xref: /linux/drivers/nvme/host/core.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 #define NVME_MINORS		(1U << MINORBITS)
39 
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44 
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49 
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53 
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84 
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87 
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90 
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94 
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99 
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
103 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
104 					   unsigned nsid);
105 
106 static void nvme_set_queue_dying(struct nvme_ns *ns)
107 {
108 	/*
109 	 * Revalidating a dead namespace sets capacity to 0. This will end
110 	 * buffered writers dirtying pages that can't be synced.
111 	 */
112 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
113 		return;
114 	revalidate_disk(ns->disk);
115 	blk_set_queue_dying(ns->queue);
116 	/* Forcibly unquiesce queues to avoid blocking dispatch */
117 	blk_mq_unquiesce_queue(ns->queue);
118 }
119 
120 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
121 {
122 	/*
123 	 * Only new queue scan work when admin and IO queues are both alive
124 	 */
125 	if (ctrl->state == NVME_CTRL_LIVE)
126 		queue_work(nvme_wq, &ctrl->scan_work);
127 }
128 
129 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
130 {
131 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
138 
139 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
140 {
141 	int ret;
142 
143 	ret = nvme_reset_ctrl(ctrl);
144 	if (!ret) {
145 		flush_work(&ctrl->reset_work);
146 		if (ctrl->state != NVME_CTRL_LIVE &&
147 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
148 			ret = -ENETRESET;
149 	}
150 
151 	return ret;
152 }
153 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
154 
155 static void nvme_delete_ctrl_work(struct work_struct *work)
156 {
157 	struct nvme_ctrl *ctrl =
158 		container_of(work, struct nvme_ctrl, delete_work);
159 
160 	dev_info(ctrl->device,
161 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
162 
163 	flush_work(&ctrl->reset_work);
164 	nvme_stop_ctrl(ctrl);
165 	nvme_remove_namespaces(ctrl);
166 	ctrl->ops->delete_ctrl(ctrl);
167 	nvme_uninit_ctrl(ctrl);
168 	nvme_put_ctrl(ctrl);
169 }
170 
171 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
172 {
173 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
174 		return -EBUSY;
175 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
176 		return -EBUSY;
177 	return 0;
178 }
179 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
180 
181 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
182 {
183 	int ret = 0;
184 
185 	/*
186 	 * Keep a reference until the work is flushed since ->delete_ctrl
187 	 * can free the controller.
188 	 */
189 	nvme_get_ctrl(ctrl);
190 	ret = nvme_delete_ctrl(ctrl);
191 	if (!ret)
192 		flush_work(&ctrl->delete_work);
193 	nvme_put_ctrl(ctrl);
194 	return ret;
195 }
196 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
197 
198 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
199 {
200 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
201 }
202 
203 static blk_status_t nvme_error_status(struct request *req)
204 {
205 	switch (nvme_req(req)->status & 0x7ff) {
206 	case NVME_SC_SUCCESS:
207 		return BLK_STS_OK;
208 	case NVME_SC_CAP_EXCEEDED:
209 		return BLK_STS_NOSPC;
210 	case NVME_SC_LBA_RANGE:
211 		return BLK_STS_TARGET;
212 	case NVME_SC_BAD_ATTRIBUTES:
213 	case NVME_SC_ONCS_NOT_SUPPORTED:
214 	case NVME_SC_INVALID_OPCODE:
215 	case NVME_SC_INVALID_FIELD:
216 	case NVME_SC_INVALID_NS:
217 		return BLK_STS_NOTSUPP;
218 	case NVME_SC_WRITE_FAULT:
219 	case NVME_SC_READ_ERROR:
220 	case NVME_SC_UNWRITTEN_BLOCK:
221 	case NVME_SC_ACCESS_DENIED:
222 	case NVME_SC_READ_ONLY:
223 	case NVME_SC_COMPARE_FAILED:
224 		return BLK_STS_MEDIUM;
225 	case NVME_SC_GUARD_CHECK:
226 	case NVME_SC_APPTAG_CHECK:
227 	case NVME_SC_REFTAG_CHECK:
228 	case NVME_SC_INVALID_PI:
229 		return BLK_STS_PROTECTION;
230 	case NVME_SC_RESERVATION_CONFLICT:
231 		return BLK_STS_NEXUS;
232 	default:
233 		return BLK_STS_IOERR;
234 	}
235 }
236 
237 static inline bool nvme_req_needs_retry(struct request *req)
238 {
239 	if (blk_noretry_request(req))
240 		return false;
241 	if (nvme_req(req)->status & NVME_SC_DNR)
242 		return false;
243 	if (nvme_req(req)->retries >= nvme_max_retries)
244 		return false;
245 	return true;
246 }
247 
248 void nvme_complete_rq(struct request *req)
249 {
250 	blk_status_t status = nvme_error_status(req);
251 
252 	trace_nvme_complete_rq(req);
253 
254 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
255 		if (nvme_req_needs_failover(req, status)) {
256 			nvme_failover_req(req);
257 			return;
258 		}
259 
260 		if (!blk_queue_dying(req->q)) {
261 			nvme_req(req)->retries++;
262 			blk_mq_requeue_request(req, true);
263 			return;
264 		}
265 	}
266 	blk_mq_end_request(req, status);
267 }
268 EXPORT_SYMBOL_GPL(nvme_complete_rq);
269 
270 void nvme_cancel_request(struct request *req, void *data, bool reserved)
271 {
272 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
273 				"Cancelling I/O %d", req->tag);
274 
275 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
276 	blk_mq_complete_request(req);
277 
278 }
279 EXPORT_SYMBOL_GPL(nvme_cancel_request);
280 
281 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
282 		enum nvme_ctrl_state new_state)
283 {
284 	enum nvme_ctrl_state old_state;
285 	unsigned long flags;
286 	bool changed = false;
287 
288 	spin_lock_irqsave(&ctrl->lock, flags);
289 
290 	old_state = ctrl->state;
291 	switch (new_state) {
292 	case NVME_CTRL_ADMIN_ONLY:
293 		switch (old_state) {
294 		case NVME_CTRL_CONNECTING:
295 			changed = true;
296 			/* FALLTHRU */
297 		default:
298 			break;
299 		}
300 		break;
301 	case NVME_CTRL_LIVE:
302 		switch (old_state) {
303 		case NVME_CTRL_NEW:
304 		case NVME_CTRL_RESETTING:
305 		case NVME_CTRL_CONNECTING:
306 			changed = true;
307 			/* FALLTHRU */
308 		default:
309 			break;
310 		}
311 		break;
312 	case NVME_CTRL_RESETTING:
313 		switch (old_state) {
314 		case NVME_CTRL_NEW:
315 		case NVME_CTRL_LIVE:
316 		case NVME_CTRL_ADMIN_ONLY:
317 			changed = true;
318 			/* FALLTHRU */
319 		default:
320 			break;
321 		}
322 		break;
323 	case NVME_CTRL_CONNECTING:
324 		switch (old_state) {
325 		case NVME_CTRL_NEW:
326 		case NVME_CTRL_RESETTING:
327 			changed = true;
328 			/* FALLTHRU */
329 		default:
330 			break;
331 		}
332 		break;
333 	case NVME_CTRL_DELETING:
334 		switch (old_state) {
335 		case NVME_CTRL_LIVE:
336 		case NVME_CTRL_ADMIN_ONLY:
337 		case NVME_CTRL_RESETTING:
338 		case NVME_CTRL_CONNECTING:
339 			changed = true;
340 			/* FALLTHRU */
341 		default:
342 			break;
343 		}
344 		break;
345 	case NVME_CTRL_DEAD:
346 		switch (old_state) {
347 		case NVME_CTRL_DELETING:
348 			changed = true;
349 			/* FALLTHRU */
350 		default:
351 			break;
352 		}
353 		break;
354 	default:
355 		break;
356 	}
357 
358 	if (changed)
359 		ctrl->state = new_state;
360 
361 	spin_unlock_irqrestore(&ctrl->lock, flags);
362 	if (changed && ctrl->state == NVME_CTRL_LIVE)
363 		nvme_kick_requeue_lists(ctrl);
364 	return changed;
365 }
366 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
367 
368 static void nvme_free_ns_head(struct kref *ref)
369 {
370 	struct nvme_ns_head *head =
371 		container_of(ref, struct nvme_ns_head, ref);
372 
373 	nvme_mpath_remove_disk(head);
374 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
375 	list_del_init(&head->entry);
376 	cleanup_srcu_struct_quiesced(&head->srcu);
377 	nvme_put_subsystem(head->subsys);
378 	kfree(head);
379 }
380 
381 static void nvme_put_ns_head(struct nvme_ns_head *head)
382 {
383 	kref_put(&head->ref, nvme_free_ns_head);
384 }
385 
386 static void nvme_free_ns(struct kref *kref)
387 {
388 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
389 
390 	if (ns->ndev)
391 		nvme_nvm_unregister(ns);
392 
393 	put_disk(ns->disk);
394 	nvme_put_ns_head(ns->head);
395 	nvme_put_ctrl(ns->ctrl);
396 	kfree(ns);
397 }
398 
399 static void nvme_put_ns(struct nvme_ns *ns)
400 {
401 	kref_put(&ns->kref, nvme_free_ns);
402 }
403 
404 static inline void nvme_clear_nvme_request(struct request *req)
405 {
406 	if (!(req->rq_flags & RQF_DONTPREP)) {
407 		nvme_req(req)->retries = 0;
408 		nvme_req(req)->flags = 0;
409 		req->rq_flags |= RQF_DONTPREP;
410 	}
411 }
412 
413 struct request *nvme_alloc_request(struct request_queue *q,
414 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
415 {
416 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
417 	struct request *req;
418 
419 	if (qid == NVME_QID_ANY) {
420 		req = blk_mq_alloc_request(q, op, flags);
421 	} else {
422 		req = blk_mq_alloc_request_hctx(q, op, flags,
423 				qid ? qid - 1 : 0);
424 	}
425 	if (IS_ERR(req))
426 		return req;
427 
428 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
429 	nvme_clear_nvme_request(req);
430 	nvme_req(req)->cmd = cmd;
431 
432 	return req;
433 }
434 EXPORT_SYMBOL_GPL(nvme_alloc_request);
435 
436 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
437 {
438 	struct nvme_command c;
439 
440 	memset(&c, 0, sizeof(c));
441 
442 	c.directive.opcode = nvme_admin_directive_send;
443 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
444 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
445 	c.directive.dtype = NVME_DIR_IDENTIFY;
446 	c.directive.tdtype = NVME_DIR_STREAMS;
447 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
448 
449 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
450 }
451 
452 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
453 {
454 	return nvme_toggle_streams(ctrl, false);
455 }
456 
457 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
458 {
459 	return nvme_toggle_streams(ctrl, true);
460 }
461 
462 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
463 				  struct streams_directive_params *s, u32 nsid)
464 {
465 	struct nvme_command c;
466 
467 	memset(&c, 0, sizeof(c));
468 	memset(s, 0, sizeof(*s));
469 
470 	c.directive.opcode = nvme_admin_directive_recv;
471 	c.directive.nsid = cpu_to_le32(nsid);
472 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
473 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
474 	c.directive.dtype = NVME_DIR_STREAMS;
475 
476 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
477 }
478 
479 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
480 {
481 	struct streams_directive_params s;
482 	int ret;
483 
484 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
485 		return 0;
486 	if (!streams)
487 		return 0;
488 
489 	ret = nvme_enable_streams(ctrl);
490 	if (ret)
491 		return ret;
492 
493 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
494 	if (ret)
495 		return ret;
496 
497 	ctrl->nssa = le16_to_cpu(s.nssa);
498 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
499 		dev_info(ctrl->device, "too few streams (%u) available\n",
500 					ctrl->nssa);
501 		nvme_disable_streams(ctrl);
502 		return 0;
503 	}
504 
505 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
506 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
507 	return 0;
508 }
509 
510 /*
511  * Check if 'req' has a write hint associated with it. If it does, assign
512  * a valid namespace stream to the write.
513  */
514 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
515 				     struct request *req, u16 *control,
516 				     u32 *dsmgmt)
517 {
518 	enum rw_hint streamid = req->write_hint;
519 
520 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
521 		streamid = 0;
522 	else {
523 		streamid--;
524 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
525 			return;
526 
527 		*control |= NVME_RW_DTYPE_STREAMS;
528 		*dsmgmt |= streamid << 16;
529 	}
530 
531 	if (streamid < ARRAY_SIZE(req->q->write_hints))
532 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
533 }
534 
535 static inline void nvme_setup_flush(struct nvme_ns *ns,
536 		struct nvme_command *cmnd)
537 {
538 	memset(cmnd, 0, sizeof(*cmnd));
539 	cmnd->common.opcode = nvme_cmd_flush;
540 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
541 }
542 
543 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
544 		struct nvme_command *cmnd)
545 {
546 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
547 	struct nvme_dsm_range *range;
548 	struct bio *bio;
549 
550 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
551 	if (!range)
552 		return BLK_STS_RESOURCE;
553 
554 	__rq_for_each_bio(bio, req) {
555 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
556 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
557 
558 		if (n < segments) {
559 			range[n].cattr = cpu_to_le32(0);
560 			range[n].nlb = cpu_to_le32(nlb);
561 			range[n].slba = cpu_to_le64(slba);
562 		}
563 		n++;
564 	}
565 
566 	if (WARN_ON_ONCE(n != segments)) {
567 		kfree(range);
568 		return BLK_STS_IOERR;
569 	}
570 
571 	memset(cmnd, 0, sizeof(*cmnd));
572 	cmnd->dsm.opcode = nvme_cmd_dsm;
573 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
574 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
575 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
576 
577 	req->special_vec.bv_page = virt_to_page(range);
578 	req->special_vec.bv_offset = offset_in_page(range);
579 	req->special_vec.bv_len = sizeof(*range) * segments;
580 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
581 
582 	return BLK_STS_OK;
583 }
584 
585 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
586 		struct request *req, struct nvme_command *cmnd)
587 {
588 	struct nvme_ctrl *ctrl = ns->ctrl;
589 	u16 control = 0;
590 	u32 dsmgmt = 0;
591 
592 	if (req->cmd_flags & REQ_FUA)
593 		control |= NVME_RW_FUA;
594 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
595 		control |= NVME_RW_LR;
596 
597 	if (req->cmd_flags & REQ_RAHEAD)
598 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
599 
600 	memset(cmnd, 0, sizeof(*cmnd));
601 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
602 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
603 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
604 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
605 
606 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
607 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
608 
609 	if (ns->ms) {
610 		/*
611 		 * If formated with metadata, the block layer always provides a
612 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
613 		 * we enable the PRACT bit for protection information or set the
614 		 * namespace capacity to zero to prevent any I/O.
615 		 */
616 		if (!blk_integrity_rq(req)) {
617 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
618 				return BLK_STS_NOTSUPP;
619 			control |= NVME_RW_PRINFO_PRACT;
620 		}
621 
622 		switch (ns->pi_type) {
623 		case NVME_NS_DPS_PI_TYPE3:
624 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
625 			break;
626 		case NVME_NS_DPS_PI_TYPE1:
627 		case NVME_NS_DPS_PI_TYPE2:
628 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
629 					NVME_RW_PRINFO_PRCHK_REF;
630 			cmnd->rw.reftag = cpu_to_le32(
631 					nvme_block_nr(ns, blk_rq_pos(req)));
632 			break;
633 		}
634 	}
635 
636 	cmnd->rw.control = cpu_to_le16(control);
637 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
638 	return 0;
639 }
640 
641 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
642 		struct nvme_command *cmd)
643 {
644 	blk_status_t ret = BLK_STS_OK;
645 
646 	nvme_clear_nvme_request(req);
647 
648 	switch (req_op(req)) {
649 	case REQ_OP_DRV_IN:
650 	case REQ_OP_DRV_OUT:
651 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
652 		break;
653 	case REQ_OP_FLUSH:
654 		nvme_setup_flush(ns, cmd);
655 		break;
656 	case REQ_OP_WRITE_ZEROES:
657 		/* currently only aliased to deallocate for a few ctrls: */
658 	case REQ_OP_DISCARD:
659 		ret = nvme_setup_discard(ns, req, cmd);
660 		break;
661 	case REQ_OP_READ:
662 	case REQ_OP_WRITE:
663 		ret = nvme_setup_rw(ns, req, cmd);
664 		break;
665 	default:
666 		WARN_ON_ONCE(1);
667 		return BLK_STS_IOERR;
668 	}
669 
670 	cmd->common.command_id = req->tag;
671 	if (ns)
672 		trace_nvme_setup_nvm_cmd(req->q->id, cmd);
673 	else
674 		trace_nvme_setup_admin_cmd(cmd);
675 	return ret;
676 }
677 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
678 
679 /*
680  * Returns 0 on success.  If the result is negative, it's a Linux error code;
681  * if the result is positive, it's an NVM Express status code
682  */
683 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
684 		union nvme_result *result, void *buffer, unsigned bufflen,
685 		unsigned timeout, int qid, int at_head,
686 		blk_mq_req_flags_t flags)
687 {
688 	struct request *req;
689 	int ret;
690 
691 	req = nvme_alloc_request(q, cmd, flags, qid);
692 	if (IS_ERR(req))
693 		return PTR_ERR(req);
694 
695 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
696 
697 	if (buffer && bufflen) {
698 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
699 		if (ret)
700 			goto out;
701 	}
702 
703 	blk_execute_rq(req->q, NULL, req, at_head);
704 	if (result)
705 		*result = nvme_req(req)->result;
706 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
707 		ret = -EINTR;
708 	else
709 		ret = nvme_req(req)->status;
710  out:
711 	blk_mq_free_request(req);
712 	return ret;
713 }
714 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
715 
716 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
717 		void *buffer, unsigned bufflen)
718 {
719 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
720 			NVME_QID_ANY, 0, 0);
721 }
722 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
723 
724 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
725 		unsigned len, u32 seed, bool write)
726 {
727 	struct bio_integrity_payload *bip;
728 	int ret = -ENOMEM;
729 	void *buf;
730 
731 	buf = kmalloc(len, GFP_KERNEL);
732 	if (!buf)
733 		goto out;
734 
735 	ret = -EFAULT;
736 	if (write && copy_from_user(buf, ubuf, len))
737 		goto out_free_meta;
738 
739 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
740 	if (IS_ERR(bip)) {
741 		ret = PTR_ERR(bip);
742 		goto out_free_meta;
743 	}
744 
745 	bip->bip_iter.bi_size = len;
746 	bip->bip_iter.bi_sector = seed;
747 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
748 			offset_in_page(buf));
749 	if (ret == len)
750 		return buf;
751 	ret = -ENOMEM;
752 out_free_meta:
753 	kfree(buf);
754 out:
755 	return ERR_PTR(ret);
756 }
757 
758 static int nvme_submit_user_cmd(struct request_queue *q,
759 		struct nvme_command *cmd, void __user *ubuffer,
760 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
761 		u32 meta_seed, u32 *result, unsigned timeout)
762 {
763 	bool write = nvme_is_write(cmd);
764 	struct nvme_ns *ns = q->queuedata;
765 	struct gendisk *disk = ns ? ns->disk : NULL;
766 	struct request *req;
767 	struct bio *bio = NULL;
768 	void *meta = NULL;
769 	int ret;
770 
771 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
772 	if (IS_ERR(req))
773 		return PTR_ERR(req);
774 
775 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
776 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
777 
778 	if (ubuffer && bufflen) {
779 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
780 				GFP_KERNEL);
781 		if (ret)
782 			goto out;
783 		bio = req->bio;
784 		bio->bi_disk = disk;
785 		if (disk && meta_buffer && meta_len) {
786 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
787 					meta_seed, write);
788 			if (IS_ERR(meta)) {
789 				ret = PTR_ERR(meta);
790 				goto out_unmap;
791 			}
792 			req->cmd_flags |= REQ_INTEGRITY;
793 		}
794 	}
795 
796 	blk_execute_rq(req->q, disk, req, 0);
797 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
798 		ret = -EINTR;
799 	else
800 		ret = nvme_req(req)->status;
801 	if (result)
802 		*result = le32_to_cpu(nvme_req(req)->result.u32);
803 	if (meta && !ret && !write) {
804 		if (copy_to_user(meta_buffer, meta, meta_len))
805 			ret = -EFAULT;
806 	}
807 	kfree(meta);
808  out_unmap:
809 	if (bio)
810 		blk_rq_unmap_user(bio);
811  out:
812 	blk_mq_free_request(req);
813 	return ret;
814 }
815 
816 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
817 {
818 	struct nvme_ctrl *ctrl = rq->end_io_data;
819 
820 	blk_mq_free_request(rq);
821 
822 	if (status) {
823 		dev_err(ctrl->device,
824 			"failed nvme_keep_alive_end_io error=%d\n",
825 				status);
826 		return;
827 	}
828 
829 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
830 }
831 
832 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
833 {
834 	struct request *rq;
835 
836 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
837 			NVME_QID_ANY);
838 	if (IS_ERR(rq))
839 		return PTR_ERR(rq);
840 
841 	rq->timeout = ctrl->kato * HZ;
842 	rq->end_io_data = ctrl;
843 
844 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
845 
846 	return 0;
847 }
848 
849 static void nvme_keep_alive_work(struct work_struct *work)
850 {
851 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
852 			struct nvme_ctrl, ka_work);
853 
854 	if (nvme_keep_alive(ctrl)) {
855 		/* allocation failure, reset the controller */
856 		dev_err(ctrl->device, "keep-alive failed\n");
857 		nvme_reset_ctrl(ctrl);
858 		return;
859 	}
860 }
861 
862 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
863 {
864 	if (unlikely(ctrl->kato == 0))
865 		return;
866 
867 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
868 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
869 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
870 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
871 }
872 
873 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
874 {
875 	if (unlikely(ctrl->kato == 0))
876 		return;
877 
878 	cancel_delayed_work_sync(&ctrl->ka_work);
879 }
880 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
881 
882 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
883 {
884 	struct nvme_command c = { };
885 	int error;
886 
887 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
888 	c.identify.opcode = nvme_admin_identify;
889 	c.identify.cns = NVME_ID_CNS_CTRL;
890 
891 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
892 	if (!*id)
893 		return -ENOMEM;
894 
895 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
896 			sizeof(struct nvme_id_ctrl));
897 	if (error)
898 		kfree(*id);
899 	return error;
900 }
901 
902 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
903 		struct nvme_ns_ids *ids)
904 {
905 	struct nvme_command c = { };
906 	int status;
907 	void *data;
908 	int pos;
909 	int len;
910 
911 	c.identify.opcode = nvme_admin_identify;
912 	c.identify.nsid = cpu_to_le32(nsid);
913 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
914 
915 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
916 	if (!data)
917 		return -ENOMEM;
918 
919 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
920 				      NVME_IDENTIFY_DATA_SIZE);
921 	if (status)
922 		goto free_data;
923 
924 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
925 		struct nvme_ns_id_desc *cur = data + pos;
926 
927 		if (cur->nidl == 0)
928 			break;
929 
930 		switch (cur->nidt) {
931 		case NVME_NIDT_EUI64:
932 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
933 				dev_warn(ctrl->device,
934 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
935 					 cur->nidl);
936 				goto free_data;
937 			}
938 			len = NVME_NIDT_EUI64_LEN;
939 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
940 			break;
941 		case NVME_NIDT_NGUID:
942 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
943 				dev_warn(ctrl->device,
944 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
945 					 cur->nidl);
946 				goto free_data;
947 			}
948 			len = NVME_NIDT_NGUID_LEN;
949 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
950 			break;
951 		case NVME_NIDT_UUID:
952 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
953 				dev_warn(ctrl->device,
954 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
955 					 cur->nidl);
956 				goto free_data;
957 			}
958 			len = NVME_NIDT_UUID_LEN;
959 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
960 			break;
961 		default:
962 			/* Skip unnkown types */
963 			len = cur->nidl;
964 			break;
965 		}
966 
967 		len += sizeof(*cur);
968 	}
969 free_data:
970 	kfree(data);
971 	return status;
972 }
973 
974 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
975 {
976 	struct nvme_command c = { };
977 
978 	c.identify.opcode = nvme_admin_identify;
979 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
980 	c.identify.nsid = cpu_to_le32(nsid);
981 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
982 				    NVME_IDENTIFY_DATA_SIZE);
983 }
984 
985 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
986 		unsigned nsid)
987 {
988 	struct nvme_id_ns *id;
989 	struct nvme_command c = { };
990 	int error;
991 
992 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
993 	c.identify.opcode = nvme_admin_identify;
994 	c.identify.nsid = cpu_to_le32(nsid);
995 	c.identify.cns = NVME_ID_CNS_NS;
996 
997 	id = kmalloc(sizeof(*id), GFP_KERNEL);
998 	if (!id)
999 		return NULL;
1000 
1001 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1002 	if (error) {
1003 		dev_warn(ctrl->device, "Identify namespace failed\n");
1004 		kfree(id);
1005 		return NULL;
1006 	}
1007 
1008 	return id;
1009 }
1010 
1011 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
1012 		      void *buffer, size_t buflen, u32 *result)
1013 {
1014 	struct nvme_command c;
1015 	union nvme_result res;
1016 	int ret;
1017 
1018 	memset(&c, 0, sizeof(c));
1019 	c.features.opcode = nvme_admin_set_features;
1020 	c.features.fid = cpu_to_le32(fid);
1021 	c.features.dword11 = cpu_to_le32(dword11);
1022 
1023 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1024 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1025 	if (ret >= 0 && result)
1026 		*result = le32_to_cpu(res.u32);
1027 	return ret;
1028 }
1029 
1030 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1031 {
1032 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1033 	u32 result;
1034 	int status, nr_io_queues;
1035 
1036 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1037 			&result);
1038 	if (status < 0)
1039 		return status;
1040 
1041 	/*
1042 	 * Degraded controllers might return an error when setting the queue
1043 	 * count.  We still want to be able to bring them online and offer
1044 	 * access to the admin queue, as that might be only way to fix them up.
1045 	 */
1046 	if (status > 0) {
1047 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1048 		*count = 0;
1049 	} else {
1050 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1051 		*count = min(*count, nr_io_queues);
1052 	}
1053 
1054 	return 0;
1055 }
1056 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1057 
1058 #define NVME_AEN_SUPPORTED \
1059 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT)
1060 
1061 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1062 {
1063 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1064 	int status;
1065 
1066 	if (!supported_aens)
1067 		return;
1068 
1069 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1070 			NULL, 0, &result);
1071 	if (status)
1072 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1073 			 supported_aens);
1074 }
1075 
1076 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1077 {
1078 	struct nvme_user_io io;
1079 	struct nvme_command c;
1080 	unsigned length, meta_len;
1081 	void __user *metadata;
1082 
1083 	if (copy_from_user(&io, uio, sizeof(io)))
1084 		return -EFAULT;
1085 	if (io.flags)
1086 		return -EINVAL;
1087 
1088 	switch (io.opcode) {
1089 	case nvme_cmd_write:
1090 	case nvme_cmd_read:
1091 	case nvme_cmd_compare:
1092 		break;
1093 	default:
1094 		return -EINVAL;
1095 	}
1096 
1097 	length = (io.nblocks + 1) << ns->lba_shift;
1098 	meta_len = (io.nblocks + 1) * ns->ms;
1099 	metadata = (void __user *)(uintptr_t)io.metadata;
1100 
1101 	if (ns->ext) {
1102 		length += meta_len;
1103 		meta_len = 0;
1104 	} else if (meta_len) {
1105 		if ((io.metadata & 3) || !io.metadata)
1106 			return -EINVAL;
1107 	}
1108 
1109 	memset(&c, 0, sizeof(c));
1110 	c.rw.opcode = io.opcode;
1111 	c.rw.flags = io.flags;
1112 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1113 	c.rw.slba = cpu_to_le64(io.slba);
1114 	c.rw.length = cpu_to_le16(io.nblocks);
1115 	c.rw.control = cpu_to_le16(io.control);
1116 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1117 	c.rw.reftag = cpu_to_le32(io.reftag);
1118 	c.rw.apptag = cpu_to_le16(io.apptag);
1119 	c.rw.appmask = cpu_to_le16(io.appmask);
1120 
1121 	return nvme_submit_user_cmd(ns->queue, &c,
1122 			(void __user *)(uintptr_t)io.addr, length,
1123 			metadata, meta_len, io.slba, NULL, 0);
1124 }
1125 
1126 static u32 nvme_known_admin_effects(u8 opcode)
1127 {
1128 	switch (opcode) {
1129 	case nvme_admin_format_nvm:
1130 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1131 					NVME_CMD_EFFECTS_CSE_MASK;
1132 	case nvme_admin_sanitize_nvm:
1133 		return NVME_CMD_EFFECTS_CSE_MASK;
1134 	default:
1135 		break;
1136 	}
1137 	return 0;
1138 }
1139 
1140 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1141 								u8 opcode)
1142 {
1143 	u32 effects = 0;
1144 
1145 	if (ns) {
1146 		if (ctrl->effects)
1147 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1148 		if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1149 			dev_warn(ctrl->device,
1150 				 "IO command:%02x has unhandled effects:%08x\n",
1151 				 opcode, effects);
1152 		return 0;
1153 	}
1154 
1155 	if (ctrl->effects)
1156 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1157 	else
1158 		effects = nvme_known_admin_effects(opcode);
1159 
1160 	/*
1161 	 * For simplicity, IO to all namespaces is quiesced even if the command
1162 	 * effects say only one namespace is affected.
1163 	 */
1164 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1165 		nvme_start_freeze(ctrl);
1166 		nvme_wait_freeze(ctrl);
1167 	}
1168 	return effects;
1169 }
1170 
1171 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1172 {
1173 	struct nvme_ns *ns;
1174 
1175 	down_read(&ctrl->namespaces_rwsem);
1176 	list_for_each_entry(ns, &ctrl->namespaces, list)
1177 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1178 			nvme_set_queue_dying(ns);
1179 	up_read(&ctrl->namespaces_rwsem);
1180 
1181 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1182 }
1183 
1184 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1185 {
1186 	/*
1187 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1188 	 * prevent memory corruption if a logical block size was changed by
1189 	 * this command.
1190 	 */
1191 	if (effects & NVME_CMD_EFFECTS_LBCC)
1192 		nvme_update_formats(ctrl);
1193 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1194 		nvme_unfreeze(ctrl);
1195 	if (effects & NVME_CMD_EFFECTS_CCC)
1196 		nvme_init_identify(ctrl);
1197 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1198 		nvme_queue_scan(ctrl);
1199 }
1200 
1201 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1202 			struct nvme_passthru_cmd __user *ucmd)
1203 {
1204 	struct nvme_passthru_cmd cmd;
1205 	struct nvme_command c;
1206 	unsigned timeout = 0;
1207 	u32 effects;
1208 	int status;
1209 
1210 	if (!capable(CAP_SYS_ADMIN))
1211 		return -EACCES;
1212 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1213 		return -EFAULT;
1214 	if (cmd.flags)
1215 		return -EINVAL;
1216 
1217 	memset(&c, 0, sizeof(c));
1218 	c.common.opcode = cmd.opcode;
1219 	c.common.flags = cmd.flags;
1220 	c.common.nsid = cpu_to_le32(cmd.nsid);
1221 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1222 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1223 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1224 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1225 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1226 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1227 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1228 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1229 
1230 	if (cmd.timeout_ms)
1231 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1232 
1233 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1234 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1235 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1236 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1237 			0, &cmd.result, timeout);
1238 	nvme_passthru_end(ctrl, effects);
1239 
1240 	if (status >= 0) {
1241 		if (put_user(cmd.result, &ucmd->result))
1242 			return -EFAULT;
1243 	}
1244 
1245 	return status;
1246 }
1247 
1248 /*
1249  * Issue ioctl requests on the first available path.  Note that unlike normal
1250  * block layer requests we will not retry failed request on another controller.
1251  */
1252 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1253 		struct nvme_ns_head **head, int *srcu_idx)
1254 {
1255 #ifdef CONFIG_NVME_MULTIPATH
1256 	if (disk->fops == &nvme_ns_head_ops) {
1257 		*head = disk->private_data;
1258 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1259 		return nvme_find_path(*head);
1260 	}
1261 #endif
1262 	*head = NULL;
1263 	*srcu_idx = -1;
1264 	return disk->private_data;
1265 }
1266 
1267 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1268 {
1269 	if (head)
1270 		srcu_read_unlock(&head->srcu, idx);
1271 }
1272 
1273 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1274 {
1275 	switch (cmd) {
1276 	case NVME_IOCTL_ID:
1277 		force_successful_syscall_return();
1278 		return ns->head->ns_id;
1279 	case NVME_IOCTL_ADMIN_CMD:
1280 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1281 	case NVME_IOCTL_IO_CMD:
1282 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1283 	case NVME_IOCTL_SUBMIT_IO:
1284 		return nvme_submit_io(ns, (void __user *)arg);
1285 	default:
1286 #ifdef CONFIG_NVM
1287 		if (ns->ndev)
1288 			return nvme_nvm_ioctl(ns, cmd, arg);
1289 #endif
1290 		if (is_sed_ioctl(cmd))
1291 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1292 					 (void __user *) arg);
1293 		return -ENOTTY;
1294 	}
1295 }
1296 
1297 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1298 		unsigned int cmd, unsigned long arg)
1299 {
1300 	struct nvme_ns_head *head = NULL;
1301 	struct nvme_ns *ns;
1302 	int srcu_idx, ret;
1303 
1304 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1305 	if (unlikely(!ns))
1306 		ret = -EWOULDBLOCK;
1307 	else
1308 		ret = nvme_ns_ioctl(ns, cmd, arg);
1309 	nvme_put_ns_from_disk(head, srcu_idx);
1310 	return ret;
1311 }
1312 
1313 static int nvme_open(struct block_device *bdev, fmode_t mode)
1314 {
1315 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1316 
1317 #ifdef CONFIG_NVME_MULTIPATH
1318 	/* should never be called due to GENHD_FL_HIDDEN */
1319 	if (WARN_ON_ONCE(ns->head->disk))
1320 		goto fail;
1321 #endif
1322 	if (!kref_get_unless_zero(&ns->kref))
1323 		goto fail;
1324 	if (!try_module_get(ns->ctrl->ops->module))
1325 		goto fail_put_ns;
1326 
1327 	return 0;
1328 
1329 fail_put_ns:
1330 	nvme_put_ns(ns);
1331 fail:
1332 	return -ENXIO;
1333 }
1334 
1335 static void nvme_release(struct gendisk *disk, fmode_t mode)
1336 {
1337 	struct nvme_ns *ns = disk->private_data;
1338 
1339 	module_put(ns->ctrl->ops->module);
1340 	nvme_put_ns(ns);
1341 }
1342 
1343 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1344 {
1345 	/* some standard values */
1346 	geo->heads = 1 << 6;
1347 	geo->sectors = 1 << 5;
1348 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1349 	return 0;
1350 }
1351 
1352 #ifdef CONFIG_BLK_DEV_INTEGRITY
1353 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1354 {
1355 	struct blk_integrity integrity;
1356 
1357 	memset(&integrity, 0, sizeof(integrity));
1358 	switch (pi_type) {
1359 	case NVME_NS_DPS_PI_TYPE3:
1360 		integrity.profile = &t10_pi_type3_crc;
1361 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1362 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1363 		break;
1364 	case NVME_NS_DPS_PI_TYPE1:
1365 	case NVME_NS_DPS_PI_TYPE2:
1366 		integrity.profile = &t10_pi_type1_crc;
1367 		integrity.tag_size = sizeof(u16);
1368 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1369 		break;
1370 	default:
1371 		integrity.profile = NULL;
1372 		break;
1373 	}
1374 	integrity.tuple_size = ms;
1375 	blk_integrity_register(disk, &integrity);
1376 	blk_queue_max_integrity_segments(disk->queue, 1);
1377 }
1378 #else
1379 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1380 {
1381 }
1382 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1383 
1384 static void nvme_set_chunk_size(struct nvme_ns *ns)
1385 {
1386 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1387 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1388 }
1389 
1390 static void nvme_config_discard(struct nvme_ns *ns)
1391 {
1392 	struct nvme_ctrl *ctrl = ns->ctrl;
1393 	struct request_queue *queue = ns->queue;
1394 	u32 size = queue_logical_block_size(queue);
1395 
1396 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1397 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1398 		return;
1399 	}
1400 
1401 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1402 		size *= ns->sws * ns->sgs;
1403 
1404 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1405 			NVME_DSM_MAX_RANGES);
1406 
1407 	queue->limits.discard_alignment = 0;
1408 	queue->limits.discard_granularity = size;
1409 
1410 	/* If discard is already enabled, don't reset queue limits */
1411 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1412 		return;
1413 
1414 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1415 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1416 
1417 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1418 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1419 }
1420 
1421 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1422 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1423 {
1424 	memset(ids, 0, sizeof(*ids));
1425 
1426 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1427 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1428 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1429 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1430 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1431 		 /* Don't treat error as fatal we potentially
1432 		  * already have a NGUID or EUI-64
1433 		  */
1434 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1435 			dev_warn(ctrl->device,
1436 				 "%s: Identify Descriptors failed\n", __func__);
1437 	}
1438 }
1439 
1440 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1441 {
1442 	return !uuid_is_null(&ids->uuid) ||
1443 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1444 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1445 }
1446 
1447 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1448 {
1449 	return uuid_equal(&a->uuid, &b->uuid) &&
1450 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1451 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1452 }
1453 
1454 static void nvme_update_disk_info(struct gendisk *disk,
1455 		struct nvme_ns *ns, struct nvme_id_ns *id)
1456 {
1457 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1458 	unsigned short bs = 1 << ns->lba_shift;
1459 
1460 	blk_mq_freeze_queue(disk->queue);
1461 	blk_integrity_unregister(disk);
1462 
1463 	blk_queue_logical_block_size(disk->queue, bs);
1464 	blk_queue_physical_block_size(disk->queue, bs);
1465 	blk_queue_io_min(disk->queue, bs);
1466 
1467 	if (ns->ms && !ns->ext &&
1468 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1469 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1470 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1471 		capacity = 0;
1472 
1473 	set_capacity(disk, capacity);
1474 	nvme_config_discard(ns);
1475 	blk_mq_unfreeze_queue(disk->queue);
1476 }
1477 
1478 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1479 {
1480 	struct nvme_ns *ns = disk->private_data;
1481 
1482 	/*
1483 	 * If identify namespace failed, use default 512 byte block size so
1484 	 * block layer can use before failing read/write for 0 capacity.
1485 	 */
1486 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1487 	if (ns->lba_shift == 0)
1488 		ns->lba_shift = 9;
1489 	ns->noiob = le16_to_cpu(id->noiob);
1490 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1491 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1492 	/* the PI implementation requires metadata equal t10 pi tuple size */
1493 	if (ns->ms == sizeof(struct t10_pi_tuple))
1494 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1495 	else
1496 		ns->pi_type = 0;
1497 
1498 	if (ns->noiob)
1499 		nvme_set_chunk_size(ns);
1500 	nvme_update_disk_info(disk, ns, id);
1501 	if (ns->ndev)
1502 		nvme_nvm_update_nvm_info(ns);
1503 #ifdef CONFIG_NVME_MULTIPATH
1504 	if (ns->head->disk)
1505 		nvme_update_disk_info(ns->head->disk, ns, id);
1506 #endif
1507 }
1508 
1509 static int nvme_revalidate_disk(struct gendisk *disk)
1510 {
1511 	struct nvme_ns *ns = disk->private_data;
1512 	struct nvme_ctrl *ctrl = ns->ctrl;
1513 	struct nvme_id_ns *id;
1514 	struct nvme_ns_ids ids;
1515 	int ret = 0;
1516 
1517 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1518 		set_capacity(disk, 0);
1519 		return -ENODEV;
1520 	}
1521 
1522 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1523 	if (!id)
1524 		return -ENODEV;
1525 
1526 	if (id->ncap == 0) {
1527 		ret = -ENODEV;
1528 		goto out;
1529 	}
1530 
1531 	__nvme_revalidate_disk(disk, id);
1532 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1533 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1534 		dev_err(ctrl->device,
1535 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1536 		ret = -ENODEV;
1537 	}
1538 
1539 out:
1540 	kfree(id);
1541 	return ret;
1542 }
1543 
1544 static char nvme_pr_type(enum pr_type type)
1545 {
1546 	switch (type) {
1547 	case PR_WRITE_EXCLUSIVE:
1548 		return 1;
1549 	case PR_EXCLUSIVE_ACCESS:
1550 		return 2;
1551 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1552 		return 3;
1553 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1554 		return 4;
1555 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1556 		return 5;
1557 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1558 		return 6;
1559 	default:
1560 		return 0;
1561 	}
1562 };
1563 
1564 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1565 				u64 key, u64 sa_key, u8 op)
1566 {
1567 	struct nvme_ns_head *head = NULL;
1568 	struct nvme_ns *ns;
1569 	struct nvme_command c;
1570 	int srcu_idx, ret;
1571 	u8 data[16] = { 0, };
1572 
1573 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1574 	if (unlikely(!ns))
1575 		return -EWOULDBLOCK;
1576 
1577 	put_unaligned_le64(key, &data[0]);
1578 	put_unaligned_le64(sa_key, &data[8]);
1579 
1580 	memset(&c, 0, sizeof(c));
1581 	c.common.opcode = op;
1582 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1583 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1584 
1585 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1586 	nvme_put_ns_from_disk(head, srcu_idx);
1587 	return ret;
1588 }
1589 
1590 static int nvme_pr_register(struct block_device *bdev, u64 old,
1591 		u64 new, unsigned flags)
1592 {
1593 	u32 cdw10;
1594 
1595 	if (flags & ~PR_FL_IGNORE_KEY)
1596 		return -EOPNOTSUPP;
1597 
1598 	cdw10 = old ? 2 : 0;
1599 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1600 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1601 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1602 }
1603 
1604 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1605 		enum pr_type type, unsigned flags)
1606 {
1607 	u32 cdw10;
1608 
1609 	if (flags & ~PR_FL_IGNORE_KEY)
1610 		return -EOPNOTSUPP;
1611 
1612 	cdw10 = nvme_pr_type(type) << 8;
1613 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1614 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1615 }
1616 
1617 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1618 		enum pr_type type, bool abort)
1619 {
1620 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1621 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1622 }
1623 
1624 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1625 {
1626 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1627 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1628 }
1629 
1630 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1631 {
1632 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1633 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1634 }
1635 
1636 static const struct pr_ops nvme_pr_ops = {
1637 	.pr_register	= nvme_pr_register,
1638 	.pr_reserve	= nvme_pr_reserve,
1639 	.pr_release	= nvme_pr_release,
1640 	.pr_preempt	= nvme_pr_preempt,
1641 	.pr_clear	= nvme_pr_clear,
1642 };
1643 
1644 #ifdef CONFIG_BLK_SED_OPAL
1645 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1646 		bool send)
1647 {
1648 	struct nvme_ctrl *ctrl = data;
1649 	struct nvme_command cmd;
1650 
1651 	memset(&cmd, 0, sizeof(cmd));
1652 	if (send)
1653 		cmd.common.opcode = nvme_admin_security_send;
1654 	else
1655 		cmd.common.opcode = nvme_admin_security_recv;
1656 	cmd.common.nsid = 0;
1657 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1658 	cmd.common.cdw10[1] = cpu_to_le32(len);
1659 
1660 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1661 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1662 }
1663 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1664 #endif /* CONFIG_BLK_SED_OPAL */
1665 
1666 static const struct block_device_operations nvme_fops = {
1667 	.owner		= THIS_MODULE,
1668 	.ioctl		= nvme_ioctl,
1669 	.compat_ioctl	= nvme_ioctl,
1670 	.open		= nvme_open,
1671 	.release	= nvme_release,
1672 	.getgeo		= nvme_getgeo,
1673 	.revalidate_disk= nvme_revalidate_disk,
1674 	.pr_ops		= &nvme_pr_ops,
1675 };
1676 
1677 #ifdef CONFIG_NVME_MULTIPATH
1678 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1679 {
1680 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1681 
1682 	if (!kref_get_unless_zero(&head->ref))
1683 		return -ENXIO;
1684 	return 0;
1685 }
1686 
1687 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1688 {
1689 	nvme_put_ns_head(disk->private_data);
1690 }
1691 
1692 const struct block_device_operations nvme_ns_head_ops = {
1693 	.owner		= THIS_MODULE,
1694 	.open		= nvme_ns_head_open,
1695 	.release	= nvme_ns_head_release,
1696 	.ioctl		= nvme_ioctl,
1697 	.compat_ioctl	= nvme_ioctl,
1698 	.getgeo		= nvme_getgeo,
1699 	.pr_ops		= &nvme_pr_ops,
1700 };
1701 #endif /* CONFIG_NVME_MULTIPATH */
1702 
1703 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1704 {
1705 	unsigned long timeout =
1706 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1707 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1708 	int ret;
1709 
1710 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1711 		if (csts == ~0)
1712 			return -ENODEV;
1713 		if ((csts & NVME_CSTS_RDY) == bit)
1714 			break;
1715 
1716 		msleep(100);
1717 		if (fatal_signal_pending(current))
1718 			return -EINTR;
1719 		if (time_after(jiffies, timeout)) {
1720 			dev_err(ctrl->device,
1721 				"Device not ready; aborting %s\n", enabled ?
1722 						"initialisation" : "reset");
1723 			return -ENODEV;
1724 		}
1725 	}
1726 
1727 	return ret;
1728 }
1729 
1730 /*
1731  * If the device has been passed off to us in an enabled state, just clear
1732  * the enabled bit.  The spec says we should set the 'shutdown notification
1733  * bits', but doing so may cause the device to complete commands to the
1734  * admin queue ... and we don't know what memory that might be pointing at!
1735  */
1736 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1737 {
1738 	int ret;
1739 
1740 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1741 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1742 
1743 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1744 	if (ret)
1745 		return ret;
1746 
1747 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1748 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1749 
1750 	return nvme_wait_ready(ctrl, cap, false);
1751 }
1752 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1753 
1754 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1755 {
1756 	/*
1757 	 * Default to a 4K page size, with the intention to update this
1758 	 * path in the future to accomodate architectures with differing
1759 	 * kernel and IO page sizes.
1760 	 */
1761 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1762 	int ret;
1763 
1764 	if (page_shift < dev_page_min) {
1765 		dev_err(ctrl->device,
1766 			"Minimum device page size %u too large for host (%u)\n",
1767 			1 << dev_page_min, 1 << page_shift);
1768 		return -ENODEV;
1769 	}
1770 
1771 	ctrl->page_size = 1 << page_shift;
1772 
1773 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1774 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1775 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1776 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1777 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1778 
1779 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1780 	if (ret)
1781 		return ret;
1782 	return nvme_wait_ready(ctrl, cap, true);
1783 }
1784 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1785 
1786 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1787 {
1788 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1789 	u32 csts;
1790 	int ret;
1791 
1792 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1793 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1794 
1795 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1796 	if (ret)
1797 		return ret;
1798 
1799 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1800 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1801 			break;
1802 
1803 		msleep(100);
1804 		if (fatal_signal_pending(current))
1805 			return -EINTR;
1806 		if (time_after(jiffies, timeout)) {
1807 			dev_err(ctrl->device,
1808 				"Device shutdown incomplete; abort shutdown\n");
1809 			return -ENODEV;
1810 		}
1811 	}
1812 
1813 	return ret;
1814 }
1815 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1816 
1817 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1818 		struct request_queue *q)
1819 {
1820 	bool vwc = false;
1821 
1822 	if (ctrl->max_hw_sectors) {
1823 		u32 max_segments =
1824 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1825 
1826 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1827 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1828 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1829 	}
1830 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1831 	    is_power_of_2(ctrl->max_hw_sectors))
1832 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1833 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1834 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1835 		vwc = true;
1836 	blk_queue_write_cache(q, vwc, vwc);
1837 }
1838 
1839 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1840 {
1841 	__le64 ts;
1842 	int ret;
1843 
1844 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1845 		return 0;
1846 
1847 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1848 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1849 			NULL);
1850 	if (ret)
1851 		dev_warn_once(ctrl->device,
1852 			"could not set timestamp (%d)\n", ret);
1853 	return ret;
1854 }
1855 
1856 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1857 {
1858 	/*
1859 	 * APST (Autonomous Power State Transition) lets us program a
1860 	 * table of power state transitions that the controller will
1861 	 * perform automatically.  We configure it with a simple
1862 	 * heuristic: we are willing to spend at most 2% of the time
1863 	 * transitioning between power states.  Therefore, when running
1864 	 * in any given state, we will enter the next lower-power
1865 	 * non-operational state after waiting 50 * (enlat + exlat)
1866 	 * microseconds, as long as that state's exit latency is under
1867 	 * the requested maximum latency.
1868 	 *
1869 	 * We will not autonomously enter any non-operational state for
1870 	 * which the total latency exceeds ps_max_latency_us.  Users
1871 	 * can set ps_max_latency_us to zero to turn off APST.
1872 	 */
1873 
1874 	unsigned apste;
1875 	struct nvme_feat_auto_pst *table;
1876 	u64 max_lat_us = 0;
1877 	int max_ps = -1;
1878 	int ret;
1879 
1880 	/*
1881 	 * If APST isn't supported or if we haven't been initialized yet,
1882 	 * then don't do anything.
1883 	 */
1884 	if (!ctrl->apsta)
1885 		return 0;
1886 
1887 	if (ctrl->npss > 31) {
1888 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1889 		return 0;
1890 	}
1891 
1892 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1893 	if (!table)
1894 		return 0;
1895 
1896 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1897 		/* Turn off APST. */
1898 		apste = 0;
1899 		dev_dbg(ctrl->device, "APST disabled\n");
1900 	} else {
1901 		__le64 target = cpu_to_le64(0);
1902 		int state;
1903 
1904 		/*
1905 		 * Walk through all states from lowest- to highest-power.
1906 		 * According to the spec, lower-numbered states use more
1907 		 * power.  NPSS, despite the name, is the index of the
1908 		 * lowest-power state, not the number of states.
1909 		 */
1910 		for (state = (int)ctrl->npss; state >= 0; state--) {
1911 			u64 total_latency_us, exit_latency_us, transition_ms;
1912 
1913 			if (target)
1914 				table->entries[state] = target;
1915 
1916 			/*
1917 			 * Don't allow transitions to the deepest state
1918 			 * if it's quirked off.
1919 			 */
1920 			if (state == ctrl->npss &&
1921 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1922 				continue;
1923 
1924 			/*
1925 			 * Is this state a useful non-operational state for
1926 			 * higher-power states to autonomously transition to?
1927 			 */
1928 			if (!(ctrl->psd[state].flags &
1929 			      NVME_PS_FLAGS_NON_OP_STATE))
1930 				continue;
1931 
1932 			exit_latency_us =
1933 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1934 			if (exit_latency_us > ctrl->ps_max_latency_us)
1935 				continue;
1936 
1937 			total_latency_us =
1938 				exit_latency_us +
1939 				le32_to_cpu(ctrl->psd[state].entry_lat);
1940 
1941 			/*
1942 			 * This state is good.  Use it as the APST idle
1943 			 * target for higher power states.
1944 			 */
1945 			transition_ms = total_latency_us + 19;
1946 			do_div(transition_ms, 20);
1947 			if (transition_ms > (1 << 24) - 1)
1948 				transition_ms = (1 << 24) - 1;
1949 
1950 			target = cpu_to_le64((state << 3) |
1951 					     (transition_ms << 8));
1952 
1953 			if (max_ps == -1)
1954 				max_ps = state;
1955 
1956 			if (total_latency_us > max_lat_us)
1957 				max_lat_us = total_latency_us;
1958 		}
1959 
1960 		apste = 1;
1961 
1962 		if (max_ps == -1) {
1963 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1964 		} else {
1965 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1966 				max_ps, max_lat_us, (int)sizeof(*table), table);
1967 		}
1968 	}
1969 
1970 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1971 				table, sizeof(*table), NULL);
1972 	if (ret)
1973 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1974 
1975 	kfree(table);
1976 	return ret;
1977 }
1978 
1979 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1980 {
1981 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1982 	u64 latency;
1983 
1984 	switch (val) {
1985 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1986 	case PM_QOS_LATENCY_ANY:
1987 		latency = U64_MAX;
1988 		break;
1989 
1990 	default:
1991 		latency = val;
1992 	}
1993 
1994 	if (ctrl->ps_max_latency_us != latency) {
1995 		ctrl->ps_max_latency_us = latency;
1996 		nvme_configure_apst(ctrl);
1997 	}
1998 }
1999 
2000 struct nvme_core_quirk_entry {
2001 	/*
2002 	 * NVMe model and firmware strings are padded with spaces.  For
2003 	 * simplicity, strings in the quirk table are padded with NULLs
2004 	 * instead.
2005 	 */
2006 	u16 vid;
2007 	const char *mn;
2008 	const char *fr;
2009 	unsigned long quirks;
2010 };
2011 
2012 static const struct nvme_core_quirk_entry core_quirks[] = {
2013 	{
2014 		/*
2015 		 * This Toshiba device seems to die using any APST states.  See:
2016 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2017 		 */
2018 		.vid = 0x1179,
2019 		.mn = "THNSF5256GPUK TOSHIBA",
2020 		.quirks = NVME_QUIRK_NO_APST,
2021 	}
2022 };
2023 
2024 /* match is null-terminated but idstr is space-padded. */
2025 static bool string_matches(const char *idstr, const char *match, size_t len)
2026 {
2027 	size_t matchlen;
2028 
2029 	if (!match)
2030 		return true;
2031 
2032 	matchlen = strlen(match);
2033 	WARN_ON_ONCE(matchlen > len);
2034 
2035 	if (memcmp(idstr, match, matchlen))
2036 		return false;
2037 
2038 	for (; matchlen < len; matchlen++)
2039 		if (idstr[matchlen] != ' ')
2040 			return false;
2041 
2042 	return true;
2043 }
2044 
2045 static bool quirk_matches(const struct nvme_id_ctrl *id,
2046 			  const struct nvme_core_quirk_entry *q)
2047 {
2048 	return q->vid == le16_to_cpu(id->vid) &&
2049 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2050 		string_matches(id->fr, q->fr, sizeof(id->fr));
2051 }
2052 
2053 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2054 		struct nvme_id_ctrl *id)
2055 {
2056 	size_t nqnlen;
2057 	int off;
2058 
2059 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2060 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2061 		strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2062 		return;
2063 	}
2064 
2065 	if (ctrl->vs >= NVME_VS(1, 2, 1))
2066 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2067 
2068 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2069 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2070 			"nqn.2014.08.org.nvmexpress:%4x%4x",
2071 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2072 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2073 	off += sizeof(id->sn);
2074 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2075 	off += sizeof(id->mn);
2076 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2077 }
2078 
2079 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2080 {
2081 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2082 	kfree(subsys);
2083 }
2084 
2085 static void nvme_release_subsystem(struct device *dev)
2086 {
2087 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2088 }
2089 
2090 static void nvme_destroy_subsystem(struct kref *ref)
2091 {
2092 	struct nvme_subsystem *subsys =
2093 			container_of(ref, struct nvme_subsystem, ref);
2094 
2095 	mutex_lock(&nvme_subsystems_lock);
2096 	list_del(&subsys->entry);
2097 	mutex_unlock(&nvme_subsystems_lock);
2098 
2099 	ida_destroy(&subsys->ns_ida);
2100 	device_del(&subsys->dev);
2101 	put_device(&subsys->dev);
2102 }
2103 
2104 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2105 {
2106 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2107 }
2108 
2109 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2110 {
2111 	struct nvme_subsystem *subsys;
2112 
2113 	lockdep_assert_held(&nvme_subsystems_lock);
2114 
2115 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2116 		if (strcmp(subsys->subnqn, subsysnqn))
2117 			continue;
2118 		if (!kref_get_unless_zero(&subsys->ref))
2119 			continue;
2120 		return subsys;
2121 	}
2122 
2123 	return NULL;
2124 }
2125 
2126 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2127 	struct device_attribute subsys_attr_##_name = \
2128 		__ATTR(_name, _mode, _show, NULL)
2129 
2130 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2131 				    struct device_attribute *attr,
2132 				    char *buf)
2133 {
2134 	struct nvme_subsystem *subsys =
2135 		container_of(dev, struct nvme_subsystem, dev);
2136 
2137 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2138 }
2139 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2140 
2141 #define nvme_subsys_show_str_function(field)				\
2142 static ssize_t subsys_##field##_show(struct device *dev,		\
2143 			    struct device_attribute *attr, char *buf)	\
2144 {									\
2145 	struct nvme_subsystem *subsys =					\
2146 		container_of(dev, struct nvme_subsystem, dev);		\
2147 	return sprintf(buf, "%.*s\n",					\
2148 		       (int)sizeof(subsys->field), subsys->field);	\
2149 }									\
2150 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2151 
2152 nvme_subsys_show_str_function(model);
2153 nvme_subsys_show_str_function(serial);
2154 nvme_subsys_show_str_function(firmware_rev);
2155 
2156 static struct attribute *nvme_subsys_attrs[] = {
2157 	&subsys_attr_model.attr,
2158 	&subsys_attr_serial.attr,
2159 	&subsys_attr_firmware_rev.attr,
2160 	&subsys_attr_subsysnqn.attr,
2161 	NULL,
2162 };
2163 
2164 static struct attribute_group nvme_subsys_attrs_group = {
2165 	.attrs = nvme_subsys_attrs,
2166 };
2167 
2168 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2169 	&nvme_subsys_attrs_group,
2170 	NULL,
2171 };
2172 
2173 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2174 {
2175 	int count = 0;
2176 	struct nvme_ctrl *ctrl;
2177 
2178 	mutex_lock(&subsys->lock);
2179 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2180 		if (ctrl->state != NVME_CTRL_DELETING &&
2181 		    ctrl->state != NVME_CTRL_DEAD)
2182 			count++;
2183 	}
2184 	mutex_unlock(&subsys->lock);
2185 
2186 	return count;
2187 }
2188 
2189 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2190 {
2191 	struct nvme_subsystem *subsys, *found;
2192 	int ret;
2193 
2194 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2195 	if (!subsys)
2196 		return -ENOMEM;
2197 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2198 	if (ret < 0) {
2199 		kfree(subsys);
2200 		return ret;
2201 	}
2202 	subsys->instance = ret;
2203 	mutex_init(&subsys->lock);
2204 	kref_init(&subsys->ref);
2205 	INIT_LIST_HEAD(&subsys->ctrls);
2206 	INIT_LIST_HEAD(&subsys->nsheads);
2207 	nvme_init_subnqn(subsys, ctrl, id);
2208 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2209 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2210 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2211 	subsys->vendor_id = le16_to_cpu(id->vid);
2212 	subsys->cmic = id->cmic;
2213 
2214 	subsys->dev.class = nvme_subsys_class;
2215 	subsys->dev.release = nvme_release_subsystem;
2216 	subsys->dev.groups = nvme_subsys_attrs_groups;
2217 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2218 	device_initialize(&subsys->dev);
2219 
2220 	mutex_lock(&nvme_subsystems_lock);
2221 	found = __nvme_find_get_subsystem(subsys->subnqn);
2222 	if (found) {
2223 		/*
2224 		 * Verify that the subsystem actually supports multiple
2225 		 * controllers, else bail out.
2226 		 */
2227 		if (!(ctrl->opts && ctrl->opts->discovery_nqn) &&
2228 		    nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2229 			dev_err(ctrl->device,
2230 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2231 				found->subnqn);
2232 			nvme_put_subsystem(found);
2233 			ret = -EINVAL;
2234 			goto out_unlock;
2235 		}
2236 
2237 		__nvme_release_subsystem(subsys);
2238 		subsys = found;
2239 	} else {
2240 		ret = device_add(&subsys->dev);
2241 		if (ret) {
2242 			dev_err(ctrl->device,
2243 				"failed to register subsystem device.\n");
2244 			goto out_unlock;
2245 		}
2246 		ida_init(&subsys->ns_ida);
2247 		list_add_tail(&subsys->entry, &nvme_subsystems);
2248 	}
2249 
2250 	ctrl->subsys = subsys;
2251 	mutex_unlock(&nvme_subsystems_lock);
2252 
2253 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2254 			dev_name(ctrl->device))) {
2255 		dev_err(ctrl->device,
2256 			"failed to create sysfs link from subsystem.\n");
2257 		/* the transport driver will eventually put the subsystem */
2258 		return -EINVAL;
2259 	}
2260 
2261 	mutex_lock(&subsys->lock);
2262 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2263 	mutex_unlock(&subsys->lock);
2264 
2265 	return 0;
2266 
2267 out_unlock:
2268 	mutex_unlock(&nvme_subsystems_lock);
2269 	put_device(&subsys->dev);
2270 	return ret;
2271 }
2272 
2273 int nvme_get_log_ext(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
2274 		     u8 log_page, void *log,
2275 		     size_t size, u64 offset)
2276 {
2277 	struct nvme_command c = { };
2278 	unsigned long dwlen = size / 4 - 1;
2279 
2280 	c.get_log_page.opcode = nvme_admin_get_log_page;
2281 
2282 	if (ns)
2283 		c.get_log_page.nsid = cpu_to_le32(ns->head->ns_id);
2284 	else
2285 		c.get_log_page.nsid = cpu_to_le32(NVME_NSID_ALL);
2286 
2287 	c.get_log_page.lid = log_page;
2288 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2289 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2290 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2291 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2292 
2293 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2294 }
2295 
2296 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2297 			size_t size)
2298 {
2299 	return nvme_get_log_ext(ctrl, NULL, log_page, log, size, 0);
2300 }
2301 
2302 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2303 {
2304 	int ret;
2305 
2306 	if (!ctrl->effects)
2307 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2308 
2309 	if (!ctrl->effects)
2310 		return 0;
2311 
2312 	ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2313 					sizeof(*ctrl->effects));
2314 	if (ret) {
2315 		kfree(ctrl->effects);
2316 		ctrl->effects = NULL;
2317 	}
2318 	return ret;
2319 }
2320 
2321 /*
2322  * Initialize the cached copies of the Identify data and various controller
2323  * register in our nvme_ctrl structure.  This should be called as soon as
2324  * the admin queue is fully up and running.
2325  */
2326 int nvme_init_identify(struct nvme_ctrl *ctrl)
2327 {
2328 	struct nvme_id_ctrl *id;
2329 	u64 cap;
2330 	int ret, page_shift;
2331 	u32 max_hw_sectors;
2332 	bool prev_apst_enabled;
2333 
2334 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2335 	if (ret) {
2336 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2337 		return ret;
2338 	}
2339 
2340 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2341 	if (ret) {
2342 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2343 		return ret;
2344 	}
2345 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2346 
2347 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2348 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2349 
2350 	ret = nvme_identify_ctrl(ctrl, &id);
2351 	if (ret) {
2352 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2353 		return -EIO;
2354 	}
2355 
2356 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2357 		ret = nvme_get_effects_log(ctrl);
2358 		if (ret < 0)
2359 			goto out_free;
2360 	}
2361 
2362 	if (!ctrl->identified) {
2363 		int i;
2364 
2365 		ret = nvme_init_subsystem(ctrl, id);
2366 		if (ret)
2367 			goto out_free;
2368 
2369 		/*
2370 		 * Check for quirks.  Quirk can depend on firmware version,
2371 		 * so, in principle, the set of quirks present can change
2372 		 * across a reset.  As a possible future enhancement, we
2373 		 * could re-scan for quirks every time we reinitialize
2374 		 * the device, but we'd have to make sure that the driver
2375 		 * behaves intelligently if the quirks change.
2376 		 */
2377 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2378 			if (quirk_matches(id, &core_quirks[i]))
2379 				ctrl->quirks |= core_quirks[i].quirks;
2380 		}
2381 	}
2382 
2383 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2384 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2385 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2386 	}
2387 
2388 	ctrl->oacs = le16_to_cpu(id->oacs);
2389 	ctrl->oncs = le16_to_cpup(&id->oncs);
2390 	ctrl->oaes = le32_to_cpu(id->oaes);
2391 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2392 	ctrl->vwc = id->vwc;
2393 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
2394 	if (id->mdts)
2395 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2396 	else
2397 		max_hw_sectors = UINT_MAX;
2398 	ctrl->max_hw_sectors =
2399 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2400 
2401 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2402 	ctrl->sgls = le32_to_cpu(id->sgls);
2403 	ctrl->kas = le16_to_cpu(id->kas);
2404 
2405 	if (id->rtd3e) {
2406 		/* us -> s */
2407 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2408 
2409 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2410 						 shutdown_timeout, 60);
2411 
2412 		if (ctrl->shutdown_timeout != shutdown_timeout)
2413 			dev_info(ctrl->device,
2414 				 "Shutdown timeout set to %u seconds\n",
2415 				 ctrl->shutdown_timeout);
2416 	} else
2417 		ctrl->shutdown_timeout = shutdown_timeout;
2418 
2419 	ctrl->npss = id->npss;
2420 	ctrl->apsta = id->apsta;
2421 	prev_apst_enabled = ctrl->apst_enabled;
2422 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2423 		if (force_apst && id->apsta) {
2424 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2425 			ctrl->apst_enabled = true;
2426 		} else {
2427 			ctrl->apst_enabled = false;
2428 		}
2429 	} else {
2430 		ctrl->apst_enabled = id->apsta;
2431 	}
2432 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2433 
2434 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2435 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2436 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2437 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2438 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2439 
2440 		/*
2441 		 * In fabrics we need to verify the cntlid matches the
2442 		 * admin connect
2443 		 */
2444 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2445 			ret = -EINVAL;
2446 			goto out_free;
2447 		}
2448 
2449 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2450 			dev_err(ctrl->device,
2451 				"keep-alive support is mandatory for fabrics\n");
2452 			ret = -EINVAL;
2453 			goto out_free;
2454 		}
2455 	} else {
2456 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2457 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2458 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2459 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2460 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2461 	}
2462 
2463 	kfree(id);
2464 
2465 	if (ctrl->apst_enabled && !prev_apst_enabled)
2466 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2467 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2468 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2469 
2470 	ret = nvme_configure_apst(ctrl);
2471 	if (ret < 0)
2472 		return ret;
2473 
2474 	ret = nvme_configure_timestamp(ctrl);
2475 	if (ret < 0)
2476 		return ret;
2477 
2478 	ret = nvme_configure_directives(ctrl);
2479 	if (ret < 0)
2480 		return ret;
2481 
2482 	ctrl->identified = true;
2483 
2484 	return 0;
2485 
2486 out_free:
2487 	kfree(id);
2488 	return ret;
2489 }
2490 EXPORT_SYMBOL_GPL(nvme_init_identify);
2491 
2492 static int nvme_dev_open(struct inode *inode, struct file *file)
2493 {
2494 	struct nvme_ctrl *ctrl =
2495 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2496 
2497 	switch (ctrl->state) {
2498 	case NVME_CTRL_LIVE:
2499 	case NVME_CTRL_ADMIN_ONLY:
2500 		break;
2501 	default:
2502 		return -EWOULDBLOCK;
2503 	}
2504 
2505 	file->private_data = ctrl;
2506 	return 0;
2507 }
2508 
2509 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2510 {
2511 	struct nvme_ns *ns;
2512 	int ret;
2513 
2514 	down_read(&ctrl->namespaces_rwsem);
2515 	if (list_empty(&ctrl->namespaces)) {
2516 		ret = -ENOTTY;
2517 		goto out_unlock;
2518 	}
2519 
2520 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2521 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2522 		dev_warn(ctrl->device,
2523 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2524 		ret = -EINVAL;
2525 		goto out_unlock;
2526 	}
2527 
2528 	dev_warn(ctrl->device,
2529 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2530 	kref_get(&ns->kref);
2531 	up_read(&ctrl->namespaces_rwsem);
2532 
2533 	ret = nvme_user_cmd(ctrl, ns, argp);
2534 	nvme_put_ns(ns);
2535 	return ret;
2536 
2537 out_unlock:
2538 	up_read(&ctrl->namespaces_rwsem);
2539 	return ret;
2540 }
2541 
2542 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2543 		unsigned long arg)
2544 {
2545 	struct nvme_ctrl *ctrl = file->private_data;
2546 	void __user *argp = (void __user *)arg;
2547 
2548 	switch (cmd) {
2549 	case NVME_IOCTL_ADMIN_CMD:
2550 		return nvme_user_cmd(ctrl, NULL, argp);
2551 	case NVME_IOCTL_IO_CMD:
2552 		return nvme_dev_user_cmd(ctrl, argp);
2553 	case NVME_IOCTL_RESET:
2554 		dev_warn(ctrl->device, "resetting controller\n");
2555 		return nvme_reset_ctrl_sync(ctrl);
2556 	case NVME_IOCTL_SUBSYS_RESET:
2557 		return nvme_reset_subsystem(ctrl);
2558 	case NVME_IOCTL_RESCAN:
2559 		nvme_queue_scan(ctrl);
2560 		return 0;
2561 	default:
2562 		return -ENOTTY;
2563 	}
2564 }
2565 
2566 static const struct file_operations nvme_dev_fops = {
2567 	.owner		= THIS_MODULE,
2568 	.open		= nvme_dev_open,
2569 	.unlocked_ioctl	= nvme_dev_ioctl,
2570 	.compat_ioctl	= nvme_dev_ioctl,
2571 };
2572 
2573 static ssize_t nvme_sysfs_reset(struct device *dev,
2574 				struct device_attribute *attr, const char *buf,
2575 				size_t count)
2576 {
2577 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2578 	int ret;
2579 
2580 	ret = nvme_reset_ctrl_sync(ctrl);
2581 	if (ret < 0)
2582 		return ret;
2583 	return count;
2584 }
2585 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2586 
2587 static ssize_t nvme_sysfs_rescan(struct device *dev,
2588 				struct device_attribute *attr, const char *buf,
2589 				size_t count)
2590 {
2591 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2592 
2593 	nvme_queue_scan(ctrl);
2594 	return count;
2595 }
2596 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2597 
2598 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2599 {
2600 	struct gendisk *disk = dev_to_disk(dev);
2601 
2602 	if (disk->fops == &nvme_fops)
2603 		return nvme_get_ns_from_dev(dev)->head;
2604 	else
2605 		return disk->private_data;
2606 }
2607 
2608 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2609 		char *buf)
2610 {
2611 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2612 	struct nvme_ns_ids *ids = &head->ids;
2613 	struct nvme_subsystem *subsys = head->subsys;
2614 	int serial_len = sizeof(subsys->serial);
2615 	int model_len = sizeof(subsys->model);
2616 
2617 	if (!uuid_is_null(&ids->uuid))
2618 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2619 
2620 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2621 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2622 
2623 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2624 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2625 
2626 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2627 				  subsys->serial[serial_len - 1] == '\0'))
2628 		serial_len--;
2629 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2630 				 subsys->model[model_len - 1] == '\0'))
2631 		model_len--;
2632 
2633 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2634 		serial_len, subsys->serial, model_len, subsys->model,
2635 		head->ns_id);
2636 }
2637 static DEVICE_ATTR_RO(wwid);
2638 
2639 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2640 		char *buf)
2641 {
2642 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2643 }
2644 static DEVICE_ATTR_RO(nguid);
2645 
2646 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2647 		char *buf)
2648 {
2649 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2650 
2651 	/* For backward compatibility expose the NGUID to userspace if
2652 	 * we have no UUID set
2653 	 */
2654 	if (uuid_is_null(&ids->uuid)) {
2655 		printk_ratelimited(KERN_WARNING
2656 				   "No UUID available providing old NGUID\n");
2657 		return sprintf(buf, "%pU\n", ids->nguid);
2658 	}
2659 	return sprintf(buf, "%pU\n", &ids->uuid);
2660 }
2661 static DEVICE_ATTR_RO(uuid);
2662 
2663 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2664 		char *buf)
2665 {
2666 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2667 }
2668 static DEVICE_ATTR_RO(eui);
2669 
2670 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2671 		char *buf)
2672 {
2673 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2674 }
2675 static DEVICE_ATTR_RO(nsid);
2676 
2677 static struct attribute *nvme_ns_id_attrs[] = {
2678 	&dev_attr_wwid.attr,
2679 	&dev_attr_uuid.attr,
2680 	&dev_attr_nguid.attr,
2681 	&dev_attr_eui.attr,
2682 	&dev_attr_nsid.attr,
2683 	NULL,
2684 };
2685 
2686 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2687 		struct attribute *a, int n)
2688 {
2689 	struct device *dev = container_of(kobj, struct device, kobj);
2690 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2691 
2692 	if (a == &dev_attr_uuid.attr) {
2693 		if (uuid_is_null(&ids->uuid) &&
2694 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2695 			return 0;
2696 	}
2697 	if (a == &dev_attr_nguid.attr) {
2698 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2699 			return 0;
2700 	}
2701 	if (a == &dev_attr_eui.attr) {
2702 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2703 			return 0;
2704 	}
2705 	return a->mode;
2706 }
2707 
2708 const struct attribute_group nvme_ns_id_attr_group = {
2709 	.attrs		= nvme_ns_id_attrs,
2710 	.is_visible	= nvme_ns_id_attrs_are_visible,
2711 };
2712 
2713 #define nvme_show_str_function(field)						\
2714 static ssize_t  field##_show(struct device *dev,				\
2715 			    struct device_attribute *attr, char *buf)		\
2716 {										\
2717         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2718         return sprintf(buf, "%.*s\n",						\
2719 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2720 }										\
2721 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2722 
2723 nvme_show_str_function(model);
2724 nvme_show_str_function(serial);
2725 nvme_show_str_function(firmware_rev);
2726 
2727 #define nvme_show_int_function(field)						\
2728 static ssize_t  field##_show(struct device *dev,				\
2729 			    struct device_attribute *attr, char *buf)		\
2730 {										\
2731         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2732         return sprintf(buf, "%d\n", ctrl->field);	\
2733 }										\
2734 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2735 
2736 nvme_show_int_function(cntlid);
2737 
2738 static ssize_t nvme_sysfs_delete(struct device *dev,
2739 				struct device_attribute *attr, const char *buf,
2740 				size_t count)
2741 {
2742 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2743 
2744 	if (device_remove_file_self(dev, attr))
2745 		nvme_delete_ctrl_sync(ctrl);
2746 	return count;
2747 }
2748 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2749 
2750 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2751 					 struct device_attribute *attr,
2752 					 char *buf)
2753 {
2754 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2755 
2756 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2757 }
2758 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2759 
2760 static ssize_t nvme_sysfs_show_state(struct device *dev,
2761 				     struct device_attribute *attr,
2762 				     char *buf)
2763 {
2764 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2765 	static const char *const state_name[] = {
2766 		[NVME_CTRL_NEW]		= "new",
2767 		[NVME_CTRL_LIVE]	= "live",
2768 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2769 		[NVME_CTRL_RESETTING]	= "resetting",
2770 		[NVME_CTRL_CONNECTING]	= "connecting",
2771 		[NVME_CTRL_DELETING]	= "deleting",
2772 		[NVME_CTRL_DEAD]	= "dead",
2773 	};
2774 
2775 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2776 	    state_name[ctrl->state])
2777 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2778 
2779 	return sprintf(buf, "unknown state\n");
2780 }
2781 
2782 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2783 
2784 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2785 					 struct device_attribute *attr,
2786 					 char *buf)
2787 {
2788 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2789 
2790 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2791 }
2792 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2793 
2794 static ssize_t nvme_sysfs_show_address(struct device *dev,
2795 					 struct device_attribute *attr,
2796 					 char *buf)
2797 {
2798 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2799 
2800 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2801 }
2802 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2803 
2804 static struct attribute *nvme_dev_attrs[] = {
2805 	&dev_attr_reset_controller.attr,
2806 	&dev_attr_rescan_controller.attr,
2807 	&dev_attr_model.attr,
2808 	&dev_attr_serial.attr,
2809 	&dev_attr_firmware_rev.attr,
2810 	&dev_attr_cntlid.attr,
2811 	&dev_attr_delete_controller.attr,
2812 	&dev_attr_transport.attr,
2813 	&dev_attr_subsysnqn.attr,
2814 	&dev_attr_address.attr,
2815 	&dev_attr_state.attr,
2816 	NULL
2817 };
2818 
2819 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2820 		struct attribute *a, int n)
2821 {
2822 	struct device *dev = container_of(kobj, struct device, kobj);
2823 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2824 
2825 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2826 		return 0;
2827 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2828 		return 0;
2829 
2830 	return a->mode;
2831 }
2832 
2833 static struct attribute_group nvme_dev_attrs_group = {
2834 	.attrs		= nvme_dev_attrs,
2835 	.is_visible	= nvme_dev_attrs_are_visible,
2836 };
2837 
2838 static const struct attribute_group *nvme_dev_attr_groups[] = {
2839 	&nvme_dev_attrs_group,
2840 	NULL,
2841 };
2842 
2843 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2844 		unsigned nsid)
2845 {
2846 	struct nvme_ns_head *h;
2847 
2848 	lockdep_assert_held(&subsys->lock);
2849 
2850 	list_for_each_entry(h, &subsys->nsheads, entry) {
2851 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2852 			return h;
2853 	}
2854 
2855 	return NULL;
2856 }
2857 
2858 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2859 		struct nvme_ns_head *new)
2860 {
2861 	struct nvme_ns_head *h;
2862 
2863 	lockdep_assert_held(&subsys->lock);
2864 
2865 	list_for_each_entry(h, &subsys->nsheads, entry) {
2866 		if (nvme_ns_ids_valid(&new->ids) &&
2867 		    !list_empty(&h->list) &&
2868 		    nvme_ns_ids_equal(&new->ids, &h->ids))
2869 			return -EINVAL;
2870 	}
2871 
2872 	return 0;
2873 }
2874 
2875 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2876 		unsigned nsid, struct nvme_id_ns *id)
2877 {
2878 	struct nvme_ns_head *head;
2879 	int ret = -ENOMEM;
2880 
2881 	head = kzalloc(sizeof(*head), GFP_KERNEL);
2882 	if (!head)
2883 		goto out;
2884 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2885 	if (ret < 0)
2886 		goto out_free_head;
2887 	head->instance = ret;
2888 	INIT_LIST_HEAD(&head->list);
2889 	ret = init_srcu_struct(&head->srcu);
2890 	if (ret)
2891 		goto out_ida_remove;
2892 	head->subsys = ctrl->subsys;
2893 	head->ns_id = nsid;
2894 	kref_init(&head->ref);
2895 
2896 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2897 
2898 	ret = __nvme_check_ids(ctrl->subsys, head);
2899 	if (ret) {
2900 		dev_err(ctrl->device,
2901 			"duplicate IDs for nsid %d\n", nsid);
2902 		goto out_cleanup_srcu;
2903 	}
2904 
2905 	ret = nvme_mpath_alloc_disk(ctrl, head);
2906 	if (ret)
2907 		goto out_cleanup_srcu;
2908 
2909 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2910 
2911 	kref_get(&ctrl->subsys->ref);
2912 
2913 	return head;
2914 out_cleanup_srcu:
2915 	cleanup_srcu_struct(&head->srcu);
2916 out_ida_remove:
2917 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2918 out_free_head:
2919 	kfree(head);
2920 out:
2921 	return ERR_PTR(ret);
2922 }
2923 
2924 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2925 		struct nvme_id_ns *id)
2926 {
2927 	struct nvme_ctrl *ctrl = ns->ctrl;
2928 	bool is_shared = id->nmic & (1 << 0);
2929 	struct nvme_ns_head *head = NULL;
2930 	int ret = 0;
2931 
2932 	mutex_lock(&ctrl->subsys->lock);
2933 	if (is_shared)
2934 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
2935 	if (!head) {
2936 		head = nvme_alloc_ns_head(ctrl, nsid, id);
2937 		if (IS_ERR(head)) {
2938 			ret = PTR_ERR(head);
2939 			goto out_unlock;
2940 		}
2941 	} else {
2942 		struct nvme_ns_ids ids;
2943 
2944 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
2945 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2946 			dev_err(ctrl->device,
2947 				"IDs don't match for shared namespace %d\n",
2948 					nsid);
2949 			ret = -EINVAL;
2950 			goto out_unlock;
2951 		}
2952 	}
2953 
2954 	list_add_tail(&ns->siblings, &head->list);
2955 	ns->head = head;
2956 
2957 out_unlock:
2958 	mutex_unlock(&ctrl->subsys->lock);
2959 	return ret;
2960 }
2961 
2962 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2963 {
2964 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2965 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2966 
2967 	return nsa->head->ns_id - nsb->head->ns_id;
2968 }
2969 
2970 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2971 {
2972 	struct nvme_ns *ns, *ret = NULL;
2973 
2974 	down_read(&ctrl->namespaces_rwsem);
2975 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2976 		if (ns->head->ns_id == nsid) {
2977 			if (!kref_get_unless_zero(&ns->kref))
2978 				continue;
2979 			ret = ns;
2980 			break;
2981 		}
2982 		if (ns->head->ns_id > nsid)
2983 			break;
2984 	}
2985 	up_read(&ctrl->namespaces_rwsem);
2986 	return ret;
2987 }
2988 
2989 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2990 {
2991 	struct streams_directive_params s;
2992 	int ret;
2993 
2994 	if (!ctrl->nr_streams)
2995 		return 0;
2996 
2997 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2998 	if (ret)
2999 		return ret;
3000 
3001 	ns->sws = le32_to_cpu(s.sws);
3002 	ns->sgs = le16_to_cpu(s.sgs);
3003 
3004 	if (ns->sws) {
3005 		unsigned int bs = 1 << ns->lba_shift;
3006 
3007 		blk_queue_io_min(ns->queue, bs * ns->sws);
3008 		if (ns->sgs)
3009 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3016 {
3017 	struct nvme_ns *ns;
3018 	struct gendisk *disk;
3019 	struct nvme_id_ns *id;
3020 	char disk_name[DISK_NAME_LEN];
3021 	int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
3022 
3023 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3024 	if (!ns)
3025 		return;
3026 
3027 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3028 	if (IS_ERR(ns->queue))
3029 		goto out_free_ns;
3030 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3031 	ns->queue->queuedata = ns;
3032 	ns->ctrl = ctrl;
3033 
3034 	kref_init(&ns->kref);
3035 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3036 
3037 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3038 	nvme_set_queue_limits(ctrl, ns->queue);
3039 
3040 	id = nvme_identify_ns(ctrl, nsid);
3041 	if (!id)
3042 		goto out_free_queue;
3043 
3044 	if (id->ncap == 0)
3045 		goto out_free_id;
3046 
3047 	if (nvme_init_ns_head(ns, nsid, id))
3048 		goto out_free_id;
3049 	nvme_setup_streams_ns(ctrl, ns);
3050 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3051 
3052 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3053 		if (nvme_nvm_register(ns, disk_name, node)) {
3054 			dev_warn(ctrl->device, "LightNVM init failure\n");
3055 			goto out_unlink_ns;
3056 		}
3057 	}
3058 
3059 	disk = alloc_disk_node(0, node);
3060 	if (!disk)
3061 		goto out_unlink_ns;
3062 
3063 	disk->fops = &nvme_fops;
3064 	disk->private_data = ns;
3065 	disk->queue = ns->queue;
3066 	disk->flags = flags;
3067 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3068 	ns->disk = disk;
3069 
3070 	__nvme_revalidate_disk(disk, id);
3071 
3072 	down_write(&ctrl->namespaces_rwsem);
3073 	list_add_tail(&ns->list, &ctrl->namespaces);
3074 	up_write(&ctrl->namespaces_rwsem);
3075 
3076 	nvme_get_ctrl(ctrl);
3077 
3078 	kfree(id);
3079 
3080 	device_add_disk(ctrl->device, ns->disk);
3081 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3082 					&nvme_ns_id_attr_group))
3083 		pr_warn("%s: failed to create sysfs group for identification\n",
3084 			ns->disk->disk_name);
3085 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
3086 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3087 			ns->disk->disk_name);
3088 
3089 	nvme_mpath_add_disk(ns->head);
3090 	nvme_fault_inject_init(ns);
3091 	return;
3092  out_unlink_ns:
3093 	mutex_lock(&ctrl->subsys->lock);
3094 	list_del_rcu(&ns->siblings);
3095 	mutex_unlock(&ctrl->subsys->lock);
3096  out_free_id:
3097 	kfree(id);
3098  out_free_queue:
3099 	blk_cleanup_queue(ns->queue);
3100  out_free_ns:
3101 	kfree(ns);
3102 }
3103 
3104 static void nvme_ns_remove(struct nvme_ns *ns)
3105 {
3106 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3107 		return;
3108 
3109 	nvme_fault_inject_fini(ns);
3110 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3111 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3112 					&nvme_ns_id_attr_group);
3113 		if (ns->ndev)
3114 			nvme_nvm_unregister_sysfs(ns);
3115 		del_gendisk(ns->disk);
3116 		blk_cleanup_queue(ns->queue);
3117 		if (blk_get_integrity(ns->disk))
3118 			blk_integrity_unregister(ns->disk);
3119 	}
3120 
3121 	mutex_lock(&ns->ctrl->subsys->lock);
3122 	nvme_mpath_clear_current_path(ns);
3123 	list_del_rcu(&ns->siblings);
3124 	mutex_unlock(&ns->ctrl->subsys->lock);
3125 
3126 	down_write(&ns->ctrl->namespaces_rwsem);
3127 	list_del_init(&ns->list);
3128 	up_write(&ns->ctrl->namespaces_rwsem);
3129 
3130 	synchronize_srcu(&ns->head->srcu);
3131 	nvme_mpath_check_last_path(ns);
3132 	nvme_put_ns(ns);
3133 }
3134 
3135 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3136 {
3137 	struct nvme_ns *ns;
3138 
3139 	ns = nvme_find_get_ns(ctrl, nsid);
3140 	if (ns) {
3141 		if (ns->disk && revalidate_disk(ns->disk))
3142 			nvme_ns_remove(ns);
3143 		nvme_put_ns(ns);
3144 	} else
3145 		nvme_alloc_ns(ctrl, nsid);
3146 }
3147 
3148 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3149 					unsigned nsid)
3150 {
3151 	struct nvme_ns *ns, *next;
3152 	LIST_HEAD(rm_list);
3153 
3154 	down_write(&ctrl->namespaces_rwsem);
3155 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3156 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3157 			list_move_tail(&ns->list, &rm_list);
3158 	}
3159 	up_write(&ctrl->namespaces_rwsem);
3160 
3161 	list_for_each_entry_safe(ns, next, &rm_list, list)
3162 		nvme_ns_remove(ns);
3163 
3164 }
3165 
3166 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3167 {
3168 	struct nvme_ns *ns;
3169 	__le32 *ns_list;
3170 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3171 	int ret = 0;
3172 
3173 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3174 	if (!ns_list)
3175 		return -ENOMEM;
3176 
3177 	for (i = 0; i < num_lists; i++) {
3178 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3179 		if (ret)
3180 			goto free;
3181 
3182 		for (j = 0; j < min(nn, 1024U); j++) {
3183 			nsid = le32_to_cpu(ns_list[j]);
3184 			if (!nsid)
3185 				goto out;
3186 
3187 			nvme_validate_ns(ctrl, nsid);
3188 
3189 			while (++prev < nsid) {
3190 				ns = nvme_find_get_ns(ctrl, prev);
3191 				if (ns) {
3192 					nvme_ns_remove(ns);
3193 					nvme_put_ns(ns);
3194 				}
3195 			}
3196 		}
3197 		nn -= j;
3198 	}
3199  out:
3200 	nvme_remove_invalid_namespaces(ctrl, prev);
3201  free:
3202 	kfree(ns_list);
3203 	return ret;
3204 }
3205 
3206 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3207 {
3208 	unsigned i;
3209 
3210 	for (i = 1; i <= nn; i++)
3211 		nvme_validate_ns(ctrl, i);
3212 
3213 	nvme_remove_invalid_namespaces(ctrl, nn);
3214 }
3215 
3216 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3217 {
3218 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3219 	__le32 *log;
3220 	int error;
3221 
3222 	log = kzalloc(log_size, GFP_KERNEL);
3223 	if (!log)
3224 		return;
3225 
3226 	/*
3227 	 * We need to read the log to clear the AEN, but we don't want to rely
3228 	 * on it for the changed namespace information as userspace could have
3229 	 * raced with us in reading the log page, which could cause us to miss
3230 	 * updates.
3231 	 */
3232 	error = nvme_get_log(ctrl, NVME_LOG_CHANGED_NS, log, log_size);
3233 	if (error)
3234 		dev_warn(ctrl->device,
3235 			"reading changed ns log failed: %d\n", error);
3236 
3237 	kfree(log);
3238 }
3239 
3240 static void nvme_scan_work(struct work_struct *work)
3241 {
3242 	struct nvme_ctrl *ctrl =
3243 		container_of(work, struct nvme_ctrl, scan_work);
3244 	struct nvme_id_ctrl *id;
3245 	unsigned nn;
3246 
3247 	if (ctrl->state != NVME_CTRL_LIVE)
3248 		return;
3249 
3250 	WARN_ON_ONCE(!ctrl->tagset);
3251 
3252 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3253 		dev_info(ctrl->device, "rescanning namespaces.\n");
3254 		nvme_clear_changed_ns_log(ctrl);
3255 	}
3256 
3257 	if (nvme_identify_ctrl(ctrl, &id))
3258 		return;
3259 
3260 	nn = le32_to_cpu(id->nn);
3261 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3262 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3263 		if (!nvme_scan_ns_list(ctrl, nn))
3264 			goto out_free_id;
3265 	}
3266 	nvme_scan_ns_sequential(ctrl, nn);
3267 out_free_id:
3268 	kfree(id);
3269 	down_write(&ctrl->namespaces_rwsem);
3270 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3271 	up_write(&ctrl->namespaces_rwsem);
3272 }
3273 
3274 /*
3275  * This function iterates the namespace list unlocked to allow recovery from
3276  * controller failure. It is up to the caller to ensure the namespace list is
3277  * not modified by scan work while this function is executing.
3278  */
3279 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3280 {
3281 	struct nvme_ns *ns, *next;
3282 	LIST_HEAD(ns_list);
3283 
3284 	/*
3285 	 * The dead states indicates the controller was not gracefully
3286 	 * disconnected. In that case, we won't be able to flush any data while
3287 	 * removing the namespaces' disks; fail all the queues now to avoid
3288 	 * potentially having to clean up the failed sync later.
3289 	 */
3290 	if (ctrl->state == NVME_CTRL_DEAD)
3291 		nvme_kill_queues(ctrl);
3292 
3293 	down_write(&ctrl->namespaces_rwsem);
3294 	list_splice_init(&ctrl->namespaces, &ns_list);
3295 	up_write(&ctrl->namespaces_rwsem);
3296 
3297 	list_for_each_entry_safe(ns, next, &ns_list, list)
3298 		nvme_ns_remove(ns);
3299 }
3300 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3301 
3302 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3303 {
3304 	char *envp[2] = { NULL, NULL };
3305 	u32 aen_result = ctrl->aen_result;
3306 
3307 	ctrl->aen_result = 0;
3308 	if (!aen_result)
3309 		return;
3310 
3311 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3312 	if (!envp[0])
3313 		return;
3314 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3315 	kfree(envp[0]);
3316 }
3317 
3318 static void nvme_async_event_work(struct work_struct *work)
3319 {
3320 	struct nvme_ctrl *ctrl =
3321 		container_of(work, struct nvme_ctrl, async_event_work);
3322 
3323 	nvme_aen_uevent(ctrl);
3324 	ctrl->ops->submit_async_event(ctrl);
3325 }
3326 
3327 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3328 {
3329 
3330 	u32 csts;
3331 
3332 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3333 		return false;
3334 
3335 	if (csts == ~0)
3336 		return false;
3337 
3338 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3339 }
3340 
3341 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3342 {
3343 	struct nvme_fw_slot_info_log *log;
3344 
3345 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3346 	if (!log)
3347 		return;
3348 
3349 	if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3350 		dev_warn(ctrl->device,
3351 				"Get FW SLOT INFO log error\n");
3352 	kfree(log);
3353 }
3354 
3355 static void nvme_fw_act_work(struct work_struct *work)
3356 {
3357 	struct nvme_ctrl *ctrl = container_of(work,
3358 				struct nvme_ctrl, fw_act_work);
3359 	unsigned long fw_act_timeout;
3360 
3361 	if (ctrl->mtfa)
3362 		fw_act_timeout = jiffies +
3363 				msecs_to_jiffies(ctrl->mtfa * 100);
3364 	else
3365 		fw_act_timeout = jiffies +
3366 				msecs_to_jiffies(admin_timeout * 1000);
3367 
3368 	nvme_stop_queues(ctrl);
3369 	while (nvme_ctrl_pp_status(ctrl)) {
3370 		if (time_after(jiffies, fw_act_timeout)) {
3371 			dev_warn(ctrl->device,
3372 				"Fw activation timeout, reset controller\n");
3373 			nvme_reset_ctrl(ctrl);
3374 			break;
3375 		}
3376 		msleep(100);
3377 	}
3378 
3379 	if (ctrl->state != NVME_CTRL_LIVE)
3380 		return;
3381 
3382 	nvme_start_queues(ctrl);
3383 	/* read FW slot information to clear the AER */
3384 	nvme_get_fw_slot_info(ctrl);
3385 }
3386 
3387 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3388 {
3389 	switch ((result & 0xff00) >> 8) {
3390 	case NVME_AER_NOTICE_NS_CHANGED:
3391 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3392 		nvme_queue_scan(ctrl);
3393 		break;
3394 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3395 		queue_work(nvme_wq, &ctrl->fw_act_work);
3396 		break;
3397 	default:
3398 		dev_warn(ctrl->device, "async event result %08x\n", result);
3399 	}
3400 }
3401 
3402 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3403 		volatile union nvme_result *res)
3404 {
3405 	u32 result = le32_to_cpu(res->u32);
3406 
3407 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3408 		return;
3409 
3410 	switch (result & 0x7) {
3411 	case NVME_AER_NOTICE:
3412 		nvme_handle_aen_notice(ctrl, result);
3413 		break;
3414 	case NVME_AER_ERROR:
3415 	case NVME_AER_SMART:
3416 	case NVME_AER_CSS:
3417 	case NVME_AER_VS:
3418 		ctrl->aen_result = result;
3419 		break;
3420 	default:
3421 		break;
3422 	}
3423 	queue_work(nvme_wq, &ctrl->async_event_work);
3424 }
3425 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3426 
3427 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3428 {
3429 	nvme_stop_keep_alive(ctrl);
3430 	flush_work(&ctrl->async_event_work);
3431 	flush_work(&ctrl->scan_work);
3432 	cancel_work_sync(&ctrl->fw_act_work);
3433 	if (ctrl->ops->stop_ctrl)
3434 		ctrl->ops->stop_ctrl(ctrl);
3435 }
3436 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3437 
3438 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3439 {
3440 	if (ctrl->kato)
3441 		nvme_start_keep_alive(ctrl);
3442 
3443 	if (ctrl->queue_count > 1) {
3444 		nvme_queue_scan(ctrl);
3445 		nvme_enable_aen(ctrl);
3446 		queue_work(nvme_wq, &ctrl->async_event_work);
3447 		nvme_start_queues(ctrl);
3448 	}
3449 }
3450 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3451 
3452 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3453 {
3454 	cdev_device_del(&ctrl->cdev, ctrl->device);
3455 }
3456 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3457 
3458 static void nvme_free_ctrl(struct device *dev)
3459 {
3460 	struct nvme_ctrl *ctrl =
3461 		container_of(dev, struct nvme_ctrl, ctrl_device);
3462 	struct nvme_subsystem *subsys = ctrl->subsys;
3463 
3464 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3465 	kfree(ctrl->effects);
3466 
3467 	if (subsys) {
3468 		mutex_lock(&subsys->lock);
3469 		list_del(&ctrl->subsys_entry);
3470 		mutex_unlock(&subsys->lock);
3471 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3472 	}
3473 
3474 	ctrl->ops->free_ctrl(ctrl);
3475 
3476 	if (subsys)
3477 		nvme_put_subsystem(subsys);
3478 }
3479 
3480 /*
3481  * Initialize a NVMe controller structures.  This needs to be called during
3482  * earliest initialization so that we have the initialized structured around
3483  * during probing.
3484  */
3485 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3486 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3487 {
3488 	int ret;
3489 
3490 	ctrl->state = NVME_CTRL_NEW;
3491 	spin_lock_init(&ctrl->lock);
3492 	INIT_LIST_HEAD(&ctrl->namespaces);
3493 	init_rwsem(&ctrl->namespaces_rwsem);
3494 	ctrl->dev = dev;
3495 	ctrl->ops = ops;
3496 	ctrl->quirks = quirks;
3497 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3498 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3499 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3500 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3501 
3502 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3503 	if (ret < 0)
3504 		goto out;
3505 	ctrl->instance = ret;
3506 
3507 	device_initialize(&ctrl->ctrl_device);
3508 	ctrl->device = &ctrl->ctrl_device;
3509 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3510 	ctrl->device->class = nvme_class;
3511 	ctrl->device->parent = ctrl->dev;
3512 	ctrl->device->groups = nvme_dev_attr_groups;
3513 	ctrl->device->release = nvme_free_ctrl;
3514 	dev_set_drvdata(ctrl->device, ctrl);
3515 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3516 	if (ret)
3517 		goto out_release_instance;
3518 
3519 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3520 	ctrl->cdev.owner = ops->module;
3521 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3522 	if (ret)
3523 		goto out_free_name;
3524 
3525 	/*
3526 	 * Initialize latency tolerance controls.  The sysfs files won't
3527 	 * be visible to userspace unless the device actually supports APST.
3528 	 */
3529 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3530 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3531 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3532 
3533 	return 0;
3534 out_free_name:
3535 	kfree_const(dev->kobj.name);
3536 out_release_instance:
3537 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3538 out:
3539 	return ret;
3540 }
3541 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3542 
3543 /**
3544  * nvme_kill_queues(): Ends all namespace queues
3545  * @ctrl: the dead controller that needs to end
3546  *
3547  * Call this function when the driver determines it is unable to get the
3548  * controller in a state capable of servicing IO.
3549  */
3550 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3551 {
3552 	struct nvme_ns *ns;
3553 
3554 	down_read(&ctrl->namespaces_rwsem);
3555 
3556 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3557 	if (ctrl->admin_q)
3558 		blk_mq_unquiesce_queue(ctrl->admin_q);
3559 
3560 	list_for_each_entry(ns, &ctrl->namespaces, list)
3561 		nvme_set_queue_dying(ns);
3562 
3563 	up_read(&ctrl->namespaces_rwsem);
3564 }
3565 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3566 
3567 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3568 {
3569 	struct nvme_ns *ns;
3570 
3571 	down_read(&ctrl->namespaces_rwsem);
3572 	list_for_each_entry(ns, &ctrl->namespaces, list)
3573 		blk_mq_unfreeze_queue(ns->queue);
3574 	up_read(&ctrl->namespaces_rwsem);
3575 }
3576 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3577 
3578 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3579 {
3580 	struct nvme_ns *ns;
3581 
3582 	down_read(&ctrl->namespaces_rwsem);
3583 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3584 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3585 		if (timeout <= 0)
3586 			break;
3587 	}
3588 	up_read(&ctrl->namespaces_rwsem);
3589 }
3590 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3591 
3592 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3593 {
3594 	struct nvme_ns *ns;
3595 
3596 	down_read(&ctrl->namespaces_rwsem);
3597 	list_for_each_entry(ns, &ctrl->namespaces, list)
3598 		blk_mq_freeze_queue_wait(ns->queue);
3599 	up_read(&ctrl->namespaces_rwsem);
3600 }
3601 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3602 
3603 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3604 {
3605 	struct nvme_ns *ns;
3606 
3607 	down_read(&ctrl->namespaces_rwsem);
3608 	list_for_each_entry(ns, &ctrl->namespaces, list)
3609 		blk_freeze_queue_start(ns->queue);
3610 	up_read(&ctrl->namespaces_rwsem);
3611 }
3612 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3613 
3614 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3615 {
3616 	struct nvme_ns *ns;
3617 
3618 	down_read(&ctrl->namespaces_rwsem);
3619 	list_for_each_entry(ns, &ctrl->namespaces, list)
3620 		blk_mq_quiesce_queue(ns->queue);
3621 	up_read(&ctrl->namespaces_rwsem);
3622 }
3623 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3624 
3625 void nvme_start_queues(struct nvme_ctrl *ctrl)
3626 {
3627 	struct nvme_ns *ns;
3628 
3629 	down_read(&ctrl->namespaces_rwsem);
3630 	list_for_each_entry(ns, &ctrl->namespaces, list)
3631 		blk_mq_unquiesce_queue(ns->queue);
3632 	up_read(&ctrl->namespaces_rwsem);
3633 }
3634 EXPORT_SYMBOL_GPL(nvme_start_queues);
3635 
3636 int __init nvme_core_init(void)
3637 {
3638 	int result = -ENOMEM;
3639 
3640 	nvme_wq = alloc_workqueue("nvme-wq",
3641 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3642 	if (!nvme_wq)
3643 		goto out;
3644 
3645 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3646 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3647 	if (!nvme_reset_wq)
3648 		goto destroy_wq;
3649 
3650 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3651 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3652 	if (!nvme_delete_wq)
3653 		goto destroy_reset_wq;
3654 
3655 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3656 	if (result < 0)
3657 		goto destroy_delete_wq;
3658 
3659 	nvme_class = class_create(THIS_MODULE, "nvme");
3660 	if (IS_ERR(nvme_class)) {
3661 		result = PTR_ERR(nvme_class);
3662 		goto unregister_chrdev;
3663 	}
3664 
3665 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3666 	if (IS_ERR(nvme_subsys_class)) {
3667 		result = PTR_ERR(nvme_subsys_class);
3668 		goto destroy_class;
3669 	}
3670 	return 0;
3671 
3672 destroy_class:
3673 	class_destroy(nvme_class);
3674 unregister_chrdev:
3675 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3676 destroy_delete_wq:
3677 	destroy_workqueue(nvme_delete_wq);
3678 destroy_reset_wq:
3679 	destroy_workqueue(nvme_reset_wq);
3680 destroy_wq:
3681 	destroy_workqueue(nvme_wq);
3682 out:
3683 	return result;
3684 }
3685 
3686 void nvme_core_exit(void)
3687 {
3688 	ida_destroy(&nvme_subsystems_ida);
3689 	class_destroy(nvme_subsys_class);
3690 	class_destroy(nvme_class);
3691 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3692 	destroy_workqueue(nvme_delete_wq);
3693 	destroy_workqueue(nvme_reset_wq);
3694 	destroy_workqueue(nvme_wq);
3695 }
3696 
3697 MODULE_LICENSE("GPL");
3698 MODULE_VERSION("1.0");
3699 module_init(nvme_core_init);
3700 module_exit(nvme_core_exit);
3701