xref: /linux/drivers/nvme/host/core.c (revision e6f2a617ac53bc0753b885ffb94379ff48b2e2df)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	blk_set_queue_dying(ns->queue);
106 	/* Forcibly unquiesce queues to avoid blocking dispatch */
107 	blk_mq_unquiesce_queue(ns->queue);
108 	/*
109 	 * Revalidate after unblocking dispatchers that may be holding bd_butex
110 	 */
111 	revalidate_disk(ns->disk);
112 }
113 
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116 	/*
117 	 * Only new queue scan work when admin and IO queues are both alive
118 	 */
119 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
120 		queue_work(nvme_wq, &ctrl->scan_work);
121 }
122 
123 /*
124  * Use this function to proceed with scheduling reset_work for a controller
125  * that had previously been set to the resetting state. This is intended for
126  * code paths that can't be interrupted by other reset attempts. A hot removal
127  * may prevent this from succeeding.
128  */
129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
130 {
131 	if (ctrl->state != NVME_CTRL_RESETTING)
132 		return -EBUSY;
133 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
134 		return -EBUSY;
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
138 
139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
140 {
141 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
142 		return -EBUSY;
143 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
144 		return -EBUSY;
145 	return 0;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
148 
149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
150 {
151 	int ret;
152 
153 	ret = nvme_reset_ctrl(ctrl);
154 	if (!ret) {
155 		flush_work(&ctrl->reset_work);
156 		if (ctrl->state != NVME_CTRL_LIVE)
157 			ret = -ENETRESET;
158 	}
159 
160 	return ret;
161 }
162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
163 
164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
165 {
166 	dev_info(ctrl->device,
167 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
168 
169 	flush_work(&ctrl->reset_work);
170 	nvme_stop_ctrl(ctrl);
171 	nvme_remove_namespaces(ctrl);
172 	ctrl->ops->delete_ctrl(ctrl);
173 	nvme_uninit_ctrl(ctrl);
174 	nvme_put_ctrl(ctrl);
175 }
176 
177 static void nvme_delete_ctrl_work(struct work_struct *work)
178 {
179 	struct nvme_ctrl *ctrl =
180 		container_of(work, struct nvme_ctrl, delete_work);
181 
182 	nvme_do_delete_ctrl(ctrl);
183 }
184 
185 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
186 {
187 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188 		return -EBUSY;
189 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
190 		return -EBUSY;
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
194 
195 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197 	int ret = 0;
198 
199 	/*
200 	 * Keep a reference until nvme_do_delete_ctrl() complete,
201 	 * since ->delete_ctrl can free the controller.
202 	 */
203 	nvme_get_ctrl(ctrl);
204 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
205 		ret = -EBUSY;
206 	if (!ret)
207 		nvme_do_delete_ctrl(ctrl);
208 	nvme_put_ctrl(ctrl);
209 	return ret;
210 }
211 
212 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
213 {
214 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
215 }
216 
217 static blk_status_t nvme_error_status(u16 status)
218 {
219 	switch (status & 0x7ff) {
220 	case NVME_SC_SUCCESS:
221 		return BLK_STS_OK;
222 	case NVME_SC_CAP_EXCEEDED:
223 		return BLK_STS_NOSPC;
224 	case NVME_SC_LBA_RANGE:
225 		return BLK_STS_TARGET;
226 	case NVME_SC_BAD_ATTRIBUTES:
227 	case NVME_SC_ONCS_NOT_SUPPORTED:
228 	case NVME_SC_INVALID_OPCODE:
229 	case NVME_SC_INVALID_FIELD:
230 	case NVME_SC_INVALID_NS:
231 		return BLK_STS_NOTSUPP;
232 	case NVME_SC_WRITE_FAULT:
233 	case NVME_SC_READ_ERROR:
234 	case NVME_SC_UNWRITTEN_BLOCK:
235 	case NVME_SC_ACCESS_DENIED:
236 	case NVME_SC_READ_ONLY:
237 	case NVME_SC_COMPARE_FAILED:
238 		return BLK_STS_MEDIUM;
239 	case NVME_SC_GUARD_CHECK:
240 	case NVME_SC_APPTAG_CHECK:
241 	case NVME_SC_REFTAG_CHECK:
242 	case NVME_SC_INVALID_PI:
243 		return BLK_STS_PROTECTION;
244 	case NVME_SC_RESERVATION_CONFLICT:
245 		return BLK_STS_NEXUS;
246 	case NVME_SC_HOST_PATH_ERROR:
247 		return BLK_STS_TRANSPORT;
248 	default:
249 		return BLK_STS_IOERR;
250 	}
251 }
252 
253 static inline bool nvme_req_needs_retry(struct request *req)
254 {
255 	if (blk_noretry_request(req))
256 		return false;
257 	if (nvme_req(req)->status & NVME_SC_DNR)
258 		return false;
259 	if (nvme_req(req)->retries >= nvme_max_retries)
260 		return false;
261 	return true;
262 }
263 
264 static void nvme_retry_req(struct request *req)
265 {
266 	struct nvme_ns *ns = req->q->queuedata;
267 	unsigned long delay = 0;
268 	u16 crd;
269 
270 	/* The mask and shift result must be <= 3 */
271 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
272 	if (ns && crd)
273 		delay = ns->ctrl->crdt[crd - 1] * 100;
274 
275 	nvme_req(req)->retries++;
276 	blk_mq_requeue_request(req, false);
277 	blk_mq_delay_kick_requeue_list(req->q, delay);
278 }
279 
280 void nvme_complete_rq(struct request *req)
281 {
282 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
283 
284 	trace_nvme_complete_rq(req);
285 
286 	nvme_cleanup_cmd(req);
287 
288 	if (nvme_req(req)->ctrl->kas)
289 		nvme_req(req)->ctrl->comp_seen = true;
290 
291 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
292 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
293 		    blk_path_error(status)) {
294 			nvme_failover_req(req);
295 			return;
296 		}
297 
298 		if (!blk_queue_dying(req->q)) {
299 			nvme_retry_req(req);
300 			return;
301 		}
302 	}
303 
304 	nvme_trace_bio_complete(req, status);
305 	blk_mq_end_request(req, status);
306 }
307 EXPORT_SYMBOL_GPL(nvme_complete_rq);
308 
309 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
310 {
311 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
312 				"Cancelling I/O %d", req->tag);
313 
314 	/* don't abort one completed request */
315 	if (blk_mq_request_completed(req))
316 		return true;
317 
318 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
319 	blk_mq_complete_request(req);
320 	return true;
321 }
322 EXPORT_SYMBOL_GPL(nvme_cancel_request);
323 
324 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
325 		enum nvme_ctrl_state new_state)
326 {
327 	enum nvme_ctrl_state old_state;
328 	unsigned long flags;
329 	bool changed = false;
330 
331 	spin_lock_irqsave(&ctrl->lock, flags);
332 
333 	old_state = ctrl->state;
334 	switch (new_state) {
335 	case NVME_CTRL_LIVE:
336 		switch (old_state) {
337 		case NVME_CTRL_NEW:
338 		case NVME_CTRL_RESETTING:
339 		case NVME_CTRL_CONNECTING:
340 			changed = true;
341 			/* FALLTHRU */
342 		default:
343 			break;
344 		}
345 		break;
346 	case NVME_CTRL_RESETTING:
347 		switch (old_state) {
348 		case NVME_CTRL_NEW:
349 		case NVME_CTRL_LIVE:
350 			changed = true;
351 			/* FALLTHRU */
352 		default:
353 			break;
354 		}
355 		break;
356 	case NVME_CTRL_CONNECTING:
357 		switch (old_state) {
358 		case NVME_CTRL_NEW:
359 		case NVME_CTRL_RESETTING:
360 			changed = true;
361 			/* FALLTHRU */
362 		default:
363 			break;
364 		}
365 		break;
366 	case NVME_CTRL_DELETING:
367 		switch (old_state) {
368 		case NVME_CTRL_LIVE:
369 		case NVME_CTRL_RESETTING:
370 		case NVME_CTRL_CONNECTING:
371 			changed = true;
372 			/* FALLTHRU */
373 		default:
374 			break;
375 		}
376 		break;
377 	case NVME_CTRL_DEAD:
378 		switch (old_state) {
379 		case NVME_CTRL_DELETING:
380 			changed = true;
381 			/* FALLTHRU */
382 		default:
383 			break;
384 		}
385 		break;
386 	default:
387 		break;
388 	}
389 
390 	if (changed) {
391 		ctrl->state = new_state;
392 		wake_up_all(&ctrl->state_wq);
393 	}
394 
395 	spin_unlock_irqrestore(&ctrl->lock, flags);
396 	if (changed && ctrl->state == NVME_CTRL_LIVE)
397 		nvme_kick_requeue_lists(ctrl);
398 	return changed;
399 }
400 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
401 
402 /*
403  * Returns true for sink states that can't ever transition back to live.
404  */
405 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
406 {
407 	switch (ctrl->state) {
408 	case NVME_CTRL_NEW:
409 	case NVME_CTRL_LIVE:
410 	case NVME_CTRL_RESETTING:
411 	case NVME_CTRL_CONNECTING:
412 		return false;
413 	case NVME_CTRL_DELETING:
414 	case NVME_CTRL_DEAD:
415 		return true;
416 	default:
417 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
418 		return true;
419 	}
420 }
421 
422 /*
423  * Waits for the controller state to be resetting, or returns false if it is
424  * not possible to ever transition to that state.
425  */
426 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
427 {
428 	wait_event(ctrl->state_wq,
429 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
430 		   nvme_state_terminal(ctrl));
431 	return ctrl->state == NVME_CTRL_RESETTING;
432 }
433 EXPORT_SYMBOL_GPL(nvme_wait_reset);
434 
435 static void nvme_free_ns_head(struct kref *ref)
436 {
437 	struct nvme_ns_head *head =
438 		container_of(ref, struct nvme_ns_head, ref);
439 
440 	nvme_mpath_remove_disk(head);
441 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
442 	list_del_init(&head->entry);
443 	cleanup_srcu_struct(&head->srcu);
444 	nvme_put_subsystem(head->subsys);
445 	kfree(head);
446 }
447 
448 static void nvme_put_ns_head(struct nvme_ns_head *head)
449 {
450 	kref_put(&head->ref, nvme_free_ns_head);
451 }
452 
453 static void nvme_free_ns(struct kref *kref)
454 {
455 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
456 
457 	if (ns->ndev)
458 		nvme_nvm_unregister(ns);
459 
460 	put_disk(ns->disk);
461 	nvme_put_ns_head(ns->head);
462 	nvme_put_ctrl(ns->ctrl);
463 	kfree(ns);
464 }
465 
466 static void nvme_put_ns(struct nvme_ns *ns)
467 {
468 	kref_put(&ns->kref, nvme_free_ns);
469 }
470 
471 static inline void nvme_clear_nvme_request(struct request *req)
472 {
473 	if (!(req->rq_flags & RQF_DONTPREP)) {
474 		nvme_req(req)->retries = 0;
475 		nvme_req(req)->flags = 0;
476 		req->rq_flags |= RQF_DONTPREP;
477 	}
478 }
479 
480 struct request *nvme_alloc_request(struct request_queue *q,
481 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
482 {
483 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
484 	struct request *req;
485 
486 	if (qid == NVME_QID_ANY) {
487 		req = blk_mq_alloc_request(q, op, flags);
488 	} else {
489 		req = blk_mq_alloc_request_hctx(q, op, flags,
490 				qid ? qid - 1 : 0);
491 	}
492 	if (IS_ERR(req))
493 		return req;
494 
495 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
496 	nvme_clear_nvme_request(req);
497 	nvme_req(req)->cmd = cmd;
498 
499 	return req;
500 }
501 EXPORT_SYMBOL_GPL(nvme_alloc_request);
502 
503 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
504 {
505 	struct nvme_command c;
506 
507 	memset(&c, 0, sizeof(c));
508 
509 	c.directive.opcode = nvme_admin_directive_send;
510 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
511 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
512 	c.directive.dtype = NVME_DIR_IDENTIFY;
513 	c.directive.tdtype = NVME_DIR_STREAMS;
514 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
515 
516 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
517 }
518 
519 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
520 {
521 	return nvme_toggle_streams(ctrl, false);
522 }
523 
524 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
525 {
526 	return nvme_toggle_streams(ctrl, true);
527 }
528 
529 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
530 				  struct streams_directive_params *s, u32 nsid)
531 {
532 	struct nvme_command c;
533 
534 	memset(&c, 0, sizeof(c));
535 	memset(s, 0, sizeof(*s));
536 
537 	c.directive.opcode = nvme_admin_directive_recv;
538 	c.directive.nsid = cpu_to_le32(nsid);
539 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
540 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
541 	c.directive.dtype = NVME_DIR_STREAMS;
542 
543 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
544 }
545 
546 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
547 {
548 	struct streams_directive_params s;
549 	int ret;
550 
551 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
552 		return 0;
553 	if (!streams)
554 		return 0;
555 
556 	ret = nvme_enable_streams(ctrl);
557 	if (ret)
558 		return ret;
559 
560 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
561 	if (ret)
562 		return ret;
563 
564 	ctrl->nssa = le16_to_cpu(s.nssa);
565 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
566 		dev_info(ctrl->device, "too few streams (%u) available\n",
567 					ctrl->nssa);
568 		nvme_disable_streams(ctrl);
569 		return 0;
570 	}
571 
572 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
573 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
574 	return 0;
575 }
576 
577 /*
578  * Check if 'req' has a write hint associated with it. If it does, assign
579  * a valid namespace stream to the write.
580  */
581 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
582 				     struct request *req, u16 *control,
583 				     u32 *dsmgmt)
584 {
585 	enum rw_hint streamid = req->write_hint;
586 
587 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
588 		streamid = 0;
589 	else {
590 		streamid--;
591 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
592 			return;
593 
594 		*control |= NVME_RW_DTYPE_STREAMS;
595 		*dsmgmt |= streamid << 16;
596 	}
597 
598 	if (streamid < ARRAY_SIZE(req->q->write_hints))
599 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
600 }
601 
602 static inline void nvme_setup_flush(struct nvme_ns *ns,
603 		struct nvme_command *cmnd)
604 {
605 	cmnd->common.opcode = nvme_cmd_flush;
606 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
607 }
608 
609 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
610 		struct nvme_command *cmnd)
611 {
612 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
613 	struct nvme_dsm_range *range;
614 	struct bio *bio;
615 
616 	/*
617 	 * Some devices do not consider the DSM 'Number of Ranges' field when
618 	 * determining how much data to DMA. Always allocate memory for maximum
619 	 * number of segments to prevent device reading beyond end of buffer.
620 	 */
621 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
622 
623 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
624 	if (!range) {
625 		/*
626 		 * If we fail allocation our range, fallback to the controller
627 		 * discard page. If that's also busy, it's safe to return
628 		 * busy, as we know we can make progress once that's freed.
629 		 */
630 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
631 			return BLK_STS_RESOURCE;
632 
633 		range = page_address(ns->ctrl->discard_page);
634 	}
635 
636 	__rq_for_each_bio(bio, req) {
637 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
638 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
639 
640 		if (n < segments) {
641 			range[n].cattr = cpu_to_le32(0);
642 			range[n].nlb = cpu_to_le32(nlb);
643 			range[n].slba = cpu_to_le64(slba);
644 		}
645 		n++;
646 	}
647 
648 	if (WARN_ON_ONCE(n != segments)) {
649 		if (virt_to_page(range) == ns->ctrl->discard_page)
650 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
651 		else
652 			kfree(range);
653 		return BLK_STS_IOERR;
654 	}
655 
656 	cmnd->dsm.opcode = nvme_cmd_dsm;
657 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
658 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
659 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
660 
661 	req->special_vec.bv_page = virt_to_page(range);
662 	req->special_vec.bv_offset = offset_in_page(range);
663 	req->special_vec.bv_len = alloc_size;
664 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
665 
666 	return BLK_STS_OK;
667 }
668 
669 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
670 		struct request *req, struct nvme_command *cmnd)
671 {
672 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
673 		return nvme_setup_discard(ns, req, cmnd);
674 
675 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
676 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
677 	cmnd->write_zeroes.slba =
678 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
679 	cmnd->write_zeroes.length =
680 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
681 	cmnd->write_zeroes.control = 0;
682 	return BLK_STS_OK;
683 }
684 
685 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
686 		struct request *req, struct nvme_command *cmnd)
687 {
688 	struct nvme_ctrl *ctrl = ns->ctrl;
689 	u16 control = 0;
690 	u32 dsmgmt = 0;
691 
692 	if (req->cmd_flags & REQ_FUA)
693 		control |= NVME_RW_FUA;
694 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
695 		control |= NVME_RW_LR;
696 
697 	if (req->cmd_flags & REQ_RAHEAD)
698 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699 
700 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
701 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
702 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
703 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
704 
705 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
706 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
707 
708 	if (ns->ms) {
709 		/*
710 		 * If formated with metadata, the block layer always provides a
711 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
712 		 * we enable the PRACT bit for protection information or set the
713 		 * namespace capacity to zero to prevent any I/O.
714 		 */
715 		if (!blk_integrity_rq(req)) {
716 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
717 				return BLK_STS_NOTSUPP;
718 			control |= NVME_RW_PRINFO_PRACT;
719 		}
720 
721 		switch (ns->pi_type) {
722 		case NVME_NS_DPS_PI_TYPE3:
723 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
724 			break;
725 		case NVME_NS_DPS_PI_TYPE1:
726 		case NVME_NS_DPS_PI_TYPE2:
727 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
728 					NVME_RW_PRINFO_PRCHK_REF;
729 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
730 			break;
731 		}
732 	}
733 
734 	cmnd->rw.control = cpu_to_le16(control);
735 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
736 	return 0;
737 }
738 
739 void nvme_cleanup_cmd(struct request *req)
740 {
741 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
742 		struct nvme_ns *ns = req->rq_disk->private_data;
743 		struct page *page = req->special_vec.bv_page;
744 
745 		if (page == ns->ctrl->discard_page)
746 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
747 		else
748 			kfree(page_address(page) + req->special_vec.bv_offset);
749 	}
750 }
751 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
752 
753 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
754 		struct nvme_command *cmd)
755 {
756 	blk_status_t ret = BLK_STS_OK;
757 
758 	nvme_clear_nvme_request(req);
759 
760 	memset(cmd, 0, sizeof(*cmd));
761 	switch (req_op(req)) {
762 	case REQ_OP_DRV_IN:
763 	case REQ_OP_DRV_OUT:
764 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
765 		break;
766 	case REQ_OP_FLUSH:
767 		nvme_setup_flush(ns, cmd);
768 		break;
769 	case REQ_OP_WRITE_ZEROES:
770 		ret = nvme_setup_write_zeroes(ns, req, cmd);
771 		break;
772 	case REQ_OP_DISCARD:
773 		ret = nvme_setup_discard(ns, req, cmd);
774 		break;
775 	case REQ_OP_READ:
776 	case REQ_OP_WRITE:
777 		ret = nvme_setup_rw(ns, req, cmd);
778 		break;
779 	default:
780 		WARN_ON_ONCE(1);
781 		return BLK_STS_IOERR;
782 	}
783 
784 	cmd->common.command_id = req->tag;
785 	trace_nvme_setup_cmd(req, cmd);
786 	return ret;
787 }
788 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
789 
790 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
791 {
792 	struct completion *waiting = rq->end_io_data;
793 
794 	rq->end_io_data = NULL;
795 	complete(waiting);
796 }
797 
798 static void nvme_execute_rq_polled(struct request_queue *q,
799 		struct gendisk *bd_disk, struct request *rq, int at_head)
800 {
801 	DECLARE_COMPLETION_ONSTACK(wait);
802 
803 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
804 
805 	rq->cmd_flags |= REQ_HIPRI;
806 	rq->end_io_data = &wait;
807 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
808 
809 	while (!completion_done(&wait)) {
810 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
811 		cond_resched();
812 	}
813 }
814 
815 /*
816  * Returns 0 on success.  If the result is negative, it's a Linux error code;
817  * if the result is positive, it's an NVM Express status code
818  */
819 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
820 		union nvme_result *result, void *buffer, unsigned bufflen,
821 		unsigned timeout, int qid, int at_head,
822 		blk_mq_req_flags_t flags, bool poll)
823 {
824 	struct request *req;
825 	int ret;
826 
827 	req = nvme_alloc_request(q, cmd, flags, qid);
828 	if (IS_ERR(req))
829 		return PTR_ERR(req);
830 
831 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
832 
833 	if (buffer && bufflen) {
834 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
835 		if (ret)
836 			goto out;
837 	}
838 
839 	if (poll)
840 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
841 	else
842 		blk_execute_rq(req->q, NULL, req, at_head);
843 	if (result)
844 		*result = nvme_req(req)->result;
845 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
846 		ret = -EINTR;
847 	else
848 		ret = nvme_req(req)->status;
849  out:
850 	blk_mq_free_request(req);
851 	return ret;
852 }
853 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
854 
855 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
856 		void *buffer, unsigned bufflen)
857 {
858 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
859 			NVME_QID_ANY, 0, 0, false);
860 }
861 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
862 
863 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
864 		unsigned len, u32 seed, bool write)
865 {
866 	struct bio_integrity_payload *bip;
867 	int ret = -ENOMEM;
868 	void *buf;
869 
870 	buf = kmalloc(len, GFP_KERNEL);
871 	if (!buf)
872 		goto out;
873 
874 	ret = -EFAULT;
875 	if (write && copy_from_user(buf, ubuf, len))
876 		goto out_free_meta;
877 
878 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
879 	if (IS_ERR(bip)) {
880 		ret = PTR_ERR(bip);
881 		goto out_free_meta;
882 	}
883 
884 	bip->bip_iter.bi_size = len;
885 	bip->bip_iter.bi_sector = seed;
886 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
887 			offset_in_page(buf));
888 	if (ret == len)
889 		return buf;
890 	ret = -ENOMEM;
891 out_free_meta:
892 	kfree(buf);
893 out:
894 	return ERR_PTR(ret);
895 }
896 
897 static int nvme_submit_user_cmd(struct request_queue *q,
898 		struct nvme_command *cmd, void __user *ubuffer,
899 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
900 		u32 meta_seed, u64 *result, unsigned timeout)
901 {
902 	bool write = nvme_is_write(cmd);
903 	struct nvme_ns *ns = q->queuedata;
904 	struct gendisk *disk = ns ? ns->disk : NULL;
905 	struct request *req;
906 	struct bio *bio = NULL;
907 	void *meta = NULL;
908 	int ret;
909 
910 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
911 	if (IS_ERR(req))
912 		return PTR_ERR(req);
913 
914 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
915 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
916 
917 	if (ubuffer && bufflen) {
918 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
919 				GFP_KERNEL);
920 		if (ret)
921 			goto out;
922 		bio = req->bio;
923 		bio->bi_disk = disk;
924 		if (disk && meta_buffer && meta_len) {
925 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
926 					meta_seed, write);
927 			if (IS_ERR(meta)) {
928 				ret = PTR_ERR(meta);
929 				goto out_unmap;
930 			}
931 			req->cmd_flags |= REQ_INTEGRITY;
932 		}
933 	}
934 
935 	blk_execute_rq(req->q, disk, req, 0);
936 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
937 		ret = -EINTR;
938 	else
939 		ret = nvme_req(req)->status;
940 	if (result)
941 		*result = le64_to_cpu(nvme_req(req)->result.u64);
942 	if (meta && !ret && !write) {
943 		if (copy_to_user(meta_buffer, meta, meta_len))
944 			ret = -EFAULT;
945 	}
946 	kfree(meta);
947  out_unmap:
948 	if (bio)
949 		blk_rq_unmap_user(bio);
950  out:
951 	blk_mq_free_request(req);
952 	return ret;
953 }
954 
955 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
956 {
957 	struct nvme_ctrl *ctrl = rq->end_io_data;
958 	unsigned long flags;
959 	bool startka = false;
960 
961 	blk_mq_free_request(rq);
962 
963 	if (status) {
964 		dev_err(ctrl->device,
965 			"failed nvme_keep_alive_end_io error=%d\n",
966 				status);
967 		return;
968 	}
969 
970 	ctrl->comp_seen = false;
971 	spin_lock_irqsave(&ctrl->lock, flags);
972 	if (ctrl->state == NVME_CTRL_LIVE ||
973 	    ctrl->state == NVME_CTRL_CONNECTING)
974 		startka = true;
975 	spin_unlock_irqrestore(&ctrl->lock, flags);
976 	if (startka)
977 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
978 }
979 
980 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
981 {
982 	struct request *rq;
983 
984 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
985 			NVME_QID_ANY);
986 	if (IS_ERR(rq))
987 		return PTR_ERR(rq);
988 
989 	rq->timeout = ctrl->kato * HZ;
990 	rq->end_io_data = ctrl;
991 
992 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
993 
994 	return 0;
995 }
996 
997 static void nvme_keep_alive_work(struct work_struct *work)
998 {
999 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1000 			struct nvme_ctrl, ka_work);
1001 	bool comp_seen = ctrl->comp_seen;
1002 
1003 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1004 		dev_dbg(ctrl->device,
1005 			"reschedule traffic based keep-alive timer\n");
1006 		ctrl->comp_seen = false;
1007 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1008 		return;
1009 	}
1010 
1011 	if (nvme_keep_alive(ctrl)) {
1012 		/* allocation failure, reset the controller */
1013 		dev_err(ctrl->device, "keep-alive failed\n");
1014 		nvme_reset_ctrl(ctrl);
1015 		return;
1016 	}
1017 }
1018 
1019 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1020 {
1021 	if (unlikely(ctrl->kato == 0))
1022 		return;
1023 
1024 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
1025 }
1026 
1027 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1028 {
1029 	if (unlikely(ctrl->kato == 0))
1030 		return;
1031 
1032 	cancel_delayed_work_sync(&ctrl->ka_work);
1033 }
1034 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1035 
1036 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1037 {
1038 	struct nvme_command c = { };
1039 	int error;
1040 
1041 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1042 	c.identify.opcode = nvme_admin_identify;
1043 	c.identify.cns = NVME_ID_CNS_CTRL;
1044 
1045 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1046 	if (!*id)
1047 		return -ENOMEM;
1048 
1049 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1050 			sizeof(struct nvme_id_ctrl));
1051 	if (error)
1052 		kfree(*id);
1053 	return error;
1054 }
1055 
1056 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1057 		struct nvme_ns_ids *ids)
1058 {
1059 	struct nvme_command c = { };
1060 	int status;
1061 	void *data;
1062 	int pos;
1063 	int len;
1064 
1065 	c.identify.opcode = nvme_admin_identify;
1066 	c.identify.nsid = cpu_to_le32(nsid);
1067 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1068 
1069 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1070 	if (!data)
1071 		return -ENOMEM;
1072 
1073 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1074 				      NVME_IDENTIFY_DATA_SIZE);
1075 	if (status)
1076 		goto free_data;
1077 
1078 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1079 		struct nvme_ns_id_desc *cur = data + pos;
1080 
1081 		if (cur->nidl == 0)
1082 			break;
1083 
1084 		switch (cur->nidt) {
1085 		case NVME_NIDT_EUI64:
1086 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1087 				dev_warn(ctrl->device,
1088 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1089 					 cur->nidl);
1090 				goto free_data;
1091 			}
1092 			len = NVME_NIDT_EUI64_LEN;
1093 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1094 			break;
1095 		case NVME_NIDT_NGUID:
1096 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1097 				dev_warn(ctrl->device,
1098 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1099 					 cur->nidl);
1100 				goto free_data;
1101 			}
1102 			len = NVME_NIDT_NGUID_LEN;
1103 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1104 			break;
1105 		case NVME_NIDT_UUID:
1106 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
1107 				dev_warn(ctrl->device,
1108 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1109 					 cur->nidl);
1110 				goto free_data;
1111 			}
1112 			len = NVME_NIDT_UUID_LEN;
1113 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1114 			break;
1115 		default:
1116 			/* Skip unknown types */
1117 			len = cur->nidl;
1118 			break;
1119 		}
1120 
1121 		len += sizeof(*cur);
1122 	}
1123 free_data:
1124 	kfree(data);
1125 	return status;
1126 }
1127 
1128 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1129 {
1130 	struct nvme_command c = { };
1131 
1132 	c.identify.opcode = nvme_admin_identify;
1133 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1134 	c.identify.nsid = cpu_to_le32(nsid);
1135 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1136 				    NVME_IDENTIFY_DATA_SIZE);
1137 }
1138 
1139 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1140 		unsigned nsid, struct nvme_id_ns **id)
1141 {
1142 	struct nvme_command c = { };
1143 	int error;
1144 
1145 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1146 	c.identify.opcode = nvme_admin_identify;
1147 	c.identify.nsid = cpu_to_le32(nsid);
1148 	c.identify.cns = NVME_ID_CNS_NS;
1149 
1150 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1151 	if (!*id)
1152 		return -ENOMEM;
1153 
1154 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1155 	if (error) {
1156 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1157 		kfree(*id);
1158 	}
1159 
1160 	return error;
1161 }
1162 
1163 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1164 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1165 {
1166 	struct nvme_command c;
1167 	union nvme_result res;
1168 	int ret;
1169 
1170 	memset(&c, 0, sizeof(c));
1171 	c.features.opcode = op;
1172 	c.features.fid = cpu_to_le32(fid);
1173 	c.features.dword11 = cpu_to_le32(dword11);
1174 
1175 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1176 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1177 	if (ret >= 0 && result)
1178 		*result = le32_to_cpu(res.u32);
1179 	return ret;
1180 }
1181 
1182 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1183 		      unsigned int dword11, void *buffer, size_t buflen,
1184 		      u32 *result)
1185 {
1186 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1187 			     buflen, result);
1188 }
1189 EXPORT_SYMBOL_GPL(nvme_set_features);
1190 
1191 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1192 		      unsigned int dword11, void *buffer, size_t buflen,
1193 		      u32 *result)
1194 {
1195 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1196 			     buflen, result);
1197 }
1198 EXPORT_SYMBOL_GPL(nvme_get_features);
1199 
1200 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1201 {
1202 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1203 	u32 result;
1204 	int status, nr_io_queues;
1205 
1206 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1207 			&result);
1208 	if (status < 0)
1209 		return status;
1210 
1211 	/*
1212 	 * Degraded controllers might return an error when setting the queue
1213 	 * count.  We still want to be able to bring them online and offer
1214 	 * access to the admin queue, as that might be only way to fix them up.
1215 	 */
1216 	if (status > 0) {
1217 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1218 		*count = 0;
1219 	} else {
1220 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1221 		*count = min(*count, nr_io_queues);
1222 	}
1223 
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1227 
1228 #define NVME_AEN_SUPPORTED \
1229 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1230 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1231 
1232 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1233 {
1234 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1235 	int status;
1236 
1237 	if (!supported_aens)
1238 		return;
1239 
1240 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1241 			NULL, 0, &result);
1242 	if (status)
1243 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1244 			 supported_aens);
1245 
1246 	queue_work(nvme_wq, &ctrl->async_event_work);
1247 }
1248 
1249 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1250 {
1251 	struct nvme_user_io io;
1252 	struct nvme_command c;
1253 	unsigned length, meta_len;
1254 	void __user *metadata;
1255 
1256 	if (copy_from_user(&io, uio, sizeof(io)))
1257 		return -EFAULT;
1258 	if (io.flags)
1259 		return -EINVAL;
1260 
1261 	switch (io.opcode) {
1262 	case nvme_cmd_write:
1263 	case nvme_cmd_read:
1264 	case nvme_cmd_compare:
1265 		break;
1266 	default:
1267 		return -EINVAL;
1268 	}
1269 
1270 	length = (io.nblocks + 1) << ns->lba_shift;
1271 	meta_len = (io.nblocks + 1) * ns->ms;
1272 	metadata = (void __user *)(uintptr_t)io.metadata;
1273 
1274 	if (ns->ext) {
1275 		length += meta_len;
1276 		meta_len = 0;
1277 	} else if (meta_len) {
1278 		if ((io.metadata & 3) || !io.metadata)
1279 			return -EINVAL;
1280 	}
1281 
1282 	memset(&c, 0, sizeof(c));
1283 	c.rw.opcode = io.opcode;
1284 	c.rw.flags = io.flags;
1285 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1286 	c.rw.slba = cpu_to_le64(io.slba);
1287 	c.rw.length = cpu_to_le16(io.nblocks);
1288 	c.rw.control = cpu_to_le16(io.control);
1289 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1290 	c.rw.reftag = cpu_to_le32(io.reftag);
1291 	c.rw.apptag = cpu_to_le16(io.apptag);
1292 	c.rw.appmask = cpu_to_le16(io.appmask);
1293 
1294 	return nvme_submit_user_cmd(ns->queue, &c,
1295 			(void __user *)(uintptr_t)io.addr, length,
1296 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1297 }
1298 
1299 static u32 nvme_known_admin_effects(u8 opcode)
1300 {
1301 	switch (opcode) {
1302 	case nvme_admin_format_nvm:
1303 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1304 					NVME_CMD_EFFECTS_CSE_MASK;
1305 	case nvme_admin_sanitize_nvm:
1306 		return NVME_CMD_EFFECTS_CSE_MASK;
1307 	default:
1308 		break;
1309 	}
1310 	return 0;
1311 }
1312 
1313 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1314 								u8 opcode)
1315 {
1316 	u32 effects = 0;
1317 
1318 	if (ns) {
1319 		if (ctrl->effects)
1320 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1321 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1322 			dev_warn(ctrl->device,
1323 				 "IO command:%02x has unhandled effects:%08x\n",
1324 				 opcode, effects);
1325 		return 0;
1326 	}
1327 
1328 	if (ctrl->effects)
1329 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1330 	effects |= nvme_known_admin_effects(opcode);
1331 
1332 	/*
1333 	 * For simplicity, IO to all namespaces is quiesced even if the command
1334 	 * effects say only one namespace is affected.
1335 	 */
1336 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1337 		mutex_lock(&ctrl->scan_lock);
1338 		mutex_lock(&ctrl->subsys->lock);
1339 		nvme_mpath_start_freeze(ctrl->subsys);
1340 		nvme_mpath_wait_freeze(ctrl->subsys);
1341 		nvme_start_freeze(ctrl);
1342 		nvme_wait_freeze(ctrl);
1343 	}
1344 	return effects;
1345 }
1346 
1347 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1348 {
1349 	struct nvme_ns *ns;
1350 
1351 	down_read(&ctrl->namespaces_rwsem);
1352 	list_for_each_entry(ns, &ctrl->namespaces, list)
1353 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1354 			nvme_set_queue_dying(ns);
1355 	up_read(&ctrl->namespaces_rwsem);
1356 }
1357 
1358 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1359 {
1360 	/*
1361 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1362 	 * prevent memory corruption if a logical block size was changed by
1363 	 * this command.
1364 	 */
1365 	if (effects & NVME_CMD_EFFECTS_LBCC)
1366 		nvme_update_formats(ctrl);
1367 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1368 		nvme_unfreeze(ctrl);
1369 		nvme_mpath_unfreeze(ctrl->subsys);
1370 		mutex_unlock(&ctrl->subsys->lock);
1371 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1372 		mutex_unlock(&ctrl->scan_lock);
1373 	}
1374 	if (effects & NVME_CMD_EFFECTS_CCC)
1375 		nvme_init_identify(ctrl);
1376 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1377 		nvme_queue_scan(ctrl);
1378 }
1379 
1380 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1381 			struct nvme_passthru_cmd __user *ucmd)
1382 {
1383 	struct nvme_passthru_cmd cmd;
1384 	struct nvme_command c;
1385 	unsigned timeout = 0;
1386 	u32 effects;
1387 	u64 result;
1388 	int status;
1389 
1390 	if (!capable(CAP_SYS_ADMIN))
1391 		return -EACCES;
1392 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1393 		return -EFAULT;
1394 	if (cmd.flags)
1395 		return -EINVAL;
1396 
1397 	memset(&c, 0, sizeof(c));
1398 	c.common.opcode = cmd.opcode;
1399 	c.common.flags = cmd.flags;
1400 	c.common.nsid = cpu_to_le32(cmd.nsid);
1401 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1402 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1403 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1404 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1405 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1406 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1407 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1408 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1409 
1410 	if (cmd.timeout_ms)
1411 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1412 
1413 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1414 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1415 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1416 			(void __user *)(uintptr_t)cmd.metadata,
1417 			cmd.metadata_len, 0, &result, timeout);
1418 	nvme_passthru_end(ctrl, effects);
1419 
1420 	if (status >= 0) {
1421 		if (put_user(result, &ucmd->result))
1422 			return -EFAULT;
1423 	}
1424 
1425 	return status;
1426 }
1427 
1428 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1429 			struct nvme_passthru_cmd64 __user *ucmd)
1430 {
1431 	struct nvme_passthru_cmd64 cmd;
1432 	struct nvme_command c;
1433 	unsigned timeout = 0;
1434 	u32 effects;
1435 	int status;
1436 
1437 	if (!capable(CAP_SYS_ADMIN))
1438 		return -EACCES;
1439 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1440 		return -EFAULT;
1441 	if (cmd.flags)
1442 		return -EINVAL;
1443 
1444 	memset(&c, 0, sizeof(c));
1445 	c.common.opcode = cmd.opcode;
1446 	c.common.flags = cmd.flags;
1447 	c.common.nsid = cpu_to_le32(cmd.nsid);
1448 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1449 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1450 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1451 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1452 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1453 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1454 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1455 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1456 
1457 	if (cmd.timeout_ms)
1458 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1459 
1460 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1461 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1462 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1463 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1464 			0, &cmd.result, timeout);
1465 	nvme_passthru_end(ctrl, effects);
1466 
1467 	if (status >= 0) {
1468 		if (put_user(cmd.result, &ucmd->result))
1469 			return -EFAULT;
1470 	}
1471 
1472 	return status;
1473 }
1474 
1475 /*
1476  * Issue ioctl requests on the first available path.  Note that unlike normal
1477  * block layer requests we will not retry failed request on another controller.
1478  */
1479 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1480 		struct nvme_ns_head **head, int *srcu_idx)
1481 {
1482 #ifdef CONFIG_NVME_MULTIPATH
1483 	if (disk->fops == &nvme_ns_head_ops) {
1484 		struct nvme_ns *ns;
1485 
1486 		*head = disk->private_data;
1487 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1488 		ns = nvme_find_path(*head);
1489 		if (!ns)
1490 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1491 		return ns;
1492 	}
1493 #endif
1494 	*head = NULL;
1495 	*srcu_idx = -1;
1496 	return disk->private_data;
1497 }
1498 
1499 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1500 {
1501 	if (head)
1502 		srcu_read_unlock(&head->srcu, idx);
1503 }
1504 
1505 static bool is_ctrl_ioctl(unsigned int cmd)
1506 {
1507 	if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1508 		return true;
1509 	if (is_sed_ioctl(cmd))
1510 		return true;
1511 	return false;
1512 }
1513 
1514 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1515 				  void __user *argp,
1516 				  struct nvme_ns_head *head,
1517 				  int srcu_idx)
1518 {
1519 	struct nvme_ctrl *ctrl = ns->ctrl;
1520 	int ret;
1521 
1522 	nvme_get_ctrl(ns->ctrl);
1523 	nvme_put_ns_from_disk(head, srcu_idx);
1524 
1525 	switch (cmd) {
1526 	case NVME_IOCTL_ADMIN_CMD:
1527 		ret = nvme_user_cmd(ctrl, NULL, argp);
1528 		break;
1529 	case NVME_IOCTL_ADMIN64_CMD:
1530 		ret = nvme_user_cmd64(ctrl, NULL, argp);
1531 		break;
1532 	default:
1533 		ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1534 		break;
1535 	}
1536 	nvme_put_ctrl(ctrl);
1537 	return ret;
1538 }
1539 
1540 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1541 		unsigned int cmd, unsigned long arg)
1542 {
1543 	struct nvme_ns_head *head = NULL;
1544 	void __user *argp = (void __user *)arg;
1545 	struct nvme_ns *ns;
1546 	int srcu_idx, ret;
1547 
1548 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1549 	if (unlikely(!ns))
1550 		return -EWOULDBLOCK;
1551 
1552 	/*
1553 	 * Handle ioctls that apply to the controller instead of the namespace
1554 	 * seperately and drop the ns SRCU reference early.  This avoids a
1555 	 * deadlock when deleting namespaces using the passthrough interface.
1556 	 */
1557 	if (is_ctrl_ioctl(cmd))
1558 		return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1559 
1560 	switch (cmd) {
1561 	case NVME_IOCTL_ID:
1562 		force_successful_syscall_return();
1563 		ret = ns->head->ns_id;
1564 		break;
1565 	case NVME_IOCTL_IO_CMD:
1566 		ret = nvme_user_cmd(ns->ctrl, ns, argp);
1567 		break;
1568 	case NVME_IOCTL_SUBMIT_IO:
1569 		ret = nvme_submit_io(ns, argp);
1570 		break;
1571 	case NVME_IOCTL_IO64_CMD:
1572 		ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1573 		break;
1574 	default:
1575 		if (ns->ndev)
1576 			ret = nvme_nvm_ioctl(ns, cmd, arg);
1577 		else
1578 			ret = -ENOTTY;
1579 	}
1580 
1581 	nvme_put_ns_from_disk(head, srcu_idx);
1582 	return ret;
1583 }
1584 
1585 static int nvme_open(struct block_device *bdev, fmode_t mode)
1586 {
1587 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1588 
1589 #ifdef CONFIG_NVME_MULTIPATH
1590 	/* should never be called due to GENHD_FL_HIDDEN */
1591 	if (WARN_ON_ONCE(ns->head->disk))
1592 		goto fail;
1593 #endif
1594 	if (!kref_get_unless_zero(&ns->kref))
1595 		goto fail;
1596 	if (!try_module_get(ns->ctrl->ops->module))
1597 		goto fail_put_ns;
1598 
1599 	return 0;
1600 
1601 fail_put_ns:
1602 	nvme_put_ns(ns);
1603 fail:
1604 	return -ENXIO;
1605 }
1606 
1607 static void nvme_release(struct gendisk *disk, fmode_t mode)
1608 {
1609 	struct nvme_ns *ns = disk->private_data;
1610 
1611 	module_put(ns->ctrl->ops->module);
1612 	nvme_put_ns(ns);
1613 }
1614 
1615 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1616 {
1617 	/* some standard values */
1618 	geo->heads = 1 << 6;
1619 	geo->sectors = 1 << 5;
1620 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1621 	return 0;
1622 }
1623 
1624 #ifdef CONFIG_BLK_DEV_INTEGRITY
1625 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1626 {
1627 	struct blk_integrity integrity;
1628 
1629 	memset(&integrity, 0, sizeof(integrity));
1630 	switch (pi_type) {
1631 	case NVME_NS_DPS_PI_TYPE3:
1632 		integrity.profile = &t10_pi_type3_crc;
1633 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1634 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1635 		break;
1636 	case NVME_NS_DPS_PI_TYPE1:
1637 	case NVME_NS_DPS_PI_TYPE2:
1638 		integrity.profile = &t10_pi_type1_crc;
1639 		integrity.tag_size = sizeof(u16);
1640 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1641 		break;
1642 	default:
1643 		integrity.profile = NULL;
1644 		break;
1645 	}
1646 	integrity.tuple_size = ms;
1647 	blk_integrity_register(disk, &integrity);
1648 	blk_queue_max_integrity_segments(disk->queue, 1);
1649 }
1650 #else
1651 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1652 {
1653 }
1654 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1655 
1656 static void nvme_set_chunk_size(struct nvme_ns *ns)
1657 {
1658 	u32 chunk_size = nvme_lba_to_sect(ns, ns->noiob);
1659 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1660 }
1661 
1662 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1663 {
1664 	struct nvme_ctrl *ctrl = ns->ctrl;
1665 	struct request_queue *queue = disk->queue;
1666 	u32 size = queue_logical_block_size(queue);
1667 
1668 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1669 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1670 		return;
1671 	}
1672 
1673 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1674 		size *= ns->sws * ns->sgs;
1675 
1676 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1677 			NVME_DSM_MAX_RANGES);
1678 
1679 	queue->limits.discard_alignment = 0;
1680 	queue->limits.discard_granularity = size;
1681 
1682 	/* If discard is already enabled, don't reset queue limits */
1683 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1684 		return;
1685 
1686 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1687 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1688 
1689 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1690 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1691 }
1692 
1693 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1694 {
1695 	u64 max_blocks;
1696 
1697 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1698 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1699 		return;
1700 	/*
1701 	 * Even though NVMe spec explicitly states that MDTS is not
1702 	 * applicable to the write-zeroes:- "The restriction does not apply to
1703 	 * commands that do not transfer data between the host and the
1704 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1705 	 * In order to be more cautious use controller's max_hw_sectors value
1706 	 * to configure the maximum sectors for the write-zeroes which is
1707 	 * configured based on the controller's MDTS field in the
1708 	 * nvme_init_identify() if available.
1709 	 */
1710 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1711 		max_blocks = (u64)USHRT_MAX + 1;
1712 	else
1713 		max_blocks = ns->ctrl->max_hw_sectors + 1;
1714 
1715 	blk_queue_max_write_zeroes_sectors(disk->queue,
1716 					   nvme_lba_to_sect(ns, max_blocks));
1717 }
1718 
1719 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1720 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1721 {
1722 	int ret = 0;
1723 
1724 	memset(ids, 0, sizeof(*ids));
1725 
1726 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1727 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1728 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1729 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1730 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1731 		 /* Don't treat error as fatal we potentially
1732 		  * already have a NGUID or EUI-64
1733 		  */
1734 		ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1735 		if (ret)
1736 			dev_warn(ctrl->device,
1737 				 "Identify Descriptors failed (%d)\n", ret);
1738 	}
1739 	return ret;
1740 }
1741 
1742 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1743 {
1744 	return !uuid_is_null(&ids->uuid) ||
1745 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1746 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1747 }
1748 
1749 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1750 {
1751 	return uuid_equal(&a->uuid, &b->uuid) &&
1752 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1753 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1754 }
1755 
1756 static void nvme_update_disk_info(struct gendisk *disk,
1757 		struct nvme_ns *ns, struct nvme_id_ns *id)
1758 {
1759 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1760 	unsigned short bs = 1 << ns->lba_shift;
1761 	u32 atomic_bs, phys_bs, io_opt;
1762 
1763 	if (ns->lba_shift > PAGE_SHIFT) {
1764 		/* unsupported block size, set capacity to 0 later */
1765 		bs = (1 << 9);
1766 	}
1767 	blk_mq_freeze_queue(disk->queue);
1768 	blk_integrity_unregister(disk);
1769 
1770 	if (id->nabo == 0) {
1771 		/*
1772 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1773 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1774 		 * 0 then AWUPF must be used instead.
1775 		 */
1776 		if (id->nsfeat & (1 << 1) && id->nawupf)
1777 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1778 		else
1779 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1780 	} else {
1781 		atomic_bs = bs;
1782 	}
1783 	phys_bs = bs;
1784 	io_opt = bs;
1785 	if (id->nsfeat & (1 << 4)) {
1786 		/* NPWG = Namespace Preferred Write Granularity */
1787 		phys_bs *= 1 + le16_to_cpu(id->npwg);
1788 		/* NOWS = Namespace Optimal Write Size */
1789 		io_opt *= 1 + le16_to_cpu(id->nows);
1790 	}
1791 
1792 	blk_queue_logical_block_size(disk->queue, bs);
1793 	/*
1794 	 * Linux filesystems assume writing a single physical block is
1795 	 * an atomic operation. Hence limit the physical block size to the
1796 	 * value of the Atomic Write Unit Power Fail parameter.
1797 	 */
1798 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1799 	blk_queue_io_min(disk->queue, phys_bs);
1800 	blk_queue_io_opt(disk->queue, io_opt);
1801 
1802 	if (ns->ms && !ns->ext &&
1803 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1804 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1805 	if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1806 	    ns->lba_shift > PAGE_SHIFT)
1807 		capacity = 0;
1808 
1809 	set_capacity(disk, capacity);
1810 
1811 	nvme_config_discard(disk, ns);
1812 	nvme_config_write_zeroes(disk, ns);
1813 
1814 	if (id->nsattr & (1 << 0))
1815 		set_disk_ro(disk, true);
1816 	else
1817 		set_disk_ro(disk, false);
1818 
1819 	blk_mq_unfreeze_queue(disk->queue);
1820 }
1821 
1822 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1823 {
1824 	struct nvme_ns *ns = disk->private_data;
1825 
1826 	/*
1827 	 * If identify namespace failed, use default 512 byte block size so
1828 	 * block layer can use before failing read/write for 0 capacity.
1829 	 */
1830 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1831 	if (ns->lba_shift == 0)
1832 		ns->lba_shift = 9;
1833 	ns->noiob = le16_to_cpu(id->noiob);
1834 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1835 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1836 	/* the PI implementation requires metadata equal t10 pi tuple size */
1837 	if (ns->ms == sizeof(struct t10_pi_tuple))
1838 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1839 	else
1840 		ns->pi_type = 0;
1841 
1842 	if (ns->noiob)
1843 		nvme_set_chunk_size(ns);
1844 	nvme_update_disk_info(disk, ns, id);
1845 #ifdef CONFIG_NVME_MULTIPATH
1846 	if (ns->head->disk) {
1847 		nvme_update_disk_info(ns->head->disk, ns, id);
1848 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1849 		revalidate_disk(ns->head->disk);
1850 	}
1851 #endif
1852 }
1853 
1854 static int nvme_revalidate_disk(struct gendisk *disk)
1855 {
1856 	struct nvme_ns *ns = disk->private_data;
1857 	struct nvme_ctrl *ctrl = ns->ctrl;
1858 	struct nvme_id_ns *id;
1859 	struct nvme_ns_ids ids;
1860 	int ret = 0;
1861 
1862 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1863 		set_capacity(disk, 0);
1864 		return -ENODEV;
1865 	}
1866 
1867 	ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1868 	if (ret)
1869 		goto out;
1870 
1871 	if (id->ncap == 0) {
1872 		ret = -ENODEV;
1873 		goto free_id;
1874 	}
1875 
1876 	__nvme_revalidate_disk(disk, id);
1877 	ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1878 	if (ret)
1879 		goto free_id;
1880 
1881 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1882 		dev_err(ctrl->device,
1883 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1884 		ret = -ENODEV;
1885 	}
1886 
1887 free_id:
1888 	kfree(id);
1889 out:
1890 	/*
1891 	 * Only fail the function if we got a fatal error back from the
1892 	 * device, otherwise ignore the error and just move on.
1893 	 */
1894 	if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1895 		ret = 0;
1896 	else if (ret > 0)
1897 		ret = blk_status_to_errno(nvme_error_status(ret));
1898 	return ret;
1899 }
1900 
1901 static char nvme_pr_type(enum pr_type type)
1902 {
1903 	switch (type) {
1904 	case PR_WRITE_EXCLUSIVE:
1905 		return 1;
1906 	case PR_EXCLUSIVE_ACCESS:
1907 		return 2;
1908 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1909 		return 3;
1910 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1911 		return 4;
1912 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1913 		return 5;
1914 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1915 		return 6;
1916 	default:
1917 		return 0;
1918 	}
1919 };
1920 
1921 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1922 				u64 key, u64 sa_key, u8 op)
1923 {
1924 	struct nvme_ns_head *head = NULL;
1925 	struct nvme_ns *ns;
1926 	struct nvme_command c;
1927 	int srcu_idx, ret;
1928 	u8 data[16] = { 0, };
1929 
1930 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1931 	if (unlikely(!ns))
1932 		return -EWOULDBLOCK;
1933 
1934 	put_unaligned_le64(key, &data[0]);
1935 	put_unaligned_le64(sa_key, &data[8]);
1936 
1937 	memset(&c, 0, sizeof(c));
1938 	c.common.opcode = op;
1939 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1940 	c.common.cdw10 = cpu_to_le32(cdw10);
1941 
1942 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1943 	nvme_put_ns_from_disk(head, srcu_idx);
1944 	return ret;
1945 }
1946 
1947 static int nvme_pr_register(struct block_device *bdev, u64 old,
1948 		u64 new, unsigned flags)
1949 {
1950 	u32 cdw10;
1951 
1952 	if (flags & ~PR_FL_IGNORE_KEY)
1953 		return -EOPNOTSUPP;
1954 
1955 	cdw10 = old ? 2 : 0;
1956 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1957 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1958 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1959 }
1960 
1961 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1962 		enum pr_type type, unsigned flags)
1963 {
1964 	u32 cdw10;
1965 
1966 	if (flags & ~PR_FL_IGNORE_KEY)
1967 		return -EOPNOTSUPP;
1968 
1969 	cdw10 = nvme_pr_type(type) << 8;
1970 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1971 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1972 }
1973 
1974 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1975 		enum pr_type type, bool abort)
1976 {
1977 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1978 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1979 }
1980 
1981 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1982 {
1983 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1984 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1985 }
1986 
1987 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1988 {
1989 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1990 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1991 }
1992 
1993 static const struct pr_ops nvme_pr_ops = {
1994 	.pr_register	= nvme_pr_register,
1995 	.pr_reserve	= nvme_pr_reserve,
1996 	.pr_release	= nvme_pr_release,
1997 	.pr_preempt	= nvme_pr_preempt,
1998 	.pr_clear	= nvme_pr_clear,
1999 };
2000 
2001 #ifdef CONFIG_BLK_SED_OPAL
2002 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2003 		bool send)
2004 {
2005 	struct nvme_ctrl *ctrl = data;
2006 	struct nvme_command cmd;
2007 
2008 	memset(&cmd, 0, sizeof(cmd));
2009 	if (send)
2010 		cmd.common.opcode = nvme_admin_security_send;
2011 	else
2012 		cmd.common.opcode = nvme_admin_security_recv;
2013 	cmd.common.nsid = 0;
2014 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2015 	cmd.common.cdw11 = cpu_to_le32(len);
2016 
2017 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2018 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2019 }
2020 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2021 #endif /* CONFIG_BLK_SED_OPAL */
2022 
2023 static const struct block_device_operations nvme_fops = {
2024 	.owner		= THIS_MODULE,
2025 	.ioctl		= nvme_ioctl,
2026 	.compat_ioctl	= nvme_ioctl,
2027 	.open		= nvme_open,
2028 	.release	= nvme_release,
2029 	.getgeo		= nvme_getgeo,
2030 	.revalidate_disk= nvme_revalidate_disk,
2031 	.pr_ops		= &nvme_pr_ops,
2032 };
2033 
2034 #ifdef CONFIG_NVME_MULTIPATH
2035 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2036 {
2037 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2038 
2039 	if (!kref_get_unless_zero(&head->ref))
2040 		return -ENXIO;
2041 	return 0;
2042 }
2043 
2044 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2045 {
2046 	nvme_put_ns_head(disk->private_data);
2047 }
2048 
2049 const struct block_device_operations nvme_ns_head_ops = {
2050 	.owner		= THIS_MODULE,
2051 	.open		= nvme_ns_head_open,
2052 	.release	= nvme_ns_head_release,
2053 	.ioctl		= nvme_ioctl,
2054 	.compat_ioctl	= nvme_ioctl,
2055 	.getgeo		= nvme_getgeo,
2056 	.pr_ops		= &nvme_pr_ops,
2057 };
2058 #endif /* CONFIG_NVME_MULTIPATH */
2059 
2060 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2061 {
2062 	unsigned long timeout =
2063 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2064 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2065 	int ret;
2066 
2067 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2068 		if (csts == ~0)
2069 			return -ENODEV;
2070 		if ((csts & NVME_CSTS_RDY) == bit)
2071 			break;
2072 
2073 		msleep(100);
2074 		if (fatal_signal_pending(current))
2075 			return -EINTR;
2076 		if (time_after(jiffies, timeout)) {
2077 			dev_err(ctrl->device,
2078 				"Device not ready; aborting %s\n", enabled ?
2079 						"initialisation" : "reset");
2080 			return -ENODEV;
2081 		}
2082 	}
2083 
2084 	return ret;
2085 }
2086 
2087 /*
2088  * If the device has been passed off to us in an enabled state, just clear
2089  * the enabled bit.  The spec says we should set the 'shutdown notification
2090  * bits', but doing so may cause the device to complete commands to the
2091  * admin queue ... and we don't know what memory that might be pointing at!
2092  */
2093 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2094 {
2095 	int ret;
2096 
2097 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2098 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2099 
2100 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2101 	if (ret)
2102 		return ret;
2103 
2104 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2105 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2106 
2107 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2108 }
2109 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2110 
2111 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2112 {
2113 	/*
2114 	 * Default to a 4K page size, with the intention to update this
2115 	 * path in the future to accomodate architectures with differing
2116 	 * kernel and IO page sizes.
2117 	 */
2118 	unsigned dev_page_min, page_shift = 12;
2119 	int ret;
2120 
2121 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2122 	if (ret) {
2123 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2124 		return ret;
2125 	}
2126 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2127 
2128 	if (page_shift < dev_page_min) {
2129 		dev_err(ctrl->device,
2130 			"Minimum device page size %u too large for host (%u)\n",
2131 			1 << dev_page_min, 1 << page_shift);
2132 		return -ENODEV;
2133 	}
2134 
2135 	ctrl->page_size = 1 << page_shift;
2136 
2137 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
2138 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2139 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2140 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2141 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2142 
2143 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2144 	if (ret)
2145 		return ret;
2146 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2147 }
2148 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2149 
2150 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2151 {
2152 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2153 	u32 csts;
2154 	int ret;
2155 
2156 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2157 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2158 
2159 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2160 	if (ret)
2161 		return ret;
2162 
2163 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2164 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2165 			break;
2166 
2167 		msleep(100);
2168 		if (fatal_signal_pending(current))
2169 			return -EINTR;
2170 		if (time_after(jiffies, timeout)) {
2171 			dev_err(ctrl->device,
2172 				"Device shutdown incomplete; abort shutdown\n");
2173 			return -ENODEV;
2174 		}
2175 	}
2176 
2177 	return ret;
2178 }
2179 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2180 
2181 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2182 		struct request_queue *q)
2183 {
2184 	bool vwc = false;
2185 
2186 	if (ctrl->max_hw_sectors) {
2187 		u32 max_segments =
2188 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2189 
2190 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
2191 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2192 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2193 	}
2194 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2195 	    is_power_of_2(ctrl->max_hw_sectors))
2196 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2197 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
2198 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2199 		vwc = true;
2200 	blk_queue_write_cache(q, vwc, vwc);
2201 }
2202 
2203 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2204 {
2205 	__le64 ts;
2206 	int ret;
2207 
2208 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2209 		return 0;
2210 
2211 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2212 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2213 			NULL);
2214 	if (ret)
2215 		dev_warn_once(ctrl->device,
2216 			"could not set timestamp (%d)\n", ret);
2217 	return ret;
2218 }
2219 
2220 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2221 {
2222 	struct nvme_feat_host_behavior *host;
2223 	int ret;
2224 
2225 	/* Don't bother enabling the feature if retry delay is not reported */
2226 	if (!ctrl->crdt[0])
2227 		return 0;
2228 
2229 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2230 	if (!host)
2231 		return 0;
2232 
2233 	host->acre = NVME_ENABLE_ACRE;
2234 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2235 				host, sizeof(*host), NULL);
2236 	kfree(host);
2237 	return ret;
2238 }
2239 
2240 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2241 {
2242 	/*
2243 	 * APST (Autonomous Power State Transition) lets us program a
2244 	 * table of power state transitions that the controller will
2245 	 * perform automatically.  We configure it with a simple
2246 	 * heuristic: we are willing to spend at most 2% of the time
2247 	 * transitioning between power states.  Therefore, when running
2248 	 * in any given state, we will enter the next lower-power
2249 	 * non-operational state after waiting 50 * (enlat + exlat)
2250 	 * microseconds, as long as that state's exit latency is under
2251 	 * the requested maximum latency.
2252 	 *
2253 	 * We will not autonomously enter any non-operational state for
2254 	 * which the total latency exceeds ps_max_latency_us.  Users
2255 	 * can set ps_max_latency_us to zero to turn off APST.
2256 	 */
2257 
2258 	unsigned apste;
2259 	struct nvme_feat_auto_pst *table;
2260 	u64 max_lat_us = 0;
2261 	int max_ps = -1;
2262 	int ret;
2263 
2264 	/*
2265 	 * If APST isn't supported or if we haven't been initialized yet,
2266 	 * then don't do anything.
2267 	 */
2268 	if (!ctrl->apsta)
2269 		return 0;
2270 
2271 	if (ctrl->npss > 31) {
2272 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2273 		return 0;
2274 	}
2275 
2276 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2277 	if (!table)
2278 		return 0;
2279 
2280 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2281 		/* Turn off APST. */
2282 		apste = 0;
2283 		dev_dbg(ctrl->device, "APST disabled\n");
2284 	} else {
2285 		__le64 target = cpu_to_le64(0);
2286 		int state;
2287 
2288 		/*
2289 		 * Walk through all states from lowest- to highest-power.
2290 		 * According to the spec, lower-numbered states use more
2291 		 * power.  NPSS, despite the name, is the index of the
2292 		 * lowest-power state, not the number of states.
2293 		 */
2294 		for (state = (int)ctrl->npss; state >= 0; state--) {
2295 			u64 total_latency_us, exit_latency_us, transition_ms;
2296 
2297 			if (target)
2298 				table->entries[state] = target;
2299 
2300 			/*
2301 			 * Don't allow transitions to the deepest state
2302 			 * if it's quirked off.
2303 			 */
2304 			if (state == ctrl->npss &&
2305 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2306 				continue;
2307 
2308 			/*
2309 			 * Is this state a useful non-operational state for
2310 			 * higher-power states to autonomously transition to?
2311 			 */
2312 			if (!(ctrl->psd[state].flags &
2313 			      NVME_PS_FLAGS_NON_OP_STATE))
2314 				continue;
2315 
2316 			exit_latency_us =
2317 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2318 			if (exit_latency_us > ctrl->ps_max_latency_us)
2319 				continue;
2320 
2321 			total_latency_us =
2322 				exit_latency_us +
2323 				le32_to_cpu(ctrl->psd[state].entry_lat);
2324 
2325 			/*
2326 			 * This state is good.  Use it as the APST idle
2327 			 * target for higher power states.
2328 			 */
2329 			transition_ms = total_latency_us + 19;
2330 			do_div(transition_ms, 20);
2331 			if (transition_ms > (1 << 24) - 1)
2332 				transition_ms = (1 << 24) - 1;
2333 
2334 			target = cpu_to_le64((state << 3) |
2335 					     (transition_ms << 8));
2336 
2337 			if (max_ps == -1)
2338 				max_ps = state;
2339 
2340 			if (total_latency_us > max_lat_us)
2341 				max_lat_us = total_latency_us;
2342 		}
2343 
2344 		apste = 1;
2345 
2346 		if (max_ps == -1) {
2347 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2348 		} else {
2349 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2350 				max_ps, max_lat_us, (int)sizeof(*table), table);
2351 		}
2352 	}
2353 
2354 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2355 				table, sizeof(*table), NULL);
2356 	if (ret)
2357 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2358 
2359 	kfree(table);
2360 	return ret;
2361 }
2362 
2363 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2364 {
2365 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2366 	u64 latency;
2367 
2368 	switch (val) {
2369 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2370 	case PM_QOS_LATENCY_ANY:
2371 		latency = U64_MAX;
2372 		break;
2373 
2374 	default:
2375 		latency = val;
2376 	}
2377 
2378 	if (ctrl->ps_max_latency_us != latency) {
2379 		ctrl->ps_max_latency_us = latency;
2380 		nvme_configure_apst(ctrl);
2381 	}
2382 }
2383 
2384 struct nvme_core_quirk_entry {
2385 	/*
2386 	 * NVMe model and firmware strings are padded with spaces.  For
2387 	 * simplicity, strings in the quirk table are padded with NULLs
2388 	 * instead.
2389 	 */
2390 	u16 vid;
2391 	const char *mn;
2392 	const char *fr;
2393 	unsigned long quirks;
2394 };
2395 
2396 static const struct nvme_core_quirk_entry core_quirks[] = {
2397 	{
2398 		/*
2399 		 * This Toshiba device seems to die using any APST states.  See:
2400 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2401 		 */
2402 		.vid = 0x1179,
2403 		.mn = "THNSF5256GPUK TOSHIBA",
2404 		.quirks = NVME_QUIRK_NO_APST,
2405 	},
2406 	{
2407 		/*
2408 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2409 		 * condition associated with actions related to suspend to idle
2410 		 * LiteON has resolved the problem in future firmware
2411 		 */
2412 		.vid = 0x14a4,
2413 		.fr = "22301111",
2414 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2415 	}
2416 };
2417 
2418 /* match is null-terminated but idstr is space-padded. */
2419 static bool string_matches(const char *idstr, const char *match, size_t len)
2420 {
2421 	size_t matchlen;
2422 
2423 	if (!match)
2424 		return true;
2425 
2426 	matchlen = strlen(match);
2427 	WARN_ON_ONCE(matchlen > len);
2428 
2429 	if (memcmp(idstr, match, matchlen))
2430 		return false;
2431 
2432 	for (; matchlen < len; matchlen++)
2433 		if (idstr[matchlen] != ' ')
2434 			return false;
2435 
2436 	return true;
2437 }
2438 
2439 static bool quirk_matches(const struct nvme_id_ctrl *id,
2440 			  const struct nvme_core_quirk_entry *q)
2441 {
2442 	return q->vid == le16_to_cpu(id->vid) &&
2443 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2444 		string_matches(id->fr, q->fr, sizeof(id->fr));
2445 }
2446 
2447 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2448 		struct nvme_id_ctrl *id)
2449 {
2450 	size_t nqnlen;
2451 	int off;
2452 
2453 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2454 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2455 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2456 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2457 			return;
2458 		}
2459 
2460 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2461 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2462 	}
2463 
2464 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2465 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2466 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2467 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2468 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2469 	off += sizeof(id->sn);
2470 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2471 	off += sizeof(id->mn);
2472 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2473 }
2474 
2475 static void nvme_release_subsystem(struct device *dev)
2476 {
2477 	struct nvme_subsystem *subsys =
2478 		container_of(dev, struct nvme_subsystem, dev);
2479 
2480 	if (subsys->instance >= 0)
2481 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2482 	kfree(subsys);
2483 }
2484 
2485 static void nvme_destroy_subsystem(struct kref *ref)
2486 {
2487 	struct nvme_subsystem *subsys =
2488 			container_of(ref, struct nvme_subsystem, ref);
2489 
2490 	mutex_lock(&nvme_subsystems_lock);
2491 	list_del(&subsys->entry);
2492 	mutex_unlock(&nvme_subsystems_lock);
2493 
2494 	ida_destroy(&subsys->ns_ida);
2495 	device_del(&subsys->dev);
2496 	put_device(&subsys->dev);
2497 }
2498 
2499 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2500 {
2501 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2502 }
2503 
2504 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2505 {
2506 	struct nvme_subsystem *subsys;
2507 
2508 	lockdep_assert_held(&nvme_subsystems_lock);
2509 
2510 	/*
2511 	 * Fail matches for discovery subsystems. This results
2512 	 * in each discovery controller bound to a unique subsystem.
2513 	 * This avoids issues with validating controller values
2514 	 * that can only be true when there is a single unique subsystem.
2515 	 * There may be multiple and completely independent entities
2516 	 * that provide discovery controllers.
2517 	 */
2518 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2519 		return NULL;
2520 
2521 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2522 		if (strcmp(subsys->subnqn, subsysnqn))
2523 			continue;
2524 		if (!kref_get_unless_zero(&subsys->ref))
2525 			continue;
2526 		return subsys;
2527 	}
2528 
2529 	return NULL;
2530 }
2531 
2532 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2533 	struct device_attribute subsys_attr_##_name = \
2534 		__ATTR(_name, _mode, _show, NULL)
2535 
2536 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2537 				    struct device_attribute *attr,
2538 				    char *buf)
2539 {
2540 	struct nvme_subsystem *subsys =
2541 		container_of(dev, struct nvme_subsystem, dev);
2542 
2543 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2544 }
2545 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2546 
2547 #define nvme_subsys_show_str_function(field)				\
2548 static ssize_t subsys_##field##_show(struct device *dev,		\
2549 			    struct device_attribute *attr, char *buf)	\
2550 {									\
2551 	struct nvme_subsystem *subsys =					\
2552 		container_of(dev, struct nvme_subsystem, dev);		\
2553 	return sprintf(buf, "%.*s\n",					\
2554 		       (int)sizeof(subsys->field), subsys->field);	\
2555 }									\
2556 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2557 
2558 nvme_subsys_show_str_function(model);
2559 nvme_subsys_show_str_function(serial);
2560 nvme_subsys_show_str_function(firmware_rev);
2561 
2562 static struct attribute *nvme_subsys_attrs[] = {
2563 	&subsys_attr_model.attr,
2564 	&subsys_attr_serial.attr,
2565 	&subsys_attr_firmware_rev.attr,
2566 	&subsys_attr_subsysnqn.attr,
2567 #ifdef CONFIG_NVME_MULTIPATH
2568 	&subsys_attr_iopolicy.attr,
2569 #endif
2570 	NULL,
2571 };
2572 
2573 static struct attribute_group nvme_subsys_attrs_group = {
2574 	.attrs = nvme_subsys_attrs,
2575 };
2576 
2577 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2578 	&nvme_subsys_attrs_group,
2579 	NULL,
2580 };
2581 
2582 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2583 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2584 {
2585 	struct nvme_ctrl *tmp;
2586 
2587 	lockdep_assert_held(&nvme_subsystems_lock);
2588 
2589 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2590 		if (tmp->state == NVME_CTRL_DELETING ||
2591 		    tmp->state == NVME_CTRL_DEAD)
2592 			continue;
2593 
2594 		if (tmp->cntlid == ctrl->cntlid) {
2595 			dev_err(ctrl->device,
2596 				"Duplicate cntlid %u with %s, rejecting\n",
2597 				ctrl->cntlid, dev_name(tmp->device));
2598 			return false;
2599 		}
2600 
2601 		if ((id->cmic & (1 << 1)) ||
2602 		    (ctrl->opts && ctrl->opts->discovery_nqn))
2603 			continue;
2604 
2605 		dev_err(ctrl->device,
2606 			"Subsystem does not support multiple controllers\n");
2607 		return false;
2608 	}
2609 
2610 	return true;
2611 }
2612 
2613 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2614 {
2615 	struct nvme_subsystem *subsys, *found;
2616 	int ret;
2617 
2618 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2619 	if (!subsys)
2620 		return -ENOMEM;
2621 
2622 	subsys->instance = -1;
2623 	mutex_init(&subsys->lock);
2624 	kref_init(&subsys->ref);
2625 	INIT_LIST_HEAD(&subsys->ctrls);
2626 	INIT_LIST_HEAD(&subsys->nsheads);
2627 	nvme_init_subnqn(subsys, ctrl, id);
2628 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2629 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2630 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2631 	subsys->vendor_id = le16_to_cpu(id->vid);
2632 	subsys->cmic = id->cmic;
2633 	subsys->awupf = le16_to_cpu(id->awupf);
2634 #ifdef CONFIG_NVME_MULTIPATH
2635 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2636 #endif
2637 
2638 	subsys->dev.class = nvme_subsys_class;
2639 	subsys->dev.release = nvme_release_subsystem;
2640 	subsys->dev.groups = nvme_subsys_attrs_groups;
2641 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2642 	device_initialize(&subsys->dev);
2643 
2644 	mutex_lock(&nvme_subsystems_lock);
2645 	found = __nvme_find_get_subsystem(subsys->subnqn);
2646 	if (found) {
2647 		put_device(&subsys->dev);
2648 		subsys = found;
2649 
2650 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2651 			ret = -EINVAL;
2652 			goto out_put_subsystem;
2653 		}
2654 	} else {
2655 		ret = device_add(&subsys->dev);
2656 		if (ret) {
2657 			dev_err(ctrl->device,
2658 				"failed to register subsystem device.\n");
2659 			put_device(&subsys->dev);
2660 			goto out_unlock;
2661 		}
2662 		ida_init(&subsys->ns_ida);
2663 		list_add_tail(&subsys->entry, &nvme_subsystems);
2664 	}
2665 
2666 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2667 				dev_name(ctrl->device));
2668 	if (ret) {
2669 		dev_err(ctrl->device,
2670 			"failed to create sysfs link from subsystem.\n");
2671 		goto out_put_subsystem;
2672 	}
2673 
2674 	if (!found)
2675 		subsys->instance = ctrl->instance;
2676 	ctrl->subsys = subsys;
2677 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2678 	mutex_unlock(&nvme_subsystems_lock);
2679 	return 0;
2680 
2681 out_put_subsystem:
2682 	nvme_put_subsystem(subsys);
2683 out_unlock:
2684 	mutex_unlock(&nvme_subsystems_lock);
2685 	return ret;
2686 }
2687 
2688 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2689 		void *log, size_t size, u64 offset)
2690 {
2691 	struct nvme_command c = { };
2692 	unsigned long dwlen = size / 4 - 1;
2693 
2694 	c.get_log_page.opcode = nvme_admin_get_log_page;
2695 	c.get_log_page.nsid = cpu_to_le32(nsid);
2696 	c.get_log_page.lid = log_page;
2697 	c.get_log_page.lsp = lsp;
2698 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2699 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2700 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2701 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2702 
2703 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2704 }
2705 
2706 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2707 {
2708 	int ret;
2709 
2710 	if (!ctrl->effects)
2711 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2712 
2713 	if (!ctrl->effects)
2714 		return 0;
2715 
2716 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2717 			ctrl->effects, sizeof(*ctrl->effects), 0);
2718 	if (ret) {
2719 		kfree(ctrl->effects);
2720 		ctrl->effects = NULL;
2721 	}
2722 	return ret;
2723 }
2724 
2725 /*
2726  * Initialize the cached copies of the Identify data and various controller
2727  * register in our nvme_ctrl structure.  This should be called as soon as
2728  * the admin queue is fully up and running.
2729  */
2730 int nvme_init_identify(struct nvme_ctrl *ctrl)
2731 {
2732 	struct nvme_id_ctrl *id;
2733 	int ret, page_shift;
2734 	u32 max_hw_sectors;
2735 	bool prev_apst_enabled;
2736 
2737 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2738 	if (ret) {
2739 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2740 		return ret;
2741 	}
2742 	page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2743 	ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2744 
2745 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2746 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2747 
2748 	ret = nvme_identify_ctrl(ctrl, &id);
2749 	if (ret) {
2750 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2751 		return -EIO;
2752 	}
2753 
2754 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2755 		ret = nvme_get_effects_log(ctrl);
2756 		if (ret < 0)
2757 			goto out_free;
2758 	}
2759 
2760 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2761 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2762 
2763 	if (!ctrl->identified) {
2764 		int i;
2765 
2766 		ret = nvme_init_subsystem(ctrl, id);
2767 		if (ret)
2768 			goto out_free;
2769 
2770 		/*
2771 		 * Check for quirks.  Quirk can depend on firmware version,
2772 		 * so, in principle, the set of quirks present can change
2773 		 * across a reset.  As a possible future enhancement, we
2774 		 * could re-scan for quirks every time we reinitialize
2775 		 * the device, but we'd have to make sure that the driver
2776 		 * behaves intelligently if the quirks change.
2777 		 */
2778 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2779 			if (quirk_matches(id, &core_quirks[i]))
2780 				ctrl->quirks |= core_quirks[i].quirks;
2781 		}
2782 	}
2783 
2784 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2785 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2786 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2787 	}
2788 
2789 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2790 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2791 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2792 
2793 	ctrl->oacs = le16_to_cpu(id->oacs);
2794 	ctrl->oncs = le16_to_cpu(id->oncs);
2795 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2796 	ctrl->oaes = le32_to_cpu(id->oaes);
2797 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2798 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2799 
2800 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2801 	ctrl->vwc = id->vwc;
2802 	if (id->mdts)
2803 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2804 	else
2805 		max_hw_sectors = UINT_MAX;
2806 	ctrl->max_hw_sectors =
2807 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2808 
2809 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2810 	ctrl->sgls = le32_to_cpu(id->sgls);
2811 	ctrl->kas = le16_to_cpu(id->kas);
2812 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2813 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2814 
2815 	if (id->rtd3e) {
2816 		/* us -> s */
2817 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2818 
2819 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2820 						 shutdown_timeout, 60);
2821 
2822 		if (ctrl->shutdown_timeout != shutdown_timeout)
2823 			dev_info(ctrl->device,
2824 				 "Shutdown timeout set to %u seconds\n",
2825 				 ctrl->shutdown_timeout);
2826 	} else
2827 		ctrl->shutdown_timeout = shutdown_timeout;
2828 
2829 	ctrl->npss = id->npss;
2830 	ctrl->apsta = id->apsta;
2831 	prev_apst_enabled = ctrl->apst_enabled;
2832 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2833 		if (force_apst && id->apsta) {
2834 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2835 			ctrl->apst_enabled = true;
2836 		} else {
2837 			ctrl->apst_enabled = false;
2838 		}
2839 	} else {
2840 		ctrl->apst_enabled = id->apsta;
2841 	}
2842 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2843 
2844 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2845 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2846 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2847 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2848 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2849 
2850 		/*
2851 		 * In fabrics we need to verify the cntlid matches the
2852 		 * admin connect
2853 		 */
2854 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2855 			ret = -EINVAL;
2856 			goto out_free;
2857 		}
2858 
2859 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2860 			dev_err(ctrl->device,
2861 				"keep-alive support is mandatory for fabrics\n");
2862 			ret = -EINVAL;
2863 			goto out_free;
2864 		}
2865 	} else {
2866 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2867 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2868 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2869 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2870 	}
2871 
2872 	ret = nvme_mpath_init(ctrl, id);
2873 	kfree(id);
2874 
2875 	if (ret < 0)
2876 		return ret;
2877 
2878 	if (ctrl->apst_enabled && !prev_apst_enabled)
2879 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2880 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2881 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2882 
2883 	ret = nvme_configure_apst(ctrl);
2884 	if (ret < 0)
2885 		return ret;
2886 
2887 	ret = nvme_configure_timestamp(ctrl);
2888 	if (ret < 0)
2889 		return ret;
2890 
2891 	ret = nvme_configure_directives(ctrl);
2892 	if (ret < 0)
2893 		return ret;
2894 
2895 	ret = nvme_configure_acre(ctrl);
2896 	if (ret < 0)
2897 		return ret;
2898 
2899 	if (!ctrl->identified)
2900 		nvme_hwmon_init(ctrl);
2901 
2902 	ctrl->identified = true;
2903 
2904 	return 0;
2905 
2906 out_free:
2907 	kfree(id);
2908 	return ret;
2909 }
2910 EXPORT_SYMBOL_GPL(nvme_init_identify);
2911 
2912 static int nvme_dev_open(struct inode *inode, struct file *file)
2913 {
2914 	struct nvme_ctrl *ctrl =
2915 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2916 
2917 	switch (ctrl->state) {
2918 	case NVME_CTRL_LIVE:
2919 		break;
2920 	default:
2921 		return -EWOULDBLOCK;
2922 	}
2923 
2924 	file->private_data = ctrl;
2925 	return 0;
2926 }
2927 
2928 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2929 {
2930 	struct nvme_ns *ns;
2931 	int ret;
2932 
2933 	down_read(&ctrl->namespaces_rwsem);
2934 	if (list_empty(&ctrl->namespaces)) {
2935 		ret = -ENOTTY;
2936 		goto out_unlock;
2937 	}
2938 
2939 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2940 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2941 		dev_warn(ctrl->device,
2942 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2943 		ret = -EINVAL;
2944 		goto out_unlock;
2945 	}
2946 
2947 	dev_warn(ctrl->device,
2948 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2949 	kref_get(&ns->kref);
2950 	up_read(&ctrl->namespaces_rwsem);
2951 
2952 	ret = nvme_user_cmd(ctrl, ns, argp);
2953 	nvme_put_ns(ns);
2954 	return ret;
2955 
2956 out_unlock:
2957 	up_read(&ctrl->namespaces_rwsem);
2958 	return ret;
2959 }
2960 
2961 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2962 		unsigned long arg)
2963 {
2964 	struct nvme_ctrl *ctrl = file->private_data;
2965 	void __user *argp = (void __user *)arg;
2966 
2967 	switch (cmd) {
2968 	case NVME_IOCTL_ADMIN_CMD:
2969 		return nvme_user_cmd(ctrl, NULL, argp);
2970 	case NVME_IOCTL_ADMIN64_CMD:
2971 		return nvme_user_cmd64(ctrl, NULL, argp);
2972 	case NVME_IOCTL_IO_CMD:
2973 		return nvme_dev_user_cmd(ctrl, argp);
2974 	case NVME_IOCTL_RESET:
2975 		dev_warn(ctrl->device, "resetting controller\n");
2976 		return nvme_reset_ctrl_sync(ctrl);
2977 	case NVME_IOCTL_SUBSYS_RESET:
2978 		return nvme_reset_subsystem(ctrl);
2979 	case NVME_IOCTL_RESCAN:
2980 		nvme_queue_scan(ctrl);
2981 		return 0;
2982 	default:
2983 		return -ENOTTY;
2984 	}
2985 }
2986 
2987 static const struct file_operations nvme_dev_fops = {
2988 	.owner		= THIS_MODULE,
2989 	.open		= nvme_dev_open,
2990 	.unlocked_ioctl	= nvme_dev_ioctl,
2991 	.compat_ioctl	= compat_ptr_ioctl,
2992 };
2993 
2994 static ssize_t nvme_sysfs_reset(struct device *dev,
2995 				struct device_attribute *attr, const char *buf,
2996 				size_t count)
2997 {
2998 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2999 	int ret;
3000 
3001 	ret = nvme_reset_ctrl_sync(ctrl);
3002 	if (ret < 0)
3003 		return ret;
3004 	return count;
3005 }
3006 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3007 
3008 static ssize_t nvme_sysfs_rescan(struct device *dev,
3009 				struct device_attribute *attr, const char *buf,
3010 				size_t count)
3011 {
3012 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3013 
3014 	nvme_queue_scan(ctrl);
3015 	return count;
3016 }
3017 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3018 
3019 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3020 {
3021 	struct gendisk *disk = dev_to_disk(dev);
3022 
3023 	if (disk->fops == &nvme_fops)
3024 		return nvme_get_ns_from_dev(dev)->head;
3025 	else
3026 		return disk->private_data;
3027 }
3028 
3029 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3030 		char *buf)
3031 {
3032 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3033 	struct nvme_ns_ids *ids = &head->ids;
3034 	struct nvme_subsystem *subsys = head->subsys;
3035 	int serial_len = sizeof(subsys->serial);
3036 	int model_len = sizeof(subsys->model);
3037 
3038 	if (!uuid_is_null(&ids->uuid))
3039 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3040 
3041 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3042 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
3043 
3044 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3045 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
3046 
3047 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3048 				  subsys->serial[serial_len - 1] == '\0'))
3049 		serial_len--;
3050 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3051 				 subsys->model[model_len - 1] == '\0'))
3052 		model_len--;
3053 
3054 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3055 		serial_len, subsys->serial, model_len, subsys->model,
3056 		head->ns_id);
3057 }
3058 static DEVICE_ATTR_RO(wwid);
3059 
3060 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3061 		char *buf)
3062 {
3063 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3064 }
3065 static DEVICE_ATTR_RO(nguid);
3066 
3067 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3068 		char *buf)
3069 {
3070 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3071 
3072 	/* For backward compatibility expose the NGUID to userspace if
3073 	 * we have no UUID set
3074 	 */
3075 	if (uuid_is_null(&ids->uuid)) {
3076 		printk_ratelimited(KERN_WARNING
3077 				   "No UUID available providing old NGUID\n");
3078 		return sprintf(buf, "%pU\n", ids->nguid);
3079 	}
3080 	return sprintf(buf, "%pU\n", &ids->uuid);
3081 }
3082 static DEVICE_ATTR_RO(uuid);
3083 
3084 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3085 		char *buf)
3086 {
3087 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3088 }
3089 static DEVICE_ATTR_RO(eui);
3090 
3091 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3092 		char *buf)
3093 {
3094 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3095 }
3096 static DEVICE_ATTR_RO(nsid);
3097 
3098 static struct attribute *nvme_ns_id_attrs[] = {
3099 	&dev_attr_wwid.attr,
3100 	&dev_attr_uuid.attr,
3101 	&dev_attr_nguid.attr,
3102 	&dev_attr_eui.attr,
3103 	&dev_attr_nsid.attr,
3104 #ifdef CONFIG_NVME_MULTIPATH
3105 	&dev_attr_ana_grpid.attr,
3106 	&dev_attr_ana_state.attr,
3107 #endif
3108 	NULL,
3109 };
3110 
3111 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3112 		struct attribute *a, int n)
3113 {
3114 	struct device *dev = container_of(kobj, struct device, kobj);
3115 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3116 
3117 	if (a == &dev_attr_uuid.attr) {
3118 		if (uuid_is_null(&ids->uuid) &&
3119 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3120 			return 0;
3121 	}
3122 	if (a == &dev_attr_nguid.attr) {
3123 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3124 			return 0;
3125 	}
3126 	if (a == &dev_attr_eui.attr) {
3127 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3128 			return 0;
3129 	}
3130 #ifdef CONFIG_NVME_MULTIPATH
3131 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3132 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3133 			return 0;
3134 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3135 			return 0;
3136 	}
3137 #endif
3138 	return a->mode;
3139 }
3140 
3141 static const struct attribute_group nvme_ns_id_attr_group = {
3142 	.attrs		= nvme_ns_id_attrs,
3143 	.is_visible	= nvme_ns_id_attrs_are_visible,
3144 };
3145 
3146 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3147 	&nvme_ns_id_attr_group,
3148 #ifdef CONFIG_NVM
3149 	&nvme_nvm_attr_group,
3150 #endif
3151 	NULL,
3152 };
3153 
3154 #define nvme_show_str_function(field)						\
3155 static ssize_t  field##_show(struct device *dev,				\
3156 			    struct device_attribute *attr, char *buf)		\
3157 {										\
3158         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3159         return sprintf(buf, "%.*s\n",						\
3160 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3161 }										\
3162 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3163 
3164 nvme_show_str_function(model);
3165 nvme_show_str_function(serial);
3166 nvme_show_str_function(firmware_rev);
3167 
3168 #define nvme_show_int_function(field)						\
3169 static ssize_t  field##_show(struct device *dev,				\
3170 			    struct device_attribute *attr, char *buf)		\
3171 {										\
3172         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3173         return sprintf(buf, "%d\n", ctrl->field);	\
3174 }										\
3175 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3176 
3177 nvme_show_int_function(cntlid);
3178 nvme_show_int_function(numa_node);
3179 nvme_show_int_function(queue_count);
3180 nvme_show_int_function(sqsize);
3181 
3182 static ssize_t nvme_sysfs_delete(struct device *dev,
3183 				struct device_attribute *attr, const char *buf,
3184 				size_t count)
3185 {
3186 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3187 
3188 	if (device_remove_file_self(dev, attr))
3189 		nvme_delete_ctrl_sync(ctrl);
3190 	return count;
3191 }
3192 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3193 
3194 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3195 					 struct device_attribute *attr,
3196 					 char *buf)
3197 {
3198 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3199 
3200 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3201 }
3202 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3203 
3204 static ssize_t nvme_sysfs_show_state(struct device *dev,
3205 				     struct device_attribute *attr,
3206 				     char *buf)
3207 {
3208 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3209 	static const char *const state_name[] = {
3210 		[NVME_CTRL_NEW]		= "new",
3211 		[NVME_CTRL_LIVE]	= "live",
3212 		[NVME_CTRL_RESETTING]	= "resetting",
3213 		[NVME_CTRL_CONNECTING]	= "connecting",
3214 		[NVME_CTRL_DELETING]	= "deleting",
3215 		[NVME_CTRL_DEAD]	= "dead",
3216 	};
3217 
3218 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3219 	    state_name[ctrl->state])
3220 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
3221 
3222 	return sprintf(buf, "unknown state\n");
3223 }
3224 
3225 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3226 
3227 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3228 					 struct device_attribute *attr,
3229 					 char *buf)
3230 {
3231 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3232 
3233 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3234 }
3235 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3236 
3237 static ssize_t nvme_sysfs_show_address(struct device *dev,
3238 					 struct device_attribute *attr,
3239 					 char *buf)
3240 {
3241 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3242 
3243 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3244 }
3245 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3246 
3247 static struct attribute *nvme_dev_attrs[] = {
3248 	&dev_attr_reset_controller.attr,
3249 	&dev_attr_rescan_controller.attr,
3250 	&dev_attr_model.attr,
3251 	&dev_attr_serial.attr,
3252 	&dev_attr_firmware_rev.attr,
3253 	&dev_attr_cntlid.attr,
3254 	&dev_attr_delete_controller.attr,
3255 	&dev_attr_transport.attr,
3256 	&dev_attr_subsysnqn.attr,
3257 	&dev_attr_address.attr,
3258 	&dev_attr_state.attr,
3259 	&dev_attr_numa_node.attr,
3260 	&dev_attr_queue_count.attr,
3261 	&dev_attr_sqsize.attr,
3262 	NULL
3263 };
3264 
3265 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3266 		struct attribute *a, int n)
3267 {
3268 	struct device *dev = container_of(kobj, struct device, kobj);
3269 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3270 
3271 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3272 		return 0;
3273 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3274 		return 0;
3275 
3276 	return a->mode;
3277 }
3278 
3279 static struct attribute_group nvme_dev_attrs_group = {
3280 	.attrs		= nvme_dev_attrs,
3281 	.is_visible	= nvme_dev_attrs_are_visible,
3282 };
3283 
3284 static const struct attribute_group *nvme_dev_attr_groups[] = {
3285 	&nvme_dev_attrs_group,
3286 	NULL,
3287 };
3288 
3289 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3290 		unsigned nsid)
3291 {
3292 	struct nvme_ns_head *h;
3293 
3294 	lockdep_assert_held(&subsys->lock);
3295 
3296 	list_for_each_entry(h, &subsys->nsheads, entry) {
3297 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3298 			return h;
3299 	}
3300 
3301 	return NULL;
3302 }
3303 
3304 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3305 		struct nvme_ns_head *new)
3306 {
3307 	struct nvme_ns_head *h;
3308 
3309 	lockdep_assert_held(&subsys->lock);
3310 
3311 	list_for_each_entry(h, &subsys->nsheads, entry) {
3312 		if (nvme_ns_ids_valid(&new->ids) &&
3313 		    !list_empty(&h->list) &&
3314 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3315 			return -EINVAL;
3316 	}
3317 
3318 	return 0;
3319 }
3320 
3321 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3322 		unsigned nsid, struct nvme_id_ns *id)
3323 {
3324 	struct nvme_ns_head *head;
3325 	size_t size = sizeof(*head);
3326 	int ret = -ENOMEM;
3327 
3328 #ifdef CONFIG_NVME_MULTIPATH
3329 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3330 #endif
3331 
3332 	head = kzalloc(size, GFP_KERNEL);
3333 	if (!head)
3334 		goto out;
3335 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3336 	if (ret < 0)
3337 		goto out_free_head;
3338 	head->instance = ret;
3339 	INIT_LIST_HEAD(&head->list);
3340 	ret = init_srcu_struct(&head->srcu);
3341 	if (ret)
3342 		goto out_ida_remove;
3343 	head->subsys = ctrl->subsys;
3344 	head->ns_id = nsid;
3345 	kref_init(&head->ref);
3346 
3347 	ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3348 	if (ret)
3349 		goto out_cleanup_srcu;
3350 
3351 	ret = __nvme_check_ids(ctrl->subsys, head);
3352 	if (ret) {
3353 		dev_err(ctrl->device,
3354 			"duplicate IDs for nsid %d\n", nsid);
3355 		goto out_cleanup_srcu;
3356 	}
3357 
3358 	ret = nvme_mpath_alloc_disk(ctrl, head);
3359 	if (ret)
3360 		goto out_cleanup_srcu;
3361 
3362 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3363 
3364 	kref_get(&ctrl->subsys->ref);
3365 
3366 	return head;
3367 out_cleanup_srcu:
3368 	cleanup_srcu_struct(&head->srcu);
3369 out_ida_remove:
3370 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3371 out_free_head:
3372 	kfree(head);
3373 out:
3374 	if (ret > 0)
3375 		ret = blk_status_to_errno(nvme_error_status(ret));
3376 	return ERR_PTR(ret);
3377 }
3378 
3379 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3380 		struct nvme_id_ns *id)
3381 {
3382 	struct nvme_ctrl *ctrl = ns->ctrl;
3383 	bool is_shared = id->nmic & (1 << 0);
3384 	struct nvme_ns_head *head = NULL;
3385 	int ret = 0;
3386 
3387 	mutex_lock(&ctrl->subsys->lock);
3388 	if (is_shared)
3389 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
3390 	if (!head) {
3391 		head = nvme_alloc_ns_head(ctrl, nsid, id);
3392 		if (IS_ERR(head)) {
3393 			ret = PTR_ERR(head);
3394 			goto out_unlock;
3395 		}
3396 	} else {
3397 		struct nvme_ns_ids ids;
3398 
3399 		ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3400 		if (ret)
3401 			goto out_unlock;
3402 
3403 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3404 			dev_err(ctrl->device,
3405 				"IDs don't match for shared namespace %d\n",
3406 					nsid);
3407 			ret = -EINVAL;
3408 			goto out_unlock;
3409 		}
3410 	}
3411 
3412 	list_add_tail(&ns->siblings, &head->list);
3413 	ns->head = head;
3414 
3415 out_unlock:
3416 	mutex_unlock(&ctrl->subsys->lock);
3417 	if (ret > 0)
3418 		ret = blk_status_to_errno(nvme_error_status(ret));
3419 	return ret;
3420 }
3421 
3422 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3423 {
3424 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3425 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3426 
3427 	return nsa->head->ns_id - nsb->head->ns_id;
3428 }
3429 
3430 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3431 {
3432 	struct nvme_ns *ns, *ret = NULL;
3433 
3434 	down_read(&ctrl->namespaces_rwsem);
3435 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3436 		if (ns->head->ns_id == nsid) {
3437 			if (!kref_get_unless_zero(&ns->kref))
3438 				continue;
3439 			ret = ns;
3440 			break;
3441 		}
3442 		if (ns->head->ns_id > nsid)
3443 			break;
3444 	}
3445 	up_read(&ctrl->namespaces_rwsem);
3446 	return ret;
3447 }
3448 
3449 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3450 {
3451 	struct streams_directive_params s;
3452 	int ret;
3453 
3454 	if (!ctrl->nr_streams)
3455 		return 0;
3456 
3457 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3458 	if (ret)
3459 		return ret;
3460 
3461 	ns->sws = le32_to_cpu(s.sws);
3462 	ns->sgs = le16_to_cpu(s.sgs);
3463 
3464 	if (ns->sws) {
3465 		unsigned int bs = 1 << ns->lba_shift;
3466 
3467 		blk_queue_io_min(ns->queue, bs * ns->sws);
3468 		if (ns->sgs)
3469 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3470 	}
3471 
3472 	return 0;
3473 }
3474 
3475 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3476 {
3477 	struct nvme_ns *ns;
3478 	struct gendisk *disk;
3479 	struct nvme_id_ns *id;
3480 	char disk_name[DISK_NAME_LEN];
3481 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3482 
3483 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3484 	if (!ns)
3485 		return -ENOMEM;
3486 
3487 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3488 	if (IS_ERR(ns->queue)) {
3489 		ret = PTR_ERR(ns->queue);
3490 		goto out_free_ns;
3491 	}
3492 
3493 	if (ctrl->opts && ctrl->opts->data_digest)
3494 		ns->queue->backing_dev_info->capabilities
3495 			|= BDI_CAP_STABLE_WRITES;
3496 
3497 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3498 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3499 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3500 
3501 	ns->queue->queuedata = ns;
3502 	ns->ctrl = ctrl;
3503 
3504 	kref_init(&ns->kref);
3505 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3506 
3507 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3508 	nvme_set_queue_limits(ctrl, ns->queue);
3509 
3510 	ret = nvme_identify_ns(ctrl, nsid, &id);
3511 	if (ret)
3512 		goto out_free_queue;
3513 
3514 	if (id->ncap == 0) {
3515 		ret = -EINVAL;
3516 		goto out_free_id;
3517 	}
3518 
3519 	ret = nvme_init_ns_head(ns, nsid, id);
3520 	if (ret)
3521 		goto out_free_id;
3522 	nvme_setup_streams_ns(ctrl, ns);
3523 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3524 
3525 	disk = alloc_disk_node(0, node);
3526 	if (!disk) {
3527 		ret = -ENOMEM;
3528 		goto out_unlink_ns;
3529 	}
3530 
3531 	disk->fops = &nvme_fops;
3532 	disk->private_data = ns;
3533 	disk->queue = ns->queue;
3534 	disk->flags = flags;
3535 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3536 	ns->disk = disk;
3537 
3538 	__nvme_revalidate_disk(disk, id);
3539 
3540 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3541 		ret = nvme_nvm_register(ns, disk_name, node);
3542 		if (ret) {
3543 			dev_warn(ctrl->device, "LightNVM init failure\n");
3544 			goto out_put_disk;
3545 		}
3546 	}
3547 
3548 	down_write(&ctrl->namespaces_rwsem);
3549 	list_add_tail(&ns->list, &ctrl->namespaces);
3550 	up_write(&ctrl->namespaces_rwsem);
3551 
3552 	nvme_get_ctrl(ctrl);
3553 
3554 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3555 
3556 	nvme_mpath_add_disk(ns, id);
3557 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3558 	kfree(id);
3559 
3560 	return 0;
3561  out_put_disk:
3562 	put_disk(ns->disk);
3563  out_unlink_ns:
3564 	mutex_lock(&ctrl->subsys->lock);
3565 	list_del_rcu(&ns->siblings);
3566 	mutex_unlock(&ctrl->subsys->lock);
3567 	nvme_put_ns_head(ns->head);
3568  out_free_id:
3569 	kfree(id);
3570  out_free_queue:
3571 	blk_cleanup_queue(ns->queue);
3572  out_free_ns:
3573 	kfree(ns);
3574 	if (ret > 0)
3575 		ret = blk_status_to_errno(nvme_error_status(ret));
3576 	return ret;
3577 }
3578 
3579 static void nvme_ns_remove(struct nvme_ns *ns)
3580 {
3581 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3582 		return;
3583 
3584 	nvme_fault_inject_fini(&ns->fault_inject);
3585 
3586 	mutex_lock(&ns->ctrl->subsys->lock);
3587 	list_del_rcu(&ns->siblings);
3588 	mutex_unlock(&ns->ctrl->subsys->lock);
3589 	synchronize_rcu(); /* guarantee not available in head->list */
3590 	nvme_mpath_clear_current_path(ns);
3591 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3592 
3593 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3594 		del_gendisk(ns->disk);
3595 		blk_cleanup_queue(ns->queue);
3596 		if (blk_get_integrity(ns->disk))
3597 			blk_integrity_unregister(ns->disk);
3598 	}
3599 
3600 	down_write(&ns->ctrl->namespaces_rwsem);
3601 	list_del_init(&ns->list);
3602 	up_write(&ns->ctrl->namespaces_rwsem);
3603 
3604 	nvme_mpath_check_last_path(ns);
3605 	nvme_put_ns(ns);
3606 }
3607 
3608 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3609 {
3610 	struct nvme_ns *ns;
3611 
3612 	ns = nvme_find_get_ns(ctrl, nsid);
3613 	if (ns) {
3614 		if (ns->disk && revalidate_disk(ns->disk))
3615 			nvme_ns_remove(ns);
3616 		nvme_put_ns(ns);
3617 	} else
3618 		nvme_alloc_ns(ctrl, nsid);
3619 }
3620 
3621 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3622 					unsigned nsid)
3623 {
3624 	struct nvme_ns *ns, *next;
3625 	LIST_HEAD(rm_list);
3626 
3627 	down_write(&ctrl->namespaces_rwsem);
3628 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3629 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3630 			list_move_tail(&ns->list, &rm_list);
3631 	}
3632 	up_write(&ctrl->namespaces_rwsem);
3633 
3634 	list_for_each_entry_safe(ns, next, &rm_list, list)
3635 		nvme_ns_remove(ns);
3636 
3637 }
3638 
3639 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3640 {
3641 	struct nvme_ns *ns;
3642 	__le32 *ns_list;
3643 	unsigned i, j, nsid, prev = 0;
3644 	unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3645 	int ret = 0;
3646 
3647 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3648 	if (!ns_list)
3649 		return -ENOMEM;
3650 
3651 	for (i = 0; i < num_lists; i++) {
3652 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3653 		if (ret)
3654 			goto free;
3655 
3656 		for (j = 0; j < min(nn, 1024U); j++) {
3657 			nsid = le32_to_cpu(ns_list[j]);
3658 			if (!nsid)
3659 				goto out;
3660 
3661 			nvme_validate_ns(ctrl, nsid);
3662 
3663 			while (++prev < nsid) {
3664 				ns = nvme_find_get_ns(ctrl, prev);
3665 				if (ns) {
3666 					nvme_ns_remove(ns);
3667 					nvme_put_ns(ns);
3668 				}
3669 			}
3670 		}
3671 		nn -= j;
3672 	}
3673  out:
3674 	nvme_remove_invalid_namespaces(ctrl, prev);
3675  free:
3676 	kfree(ns_list);
3677 	return ret;
3678 }
3679 
3680 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3681 {
3682 	unsigned i;
3683 
3684 	for (i = 1; i <= nn; i++)
3685 		nvme_validate_ns(ctrl, i);
3686 
3687 	nvme_remove_invalid_namespaces(ctrl, nn);
3688 }
3689 
3690 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3691 {
3692 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3693 	__le32 *log;
3694 	int error;
3695 
3696 	log = kzalloc(log_size, GFP_KERNEL);
3697 	if (!log)
3698 		return;
3699 
3700 	/*
3701 	 * We need to read the log to clear the AEN, but we don't want to rely
3702 	 * on it for the changed namespace information as userspace could have
3703 	 * raced with us in reading the log page, which could cause us to miss
3704 	 * updates.
3705 	 */
3706 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3707 			log_size, 0);
3708 	if (error)
3709 		dev_warn(ctrl->device,
3710 			"reading changed ns log failed: %d\n", error);
3711 
3712 	kfree(log);
3713 }
3714 
3715 static void nvme_scan_work(struct work_struct *work)
3716 {
3717 	struct nvme_ctrl *ctrl =
3718 		container_of(work, struct nvme_ctrl, scan_work);
3719 	struct nvme_id_ctrl *id;
3720 	unsigned nn;
3721 
3722 	/* No tagset on a live ctrl means IO queues could not created */
3723 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3724 		return;
3725 
3726 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3727 		dev_info(ctrl->device, "rescanning namespaces.\n");
3728 		nvme_clear_changed_ns_log(ctrl);
3729 	}
3730 
3731 	if (nvme_identify_ctrl(ctrl, &id))
3732 		return;
3733 
3734 	mutex_lock(&ctrl->scan_lock);
3735 	nn = le32_to_cpu(id->nn);
3736 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3737 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3738 		if (!nvme_scan_ns_list(ctrl, nn))
3739 			goto out_free_id;
3740 	}
3741 	nvme_scan_ns_sequential(ctrl, nn);
3742 out_free_id:
3743 	mutex_unlock(&ctrl->scan_lock);
3744 	kfree(id);
3745 	down_write(&ctrl->namespaces_rwsem);
3746 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3747 	up_write(&ctrl->namespaces_rwsem);
3748 }
3749 
3750 /*
3751  * This function iterates the namespace list unlocked to allow recovery from
3752  * controller failure. It is up to the caller to ensure the namespace list is
3753  * not modified by scan work while this function is executing.
3754  */
3755 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3756 {
3757 	struct nvme_ns *ns, *next;
3758 	LIST_HEAD(ns_list);
3759 
3760 	/*
3761 	 * make sure to requeue I/O to all namespaces as these
3762 	 * might result from the scan itself and must complete
3763 	 * for the scan_work to make progress
3764 	 */
3765 	nvme_mpath_clear_ctrl_paths(ctrl);
3766 
3767 	/* prevent racing with ns scanning */
3768 	flush_work(&ctrl->scan_work);
3769 
3770 	/*
3771 	 * The dead states indicates the controller was not gracefully
3772 	 * disconnected. In that case, we won't be able to flush any data while
3773 	 * removing the namespaces' disks; fail all the queues now to avoid
3774 	 * potentially having to clean up the failed sync later.
3775 	 */
3776 	if (ctrl->state == NVME_CTRL_DEAD)
3777 		nvme_kill_queues(ctrl);
3778 
3779 	down_write(&ctrl->namespaces_rwsem);
3780 	list_splice_init(&ctrl->namespaces, &ns_list);
3781 	up_write(&ctrl->namespaces_rwsem);
3782 
3783 	list_for_each_entry_safe(ns, next, &ns_list, list)
3784 		nvme_ns_remove(ns);
3785 }
3786 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3787 
3788 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3789 {
3790 	struct nvme_ctrl *ctrl =
3791 		container_of(dev, struct nvme_ctrl, ctrl_device);
3792 	struct nvmf_ctrl_options *opts = ctrl->opts;
3793 	int ret;
3794 
3795 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3796 	if (ret)
3797 		return ret;
3798 
3799 	if (opts) {
3800 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3801 		if (ret)
3802 			return ret;
3803 
3804 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3805 				opts->trsvcid ?: "none");
3806 		if (ret)
3807 			return ret;
3808 
3809 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3810 				opts->host_traddr ?: "none");
3811 	}
3812 	return ret;
3813 }
3814 
3815 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3816 {
3817 	char *envp[2] = { NULL, NULL };
3818 	u32 aen_result = ctrl->aen_result;
3819 
3820 	ctrl->aen_result = 0;
3821 	if (!aen_result)
3822 		return;
3823 
3824 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3825 	if (!envp[0])
3826 		return;
3827 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3828 	kfree(envp[0]);
3829 }
3830 
3831 static void nvme_async_event_work(struct work_struct *work)
3832 {
3833 	struct nvme_ctrl *ctrl =
3834 		container_of(work, struct nvme_ctrl, async_event_work);
3835 
3836 	nvme_aen_uevent(ctrl);
3837 	ctrl->ops->submit_async_event(ctrl);
3838 }
3839 
3840 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3841 {
3842 
3843 	u32 csts;
3844 
3845 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3846 		return false;
3847 
3848 	if (csts == ~0)
3849 		return false;
3850 
3851 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3852 }
3853 
3854 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3855 {
3856 	struct nvme_fw_slot_info_log *log;
3857 
3858 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3859 	if (!log)
3860 		return;
3861 
3862 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3863 			sizeof(*log), 0))
3864 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3865 	kfree(log);
3866 }
3867 
3868 static void nvme_fw_act_work(struct work_struct *work)
3869 {
3870 	struct nvme_ctrl *ctrl = container_of(work,
3871 				struct nvme_ctrl, fw_act_work);
3872 	unsigned long fw_act_timeout;
3873 
3874 	if (ctrl->mtfa)
3875 		fw_act_timeout = jiffies +
3876 				msecs_to_jiffies(ctrl->mtfa * 100);
3877 	else
3878 		fw_act_timeout = jiffies +
3879 				msecs_to_jiffies(admin_timeout * 1000);
3880 
3881 	nvme_stop_queues(ctrl);
3882 	while (nvme_ctrl_pp_status(ctrl)) {
3883 		if (time_after(jiffies, fw_act_timeout)) {
3884 			dev_warn(ctrl->device,
3885 				"Fw activation timeout, reset controller\n");
3886 			nvme_try_sched_reset(ctrl);
3887 			return;
3888 		}
3889 		msleep(100);
3890 	}
3891 
3892 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
3893 		return;
3894 
3895 	nvme_start_queues(ctrl);
3896 	/* read FW slot information to clear the AER */
3897 	nvme_get_fw_slot_info(ctrl);
3898 }
3899 
3900 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3901 {
3902 	u32 aer_notice_type = (result & 0xff00) >> 8;
3903 
3904 	trace_nvme_async_event(ctrl, aer_notice_type);
3905 
3906 	switch (aer_notice_type) {
3907 	case NVME_AER_NOTICE_NS_CHANGED:
3908 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3909 		nvme_queue_scan(ctrl);
3910 		break;
3911 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3912 		/*
3913 		 * We are (ab)using the RESETTING state to prevent subsequent
3914 		 * recovery actions from interfering with the controller's
3915 		 * firmware activation.
3916 		 */
3917 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
3918 			queue_work(nvme_wq, &ctrl->fw_act_work);
3919 		break;
3920 #ifdef CONFIG_NVME_MULTIPATH
3921 	case NVME_AER_NOTICE_ANA:
3922 		if (!ctrl->ana_log_buf)
3923 			break;
3924 		queue_work(nvme_wq, &ctrl->ana_work);
3925 		break;
3926 #endif
3927 	case NVME_AER_NOTICE_DISC_CHANGED:
3928 		ctrl->aen_result = result;
3929 		break;
3930 	default:
3931 		dev_warn(ctrl->device, "async event result %08x\n", result);
3932 	}
3933 }
3934 
3935 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3936 		volatile union nvme_result *res)
3937 {
3938 	u32 result = le32_to_cpu(res->u32);
3939 	u32 aer_type = result & 0x07;
3940 
3941 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3942 		return;
3943 
3944 	switch (aer_type) {
3945 	case NVME_AER_NOTICE:
3946 		nvme_handle_aen_notice(ctrl, result);
3947 		break;
3948 	case NVME_AER_ERROR:
3949 	case NVME_AER_SMART:
3950 	case NVME_AER_CSS:
3951 	case NVME_AER_VS:
3952 		trace_nvme_async_event(ctrl, aer_type);
3953 		ctrl->aen_result = result;
3954 		break;
3955 	default:
3956 		break;
3957 	}
3958 	queue_work(nvme_wq, &ctrl->async_event_work);
3959 }
3960 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3961 
3962 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3963 {
3964 	nvme_mpath_stop(ctrl);
3965 	nvme_stop_keep_alive(ctrl);
3966 	flush_work(&ctrl->async_event_work);
3967 	cancel_work_sync(&ctrl->fw_act_work);
3968 }
3969 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3970 
3971 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3972 {
3973 	if (ctrl->kato)
3974 		nvme_start_keep_alive(ctrl);
3975 
3976 	nvme_enable_aen(ctrl);
3977 
3978 	if (ctrl->queue_count > 1) {
3979 		nvme_queue_scan(ctrl);
3980 		nvme_start_queues(ctrl);
3981 	}
3982 }
3983 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3984 
3985 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3986 {
3987 	nvme_fault_inject_fini(&ctrl->fault_inject);
3988 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
3989 	cdev_device_del(&ctrl->cdev, ctrl->device);
3990 }
3991 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3992 
3993 static void nvme_free_ctrl(struct device *dev)
3994 {
3995 	struct nvme_ctrl *ctrl =
3996 		container_of(dev, struct nvme_ctrl, ctrl_device);
3997 	struct nvme_subsystem *subsys = ctrl->subsys;
3998 
3999 	if (subsys && ctrl->instance != subsys->instance)
4000 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4001 
4002 	kfree(ctrl->effects);
4003 	nvme_mpath_uninit(ctrl);
4004 	__free_page(ctrl->discard_page);
4005 
4006 	if (subsys) {
4007 		mutex_lock(&nvme_subsystems_lock);
4008 		list_del(&ctrl->subsys_entry);
4009 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4010 		mutex_unlock(&nvme_subsystems_lock);
4011 	}
4012 
4013 	ctrl->ops->free_ctrl(ctrl);
4014 
4015 	if (subsys)
4016 		nvme_put_subsystem(subsys);
4017 }
4018 
4019 /*
4020  * Initialize a NVMe controller structures.  This needs to be called during
4021  * earliest initialization so that we have the initialized structured around
4022  * during probing.
4023  */
4024 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4025 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4026 {
4027 	int ret;
4028 
4029 	ctrl->state = NVME_CTRL_NEW;
4030 	spin_lock_init(&ctrl->lock);
4031 	mutex_init(&ctrl->scan_lock);
4032 	INIT_LIST_HEAD(&ctrl->namespaces);
4033 	init_rwsem(&ctrl->namespaces_rwsem);
4034 	ctrl->dev = dev;
4035 	ctrl->ops = ops;
4036 	ctrl->quirks = quirks;
4037 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4038 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4039 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4040 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4041 	init_waitqueue_head(&ctrl->state_wq);
4042 
4043 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4044 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4045 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4046 
4047 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4048 			PAGE_SIZE);
4049 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4050 	if (!ctrl->discard_page) {
4051 		ret = -ENOMEM;
4052 		goto out;
4053 	}
4054 
4055 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4056 	if (ret < 0)
4057 		goto out;
4058 	ctrl->instance = ret;
4059 
4060 	device_initialize(&ctrl->ctrl_device);
4061 	ctrl->device = &ctrl->ctrl_device;
4062 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4063 	ctrl->device->class = nvme_class;
4064 	ctrl->device->parent = ctrl->dev;
4065 	ctrl->device->groups = nvme_dev_attr_groups;
4066 	ctrl->device->release = nvme_free_ctrl;
4067 	dev_set_drvdata(ctrl->device, ctrl);
4068 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4069 	if (ret)
4070 		goto out_release_instance;
4071 
4072 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4073 	ctrl->cdev.owner = ops->module;
4074 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4075 	if (ret)
4076 		goto out_free_name;
4077 
4078 	/*
4079 	 * Initialize latency tolerance controls.  The sysfs files won't
4080 	 * be visible to userspace unless the device actually supports APST.
4081 	 */
4082 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4083 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4084 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4085 
4086 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4087 
4088 	return 0;
4089 out_free_name:
4090 	kfree_const(ctrl->device->kobj.name);
4091 out_release_instance:
4092 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4093 out:
4094 	if (ctrl->discard_page)
4095 		__free_page(ctrl->discard_page);
4096 	return ret;
4097 }
4098 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4099 
4100 /**
4101  * nvme_kill_queues(): Ends all namespace queues
4102  * @ctrl: the dead controller that needs to end
4103  *
4104  * Call this function when the driver determines it is unable to get the
4105  * controller in a state capable of servicing IO.
4106  */
4107 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4108 {
4109 	struct nvme_ns *ns;
4110 
4111 	down_read(&ctrl->namespaces_rwsem);
4112 
4113 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4114 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4115 		blk_mq_unquiesce_queue(ctrl->admin_q);
4116 
4117 	list_for_each_entry(ns, &ctrl->namespaces, list)
4118 		nvme_set_queue_dying(ns);
4119 
4120 	up_read(&ctrl->namespaces_rwsem);
4121 }
4122 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4123 
4124 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4125 {
4126 	struct nvme_ns *ns;
4127 
4128 	down_read(&ctrl->namespaces_rwsem);
4129 	list_for_each_entry(ns, &ctrl->namespaces, list)
4130 		blk_mq_unfreeze_queue(ns->queue);
4131 	up_read(&ctrl->namespaces_rwsem);
4132 }
4133 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4134 
4135 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4136 {
4137 	struct nvme_ns *ns;
4138 
4139 	down_read(&ctrl->namespaces_rwsem);
4140 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4141 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4142 		if (timeout <= 0)
4143 			break;
4144 	}
4145 	up_read(&ctrl->namespaces_rwsem);
4146 }
4147 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4148 
4149 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4150 {
4151 	struct nvme_ns *ns;
4152 
4153 	down_read(&ctrl->namespaces_rwsem);
4154 	list_for_each_entry(ns, &ctrl->namespaces, list)
4155 		blk_mq_freeze_queue_wait(ns->queue);
4156 	up_read(&ctrl->namespaces_rwsem);
4157 }
4158 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4159 
4160 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4161 {
4162 	struct nvme_ns *ns;
4163 
4164 	down_read(&ctrl->namespaces_rwsem);
4165 	list_for_each_entry(ns, &ctrl->namespaces, list)
4166 		blk_freeze_queue_start(ns->queue);
4167 	up_read(&ctrl->namespaces_rwsem);
4168 }
4169 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4170 
4171 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4172 {
4173 	struct nvme_ns *ns;
4174 
4175 	down_read(&ctrl->namespaces_rwsem);
4176 	list_for_each_entry(ns, &ctrl->namespaces, list)
4177 		blk_mq_quiesce_queue(ns->queue);
4178 	up_read(&ctrl->namespaces_rwsem);
4179 }
4180 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4181 
4182 void nvme_start_queues(struct nvme_ctrl *ctrl)
4183 {
4184 	struct nvme_ns *ns;
4185 
4186 	down_read(&ctrl->namespaces_rwsem);
4187 	list_for_each_entry(ns, &ctrl->namespaces, list)
4188 		blk_mq_unquiesce_queue(ns->queue);
4189 	up_read(&ctrl->namespaces_rwsem);
4190 }
4191 EXPORT_SYMBOL_GPL(nvme_start_queues);
4192 
4193 
4194 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4195 {
4196 	struct nvme_ns *ns;
4197 
4198 	down_read(&ctrl->namespaces_rwsem);
4199 	list_for_each_entry(ns, &ctrl->namespaces, list)
4200 		blk_sync_queue(ns->queue);
4201 	up_read(&ctrl->namespaces_rwsem);
4202 
4203 	if (ctrl->admin_q)
4204 		blk_sync_queue(ctrl->admin_q);
4205 }
4206 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4207 
4208 /*
4209  * Check we didn't inadvertently grow the command structure sizes:
4210  */
4211 static inline void _nvme_check_size(void)
4212 {
4213 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4214 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4215 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4216 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4217 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4218 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4219 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4220 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4221 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4222 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4223 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4224 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4225 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4226 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4227 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4228 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4229 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4230 }
4231 
4232 
4233 static int __init nvme_core_init(void)
4234 {
4235 	int result = -ENOMEM;
4236 
4237 	_nvme_check_size();
4238 
4239 	nvme_wq = alloc_workqueue("nvme-wq",
4240 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4241 	if (!nvme_wq)
4242 		goto out;
4243 
4244 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4245 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4246 	if (!nvme_reset_wq)
4247 		goto destroy_wq;
4248 
4249 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4250 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4251 	if (!nvme_delete_wq)
4252 		goto destroy_reset_wq;
4253 
4254 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4255 	if (result < 0)
4256 		goto destroy_delete_wq;
4257 
4258 	nvme_class = class_create(THIS_MODULE, "nvme");
4259 	if (IS_ERR(nvme_class)) {
4260 		result = PTR_ERR(nvme_class);
4261 		goto unregister_chrdev;
4262 	}
4263 	nvme_class->dev_uevent = nvme_class_uevent;
4264 
4265 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4266 	if (IS_ERR(nvme_subsys_class)) {
4267 		result = PTR_ERR(nvme_subsys_class);
4268 		goto destroy_class;
4269 	}
4270 	return 0;
4271 
4272 destroy_class:
4273 	class_destroy(nvme_class);
4274 unregister_chrdev:
4275 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4276 destroy_delete_wq:
4277 	destroy_workqueue(nvme_delete_wq);
4278 destroy_reset_wq:
4279 	destroy_workqueue(nvme_reset_wq);
4280 destroy_wq:
4281 	destroy_workqueue(nvme_wq);
4282 out:
4283 	return result;
4284 }
4285 
4286 static void __exit nvme_core_exit(void)
4287 {
4288 	class_destroy(nvme_subsys_class);
4289 	class_destroy(nvme_class);
4290 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4291 	destroy_workqueue(nvme_delete_wq);
4292 	destroy_workqueue(nvme_reset_wq);
4293 	destroy_workqueue(nvme_wq);
4294 }
4295 
4296 MODULE_LICENSE("GPL");
4297 MODULE_VERSION("1.0");
4298 module_init(nvme_core_init);
4299 module_exit(nvme_core_exit);
4300