1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <scsi/sg.h> 31 #include <asm/unaligned.h> 32 33 #include "nvme.h" 34 #include "fabrics.h" 35 36 #define NVME_MINORS (1U << MINORBITS) 37 38 unsigned char admin_timeout = 60; 39 module_param(admin_timeout, byte, 0644); 40 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 41 EXPORT_SYMBOL_GPL(admin_timeout); 42 43 unsigned char nvme_io_timeout = 30; 44 module_param_named(io_timeout, nvme_io_timeout, byte, 0644); 45 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 46 EXPORT_SYMBOL_GPL(nvme_io_timeout); 47 48 unsigned char shutdown_timeout = 5; 49 module_param(shutdown_timeout, byte, 0644); 50 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 51 52 static u8 nvme_max_retries = 5; 53 module_param_named(max_retries, nvme_max_retries, byte, 0644); 54 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 55 56 static int nvme_char_major; 57 module_param(nvme_char_major, int, 0); 58 59 static unsigned long default_ps_max_latency_us = 25000; 60 module_param(default_ps_max_latency_us, ulong, 0644); 61 MODULE_PARM_DESC(default_ps_max_latency_us, 62 "max power saving latency for new devices; use PM QOS to change per device"); 63 64 static bool force_apst; 65 module_param(force_apst, bool, 0644); 66 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 67 68 static LIST_HEAD(nvme_ctrl_list); 69 static DEFINE_SPINLOCK(dev_list_lock); 70 71 static struct class *nvme_class; 72 73 static int nvme_error_status(struct request *req) 74 { 75 switch (nvme_req(req)->status & 0x7ff) { 76 case NVME_SC_SUCCESS: 77 return 0; 78 case NVME_SC_CAP_EXCEEDED: 79 return -ENOSPC; 80 default: 81 return -EIO; 82 83 /* 84 * XXX: these errors are a nasty side-band protocol to 85 * drivers/md/dm-mpath.c:noretry_error() that aren't documented 86 * anywhere.. 87 */ 88 case NVME_SC_CMD_SEQ_ERROR: 89 return -EILSEQ; 90 case NVME_SC_ONCS_NOT_SUPPORTED: 91 return -EOPNOTSUPP; 92 case NVME_SC_WRITE_FAULT: 93 case NVME_SC_READ_ERROR: 94 case NVME_SC_UNWRITTEN_BLOCK: 95 return -ENODATA; 96 } 97 } 98 99 static inline bool nvme_req_needs_retry(struct request *req) 100 { 101 if (blk_noretry_request(req)) 102 return false; 103 if (nvme_req(req)->status & NVME_SC_DNR) 104 return false; 105 if (jiffies - req->start_time >= req->timeout) 106 return false; 107 if (nvme_req(req)->retries >= nvme_max_retries) 108 return false; 109 return true; 110 } 111 112 void nvme_complete_rq(struct request *req) 113 { 114 if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) { 115 nvme_req(req)->retries++; 116 blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q)); 117 return; 118 } 119 120 blk_mq_end_request(req, nvme_error_status(req)); 121 } 122 EXPORT_SYMBOL_GPL(nvme_complete_rq); 123 124 void nvme_cancel_request(struct request *req, void *data, bool reserved) 125 { 126 int status; 127 128 if (!blk_mq_request_started(req)) 129 return; 130 131 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 132 "Cancelling I/O %d", req->tag); 133 134 status = NVME_SC_ABORT_REQ; 135 if (blk_queue_dying(req->q)) 136 status |= NVME_SC_DNR; 137 nvme_req(req)->status = status; 138 blk_mq_complete_request(req); 139 140 } 141 EXPORT_SYMBOL_GPL(nvme_cancel_request); 142 143 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 144 enum nvme_ctrl_state new_state) 145 { 146 enum nvme_ctrl_state old_state; 147 bool changed = false; 148 149 spin_lock_irq(&ctrl->lock); 150 151 old_state = ctrl->state; 152 switch (new_state) { 153 case NVME_CTRL_LIVE: 154 switch (old_state) { 155 case NVME_CTRL_NEW: 156 case NVME_CTRL_RESETTING: 157 case NVME_CTRL_RECONNECTING: 158 changed = true; 159 /* FALLTHRU */ 160 default: 161 break; 162 } 163 break; 164 case NVME_CTRL_RESETTING: 165 switch (old_state) { 166 case NVME_CTRL_NEW: 167 case NVME_CTRL_LIVE: 168 case NVME_CTRL_RECONNECTING: 169 changed = true; 170 /* FALLTHRU */ 171 default: 172 break; 173 } 174 break; 175 case NVME_CTRL_RECONNECTING: 176 switch (old_state) { 177 case NVME_CTRL_LIVE: 178 changed = true; 179 /* FALLTHRU */ 180 default: 181 break; 182 } 183 break; 184 case NVME_CTRL_DELETING: 185 switch (old_state) { 186 case NVME_CTRL_LIVE: 187 case NVME_CTRL_RESETTING: 188 case NVME_CTRL_RECONNECTING: 189 changed = true; 190 /* FALLTHRU */ 191 default: 192 break; 193 } 194 break; 195 case NVME_CTRL_DEAD: 196 switch (old_state) { 197 case NVME_CTRL_DELETING: 198 changed = true; 199 /* FALLTHRU */ 200 default: 201 break; 202 } 203 break; 204 default: 205 break; 206 } 207 208 if (changed) 209 ctrl->state = new_state; 210 211 spin_unlock_irq(&ctrl->lock); 212 213 return changed; 214 } 215 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 216 217 static void nvme_free_ns(struct kref *kref) 218 { 219 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 220 221 if (ns->ndev) 222 nvme_nvm_unregister(ns); 223 224 if (ns->disk) { 225 spin_lock(&dev_list_lock); 226 ns->disk->private_data = NULL; 227 spin_unlock(&dev_list_lock); 228 } 229 230 put_disk(ns->disk); 231 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance); 232 nvme_put_ctrl(ns->ctrl); 233 kfree(ns); 234 } 235 236 static void nvme_put_ns(struct nvme_ns *ns) 237 { 238 kref_put(&ns->kref, nvme_free_ns); 239 } 240 241 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk) 242 { 243 struct nvme_ns *ns; 244 245 spin_lock(&dev_list_lock); 246 ns = disk->private_data; 247 if (ns) { 248 if (!kref_get_unless_zero(&ns->kref)) 249 goto fail; 250 if (!try_module_get(ns->ctrl->ops->module)) 251 goto fail_put_ns; 252 } 253 spin_unlock(&dev_list_lock); 254 255 return ns; 256 257 fail_put_ns: 258 kref_put(&ns->kref, nvme_free_ns); 259 fail: 260 spin_unlock(&dev_list_lock); 261 return NULL; 262 } 263 264 struct request *nvme_alloc_request(struct request_queue *q, 265 struct nvme_command *cmd, unsigned int flags, int qid) 266 { 267 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 268 struct request *req; 269 270 if (qid == NVME_QID_ANY) { 271 req = blk_mq_alloc_request(q, op, flags); 272 } else { 273 req = blk_mq_alloc_request_hctx(q, op, flags, 274 qid ? qid - 1 : 0); 275 } 276 if (IS_ERR(req)) 277 return req; 278 279 req->cmd_flags |= REQ_FAILFAST_DRIVER; 280 nvme_req(req)->cmd = cmd; 281 282 return req; 283 } 284 EXPORT_SYMBOL_GPL(nvme_alloc_request); 285 286 static inline void nvme_setup_flush(struct nvme_ns *ns, 287 struct nvme_command *cmnd) 288 { 289 memset(cmnd, 0, sizeof(*cmnd)); 290 cmnd->common.opcode = nvme_cmd_flush; 291 cmnd->common.nsid = cpu_to_le32(ns->ns_id); 292 } 293 294 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req, 295 struct nvme_command *cmnd) 296 { 297 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 298 struct nvme_dsm_range *range; 299 struct bio *bio; 300 301 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 302 if (!range) 303 return BLK_MQ_RQ_QUEUE_BUSY; 304 305 __rq_for_each_bio(bio, req) { 306 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 307 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 308 309 range[n].cattr = cpu_to_le32(0); 310 range[n].nlb = cpu_to_le32(nlb); 311 range[n].slba = cpu_to_le64(slba); 312 n++; 313 } 314 315 if (WARN_ON_ONCE(n != segments)) { 316 kfree(range); 317 return BLK_MQ_RQ_QUEUE_ERROR; 318 } 319 320 memset(cmnd, 0, sizeof(*cmnd)); 321 cmnd->dsm.opcode = nvme_cmd_dsm; 322 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); 323 cmnd->dsm.nr = cpu_to_le32(segments - 1); 324 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 325 326 req->special_vec.bv_page = virt_to_page(range); 327 req->special_vec.bv_offset = offset_in_page(range); 328 req->special_vec.bv_len = sizeof(*range) * segments; 329 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 330 331 return BLK_MQ_RQ_QUEUE_OK; 332 } 333 334 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req, 335 struct nvme_command *cmnd) 336 { 337 u16 control = 0; 338 u32 dsmgmt = 0; 339 340 if (req->cmd_flags & REQ_FUA) 341 control |= NVME_RW_FUA; 342 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 343 control |= NVME_RW_LR; 344 345 if (req->cmd_flags & REQ_RAHEAD) 346 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 347 348 memset(cmnd, 0, sizeof(*cmnd)); 349 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 350 cmnd->rw.nsid = cpu_to_le32(ns->ns_id); 351 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 352 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 353 354 if (ns->ms) { 355 switch (ns->pi_type) { 356 case NVME_NS_DPS_PI_TYPE3: 357 control |= NVME_RW_PRINFO_PRCHK_GUARD; 358 break; 359 case NVME_NS_DPS_PI_TYPE1: 360 case NVME_NS_DPS_PI_TYPE2: 361 control |= NVME_RW_PRINFO_PRCHK_GUARD | 362 NVME_RW_PRINFO_PRCHK_REF; 363 cmnd->rw.reftag = cpu_to_le32( 364 nvme_block_nr(ns, blk_rq_pos(req))); 365 break; 366 } 367 if (!blk_integrity_rq(req)) 368 control |= NVME_RW_PRINFO_PRACT; 369 } 370 371 cmnd->rw.control = cpu_to_le16(control); 372 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 373 } 374 375 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 376 struct nvme_command *cmd) 377 { 378 int ret = BLK_MQ_RQ_QUEUE_OK; 379 380 if (!(req->rq_flags & RQF_DONTPREP)) { 381 nvme_req(req)->retries = 0; 382 nvme_req(req)->flags = 0; 383 req->rq_flags |= RQF_DONTPREP; 384 } 385 386 switch (req_op(req)) { 387 case REQ_OP_DRV_IN: 388 case REQ_OP_DRV_OUT: 389 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 390 break; 391 case REQ_OP_FLUSH: 392 nvme_setup_flush(ns, cmd); 393 break; 394 case REQ_OP_WRITE_ZEROES: 395 /* currently only aliased to deallocate for a few ctrls: */ 396 case REQ_OP_DISCARD: 397 ret = nvme_setup_discard(ns, req, cmd); 398 break; 399 case REQ_OP_READ: 400 case REQ_OP_WRITE: 401 nvme_setup_rw(ns, req, cmd); 402 break; 403 default: 404 WARN_ON_ONCE(1); 405 return BLK_MQ_RQ_QUEUE_ERROR; 406 } 407 408 cmd->common.command_id = req->tag; 409 return ret; 410 } 411 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 412 413 /* 414 * Returns 0 on success. If the result is negative, it's a Linux error code; 415 * if the result is positive, it's an NVM Express status code 416 */ 417 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 418 union nvme_result *result, void *buffer, unsigned bufflen, 419 unsigned timeout, int qid, int at_head, int flags) 420 { 421 struct request *req; 422 int ret; 423 424 req = nvme_alloc_request(q, cmd, flags, qid); 425 if (IS_ERR(req)) 426 return PTR_ERR(req); 427 428 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 429 430 if (buffer && bufflen) { 431 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 432 if (ret) 433 goto out; 434 } 435 436 blk_execute_rq(req->q, NULL, req, at_head); 437 if (result) 438 *result = nvme_req(req)->result; 439 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 440 ret = -EINTR; 441 else 442 ret = nvme_req(req)->status; 443 out: 444 blk_mq_free_request(req); 445 return ret; 446 } 447 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 448 449 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 450 void *buffer, unsigned bufflen) 451 { 452 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 453 NVME_QID_ANY, 0, 0); 454 } 455 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 456 457 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, 458 void __user *ubuffer, unsigned bufflen, 459 void __user *meta_buffer, unsigned meta_len, u32 meta_seed, 460 u32 *result, unsigned timeout) 461 { 462 bool write = nvme_is_write(cmd); 463 struct nvme_ns *ns = q->queuedata; 464 struct gendisk *disk = ns ? ns->disk : NULL; 465 struct request *req; 466 struct bio *bio = NULL; 467 void *meta = NULL; 468 int ret; 469 470 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 471 if (IS_ERR(req)) 472 return PTR_ERR(req); 473 474 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 475 476 if (ubuffer && bufflen) { 477 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 478 GFP_KERNEL); 479 if (ret) 480 goto out; 481 bio = req->bio; 482 483 if (!disk) 484 goto submit; 485 bio->bi_bdev = bdget_disk(disk, 0); 486 if (!bio->bi_bdev) { 487 ret = -ENODEV; 488 goto out_unmap; 489 } 490 491 if (meta_buffer && meta_len) { 492 struct bio_integrity_payload *bip; 493 494 meta = kmalloc(meta_len, GFP_KERNEL); 495 if (!meta) { 496 ret = -ENOMEM; 497 goto out_unmap; 498 } 499 500 if (write) { 501 if (copy_from_user(meta, meta_buffer, 502 meta_len)) { 503 ret = -EFAULT; 504 goto out_free_meta; 505 } 506 } 507 508 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 509 if (IS_ERR(bip)) { 510 ret = PTR_ERR(bip); 511 goto out_free_meta; 512 } 513 514 bip->bip_iter.bi_size = meta_len; 515 bip->bip_iter.bi_sector = meta_seed; 516 517 ret = bio_integrity_add_page(bio, virt_to_page(meta), 518 meta_len, offset_in_page(meta)); 519 if (ret != meta_len) { 520 ret = -ENOMEM; 521 goto out_free_meta; 522 } 523 } 524 } 525 submit: 526 blk_execute_rq(req->q, disk, req, 0); 527 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 528 ret = -EINTR; 529 else 530 ret = nvme_req(req)->status; 531 if (result) 532 *result = le32_to_cpu(nvme_req(req)->result.u32); 533 if (meta && !ret && !write) { 534 if (copy_to_user(meta_buffer, meta, meta_len)) 535 ret = -EFAULT; 536 } 537 out_free_meta: 538 kfree(meta); 539 out_unmap: 540 if (bio) { 541 if (disk && bio->bi_bdev) 542 bdput(bio->bi_bdev); 543 blk_rq_unmap_user(bio); 544 } 545 out: 546 blk_mq_free_request(req); 547 return ret; 548 } 549 550 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, 551 void __user *ubuffer, unsigned bufflen, u32 *result, 552 unsigned timeout) 553 { 554 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0, 555 result, timeout); 556 } 557 558 static void nvme_keep_alive_end_io(struct request *rq, int error) 559 { 560 struct nvme_ctrl *ctrl = rq->end_io_data; 561 562 blk_mq_free_request(rq); 563 564 if (error) { 565 dev_err(ctrl->device, 566 "failed nvme_keep_alive_end_io error=%d\n", error); 567 return; 568 } 569 570 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 571 } 572 573 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 574 { 575 struct nvme_command c; 576 struct request *rq; 577 578 memset(&c, 0, sizeof(c)); 579 c.common.opcode = nvme_admin_keep_alive; 580 581 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED, 582 NVME_QID_ANY); 583 if (IS_ERR(rq)) 584 return PTR_ERR(rq); 585 586 rq->timeout = ctrl->kato * HZ; 587 rq->end_io_data = ctrl; 588 589 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 590 591 return 0; 592 } 593 594 static void nvme_keep_alive_work(struct work_struct *work) 595 { 596 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 597 struct nvme_ctrl, ka_work); 598 599 if (nvme_keep_alive(ctrl)) { 600 /* allocation failure, reset the controller */ 601 dev_err(ctrl->device, "keep-alive failed\n"); 602 ctrl->ops->reset_ctrl(ctrl); 603 return; 604 } 605 } 606 607 void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 608 { 609 if (unlikely(ctrl->kato == 0)) 610 return; 611 612 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 613 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 614 } 615 EXPORT_SYMBOL_GPL(nvme_start_keep_alive); 616 617 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 618 { 619 if (unlikely(ctrl->kato == 0)) 620 return; 621 622 cancel_delayed_work_sync(&ctrl->ka_work); 623 } 624 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 625 626 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 627 { 628 struct nvme_command c = { }; 629 int error; 630 631 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 632 c.identify.opcode = nvme_admin_identify; 633 c.identify.cns = NVME_ID_CNS_CTRL; 634 635 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 636 if (!*id) 637 return -ENOMEM; 638 639 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 640 sizeof(struct nvme_id_ctrl)); 641 if (error) 642 kfree(*id); 643 return error; 644 } 645 646 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 647 { 648 struct nvme_command c = { }; 649 650 c.identify.opcode = nvme_admin_identify; 651 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 652 c.identify.nsid = cpu_to_le32(nsid); 653 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); 654 } 655 656 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid, 657 struct nvme_id_ns **id) 658 { 659 struct nvme_command c = { }; 660 int error; 661 662 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 663 c.identify.opcode = nvme_admin_identify; 664 c.identify.nsid = cpu_to_le32(nsid); 665 c.identify.cns = NVME_ID_CNS_NS; 666 667 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL); 668 if (!*id) 669 return -ENOMEM; 670 671 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 672 sizeof(struct nvme_id_ns)); 673 if (error) 674 kfree(*id); 675 return error; 676 } 677 678 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid, 679 void *buffer, size_t buflen, u32 *result) 680 { 681 struct nvme_command c; 682 union nvme_result res; 683 int ret; 684 685 memset(&c, 0, sizeof(c)); 686 c.features.opcode = nvme_admin_get_features; 687 c.features.nsid = cpu_to_le32(nsid); 688 c.features.fid = cpu_to_le32(fid); 689 690 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0, 691 NVME_QID_ANY, 0, 0); 692 if (ret >= 0 && result) 693 *result = le32_to_cpu(res.u32); 694 return ret; 695 } 696 697 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 698 void *buffer, size_t buflen, u32 *result) 699 { 700 struct nvme_command c; 701 union nvme_result res; 702 int ret; 703 704 memset(&c, 0, sizeof(c)); 705 c.features.opcode = nvme_admin_set_features; 706 c.features.fid = cpu_to_le32(fid); 707 c.features.dword11 = cpu_to_le32(dword11); 708 709 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 710 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 711 if (ret >= 0 && result) 712 *result = le32_to_cpu(res.u32); 713 return ret; 714 } 715 716 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log) 717 { 718 struct nvme_command c = { }; 719 int error; 720 721 c.common.opcode = nvme_admin_get_log_page, 722 c.common.nsid = cpu_to_le32(0xFFFFFFFF), 723 c.common.cdw10[0] = cpu_to_le32( 724 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) | 725 NVME_LOG_SMART), 726 727 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL); 728 if (!*log) 729 return -ENOMEM; 730 731 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log, 732 sizeof(struct nvme_smart_log)); 733 if (error) 734 kfree(*log); 735 return error; 736 } 737 738 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 739 { 740 u32 q_count = (*count - 1) | ((*count - 1) << 16); 741 u32 result; 742 int status, nr_io_queues; 743 744 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 745 &result); 746 if (status < 0) 747 return status; 748 749 /* 750 * Degraded controllers might return an error when setting the queue 751 * count. We still want to be able to bring them online and offer 752 * access to the admin queue, as that might be only way to fix them up. 753 */ 754 if (status > 0) { 755 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status); 756 *count = 0; 757 } else { 758 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 759 *count = min(*count, nr_io_queues); 760 } 761 762 return 0; 763 } 764 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 765 766 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 767 { 768 struct nvme_user_io io; 769 struct nvme_command c; 770 unsigned length, meta_len; 771 void __user *metadata; 772 773 if (copy_from_user(&io, uio, sizeof(io))) 774 return -EFAULT; 775 if (io.flags) 776 return -EINVAL; 777 778 switch (io.opcode) { 779 case nvme_cmd_write: 780 case nvme_cmd_read: 781 case nvme_cmd_compare: 782 break; 783 default: 784 return -EINVAL; 785 } 786 787 length = (io.nblocks + 1) << ns->lba_shift; 788 meta_len = (io.nblocks + 1) * ns->ms; 789 metadata = (void __user *)(uintptr_t)io.metadata; 790 791 if (ns->ext) { 792 length += meta_len; 793 meta_len = 0; 794 } else if (meta_len) { 795 if ((io.metadata & 3) || !io.metadata) 796 return -EINVAL; 797 } 798 799 memset(&c, 0, sizeof(c)); 800 c.rw.opcode = io.opcode; 801 c.rw.flags = io.flags; 802 c.rw.nsid = cpu_to_le32(ns->ns_id); 803 c.rw.slba = cpu_to_le64(io.slba); 804 c.rw.length = cpu_to_le16(io.nblocks); 805 c.rw.control = cpu_to_le16(io.control); 806 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 807 c.rw.reftag = cpu_to_le32(io.reftag); 808 c.rw.apptag = cpu_to_le16(io.apptag); 809 c.rw.appmask = cpu_to_le16(io.appmask); 810 811 return __nvme_submit_user_cmd(ns->queue, &c, 812 (void __user *)(uintptr_t)io.addr, length, 813 metadata, meta_len, io.slba, NULL, 0); 814 } 815 816 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 817 struct nvme_passthru_cmd __user *ucmd) 818 { 819 struct nvme_passthru_cmd cmd; 820 struct nvme_command c; 821 unsigned timeout = 0; 822 int status; 823 824 if (!capable(CAP_SYS_ADMIN)) 825 return -EACCES; 826 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 827 return -EFAULT; 828 if (cmd.flags) 829 return -EINVAL; 830 831 memset(&c, 0, sizeof(c)); 832 c.common.opcode = cmd.opcode; 833 c.common.flags = cmd.flags; 834 c.common.nsid = cpu_to_le32(cmd.nsid); 835 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 836 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 837 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 838 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 839 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 840 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 841 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 842 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 843 844 if (cmd.timeout_ms) 845 timeout = msecs_to_jiffies(cmd.timeout_ms); 846 847 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 848 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 849 &cmd.result, timeout); 850 if (status >= 0) { 851 if (put_user(cmd.result, &ucmd->result)) 852 return -EFAULT; 853 } 854 855 return status; 856 } 857 858 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 859 unsigned int cmd, unsigned long arg) 860 { 861 struct nvme_ns *ns = bdev->bd_disk->private_data; 862 863 switch (cmd) { 864 case NVME_IOCTL_ID: 865 force_successful_syscall_return(); 866 return ns->ns_id; 867 case NVME_IOCTL_ADMIN_CMD: 868 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 869 case NVME_IOCTL_IO_CMD: 870 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 871 case NVME_IOCTL_SUBMIT_IO: 872 return nvme_submit_io(ns, (void __user *)arg); 873 #ifdef CONFIG_BLK_DEV_NVME_SCSI 874 case SG_GET_VERSION_NUM: 875 return nvme_sg_get_version_num((void __user *)arg); 876 case SG_IO: 877 return nvme_sg_io(ns, (void __user *)arg); 878 #endif 879 default: 880 #ifdef CONFIG_NVM 881 if (ns->ndev) 882 return nvme_nvm_ioctl(ns, cmd, arg); 883 #endif 884 if (is_sed_ioctl(cmd)) 885 return sed_ioctl(ns->ctrl->opal_dev, cmd, 886 (void __user *) arg); 887 return -ENOTTY; 888 } 889 } 890 891 #ifdef CONFIG_COMPAT 892 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 893 unsigned int cmd, unsigned long arg) 894 { 895 switch (cmd) { 896 case SG_IO: 897 return -ENOIOCTLCMD; 898 } 899 return nvme_ioctl(bdev, mode, cmd, arg); 900 } 901 #else 902 #define nvme_compat_ioctl NULL 903 #endif 904 905 static int nvme_open(struct block_device *bdev, fmode_t mode) 906 { 907 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO; 908 } 909 910 static void nvme_release(struct gendisk *disk, fmode_t mode) 911 { 912 struct nvme_ns *ns = disk->private_data; 913 914 module_put(ns->ctrl->ops->module); 915 nvme_put_ns(ns); 916 } 917 918 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 919 { 920 /* some standard values */ 921 geo->heads = 1 << 6; 922 geo->sectors = 1 << 5; 923 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 924 return 0; 925 } 926 927 #ifdef CONFIG_BLK_DEV_INTEGRITY 928 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, 929 u16 bs) 930 { 931 struct nvme_ns *ns = disk->private_data; 932 u16 old_ms = ns->ms; 933 u8 pi_type = 0; 934 935 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 936 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 937 938 /* PI implementation requires metadata equal t10 pi tuple size */ 939 if (ns->ms == sizeof(struct t10_pi_tuple)) 940 pi_type = id->dps & NVME_NS_DPS_PI_MASK; 941 942 if (blk_get_integrity(disk) && 943 (ns->pi_type != pi_type || ns->ms != old_ms || 944 bs != queue_logical_block_size(disk->queue) || 945 (ns->ms && ns->ext))) 946 blk_integrity_unregister(disk); 947 948 ns->pi_type = pi_type; 949 } 950 951 static void nvme_init_integrity(struct nvme_ns *ns) 952 { 953 struct blk_integrity integrity; 954 955 memset(&integrity, 0, sizeof(integrity)); 956 switch (ns->pi_type) { 957 case NVME_NS_DPS_PI_TYPE3: 958 integrity.profile = &t10_pi_type3_crc; 959 integrity.tag_size = sizeof(u16) + sizeof(u32); 960 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 961 break; 962 case NVME_NS_DPS_PI_TYPE1: 963 case NVME_NS_DPS_PI_TYPE2: 964 integrity.profile = &t10_pi_type1_crc; 965 integrity.tag_size = sizeof(u16); 966 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 967 break; 968 default: 969 integrity.profile = NULL; 970 break; 971 } 972 integrity.tuple_size = ns->ms; 973 blk_integrity_register(ns->disk, &integrity); 974 blk_queue_max_integrity_segments(ns->queue, 1); 975 } 976 #else 977 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, 978 u16 bs) 979 { 980 } 981 static void nvme_init_integrity(struct nvme_ns *ns) 982 { 983 } 984 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 985 986 static void nvme_config_discard(struct nvme_ns *ns) 987 { 988 struct nvme_ctrl *ctrl = ns->ctrl; 989 u32 logical_block_size = queue_logical_block_size(ns->queue); 990 991 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 992 NVME_DSM_MAX_RANGES); 993 994 ns->queue->limits.discard_alignment = logical_block_size; 995 ns->queue->limits.discard_granularity = logical_block_size; 996 blk_queue_max_discard_sectors(ns->queue, UINT_MAX); 997 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES); 998 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); 999 1000 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1001 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX); 1002 } 1003 1004 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id) 1005 { 1006 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) { 1007 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__); 1008 return -ENODEV; 1009 } 1010 1011 if ((*id)->ncap == 0) { 1012 kfree(*id); 1013 return -ENODEV; 1014 } 1015 1016 if (ns->ctrl->vs >= NVME_VS(1, 1, 0)) 1017 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui)); 1018 if (ns->ctrl->vs >= NVME_VS(1, 2, 0)) 1019 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid)); 1020 1021 return 0; 1022 } 1023 1024 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1025 { 1026 struct nvme_ns *ns = disk->private_data; 1027 u16 bs; 1028 1029 /* 1030 * If identify namespace failed, use default 512 byte block size so 1031 * block layer can use before failing read/write for 0 capacity. 1032 */ 1033 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1034 if (ns->lba_shift == 0) 1035 ns->lba_shift = 9; 1036 bs = 1 << ns->lba_shift; 1037 1038 blk_mq_freeze_queue(disk->queue); 1039 1040 if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) 1041 nvme_prep_integrity(disk, id, bs); 1042 blk_queue_logical_block_size(ns->queue, bs); 1043 if (ns->ms && !blk_get_integrity(disk) && !ns->ext) 1044 nvme_init_integrity(ns); 1045 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) 1046 set_capacity(disk, 0); 1047 else 1048 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); 1049 1050 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) 1051 nvme_config_discard(ns); 1052 blk_mq_unfreeze_queue(disk->queue); 1053 } 1054 1055 static int nvme_revalidate_disk(struct gendisk *disk) 1056 { 1057 struct nvme_ns *ns = disk->private_data; 1058 struct nvme_id_ns *id = NULL; 1059 int ret; 1060 1061 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1062 set_capacity(disk, 0); 1063 return -ENODEV; 1064 } 1065 1066 ret = nvme_revalidate_ns(ns, &id); 1067 if (ret) 1068 return ret; 1069 1070 __nvme_revalidate_disk(disk, id); 1071 kfree(id); 1072 1073 return 0; 1074 } 1075 1076 static char nvme_pr_type(enum pr_type type) 1077 { 1078 switch (type) { 1079 case PR_WRITE_EXCLUSIVE: 1080 return 1; 1081 case PR_EXCLUSIVE_ACCESS: 1082 return 2; 1083 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1084 return 3; 1085 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1086 return 4; 1087 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1088 return 5; 1089 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1090 return 6; 1091 default: 1092 return 0; 1093 } 1094 }; 1095 1096 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1097 u64 key, u64 sa_key, u8 op) 1098 { 1099 struct nvme_ns *ns = bdev->bd_disk->private_data; 1100 struct nvme_command c; 1101 u8 data[16] = { 0, }; 1102 1103 put_unaligned_le64(key, &data[0]); 1104 put_unaligned_le64(sa_key, &data[8]); 1105 1106 memset(&c, 0, sizeof(c)); 1107 c.common.opcode = op; 1108 c.common.nsid = cpu_to_le32(ns->ns_id); 1109 c.common.cdw10[0] = cpu_to_le32(cdw10); 1110 1111 return nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1112 } 1113 1114 static int nvme_pr_register(struct block_device *bdev, u64 old, 1115 u64 new, unsigned flags) 1116 { 1117 u32 cdw10; 1118 1119 if (flags & ~PR_FL_IGNORE_KEY) 1120 return -EOPNOTSUPP; 1121 1122 cdw10 = old ? 2 : 0; 1123 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1124 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1125 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1126 } 1127 1128 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1129 enum pr_type type, unsigned flags) 1130 { 1131 u32 cdw10; 1132 1133 if (flags & ~PR_FL_IGNORE_KEY) 1134 return -EOPNOTSUPP; 1135 1136 cdw10 = nvme_pr_type(type) << 8; 1137 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1138 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1139 } 1140 1141 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1142 enum pr_type type, bool abort) 1143 { 1144 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; 1145 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1146 } 1147 1148 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1149 { 1150 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1151 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1152 } 1153 1154 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1155 { 1156 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; 1157 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1158 } 1159 1160 static const struct pr_ops nvme_pr_ops = { 1161 .pr_register = nvme_pr_register, 1162 .pr_reserve = nvme_pr_reserve, 1163 .pr_release = nvme_pr_release, 1164 .pr_preempt = nvme_pr_preempt, 1165 .pr_clear = nvme_pr_clear, 1166 }; 1167 1168 #ifdef CONFIG_BLK_SED_OPAL 1169 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1170 bool send) 1171 { 1172 struct nvme_ctrl *ctrl = data; 1173 struct nvme_command cmd; 1174 1175 memset(&cmd, 0, sizeof(cmd)); 1176 if (send) 1177 cmd.common.opcode = nvme_admin_security_send; 1178 else 1179 cmd.common.opcode = nvme_admin_security_recv; 1180 cmd.common.nsid = 0; 1181 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1182 cmd.common.cdw10[1] = cpu_to_le32(len); 1183 1184 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1185 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1186 } 1187 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1188 #endif /* CONFIG_BLK_SED_OPAL */ 1189 1190 static const struct block_device_operations nvme_fops = { 1191 .owner = THIS_MODULE, 1192 .ioctl = nvme_ioctl, 1193 .compat_ioctl = nvme_compat_ioctl, 1194 .open = nvme_open, 1195 .release = nvme_release, 1196 .getgeo = nvme_getgeo, 1197 .revalidate_disk= nvme_revalidate_disk, 1198 .pr_ops = &nvme_pr_ops, 1199 }; 1200 1201 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1202 { 1203 unsigned long timeout = 1204 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1205 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1206 int ret; 1207 1208 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1209 if (csts == ~0) 1210 return -ENODEV; 1211 if ((csts & NVME_CSTS_RDY) == bit) 1212 break; 1213 1214 msleep(100); 1215 if (fatal_signal_pending(current)) 1216 return -EINTR; 1217 if (time_after(jiffies, timeout)) { 1218 dev_err(ctrl->device, 1219 "Device not ready; aborting %s\n", enabled ? 1220 "initialisation" : "reset"); 1221 return -ENODEV; 1222 } 1223 } 1224 1225 return ret; 1226 } 1227 1228 /* 1229 * If the device has been passed off to us in an enabled state, just clear 1230 * the enabled bit. The spec says we should set the 'shutdown notification 1231 * bits', but doing so may cause the device to complete commands to the 1232 * admin queue ... and we don't know what memory that might be pointing at! 1233 */ 1234 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1235 { 1236 int ret; 1237 1238 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1239 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1240 1241 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1242 if (ret) 1243 return ret; 1244 1245 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1246 msleep(NVME_QUIRK_DELAY_AMOUNT); 1247 1248 return nvme_wait_ready(ctrl, cap, false); 1249 } 1250 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1251 1252 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1253 { 1254 /* 1255 * Default to a 4K page size, with the intention to update this 1256 * path in the future to accomodate architectures with differing 1257 * kernel and IO page sizes. 1258 */ 1259 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1260 int ret; 1261 1262 if (page_shift < dev_page_min) { 1263 dev_err(ctrl->device, 1264 "Minimum device page size %u too large for host (%u)\n", 1265 1 << dev_page_min, 1 << page_shift); 1266 return -ENODEV; 1267 } 1268 1269 ctrl->page_size = 1 << page_shift; 1270 1271 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1272 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1273 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; 1274 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1275 ctrl->ctrl_config |= NVME_CC_ENABLE; 1276 1277 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1278 if (ret) 1279 return ret; 1280 return nvme_wait_ready(ctrl, cap, true); 1281 } 1282 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1283 1284 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1285 { 1286 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies; 1287 u32 csts; 1288 int ret; 1289 1290 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1291 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1292 1293 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1294 if (ret) 1295 return ret; 1296 1297 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1298 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1299 break; 1300 1301 msleep(100); 1302 if (fatal_signal_pending(current)) 1303 return -EINTR; 1304 if (time_after(jiffies, timeout)) { 1305 dev_err(ctrl->device, 1306 "Device shutdown incomplete; abort shutdown\n"); 1307 return -ENODEV; 1308 } 1309 } 1310 1311 return ret; 1312 } 1313 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1314 1315 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1316 struct request_queue *q) 1317 { 1318 bool vwc = false; 1319 1320 if (ctrl->max_hw_sectors) { 1321 u32 max_segments = 1322 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1323 1324 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1325 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1326 } 1327 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) 1328 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1329 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1330 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1331 vwc = true; 1332 blk_queue_write_cache(q, vwc, vwc); 1333 } 1334 1335 static void nvme_configure_apst(struct nvme_ctrl *ctrl) 1336 { 1337 /* 1338 * APST (Autonomous Power State Transition) lets us program a 1339 * table of power state transitions that the controller will 1340 * perform automatically. We configure it with a simple 1341 * heuristic: we are willing to spend at most 2% of the time 1342 * transitioning between power states. Therefore, when running 1343 * in any given state, we will enter the next lower-power 1344 * non-operational state after waiting 50 * (enlat + exlat) 1345 * microseconds, as long as that state's total latency is under 1346 * the requested maximum latency. 1347 * 1348 * We will not autonomously enter any non-operational state for 1349 * which the total latency exceeds ps_max_latency_us. Users 1350 * can set ps_max_latency_us to zero to turn off APST. 1351 */ 1352 1353 unsigned apste; 1354 struct nvme_feat_auto_pst *table; 1355 u64 max_lat_us = 0; 1356 int max_ps = -1; 1357 int ret; 1358 1359 /* 1360 * If APST isn't supported or if we haven't been initialized yet, 1361 * then don't do anything. 1362 */ 1363 if (!ctrl->apsta) 1364 return; 1365 1366 if (ctrl->npss > 31) { 1367 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 1368 return; 1369 } 1370 1371 table = kzalloc(sizeof(*table), GFP_KERNEL); 1372 if (!table) 1373 return; 1374 1375 if (ctrl->ps_max_latency_us == 0) { 1376 /* Turn off APST. */ 1377 apste = 0; 1378 dev_dbg(ctrl->device, "APST disabled\n"); 1379 } else { 1380 __le64 target = cpu_to_le64(0); 1381 int state; 1382 1383 /* 1384 * Walk through all states from lowest- to highest-power. 1385 * According to the spec, lower-numbered states use more 1386 * power. NPSS, despite the name, is the index of the 1387 * lowest-power state, not the number of states. 1388 */ 1389 for (state = (int)ctrl->npss; state >= 0; state--) { 1390 u64 total_latency_us, transition_ms; 1391 1392 if (target) 1393 table->entries[state] = target; 1394 1395 /* 1396 * Don't allow transitions to the deepest state 1397 * if it's quirked off. 1398 */ 1399 if (state == ctrl->npss && 1400 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 1401 continue; 1402 1403 /* 1404 * Is this state a useful non-operational state for 1405 * higher-power states to autonomously transition to? 1406 */ 1407 if (!(ctrl->psd[state].flags & 1408 NVME_PS_FLAGS_NON_OP_STATE)) 1409 continue; 1410 1411 total_latency_us = 1412 (u64)le32_to_cpu(ctrl->psd[state].entry_lat) + 1413 + le32_to_cpu(ctrl->psd[state].exit_lat); 1414 if (total_latency_us > ctrl->ps_max_latency_us) 1415 continue; 1416 1417 /* 1418 * This state is good. Use it as the APST idle 1419 * target for higher power states. 1420 */ 1421 transition_ms = total_latency_us + 19; 1422 do_div(transition_ms, 20); 1423 if (transition_ms > (1 << 24) - 1) 1424 transition_ms = (1 << 24) - 1; 1425 1426 target = cpu_to_le64((state << 3) | 1427 (transition_ms << 8)); 1428 1429 if (max_ps == -1) 1430 max_ps = state; 1431 1432 if (total_latency_us > max_lat_us) 1433 max_lat_us = total_latency_us; 1434 } 1435 1436 apste = 1; 1437 1438 if (max_ps == -1) { 1439 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 1440 } else { 1441 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 1442 max_ps, max_lat_us, (int)sizeof(*table), table); 1443 } 1444 } 1445 1446 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 1447 table, sizeof(*table), NULL); 1448 if (ret) 1449 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 1450 1451 kfree(table); 1452 } 1453 1454 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 1455 { 1456 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1457 u64 latency; 1458 1459 switch (val) { 1460 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 1461 case PM_QOS_LATENCY_ANY: 1462 latency = U64_MAX; 1463 break; 1464 1465 default: 1466 latency = val; 1467 } 1468 1469 if (ctrl->ps_max_latency_us != latency) { 1470 ctrl->ps_max_latency_us = latency; 1471 nvme_configure_apst(ctrl); 1472 } 1473 } 1474 1475 struct nvme_core_quirk_entry { 1476 /* 1477 * NVMe model and firmware strings are padded with spaces. For 1478 * simplicity, strings in the quirk table are padded with NULLs 1479 * instead. 1480 */ 1481 u16 vid; 1482 const char *mn; 1483 const char *fr; 1484 unsigned long quirks; 1485 }; 1486 1487 static const struct nvme_core_quirk_entry core_quirks[] = { 1488 { 1489 /* 1490 * This Toshiba device seems to die using any APST states. See: 1491 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 1492 */ 1493 .vid = 0x1179, 1494 .mn = "THNSF5256GPUK TOSHIBA", 1495 .quirks = NVME_QUIRK_NO_APST, 1496 } 1497 }; 1498 1499 /* match is null-terminated but idstr is space-padded. */ 1500 static bool string_matches(const char *idstr, const char *match, size_t len) 1501 { 1502 size_t matchlen; 1503 1504 if (!match) 1505 return true; 1506 1507 matchlen = strlen(match); 1508 WARN_ON_ONCE(matchlen > len); 1509 1510 if (memcmp(idstr, match, matchlen)) 1511 return false; 1512 1513 for (; matchlen < len; matchlen++) 1514 if (idstr[matchlen] != ' ') 1515 return false; 1516 1517 return true; 1518 } 1519 1520 static bool quirk_matches(const struct nvme_id_ctrl *id, 1521 const struct nvme_core_quirk_entry *q) 1522 { 1523 return q->vid == le16_to_cpu(id->vid) && 1524 string_matches(id->mn, q->mn, sizeof(id->mn)) && 1525 string_matches(id->fr, q->fr, sizeof(id->fr)); 1526 } 1527 1528 /* 1529 * Initialize the cached copies of the Identify data and various controller 1530 * register in our nvme_ctrl structure. This should be called as soon as 1531 * the admin queue is fully up and running. 1532 */ 1533 int nvme_init_identify(struct nvme_ctrl *ctrl) 1534 { 1535 struct nvme_id_ctrl *id; 1536 u64 cap; 1537 int ret, page_shift; 1538 u32 max_hw_sectors; 1539 u8 prev_apsta; 1540 1541 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 1542 if (ret) { 1543 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 1544 return ret; 1545 } 1546 1547 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 1548 if (ret) { 1549 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 1550 return ret; 1551 } 1552 page_shift = NVME_CAP_MPSMIN(cap) + 12; 1553 1554 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1555 ctrl->subsystem = NVME_CAP_NSSRC(cap); 1556 1557 ret = nvme_identify_ctrl(ctrl, &id); 1558 if (ret) { 1559 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 1560 return -EIO; 1561 } 1562 1563 if (!ctrl->identified) { 1564 /* 1565 * Check for quirks. Quirk can depend on firmware version, 1566 * so, in principle, the set of quirks present can change 1567 * across a reset. As a possible future enhancement, we 1568 * could re-scan for quirks every time we reinitialize 1569 * the device, but we'd have to make sure that the driver 1570 * behaves intelligently if the quirks change. 1571 */ 1572 1573 int i; 1574 1575 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 1576 if (quirk_matches(id, &core_quirks[i])) 1577 ctrl->quirks |= core_quirks[i].quirks; 1578 } 1579 } 1580 1581 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 1582 dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 1583 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 1584 } 1585 1586 ctrl->oacs = le16_to_cpu(id->oacs); 1587 ctrl->vid = le16_to_cpu(id->vid); 1588 ctrl->oncs = le16_to_cpup(&id->oncs); 1589 atomic_set(&ctrl->abort_limit, id->acl + 1); 1590 ctrl->vwc = id->vwc; 1591 ctrl->cntlid = le16_to_cpup(&id->cntlid); 1592 memcpy(ctrl->serial, id->sn, sizeof(id->sn)); 1593 memcpy(ctrl->model, id->mn, sizeof(id->mn)); 1594 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr)); 1595 if (id->mdts) 1596 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 1597 else 1598 max_hw_sectors = UINT_MAX; 1599 ctrl->max_hw_sectors = 1600 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 1601 1602 nvme_set_queue_limits(ctrl, ctrl->admin_q); 1603 ctrl->sgls = le32_to_cpu(id->sgls); 1604 ctrl->kas = le16_to_cpu(id->kas); 1605 1606 ctrl->npss = id->npss; 1607 prev_apsta = ctrl->apsta; 1608 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 1609 if (force_apst && id->apsta) { 1610 dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 1611 ctrl->apsta = 1; 1612 } else { 1613 ctrl->apsta = 0; 1614 } 1615 } else { 1616 ctrl->apsta = id->apsta; 1617 } 1618 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 1619 1620 if (ctrl->ops->flags & NVME_F_FABRICS) { 1621 ctrl->icdoff = le16_to_cpu(id->icdoff); 1622 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 1623 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 1624 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 1625 1626 /* 1627 * In fabrics we need to verify the cntlid matches the 1628 * admin connect 1629 */ 1630 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) 1631 ret = -EINVAL; 1632 1633 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 1634 dev_err(ctrl->dev, 1635 "keep-alive support is mandatory for fabrics\n"); 1636 ret = -EINVAL; 1637 } 1638 } else { 1639 ctrl->cntlid = le16_to_cpu(id->cntlid); 1640 } 1641 1642 kfree(id); 1643 1644 if (ctrl->apsta && !prev_apsta) 1645 dev_pm_qos_expose_latency_tolerance(ctrl->device); 1646 else if (!ctrl->apsta && prev_apsta) 1647 dev_pm_qos_hide_latency_tolerance(ctrl->device); 1648 1649 nvme_configure_apst(ctrl); 1650 1651 ctrl->identified = true; 1652 1653 return ret; 1654 } 1655 EXPORT_SYMBOL_GPL(nvme_init_identify); 1656 1657 static int nvme_dev_open(struct inode *inode, struct file *file) 1658 { 1659 struct nvme_ctrl *ctrl; 1660 int instance = iminor(inode); 1661 int ret = -ENODEV; 1662 1663 spin_lock(&dev_list_lock); 1664 list_for_each_entry(ctrl, &nvme_ctrl_list, node) { 1665 if (ctrl->instance != instance) 1666 continue; 1667 1668 if (!ctrl->admin_q) { 1669 ret = -EWOULDBLOCK; 1670 break; 1671 } 1672 if (!kref_get_unless_zero(&ctrl->kref)) 1673 break; 1674 file->private_data = ctrl; 1675 ret = 0; 1676 break; 1677 } 1678 spin_unlock(&dev_list_lock); 1679 1680 return ret; 1681 } 1682 1683 static int nvme_dev_release(struct inode *inode, struct file *file) 1684 { 1685 nvme_put_ctrl(file->private_data); 1686 return 0; 1687 } 1688 1689 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 1690 { 1691 struct nvme_ns *ns; 1692 int ret; 1693 1694 mutex_lock(&ctrl->namespaces_mutex); 1695 if (list_empty(&ctrl->namespaces)) { 1696 ret = -ENOTTY; 1697 goto out_unlock; 1698 } 1699 1700 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 1701 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 1702 dev_warn(ctrl->device, 1703 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 1704 ret = -EINVAL; 1705 goto out_unlock; 1706 } 1707 1708 dev_warn(ctrl->device, 1709 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 1710 kref_get(&ns->kref); 1711 mutex_unlock(&ctrl->namespaces_mutex); 1712 1713 ret = nvme_user_cmd(ctrl, ns, argp); 1714 nvme_put_ns(ns); 1715 return ret; 1716 1717 out_unlock: 1718 mutex_unlock(&ctrl->namespaces_mutex); 1719 return ret; 1720 } 1721 1722 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 1723 unsigned long arg) 1724 { 1725 struct nvme_ctrl *ctrl = file->private_data; 1726 void __user *argp = (void __user *)arg; 1727 1728 switch (cmd) { 1729 case NVME_IOCTL_ADMIN_CMD: 1730 return nvme_user_cmd(ctrl, NULL, argp); 1731 case NVME_IOCTL_IO_CMD: 1732 return nvme_dev_user_cmd(ctrl, argp); 1733 case NVME_IOCTL_RESET: 1734 dev_warn(ctrl->device, "resetting controller\n"); 1735 return ctrl->ops->reset_ctrl(ctrl); 1736 case NVME_IOCTL_SUBSYS_RESET: 1737 return nvme_reset_subsystem(ctrl); 1738 case NVME_IOCTL_RESCAN: 1739 nvme_queue_scan(ctrl); 1740 return 0; 1741 default: 1742 return -ENOTTY; 1743 } 1744 } 1745 1746 static const struct file_operations nvme_dev_fops = { 1747 .owner = THIS_MODULE, 1748 .open = nvme_dev_open, 1749 .release = nvme_dev_release, 1750 .unlocked_ioctl = nvme_dev_ioctl, 1751 .compat_ioctl = nvme_dev_ioctl, 1752 }; 1753 1754 static ssize_t nvme_sysfs_reset(struct device *dev, 1755 struct device_attribute *attr, const char *buf, 1756 size_t count) 1757 { 1758 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1759 int ret; 1760 1761 ret = ctrl->ops->reset_ctrl(ctrl); 1762 if (ret < 0) 1763 return ret; 1764 return count; 1765 } 1766 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 1767 1768 static ssize_t nvme_sysfs_rescan(struct device *dev, 1769 struct device_attribute *attr, const char *buf, 1770 size_t count) 1771 { 1772 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1773 1774 nvme_queue_scan(ctrl); 1775 return count; 1776 } 1777 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 1778 1779 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 1780 char *buf) 1781 { 1782 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1783 struct nvme_ctrl *ctrl = ns->ctrl; 1784 int serial_len = sizeof(ctrl->serial); 1785 int model_len = sizeof(ctrl->model); 1786 1787 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) 1788 return sprintf(buf, "eui.%16phN\n", ns->uuid); 1789 1790 if (memchr_inv(ns->eui, 0, sizeof(ns->eui))) 1791 return sprintf(buf, "eui.%8phN\n", ns->eui); 1792 1793 while (ctrl->serial[serial_len - 1] == ' ') 1794 serial_len--; 1795 while (ctrl->model[model_len - 1] == ' ') 1796 model_len--; 1797 1798 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid, 1799 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id); 1800 } 1801 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL); 1802 1803 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 1804 char *buf) 1805 { 1806 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1807 return sprintf(buf, "%pU\n", ns->uuid); 1808 } 1809 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL); 1810 1811 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 1812 char *buf) 1813 { 1814 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1815 return sprintf(buf, "%8phd\n", ns->eui); 1816 } 1817 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL); 1818 1819 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 1820 char *buf) 1821 { 1822 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1823 return sprintf(buf, "%d\n", ns->ns_id); 1824 } 1825 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL); 1826 1827 static struct attribute *nvme_ns_attrs[] = { 1828 &dev_attr_wwid.attr, 1829 &dev_attr_uuid.attr, 1830 &dev_attr_eui.attr, 1831 &dev_attr_nsid.attr, 1832 NULL, 1833 }; 1834 1835 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj, 1836 struct attribute *a, int n) 1837 { 1838 struct device *dev = container_of(kobj, struct device, kobj); 1839 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1840 1841 if (a == &dev_attr_uuid.attr) { 1842 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) 1843 return 0; 1844 } 1845 if (a == &dev_attr_eui.attr) { 1846 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui))) 1847 return 0; 1848 } 1849 return a->mode; 1850 } 1851 1852 static const struct attribute_group nvme_ns_attr_group = { 1853 .attrs = nvme_ns_attrs, 1854 .is_visible = nvme_ns_attrs_are_visible, 1855 }; 1856 1857 #define nvme_show_str_function(field) \ 1858 static ssize_t field##_show(struct device *dev, \ 1859 struct device_attribute *attr, char *buf) \ 1860 { \ 1861 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 1862 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \ 1863 } \ 1864 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 1865 1866 #define nvme_show_int_function(field) \ 1867 static ssize_t field##_show(struct device *dev, \ 1868 struct device_attribute *attr, char *buf) \ 1869 { \ 1870 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 1871 return sprintf(buf, "%d\n", ctrl->field); \ 1872 } \ 1873 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 1874 1875 nvme_show_str_function(model); 1876 nvme_show_str_function(serial); 1877 nvme_show_str_function(firmware_rev); 1878 nvme_show_int_function(cntlid); 1879 1880 static ssize_t nvme_sysfs_delete(struct device *dev, 1881 struct device_attribute *attr, const char *buf, 1882 size_t count) 1883 { 1884 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1885 1886 if (device_remove_file_self(dev, attr)) 1887 ctrl->ops->delete_ctrl(ctrl); 1888 return count; 1889 } 1890 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 1891 1892 static ssize_t nvme_sysfs_show_transport(struct device *dev, 1893 struct device_attribute *attr, 1894 char *buf) 1895 { 1896 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1897 1898 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 1899 } 1900 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 1901 1902 static ssize_t nvme_sysfs_show_state(struct device *dev, 1903 struct device_attribute *attr, 1904 char *buf) 1905 { 1906 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1907 static const char *const state_name[] = { 1908 [NVME_CTRL_NEW] = "new", 1909 [NVME_CTRL_LIVE] = "live", 1910 [NVME_CTRL_RESETTING] = "resetting", 1911 [NVME_CTRL_RECONNECTING]= "reconnecting", 1912 [NVME_CTRL_DELETING] = "deleting", 1913 [NVME_CTRL_DEAD] = "dead", 1914 }; 1915 1916 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 1917 state_name[ctrl->state]) 1918 return sprintf(buf, "%s\n", state_name[ctrl->state]); 1919 1920 return sprintf(buf, "unknown state\n"); 1921 } 1922 1923 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 1924 1925 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 1926 struct device_attribute *attr, 1927 char *buf) 1928 { 1929 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1930 1931 return snprintf(buf, PAGE_SIZE, "%s\n", 1932 ctrl->ops->get_subsysnqn(ctrl)); 1933 } 1934 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 1935 1936 static ssize_t nvme_sysfs_show_address(struct device *dev, 1937 struct device_attribute *attr, 1938 char *buf) 1939 { 1940 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1941 1942 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 1943 } 1944 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 1945 1946 static struct attribute *nvme_dev_attrs[] = { 1947 &dev_attr_reset_controller.attr, 1948 &dev_attr_rescan_controller.attr, 1949 &dev_attr_model.attr, 1950 &dev_attr_serial.attr, 1951 &dev_attr_firmware_rev.attr, 1952 &dev_attr_cntlid.attr, 1953 &dev_attr_delete_controller.attr, 1954 &dev_attr_transport.attr, 1955 &dev_attr_subsysnqn.attr, 1956 &dev_attr_address.attr, 1957 &dev_attr_state.attr, 1958 NULL 1959 }; 1960 1961 #define CHECK_ATTR(ctrl, a, name) \ 1962 if ((a) == &dev_attr_##name.attr && \ 1963 !(ctrl)->ops->get_##name) \ 1964 return 0 1965 1966 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 1967 struct attribute *a, int n) 1968 { 1969 struct device *dev = container_of(kobj, struct device, kobj); 1970 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1971 1972 if (a == &dev_attr_delete_controller.attr) { 1973 if (!ctrl->ops->delete_ctrl) 1974 return 0; 1975 } 1976 1977 CHECK_ATTR(ctrl, a, subsysnqn); 1978 CHECK_ATTR(ctrl, a, address); 1979 1980 return a->mode; 1981 } 1982 1983 static struct attribute_group nvme_dev_attrs_group = { 1984 .attrs = nvme_dev_attrs, 1985 .is_visible = nvme_dev_attrs_are_visible, 1986 }; 1987 1988 static const struct attribute_group *nvme_dev_attr_groups[] = { 1989 &nvme_dev_attrs_group, 1990 NULL, 1991 }; 1992 1993 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 1994 { 1995 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 1996 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 1997 1998 return nsa->ns_id - nsb->ns_id; 1999 } 2000 2001 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2002 { 2003 struct nvme_ns *ns, *ret = NULL; 2004 2005 mutex_lock(&ctrl->namespaces_mutex); 2006 list_for_each_entry(ns, &ctrl->namespaces, list) { 2007 if (ns->ns_id == nsid) { 2008 kref_get(&ns->kref); 2009 ret = ns; 2010 break; 2011 } 2012 if (ns->ns_id > nsid) 2013 break; 2014 } 2015 mutex_unlock(&ctrl->namespaces_mutex); 2016 return ret; 2017 } 2018 2019 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2020 { 2021 struct nvme_ns *ns; 2022 struct gendisk *disk; 2023 struct nvme_id_ns *id; 2024 char disk_name[DISK_NAME_LEN]; 2025 int node = dev_to_node(ctrl->dev); 2026 2027 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 2028 if (!ns) 2029 return; 2030 2031 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL); 2032 if (ns->instance < 0) 2033 goto out_free_ns; 2034 2035 ns->queue = blk_mq_init_queue(ctrl->tagset); 2036 if (IS_ERR(ns->queue)) 2037 goto out_release_instance; 2038 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); 2039 ns->queue->queuedata = ns; 2040 ns->ctrl = ctrl; 2041 2042 kref_init(&ns->kref); 2043 ns->ns_id = nsid; 2044 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 2045 2046 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 2047 nvme_set_queue_limits(ctrl, ns->queue); 2048 2049 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance); 2050 2051 if (nvme_revalidate_ns(ns, &id)) 2052 goto out_free_queue; 2053 2054 if (nvme_nvm_ns_supported(ns, id) && 2055 nvme_nvm_register(ns, disk_name, node)) { 2056 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__); 2057 goto out_free_id; 2058 } 2059 2060 disk = alloc_disk_node(0, node); 2061 if (!disk) 2062 goto out_free_id; 2063 2064 disk->fops = &nvme_fops; 2065 disk->private_data = ns; 2066 disk->queue = ns->queue; 2067 disk->flags = GENHD_FL_EXT_DEVT; 2068 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 2069 ns->disk = disk; 2070 2071 __nvme_revalidate_disk(disk, id); 2072 2073 mutex_lock(&ctrl->namespaces_mutex); 2074 list_add_tail(&ns->list, &ctrl->namespaces); 2075 mutex_unlock(&ctrl->namespaces_mutex); 2076 2077 kref_get(&ctrl->kref); 2078 2079 kfree(id); 2080 2081 device_add_disk(ctrl->device, ns->disk); 2082 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 2083 &nvme_ns_attr_group)) 2084 pr_warn("%s: failed to create sysfs group for identification\n", 2085 ns->disk->disk_name); 2086 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 2087 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 2088 ns->disk->disk_name); 2089 return; 2090 out_free_id: 2091 kfree(id); 2092 out_free_queue: 2093 blk_cleanup_queue(ns->queue); 2094 out_release_instance: 2095 ida_simple_remove(&ctrl->ns_ida, ns->instance); 2096 out_free_ns: 2097 kfree(ns); 2098 } 2099 2100 static void nvme_ns_remove(struct nvme_ns *ns) 2101 { 2102 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 2103 return; 2104 2105 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 2106 if (blk_get_integrity(ns->disk)) 2107 blk_integrity_unregister(ns->disk); 2108 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 2109 &nvme_ns_attr_group); 2110 if (ns->ndev) 2111 nvme_nvm_unregister_sysfs(ns); 2112 del_gendisk(ns->disk); 2113 blk_cleanup_queue(ns->queue); 2114 } 2115 2116 mutex_lock(&ns->ctrl->namespaces_mutex); 2117 list_del_init(&ns->list); 2118 mutex_unlock(&ns->ctrl->namespaces_mutex); 2119 2120 nvme_put_ns(ns); 2121 } 2122 2123 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 2124 { 2125 struct nvme_ns *ns; 2126 2127 ns = nvme_find_get_ns(ctrl, nsid); 2128 if (ns) { 2129 if (ns->disk && revalidate_disk(ns->disk)) 2130 nvme_ns_remove(ns); 2131 nvme_put_ns(ns); 2132 } else 2133 nvme_alloc_ns(ctrl, nsid); 2134 } 2135 2136 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 2137 unsigned nsid) 2138 { 2139 struct nvme_ns *ns, *next; 2140 2141 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 2142 if (ns->ns_id > nsid) 2143 nvme_ns_remove(ns); 2144 } 2145 } 2146 2147 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 2148 { 2149 struct nvme_ns *ns; 2150 __le32 *ns_list; 2151 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 2152 int ret = 0; 2153 2154 ns_list = kzalloc(0x1000, GFP_KERNEL); 2155 if (!ns_list) 2156 return -ENOMEM; 2157 2158 for (i = 0; i < num_lists; i++) { 2159 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 2160 if (ret) 2161 goto free; 2162 2163 for (j = 0; j < min(nn, 1024U); j++) { 2164 nsid = le32_to_cpu(ns_list[j]); 2165 if (!nsid) 2166 goto out; 2167 2168 nvme_validate_ns(ctrl, nsid); 2169 2170 while (++prev < nsid) { 2171 ns = nvme_find_get_ns(ctrl, prev); 2172 if (ns) { 2173 nvme_ns_remove(ns); 2174 nvme_put_ns(ns); 2175 } 2176 } 2177 } 2178 nn -= j; 2179 } 2180 out: 2181 nvme_remove_invalid_namespaces(ctrl, prev); 2182 free: 2183 kfree(ns_list); 2184 return ret; 2185 } 2186 2187 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 2188 { 2189 unsigned i; 2190 2191 for (i = 1; i <= nn; i++) 2192 nvme_validate_ns(ctrl, i); 2193 2194 nvme_remove_invalid_namespaces(ctrl, nn); 2195 } 2196 2197 static void nvme_scan_work(struct work_struct *work) 2198 { 2199 struct nvme_ctrl *ctrl = 2200 container_of(work, struct nvme_ctrl, scan_work); 2201 struct nvme_id_ctrl *id; 2202 unsigned nn; 2203 2204 if (ctrl->state != NVME_CTRL_LIVE) 2205 return; 2206 2207 if (nvme_identify_ctrl(ctrl, &id)) 2208 return; 2209 2210 nn = le32_to_cpu(id->nn); 2211 if (ctrl->vs >= NVME_VS(1, 1, 0) && 2212 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 2213 if (!nvme_scan_ns_list(ctrl, nn)) 2214 goto done; 2215 } 2216 nvme_scan_ns_sequential(ctrl, nn); 2217 done: 2218 mutex_lock(&ctrl->namespaces_mutex); 2219 list_sort(NULL, &ctrl->namespaces, ns_cmp); 2220 mutex_unlock(&ctrl->namespaces_mutex); 2221 kfree(id); 2222 } 2223 2224 void nvme_queue_scan(struct nvme_ctrl *ctrl) 2225 { 2226 /* 2227 * Do not queue new scan work when a controller is reset during 2228 * removal. 2229 */ 2230 if (ctrl->state == NVME_CTRL_LIVE) 2231 schedule_work(&ctrl->scan_work); 2232 } 2233 EXPORT_SYMBOL_GPL(nvme_queue_scan); 2234 2235 /* 2236 * This function iterates the namespace list unlocked to allow recovery from 2237 * controller failure. It is up to the caller to ensure the namespace list is 2238 * not modified by scan work while this function is executing. 2239 */ 2240 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 2241 { 2242 struct nvme_ns *ns, *next; 2243 2244 /* 2245 * The dead states indicates the controller was not gracefully 2246 * disconnected. In that case, we won't be able to flush any data while 2247 * removing the namespaces' disks; fail all the queues now to avoid 2248 * potentially having to clean up the failed sync later. 2249 */ 2250 if (ctrl->state == NVME_CTRL_DEAD) 2251 nvme_kill_queues(ctrl); 2252 2253 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) 2254 nvme_ns_remove(ns); 2255 } 2256 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 2257 2258 static void nvme_async_event_work(struct work_struct *work) 2259 { 2260 struct nvme_ctrl *ctrl = 2261 container_of(work, struct nvme_ctrl, async_event_work); 2262 2263 spin_lock_irq(&ctrl->lock); 2264 while (ctrl->event_limit > 0) { 2265 int aer_idx = --ctrl->event_limit; 2266 2267 spin_unlock_irq(&ctrl->lock); 2268 ctrl->ops->submit_async_event(ctrl, aer_idx); 2269 spin_lock_irq(&ctrl->lock); 2270 } 2271 spin_unlock_irq(&ctrl->lock); 2272 } 2273 2274 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 2275 union nvme_result *res) 2276 { 2277 u32 result = le32_to_cpu(res->u32); 2278 bool done = true; 2279 2280 switch (le16_to_cpu(status) >> 1) { 2281 case NVME_SC_SUCCESS: 2282 done = false; 2283 /*FALLTHRU*/ 2284 case NVME_SC_ABORT_REQ: 2285 ++ctrl->event_limit; 2286 schedule_work(&ctrl->async_event_work); 2287 break; 2288 default: 2289 break; 2290 } 2291 2292 if (done) 2293 return; 2294 2295 switch (result & 0xff07) { 2296 case NVME_AER_NOTICE_NS_CHANGED: 2297 dev_info(ctrl->device, "rescanning\n"); 2298 nvme_queue_scan(ctrl); 2299 break; 2300 default: 2301 dev_warn(ctrl->device, "async event result %08x\n", result); 2302 } 2303 } 2304 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 2305 2306 void nvme_queue_async_events(struct nvme_ctrl *ctrl) 2307 { 2308 ctrl->event_limit = NVME_NR_AERS; 2309 schedule_work(&ctrl->async_event_work); 2310 } 2311 EXPORT_SYMBOL_GPL(nvme_queue_async_events); 2312 2313 static DEFINE_IDA(nvme_instance_ida); 2314 2315 static int nvme_set_instance(struct nvme_ctrl *ctrl) 2316 { 2317 int instance, error; 2318 2319 do { 2320 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) 2321 return -ENODEV; 2322 2323 spin_lock(&dev_list_lock); 2324 error = ida_get_new(&nvme_instance_ida, &instance); 2325 spin_unlock(&dev_list_lock); 2326 } while (error == -EAGAIN); 2327 2328 if (error) 2329 return -ENODEV; 2330 2331 ctrl->instance = instance; 2332 return 0; 2333 } 2334 2335 static void nvme_release_instance(struct nvme_ctrl *ctrl) 2336 { 2337 spin_lock(&dev_list_lock); 2338 ida_remove(&nvme_instance_ida, ctrl->instance); 2339 spin_unlock(&dev_list_lock); 2340 } 2341 2342 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 2343 { 2344 flush_work(&ctrl->async_event_work); 2345 flush_work(&ctrl->scan_work); 2346 nvme_remove_namespaces(ctrl); 2347 2348 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); 2349 2350 spin_lock(&dev_list_lock); 2351 list_del(&ctrl->node); 2352 spin_unlock(&dev_list_lock); 2353 } 2354 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 2355 2356 static void nvme_free_ctrl(struct kref *kref) 2357 { 2358 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref); 2359 2360 put_device(ctrl->device); 2361 nvme_release_instance(ctrl); 2362 ida_destroy(&ctrl->ns_ida); 2363 2364 ctrl->ops->free_ctrl(ctrl); 2365 } 2366 2367 void nvme_put_ctrl(struct nvme_ctrl *ctrl) 2368 { 2369 kref_put(&ctrl->kref, nvme_free_ctrl); 2370 } 2371 EXPORT_SYMBOL_GPL(nvme_put_ctrl); 2372 2373 /* 2374 * Initialize a NVMe controller structures. This needs to be called during 2375 * earliest initialization so that we have the initialized structured around 2376 * during probing. 2377 */ 2378 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 2379 const struct nvme_ctrl_ops *ops, unsigned long quirks) 2380 { 2381 int ret; 2382 2383 ctrl->state = NVME_CTRL_NEW; 2384 spin_lock_init(&ctrl->lock); 2385 INIT_LIST_HEAD(&ctrl->namespaces); 2386 mutex_init(&ctrl->namespaces_mutex); 2387 kref_init(&ctrl->kref); 2388 ctrl->dev = dev; 2389 ctrl->ops = ops; 2390 ctrl->quirks = quirks; 2391 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 2392 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 2393 2394 ret = nvme_set_instance(ctrl); 2395 if (ret) 2396 goto out; 2397 2398 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev, 2399 MKDEV(nvme_char_major, ctrl->instance), 2400 ctrl, nvme_dev_attr_groups, 2401 "nvme%d", ctrl->instance); 2402 if (IS_ERR(ctrl->device)) { 2403 ret = PTR_ERR(ctrl->device); 2404 goto out_release_instance; 2405 } 2406 get_device(ctrl->device); 2407 ida_init(&ctrl->ns_ida); 2408 2409 spin_lock(&dev_list_lock); 2410 list_add_tail(&ctrl->node, &nvme_ctrl_list); 2411 spin_unlock(&dev_list_lock); 2412 2413 /* 2414 * Initialize latency tolerance controls. The sysfs files won't 2415 * be visible to userspace unless the device actually supports APST. 2416 */ 2417 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 2418 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 2419 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 2420 2421 return 0; 2422 out_release_instance: 2423 nvme_release_instance(ctrl); 2424 out: 2425 return ret; 2426 } 2427 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 2428 2429 /** 2430 * nvme_kill_queues(): Ends all namespace queues 2431 * @ctrl: the dead controller that needs to end 2432 * 2433 * Call this function when the driver determines it is unable to get the 2434 * controller in a state capable of servicing IO. 2435 */ 2436 void nvme_kill_queues(struct nvme_ctrl *ctrl) 2437 { 2438 struct nvme_ns *ns; 2439 2440 mutex_lock(&ctrl->namespaces_mutex); 2441 list_for_each_entry(ns, &ctrl->namespaces, list) { 2442 /* 2443 * Revalidating a dead namespace sets capacity to 0. This will 2444 * end buffered writers dirtying pages that can't be synced. 2445 */ 2446 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 2447 continue; 2448 revalidate_disk(ns->disk); 2449 blk_set_queue_dying(ns->queue); 2450 2451 /* 2452 * Forcibly start all queues to avoid having stuck requests. 2453 * Note that we must ensure the queues are not stopped 2454 * when the final removal happens. 2455 */ 2456 blk_mq_start_hw_queues(ns->queue); 2457 2458 /* draining requests in requeue list */ 2459 blk_mq_kick_requeue_list(ns->queue); 2460 } 2461 mutex_unlock(&ctrl->namespaces_mutex); 2462 } 2463 EXPORT_SYMBOL_GPL(nvme_kill_queues); 2464 2465 void nvme_unfreeze(struct nvme_ctrl *ctrl) 2466 { 2467 struct nvme_ns *ns; 2468 2469 mutex_lock(&ctrl->namespaces_mutex); 2470 list_for_each_entry(ns, &ctrl->namespaces, list) 2471 blk_mq_unfreeze_queue(ns->queue); 2472 mutex_unlock(&ctrl->namespaces_mutex); 2473 } 2474 EXPORT_SYMBOL_GPL(nvme_unfreeze); 2475 2476 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 2477 { 2478 struct nvme_ns *ns; 2479 2480 mutex_lock(&ctrl->namespaces_mutex); 2481 list_for_each_entry(ns, &ctrl->namespaces, list) { 2482 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 2483 if (timeout <= 0) 2484 break; 2485 } 2486 mutex_unlock(&ctrl->namespaces_mutex); 2487 } 2488 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 2489 2490 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 2491 { 2492 struct nvme_ns *ns; 2493 2494 mutex_lock(&ctrl->namespaces_mutex); 2495 list_for_each_entry(ns, &ctrl->namespaces, list) 2496 blk_mq_freeze_queue_wait(ns->queue); 2497 mutex_unlock(&ctrl->namespaces_mutex); 2498 } 2499 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 2500 2501 void nvme_start_freeze(struct nvme_ctrl *ctrl) 2502 { 2503 struct nvme_ns *ns; 2504 2505 mutex_lock(&ctrl->namespaces_mutex); 2506 list_for_each_entry(ns, &ctrl->namespaces, list) 2507 blk_freeze_queue_start(ns->queue); 2508 mutex_unlock(&ctrl->namespaces_mutex); 2509 } 2510 EXPORT_SYMBOL_GPL(nvme_start_freeze); 2511 2512 void nvme_stop_queues(struct nvme_ctrl *ctrl) 2513 { 2514 struct nvme_ns *ns; 2515 2516 mutex_lock(&ctrl->namespaces_mutex); 2517 list_for_each_entry(ns, &ctrl->namespaces, list) 2518 blk_mq_quiesce_queue(ns->queue); 2519 mutex_unlock(&ctrl->namespaces_mutex); 2520 } 2521 EXPORT_SYMBOL_GPL(nvme_stop_queues); 2522 2523 void nvme_start_queues(struct nvme_ctrl *ctrl) 2524 { 2525 struct nvme_ns *ns; 2526 2527 mutex_lock(&ctrl->namespaces_mutex); 2528 list_for_each_entry(ns, &ctrl->namespaces, list) { 2529 blk_mq_start_stopped_hw_queues(ns->queue, true); 2530 blk_mq_kick_requeue_list(ns->queue); 2531 } 2532 mutex_unlock(&ctrl->namespaces_mutex); 2533 } 2534 EXPORT_SYMBOL_GPL(nvme_start_queues); 2535 2536 int __init nvme_core_init(void) 2537 { 2538 int result; 2539 2540 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", 2541 &nvme_dev_fops); 2542 if (result < 0) 2543 return result; 2544 else if (result > 0) 2545 nvme_char_major = result; 2546 2547 nvme_class = class_create(THIS_MODULE, "nvme"); 2548 if (IS_ERR(nvme_class)) { 2549 result = PTR_ERR(nvme_class); 2550 goto unregister_chrdev; 2551 } 2552 2553 return 0; 2554 2555 unregister_chrdev: 2556 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2557 return result; 2558 } 2559 2560 void nvme_core_exit(void) 2561 { 2562 class_destroy(nvme_class); 2563 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2564 } 2565 2566 MODULE_LICENSE("GPL"); 2567 MODULE_VERSION("1.0"); 2568 module_init(nvme_core_init); 2569 module_exit(nvme_core_exit); 2570