->mask |= token; 720 switch (token) { 721 case NVMF_OPT_TRANSPORT: 722 p = match_strdup(args); 723 if (!p) { 724 ret = -ENOMEM; 725 goto out; 726 } 727 kfree(opts->transport); 728 opts->transport = p; 729 break; 730 case NVMF_OPT_NQN: 731 p = match_strdup(args); 732 if (!p) { 733 ret = -ENOMEM; 734 goto out; 735 } 736 kfree(opts->subsysnqn); 737 opts->subsysnqn = p; 738 nqnlen = strlen(opts->subsysnqn); 739 if (nqnlen >= NVMF_NQN_SIZE) { 740 pr_err("%s needs to be < %d bytes\n", 741 opts->subsysnqn, NVMF_NQN_SIZE); 742 ret = -EINVAL; 743 goto out; 744 } 745 opts->discovery_nqn = 746 !(strcmp(opts->subsysnqn, 747 NVME_DISC_SUBSYS_NAME)); 748 break; 749 case NVMF_OPT_TRADDR: 750 p = match_strdup(args); 751 if (!p) { 752 ret = -ENOMEM; 753 goto out; 754 } 755 kfree(opts->traddr); 756 opts->traddr = p; 757 break; 758 case NVMF_OPT_TRSVCID: 759 p = match_strdup(args); 760 if (!p) { 761 ret = -ENOMEM; 762 goto out; 763 } 764 kfree(opts->trsvcid); 765 opts->trsvcid = p; 766 break; 767 case NVMF_OPT_QUEUE_SIZE: 768 if (match_int(args, &token)) { 769 ret = -EINVAL; 770 goto out; 771 } 772 if (token < NVMF_MIN_QUEUE_SIZE || 773 token > NVMF_MAX_QUEUE_SIZE) { 774 pr_err("Invalid queue_size %d\n", token); 775 ret = -EINVAL; 776 goto out; 777 } 778 opts->queue_size = token; 779 break; 780 case NVMF_OPT_NR_IO_QUEUES: 781 if (match_int(args, &token)) { 782 ret = -EINVAL; 783 goto out; 784 } 785 if (token <= 0) { 786 pr_err("Invalid number of IOQs %d\n", token); 787 ret = -EINVAL; 788 goto out; 789 } 790 if (opts->discovery_nqn) { 791 pr_debug("Ignoring nr_io_queues value for discovery controller\n"); 792 break; 793 } 794 795 opts->nr_io_queues = min_t(unsigned int, 796 num_online_cpus(), token); 797 break; 798 case NVMF_OPT_KATO: 799 if (match_int(args, &token)) { 800 ret = -EINVAL; 801 goto out; 802 } 803 804 if (token < 0) { 805 pr_err("Invalid keep_alive_tmo %d\n", token); 806 ret = -EINVAL; 807 goto out; 808 } else if (token == 0 && !opts->discovery_nqn) { 809 /* Allowed for debug */ 810 pr_warn("keep_alive_tmo 0 won't execute keep alives!!!\n"); 811 } 812 opts->kato = token; 813 break; 814 case NVMF_OPT_CTRL_LOSS_TMO: 815 if (match_int(args, &token)) { 816 ret = -EINVAL; 817 goto out; 818 } 819 820 if (token < 0) 821 pr_warn("ctrl_loss_tmo < 0 will reconnect forever\n"); 822 ctrl_loss_tmo = token; 823 break; 824 case NVMF_OPT_FAIL_FAST_TMO: 825 if (match_int(args, &token)) { 826 ret = -EINVAL; 827 goto out; 828 } 829 830 if (token >= 0) 831 pr_warn("I/O fail on reconnect controller after %d sec\n", 832 token); 833 else 834 token = -1; 835 836 opts->fast_io_fail_tmo = token; 837 break; 838 case NVMF_OPT_HOSTNQN: 839 if (opts->host) { 840 pr_err("hostnqn already user-assigned: %s\n", 841 opts->host->nqn); 842 ret = -EADDRINUSE; 843 goto out; 844 } 845 p = match_strdup(args); 846 if (!p) { 847 ret = -ENOMEM; 848 goto out; 849 } 850 nqnlen = strlen(p); 851 if (nqnlen >= NVMF_NQN_SIZE) { 852 pr_err("%s needs to be < %d bytes\n", 853 p, NVMF_NQN_SIZE); 854 kfree(p); 855 ret = -EINVAL; 856 goto out; 857 } 858 strscpy(hostnqn, p, NVMF_NQN_SIZE); 859 kfree(p); 860 break; 861 case NVMF_OPT_RECONNECT_DELAY: 862 if (match_int(args, &token)) { 863 ret = -EINVAL; 864 goto out; 865 } 866 if (token <= 0) { 867 pr_err("Invalid reconnect_delay %d\n", token); 868 ret = -EINVAL; 869 goto out; 870 } 871 opts->reconnect_delay = token; 872 break; 873 case NVMF_OPT_HOST_TRADDR: 874 p = match_strdup(args); 875 if (!p) { 876 ret = -ENOMEM; 877 goto out; 878 } 879 kfree(opts->host_traddr); 880 opts->host_traddr = p; 881 break; 882 case NVMF_OPT_HOST_IFACE: 883 p = match_strdup(args); 884 if (!p) { 885 ret = -ENOMEM; 886 goto out; 887 } 888 kfree(opts->host_iface); 889 opts->host_iface = p; 890 break; 891 case NVMF_OPT_HOST_ID: 892 p = match_strdup(args); 893 if (!p) { 894 ret = -ENOMEM; 895 goto out; 896 } 897 ret = uuid_parse(p, &hostid); 898 if (ret) { 899 pr_err("Invalid hostid %s\n", p); 900 ret = -EINVAL; 901 kfree(p); 902 goto out; 903 } 904 kfree(p); 905 break; 906 case NVMF_OPT_DUP_CONNECT: 907 opts->duplicate_connect = true; 908 break; 909 case NVMF_OPT_DISABLE_SQFLOW: 910 opts->disable_sqflow = true; 911 break; 912 case NVMF_OPT_HDR_DIGEST: 913 opts->hdr_digest = true; 914 break; 915 case NVMF_OPT_DATA_DIGEST: 916 opts->data_digest = true; 917 break; 918 case NVMF_OPT_NR_WRITE_QUEUES: 919 if (match_int(args, &token)) { 920 ret = -EINVAL; 921 goto out; 922 } 923 if (token <= 0) { 924 pr_err("Invalid nr_write_queues %d\n", token); 925 ret = -EINVAL; 926 goto out; 927 } 928 opts->nr_write_queues = token; 929 break; 930 case NVMF_OPT_NR_POLL_QUEUES: 931 if (match_int(args, &token)) { 932 ret = -EINVAL; 933 goto out; 934 } 935 if (token <= 0) { 936 pr_err("Invalid nr_poll_queues %d\n", token); 937 ret = -EINVAL; 938 goto out; 939 } 940 opts->nr_poll_queues = token; 941 break; 942 case NVMF_OPT_TOS: 943 if (match_int(args, &token)) { 944 ret = -EINVAL; 945 goto out; 946 } 947 if (token < 0) { 948 pr_err("Invalid type of service %d\n", token); 949 ret = -EINVAL; 950 goto out; 951 } 952 if (token > 255) { 953 pr_warn("Clamping type of service to 255\n"); 954 token = 255; 955 } 956 opts->tos = token; 957 break; 958 case NVMF_OPT_KEYRING: 959 if (match_int(args, &key_id) || key_id <= 0) { 960 ret = -EINVAL; 961 goto out; 962 } 963 key = nvmf_parse_key(key_id); 964 if (IS_ERR(key)) { 965 ret = PTR_ERR(key); 966 goto out; 967 } 968 key_put(opts->keyring); 969 opts->keyring = key; 970 break; 971 case NVMF_OPT_TLS_KEY: 972 if (match_int(args, &key_id) || key_id <= 0) { 973 ret = -EINVAL; 974 goto out; 975 } 976 key = nvmf_parse_key(key_id); 977 if (IS_ERR(key)) { 978 ret = PTR_ERR(key); 979 goto out; 980 } 981 key_put(opts->tls_key); 982 opts->tls_key = key; 983 break; 984 case NVMF_OPT_DISCOVERY: 985 opts->discovery_nqn = true; 986 break; 987 case NVMF_OPT_DHCHAP_SECRET: 988 p = match_strdup(args); 989 if (!p) { 990 ret = -ENOMEM; 991 goto out; 992 } 993 if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) { 994 pr_err("Invalid DH-CHAP secret %s\n", p); 995 ret = -EINVAL; 996 goto out; 997 } 998 kfree(opts->dhchap_secret); 999 opts->dhchap_secret = p; 1000 break; 1001 case NVMF_OPT_DHCHAP_CTRL_SECRET: 1002 p = match_strdup(args); 1003 if (!p) { 1004 ret = -ENOMEM; 1005 goto out; 1006 } 1007 if (strlen(p) < 11 || strncmp(p, "DHHC-1:", 7)) { 1008 pr_err("Invalid DH-CHAP secret %s\n", p); 1009 ret = -EINVAL; 1010 goto out; 1011 } 1012 kfree(opts->dhchap_ctrl_secret); 1013 opts->dhchap_ctrl_secret = p; 1014 break; 1015 case NVMF_OPT_TLS: 1016 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS)) { 1017 pr_err("TLS is not supported\n"); 1018 ret = -EINVAL; 1019 goto out; 1020 } 1021 opts->tls = true; 1022 break; 1023 default: 1024 pr_warn("unknown parameter or missing value '%s' in ctrl creation request\n", 1025 p); 1026 ret = -EINVAL; 1027 goto out; 1028 } 1029 } 1030 1031 if (opts->discovery_nqn) { 1032 opts->nr_io_queues = 0; 1033 opts->nr_write_queues = 0; 1034 opts->nr_poll_queues = 0; 1035 opts->duplicate_connect = true; 1036 } else { 1037 if (!opts->kato) 1038 opts->kato = NVME_DEFAULT_KATO; 1039 } 1040 if (ctrl_loss_tmo < 0) { 1041 opts->max_reconnects = -1; 1042 } else { 1043 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 1044 opts->reconnect_delay); 1045 if (ctrl_loss_tmo < opts->fast_io_fail_tmo) 1046 pr_warn("failfast tmo (%d) larger than controller loss tmo (%d)\n", 1047 opts->fast_io_fail_tmo, ctrl_loss_tmo); 1048 } 1049 1050 opts->host = nvmf_host_add(hostnqn, &hostid); 1051 if (IS_ERR(opts->host)) { 1052 ret = PTR_ERR(opts->host); 1053 opts->host = NULL; 1054 goto out; 1055 } 1056 1057 out: 1058 kfree(options); 1059 return ret; 1060 } 1061 1062 void nvmf_set_io_queues(struct nvmf_ctrl_options *opts, u32 nr_io_queues, 1063 u32 io_queues[HCTX_MAX_TYPES]) 1064 { 1065 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) { 1066 /* 1067 * separate read/write queues 1068 * hand out dedicated default queues only after we have 1069 * sufficient read queues. 1070 */ 1071 io_queues[HCTX_TYPE_READ] = opts->nr_io_queues; 1072 nr_io_queues -= io_queues[HCTX_TYPE_READ]; 1073 io_queues[HCTX_TYPE_DEFAULT] = 1074 min(opts->nr_write_queues, nr_io_queues); 1075 nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT]; 1076 } else { 1077 /* 1078 * shared read/write queues 1079 * either no write queues were requested, or we don't have 1080 * sufficient queue count to have dedicated default queues. 1081 */ 1082 io_queues[HCTX_TYPE_DEFAULT] = 1083 min(opts->nr_io_queues, nr_io_queues); 1084 nr_io_queues -= io_queues[HCTX_TYPE_DEFAULT]; 1085 } 1086 1087 if (opts->nr_poll_queues && nr_io_queues) { 1088 /* map dedicated poll queues only if we have queues left */ 1089 io_queues[HCTX_TYPE_POLL] = 1090 min(opts->nr_poll_queues, nr_io_queues); 1091 } 1092 } 1093 EXPORT_SYMBOL_GPL(nvmf_set_io_queues); 1094 1095 void nvmf_map_queues(struct blk_mq_tag_set *set, struct nvme_ctrl *ctrl, 1096 u32 io_queues[HCTX_MAX_TYPES]) 1097 { 1098 struct nvmf_ctrl_options *opts = ctrl->opts; 1099 1100 if (opts->nr_write_queues && io_queues[HCTX_TYPE_READ]) { 1101 /* separate read/write queues */ 1102 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1103 io_queues[HCTX_TYPE_DEFAULT]; 1104 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1105 set->map[HCTX_TYPE_READ].nr_queues = 1106 io_queues[HCTX_TYPE_READ]; 1107 set->map[HCTX_TYPE_READ].queue_offset = 1108 io_queues[HCTX_TYPE_DEFAULT]; 1109 } else { 1110 /* shared read/write queues */ 1111 set->map[HCTX_TYPE_DEFAULT].nr_queues = 1112 io_queues[HCTX_TYPE_DEFAULT]; 1113 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0; 1114 set->map[HCTX_TYPE_READ].nr_queues = 1115 io_queues[HCTX_TYPE_DEFAULT]; 1116 set->map[HCTX_TYPE_READ].queue_offset = 0; 1117 } 1118 1119 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 1120 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]); 1121 if (opts->nr_poll_queues && io_queues[HCTX_TYPE_POLL]) { 1122 /* map dedicated poll queues only if we have queues left */ 1123 set->map[HCTX_TYPE_POLL].nr_queues = io_queues[HCTX_TYPE_POLL]; 1124 set->map[HCTX_TYPE_POLL].queue_offset = 1125 io_queues[HCTX_TYPE_DEFAULT] + 1126 io_queues[HCTX_TYPE_READ]; 1127 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]); 1128 } 1129 1130 dev_info(ctrl->device, 1131 "mapped %d/%d/%d default/read/poll queues.\n", 1132 io_queues[HCTX_TYPE_DEFAULT], 1133 io_queues[HCTX_TYPE_READ], 1134 io_queues[HCTX_TYPE_POLL]); 1135 } 1136 EXPORT_SYMBOL_GPL(nvmf_map_queues); 1137 1138 static int nvmf_check_required_opts(struct nvmf_ctrl_options *opts, 1139 unsigned int required_opts) 1140 { 1141 if ((opts->mask & required_opts) != required_opts) { 1142 unsigned int i; 1143 1144 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 1145 if ((opt_tokens[i].token & required_opts) && 1146 !(opt_tokens[i].token & opts->mask)) { 1147 pr_warn("missing parameter '%s'\n", 1148 opt_tokens[i].pattern); 1149 } 1150 } 1151 1152 return -EINVAL; 1153 } 1154 1155 return 0; 1156 } 1157 1158 bool nvmf_ip_options_match(struct nvme_ctrl *ctrl, 1159 struct nvmf_ctrl_options *opts) 1160 { 1161 if (!nvmf_ctlr_matches_baseopts(ctrl, opts) || 1162 strcmp(opts->traddr, ctrl->opts->traddr) || 1163 strcmp(opts->trsvcid, ctrl->opts->trsvcid)) 1164 return false; 1165 1166 /* 1167 * Checking the local address or host interfaces is rough. 1168 * 1169 * In most cases, none is specified and the host port or 1170 * host interface is selected by the stack. 1171 * 1172 * Assume no match if: 1173 * - local address or host interface is specified and address 1174 * or host interface is not the same 1175 * - local address or host interface is not specified but 1176 * remote is, or vice versa (admin using specific 1177 * host_traddr/host_iface when it matters). 1178 */ 1179 if ((opts->mask & NVMF_OPT_HOST_TRADDR) && 1180 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 1181 if (strcmp(opts->host_traddr, ctrl->opts->host_traddr)) 1182 return false; 1183 } else if ((opts->mask & NVMF_OPT_HOST_TRADDR) || 1184 (ctrl->opts->mask & NVMF_OPT_HOST_TRADDR)) { 1185 return false; 1186 } 1187 1188 if ((opts->mask & NVMF_OPT_HOST_IFACE) && 1189 (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) { 1190 if (strcmp(opts->host_iface, ctrl->opts->host_iface)) 1191 return false; 1192 } else if ((opts->mask & NVMF_OPT_HOST_IFACE) || 1193 (ctrl->opts->mask & NVMF_OPT_HOST_IFACE)) { 1194 return false; 1195 } 1196 1197 return true; 1198 } 1199 EXPORT_SYMBOL_GPL(nvmf_ip_options_match); 1200 1201 static int nvmf_check_allowed_opts(struct nvmf_ctrl_options *opts, 1202 unsigned int allowed_opts) 1203 { 1204 if (opts->mask & ~allowed_opts) { 1205 unsigned int i; 1206 1207 for (i = 0; i < ARRAY_SIZE(opt_tokens); i++) { 1208 if ((opt_tokens[i].token & opts->mask) && 1209 (opt_tokens[i].token & ~allowed_opts)) { 1210 pr_warn("invalid parameter '%s'\n", 1211 opt_tokens[i].pattern); 1212 } 1213 } 1214 1215 return -EINVAL; 1216 } 1217 1218 return 0; 1219 } 1220 1221 void nvmf_free_options(struct nvmf_ctrl_options *opts) 1222 { 1223 nvmf_host_put(opts->host); 1224 key_put(opts->keyring); 1225 key_put(opts->tls_key); 1226 kfree(opts->transport); 1227 kfree(opts->traddr); 1228 kfree(opts->trsvcid); 1229 kfree(opts->subsysnqn); 1230 kfree(opts->host_traddr); 1231 kfree(opts->host_iface); 1232 kfree(opts->dhchap_secret); 1233 kfree(opts->dhchap_ctrl_secret); 1234 kfree(opts); 1235 } 1236 EXPORT_SYMBOL_GPL(nvmf_free_options); 1237 1238 #define NVMF_REQUIRED_OPTS (NVMF_OPT_TRANSPORT | NVMF_OPT_NQN) 1239 #define NVMF_ALLOWED_OPTS (NVMF_OPT_QUEUE_SIZE | NVMF_OPT_NR_IO_QUEUES | \ 1240 NVMF_OPT_KATO | NVMF_OPT_HOSTNQN | \ 1241 NVMF_OPT_HOST_ID | NVMF_OPT_DUP_CONNECT |\ 1242 NVMF_OPT_DISABLE_SQFLOW | NVMF_OPT_DISCOVERY |\ 1243 NVMF_OPT_FAIL_FAST_TMO | NVMF_OPT_DHCHAP_SECRET |\ 1244 NVMF_OPT_DHCHAP_CTRL_SECRET) 1245 1246 static struct nvme_ctrl * 1247 nvmf_create_ctrl(struct device *dev, const char *buf) 1248 { 1249 struct nvmf_ctrl_options *opts; 1250 struct nvmf_transport_ops *ops; 1251 struct nvme_ctrl *ctrl; 1252 int ret; 1253 1254 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1255 if (!opts) 1256 return ERR_PTR(-ENOMEM); 1257 1258 ret = nvmf_parse_options(opts, buf); 1259 if (ret) 1260 goto out_free_opts; 1261 1262 1263 request_module("nvme-%s", opts->transport); 1264 1265 /* 1266 * Check the generic options first as we need a valid transport for 1267 * the lookup below. Then clear the generic flags so that transport 1268 * drivers don't have to care about them. 1269 */ 1270 ret = nvmf_check_required_opts(opts, NVMF_REQUIRED_OPTS); 1271 if (ret) 1272 goto out_free_opts; 1273 opts->mask &= ~NVMF_REQUIRED_OPTS; 1274 1275 down_read(&nvmf_transports_rwsem); 1276 ops = nvmf_lookup_transport(opts); 1277 if (!ops) { 1278 pr_info("no handler found for transport %s.\n", 1279 opts->transport); 1280 ret = -EINVAL; 1281 goto out_unlock; 1282 } 1283 1284 if (!try_module_get(ops->module)) { 1285 ret = -EBUSY; 1286 goto out_unlock; 1287 } 1288 up_read(&nvmf_transports_rwsem); 1289 1290 ret = nvmf_check_required_opts(opts, ops->required_opts); 1291 if (ret) 1292 goto out_module_put; 1293 ret = nvmf_check_allowed_opts(opts, NVMF_ALLOWED_OPTS | 1294 ops->allowed_opts | ops->required_opts); 1295 if (ret) 1296 goto out_module_put; 1297 1298 ctrl = ops->create_ctrl(dev, opts); 1299 if (IS_ERR(ctrl)) { 1300 ret = PTR_ERR(ctrl); 1301 goto out_module_put; 1302 } 1303 1304 module_put(ops->module); 1305 return ctrl; 1306 1307 out_module_put: 1308 module_put(ops->module); 1309 goto out_free_opts; 1310 out_unlock: 1311 up_read(&nvmf_transports_rwsem); 1312 out_free_opts: 1313 nvmf_free_options(opts); 1314 return ERR_PTR(ret); 1315 } 1316 1317 static struct class *nvmf_class; 1318 static struct device *nvmf_device; 1319 static DEFINE_MUTEX(nvmf_dev_mutex); 1320 1321 static ssize_t nvmf_dev_write(struct file *file, const char __user *ubuf, 1322 size_t count, loff_t *pos) 1323 { 1324 struct seq_file *seq_file = file->private_data; 1325 struct nvme_ctrl *ctrl; 1326 const char *buf; 1327 int ret = 0; 1328 1329 if (count > PAGE_SIZE) 1330 return -ENOMEM; 1331 1332 buf = memdup_user_nul(ubuf, count); 1333 if (IS_ERR(buf)) 1334 return PTR_ERR(buf); 1335 1336 mutex_lock(&nvmf_dev_mutex); 1337 if (seq_file->private) { 1338 ret = -EINVAL; 1339 goto out_unlock; 1340 } 1341 1342 ctrl = nvmf_create_ctrl(nvmf_device, buf); 1343 if (IS_ERR(ctrl)) { 1344 ret = PTR_ERR(ctrl); 1345 goto out_unlock; 1346 } 1347 1348 seq_file->private = ctrl; 1349 1350 out_unlock: 1351 mutex_unlock(&nvmf_dev_mutex); 1352 kfree(buf); 1353 return ret ? ret : count; 1354 } 1355 1356 static void __nvmf_concat_opt_tokens(struct seq_file *seq_file) 1357 { 1358 const struct match_token *tok; 1359 int idx; 1360 1361 /* 1362 * Add dummy entries for instance and cntlid to 1363 * signal an invalid/non-existing controller 1364 */ 1365 seq_puts(seq_file, "instance=-1,cntlid=-1"); 1366 for (idx = 0; idx < ARRAY_SIZE(opt_tokens); idx++) { 1367 tok = &opt_tokens[idx]; 1368 if (tok->token == NVMF_OPT_ERR) 1369 continue; 1370 seq_puts(seq_file, ","); 1371 seq_puts(seq_file, tok->pattern); 1372 } 1373 seq_puts(seq_file, "\n"); 1374 } 1375 1376 static int nvmf_dev_show(struct seq_file *seq_file, void *private) 1377 { 1378 struct nvme_ctrl *ctrl; 1379 1380 mutex_lock(&nvmf_dev_mutex); 1381 ctrl = seq_file->private; 1382 if (!ctrl) { 1383 __nvmf_concat_opt_tokens(seq_file); 1384 goto out_unlock; 1385 } 1386 1387 seq_printf(seq_file, "instance=%d,cntlid=%d\n", 1388 ctrl->instance, ctrl->cntlid); 1389 1390 out_unlock: 1391 mutex_unlock(&nvmf_dev_mutex); 1392 return 0; 1393 } 1394 1395 static int nvmf_dev_open(struct inode *inode, struct file *file) 1396 { 1397 /* 1398 * The miscdevice code initializes file->private_data, but doesn't 1399 * make use of it later. 1400 */ 1401 file->private_data = NULL; 1402 return single_open(file, nvmf_dev_show, NULL); 1403 } 1404 1405 static int nvmf_dev_release(struct inode *inode, struct file *file) 1406 { 1407 struct seq_file *seq_file = file->private_data; 1408 struct nvme_ctrl *ctrl = seq_file->private; 1409 1410 if (ctrl) 1411 nvme_put_ctrl(ctrl); 1412 return single_release(inode, file); 1413 } 1414 1415 static const struct file_operations nvmf_dev_fops = { 1416 .owner = THIS_MODULE, 1417 .write = nvmf_dev_write, 1418 .read = seq_read, 1419 .open = nvmf_dev_open, 1420 .release = nvmf_dev_release, 1421 }; 1422 1423 static struct miscdevice nvmf_misc = { 1424 .minor = MISC_DYNAMIC_MINOR, 1425 .name = "nvme-fabrics", 1426 .fops = &nvmf_dev_fops, 1427 }; 1428 1429 static int __init nvmf_init(void) 1430 { 1431 int ret; 1432 1433 nvmf_default_host = nvmf_host_default(); 1434 if (!nvmf_default_host) 1435 return -ENOMEM; 1436 1437 nvmf_class = class_create("nvme-fabrics"); 1438 if (IS_ERR(nvmf_class)) { 1439 pr_err("couldn't register class nvme-fabrics\n"); 1440 ret = PTR_ERR(nvmf_class); 1441 goto out_free_host; 1442 } 1443 1444 nvmf_device = 1445 device_create(nvmf_class, NULL, MKDEV(0, 0), NULL, "ctl"); 1446 if (IS_ERR(nvmf_device)) { 1447 pr_err("couldn't create nvme-fabrics device!\n"); 1448 ret = PTR_ERR(nvmf_device); 1449 goto out_destroy_class; 1450 } 1451 1452 ret = misc_register(&nvmf_misc); 1453 if (ret) { 1454 pr_err("couldn't register misc device: %d\n", ret); 1455 goto out_destroy_device; 1456 } 1457 1458 return 0; 1459 1460 out_destroy_device: 1461 device_destroy(nvmf_class, MKDEV(0, 0)); 1462 out_destroy_class: 1463 class_destroy(nvmf_class); 1464 out_free_host: 1465 nvmf_host_put(nvmf_default_host); 1466 return ret; 1467 } 1468 1469 static void __exit nvmf_exit(void) 1470 { 1471 misc_deregister(&nvmf_misc); 1472 device_destroy(nvmf_class, MKDEV(0, 0)); 1473 class_destroy(nvmf_class); 1474 nvmf_host_put(nvmf_default_host); 1475 1476 BUILD_BUG_ON(sizeof(struct nvmf_common_command) != 64); 1477 BUILD_BUG_ON(sizeof(struct nvmf_connect_command) != 64); 1478 BUILD_BUG_ON(sizeof(struct nvmf_property_get_command) != 64); 1479 BUILD_BUG_ON(sizeof(struct nvmf_property_set_command) != 64); 1480 BUILD_BUG_ON(sizeof(struct nvmf_auth_send_command) != 64); 1481 BUILD_BUG_ON(sizeof(struct nvmf_auth_receive_command) != 64); 1482 BUILD_BUG_ON(sizeof(struct nvmf_connect_data) != 1024); 1483 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_negotiate_data) != 8); 1484 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_challenge_data) != 16); 1485 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_reply_data) != 16); 1486 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success1_data) != 16); 1487 BUILD_BUG_ON(sizeof(struct nvmf_auth_dhchap_success2_data) != 16); 1488 } 1489 1490 MODULE_LICENSE("GPL v2"); 1491 1492 module_init(nvmf_init); 1493 module_exit(nvmf_exit); 1494