1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/list_sort.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such as scan, aen handling, fw activation, 70 * keep-alive, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static int nvme_revalidate_disk(struct gendisk *disk); 93 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 95 unsigned nsid); 96 97 static void nvme_set_queue_dying(struct nvme_ns *ns) 98 { 99 /* 100 * Revalidating a dead namespace sets capacity to 0. This will end 101 * buffered writers dirtying pages that can't be synced. 102 */ 103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 104 return; 105 blk_set_queue_dying(ns->queue); 106 /* Forcibly unquiesce queues to avoid blocking dispatch */ 107 blk_mq_unquiesce_queue(ns->queue); 108 /* 109 * Revalidate after unblocking dispatchers that may be holding bd_butex 110 */ 111 revalidate_disk(ns->disk); 112 } 113 114 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 115 { 116 /* 117 * Only new queue scan work when admin and IO queues are both alive 118 */ 119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 120 queue_work(nvme_wq, &ctrl->scan_work); 121 } 122 123 /* 124 * Use this function to proceed with scheduling reset_work for a controller 125 * that had previously been set to the resetting state. This is intended for 126 * code paths that can't be interrupted by other reset attempts. A hot removal 127 * may prevent this from succeeding. 128 */ 129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 130 { 131 if (ctrl->state != NVME_CTRL_RESETTING) 132 return -EBUSY; 133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 134 return -EBUSY; 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 138 139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 140 { 141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 142 return -EBUSY; 143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 144 return -EBUSY; 145 return 0; 146 } 147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 148 149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 150 { 151 int ret; 152 153 ret = nvme_reset_ctrl(ctrl); 154 if (!ret) { 155 flush_work(&ctrl->reset_work); 156 if (ctrl->state != NVME_CTRL_LIVE) 157 ret = -ENETRESET; 158 } 159 160 return ret; 161 } 162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 163 164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 165 { 166 dev_info(ctrl->device, 167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 168 169 flush_work(&ctrl->reset_work); 170 nvme_stop_ctrl(ctrl); 171 nvme_remove_namespaces(ctrl); 172 ctrl->ops->delete_ctrl(ctrl); 173 nvme_uninit_ctrl(ctrl); 174 } 175 176 static void nvme_delete_ctrl_work(struct work_struct *work) 177 { 178 struct nvme_ctrl *ctrl = 179 container_of(work, struct nvme_ctrl, delete_work); 180 181 nvme_do_delete_ctrl(ctrl); 182 } 183 184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 185 { 186 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 187 return -EBUSY; 188 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 189 return -EBUSY; 190 return 0; 191 } 192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 193 194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 195 { 196 /* 197 * Keep a reference until nvme_do_delete_ctrl() complete, 198 * since ->delete_ctrl can free the controller. 199 */ 200 nvme_get_ctrl(ctrl); 201 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 202 nvme_do_delete_ctrl(ctrl); 203 nvme_put_ctrl(ctrl); 204 } 205 206 static blk_status_t nvme_error_status(u16 status) 207 { 208 switch (status & 0x7ff) { 209 case NVME_SC_SUCCESS: 210 return BLK_STS_OK; 211 case NVME_SC_CAP_EXCEEDED: 212 return BLK_STS_NOSPC; 213 case NVME_SC_LBA_RANGE: 214 case NVME_SC_CMD_INTERRUPTED: 215 case NVME_SC_NS_NOT_READY: 216 return BLK_STS_TARGET; 217 case NVME_SC_BAD_ATTRIBUTES: 218 case NVME_SC_ONCS_NOT_SUPPORTED: 219 case NVME_SC_INVALID_OPCODE: 220 case NVME_SC_INVALID_FIELD: 221 case NVME_SC_INVALID_NS: 222 return BLK_STS_NOTSUPP; 223 case NVME_SC_WRITE_FAULT: 224 case NVME_SC_READ_ERROR: 225 case NVME_SC_UNWRITTEN_BLOCK: 226 case NVME_SC_ACCESS_DENIED: 227 case NVME_SC_READ_ONLY: 228 case NVME_SC_COMPARE_FAILED: 229 return BLK_STS_MEDIUM; 230 case NVME_SC_GUARD_CHECK: 231 case NVME_SC_APPTAG_CHECK: 232 case NVME_SC_REFTAG_CHECK: 233 case NVME_SC_INVALID_PI: 234 return BLK_STS_PROTECTION; 235 case NVME_SC_RESERVATION_CONFLICT: 236 return BLK_STS_NEXUS; 237 case NVME_SC_HOST_PATH_ERROR: 238 return BLK_STS_TRANSPORT; 239 default: 240 return BLK_STS_IOERR; 241 } 242 } 243 244 static inline bool nvme_req_needs_retry(struct request *req) 245 { 246 if (blk_noretry_request(req)) 247 return false; 248 if (nvme_req(req)->status & NVME_SC_DNR) 249 return false; 250 if (nvme_req(req)->retries >= nvme_max_retries) 251 return false; 252 return true; 253 } 254 255 static void nvme_retry_req(struct request *req) 256 { 257 struct nvme_ns *ns = req->q->queuedata; 258 unsigned long delay = 0; 259 u16 crd; 260 261 /* The mask and shift result must be <= 3 */ 262 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 263 if (ns && crd) 264 delay = ns->ctrl->crdt[crd - 1] * 100; 265 266 nvme_req(req)->retries++; 267 blk_mq_requeue_request(req, false); 268 blk_mq_delay_kick_requeue_list(req->q, delay); 269 } 270 271 void nvme_complete_rq(struct request *req) 272 { 273 blk_status_t status = nvme_error_status(nvme_req(req)->status); 274 275 trace_nvme_complete_rq(req); 276 277 nvme_cleanup_cmd(req); 278 279 if (nvme_req(req)->ctrl->kas) 280 nvme_req(req)->ctrl->comp_seen = true; 281 282 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 283 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req)) 284 return; 285 286 if (!blk_queue_dying(req->q)) { 287 nvme_retry_req(req); 288 return; 289 } 290 } 291 292 nvme_trace_bio_complete(req, status); 293 blk_mq_end_request(req, status); 294 } 295 EXPORT_SYMBOL_GPL(nvme_complete_rq); 296 297 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 298 { 299 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 300 "Cancelling I/O %d", req->tag); 301 302 /* don't abort one completed request */ 303 if (blk_mq_request_completed(req)) 304 return true; 305 306 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 307 blk_mq_force_complete_rq(req); 308 return true; 309 } 310 EXPORT_SYMBOL_GPL(nvme_cancel_request); 311 312 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 313 enum nvme_ctrl_state new_state) 314 { 315 enum nvme_ctrl_state old_state; 316 unsigned long flags; 317 bool changed = false; 318 319 spin_lock_irqsave(&ctrl->lock, flags); 320 321 old_state = ctrl->state; 322 switch (new_state) { 323 case NVME_CTRL_LIVE: 324 switch (old_state) { 325 case NVME_CTRL_NEW: 326 case NVME_CTRL_RESETTING: 327 case NVME_CTRL_CONNECTING: 328 changed = true; 329 /* FALLTHRU */ 330 default: 331 break; 332 } 333 break; 334 case NVME_CTRL_RESETTING: 335 switch (old_state) { 336 case NVME_CTRL_NEW: 337 case NVME_CTRL_LIVE: 338 changed = true; 339 /* FALLTHRU */ 340 default: 341 break; 342 } 343 break; 344 case NVME_CTRL_CONNECTING: 345 switch (old_state) { 346 case NVME_CTRL_NEW: 347 case NVME_CTRL_RESETTING: 348 changed = true; 349 /* FALLTHRU */ 350 default: 351 break; 352 } 353 break; 354 case NVME_CTRL_DELETING: 355 switch (old_state) { 356 case NVME_CTRL_LIVE: 357 case NVME_CTRL_RESETTING: 358 case NVME_CTRL_CONNECTING: 359 changed = true; 360 /* FALLTHRU */ 361 default: 362 break; 363 } 364 break; 365 case NVME_CTRL_DEAD: 366 switch (old_state) { 367 case NVME_CTRL_DELETING: 368 changed = true; 369 /* FALLTHRU */ 370 default: 371 break; 372 } 373 break; 374 default: 375 break; 376 } 377 378 if (changed) { 379 ctrl->state = new_state; 380 wake_up_all(&ctrl->state_wq); 381 } 382 383 spin_unlock_irqrestore(&ctrl->lock, flags); 384 if (changed && ctrl->state == NVME_CTRL_LIVE) 385 nvme_kick_requeue_lists(ctrl); 386 return changed; 387 } 388 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 389 390 /* 391 * Returns true for sink states that can't ever transition back to live. 392 */ 393 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 394 { 395 switch (ctrl->state) { 396 case NVME_CTRL_NEW: 397 case NVME_CTRL_LIVE: 398 case NVME_CTRL_RESETTING: 399 case NVME_CTRL_CONNECTING: 400 return false; 401 case NVME_CTRL_DELETING: 402 case NVME_CTRL_DEAD: 403 return true; 404 default: 405 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 406 return true; 407 } 408 } 409 410 /* 411 * Waits for the controller state to be resetting, or returns false if it is 412 * not possible to ever transition to that state. 413 */ 414 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 415 { 416 wait_event(ctrl->state_wq, 417 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 418 nvme_state_terminal(ctrl)); 419 return ctrl->state == NVME_CTRL_RESETTING; 420 } 421 EXPORT_SYMBOL_GPL(nvme_wait_reset); 422 423 static void nvme_free_ns_head(struct kref *ref) 424 { 425 struct nvme_ns_head *head = 426 container_of(ref, struct nvme_ns_head, ref); 427 428 nvme_mpath_remove_disk(head); 429 ida_simple_remove(&head->subsys->ns_ida, head->instance); 430 cleanup_srcu_struct(&head->srcu); 431 nvme_put_subsystem(head->subsys); 432 kfree(head); 433 } 434 435 static void nvme_put_ns_head(struct nvme_ns_head *head) 436 { 437 kref_put(&head->ref, nvme_free_ns_head); 438 } 439 440 static void nvme_free_ns(struct kref *kref) 441 { 442 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 443 444 if (ns->ndev) 445 nvme_nvm_unregister(ns); 446 447 put_disk(ns->disk); 448 nvme_put_ns_head(ns->head); 449 nvme_put_ctrl(ns->ctrl); 450 kfree(ns); 451 } 452 453 static void nvme_put_ns(struct nvme_ns *ns) 454 { 455 kref_put(&ns->kref, nvme_free_ns); 456 } 457 458 static inline void nvme_clear_nvme_request(struct request *req) 459 { 460 if (!(req->rq_flags & RQF_DONTPREP)) { 461 nvme_req(req)->retries = 0; 462 nvme_req(req)->flags = 0; 463 req->rq_flags |= RQF_DONTPREP; 464 } 465 } 466 467 struct request *nvme_alloc_request(struct request_queue *q, 468 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 469 { 470 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 471 struct request *req; 472 473 if (qid == NVME_QID_ANY) { 474 req = blk_mq_alloc_request(q, op, flags); 475 } else { 476 req = blk_mq_alloc_request_hctx(q, op, flags, 477 qid ? qid - 1 : 0); 478 } 479 if (IS_ERR(req)) 480 return req; 481 482 req->cmd_flags |= REQ_FAILFAST_DRIVER; 483 nvme_clear_nvme_request(req); 484 nvme_req(req)->cmd = cmd; 485 486 return req; 487 } 488 EXPORT_SYMBOL_GPL(nvme_alloc_request); 489 490 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 491 { 492 struct nvme_command c; 493 494 memset(&c, 0, sizeof(c)); 495 496 c.directive.opcode = nvme_admin_directive_send; 497 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 498 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 499 c.directive.dtype = NVME_DIR_IDENTIFY; 500 c.directive.tdtype = NVME_DIR_STREAMS; 501 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 502 503 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 504 } 505 506 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 507 { 508 return nvme_toggle_streams(ctrl, false); 509 } 510 511 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 512 { 513 return nvme_toggle_streams(ctrl, true); 514 } 515 516 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 517 struct streams_directive_params *s, u32 nsid) 518 { 519 struct nvme_command c; 520 521 memset(&c, 0, sizeof(c)); 522 memset(s, 0, sizeof(*s)); 523 524 c.directive.opcode = nvme_admin_directive_recv; 525 c.directive.nsid = cpu_to_le32(nsid); 526 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 527 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 528 c.directive.dtype = NVME_DIR_STREAMS; 529 530 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 531 } 532 533 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 534 { 535 struct streams_directive_params s; 536 int ret; 537 538 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 539 return 0; 540 if (!streams) 541 return 0; 542 543 ret = nvme_enable_streams(ctrl); 544 if (ret) 545 return ret; 546 547 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 548 if (ret) 549 goto out_disable_stream; 550 551 ctrl->nssa = le16_to_cpu(s.nssa); 552 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 553 dev_info(ctrl->device, "too few streams (%u) available\n", 554 ctrl->nssa); 555 goto out_disable_stream; 556 } 557 558 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 559 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 560 return 0; 561 562 out_disable_stream: 563 nvme_disable_streams(ctrl); 564 return ret; 565 } 566 567 /* 568 * Check if 'req' has a write hint associated with it. If it does, assign 569 * a valid namespace stream to the write. 570 */ 571 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 572 struct request *req, u16 *control, 573 u32 *dsmgmt) 574 { 575 enum rw_hint streamid = req->write_hint; 576 577 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 578 streamid = 0; 579 else { 580 streamid--; 581 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 582 return; 583 584 *control |= NVME_RW_DTYPE_STREAMS; 585 *dsmgmt |= streamid << 16; 586 } 587 588 if (streamid < ARRAY_SIZE(req->q->write_hints)) 589 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 590 } 591 592 static inline void nvme_setup_flush(struct nvme_ns *ns, 593 struct nvme_command *cmnd) 594 { 595 cmnd->common.opcode = nvme_cmd_flush; 596 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 597 } 598 599 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 600 struct nvme_command *cmnd) 601 { 602 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 603 struct nvme_dsm_range *range; 604 struct bio *bio; 605 606 /* 607 * Some devices do not consider the DSM 'Number of Ranges' field when 608 * determining how much data to DMA. Always allocate memory for maximum 609 * number of segments to prevent device reading beyond end of buffer. 610 */ 611 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 612 613 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 614 if (!range) { 615 /* 616 * If we fail allocation our range, fallback to the controller 617 * discard page. If that's also busy, it's safe to return 618 * busy, as we know we can make progress once that's freed. 619 */ 620 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 621 return BLK_STS_RESOURCE; 622 623 range = page_address(ns->ctrl->discard_page); 624 } 625 626 __rq_for_each_bio(bio, req) { 627 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 628 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 629 630 if (n < segments) { 631 range[n].cattr = cpu_to_le32(0); 632 range[n].nlb = cpu_to_le32(nlb); 633 range[n].slba = cpu_to_le64(slba); 634 } 635 n++; 636 } 637 638 if (WARN_ON_ONCE(n != segments)) { 639 if (virt_to_page(range) == ns->ctrl->discard_page) 640 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 641 else 642 kfree(range); 643 return BLK_STS_IOERR; 644 } 645 646 cmnd->dsm.opcode = nvme_cmd_dsm; 647 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 648 cmnd->dsm.nr = cpu_to_le32(segments - 1); 649 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 650 651 req->special_vec.bv_page = virt_to_page(range); 652 req->special_vec.bv_offset = offset_in_page(range); 653 req->special_vec.bv_len = alloc_size; 654 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 655 656 return BLK_STS_OK; 657 } 658 659 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 660 struct request *req, struct nvme_command *cmnd) 661 { 662 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 663 return nvme_setup_discard(ns, req, cmnd); 664 665 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 666 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 667 cmnd->write_zeroes.slba = 668 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 669 cmnd->write_zeroes.length = 670 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 671 cmnd->write_zeroes.control = 0; 672 return BLK_STS_OK; 673 } 674 675 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 676 struct request *req, struct nvme_command *cmnd) 677 { 678 struct nvme_ctrl *ctrl = ns->ctrl; 679 u16 control = 0; 680 u32 dsmgmt = 0; 681 682 if (req->cmd_flags & REQ_FUA) 683 control |= NVME_RW_FUA; 684 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 685 control |= NVME_RW_LR; 686 687 if (req->cmd_flags & REQ_RAHEAD) 688 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 689 690 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 691 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 692 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 693 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 694 695 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 696 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 697 698 if (ns->ms) { 699 /* 700 * If formated with metadata, the block layer always provides a 701 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 702 * we enable the PRACT bit for protection information or set the 703 * namespace capacity to zero to prevent any I/O. 704 */ 705 if (!blk_integrity_rq(req)) { 706 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 707 return BLK_STS_NOTSUPP; 708 control |= NVME_RW_PRINFO_PRACT; 709 } 710 711 switch (ns->pi_type) { 712 case NVME_NS_DPS_PI_TYPE3: 713 control |= NVME_RW_PRINFO_PRCHK_GUARD; 714 break; 715 case NVME_NS_DPS_PI_TYPE1: 716 case NVME_NS_DPS_PI_TYPE2: 717 control |= NVME_RW_PRINFO_PRCHK_GUARD | 718 NVME_RW_PRINFO_PRCHK_REF; 719 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 720 break; 721 } 722 } 723 724 cmnd->rw.control = cpu_to_le16(control); 725 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 726 return 0; 727 } 728 729 void nvme_cleanup_cmd(struct request *req) 730 { 731 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 732 struct nvme_ns *ns = req->rq_disk->private_data; 733 struct page *page = req->special_vec.bv_page; 734 735 if (page == ns->ctrl->discard_page) 736 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 737 else 738 kfree(page_address(page) + req->special_vec.bv_offset); 739 } 740 } 741 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 742 743 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 744 struct nvme_command *cmd) 745 { 746 blk_status_t ret = BLK_STS_OK; 747 748 nvme_clear_nvme_request(req); 749 750 memset(cmd, 0, sizeof(*cmd)); 751 switch (req_op(req)) { 752 case REQ_OP_DRV_IN: 753 case REQ_OP_DRV_OUT: 754 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 755 break; 756 case REQ_OP_FLUSH: 757 nvme_setup_flush(ns, cmd); 758 break; 759 case REQ_OP_WRITE_ZEROES: 760 ret = nvme_setup_write_zeroes(ns, req, cmd); 761 break; 762 case REQ_OP_DISCARD: 763 ret = nvme_setup_discard(ns, req, cmd); 764 break; 765 case REQ_OP_READ: 766 case REQ_OP_WRITE: 767 ret = nvme_setup_rw(ns, req, cmd); 768 break; 769 default: 770 WARN_ON_ONCE(1); 771 return BLK_STS_IOERR; 772 } 773 774 cmd->common.command_id = req->tag; 775 trace_nvme_setup_cmd(req, cmd); 776 return ret; 777 } 778 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 779 780 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 781 { 782 struct completion *waiting = rq->end_io_data; 783 784 rq->end_io_data = NULL; 785 complete(waiting); 786 } 787 788 static void nvme_execute_rq_polled(struct request_queue *q, 789 struct gendisk *bd_disk, struct request *rq, int at_head) 790 { 791 DECLARE_COMPLETION_ONSTACK(wait); 792 793 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 794 795 rq->cmd_flags |= REQ_HIPRI; 796 rq->end_io_data = &wait; 797 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 798 799 while (!completion_done(&wait)) { 800 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 801 cond_resched(); 802 } 803 } 804 805 /* 806 * Returns 0 on success. If the result is negative, it's a Linux error code; 807 * if the result is positive, it's an NVM Express status code 808 */ 809 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 810 union nvme_result *result, void *buffer, unsigned bufflen, 811 unsigned timeout, int qid, int at_head, 812 blk_mq_req_flags_t flags, bool poll) 813 { 814 struct request *req; 815 int ret; 816 817 req = nvme_alloc_request(q, cmd, flags, qid); 818 if (IS_ERR(req)) 819 return PTR_ERR(req); 820 821 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 822 823 if (buffer && bufflen) { 824 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 825 if (ret) 826 goto out; 827 } 828 829 if (poll) 830 nvme_execute_rq_polled(req->q, NULL, req, at_head); 831 else 832 blk_execute_rq(req->q, NULL, req, at_head); 833 if (result) 834 *result = nvme_req(req)->result; 835 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 836 ret = -EINTR; 837 else 838 ret = nvme_req(req)->status; 839 out: 840 blk_mq_free_request(req); 841 return ret; 842 } 843 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 844 845 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 846 void *buffer, unsigned bufflen) 847 { 848 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 849 NVME_QID_ANY, 0, 0, false); 850 } 851 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 852 853 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 854 unsigned len, u32 seed, bool write) 855 { 856 struct bio_integrity_payload *bip; 857 int ret = -ENOMEM; 858 void *buf; 859 860 buf = kmalloc(len, GFP_KERNEL); 861 if (!buf) 862 goto out; 863 864 ret = -EFAULT; 865 if (write && copy_from_user(buf, ubuf, len)) 866 goto out_free_meta; 867 868 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 869 if (IS_ERR(bip)) { 870 ret = PTR_ERR(bip); 871 goto out_free_meta; 872 } 873 874 bip->bip_iter.bi_size = len; 875 bip->bip_iter.bi_sector = seed; 876 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 877 offset_in_page(buf)); 878 if (ret == len) 879 return buf; 880 ret = -ENOMEM; 881 out_free_meta: 882 kfree(buf); 883 out: 884 return ERR_PTR(ret); 885 } 886 887 static int nvme_submit_user_cmd(struct request_queue *q, 888 struct nvme_command *cmd, void __user *ubuffer, 889 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 890 u32 meta_seed, u64 *result, unsigned timeout) 891 { 892 bool write = nvme_is_write(cmd); 893 struct nvme_ns *ns = q->queuedata; 894 struct gendisk *disk = ns ? ns->disk : NULL; 895 struct request *req; 896 struct bio *bio = NULL; 897 void *meta = NULL; 898 int ret; 899 900 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 901 if (IS_ERR(req)) 902 return PTR_ERR(req); 903 904 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 905 nvme_req(req)->flags |= NVME_REQ_USERCMD; 906 907 if (ubuffer && bufflen) { 908 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 909 GFP_KERNEL); 910 if (ret) 911 goto out; 912 bio = req->bio; 913 bio->bi_disk = disk; 914 if (disk && meta_buffer && meta_len) { 915 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 916 meta_seed, write); 917 if (IS_ERR(meta)) { 918 ret = PTR_ERR(meta); 919 goto out_unmap; 920 } 921 req->cmd_flags |= REQ_INTEGRITY; 922 } 923 } 924 925 blk_execute_rq(req->q, disk, req, 0); 926 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 927 ret = -EINTR; 928 else 929 ret = nvme_req(req)->status; 930 if (result) 931 *result = le64_to_cpu(nvme_req(req)->result.u64); 932 if (meta && !ret && !write) { 933 if (copy_to_user(meta_buffer, meta, meta_len)) 934 ret = -EFAULT; 935 } 936 kfree(meta); 937 out_unmap: 938 if (bio) 939 blk_rq_unmap_user(bio); 940 out: 941 blk_mq_free_request(req); 942 return ret; 943 } 944 945 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 946 { 947 struct nvme_ctrl *ctrl = rq->end_io_data; 948 unsigned long flags; 949 bool startka = false; 950 951 blk_mq_free_request(rq); 952 953 if (status) { 954 dev_err(ctrl->device, 955 "failed nvme_keep_alive_end_io error=%d\n", 956 status); 957 return; 958 } 959 960 ctrl->comp_seen = false; 961 spin_lock_irqsave(&ctrl->lock, flags); 962 if (ctrl->state == NVME_CTRL_LIVE || 963 ctrl->state == NVME_CTRL_CONNECTING) 964 startka = true; 965 spin_unlock_irqrestore(&ctrl->lock, flags); 966 if (startka) 967 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 968 } 969 970 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 971 { 972 struct request *rq; 973 974 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 975 NVME_QID_ANY); 976 if (IS_ERR(rq)) 977 return PTR_ERR(rq); 978 979 rq->timeout = ctrl->kato * HZ; 980 rq->end_io_data = ctrl; 981 982 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 983 984 return 0; 985 } 986 987 static void nvme_keep_alive_work(struct work_struct *work) 988 { 989 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 990 struct nvme_ctrl, ka_work); 991 bool comp_seen = ctrl->comp_seen; 992 993 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 994 dev_dbg(ctrl->device, 995 "reschedule traffic based keep-alive timer\n"); 996 ctrl->comp_seen = false; 997 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 998 return; 999 } 1000 1001 if (nvme_keep_alive(ctrl)) { 1002 /* allocation failure, reset the controller */ 1003 dev_err(ctrl->device, "keep-alive failed\n"); 1004 nvme_reset_ctrl(ctrl); 1005 return; 1006 } 1007 } 1008 1009 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1010 { 1011 if (unlikely(ctrl->kato == 0)) 1012 return; 1013 1014 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1015 } 1016 1017 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1018 { 1019 if (unlikely(ctrl->kato == 0)) 1020 return; 1021 1022 cancel_delayed_work_sync(&ctrl->ka_work); 1023 } 1024 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1025 1026 /* 1027 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1028 * flag, thus sending any new CNS opcodes has a big chance of not working. 1029 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1030 * (but not for any later version). 1031 */ 1032 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1033 { 1034 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1035 return ctrl->vs < NVME_VS(1, 2, 0); 1036 return ctrl->vs < NVME_VS(1, 1, 0); 1037 } 1038 1039 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1040 { 1041 struct nvme_command c = { }; 1042 int error; 1043 1044 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1045 c.identify.opcode = nvme_admin_identify; 1046 c.identify.cns = NVME_ID_CNS_CTRL; 1047 1048 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1049 if (!*id) 1050 return -ENOMEM; 1051 1052 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1053 sizeof(struct nvme_id_ctrl)); 1054 if (error) 1055 kfree(*id); 1056 return error; 1057 } 1058 1059 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1060 struct nvme_ns_id_desc *cur) 1061 { 1062 const char *warn_str = "ctrl returned bogus length:"; 1063 void *data = cur; 1064 1065 switch (cur->nidt) { 1066 case NVME_NIDT_EUI64: 1067 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1068 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1069 warn_str, cur->nidl); 1070 return -1; 1071 } 1072 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1073 return NVME_NIDT_EUI64_LEN; 1074 case NVME_NIDT_NGUID: 1075 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1076 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1077 warn_str, cur->nidl); 1078 return -1; 1079 } 1080 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1081 return NVME_NIDT_NGUID_LEN; 1082 case NVME_NIDT_UUID: 1083 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1084 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1085 warn_str, cur->nidl); 1086 return -1; 1087 } 1088 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1089 return NVME_NIDT_UUID_LEN; 1090 default: 1091 /* Skip unknown types */ 1092 return cur->nidl; 1093 } 1094 } 1095 1096 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1097 struct nvme_ns_ids *ids) 1098 { 1099 struct nvme_command c = { }; 1100 int status; 1101 void *data; 1102 int pos; 1103 int len; 1104 1105 c.identify.opcode = nvme_admin_identify; 1106 c.identify.nsid = cpu_to_le32(nsid); 1107 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1108 1109 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1110 if (!data) 1111 return -ENOMEM; 1112 1113 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1114 NVME_IDENTIFY_DATA_SIZE); 1115 if (status) { 1116 dev_warn(ctrl->device, 1117 "Identify Descriptors failed (%d)\n", status); 1118 /* 1119 * Don't treat non-retryable errors as fatal, as we potentially 1120 * already have a NGUID or EUI-64. If we failed with DNR set, 1121 * we want to silently ignore the error as we can still 1122 * identify the device, but if the status has DNR set, we want 1123 * to propagate the error back specifically for the disk 1124 * revalidation flow to make sure we don't abandon the 1125 * device just because of a temporal retry-able error (such 1126 * as path of transport errors). 1127 */ 1128 if (status > 0 && (status & NVME_SC_DNR)) 1129 status = 0; 1130 goto free_data; 1131 } 1132 1133 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1134 struct nvme_ns_id_desc *cur = data + pos; 1135 1136 if (cur->nidl == 0) 1137 break; 1138 1139 len = nvme_process_ns_desc(ctrl, ids, cur); 1140 if (len < 0) 1141 goto free_data; 1142 1143 len += sizeof(*cur); 1144 } 1145 free_data: 1146 kfree(data); 1147 return status; 1148 } 1149 1150 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1151 { 1152 struct nvme_command c = { }; 1153 1154 c.identify.opcode = nvme_admin_identify; 1155 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1156 c.identify.nsid = cpu_to_le32(nsid); 1157 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1158 NVME_IDENTIFY_DATA_SIZE); 1159 } 1160 1161 static int nvme_identify_ns(struct nvme_ctrl *ctrl, 1162 unsigned nsid, struct nvme_id_ns **id) 1163 { 1164 struct nvme_command c = { }; 1165 int error; 1166 1167 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1168 c.identify.opcode = nvme_admin_identify; 1169 c.identify.nsid = cpu_to_le32(nsid); 1170 c.identify.cns = NVME_ID_CNS_NS; 1171 1172 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1173 if (!*id) 1174 return -ENOMEM; 1175 1176 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1177 if (error) { 1178 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1179 kfree(*id); 1180 } 1181 1182 return error; 1183 } 1184 1185 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1186 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1187 { 1188 union nvme_result res = { 0 }; 1189 struct nvme_command c; 1190 int ret; 1191 1192 memset(&c, 0, sizeof(c)); 1193 c.features.opcode = op; 1194 c.features.fid = cpu_to_le32(fid); 1195 c.features.dword11 = cpu_to_le32(dword11); 1196 1197 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1198 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1199 if (ret >= 0 && result) 1200 *result = le32_to_cpu(res.u32); 1201 return ret; 1202 } 1203 1204 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1205 unsigned int dword11, void *buffer, size_t buflen, 1206 u32 *result) 1207 { 1208 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1209 buflen, result); 1210 } 1211 EXPORT_SYMBOL_GPL(nvme_set_features); 1212 1213 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1214 unsigned int dword11, void *buffer, size_t buflen, 1215 u32 *result) 1216 { 1217 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1218 buflen, result); 1219 } 1220 EXPORT_SYMBOL_GPL(nvme_get_features); 1221 1222 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1223 { 1224 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1225 u32 result; 1226 int status, nr_io_queues; 1227 1228 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1229 &result); 1230 if (status < 0) 1231 return status; 1232 1233 /* 1234 * Degraded controllers might return an error when setting the queue 1235 * count. We still want to be able to bring them online and offer 1236 * access to the admin queue, as that might be only way to fix them up. 1237 */ 1238 if (status > 0) { 1239 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1240 *count = 0; 1241 } else { 1242 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1243 *count = min(*count, nr_io_queues); 1244 } 1245 1246 return 0; 1247 } 1248 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1249 1250 #define NVME_AEN_SUPPORTED \ 1251 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1252 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1253 1254 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1255 { 1256 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1257 int status; 1258 1259 if (!supported_aens) 1260 return; 1261 1262 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1263 NULL, 0, &result); 1264 if (status) 1265 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1266 supported_aens); 1267 1268 queue_work(nvme_wq, &ctrl->async_event_work); 1269 } 1270 1271 /* 1272 * Convert integer values from ioctl structures to user pointers, silently 1273 * ignoring the upper bits in the compat case to match behaviour of 32-bit 1274 * kernels. 1275 */ 1276 static void __user *nvme_to_user_ptr(uintptr_t ptrval) 1277 { 1278 if (in_compat_syscall()) 1279 ptrval = (compat_uptr_t)ptrval; 1280 return (void __user *)ptrval; 1281 } 1282 1283 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1284 { 1285 struct nvme_user_io io; 1286 struct nvme_command c; 1287 unsigned length, meta_len; 1288 void __user *metadata; 1289 1290 if (copy_from_user(&io, uio, sizeof(io))) 1291 return -EFAULT; 1292 if (io.flags) 1293 return -EINVAL; 1294 1295 switch (io.opcode) { 1296 case nvme_cmd_write: 1297 case nvme_cmd_read: 1298 case nvme_cmd_compare: 1299 break; 1300 default: 1301 return -EINVAL; 1302 } 1303 1304 length = (io.nblocks + 1) << ns->lba_shift; 1305 meta_len = (io.nblocks + 1) * ns->ms; 1306 metadata = nvme_to_user_ptr(io.metadata); 1307 1308 if (ns->features & NVME_NS_EXT_LBAS) { 1309 length += meta_len; 1310 meta_len = 0; 1311 } else if (meta_len) { 1312 if ((io.metadata & 3) || !io.metadata) 1313 return -EINVAL; 1314 } 1315 1316 memset(&c, 0, sizeof(c)); 1317 c.rw.opcode = io.opcode; 1318 c.rw.flags = io.flags; 1319 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1320 c.rw.slba = cpu_to_le64(io.slba); 1321 c.rw.length = cpu_to_le16(io.nblocks); 1322 c.rw.control = cpu_to_le16(io.control); 1323 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1324 c.rw.reftag = cpu_to_le32(io.reftag); 1325 c.rw.apptag = cpu_to_le16(io.apptag); 1326 c.rw.appmask = cpu_to_le16(io.appmask); 1327 1328 return nvme_submit_user_cmd(ns->queue, &c, 1329 nvme_to_user_ptr(io.addr), length, 1330 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1331 } 1332 1333 static u32 nvme_known_admin_effects(u8 opcode) 1334 { 1335 switch (opcode) { 1336 case nvme_admin_format_nvm: 1337 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1338 NVME_CMD_EFFECTS_CSE_MASK; 1339 case nvme_admin_sanitize_nvm: 1340 return NVME_CMD_EFFECTS_CSE_MASK; 1341 default: 1342 break; 1343 } 1344 return 0; 1345 } 1346 1347 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1348 u8 opcode) 1349 { 1350 u32 effects = 0; 1351 1352 if (ns) { 1353 if (ctrl->effects) 1354 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1355 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1356 dev_warn(ctrl->device, 1357 "IO command:%02x has unhandled effects:%08x\n", 1358 opcode, effects); 1359 return 0; 1360 } 1361 1362 if (ctrl->effects) 1363 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1364 effects |= nvme_known_admin_effects(opcode); 1365 1366 /* 1367 * For simplicity, IO to all namespaces is quiesced even if the command 1368 * effects say only one namespace is affected. 1369 */ 1370 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1371 mutex_lock(&ctrl->scan_lock); 1372 mutex_lock(&ctrl->subsys->lock); 1373 nvme_mpath_start_freeze(ctrl->subsys); 1374 nvme_mpath_wait_freeze(ctrl->subsys); 1375 nvme_start_freeze(ctrl); 1376 nvme_wait_freeze(ctrl); 1377 } 1378 return effects; 1379 } 1380 1381 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1382 { 1383 struct nvme_ns *ns; 1384 1385 down_read(&ctrl->namespaces_rwsem); 1386 list_for_each_entry(ns, &ctrl->namespaces, list) 1387 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1388 nvme_set_queue_dying(ns); 1389 up_read(&ctrl->namespaces_rwsem); 1390 } 1391 1392 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1393 { 1394 /* 1395 * Revalidate LBA changes prior to unfreezing. This is necessary to 1396 * prevent memory corruption if a logical block size was changed by 1397 * this command. 1398 */ 1399 if (effects & NVME_CMD_EFFECTS_LBCC) 1400 nvme_update_formats(ctrl); 1401 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1402 nvme_unfreeze(ctrl); 1403 nvme_mpath_unfreeze(ctrl->subsys); 1404 mutex_unlock(&ctrl->subsys->lock); 1405 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1406 mutex_unlock(&ctrl->scan_lock); 1407 } 1408 if (effects & NVME_CMD_EFFECTS_CCC) 1409 nvme_init_identify(ctrl); 1410 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1411 nvme_queue_scan(ctrl); 1412 flush_work(&ctrl->scan_work); 1413 } 1414 } 1415 1416 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1417 struct nvme_passthru_cmd __user *ucmd) 1418 { 1419 struct nvme_passthru_cmd cmd; 1420 struct nvme_command c; 1421 unsigned timeout = 0; 1422 u32 effects; 1423 u64 result; 1424 int status; 1425 1426 if (!capable(CAP_SYS_ADMIN)) 1427 return -EACCES; 1428 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1429 return -EFAULT; 1430 if (cmd.flags) 1431 return -EINVAL; 1432 1433 memset(&c, 0, sizeof(c)); 1434 c.common.opcode = cmd.opcode; 1435 c.common.flags = cmd.flags; 1436 c.common.nsid = cpu_to_le32(cmd.nsid); 1437 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1438 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1439 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1440 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1441 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1442 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1443 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1444 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1445 1446 if (cmd.timeout_ms) 1447 timeout = msecs_to_jiffies(cmd.timeout_ms); 1448 1449 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1450 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1451 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1452 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1453 0, &result, timeout); 1454 nvme_passthru_end(ctrl, effects); 1455 1456 if (status >= 0) { 1457 if (put_user(result, &ucmd->result)) 1458 return -EFAULT; 1459 } 1460 1461 return status; 1462 } 1463 1464 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1465 struct nvme_passthru_cmd64 __user *ucmd) 1466 { 1467 struct nvme_passthru_cmd64 cmd; 1468 struct nvme_command c; 1469 unsigned timeout = 0; 1470 u32 effects; 1471 int status; 1472 1473 if (!capable(CAP_SYS_ADMIN)) 1474 return -EACCES; 1475 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1476 return -EFAULT; 1477 if (cmd.flags) 1478 return -EINVAL; 1479 1480 memset(&c, 0, sizeof(c)); 1481 c.common.opcode = cmd.opcode; 1482 c.common.flags = cmd.flags; 1483 c.common.nsid = cpu_to_le32(cmd.nsid); 1484 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1485 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1486 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1487 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1488 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1489 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1490 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1491 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1492 1493 if (cmd.timeout_ms) 1494 timeout = msecs_to_jiffies(cmd.timeout_ms); 1495 1496 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1497 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1498 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1499 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1500 0, &cmd.result, timeout); 1501 nvme_passthru_end(ctrl, effects); 1502 1503 if (status >= 0) { 1504 if (put_user(cmd.result, &ucmd->result)) 1505 return -EFAULT; 1506 } 1507 1508 return status; 1509 } 1510 1511 /* 1512 * Issue ioctl requests on the first available path. Note that unlike normal 1513 * block layer requests we will not retry failed request on another controller. 1514 */ 1515 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1516 struct nvme_ns_head **head, int *srcu_idx) 1517 { 1518 #ifdef CONFIG_NVME_MULTIPATH 1519 if (disk->fops == &nvme_ns_head_ops) { 1520 struct nvme_ns *ns; 1521 1522 *head = disk->private_data; 1523 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1524 ns = nvme_find_path(*head); 1525 if (!ns) 1526 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1527 return ns; 1528 } 1529 #endif 1530 *head = NULL; 1531 *srcu_idx = -1; 1532 return disk->private_data; 1533 } 1534 1535 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1536 { 1537 if (head) 1538 srcu_read_unlock(&head->srcu, idx); 1539 } 1540 1541 static bool is_ctrl_ioctl(unsigned int cmd) 1542 { 1543 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD) 1544 return true; 1545 if (is_sed_ioctl(cmd)) 1546 return true; 1547 return false; 1548 } 1549 1550 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd, 1551 void __user *argp, 1552 struct nvme_ns_head *head, 1553 int srcu_idx) 1554 { 1555 struct nvme_ctrl *ctrl = ns->ctrl; 1556 int ret; 1557 1558 nvme_get_ctrl(ns->ctrl); 1559 nvme_put_ns_from_disk(head, srcu_idx); 1560 1561 switch (cmd) { 1562 case NVME_IOCTL_ADMIN_CMD: 1563 ret = nvme_user_cmd(ctrl, NULL, argp); 1564 break; 1565 case NVME_IOCTL_ADMIN64_CMD: 1566 ret = nvme_user_cmd64(ctrl, NULL, argp); 1567 break; 1568 default: 1569 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1570 break; 1571 } 1572 nvme_put_ctrl(ctrl); 1573 return ret; 1574 } 1575 1576 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1577 unsigned int cmd, unsigned long arg) 1578 { 1579 struct nvme_ns_head *head = NULL; 1580 void __user *argp = (void __user *)arg; 1581 struct nvme_ns *ns; 1582 int srcu_idx, ret; 1583 1584 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1585 if (unlikely(!ns)) 1586 return -EWOULDBLOCK; 1587 1588 /* 1589 * Handle ioctls that apply to the controller instead of the namespace 1590 * seperately and drop the ns SRCU reference early. This avoids a 1591 * deadlock when deleting namespaces using the passthrough interface. 1592 */ 1593 if (is_ctrl_ioctl(cmd)) 1594 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx); 1595 1596 switch (cmd) { 1597 case NVME_IOCTL_ID: 1598 force_successful_syscall_return(); 1599 ret = ns->head->ns_id; 1600 break; 1601 case NVME_IOCTL_IO_CMD: 1602 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1603 break; 1604 case NVME_IOCTL_SUBMIT_IO: 1605 ret = nvme_submit_io(ns, argp); 1606 break; 1607 case NVME_IOCTL_IO64_CMD: 1608 ret = nvme_user_cmd64(ns->ctrl, ns, argp); 1609 break; 1610 default: 1611 if (ns->ndev) 1612 ret = nvme_nvm_ioctl(ns, cmd, arg); 1613 else 1614 ret = -ENOTTY; 1615 } 1616 1617 nvme_put_ns_from_disk(head, srcu_idx); 1618 return ret; 1619 } 1620 1621 #ifdef CONFIG_COMPAT 1622 struct nvme_user_io32 { 1623 __u8 opcode; 1624 __u8 flags; 1625 __u16 control; 1626 __u16 nblocks; 1627 __u16 rsvd; 1628 __u64 metadata; 1629 __u64 addr; 1630 __u64 slba; 1631 __u32 dsmgmt; 1632 __u32 reftag; 1633 __u16 apptag; 1634 __u16 appmask; 1635 } __attribute__((__packed__)); 1636 1637 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32) 1638 1639 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 1640 unsigned int cmd, unsigned long arg) 1641 { 1642 /* 1643 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO 1644 * between 32 bit programs and 64 bit kernel. 1645 * The cause is that the results of sizeof(struct nvme_user_io), 1646 * which is used to define NVME_IOCTL_SUBMIT_IO, 1647 * are not same between 32 bit compiler and 64 bit compiler. 1648 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling 1649 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs. 1650 * Other IOCTL numbers are same between 32 bit and 64 bit. 1651 * So there is nothing to do regarding to other IOCTL numbers. 1652 */ 1653 if (cmd == NVME_IOCTL_SUBMIT_IO32) 1654 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg); 1655 1656 return nvme_ioctl(bdev, mode, cmd, arg); 1657 } 1658 #else 1659 #define nvme_compat_ioctl NULL 1660 #endif /* CONFIG_COMPAT */ 1661 1662 static int nvme_open(struct block_device *bdev, fmode_t mode) 1663 { 1664 struct nvme_ns *ns = bdev->bd_disk->private_data; 1665 1666 #ifdef CONFIG_NVME_MULTIPATH 1667 /* should never be called due to GENHD_FL_HIDDEN */ 1668 if (WARN_ON_ONCE(ns->head->disk)) 1669 goto fail; 1670 #endif 1671 if (!kref_get_unless_zero(&ns->kref)) 1672 goto fail; 1673 if (!try_module_get(ns->ctrl->ops->module)) 1674 goto fail_put_ns; 1675 1676 return 0; 1677 1678 fail_put_ns: 1679 nvme_put_ns(ns); 1680 fail: 1681 return -ENXIO; 1682 } 1683 1684 static void nvme_release(struct gendisk *disk, fmode_t mode) 1685 { 1686 struct nvme_ns *ns = disk->private_data; 1687 1688 module_put(ns->ctrl->ops->module); 1689 nvme_put_ns(ns); 1690 } 1691 1692 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1693 { 1694 /* some standard values */ 1695 geo->heads = 1 << 6; 1696 geo->sectors = 1 << 5; 1697 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1698 return 0; 1699 } 1700 1701 #ifdef CONFIG_BLK_DEV_INTEGRITY 1702 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1703 u32 max_integrity_segments) 1704 { 1705 struct blk_integrity integrity; 1706 1707 memset(&integrity, 0, sizeof(integrity)); 1708 switch (pi_type) { 1709 case NVME_NS_DPS_PI_TYPE3: 1710 integrity.profile = &t10_pi_type3_crc; 1711 integrity.tag_size = sizeof(u16) + sizeof(u32); 1712 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1713 break; 1714 case NVME_NS_DPS_PI_TYPE1: 1715 case NVME_NS_DPS_PI_TYPE2: 1716 integrity.profile = &t10_pi_type1_crc; 1717 integrity.tag_size = sizeof(u16); 1718 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1719 break; 1720 default: 1721 integrity.profile = NULL; 1722 break; 1723 } 1724 integrity.tuple_size = ms; 1725 blk_integrity_register(disk, &integrity); 1726 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1727 } 1728 #else 1729 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1730 u32 max_integrity_segments) 1731 { 1732 } 1733 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1734 1735 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1736 { 1737 struct nvme_ctrl *ctrl = ns->ctrl; 1738 struct request_queue *queue = disk->queue; 1739 u32 size = queue_logical_block_size(queue); 1740 1741 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1742 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1743 return; 1744 } 1745 1746 if (ctrl->nr_streams && ns->sws && ns->sgs) 1747 size *= ns->sws * ns->sgs; 1748 1749 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1750 NVME_DSM_MAX_RANGES); 1751 1752 queue->limits.discard_alignment = 0; 1753 queue->limits.discard_granularity = size; 1754 1755 /* If discard is already enabled, don't reset queue limits */ 1756 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1757 return; 1758 1759 blk_queue_max_discard_sectors(queue, UINT_MAX); 1760 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1761 1762 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1763 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1764 } 1765 1766 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1767 { 1768 u64 max_blocks; 1769 1770 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1771 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1772 return; 1773 /* 1774 * Even though NVMe spec explicitly states that MDTS is not 1775 * applicable to the write-zeroes:- "The restriction does not apply to 1776 * commands that do not transfer data between the host and the 1777 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1778 * In order to be more cautious use controller's max_hw_sectors value 1779 * to configure the maximum sectors for the write-zeroes which is 1780 * configured based on the controller's MDTS field in the 1781 * nvme_init_identify() if available. 1782 */ 1783 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1784 max_blocks = (u64)USHRT_MAX + 1; 1785 else 1786 max_blocks = ns->ctrl->max_hw_sectors + 1; 1787 1788 blk_queue_max_write_zeroes_sectors(disk->queue, 1789 nvme_lba_to_sect(ns, max_blocks)); 1790 } 1791 1792 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1793 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1794 { 1795 memset(ids, 0, sizeof(*ids)); 1796 1797 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1798 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1799 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1800 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1801 if (ctrl->vs >= NVME_VS(1, 3, 0)) 1802 return nvme_identify_ns_descs(ctrl, nsid, ids); 1803 return 0; 1804 } 1805 1806 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1807 { 1808 return !uuid_is_null(&ids->uuid) || 1809 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1810 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1811 } 1812 1813 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1814 { 1815 return uuid_equal(&a->uuid, &b->uuid) && 1816 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1817 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1818 } 1819 1820 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1821 u32 *phys_bs, u32 *io_opt) 1822 { 1823 struct streams_directive_params s; 1824 int ret; 1825 1826 if (!ctrl->nr_streams) 1827 return 0; 1828 1829 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1830 if (ret) 1831 return ret; 1832 1833 ns->sws = le32_to_cpu(s.sws); 1834 ns->sgs = le16_to_cpu(s.sgs); 1835 1836 if (ns->sws) { 1837 *phys_bs = ns->sws * (1 << ns->lba_shift); 1838 if (ns->sgs) 1839 *io_opt = *phys_bs * ns->sgs; 1840 } 1841 1842 return 0; 1843 } 1844 1845 static void nvme_update_disk_info(struct gendisk *disk, 1846 struct nvme_ns *ns, struct nvme_id_ns *id) 1847 { 1848 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1849 unsigned short bs = 1 << ns->lba_shift; 1850 u32 atomic_bs, phys_bs, io_opt = 0; 1851 1852 if (ns->lba_shift > PAGE_SHIFT) { 1853 /* unsupported block size, set capacity to 0 later */ 1854 bs = (1 << 9); 1855 } 1856 blk_mq_freeze_queue(disk->queue); 1857 blk_integrity_unregister(disk); 1858 1859 atomic_bs = phys_bs = bs; 1860 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1861 if (id->nabo == 0) { 1862 /* 1863 * Bit 1 indicates whether NAWUPF is defined for this namespace 1864 * and whether it should be used instead of AWUPF. If NAWUPF == 1865 * 0 then AWUPF must be used instead. 1866 */ 1867 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1868 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1869 else 1870 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1871 } 1872 1873 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1874 /* NPWG = Namespace Preferred Write Granularity */ 1875 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1876 /* NOWS = Namespace Optimal Write Size */ 1877 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1878 } 1879 1880 blk_queue_logical_block_size(disk->queue, bs); 1881 /* 1882 * Linux filesystems assume writing a single physical block is 1883 * an atomic operation. Hence limit the physical block size to the 1884 * value of the Atomic Write Unit Power Fail parameter. 1885 */ 1886 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1887 blk_queue_io_min(disk->queue, phys_bs); 1888 blk_queue_io_opt(disk->queue, io_opt); 1889 1890 /* 1891 * The block layer can't support LBA sizes larger than the page size 1892 * yet, so catch this early and don't allow block I/O. 1893 */ 1894 if (ns->lba_shift > PAGE_SHIFT) 1895 capacity = 0; 1896 1897 /* 1898 * Register a metadata profile for PI, or the plain non-integrity NVMe 1899 * metadata masquerading as Type 0 if supported, otherwise reject block 1900 * I/O to namespaces with metadata except when the namespace supports 1901 * PI, as it can strip/insert in that case. 1902 */ 1903 if (ns->ms) { 1904 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1905 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1906 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1907 ns->ctrl->max_integrity_segments); 1908 else if (!nvme_ns_has_pi(ns)) 1909 capacity = 0; 1910 } 1911 1912 set_capacity_revalidate_and_notify(disk, capacity, false); 1913 1914 nvme_config_discard(disk, ns); 1915 nvme_config_write_zeroes(disk, ns); 1916 1917 if (id->nsattr & NVME_NS_ATTR_RO) 1918 set_disk_ro(disk, true); 1919 else 1920 set_disk_ro(disk, false); 1921 1922 blk_mq_unfreeze_queue(disk->queue); 1923 } 1924 1925 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1926 { 1927 struct nvme_ns *ns = disk->private_data; 1928 struct nvme_ctrl *ctrl = ns->ctrl; 1929 u32 iob; 1930 1931 /* 1932 * If identify namespace failed, use default 512 byte block size so 1933 * block layer can use before failing read/write for 0 capacity. 1934 */ 1935 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1936 if (ns->lba_shift == 0) 1937 ns->lba_shift = 9; 1938 1939 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1940 is_power_of_2(ctrl->max_hw_sectors)) 1941 iob = ctrl->max_hw_sectors; 1942 else 1943 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1944 1945 ns->features = 0; 1946 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1947 /* the PI implementation requires metadata equal t10 pi tuple size */ 1948 if (ns->ms == sizeof(struct t10_pi_tuple)) 1949 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1950 else 1951 ns->pi_type = 0; 1952 1953 if (ns->ms) { 1954 /* 1955 * For PCIe only the separate metadata pointer is supported, 1956 * as the block layer supplies metadata in a separate bio_vec 1957 * chain. For Fabrics, only metadata as part of extended data 1958 * LBA is supported on the wire per the Fabrics specification, 1959 * but the HBA/HCA will do the remapping from the separate 1960 * metadata buffers for us. 1961 */ 1962 if (id->flbas & NVME_NS_FLBAS_META_EXT) { 1963 ns->features |= NVME_NS_EXT_LBAS; 1964 if ((ctrl->ops->flags & NVME_F_FABRICS) && 1965 (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) && 1966 ctrl->max_integrity_segments) 1967 ns->features |= NVME_NS_METADATA_SUPPORTED; 1968 } else { 1969 if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS)) 1970 return -EINVAL; 1971 if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) 1972 ns->features |= NVME_NS_METADATA_SUPPORTED; 1973 } 1974 } 1975 1976 if (iob) 1977 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(iob)); 1978 nvme_update_disk_info(disk, ns, id); 1979 #ifdef CONFIG_NVME_MULTIPATH 1980 if (ns->head->disk) { 1981 nvme_update_disk_info(ns->head->disk, ns, id); 1982 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1983 } 1984 #endif 1985 return 0; 1986 } 1987 1988 static int nvme_revalidate_disk(struct gendisk *disk) 1989 { 1990 struct nvme_ns *ns = disk->private_data; 1991 struct nvme_ctrl *ctrl = ns->ctrl; 1992 struct nvme_id_ns *id; 1993 struct nvme_ns_ids ids; 1994 int ret = 0; 1995 1996 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1997 set_capacity(disk, 0); 1998 return -ENODEV; 1999 } 2000 2001 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id); 2002 if (ret) 2003 goto out; 2004 2005 if (id->ncap == 0) { 2006 ret = -ENODEV; 2007 goto free_id; 2008 } 2009 2010 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 2011 if (ret) 2012 goto free_id; 2013 2014 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 2015 dev_err(ctrl->device, 2016 "identifiers changed for nsid %d\n", ns->head->ns_id); 2017 ret = -ENODEV; 2018 goto free_id; 2019 } 2020 2021 ret = __nvme_revalidate_disk(disk, id); 2022 free_id: 2023 kfree(id); 2024 out: 2025 /* 2026 * Only fail the function if we got a fatal error back from the 2027 * device, otherwise ignore the error and just move on. 2028 */ 2029 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR))) 2030 ret = 0; 2031 else if (ret > 0) 2032 ret = blk_status_to_errno(nvme_error_status(ret)); 2033 return ret; 2034 } 2035 2036 static char nvme_pr_type(enum pr_type type) 2037 { 2038 switch (type) { 2039 case PR_WRITE_EXCLUSIVE: 2040 return 1; 2041 case PR_EXCLUSIVE_ACCESS: 2042 return 2; 2043 case PR_WRITE_EXCLUSIVE_REG_ONLY: 2044 return 3; 2045 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 2046 return 4; 2047 case PR_WRITE_EXCLUSIVE_ALL_REGS: 2048 return 5; 2049 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 2050 return 6; 2051 default: 2052 return 0; 2053 } 2054 }; 2055 2056 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2057 u64 key, u64 sa_key, u8 op) 2058 { 2059 struct nvme_ns_head *head = NULL; 2060 struct nvme_ns *ns; 2061 struct nvme_command c; 2062 int srcu_idx, ret; 2063 u8 data[16] = { 0, }; 2064 2065 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 2066 if (unlikely(!ns)) 2067 return -EWOULDBLOCK; 2068 2069 put_unaligned_le64(key, &data[0]); 2070 put_unaligned_le64(sa_key, &data[8]); 2071 2072 memset(&c, 0, sizeof(c)); 2073 c.common.opcode = op; 2074 c.common.nsid = cpu_to_le32(ns->head->ns_id); 2075 c.common.cdw10 = cpu_to_le32(cdw10); 2076 2077 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 2078 nvme_put_ns_from_disk(head, srcu_idx); 2079 return ret; 2080 } 2081 2082 static int nvme_pr_register(struct block_device *bdev, u64 old, 2083 u64 new, unsigned flags) 2084 { 2085 u32 cdw10; 2086 2087 if (flags & ~PR_FL_IGNORE_KEY) 2088 return -EOPNOTSUPP; 2089 2090 cdw10 = old ? 2 : 0; 2091 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2092 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2093 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2094 } 2095 2096 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2097 enum pr_type type, unsigned flags) 2098 { 2099 u32 cdw10; 2100 2101 if (flags & ~PR_FL_IGNORE_KEY) 2102 return -EOPNOTSUPP; 2103 2104 cdw10 = nvme_pr_type(type) << 8; 2105 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2106 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2107 } 2108 2109 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2110 enum pr_type type, bool abort) 2111 { 2112 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2113 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2114 } 2115 2116 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2117 { 2118 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2119 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2120 } 2121 2122 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2123 { 2124 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2125 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2126 } 2127 2128 static const struct pr_ops nvme_pr_ops = { 2129 .pr_register = nvme_pr_register, 2130 .pr_reserve = nvme_pr_reserve, 2131 .pr_release = nvme_pr_release, 2132 .pr_preempt = nvme_pr_preempt, 2133 .pr_clear = nvme_pr_clear, 2134 }; 2135 2136 #ifdef CONFIG_BLK_SED_OPAL 2137 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2138 bool send) 2139 { 2140 struct nvme_ctrl *ctrl = data; 2141 struct nvme_command cmd; 2142 2143 memset(&cmd, 0, sizeof(cmd)); 2144 if (send) 2145 cmd.common.opcode = nvme_admin_security_send; 2146 else 2147 cmd.common.opcode = nvme_admin_security_recv; 2148 cmd.common.nsid = 0; 2149 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2150 cmd.common.cdw11 = cpu_to_le32(len); 2151 2152 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2153 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 2154 } 2155 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2156 #endif /* CONFIG_BLK_SED_OPAL */ 2157 2158 static const struct block_device_operations nvme_fops = { 2159 .owner = THIS_MODULE, 2160 .ioctl = nvme_ioctl, 2161 .compat_ioctl = nvme_compat_ioctl, 2162 .open = nvme_open, 2163 .release = nvme_release, 2164 .getgeo = nvme_getgeo, 2165 .revalidate_disk= nvme_revalidate_disk, 2166 .pr_ops = &nvme_pr_ops, 2167 }; 2168 2169 #ifdef CONFIG_NVME_MULTIPATH 2170 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 2171 { 2172 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2173 2174 if (!kref_get_unless_zero(&head->ref)) 2175 return -ENXIO; 2176 return 0; 2177 } 2178 2179 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 2180 { 2181 nvme_put_ns_head(disk->private_data); 2182 } 2183 2184 const struct block_device_operations nvme_ns_head_ops = { 2185 .owner = THIS_MODULE, 2186 .open = nvme_ns_head_open, 2187 .release = nvme_ns_head_release, 2188 .ioctl = nvme_ioctl, 2189 .compat_ioctl = nvme_compat_ioctl, 2190 .getgeo = nvme_getgeo, 2191 .pr_ops = &nvme_pr_ops, 2192 }; 2193 #endif /* CONFIG_NVME_MULTIPATH */ 2194 2195 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2196 { 2197 unsigned long timeout = 2198 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2199 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2200 int ret; 2201 2202 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2203 if (csts == ~0) 2204 return -ENODEV; 2205 if ((csts & NVME_CSTS_RDY) == bit) 2206 break; 2207 2208 usleep_range(1000, 2000); 2209 if (fatal_signal_pending(current)) 2210 return -EINTR; 2211 if (time_after(jiffies, timeout)) { 2212 dev_err(ctrl->device, 2213 "Device not ready; aborting %s, CSTS=0x%x\n", 2214 enabled ? "initialisation" : "reset", csts); 2215 return -ENODEV; 2216 } 2217 } 2218 2219 return ret; 2220 } 2221 2222 /* 2223 * If the device has been passed off to us in an enabled state, just clear 2224 * the enabled bit. The spec says we should set the 'shutdown notification 2225 * bits', but doing so may cause the device to complete commands to the 2226 * admin queue ... and we don't know what memory that might be pointing at! 2227 */ 2228 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2229 { 2230 int ret; 2231 2232 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2233 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2234 2235 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2236 if (ret) 2237 return ret; 2238 2239 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2240 msleep(NVME_QUIRK_DELAY_AMOUNT); 2241 2242 return nvme_wait_ready(ctrl, ctrl->cap, false); 2243 } 2244 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2245 2246 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2247 { 2248 /* 2249 * Default to a 4K page size, with the intention to update this 2250 * path in the future to accomodate architectures with differing 2251 * kernel and IO page sizes. 2252 */ 2253 unsigned dev_page_min, page_shift = 12; 2254 int ret; 2255 2256 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2257 if (ret) { 2258 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2259 return ret; 2260 } 2261 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2262 2263 if (page_shift < dev_page_min) { 2264 dev_err(ctrl->device, 2265 "Minimum device page size %u too large for host (%u)\n", 2266 1 << dev_page_min, 1 << page_shift); 2267 return -ENODEV; 2268 } 2269 2270 ctrl->page_size = 1 << page_shift; 2271 2272 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2273 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 2274 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2275 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2276 ctrl->ctrl_config |= NVME_CC_ENABLE; 2277 2278 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2279 if (ret) 2280 return ret; 2281 return nvme_wait_ready(ctrl, ctrl->cap, true); 2282 } 2283 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2284 2285 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2286 { 2287 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2288 u32 csts; 2289 int ret; 2290 2291 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2292 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2293 2294 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2295 if (ret) 2296 return ret; 2297 2298 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2299 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2300 break; 2301 2302 msleep(100); 2303 if (fatal_signal_pending(current)) 2304 return -EINTR; 2305 if (time_after(jiffies, timeout)) { 2306 dev_err(ctrl->device, 2307 "Device shutdown incomplete; abort shutdown\n"); 2308 return -ENODEV; 2309 } 2310 } 2311 2312 return ret; 2313 } 2314 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2315 2316 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 2317 struct request_queue *q) 2318 { 2319 bool vwc = false; 2320 2321 if (ctrl->max_hw_sectors) { 2322 u32 max_segments = 2323 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 2324 2325 max_segments = min_not_zero(max_segments, ctrl->max_segments); 2326 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 2327 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 2328 } 2329 blk_queue_virt_boundary(q, ctrl->page_size - 1); 2330 blk_queue_dma_alignment(q, 7); 2331 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2332 vwc = true; 2333 blk_queue_write_cache(q, vwc, vwc); 2334 } 2335 2336 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2337 { 2338 __le64 ts; 2339 int ret; 2340 2341 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2342 return 0; 2343 2344 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2345 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2346 NULL); 2347 if (ret) 2348 dev_warn_once(ctrl->device, 2349 "could not set timestamp (%d)\n", ret); 2350 return ret; 2351 } 2352 2353 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2354 { 2355 struct nvme_feat_host_behavior *host; 2356 int ret; 2357 2358 /* Don't bother enabling the feature if retry delay is not reported */ 2359 if (!ctrl->crdt[0]) 2360 return 0; 2361 2362 host = kzalloc(sizeof(*host), GFP_KERNEL); 2363 if (!host) 2364 return 0; 2365 2366 host->acre = NVME_ENABLE_ACRE; 2367 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2368 host, sizeof(*host), NULL); 2369 kfree(host); 2370 return ret; 2371 } 2372 2373 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2374 { 2375 /* 2376 * APST (Autonomous Power State Transition) lets us program a 2377 * table of power state transitions that the controller will 2378 * perform automatically. We configure it with a simple 2379 * heuristic: we are willing to spend at most 2% of the time 2380 * transitioning between power states. Therefore, when running 2381 * in any given state, we will enter the next lower-power 2382 * non-operational state after waiting 50 * (enlat + exlat) 2383 * microseconds, as long as that state's exit latency is under 2384 * the requested maximum latency. 2385 * 2386 * We will not autonomously enter any non-operational state for 2387 * which the total latency exceeds ps_max_latency_us. Users 2388 * can set ps_max_latency_us to zero to turn off APST. 2389 */ 2390 2391 unsigned apste; 2392 struct nvme_feat_auto_pst *table; 2393 u64 max_lat_us = 0; 2394 int max_ps = -1; 2395 int ret; 2396 2397 /* 2398 * If APST isn't supported or if we haven't been initialized yet, 2399 * then don't do anything. 2400 */ 2401 if (!ctrl->apsta) 2402 return 0; 2403 2404 if (ctrl->npss > 31) { 2405 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2406 return 0; 2407 } 2408 2409 table = kzalloc(sizeof(*table), GFP_KERNEL); 2410 if (!table) 2411 return 0; 2412 2413 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2414 /* Turn off APST. */ 2415 apste = 0; 2416 dev_dbg(ctrl->device, "APST disabled\n"); 2417 } else { 2418 __le64 target = cpu_to_le64(0); 2419 int state; 2420 2421 /* 2422 * Walk through all states from lowest- to highest-power. 2423 * According to the spec, lower-numbered states use more 2424 * power. NPSS, despite the name, is the index of the 2425 * lowest-power state, not the number of states. 2426 */ 2427 for (state = (int)ctrl->npss; state >= 0; state--) { 2428 u64 total_latency_us, exit_latency_us, transition_ms; 2429 2430 if (target) 2431 table->entries[state] = target; 2432 2433 /* 2434 * Don't allow transitions to the deepest state 2435 * if it's quirked off. 2436 */ 2437 if (state == ctrl->npss && 2438 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2439 continue; 2440 2441 /* 2442 * Is this state a useful non-operational state for 2443 * higher-power states to autonomously transition to? 2444 */ 2445 if (!(ctrl->psd[state].flags & 2446 NVME_PS_FLAGS_NON_OP_STATE)) 2447 continue; 2448 2449 exit_latency_us = 2450 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2451 if (exit_latency_us > ctrl->ps_max_latency_us) 2452 continue; 2453 2454 total_latency_us = 2455 exit_latency_us + 2456 le32_to_cpu(ctrl->psd[state].entry_lat); 2457 2458 /* 2459 * This state is good. Use it as the APST idle 2460 * target for higher power states. 2461 */ 2462 transition_ms = total_latency_us + 19; 2463 do_div(transition_ms, 20); 2464 if (transition_ms > (1 << 24) - 1) 2465 transition_ms = (1 << 24) - 1; 2466 2467 target = cpu_to_le64((state << 3) | 2468 (transition_ms << 8)); 2469 2470 if (max_ps == -1) 2471 max_ps = state; 2472 2473 if (total_latency_us > max_lat_us) 2474 max_lat_us = total_latency_us; 2475 } 2476 2477 apste = 1; 2478 2479 if (max_ps == -1) { 2480 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2481 } else { 2482 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2483 max_ps, max_lat_us, (int)sizeof(*table), table); 2484 } 2485 } 2486 2487 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2488 table, sizeof(*table), NULL); 2489 if (ret) 2490 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2491 2492 kfree(table); 2493 return ret; 2494 } 2495 2496 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2497 { 2498 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2499 u64 latency; 2500 2501 switch (val) { 2502 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2503 case PM_QOS_LATENCY_ANY: 2504 latency = U64_MAX; 2505 break; 2506 2507 default: 2508 latency = val; 2509 } 2510 2511 if (ctrl->ps_max_latency_us != latency) { 2512 ctrl->ps_max_latency_us = latency; 2513 nvme_configure_apst(ctrl); 2514 } 2515 } 2516 2517 struct nvme_core_quirk_entry { 2518 /* 2519 * NVMe model and firmware strings are padded with spaces. For 2520 * simplicity, strings in the quirk table are padded with NULLs 2521 * instead. 2522 */ 2523 u16 vid; 2524 const char *mn; 2525 const char *fr; 2526 unsigned long quirks; 2527 }; 2528 2529 static const struct nvme_core_quirk_entry core_quirks[] = { 2530 { 2531 /* 2532 * This Toshiba device seems to die using any APST states. See: 2533 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2534 */ 2535 .vid = 0x1179, 2536 .mn = "THNSF5256GPUK TOSHIBA", 2537 .quirks = NVME_QUIRK_NO_APST, 2538 }, 2539 { 2540 /* 2541 * This LiteON CL1-3D*-Q11 firmware version has a race 2542 * condition associated with actions related to suspend to idle 2543 * LiteON has resolved the problem in future firmware 2544 */ 2545 .vid = 0x14a4, 2546 .fr = "22301111", 2547 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2548 } 2549 }; 2550 2551 /* match is null-terminated but idstr is space-padded. */ 2552 static bool string_matches(const char *idstr, const char *match, size_t len) 2553 { 2554 size_t matchlen; 2555 2556 if (!match) 2557 return true; 2558 2559 matchlen = strlen(match); 2560 WARN_ON_ONCE(matchlen > len); 2561 2562 if (memcmp(idstr, match, matchlen)) 2563 return false; 2564 2565 for (; matchlen < len; matchlen++) 2566 if (idstr[matchlen] != ' ') 2567 return false; 2568 2569 return true; 2570 } 2571 2572 static bool quirk_matches(const struct nvme_id_ctrl *id, 2573 const struct nvme_core_quirk_entry *q) 2574 { 2575 return q->vid == le16_to_cpu(id->vid) && 2576 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2577 string_matches(id->fr, q->fr, sizeof(id->fr)); 2578 } 2579 2580 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2581 struct nvme_id_ctrl *id) 2582 { 2583 size_t nqnlen; 2584 int off; 2585 2586 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2587 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2588 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2589 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2590 return; 2591 } 2592 2593 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2594 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2595 } 2596 2597 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2598 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2599 "nqn.2014.08.org.nvmexpress:%04x%04x", 2600 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2601 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2602 off += sizeof(id->sn); 2603 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2604 off += sizeof(id->mn); 2605 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2606 } 2607 2608 static void nvme_release_subsystem(struct device *dev) 2609 { 2610 struct nvme_subsystem *subsys = 2611 container_of(dev, struct nvme_subsystem, dev); 2612 2613 if (subsys->instance >= 0) 2614 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2615 kfree(subsys); 2616 } 2617 2618 static void nvme_destroy_subsystem(struct kref *ref) 2619 { 2620 struct nvme_subsystem *subsys = 2621 container_of(ref, struct nvme_subsystem, ref); 2622 2623 mutex_lock(&nvme_subsystems_lock); 2624 list_del(&subsys->entry); 2625 mutex_unlock(&nvme_subsystems_lock); 2626 2627 ida_destroy(&subsys->ns_ida); 2628 device_del(&subsys->dev); 2629 put_device(&subsys->dev); 2630 } 2631 2632 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2633 { 2634 kref_put(&subsys->ref, nvme_destroy_subsystem); 2635 } 2636 2637 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2638 { 2639 struct nvme_subsystem *subsys; 2640 2641 lockdep_assert_held(&nvme_subsystems_lock); 2642 2643 /* 2644 * Fail matches for discovery subsystems. This results 2645 * in each discovery controller bound to a unique subsystem. 2646 * This avoids issues with validating controller values 2647 * that can only be true when there is a single unique subsystem. 2648 * There may be multiple and completely independent entities 2649 * that provide discovery controllers. 2650 */ 2651 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2652 return NULL; 2653 2654 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2655 if (strcmp(subsys->subnqn, subsysnqn)) 2656 continue; 2657 if (!kref_get_unless_zero(&subsys->ref)) 2658 continue; 2659 return subsys; 2660 } 2661 2662 return NULL; 2663 } 2664 2665 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2666 struct device_attribute subsys_attr_##_name = \ 2667 __ATTR(_name, _mode, _show, NULL) 2668 2669 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2670 struct device_attribute *attr, 2671 char *buf) 2672 { 2673 struct nvme_subsystem *subsys = 2674 container_of(dev, struct nvme_subsystem, dev); 2675 2676 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2677 } 2678 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2679 2680 #define nvme_subsys_show_str_function(field) \ 2681 static ssize_t subsys_##field##_show(struct device *dev, \ 2682 struct device_attribute *attr, char *buf) \ 2683 { \ 2684 struct nvme_subsystem *subsys = \ 2685 container_of(dev, struct nvme_subsystem, dev); \ 2686 return sprintf(buf, "%.*s\n", \ 2687 (int)sizeof(subsys->field), subsys->field); \ 2688 } \ 2689 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2690 2691 nvme_subsys_show_str_function(model); 2692 nvme_subsys_show_str_function(serial); 2693 nvme_subsys_show_str_function(firmware_rev); 2694 2695 static struct attribute *nvme_subsys_attrs[] = { 2696 &subsys_attr_model.attr, 2697 &subsys_attr_serial.attr, 2698 &subsys_attr_firmware_rev.attr, 2699 &subsys_attr_subsysnqn.attr, 2700 #ifdef CONFIG_NVME_MULTIPATH 2701 &subsys_attr_iopolicy.attr, 2702 #endif 2703 NULL, 2704 }; 2705 2706 static struct attribute_group nvme_subsys_attrs_group = { 2707 .attrs = nvme_subsys_attrs, 2708 }; 2709 2710 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2711 &nvme_subsys_attrs_group, 2712 NULL, 2713 }; 2714 2715 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2716 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2717 { 2718 struct nvme_ctrl *tmp; 2719 2720 lockdep_assert_held(&nvme_subsystems_lock); 2721 2722 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2723 if (nvme_state_terminal(tmp)) 2724 continue; 2725 2726 if (tmp->cntlid == ctrl->cntlid) { 2727 dev_err(ctrl->device, 2728 "Duplicate cntlid %u with %s, rejecting\n", 2729 ctrl->cntlid, dev_name(tmp->device)); 2730 return false; 2731 } 2732 2733 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2734 (ctrl->opts && ctrl->opts->discovery_nqn)) 2735 continue; 2736 2737 dev_err(ctrl->device, 2738 "Subsystem does not support multiple controllers\n"); 2739 return false; 2740 } 2741 2742 return true; 2743 } 2744 2745 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2746 { 2747 struct nvme_subsystem *subsys, *found; 2748 int ret; 2749 2750 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2751 if (!subsys) 2752 return -ENOMEM; 2753 2754 subsys->instance = -1; 2755 mutex_init(&subsys->lock); 2756 kref_init(&subsys->ref); 2757 INIT_LIST_HEAD(&subsys->ctrls); 2758 INIT_LIST_HEAD(&subsys->nsheads); 2759 nvme_init_subnqn(subsys, ctrl, id); 2760 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2761 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2762 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2763 subsys->vendor_id = le16_to_cpu(id->vid); 2764 subsys->cmic = id->cmic; 2765 subsys->awupf = le16_to_cpu(id->awupf); 2766 #ifdef CONFIG_NVME_MULTIPATH 2767 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2768 #endif 2769 2770 subsys->dev.class = nvme_subsys_class; 2771 subsys->dev.release = nvme_release_subsystem; 2772 subsys->dev.groups = nvme_subsys_attrs_groups; 2773 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2774 device_initialize(&subsys->dev); 2775 2776 mutex_lock(&nvme_subsystems_lock); 2777 found = __nvme_find_get_subsystem(subsys->subnqn); 2778 if (found) { 2779 put_device(&subsys->dev); 2780 subsys = found; 2781 2782 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2783 ret = -EINVAL; 2784 goto out_put_subsystem; 2785 } 2786 } else { 2787 ret = device_add(&subsys->dev); 2788 if (ret) { 2789 dev_err(ctrl->device, 2790 "failed to register subsystem device.\n"); 2791 put_device(&subsys->dev); 2792 goto out_unlock; 2793 } 2794 ida_init(&subsys->ns_ida); 2795 list_add_tail(&subsys->entry, &nvme_subsystems); 2796 } 2797 2798 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2799 dev_name(ctrl->device)); 2800 if (ret) { 2801 dev_err(ctrl->device, 2802 "failed to create sysfs link from subsystem.\n"); 2803 goto out_put_subsystem; 2804 } 2805 2806 if (!found) 2807 subsys->instance = ctrl->instance; 2808 ctrl->subsys = subsys; 2809 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2810 mutex_unlock(&nvme_subsystems_lock); 2811 return 0; 2812 2813 out_put_subsystem: 2814 nvme_put_subsystem(subsys); 2815 out_unlock: 2816 mutex_unlock(&nvme_subsystems_lock); 2817 return ret; 2818 } 2819 2820 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2821 void *log, size_t size, u64 offset) 2822 { 2823 struct nvme_command c = { }; 2824 u32 dwlen = nvme_bytes_to_numd(size); 2825 2826 c.get_log_page.opcode = nvme_admin_get_log_page; 2827 c.get_log_page.nsid = cpu_to_le32(nsid); 2828 c.get_log_page.lid = log_page; 2829 c.get_log_page.lsp = lsp; 2830 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2831 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2832 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2833 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2834 2835 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2836 } 2837 2838 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2839 { 2840 int ret; 2841 2842 if (!ctrl->effects) 2843 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2844 2845 if (!ctrl->effects) 2846 return 0; 2847 2848 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2849 ctrl->effects, sizeof(*ctrl->effects), 0); 2850 if (ret) { 2851 kfree(ctrl->effects); 2852 ctrl->effects = NULL; 2853 } 2854 return ret; 2855 } 2856 2857 /* 2858 * Initialize the cached copies of the Identify data and various controller 2859 * register in our nvme_ctrl structure. This should be called as soon as 2860 * the admin queue is fully up and running. 2861 */ 2862 int nvme_init_identify(struct nvme_ctrl *ctrl) 2863 { 2864 struct nvme_id_ctrl *id; 2865 int ret, page_shift; 2866 u32 max_hw_sectors; 2867 bool prev_apst_enabled; 2868 2869 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2870 if (ret) { 2871 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2872 return ret; 2873 } 2874 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2875 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2876 2877 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2878 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2879 2880 ret = nvme_identify_ctrl(ctrl, &id); 2881 if (ret) { 2882 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2883 return -EIO; 2884 } 2885 2886 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2887 ret = nvme_get_effects_log(ctrl); 2888 if (ret < 0) 2889 goto out_free; 2890 } 2891 2892 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2893 ctrl->cntlid = le16_to_cpu(id->cntlid); 2894 2895 if (!ctrl->identified) { 2896 int i; 2897 2898 ret = nvme_init_subsystem(ctrl, id); 2899 if (ret) 2900 goto out_free; 2901 2902 /* 2903 * Check for quirks. Quirk can depend on firmware version, 2904 * so, in principle, the set of quirks present can change 2905 * across a reset. As a possible future enhancement, we 2906 * could re-scan for quirks every time we reinitialize 2907 * the device, but we'd have to make sure that the driver 2908 * behaves intelligently if the quirks change. 2909 */ 2910 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2911 if (quirk_matches(id, &core_quirks[i])) 2912 ctrl->quirks |= core_quirks[i].quirks; 2913 } 2914 } 2915 2916 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2917 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2918 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2919 } 2920 2921 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2922 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2923 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2924 2925 ctrl->oacs = le16_to_cpu(id->oacs); 2926 ctrl->oncs = le16_to_cpu(id->oncs); 2927 ctrl->mtfa = le16_to_cpu(id->mtfa); 2928 ctrl->oaes = le32_to_cpu(id->oaes); 2929 ctrl->wctemp = le16_to_cpu(id->wctemp); 2930 ctrl->cctemp = le16_to_cpu(id->cctemp); 2931 2932 atomic_set(&ctrl->abort_limit, id->acl + 1); 2933 ctrl->vwc = id->vwc; 2934 if (id->mdts) 2935 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2936 else 2937 max_hw_sectors = UINT_MAX; 2938 ctrl->max_hw_sectors = 2939 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2940 2941 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2942 ctrl->sgls = le32_to_cpu(id->sgls); 2943 ctrl->kas = le16_to_cpu(id->kas); 2944 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2945 ctrl->ctratt = le32_to_cpu(id->ctratt); 2946 2947 if (id->rtd3e) { 2948 /* us -> s */ 2949 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2950 2951 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2952 shutdown_timeout, 60); 2953 2954 if (ctrl->shutdown_timeout != shutdown_timeout) 2955 dev_info(ctrl->device, 2956 "Shutdown timeout set to %u seconds\n", 2957 ctrl->shutdown_timeout); 2958 } else 2959 ctrl->shutdown_timeout = shutdown_timeout; 2960 2961 ctrl->npss = id->npss; 2962 ctrl->apsta = id->apsta; 2963 prev_apst_enabled = ctrl->apst_enabled; 2964 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2965 if (force_apst && id->apsta) { 2966 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2967 ctrl->apst_enabled = true; 2968 } else { 2969 ctrl->apst_enabled = false; 2970 } 2971 } else { 2972 ctrl->apst_enabled = id->apsta; 2973 } 2974 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2975 2976 if (ctrl->ops->flags & NVME_F_FABRICS) { 2977 ctrl->icdoff = le16_to_cpu(id->icdoff); 2978 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2979 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2980 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2981 2982 /* 2983 * In fabrics we need to verify the cntlid matches the 2984 * admin connect 2985 */ 2986 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2987 dev_err(ctrl->device, 2988 "Mismatching cntlid: Connect %u vs Identify " 2989 "%u, rejecting\n", 2990 ctrl->cntlid, le16_to_cpu(id->cntlid)); 2991 ret = -EINVAL; 2992 goto out_free; 2993 } 2994 2995 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2996 dev_err(ctrl->device, 2997 "keep-alive support is mandatory for fabrics\n"); 2998 ret = -EINVAL; 2999 goto out_free; 3000 } 3001 } else { 3002 ctrl->hmpre = le32_to_cpu(id->hmpre); 3003 ctrl->hmmin = le32_to_cpu(id->hmmin); 3004 ctrl->hmminds = le32_to_cpu(id->hmminds); 3005 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3006 } 3007 3008 ret = nvme_mpath_init(ctrl, id); 3009 kfree(id); 3010 3011 if (ret < 0) 3012 return ret; 3013 3014 if (ctrl->apst_enabled && !prev_apst_enabled) 3015 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3016 else if (!ctrl->apst_enabled && prev_apst_enabled) 3017 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3018 3019 ret = nvme_configure_apst(ctrl); 3020 if (ret < 0) 3021 return ret; 3022 3023 ret = nvme_configure_timestamp(ctrl); 3024 if (ret < 0) 3025 return ret; 3026 3027 ret = nvme_configure_directives(ctrl); 3028 if (ret < 0) 3029 return ret; 3030 3031 ret = nvme_configure_acre(ctrl); 3032 if (ret < 0) 3033 return ret; 3034 3035 if (!ctrl->identified) 3036 nvme_hwmon_init(ctrl); 3037 3038 ctrl->identified = true; 3039 3040 return 0; 3041 3042 out_free: 3043 kfree(id); 3044 return ret; 3045 } 3046 EXPORT_SYMBOL_GPL(nvme_init_identify); 3047 3048 static int nvme_dev_open(struct inode *inode, struct file *file) 3049 { 3050 struct nvme_ctrl *ctrl = 3051 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3052 3053 switch (ctrl->state) { 3054 case NVME_CTRL_LIVE: 3055 break; 3056 default: 3057 return -EWOULDBLOCK; 3058 } 3059 3060 file->private_data = ctrl; 3061 return 0; 3062 } 3063 3064 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 3065 { 3066 struct nvme_ns *ns; 3067 int ret; 3068 3069 down_read(&ctrl->namespaces_rwsem); 3070 if (list_empty(&ctrl->namespaces)) { 3071 ret = -ENOTTY; 3072 goto out_unlock; 3073 } 3074 3075 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 3076 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 3077 dev_warn(ctrl->device, 3078 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 3079 ret = -EINVAL; 3080 goto out_unlock; 3081 } 3082 3083 dev_warn(ctrl->device, 3084 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 3085 kref_get(&ns->kref); 3086 up_read(&ctrl->namespaces_rwsem); 3087 3088 ret = nvme_user_cmd(ctrl, ns, argp); 3089 nvme_put_ns(ns); 3090 return ret; 3091 3092 out_unlock: 3093 up_read(&ctrl->namespaces_rwsem); 3094 return ret; 3095 } 3096 3097 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 3098 unsigned long arg) 3099 { 3100 struct nvme_ctrl *ctrl = file->private_data; 3101 void __user *argp = (void __user *)arg; 3102 3103 switch (cmd) { 3104 case NVME_IOCTL_ADMIN_CMD: 3105 return nvme_user_cmd(ctrl, NULL, argp); 3106 case NVME_IOCTL_ADMIN64_CMD: 3107 return nvme_user_cmd64(ctrl, NULL, argp); 3108 case NVME_IOCTL_IO_CMD: 3109 return nvme_dev_user_cmd(ctrl, argp); 3110 case NVME_IOCTL_RESET: 3111 dev_warn(ctrl->device, "resetting controller\n"); 3112 return nvme_reset_ctrl_sync(ctrl); 3113 case NVME_IOCTL_SUBSYS_RESET: 3114 return nvme_reset_subsystem(ctrl); 3115 case NVME_IOCTL_RESCAN: 3116 nvme_queue_scan(ctrl); 3117 return 0; 3118 default: 3119 return -ENOTTY; 3120 } 3121 } 3122 3123 static const struct file_operations nvme_dev_fops = { 3124 .owner = THIS_MODULE, 3125 .open = nvme_dev_open, 3126 .unlocked_ioctl = nvme_dev_ioctl, 3127 .compat_ioctl = compat_ptr_ioctl, 3128 }; 3129 3130 static ssize_t nvme_sysfs_reset(struct device *dev, 3131 struct device_attribute *attr, const char *buf, 3132 size_t count) 3133 { 3134 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3135 int ret; 3136 3137 ret = nvme_reset_ctrl_sync(ctrl); 3138 if (ret < 0) 3139 return ret; 3140 return count; 3141 } 3142 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3143 3144 static ssize_t nvme_sysfs_rescan(struct device *dev, 3145 struct device_attribute *attr, const char *buf, 3146 size_t count) 3147 { 3148 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3149 3150 nvme_queue_scan(ctrl); 3151 return count; 3152 } 3153 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3154 3155 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3156 { 3157 struct gendisk *disk = dev_to_disk(dev); 3158 3159 if (disk->fops == &nvme_fops) 3160 return nvme_get_ns_from_dev(dev)->head; 3161 else 3162 return disk->private_data; 3163 } 3164 3165 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3166 char *buf) 3167 { 3168 struct nvme_ns_head *head = dev_to_ns_head(dev); 3169 struct nvme_ns_ids *ids = &head->ids; 3170 struct nvme_subsystem *subsys = head->subsys; 3171 int serial_len = sizeof(subsys->serial); 3172 int model_len = sizeof(subsys->model); 3173 3174 if (!uuid_is_null(&ids->uuid)) 3175 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 3176 3177 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3178 return sprintf(buf, "eui.%16phN\n", ids->nguid); 3179 3180 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3181 return sprintf(buf, "eui.%8phN\n", ids->eui64); 3182 3183 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3184 subsys->serial[serial_len - 1] == '\0')) 3185 serial_len--; 3186 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3187 subsys->model[model_len - 1] == '\0')) 3188 model_len--; 3189 3190 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3191 serial_len, subsys->serial, model_len, subsys->model, 3192 head->ns_id); 3193 } 3194 static DEVICE_ATTR_RO(wwid); 3195 3196 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3197 char *buf) 3198 { 3199 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3200 } 3201 static DEVICE_ATTR_RO(nguid); 3202 3203 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3204 char *buf) 3205 { 3206 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3207 3208 /* For backward compatibility expose the NGUID to userspace if 3209 * we have no UUID set 3210 */ 3211 if (uuid_is_null(&ids->uuid)) { 3212 printk_ratelimited(KERN_WARNING 3213 "No UUID available providing old NGUID\n"); 3214 return sprintf(buf, "%pU\n", ids->nguid); 3215 } 3216 return sprintf(buf, "%pU\n", &ids->uuid); 3217 } 3218 static DEVICE_ATTR_RO(uuid); 3219 3220 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3221 char *buf) 3222 { 3223 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3224 } 3225 static DEVICE_ATTR_RO(eui); 3226 3227 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3228 char *buf) 3229 { 3230 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3231 } 3232 static DEVICE_ATTR_RO(nsid); 3233 3234 static struct attribute *nvme_ns_id_attrs[] = { 3235 &dev_attr_wwid.attr, 3236 &dev_attr_uuid.attr, 3237 &dev_attr_nguid.attr, 3238 &dev_attr_eui.attr, 3239 &dev_attr_nsid.attr, 3240 #ifdef CONFIG_NVME_MULTIPATH 3241 &dev_attr_ana_grpid.attr, 3242 &dev_attr_ana_state.attr, 3243 #endif 3244 NULL, 3245 }; 3246 3247 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3248 struct attribute *a, int n) 3249 { 3250 struct device *dev = container_of(kobj, struct device, kobj); 3251 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3252 3253 if (a == &dev_attr_uuid.attr) { 3254 if (uuid_is_null(&ids->uuid) && 3255 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3256 return 0; 3257 } 3258 if (a == &dev_attr_nguid.attr) { 3259 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3260 return 0; 3261 } 3262 if (a == &dev_attr_eui.attr) { 3263 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3264 return 0; 3265 } 3266 #ifdef CONFIG_NVME_MULTIPATH 3267 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3268 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 3269 return 0; 3270 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3271 return 0; 3272 } 3273 #endif 3274 return a->mode; 3275 } 3276 3277 static const struct attribute_group nvme_ns_id_attr_group = { 3278 .attrs = nvme_ns_id_attrs, 3279 .is_visible = nvme_ns_id_attrs_are_visible, 3280 }; 3281 3282 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3283 &nvme_ns_id_attr_group, 3284 #ifdef CONFIG_NVM 3285 &nvme_nvm_attr_group, 3286 #endif 3287 NULL, 3288 }; 3289 3290 #define nvme_show_str_function(field) \ 3291 static ssize_t field##_show(struct device *dev, \ 3292 struct device_attribute *attr, char *buf) \ 3293 { \ 3294 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3295 return sprintf(buf, "%.*s\n", \ 3296 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3297 } \ 3298 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3299 3300 nvme_show_str_function(model); 3301 nvme_show_str_function(serial); 3302 nvme_show_str_function(firmware_rev); 3303 3304 #define nvme_show_int_function(field) \ 3305 static ssize_t field##_show(struct device *dev, \ 3306 struct device_attribute *attr, char *buf) \ 3307 { \ 3308 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3309 return sprintf(buf, "%d\n", ctrl->field); \ 3310 } \ 3311 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3312 3313 nvme_show_int_function(cntlid); 3314 nvme_show_int_function(numa_node); 3315 nvme_show_int_function(queue_count); 3316 nvme_show_int_function(sqsize); 3317 3318 static ssize_t nvme_sysfs_delete(struct device *dev, 3319 struct device_attribute *attr, const char *buf, 3320 size_t count) 3321 { 3322 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3323 3324 /* Can't delete non-created controllers */ 3325 if (!ctrl->created) 3326 return -EBUSY; 3327 3328 if (device_remove_file_self(dev, attr)) 3329 nvme_delete_ctrl_sync(ctrl); 3330 return count; 3331 } 3332 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3333 3334 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3335 struct device_attribute *attr, 3336 char *buf) 3337 { 3338 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3339 3340 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3341 } 3342 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3343 3344 static ssize_t nvme_sysfs_show_state(struct device *dev, 3345 struct device_attribute *attr, 3346 char *buf) 3347 { 3348 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3349 static const char *const state_name[] = { 3350 [NVME_CTRL_NEW] = "new", 3351 [NVME_CTRL_LIVE] = "live", 3352 [NVME_CTRL_RESETTING] = "resetting", 3353 [NVME_CTRL_CONNECTING] = "connecting", 3354 [NVME_CTRL_DELETING] = "deleting", 3355 [NVME_CTRL_DEAD] = "dead", 3356 }; 3357 3358 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3359 state_name[ctrl->state]) 3360 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3361 3362 return sprintf(buf, "unknown state\n"); 3363 } 3364 3365 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3366 3367 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3368 struct device_attribute *attr, 3369 char *buf) 3370 { 3371 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3372 3373 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3374 } 3375 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3376 3377 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3378 struct device_attribute *attr, 3379 char *buf) 3380 { 3381 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3382 3383 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn); 3384 } 3385 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3386 3387 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3388 struct device_attribute *attr, 3389 char *buf) 3390 { 3391 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3392 3393 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id); 3394 } 3395 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3396 3397 static ssize_t nvme_sysfs_show_address(struct device *dev, 3398 struct device_attribute *attr, 3399 char *buf) 3400 { 3401 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3402 3403 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3404 } 3405 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3406 3407 static struct attribute *nvme_dev_attrs[] = { 3408 &dev_attr_reset_controller.attr, 3409 &dev_attr_rescan_controller.attr, 3410 &dev_attr_model.attr, 3411 &dev_attr_serial.attr, 3412 &dev_attr_firmware_rev.attr, 3413 &dev_attr_cntlid.attr, 3414 &dev_attr_delete_controller.attr, 3415 &dev_attr_transport.attr, 3416 &dev_attr_subsysnqn.attr, 3417 &dev_attr_address.attr, 3418 &dev_attr_state.attr, 3419 &dev_attr_numa_node.attr, 3420 &dev_attr_queue_count.attr, 3421 &dev_attr_sqsize.attr, 3422 &dev_attr_hostnqn.attr, 3423 &dev_attr_hostid.attr, 3424 NULL 3425 }; 3426 3427 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3428 struct attribute *a, int n) 3429 { 3430 struct device *dev = container_of(kobj, struct device, kobj); 3431 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3432 3433 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3434 return 0; 3435 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3436 return 0; 3437 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3438 return 0; 3439 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3440 return 0; 3441 3442 return a->mode; 3443 } 3444 3445 static struct attribute_group nvme_dev_attrs_group = { 3446 .attrs = nvme_dev_attrs, 3447 .is_visible = nvme_dev_attrs_are_visible, 3448 }; 3449 3450 static const struct attribute_group *nvme_dev_attr_groups[] = { 3451 &nvme_dev_attrs_group, 3452 NULL, 3453 }; 3454 3455 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3456 unsigned nsid) 3457 { 3458 struct nvme_ns_head *h; 3459 3460 lockdep_assert_held(&subsys->lock); 3461 3462 list_for_each_entry(h, &subsys->nsheads, entry) { 3463 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3464 return h; 3465 } 3466 3467 return NULL; 3468 } 3469 3470 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3471 struct nvme_ns_head *new) 3472 { 3473 struct nvme_ns_head *h; 3474 3475 lockdep_assert_held(&subsys->lock); 3476 3477 list_for_each_entry(h, &subsys->nsheads, entry) { 3478 if (nvme_ns_ids_valid(&new->ids) && 3479 nvme_ns_ids_equal(&new->ids, &h->ids)) 3480 return -EINVAL; 3481 } 3482 3483 return 0; 3484 } 3485 3486 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3487 unsigned nsid, struct nvme_ns_ids *ids) 3488 { 3489 struct nvme_ns_head *head; 3490 size_t size = sizeof(*head); 3491 int ret = -ENOMEM; 3492 3493 #ifdef CONFIG_NVME_MULTIPATH 3494 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3495 #endif 3496 3497 head = kzalloc(size, GFP_KERNEL); 3498 if (!head) 3499 goto out; 3500 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3501 if (ret < 0) 3502 goto out_free_head; 3503 head->instance = ret; 3504 INIT_LIST_HEAD(&head->list); 3505 ret = init_srcu_struct(&head->srcu); 3506 if (ret) 3507 goto out_ida_remove; 3508 head->subsys = ctrl->subsys; 3509 head->ns_id = nsid; 3510 head->ids = *ids; 3511 kref_init(&head->ref); 3512 3513 ret = __nvme_check_ids(ctrl->subsys, head); 3514 if (ret) { 3515 dev_err(ctrl->device, 3516 "duplicate IDs for nsid %d\n", nsid); 3517 goto out_cleanup_srcu; 3518 } 3519 3520 ret = nvme_mpath_alloc_disk(ctrl, head); 3521 if (ret) 3522 goto out_cleanup_srcu; 3523 3524 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3525 3526 kref_get(&ctrl->subsys->ref); 3527 3528 return head; 3529 out_cleanup_srcu: 3530 cleanup_srcu_struct(&head->srcu); 3531 out_ida_remove: 3532 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3533 out_free_head: 3534 kfree(head); 3535 out: 3536 if (ret > 0) 3537 ret = blk_status_to_errno(nvme_error_status(ret)); 3538 return ERR_PTR(ret); 3539 } 3540 3541 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3542 struct nvme_id_ns *id) 3543 { 3544 struct nvme_ctrl *ctrl = ns->ctrl; 3545 bool is_shared = id->nmic & NVME_NS_NMIC_SHARED; 3546 struct nvme_ns_head *head = NULL; 3547 struct nvme_ns_ids ids; 3548 int ret = 0; 3549 3550 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids); 3551 if (ret) { 3552 if (ret < 0) 3553 return ret; 3554 return blk_status_to_errno(nvme_error_status(ret)); 3555 } 3556 3557 mutex_lock(&ctrl->subsys->lock); 3558 head = nvme_find_ns_head(ctrl->subsys, nsid); 3559 if (!head) { 3560 head = nvme_alloc_ns_head(ctrl, nsid, &ids); 3561 if (IS_ERR(head)) { 3562 ret = PTR_ERR(head); 3563 goto out_unlock; 3564 } 3565 head->shared = is_shared; 3566 } else { 3567 ret = -EINVAL; 3568 if (!is_shared || !head->shared) { 3569 dev_err(ctrl->device, 3570 "Duplicate unshared namespace %d\n", nsid); 3571 goto out_put_ns_head; 3572 } 3573 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3574 dev_err(ctrl->device, 3575 "IDs don't match for shared namespace %d\n", 3576 nsid); 3577 goto out_put_ns_head; 3578 } 3579 } 3580 3581 list_add_tail(&ns->siblings, &head->list); 3582 ns->head = head; 3583 mutex_unlock(&ctrl->subsys->lock); 3584 return 0; 3585 3586 out_put_ns_head: 3587 nvme_put_ns_head(head); 3588 out_unlock: 3589 mutex_unlock(&ctrl->subsys->lock); 3590 return ret; 3591 } 3592 3593 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3594 { 3595 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3596 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3597 3598 return nsa->head->ns_id - nsb->head->ns_id; 3599 } 3600 3601 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3602 { 3603 struct nvme_ns *ns, *ret = NULL; 3604 3605 down_read(&ctrl->namespaces_rwsem); 3606 list_for_each_entry(ns, &ctrl->namespaces, list) { 3607 if (ns->head->ns_id == nsid) { 3608 if (!kref_get_unless_zero(&ns->kref)) 3609 continue; 3610 ret = ns; 3611 break; 3612 } 3613 if (ns->head->ns_id > nsid) 3614 break; 3615 } 3616 up_read(&ctrl->namespaces_rwsem); 3617 return ret; 3618 } 3619 3620 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3621 { 3622 struct nvme_ns *ns; 3623 struct gendisk *disk; 3624 struct nvme_id_ns *id; 3625 char disk_name[DISK_NAME_LEN]; 3626 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3627 3628 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3629 if (!ns) 3630 return; 3631 3632 ns->queue = blk_mq_init_queue(ctrl->tagset); 3633 if (IS_ERR(ns->queue)) 3634 goto out_free_ns; 3635 3636 if (ctrl->opts && ctrl->opts->data_digest) 3637 ns->queue->backing_dev_info->capabilities 3638 |= BDI_CAP_STABLE_WRITES; 3639 3640 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3641 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3642 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3643 3644 ns->queue->queuedata = ns; 3645 ns->ctrl = ctrl; 3646 3647 kref_init(&ns->kref); 3648 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3649 3650 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3651 nvme_set_queue_limits(ctrl, ns->queue); 3652 3653 ret = nvme_identify_ns(ctrl, nsid, &id); 3654 if (ret) 3655 goto out_free_queue; 3656 3657 if (id->ncap == 0) /* no namespace (legacy quirk) */ 3658 goto out_free_id; 3659 3660 ret = nvme_init_ns_head(ns, nsid, id); 3661 if (ret) 3662 goto out_free_id; 3663 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3664 3665 disk = alloc_disk_node(0, node); 3666 if (!disk) 3667 goto out_unlink_ns; 3668 3669 disk->fops = &nvme_fops; 3670 disk->private_data = ns; 3671 disk->queue = ns->queue; 3672 disk->flags = flags; 3673 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3674 ns->disk = disk; 3675 3676 if (__nvme_revalidate_disk(disk, id)) 3677 goto out_put_disk; 3678 3679 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3680 ret = nvme_nvm_register(ns, disk_name, node); 3681 if (ret) { 3682 dev_warn(ctrl->device, "LightNVM init failure\n"); 3683 goto out_put_disk; 3684 } 3685 } 3686 3687 down_write(&ctrl->namespaces_rwsem); 3688 list_add_tail(&ns->list, &ctrl->namespaces); 3689 up_write(&ctrl->namespaces_rwsem); 3690 3691 nvme_get_ctrl(ctrl); 3692 3693 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3694 3695 nvme_mpath_add_disk(ns, id); 3696 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3697 kfree(id); 3698 3699 return; 3700 out_put_disk: 3701 /* prevent double queue cleanup */ 3702 ns->disk->queue = NULL; 3703 put_disk(ns->disk); 3704 out_unlink_ns: 3705 mutex_lock(&ctrl->subsys->lock); 3706 list_del_rcu(&ns->siblings); 3707 if (list_empty(&ns->head->list)) 3708 list_del_init(&ns->head->entry); 3709 mutex_unlock(&ctrl->subsys->lock); 3710 nvme_put_ns_head(ns->head); 3711 out_free_id: 3712 kfree(id); 3713 out_free_queue: 3714 blk_cleanup_queue(ns->queue); 3715 out_free_ns: 3716 kfree(ns); 3717 } 3718 3719 static void nvme_ns_remove(struct nvme_ns *ns) 3720 { 3721 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3722 return; 3723 3724 nvme_fault_inject_fini(&ns->fault_inject); 3725 3726 mutex_lock(&ns->ctrl->subsys->lock); 3727 list_del_rcu(&ns->siblings); 3728 if (list_empty(&ns->head->list)) 3729 list_del_init(&ns->head->entry); 3730 mutex_unlock(&ns->ctrl->subsys->lock); 3731 3732 synchronize_rcu(); /* guarantee not available in head->list */ 3733 nvme_mpath_clear_current_path(ns); 3734 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3735 3736 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3737 del_gendisk(ns->disk); 3738 blk_cleanup_queue(ns->queue); 3739 if (blk_get_integrity(ns->disk)) 3740 blk_integrity_unregister(ns->disk); 3741 } 3742 3743 down_write(&ns->ctrl->namespaces_rwsem); 3744 list_del_init(&ns->list); 3745 up_write(&ns->ctrl->namespaces_rwsem); 3746 3747 nvme_mpath_check_last_path(ns); 3748 nvme_put_ns(ns); 3749 } 3750 3751 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3752 { 3753 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3754 3755 if (ns) { 3756 nvme_ns_remove(ns); 3757 nvme_put_ns(ns); 3758 } 3759 } 3760 3761 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3762 { 3763 struct nvme_ns *ns; 3764 3765 ns = nvme_find_get_ns(ctrl, nsid); 3766 if (ns) { 3767 if (ns->disk && revalidate_disk(ns->disk)) 3768 nvme_ns_remove(ns); 3769 nvme_put_ns(ns); 3770 } else 3771 nvme_alloc_ns(ctrl, nsid); 3772 } 3773 3774 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3775 unsigned nsid) 3776 { 3777 struct nvme_ns *ns, *next; 3778 LIST_HEAD(rm_list); 3779 3780 down_write(&ctrl->namespaces_rwsem); 3781 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3782 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3783 list_move_tail(&ns->list, &rm_list); 3784 } 3785 up_write(&ctrl->namespaces_rwsem); 3786 3787 list_for_each_entry_safe(ns, next, &rm_list, list) 3788 nvme_ns_remove(ns); 3789 3790 } 3791 3792 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3793 { 3794 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3795 __le32 *ns_list; 3796 u32 prev = 0; 3797 int ret = 0, i; 3798 3799 if (nvme_ctrl_limited_cns(ctrl)) 3800 return -EOPNOTSUPP; 3801 3802 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3803 if (!ns_list) 3804 return -ENOMEM; 3805 3806 for (;;) { 3807 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3808 if (ret) 3809 goto free; 3810 3811 for (i = 0; i < nr_entries; i++) { 3812 u32 nsid = le32_to_cpu(ns_list[i]); 3813 3814 if (!nsid) /* end of the list? */ 3815 goto out; 3816 nvme_validate_ns(ctrl, nsid); 3817 while (++prev < nsid) 3818 nvme_ns_remove_by_nsid(ctrl, prev); 3819 } 3820 } 3821 out: 3822 nvme_remove_invalid_namespaces(ctrl, prev); 3823 free: 3824 kfree(ns_list); 3825 return ret; 3826 } 3827 3828 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 3829 { 3830 struct nvme_id_ctrl *id; 3831 u32 nn, i; 3832 3833 if (nvme_identify_ctrl(ctrl, &id)) 3834 return; 3835 nn = le32_to_cpu(id->nn); 3836 kfree(id); 3837 3838 for (i = 1; i <= nn; i++) 3839 nvme_validate_ns(ctrl, i); 3840 3841 nvme_remove_invalid_namespaces(ctrl, nn); 3842 } 3843 3844 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3845 { 3846 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3847 __le32 *log; 3848 int error; 3849 3850 log = kzalloc(log_size, GFP_KERNEL); 3851 if (!log) 3852 return; 3853 3854 /* 3855 * We need to read the log to clear the AEN, but we don't want to rely 3856 * on it for the changed namespace information as userspace could have 3857 * raced with us in reading the log page, which could cause us to miss 3858 * updates. 3859 */ 3860 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3861 log_size, 0); 3862 if (error) 3863 dev_warn(ctrl->device, 3864 "reading changed ns log failed: %d\n", error); 3865 3866 kfree(log); 3867 } 3868 3869 static void nvme_scan_work(struct work_struct *work) 3870 { 3871 struct nvme_ctrl *ctrl = 3872 container_of(work, struct nvme_ctrl, scan_work); 3873 3874 /* No tagset on a live ctrl means IO queues could not created */ 3875 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 3876 return; 3877 3878 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3879 dev_info(ctrl->device, "rescanning namespaces.\n"); 3880 nvme_clear_changed_ns_log(ctrl); 3881 } 3882 3883 mutex_lock(&ctrl->scan_lock); 3884 if (nvme_scan_ns_list(ctrl) != 0) 3885 nvme_scan_ns_sequential(ctrl); 3886 mutex_unlock(&ctrl->scan_lock); 3887 3888 down_write(&ctrl->namespaces_rwsem); 3889 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3890 up_write(&ctrl->namespaces_rwsem); 3891 } 3892 3893 /* 3894 * This function iterates the namespace list unlocked to allow recovery from 3895 * controller failure. It is up to the caller to ensure the namespace list is 3896 * not modified by scan work while this function is executing. 3897 */ 3898 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3899 { 3900 struct nvme_ns *ns, *next; 3901 LIST_HEAD(ns_list); 3902 3903 /* 3904 * make sure to requeue I/O to all namespaces as these 3905 * might result from the scan itself and must complete 3906 * for the scan_work to make progress 3907 */ 3908 nvme_mpath_clear_ctrl_paths(ctrl); 3909 3910 /* prevent racing with ns scanning */ 3911 flush_work(&ctrl->scan_work); 3912 3913 /* 3914 * The dead states indicates the controller was not gracefully 3915 * disconnected. In that case, we won't be able to flush any data while 3916 * removing the namespaces' disks; fail all the queues now to avoid 3917 * potentially having to clean up the failed sync later. 3918 */ 3919 if (ctrl->state == NVME_CTRL_DEAD) 3920 nvme_kill_queues(ctrl); 3921 3922 down_write(&ctrl->namespaces_rwsem); 3923 list_splice_init(&ctrl->namespaces, &ns_list); 3924 up_write(&ctrl->namespaces_rwsem); 3925 3926 list_for_each_entry_safe(ns, next, &ns_list, list) 3927 nvme_ns_remove(ns); 3928 } 3929 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3930 3931 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 3932 { 3933 struct nvme_ctrl *ctrl = 3934 container_of(dev, struct nvme_ctrl, ctrl_device); 3935 struct nvmf_ctrl_options *opts = ctrl->opts; 3936 int ret; 3937 3938 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 3939 if (ret) 3940 return ret; 3941 3942 if (opts) { 3943 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 3944 if (ret) 3945 return ret; 3946 3947 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 3948 opts->trsvcid ?: "none"); 3949 if (ret) 3950 return ret; 3951 3952 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 3953 opts->host_traddr ?: "none"); 3954 } 3955 return ret; 3956 } 3957 3958 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3959 { 3960 char *envp[2] = { NULL, NULL }; 3961 u32 aen_result = ctrl->aen_result; 3962 3963 ctrl->aen_result = 0; 3964 if (!aen_result) 3965 return; 3966 3967 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3968 if (!envp[0]) 3969 return; 3970 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3971 kfree(envp[0]); 3972 } 3973 3974 static void nvme_async_event_work(struct work_struct *work) 3975 { 3976 struct nvme_ctrl *ctrl = 3977 container_of(work, struct nvme_ctrl, async_event_work); 3978 3979 nvme_aen_uevent(ctrl); 3980 ctrl->ops->submit_async_event(ctrl); 3981 } 3982 3983 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3984 { 3985 3986 u32 csts; 3987 3988 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3989 return false; 3990 3991 if (csts == ~0) 3992 return false; 3993 3994 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3995 } 3996 3997 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3998 { 3999 struct nvme_fw_slot_info_log *log; 4000 4001 log = kmalloc(sizeof(*log), GFP_KERNEL); 4002 if (!log) 4003 return; 4004 4005 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log, 4006 sizeof(*log), 0)) 4007 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4008 kfree(log); 4009 } 4010 4011 static void nvme_fw_act_work(struct work_struct *work) 4012 { 4013 struct nvme_ctrl *ctrl = container_of(work, 4014 struct nvme_ctrl, fw_act_work); 4015 unsigned long fw_act_timeout; 4016 4017 if (ctrl->mtfa) 4018 fw_act_timeout = jiffies + 4019 msecs_to_jiffies(ctrl->mtfa * 100); 4020 else 4021 fw_act_timeout = jiffies + 4022 msecs_to_jiffies(admin_timeout * 1000); 4023 4024 nvme_stop_queues(ctrl); 4025 while (nvme_ctrl_pp_status(ctrl)) { 4026 if (time_after(jiffies, fw_act_timeout)) { 4027 dev_warn(ctrl->device, 4028 "Fw activation timeout, reset controller\n"); 4029 nvme_try_sched_reset(ctrl); 4030 return; 4031 } 4032 msleep(100); 4033 } 4034 4035 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4036 return; 4037 4038 nvme_start_queues(ctrl); 4039 /* read FW slot information to clear the AER */ 4040 nvme_get_fw_slot_info(ctrl); 4041 } 4042 4043 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4044 { 4045 u32 aer_notice_type = (result & 0xff00) >> 8; 4046 4047 trace_nvme_async_event(ctrl, aer_notice_type); 4048 4049 switch (aer_notice_type) { 4050 case NVME_AER_NOTICE_NS_CHANGED: 4051 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4052 nvme_queue_scan(ctrl); 4053 break; 4054 case NVME_AER_NOTICE_FW_ACT_STARTING: 4055 /* 4056 * We are (ab)using the RESETTING state to prevent subsequent 4057 * recovery actions from interfering with the controller's 4058 * firmware activation. 4059 */ 4060 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4061 queue_work(nvme_wq, &ctrl->fw_act_work); 4062 break; 4063 #ifdef CONFIG_NVME_MULTIPATH 4064 case NVME_AER_NOTICE_ANA: 4065 if (!ctrl->ana_log_buf) 4066 break; 4067 queue_work(nvme_wq, &ctrl->ana_work); 4068 break; 4069 #endif 4070 case NVME_AER_NOTICE_DISC_CHANGED: 4071 ctrl->aen_result = result; 4072 break; 4073 default: 4074 dev_warn(ctrl->device, "async event result %08x\n", result); 4075 } 4076 } 4077 4078 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4079 volatile union nvme_result *res) 4080 { 4081 u32 result = le32_to_cpu(res->u32); 4082 u32 aer_type = result & 0x07; 4083 4084 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4085 return; 4086 4087 switch (aer_type) { 4088 case NVME_AER_NOTICE: 4089 nvme_handle_aen_notice(ctrl, result); 4090 break; 4091 case NVME_AER_ERROR: 4092 case NVME_AER_SMART: 4093 case NVME_AER_CSS: 4094 case NVME_AER_VS: 4095 trace_nvme_async_event(ctrl, aer_type); 4096 ctrl->aen_result = result; 4097 break; 4098 default: 4099 break; 4100 } 4101 queue_work(nvme_wq, &ctrl->async_event_work); 4102 } 4103 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4104 4105 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4106 { 4107 nvme_mpath_stop(ctrl); 4108 nvme_stop_keep_alive(ctrl); 4109 flush_work(&ctrl->async_event_work); 4110 cancel_work_sync(&ctrl->fw_act_work); 4111 } 4112 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4113 4114 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4115 { 4116 if (ctrl->kato) 4117 nvme_start_keep_alive(ctrl); 4118 4119 nvme_enable_aen(ctrl); 4120 4121 if (ctrl->queue_count > 1) { 4122 nvme_queue_scan(ctrl); 4123 nvme_start_queues(ctrl); 4124 } 4125 ctrl->created = true; 4126 } 4127 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4128 4129 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4130 { 4131 nvme_fault_inject_fini(&ctrl->fault_inject); 4132 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4133 cdev_device_del(&ctrl->cdev, ctrl->device); 4134 nvme_put_ctrl(ctrl); 4135 } 4136 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4137 4138 static void nvme_free_ctrl(struct device *dev) 4139 { 4140 struct nvme_ctrl *ctrl = 4141 container_of(dev, struct nvme_ctrl, ctrl_device); 4142 struct nvme_subsystem *subsys = ctrl->subsys; 4143 4144 if (subsys && ctrl->instance != subsys->instance) 4145 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4146 4147 kfree(ctrl->effects); 4148 nvme_mpath_uninit(ctrl); 4149 __free_page(ctrl->discard_page); 4150 4151 if (subsys) { 4152 mutex_lock(&nvme_subsystems_lock); 4153 list_del(&ctrl->subsys_entry); 4154 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4155 mutex_unlock(&nvme_subsystems_lock); 4156 } 4157 4158 ctrl->ops->free_ctrl(ctrl); 4159 4160 if (subsys) 4161 nvme_put_subsystem(subsys); 4162 } 4163 4164 /* 4165 * Initialize a NVMe controller structures. This needs to be called during 4166 * earliest initialization so that we have the initialized structured around 4167 * during probing. 4168 */ 4169 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4170 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4171 { 4172 int ret; 4173 4174 ctrl->state = NVME_CTRL_NEW; 4175 spin_lock_init(&ctrl->lock); 4176 mutex_init(&ctrl->scan_lock); 4177 INIT_LIST_HEAD(&ctrl->namespaces); 4178 init_rwsem(&ctrl->namespaces_rwsem); 4179 ctrl->dev = dev; 4180 ctrl->ops = ops; 4181 ctrl->quirks = quirks; 4182 ctrl->numa_node = NUMA_NO_NODE; 4183 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4184 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4185 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4186 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4187 init_waitqueue_head(&ctrl->state_wq); 4188 4189 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4190 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4191 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4192 4193 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4194 PAGE_SIZE); 4195 ctrl->discard_page = alloc_page(GFP_KERNEL); 4196 if (!ctrl->discard_page) { 4197 ret = -ENOMEM; 4198 goto out; 4199 } 4200 4201 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4202 if (ret < 0) 4203 goto out; 4204 ctrl->instance = ret; 4205 4206 device_initialize(&ctrl->ctrl_device); 4207 ctrl->device = &ctrl->ctrl_device; 4208 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 4209 ctrl->device->class = nvme_class; 4210 ctrl->device->parent = ctrl->dev; 4211 ctrl->device->groups = nvme_dev_attr_groups; 4212 ctrl->device->release = nvme_free_ctrl; 4213 dev_set_drvdata(ctrl->device, ctrl); 4214 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4215 if (ret) 4216 goto out_release_instance; 4217 4218 nvme_get_ctrl(ctrl); 4219 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4220 ctrl->cdev.owner = ops->module; 4221 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4222 if (ret) 4223 goto out_free_name; 4224 4225 /* 4226 * Initialize latency tolerance controls. The sysfs files won't 4227 * be visible to userspace unless the device actually supports APST. 4228 */ 4229 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4230 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4231 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4232 4233 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4234 4235 return 0; 4236 out_free_name: 4237 nvme_put_ctrl(ctrl); 4238 kfree_const(ctrl->device->kobj.name); 4239 out_release_instance: 4240 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4241 out: 4242 if (ctrl->discard_page) 4243 __free_page(ctrl->discard_page); 4244 return ret; 4245 } 4246 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4247 4248 /** 4249 * nvme_kill_queues(): Ends all namespace queues 4250 * @ctrl: the dead controller that needs to end 4251 * 4252 * Call this function when the driver determines it is unable to get the 4253 * controller in a state capable of servicing IO. 4254 */ 4255 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4256 { 4257 struct nvme_ns *ns; 4258 4259 down_read(&ctrl->namespaces_rwsem); 4260 4261 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4262 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4263 blk_mq_unquiesce_queue(ctrl->admin_q); 4264 4265 list_for_each_entry(ns, &ctrl->namespaces, list) 4266 nvme_set_queue_dying(ns); 4267 4268 up_read(&ctrl->namespaces_rwsem); 4269 } 4270 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4271 4272 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4273 { 4274 struct nvme_ns *ns; 4275 4276 down_read(&ctrl->namespaces_rwsem); 4277 list_for_each_entry(ns, &ctrl->namespaces, list) 4278 blk_mq_unfreeze_queue(ns->queue); 4279 up_read(&ctrl->namespaces_rwsem); 4280 } 4281 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4282 4283 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4284 { 4285 struct nvme_ns *ns; 4286 4287 down_read(&ctrl->namespaces_rwsem); 4288 list_for_each_entry(ns, &ctrl->namespaces, list) { 4289 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4290 if (timeout <= 0) 4291 break; 4292 } 4293 up_read(&ctrl->namespaces_rwsem); 4294 } 4295 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4296 4297 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4298 { 4299 struct nvme_ns *ns; 4300 4301 down_read(&ctrl->namespaces_rwsem); 4302 list_for_each_entry(ns, &ctrl->namespaces, list) 4303 blk_mq_freeze_queue_wait(ns->queue); 4304 up_read(&ctrl->namespaces_rwsem); 4305 } 4306 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4307 4308 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4309 { 4310 struct nvme_ns *ns; 4311 4312 down_read(&ctrl->namespaces_rwsem); 4313 list_for_each_entry(ns, &ctrl->namespaces, list) 4314 blk_freeze_queue_start(ns->queue); 4315 up_read(&ctrl->namespaces_rwsem); 4316 } 4317 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4318 4319 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4320 { 4321 struct nvme_ns *ns; 4322 4323 down_read(&ctrl->namespaces_rwsem); 4324 list_for_each_entry(ns, &ctrl->namespaces, list) 4325 blk_mq_quiesce_queue(ns->queue); 4326 up_read(&ctrl->namespaces_rwsem); 4327 } 4328 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4329 4330 void nvme_start_queues(struct nvme_ctrl *ctrl) 4331 { 4332 struct nvme_ns *ns; 4333 4334 down_read(&ctrl->namespaces_rwsem); 4335 list_for_each_entry(ns, &ctrl->namespaces, list) 4336 blk_mq_unquiesce_queue(ns->queue); 4337 up_read(&ctrl->namespaces_rwsem); 4338 } 4339 EXPORT_SYMBOL_GPL(nvme_start_queues); 4340 4341 4342 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4343 { 4344 struct nvme_ns *ns; 4345 4346 down_read(&ctrl->namespaces_rwsem); 4347 list_for_each_entry(ns, &ctrl->namespaces, list) 4348 blk_sync_queue(ns->queue); 4349 up_read(&ctrl->namespaces_rwsem); 4350 4351 if (ctrl->admin_q) 4352 blk_sync_queue(ctrl->admin_q); 4353 } 4354 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4355 4356 /* 4357 * Check we didn't inadvertently grow the command structure sizes: 4358 */ 4359 static inline void _nvme_check_size(void) 4360 { 4361 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4362 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4363 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4364 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4365 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4366 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4367 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4368 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4369 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4370 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4371 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4372 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4373 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4374 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4375 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4376 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4377 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4378 } 4379 4380 4381 static int __init nvme_core_init(void) 4382 { 4383 int result = -ENOMEM; 4384 4385 _nvme_check_size(); 4386 4387 nvme_wq = alloc_workqueue("nvme-wq", 4388 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4389 if (!nvme_wq) 4390 goto out; 4391 4392 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4393 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4394 if (!nvme_reset_wq) 4395 goto destroy_wq; 4396 4397 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4398 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4399 if (!nvme_delete_wq) 4400 goto destroy_reset_wq; 4401 4402 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4403 if (result < 0) 4404 goto destroy_delete_wq; 4405 4406 nvme_class = class_create(THIS_MODULE, "nvme"); 4407 if (IS_ERR(nvme_class)) { 4408 result = PTR_ERR(nvme_class); 4409 goto unregister_chrdev; 4410 } 4411 nvme_class->dev_uevent = nvme_class_uevent; 4412 4413 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4414 if (IS_ERR(nvme_subsys_class)) { 4415 result = PTR_ERR(nvme_subsys_class); 4416 goto destroy_class; 4417 } 4418 return 0; 4419 4420 destroy_class: 4421 class_destroy(nvme_class); 4422 unregister_chrdev: 4423 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4424 destroy_delete_wq: 4425 destroy_workqueue(nvme_delete_wq); 4426 destroy_reset_wq: 4427 destroy_workqueue(nvme_reset_wq); 4428 destroy_wq: 4429 destroy_workqueue(nvme_wq); 4430 out: 4431 return result; 4432 } 4433 4434 static void __exit nvme_core_exit(void) 4435 { 4436 class_destroy(nvme_subsys_class); 4437 class_destroy(nvme_class); 4438 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4439 destroy_workqueue(nvme_delete_wq); 4440 destroy_workqueue(nvme_reset_wq); 4441 destroy_workqueue(nvme_wq); 4442 ida_destroy(&nvme_instance_ida); 4443 } 4444 4445 MODULE_LICENSE("GPL"); 4446 MODULE_VERSION("1.0"); 4447 module_init(nvme_core_init); 4448 module_exit(nvme_core_exit); 4449