1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 #include <linux/nvme-auth.h> 28 29 #define CREATE_TRACE_POINTS 30 #include "trace.h" 31 32 #define NVME_MINORS (1U << MINORBITS) 33 34 struct nvme_ns_info { 35 struct nvme_ns_ids ids; 36 u32 nsid; 37 __le32 anagrpid; 38 bool is_shared; 39 bool is_readonly; 40 bool is_ready; 41 bool is_removed; 42 }; 43 44 unsigned int admin_timeout = 60; 45 module_param(admin_timeout, uint, 0644); 46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 47 EXPORT_SYMBOL_GPL(admin_timeout); 48 49 unsigned int nvme_io_timeout = 30; 50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 52 EXPORT_SYMBOL_GPL(nvme_io_timeout); 53 54 static unsigned char shutdown_timeout = 5; 55 module_param(shutdown_timeout, byte, 0644); 56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 57 58 static u8 nvme_max_retries = 5; 59 module_param_named(max_retries, nvme_max_retries, byte, 0644); 60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 61 62 static unsigned long default_ps_max_latency_us = 100000; 63 module_param(default_ps_max_latency_us, ulong, 0644); 64 MODULE_PARM_DESC(default_ps_max_latency_us, 65 "max power saving latency for new devices; use PM QOS to change per device"); 66 67 static bool force_apst; 68 module_param(force_apst, bool, 0644); 69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 70 71 static unsigned long apst_primary_timeout_ms = 100; 72 module_param(apst_primary_timeout_ms, ulong, 0644); 73 MODULE_PARM_DESC(apst_primary_timeout_ms, 74 "primary APST timeout in ms"); 75 76 static unsigned long apst_secondary_timeout_ms = 2000; 77 module_param(apst_secondary_timeout_ms, ulong, 0644); 78 MODULE_PARM_DESC(apst_secondary_timeout_ms, 79 "secondary APST timeout in ms"); 80 81 static unsigned long apst_primary_latency_tol_us = 15000; 82 module_param(apst_primary_latency_tol_us, ulong, 0644); 83 MODULE_PARM_DESC(apst_primary_latency_tol_us, 84 "primary APST latency tolerance in us"); 85 86 static unsigned long apst_secondary_latency_tol_us = 100000; 87 module_param(apst_secondary_latency_tol_us, ulong, 0644); 88 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 89 "secondary APST latency tolerance in us"); 90 91 /* 92 * nvme_wq - hosts nvme related works that are not reset or delete 93 * nvme_reset_wq - hosts nvme reset works 94 * nvme_delete_wq - hosts nvme delete works 95 * 96 * nvme_wq will host works such as scan, aen handling, fw activation, 97 * keep-alive, periodic reconnects etc. nvme_reset_wq 98 * runs reset works which also flush works hosted on nvme_wq for 99 * serialization purposes. nvme_delete_wq host controller deletion 100 * works which flush reset works for serialization. 101 */ 102 struct workqueue_struct *nvme_wq; 103 EXPORT_SYMBOL_GPL(nvme_wq); 104 105 struct workqueue_struct *nvme_reset_wq; 106 EXPORT_SYMBOL_GPL(nvme_reset_wq); 107 108 struct workqueue_struct *nvme_delete_wq; 109 EXPORT_SYMBOL_GPL(nvme_delete_wq); 110 111 static LIST_HEAD(nvme_subsystems); 112 static DEFINE_MUTEX(nvme_subsystems_lock); 113 114 static DEFINE_IDA(nvme_instance_ida); 115 static dev_t nvme_ctrl_base_chr_devt; 116 static struct class *nvme_class; 117 static struct class *nvme_subsys_class; 118 119 static DEFINE_IDA(nvme_ns_chr_minor_ida); 120 static dev_t nvme_ns_chr_devt; 121 static struct class *nvme_ns_chr_class; 122 123 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 125 unsigned nsid); 126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 127 struct nvme_command *cmd); 128 129 void nvme_queue_scan(struct nvme_ctrl *ctrl) 130 { 131 /* 132 * Only new queue scan work when admin and IO queues are both alive 133 */ 134 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 135 queue_work(nvme_wq, &ctrl->scan_work); 136 } 137 138 /* 139 * Use this function to proceed with scheduling reset_work for a controller 140 * that had previously been set to the resetting state. This is intended for 141 * code paths that can't be interrupted by other reset attempts. A hot removal 142 * may prevent this from succeeding. 143 */ 144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 145 { 146 if (ctrl->state != NVME_CTRL_RESETTING) 147 return -EBUSY; 148 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 149 return -EBUSY; 150 return 0; 151 } 152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 153 154 static void nvme_failfast_work(struct work_struct *work) 155 { 156 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 157 struct nvme_ctrl, failfast_work); 158 159 if (ctrl->state != NVME_CTRL_CONNECTING) 160 return; 161 162 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 163 dev_info(ctrl->device, "failfast expired\n"); 164 nvme_kick_requeue_lists(ctrl); 165 } 166 167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 168 { 169 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 170 return; 171 172 schedule_delayed_work(&ctrl->failfast_work, 173 ctrl->opts->fast_io_fail_tmo * HZ); 174 } 175 176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 177 { 178 if (!ctrl->opts) 179 return; 180 181 cancel_delayed_work_sync(&ctrl->failfast_work); 182 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 183 } 184 185 186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 187 { 188 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 189 return -EBUSY; 190 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 191 return -EBUSY; 192 return 0; 193 } 194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 195 196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 197 { 198 int ret; 199 200 ret = nvme_reset_ctrl(ctrl); 201 if (!ret) { 202 flush_work(&ctrl->reset_work); 203 if (ctrl->state != NVME_CTRL_LIVE) 204 ret = -ENETRESET; 205 } 206 207 return ret; 208 } 209 210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 211 { 212 dev_info(ctrl->device, 213 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 214 215 flush_work(&ctrl->reset_work); 216 nvme_stop_ctrl(ctrl); 217 nvme_remove_namespaces(ctrl); 218 ctrl->ops->delete_ctrl(ctrl); 219 nvme_uninit_ctrl(ctrl); 220 } 221 222 static void nvme_delete_ctrl_work(struct work_struct *work) 223 { 224 struct nvme_ctrl *ctrl = 225 container_of(work, struct nvme_ctrl, delete_work); 226 227 nvme_do_delete_ctrl(ctrl); 228 } 229 230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 231 { 232 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 233 return -EBUSY; 234 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 235 return -EBUSY; 236 return 0; 237 } 238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 239 240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 241 { 242 /* 243 * Keep a reference until nvme_do_delete_ctrl() complete, 244 * since ->delete_ctrl can free the controller. 245 */ 246 nvme_get_ctrl(ctrl); 247 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 248 nvme_do_delete_ctrl(ctrl); 249 nvme_put_ctrl(ctrl); 250 } 251 252 static blk_status_t nvme_error_status(u16 status) 253 { 254 switch (status & 0x7ff) { 255 case NVME_SC_SUCCESS: 256 return BLK_STS_OK; 257 case NVME_SC_CAP_EXCEEDED: 258 return BLK_STS_NOSPC; 259 case NVME_SC_LBA_RANGE: 260 case NVME_SC_CMD_INTERRUPTED: 261 case NVME_SC_NS_NOT_READY: 262 return BLK_STS_TARGET; 263 case NVME_SC_BAD_ATTRIBUTES: 264 case NVME_SC_ONCS_NOT_SUPPORTED: 265 case NVME_SC_INVALID_OPCODE: 266 case NVME_SC_INVALID_FIELD: 267 case NVME_SC_INVALID_NS: 268 return BLK_STS_NOTSUPP; 269 case NVME_SC_WRITE_FAULT: 270 case NVME_SC_READ_ERROR: 271 case NVME_SC_UNWRITTEN_BLOCK: 272 case NVME_SC_ACCESS_DENIED: 273 case NVME_SC_READ_ONLY: 274 case NVME_SC_COMPARE_FAILED: 275 return BLK_STS_MEDIUM; 276 case NVME_SC_GUARD_CHECK: 277 case NVME_SC_APPTAG_CHECK: 278 case NVME_SC_REFTAG_CHECK: 279 case NVME_SC_INVALID_PI: 280 return BLK_STS_PROTECTION; 281 case NVME_SC_RESERVATION_CONFLICT: 282 return BLK_STS_RESV_CONFLICT; 283 case NVME_SC_HOST_PATH_ERROR: 284 return BLK_STS_TRANSPORT; 285 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 286 return BLK_STS_ZONE_ACTIVE_RESOURCE; 287 case NVME_SC_ZONE_TOO_MANY_OPEN: 288 return BLK_STS_ZONE_OPEN_RESOURCE; 289 default: 290 return BLK_STS_IOERR; 291 } 292 } 293 294 static void nvme_retry_req(struct request *req) 295 { 296 unsigned long delay = 0; 297 u16 crd; 298 299 /* The mask and shift result must be <= 3 */ 300 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 301 if (crd) 302 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 303 304 nvme_req(req)->retries++; 305 blk_mq_requeue_request(req, false); 306 blk_mq_delay_kick_requeue_list(req->q, delay); 307 } 308 309 static void nvme_log_error(struct request *req) 310 { 311 struct nvme_ns *ns = req->q->queuedata; 312 struct nvme_request *nr = nvme_req(req); 313 314 if (ns) { 315 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 316 ns->disk ? ns->disk->disk_name : "?", 317 nvme_get_opcode_str(nr->cmd->common.opcode), 318 nr->cmd->common.opcode, 319 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), 320 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, 321 nvme_get_error_status_str(nr->status), 322 nr->status >> 8 & 7, /* Status Code Type */ 323 nr->status & 0xff, /* Status Code */ 324 nr->status & NVME_SC_MORE ? "MORE " : "", 325 nr->status & NVME_SC_DNR ? "DNR " : ""); 326 return; 327 } 328 329 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 330 dev_name(nr->ctrl->device), 331 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 332 nr->cmd->common.opcode, 333 nvme_get_error_status_str(nr->status), 334 nr->status >> 8 & 7, /* Status Code Type */ 335 nr->status & 0xff, /* Status Code */ 336 nr->status & NVME_SC_MORE ? "MORE " : "", 337 nr->status & NVME_SC_DNR ? "DNR " : ""); 338 } 339 340 enum nvme_disposition { 341 COMPLETE, 342 RETRY, 343 FAILOVER, 344 AUTHENTICATE, 345 }; 346 347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 348 { 349 if (likely(nvme_req(req)->status == 0)) 350 return COMPLETE; 351 352 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) 353 return AUTHENTICATE; 354 355 if (blk_noretry_request(req) || 356 (nvme_req(req)->status & NVME_SC_DNR) || 357 nvme_req(req)->retries >= nvme_max_retries) 358 return COMPLETE; 359 360 if (req->cmd_flags & REQ_NVME_MPATH) { 361 if (nvme_is_path_error(nvme_req(req)->status) || 362 blk_queue_dying(req->q)) 363 return FAILOVER; 364 } else { 365 if (blk_queue_dying(req->q)) 366 return COMPLETE; 367 } 368 369 return RETRY; 370 } 371 372 static inline void nvme_end_req_zoned(struct request *req) 373 { 374 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 375 req_op(req) == REQ_OP_ZONE_APPEND) 376 req->__sector = nvme_lba_to_sect(req->q->queuedata, 377 le64_to_cpu(nvme_req(req)->result.u64)); 378 } 379 380 static inline void nvme_end_req(struct request *req) 381 { 382 blk_status_t status = nvme_error_status(nvme_req(req)->status); 383 384 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) 385 nvme_log_error(req); 386 nvme_end_req_zoned(req); 387 nvme_trace_bio_complete(req); 388 if (req->cmd_flags & REQ_NVME_MPATH) 389 nvme_mpath_end_request(req); 390 blk_mq_end_request(req, status); 391 } 392 393 void nvme_complete_rq(struct request *req) 394 { 395 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 396 397 trace_nvme_complete_rq(req); 398 nvme_cleanup_cmd(req); 399 400 /* 401 * Completions of long-running commands should not be able to 402 * defer sending of periodic keep alives, since the controller 403 * may have completed processing such commands a long time ago 404 * (arbitrarily close to command submission time). 405 * req->deadline - req->timeout is the command submission time 406 * in jiffies. 407 */ 408 if (ctrl->kas && 409 req->deadline - req->timeout >= ctrl->ka_last_check_time) 410 ctrl->comp_seen = true; 411 412 switch (nvme_decide_disposition(req)) { 413 case COMPLETE: 414 nvme_end_req(req); 415 return; 416 case RETRY: 417 nvme_retry_req(req); 418 return; 419 case FAILOVER: 420 nvme_failover_req(req); 421 return; 422 case AUTHENTICATE: 423 #ifdef CONFIG_NVME_HOST_AUTH 424 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 425 nvme_retry_req(req); 426 #else 427 nvme_end_req(req); 428 #endif 429 return; 430 } 431 } 432 EXPORT_SYMBOL_GPL(nvme_complete_rq); 433 434 void nvme_complete_batch_req(struct request *req) 435 { 436 trace_nvme_complete_rq(req); 437 nvme_cleanup_cmd(req); 438 nvme_end_req_zoned(req); 439 } 440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 441 442 /* 443 * Called to unwind from ->queue_rq on a failed command submission so that the 444 * multipathing code gets called to potentially failover to another path. 445 * The caller needs to unwind all transport specific resource allocations and 446 * must return propagate the return value. 447 */ 448 blk_status_t nvme_host_path_error(struct request *req) 449 { 450 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 451 blk_mq_set_request_complete(req); 452 nvme_complete_rq(req); 453 return BLK_STS_OK; 454 } 455 EXPORT_SYMBOL_GPL(nvme_host_path_error); 456 457 bool nvme_cancel_request(struct request *req, void *data) 458 { 459 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 460 "Cancelling I/O %d", req->tag); 461 462 /* don't abort one completed or idle request */ 463 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 464 return true; 465 466 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 467 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 468 blk_mq_complete_request(req); 469 return true; 470 } 471 EXPORT_SYMBOL_GPL(nvme_cancel_request); 472 473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 474 { 475 if (ctrl->tagset) { 476 blk_mq_tagset_busy_iter(ctrl->tagset, 477 nvme_cancel_request, ctrl); 478 blk_mq_tagset_wait_completed_request(ctrl->tagset); 479 } 480 } 481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 482 483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 484 { 485 if (ctrl->admin_tagset) { 486 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 487 nvme_cancel_request, ctrl); 488 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 489 } 490 } 491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 492 493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 494 enum nvme_ctrl_state new_state) 495 { 496 enum nvme_ctrl_state old_state; 497 unsigned long flags; 498 bool changed = false; 499 500 spin_lock_irqsave(&ctrl->lock, flags); 501 502 old_state = ctrl->state; 503 switch (new_state) { 504 case NVME_CTRL_LIVE: 505 switch (old_state) { 506 case NVME_CTRL_NEW: 507 case NVME_CTRL_RESETTING: 508 case NVME_CTRL_CONNECTING: 509 changed = true; 510 fallthrough; 511 default: 512 break; 513 } 514 break; 515 case NVME_CTRL_RESETTING: 516 switch (old_state) { 517 case NVME_CTRL_NEW: 518 case NVME_CTRL_LIVE: 519 changed = true; 520 fallthrough; 521 default: 522 break; 523 } 524 break; 525 case NVME_CTRL_CONNECTING: 526 switch (old_state) { 527 case NVME_CTRL_NEW: 528 case NVME_CTRL_RESETTING: 529 changed = true; 530 fallthrough; 531 default: 532 break; 533 } 534 break; 535 case NVME_CTRL_DELETING: 536 switch (old_state) { 537 case NVME_CTRL_LIVE: 538 case NVME_CTRL_RESETTING: 539 case NVME_CTRL_CONNECTING: 540 changed = true; 541 fallthrough; 542 default: 543 break; 544 } 545 break; 546 case NVME_CTRL_DELETING_NOIO: 547 switch (old_state) { 548 case NVME_CTRL_DELETING: 549 case NVME_CTRL_DEAD: 550 changed = true; 551 fallthrough; 552 default: 553 break; 554 } 555 break; 556 case NVME_CTRL_DEAD: 557 switch (old_state) { 558 case NVME_CTRL_DELETING: 559 changed = true; 560 fallthrough; 561 default: 562 break; 563 } 564 break; 565 default: 566 break; 567 } 568 569 if (changed) { 570 ctrl->state = new_state; 571 wake_up_all(&ctrl->state_wq); 572 } 573 574 spin_unlock_irqrestore(&ctrl->lock, flags); 575 if (!changed) 576 return false; 577 578 if (ctrl->state == NVME_CTRL_LIVE) { 579 if (old_state == NVME_CTRL_CONNECTING) 580 nvme_stop_failfast_work(ctrl); 581 nvme_kick_requeue_lists(ctrl); 582 } else if (ctrl->state == NVME_CTRL_CONNECTING && 583 old_state == NVME_CTRL_RESETTING) { 584 nvme_start_failfast_work(ctrl); 585 } 586 return changed; 587 } 588 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 589 590 /* 591 * Returns true for sink states that can't ever transition back to live. 592 */ 593 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 594 { 595 switch (ctrl->state) { 596 case NVME_CTRL_NEW: 597 case NVME_CTRL_LIVE: 598 case NVME_CTRL_RESETTING: 599 case NVME_CTRL_CONNECTING: 600 return false; 601 case NVME_CTRL_DELETING: 602 case NVME_CTRL_DELETING_NOIO: 603 case NVME_CTRL_DEAD: 604 return true; 605 default: 606 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 607 return true; 608 } 609 } 610 611 /* 612 * Waits for the controller state to be resetting, or returns false if it is 613 * not possible to ever transition to that state. 614 */ 615 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 616 { 617 wait_event(ctrl->state_wq, 618 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 619 nvme_state_terminal(ctrl)); 620 return ctrl->state == NVME_CTRL_RESETTING; 621 } 622 EXPORT_SYMBOL_GPL(nvme_wait_reset); 623 624 static void nvme_free_ns_head(struct kref *ref) 625 { 626 struct nvme_ns_head *head = 627 container_of(ref, struct nvme_ns_head, ref); 628 629 nvme_mpath_remove_disk(head); 630 ida_free(&head->subsys->ns_ida, head->instance); 631 cleanup_srcu_struct(&head->srcu); 632 nvme_put_subsystem(head->subsys); 633 kfree(head); 634 } 635 636 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 637 { 638 return kref_get_unless_zero(&head->ref); 639 } 640 641 void nvme_put_ns_head(struct nvme_ns_head *head) 642 { 643 kref_put(&head->ref, nvme_free_ns_head); 644 } 645 646 static void nvme_free_ns(struct kref *kref) 647 { 648 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 649 650 put_disk(ns->disk); 651 nvme_put_ns_head(ns->head); 652 nvme_put_ctrl(ns->ctrl); 653 kfree(ns); 654 } 655 656 static inline bool nvme_get_ns(struct nvme_ns *ns) 657 { 658 return kref_get_unless_zero(&ns->kref); 659 } 660 661 void nvme_put_ns(struct nvme_ns *ns) 662 { 663 kref_put(&ns->kref, nvme_free_ns); 664 } 665 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 666 667 static inline void nvme_clear_nvme_request(struct request *req) 668 { 669 nvme_req(req)->status = 0; 670 nvme_req(req)->retries = 0; 671 nvme_req(req)->flags = 0; 672 req->rq_flags |= RQF_DONTPREP; 673 } 674 675 /* initialize a passthrough request */ 676 void nvme_init_request(struct request *req, struct nvme_command *cmd) 677 { 678 if (req->q->queuedata) 679 req->timeout = NVME_IO_TIMEOUT; 680 else /* no queuedata implies admin queue */ 681 req->timeout = NVME_ADMIN_TIMEOUT; 682 683 /* passthru commands should let the driver set the SGL flags */ 684 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 685 686 req->cmd_flags |= REQ_FAILFAST_DRIVER; 687 if (req->mq_hctx->type == HCTX_TYPE_POLL) 688 req->cmd_flags |= REQ_POLLED; 689 nvme_clear_nvme_request(req); 690 req->rq_flags |= RQF_QUIET; 691 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 692 } 693 EXPORT_SYMBOL_GPL(nvme_init_request); 694 695 /* 696 * For something we're not in a state to send to the device the default action 697 * is to busy it and retry it after the controller state is recovered. However, 698 * if the controller is deleting or if anything is marked for failfast or 699 * nvme multipath it is immediately failed. 700 * 701 * Note: commands used to initialize the controller will be marked for failfast. 702 * Note: nvme cli/ioctl commands are marked for failfast. 703 */ 704 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 705 struct request *rq) 706 { 707 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 708 ctrl->state != NVME_CTRL_DELETING && 709 ctrl->state != NVME_CTRL_DEAD && 710 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 711 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 712 return BLK_STS_RESOURCE; 713 return nvme_host_path_error(rq); 714 } 715 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 716 717 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 718 bool queue_live) 719 { 720 struct nvme_request *req = nvme_req(rq); 721 722 /* 723 * currently we have a problem sending passthru commands 724 * on the admin_q if the controller is not LIVE because we can't 725 * make sure that they are going out after the admin connect, 726 * controller enable and/or other commands in the initialization 727 * sequence. until the controller will be LIVE, fail with 728 * BLK_STS_RESOURCE so that they will be rescheduled. 729 */ 730 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 731 return false; 732 733 if (ctrl->ops->flags & NVME_F_FABRICS) { 734 /* 735 * Only allow commands on a live queue, except for the connect 736 * command, which is require to set the queue live in the 737 * appropinquate states. 738 */ 739 switch (ctrl->state) { 740 case NVME_CTRL_CONNECTING: 741 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 742 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 743 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 744 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 745 return true; 746 break; 747 default: 748 break; 749 case NVME_CTRL_DEAD: 750 return false; 751 } 752 } 753 754 return queue_live; 755 } 756 EXPORT_SYMBOL_GPL(__nvme_check_ready); 757 758 static inline void nvme_setup_flush(struct nvme_ns *ns, 759 struct nvme_command *cmnd) 760 { 761 memset(cmnd, 0, sizeof(*cmnd)); 762 cmnd->common.opcode = nvme_cmd_flush; 763 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 764 } 765 766 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 767 struct nvme_command *cmnd) 768 { 769 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 770 struct nvme_dsm_range *range; 771 struct bio *bio; 772 773 /* 774 * Some devices do not consider the DSM 'Number of Ranges' field when 775 * determining how much data to DMA. Always allocate memory for maximum 776 * number of segments to prevent device reading beyond end of buffer. 777 */ 778 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 779 780 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 781 if (!range) { 782 /* 783 * If we fail allocation our range, fallback to the controller 784 * discard page. If that's also busy, it's safe to return 785 * busy, as we know we can make progress once that's freed. 786 */ 787 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 788 return BLK_STS_RESOURCE; 789 790 range = page_address(ns->ctrl->discard_page); 791 } 792 793 if (queue_max_discard_segments(req->q) == 1) { 794 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req)); 795 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9); 796 797 range[0].cattr = cpu_to_le32(0); 798 range[0].nlb = cpu_to_le32(nlb); 799 range[0].slba = cpu_to_le64(slba); 800 n = 1; 801 } else { 802 __rq_for_each_bio(bio, req) { 803 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 804 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 805 806 if (n < segments) { 807 range[n].cattr = cpu_to_le32(0); 808 range[n].nlb = cpu_to_le32(nlb); 809 range[n].slba = cpu_to_le64(slba); 810 } 811 n++; 812 } 813 } 814 815 if (WARN_ON_ONCE(n != segments)) { 816 if (virt_to_page(range) == ns->ctrl->discard_page) 817 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 818 else 819 kfree(range); 820 return BLK_STS_IOERR; 821 } 822 823 memset(cmnd, 0, sizeof(*cmnd)); 824 cmnd->dsm.opcode = nvme_cmd_dsm; 825 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 826 cmnd->dsm.nr = cpu_to_le32(segments - 1); 827 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 828 829 bvec_set_virt(&req->special_vec, range, alloc_size); 830 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 831 832 return BLK_STS_OK; 833 } 834 835 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 836 struct request *req) 837 { 838 u32 upper, lower; 839 u64 ref48; 840 841 /* both rw and write zeroes share the same reftag format */ 842 switch (ns->guard_type) { 843 case NVME_NVM_NS_16B_GUARD: 844 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 845 break; 846 case NVME_NVM_NS_64B_GUARD: 847 ref48 = ext_pi_ref_tag(req); 848 lower = lower_32_bits(ref48); 849 upper = upper_32_bits(ref48); 850 851 cmnd->rw.reftag = cpu_to_le32(lower); 852 cmnd->rw.cdw3 = cpu_to_le32(upper); 853 break; 854 default: 855 break; 856 } 857 } 858 859 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 860 struct request *req, struct nvme_command *cmnd) 861 { 862 memset(cmnd, 0, sizeof(*cmnd)); 863 864 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 865 return nvme_setup_discard(ns, req, cmnd); 866 867 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 868 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 869 cmnd->write_zeroes.slba = 870 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 871 cmnd->write_zeroes.length = 872 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 873 874 if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC)) 875 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 876 877 if (nvme_ns_has_pi(ns)) { 878 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 879 880 switch (ns->pi_type) { 881 case NVME_NS_DPS_PI_TYPE1: 882 case NVME_NS_DPS_PI_TYPE2: 883 nvme_set_ref_tag(ns, cmnd, req); 884 break; 885 } 886 } 887 888 return BLK_STS_OK; 889 } 890 891 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 892 struct request *req, struct nvme_command *cmnd, 893 enum nvme_opcode op) 894 { 895 u16 control = 0; 896 u32 dsmgmt = 0; 897 898 if (req->cmd_flags & REQ_FUA) 899 control |= NVME_RW_FUA; 900 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 901 control |= NVME_RW_LR; 902 903 if (req->cmd_flags & REQ_RAHEAD) 904 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 905 906 cmnd->rw.opcode = op; 907 cmnd->rw.flags = 0; 908 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 909 cmnd->rw.cdw2 = 0; 910 cmnd->rw.cdw3 = 0; 911 cmnd->rw.metadata = 0; 912 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 913 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 914 cmnd->rw.reftag = 0; 915 cmnd->rw.apptag = 0; 916 cmnd->rw.appmask = 0; 917 918 if (ns->ms) { 919 /* 920 * If formated with metadata, the block layer always provides a 921 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 922 * we enable the PRACT bit for protection information or set the 923 * namespace capacity to zero to prevent any I/O. 924 */ 925 if (!blk_integrity_rq(req)) { 926 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 927 return BLK_STS_NOTSUPP; 928 control |= NVME_RW_PRINFO_PRACT; 929 } 930 931 switch (ns->pi_type) { 932 case NVME_NS_DPS_PI_TYPE3: 933 control |= NVME_RW_PRINFO_PRCHK_GUARD; 934 break; 935 case NVME_NS_DPS_PI_TYPE1: 936 case NVME_NS_DPS_PI_TYPE2: 937 control |= NVME_RW_PRINFO_PRCHK_GUARD | 938 NVME_RW_PRINFO_PRCHK_REF; 939 if (op == nvme_cmd_zone_append) 940 control |= NVME_RW_APPEND_PIREMAP; 941 nvme_set_ref_tag(ns, cmnd, req); 942 break; 943 } 944 } 945 946 cmnd->rw.control = cpu_to_le16(control); 947 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 948 return 0; 949 } 950 951 void nvme_cleanup_cmd(struct request *req) 952 { 953 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 954 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 955 956 if (req->special_vec.bv_page == ctrl->discard_page) 957 clear_bit_unlock(0, &ctrl->discard_page_busy); 958 else 959 kfree(bvec_virt(&req->special_vec)); 960 } 961 } 962 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 963 964 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 965 { 966 struct nvme_command *cmd = nvme_req(req)->cmd; 967 blk_status_t ret = BLK_STS_OK; 968 969 if (!(req->rq_flags & RQF_DONTPREP)) 970 nvme_clear_nvme_request(req); 971 972 switch (req_op(req)) { 973 case REQ_OP_DRV_IN: 974 case REQ_OP_DRV_OUT: 975 /* these are setup prior to execution in nvme_init_request() */ 976 break; 977 case REQ_OP_FLUSH: 978 nvme_setup_flush(ns, cmd); 979 break; 980 case REQ_OP_ZONE_RESET_ALL: 981 case REQ_OP_ZONE_RESET: 982 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 983 break; 984 case REQ_OP_ZONE_OPEN: 985 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 986 break; 987 case REQ_OP_ZONE_CLOSE: 988 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 989 break; 990 case REQ_OP_ZONE_FINISH: 991 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 992 break; 993 case REQ_OP_WRITE_ZEROES: 994 ret = nvme_setup_write_zeroes(ns, req, cmd); 995 break; 996 case REQ_OP_DISCARD: 997 ret = nvme_setup_discard(ns, req, cmd); 998 break; 999 case REQ_OP_READ: 1000 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1001 break; 1002 case REQ_OP_WRITE: 1003 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1004 break; 1005 case REQ_OP_ZONE_APPEND: 1006 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1007 break; 1008 default: 1009 WARN_ON_ONCE(1); 1010 return BLK_STS_IOERR; 1011 } 1012 1013 cmd->common.command_id = nvme_cid(req); 1014 trace_nvme_setup_cmd(req, cmd); 1015 return ret; 1016 } 1017 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1018 1019 /* 1020 * Return values: 1021 * 0: success 1022 * >0: nvme controller's cqe status response 1023 * <0: kernel error in lieu of controller response 1024 */ 1025 int nvme_execute_rq(struct request *rq, bool at_head) 1026 { 1027 blk_status_t status; 1028 1029 status = blk_execute_rq(rq, at_head); 1030 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1031 return -EINTR; 1032 if (nvme_req(rq)->status) 1033 return nvme_req(rq)->status; 1034 return blk_status_to_errno(status); 1035 } 1036 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1037 1038 /* 1039 * Returns 0 on success. If the result is negative, it's a Linux error code; 1040 * if the result is positive, it's an NVM Express status code 1041 */ 1042 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1043 union nvme_result *result, void *buffer, unsigned bufflen, 1044 int qid, int at_head, blk_mq_req_flags_t flags) 1045 { 1046 struct request *req; 1047 int ret; 1048 1049 if (qid == NVME_QID_ANY) 1050 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 1051 else 1052 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 1053 qid - 1); 1054 1055 if (IS_ERR(req)) 1056 return PTR_ERR(req); 1057 nvme_init_request(req, cmd); 1058 1059 if (buffer && bufflen) { 1060 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1061 if (ret) 1062 goto out; 1063 } 1064 1065 ret = nvme_execute_rq(req, at_head); 1066 if (result && ret >= 0) 1067 *result = nvme_req(req)->result; 1068 out: 1069 blk_mq_free_request(req); 1070 return ret; 1071 } 1072 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1073 1074 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1075 void *buffer, unsigned bufflen) 1076 { 1077 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1078 NVME_QID_ANY, 0, 0); 1079 } 1080 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1081 1082 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1083 { 1084 u32 effects = 0; 1085 1086 if (ns) { 1087 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1088 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1089 dev_warn_once(ctrl->device, 1090 "IO command:%02x has unusual effects:%08x\n", 1091 opcode, effects); 1092 1093 /* 1094 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1095 * which would deadlock when done on an I/O command. Note that 1096 * We already warn about an unusual effect above. 1097 */ 1098 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1099 } else { 1100 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1101 } 1102 1103 return effects; 1104 } 1105 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1106 1107 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1108 { 1109 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1110 1111 /* 1112 * For simplicity, IO to all namespaces is quiesced even if the command 1113 * effects say only one namespace is affected. 1114 */ 1115 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1116 mutex_lock(&ctrl->scan_lock); 1117 mutex_lock(&ctrl->subsys->lock); 1118 nvme_mpath_start_freeze(ctrl->subsys); 1119 nvme_mpath_wait_freeze(ctrl->subsys); 1120 nvme_start_freeze(ctrl); 1121 nvme_wait_freeze(ctrl); 1122 } 1123 return effects; 1124 } 1125 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1126 1127 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1128 struct nvme_command *cmd, int status) 1129 { 1130 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1131 nvme_unfreeze(ctrl); 1132 nvme_mpath_unfreeze(ctrl->subsys); 1133 mutex_unlock(&ctrl->subsys->lock); 1134 mutex_unlock(&ctrl->scan_lock); 1135 } 1136 if (effects & NVME_CMD_EFFECTS_CCC) { 1137 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1138 &ctrl->flags)) { 1139 dev_info(ctrl->device, 1140 "controller capabilities changed, reset may be required to take effect.\n"); 1141 } 1142 } 1143 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1144 nvme_queue_scan(ctrl); 1145 flush_work(&ctrl->scan_work); 1146 } 1147 if (ns) 1148 return; 1149 1150 switch (cmd->common.opcode) { 1151 case nvme_admin_set_features: 1152 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1153 case NVME_FEAT_KATO: 1154 /* 1155 * Keep alive commands interval on the host should be 1156 * updated when KATO is modified by Set Features 1157 * commands. 1158 */ 1159 if (!status) 1160 nvme_update_keep_alive(ctrl, cmd); 1161 break; 1162 default: 1163 break; 1164 } 1165 break; 1166 default: 1167 break; 1168 } 1169 } 1170 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1171 1172 /* 1173 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1174 * 1175 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1176 * accounting for transport roundtrip times [..]. 1177 */ 1178 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1179 { 1180 unsigned long delay = ctrl->kato * HZ / 2; 1181 1182 /* 1183 * When using Traffic Based Keep Alive, we need to run 1184 * nvme_keep_alive_work at twice the normal frequency, as one 1185 * command completion can postpone sending a keep alive command 1186 * by up to twice the delay between runs. 1187 */ 1188 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1189 delay /= 2; 1190 return delay; 1191 } 1192 1193 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1194 { 1195 unsigned long now = jiffies; 1196 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1197 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1198 1199 if (time_after(now, ka_next_check_tm)) 1200 delay = 0; 1201 else 1202 delay = ka_next_check_tm - now; 1203 1204 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1205 } 1206 1207 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1208 blk_status_t status) 1209 { 1210 struct nvme_ctrl *ctrl = rq->end_io_data; 1211 unsigned long flags; 1212 bool startka = false; 1213 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1214 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1215 1216 /* 1217 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1218 * at the desired frequency. 1219 */ 1220 if (rtt <= delay) { 1221 delay -= rtt; 1222 } else { 1223 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1224 jiffies_to_msecs(rtt)); 1225 delay = 0; 1226 } 1227 1228 blk_mq_free_request(rq); 1229 1230 if (status) { 1231 dev_err(ctrl->device, 1232 "failed nvme_keep_alive_end_io error=%d\n", 1233 status); 1234 return RQ_END_IO_NONE; 1235 } 1236 1237 ctrl->ka_last_check_time = jiffies; 1238 ctrl->comp_seen = false; 1239 spin_lock_irqsave(&ctrl->lock, flags); 1240 if (ctrl->state == NVME_CTRL_LIVE || 1241 ctrl->state == NVME_CTRL_CONNECTING) 1242 startka = true; 1243 spin_unlock_irqrestore(&ctrl->lock, flags); 1244 if (startka) 1245 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1246 return RQ_END_IO_NONE; 1247 } 1248 1249 static void nvme_keep_alive_work(struct work_struct *work) 1250 { 1251 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1252 struct nvme_ctrl, ka_work); 1253 bool comp_seen = ctrl->comp_seen; 1254 struct request *rq; 1255 1256 ctrl->ka_last_check_time = jiffies; 1257 1258 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1259 dev_dbg(ctrl->device, 1260 "reschedule traffic based keep-alive timer\n"); 1261 ctrl->comp_seen = false; 1262 nvme_queue_keep_alive_work(ctrl); 1263 return; 1264 } 1265 1266 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1267 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1268 if (IS_ERR(rq)) { 1269 /* allocation failure, reset the controller */ 1270 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1271 nvme_reset_ctrl(ctrl); 1272 return; 1273 } 1274 nvme_init_request(rq, &ctrl->ka_cmd); 1275 1276 rq->timeout = ctrl->kato * HZ; 1277 rq->end_io = nvme_keep_alive_end_io; 1278 rq->end_io_data = ctrl; 1279 blk_execute_rq_nowait(rq, false); 1280 } 1281 1282 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1283 { 1284 if (unlikely(ctrl->kato == 0)) 1285 return; 1286 1287 nvme_queue_keep_alive_work(ctrl); 1288 } 1289 1290 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1291 { 1292 if (unlikely(ctrl->kato == 0)) 1293 return; 1294 1295 cancel_delayed_work_sync(&ctrl->ka_work); 1296 } 1297 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1298 1299 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1300 struct nvme_command *cmd) 1301 { 1302 unsigned int new_kato = 1303 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1304 1305 dev_info(ctrl->device, 1306 "keep alive interval updated from %u ms to %u ms\n", 1307 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1308 1309 nvme_stop_keep_alive(ctrl); 1310 ctrl->kato = new_kato; 1311 nvme_start_keep_alive(ctrl); 1312 } 1313 1314 /* 1315 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1316 * flag, thus sending any new CNS opcodes has a big chance of not working. 1317 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1318 * (but not for any later version). 1319 */ 1320 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1321 { 1322 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1323 return ctrl->vs < NVME_VS(1, 2, 0); 1324 return ctrl->vs < NVME_VS(1, 1, 0); 1325 } 1326 1327 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1328 { 1329 struct nvme_command c = { }; 1330 int error; 1331 1332 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1333 c.identify.opcode = nvme_admin_identify; 1334 c.identify.cns = NVME_ID_CNS_CTRL; 1335 1336 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1337 if (!*id) 1338 return -ENOMEM; 1339 1340 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1341 sizeof(struct nvme_id_ctrl)); 1342 if (error) 1343 kfree(*id); 1344 return error; 1345 } 1346 1347 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1348 struct nvme_ns_id_desc *cur, bool *csi_seen) 1349 { 1350 const char *warn_str = "ctrl returned bogus length:"; 1351 void *data = cur; 1352 1353 switch (cur->nidt) { 1354 case NVME_NIDT_EUI64: 1355 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1356 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1357 warn_str, cur->nidl); 1358 return -1; 1359 } 1360 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1361 return NVME_NIDT_EUI64_LEN; 1362 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1363 return NVME_NIDT_EUI64_LEN; 1364 case NVME_NIDT_NGUID: 1365 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1366 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1367 warn_str, cur->nidl); 1368 return -1; 1369 } 1370 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1371 return NVME_NIDT_NGUID_LEN; 1372 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1373 return NVME_NIDT_NGUID_LEN; 1374 case NVME_NIDT_UUID: 1375 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1376 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1377 warn_str, cur->nidl); 1378 return -1; 1379 } 1380 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1381 return NVME_NIDT_UUID_LEN; 1382 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1383 return NVME_NIDT_UUID_LEN; 1384 case NVME_NIDT_CSI: 1385 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1386 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1387 warn_str, cur->nidl); 1388 return -1; 1389 } 1390 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1391 *csi_seen = true; 1392 return NVME_NIDT_CSI_LEN; 1393 default: 1394 /* Skip unknown types */ 1395 return cur->nidl; 1396 } 1397 } 1398 1399 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1400 struct nvme_ns_info *info) 1401 { 1402 struct nvme_command c = { }; 1403 bool csi_seen = false; 1404 int status, pos, len; 1405 void *data; 1406 1407 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1408 return 0; 1409 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1410 return 0; 1411 1412 c.identify.opcode = nvme_admin_identify; 1413 c.identify.nsid = cpu_to_le32(info->nsid); 1414 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1415 1416 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1417 if (!data) 1418 return -ENOMEM; 1419 1420 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1421 NVME_IDENTIFY_DATA_SIZE); 1422 if (status) { 1423 dev_warn(ctrl->device, 1424 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1425 info->nsid, status); 1426 goto free_data; 1427 } 1428 1429 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1430 struct nvme_ns_id_desc *cur = data + pos; 1431 1432 if (cur->nidl == 0) 1433 break; 1434 1435 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1436 if (len < 0) 1437 break; 1438 1439 len += sizeof(*cur); 1440 } 1441 1442 if (nvme_multi_css(ctrl) && !csi_seen) { 1443 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1444 info->nsid); 1445 status = -EINVAL; 1446 } 1447 1448 free_data: 1449 kfree(data); 1450 return status; 1451 } 1452 1453 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1454 struct nvme_id_ns **id) 1455 { 1456 struct nvme_command c = { }; 1457 int error; 1458 1459 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1460 c.identify.opcode = nvme_admin_identify; 1461 c.identify.nsid = cpu_to_le32(nsid); 1462 c.identify.cns = NVME_ID_CNS_NS; 1463 1464 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1465 if (!*id) 1466 return -ENOMEM; 1467 1468 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1469 if (error) { 1470 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1471 kfree(*id); 1472 } 1473 return error; 1474 } 1475 1476 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1477 struct nvme_ns_info *info) 1478 { 1479 struct nvme_ns_ids *ids = &info->ids; 1480 struct nvme_id_ns *id; 1481 int ret; 1482 1483 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1484 if (ret) 1485 return ret; 1486 1487 if (id->ncap == 0) { 1488 /* namespace not allocated or attached */ 1489 info->is_removed = true; 1490 ret = -ENODEV; 1491 goto error; 1492 } 1493 1494 info->anagrpid = id->anagrpid; 1495 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1496 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1497 info->is_ready = true; 1498 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1499 dev_info(ctrl->device, 1500 "Ignoring bogus Namespace Identifiers\n"); 1501 } else { 1502 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1503 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1504 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1505 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1506 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1507 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1508 } 1509 1510 error: 1511 kfree(id); 1512 return ret; 1513 } 1514 1515 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1516 struct nvme_ns_info *info) 1517 { 1518 struct nvme_id_ns_cs_indep *id; 1519 struct nvme_command c = { 1520 .identify.opcode = nvme_admin_identify, 1521 .identify.nsid = cpu_to_le32(info->nsid), 1522 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1523 }; 1524 int ret; 1525 1526 id = kmalloc(sizeof(*id), GFP_KERNEL); 1527 if (!id) 1528 return -ENOMEM; 1529 1530 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1531 if (!ret) { 1532 info->anagrpid = id->anagrpid; 1533 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1534 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1535 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1536 } 1537 kfree(id); 1538 return ret; 1539 } 1540 1541 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1542 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1543 { 1544 union nvme_result res = { 0 }; 1545 struct nvme_command c = { }; 1546 int ret; 1547 1548 c.features.opcode = op; 1549 c.features.fid = cpu_to_le32(fid); 1550 c.features.dword11 = cpu_to_le32(dword11); 1551 1552 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1553 buffer, buflen, NVME_QID_ANY, 0, 0); 1554 if (ret >= 0 && result) 1555 *result = le32_to_cpu(res.u32); 1556 return ret; 1557 } 1558 1559 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1560 unsigned int dword11, void *buffer, size_t buflen, 1561 u32 *result) 1562 { 1563 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1564 buflen, result); 1565 } 1566 EXPORT_SYMBOL_GPL(nvme_set_features); 1567 1568 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1569 unsigned int dword11, void *buffer, size_t buflen, 1570 u32 *result) 1571 { 1572 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1573 buflen, result); 1574 } 1575 EXPORT_SYMBOL_GPL(nvme_get_features); 1576 1577 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1578 { 1579 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1580 u32 result; 1581 int status, nr_io_queues; 1582 1583 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1584 &result); 1585 if (status < 0) 1586 return status; 1587 1588 /* 1589 * Degraded controllers might return an error when setting the queue 1590 * count. We still want to be able to bring them online and offer 1591 * access to the admin queue, as that might be only way to fix them up. 1592 */ 1593 if (status > 0) { 1594 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1595 *count = 0; 1596 } else { 1597 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1598 *count = min(*count, nr_io_queues); 1599 } 1600 1601 return 0; 1602 } 1603 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1604 1605 #define NVME_AEN_SUPPORTED \ 1606 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1607 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1608 1609 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1610 { 1611 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1612 int status; 1613 1614 if (!supported_aens) 1615 return; 1616 1617 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1618 NULL, 0, &result); 1619 if (status) 1620 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1621 supported_aens); 1622 1623 queue_work(nvme_wq, &ctrl->async_event_work); 1624 } 1625 1626 static int nvme_ns_open(struct nvme_ns *ns) 1627 { 1628 1629 /* should never be called due to GENHD_FL_HIDDEN */ 1630 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1631 goto fail; 1632 if (!nvme_get_ns(ns)) 1633 goto fail; 1634 if (!try_module_get(ns->ctrl->ops->module)) 1635 goto fail_put_ns; 1636 1637 return 0; 1638 1639 fail_put_ns: 1640 nvme_put_ns(ns); 1641 fail: 1642 return -ENXIO; 1643 } 1644 1645 static void nvme_ns_release(struct nvme_ns *ns) 1646 { 1647 1648 module_put(ns->ctrl->ops->module); 1649 nvme_put_ns(ns); 1650 } 1651 1652 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1653 { 1654 return nvme_ns_open(disk->private_data); 1655 } 1656 1657 static void nvme_release(struct gendisk *disk) 1658 { 1659 nvme_ns_release(disk->private_data); 1660 } 1661 1662 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1663 { 1664 /* some standard values */ 1665 geo->heads = 1 << 6; 1666 geo->sectors = 1 << 5; 1667 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1668 return 0; 1669 } 1670 1671 #ifdef CONFIG_BLK_DEV_INTEGRITY 1672 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1673 u32 max_integrity_segments) 1674 { 1675 struct blk_integrity integrity = { }; 1676 1677 switch (ns->pi_type) { 1678 case NVME_NS_DPS_PI_TYPE3: 1679 switch (ns->guard_type) { 1680 case NVME_NVM_NS_16B_GUARD: 1681 integrity.profile = &t10_pi_type3_crc; 1682 integrity.tag_size = sizeof(u16) + sizeof(u32); 1683 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1684 break; 1685 case NVME_NVM_NS_64B_GUARD: 1686 integrity.profile = &ext_pi_type3_crc64; 1687 integrity.tag_size = sizeof(u16) + 6; 1688 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1689 break; 1690 default: 1691 integrity.profile = NULL; 1692 break; 1693 } 1694 break; 1695 case NVME_NS_DPS_PI_TYPE1: 1696 case NVME_NS_DPS_PI_TYPE2: 1697 switch (ns->guard_type) { 1698 case NVME_NVM_NS_16B_GUARD: 1699 integrity.profile = &t10_pi_type1_crc; 1700 integrity.tag_size = sizeof(u16); 1701 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1702 break; 1703 case NVME_NVM_NS_64B_GUARD: 1704 integrity.profile = &ext_pi_type1_crc64; 1705 integrity.tag_size = sizeof(u16); 1706 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1707 break; 1708 default: 1709 integrity.profile = NULL; 1710 break; 1711 } 1712 break; 1713 default: 1714 integrity.profile = NULL; 1715 break; 1716 } 1717 1718 integrity.tuple_size = ns->ms; 1719 blk_integrity_register(disk, &integrity); 1720 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1721 } 1722 #else 1723 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1724 u32 max_integrity_segments) 1725 { 1726 } 1727 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1728 1729 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1730 { 1731 struct nvme_ctrl *ctrl = ns->ctrl; 1732 struct request_queue *queue = disk->queue; 1733 u32 size = queue_logical_block_size(queue); 1734 1735 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX)) 1736 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl); 1737 1738 if (ctrl->max_discard_sectors == 0) { 1739 blk_queue_max_discard_sectors(queue, 0); 1740 return; 1741 } 1742 1743 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1744 NVME_DSM_MAX_RANGES); 1745 1746 queue->limits.discard_granularity = size; 1747 1748 /* If discard is already enabled, don't reset queue limits */ 1749 if (queue->limits.max_discard_sectors) 1750 return; 1751 1752 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1753 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1754 1755 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1756 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1757 } 1758 1759 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1760 { 1761 return uuid_equal(&a->uuid, &b->uuid) && 1762 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1763 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1764 a->csi == b->csi; 1765 } 1766 1767 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id) 1768 { 1769 bool first = id->dps & NVME_NS_DPS_PI_FIRST; 1770 unsigned lbaf = nvme_lbaf_index(id->flbas); 1771 struct nvme_ctrl *ctrl = ns->ctrl; 1772 struct nvme_command c = { }; 1773 struct nvme_id_ns_nvm *nvm; 1774 int ret = 0; 1775 u32 elbaf; 1776 1777 ns->pi_size = 0; 1778 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 1779 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1780 ns->pi_size = sizeof(struct t10_pi_tuple); 1781 ns->guard_type = NVME_NVM_NS_16B_GUARD; 1782 goto set_pi; 1783 } 1784 1785 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1786 if (!nvm) 1787 return -ENOMEM; 1788 1789 c.identify.opcode = nvme_admin_identify; 1790 c.identify.nsid = cpu_to_le32(ns->head->ns_id); 1791 c.identify.cns = NVME_ID_CNS_CS_NS; 1792 c.identify.csi = NVME_CSI_NVM; 1793 1794 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1795 if (ret) 1796 goto free_data; 1797 1798 elbaf = le32_to_cpu(nvm->elbaf[lbaf]); 1799 1800 /* no support for storage tag formats right now */ 1801 if (nvme_elbaf_sts(elbaf)) 1802 goto free_data; 1803 1804 ns->guard_type = nvme_elbaf_guard_type(elbaf); 1805 switch (ns->guard_type) { 1806 case NVME_NVM_NS_64B_GUARD: 1807 ns->pi_size = sizeof(struct crc64_pi_tuple); 1808 break; 1809 case NVME_NVM_NS_16B_GUARD: 1810 ns->pi_size = sizeof(struct t10_pi_tuple); 1811 break; 1812 default: 1813 break; 1814 } 1815 1816 free_data: 1817 kfree(nvm); 1818 set_pi: 1819 if (ns->pi_size && (first || ns->ms == ns->pi_size)) 1820 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1821 else 1822 ns->pi_type = 0; 1823 1824 return ret; 1825 } 1826 1827 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1828 { 1829 struct nvme_ctrl *ctrl = ns->ctrl; 1830 int ret; 1831 1832 ret = nvme_init_ms(ns, id); 1833 if (ret) 1834 return ret; 1835 1836 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1837 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1838 return 0; 1839 1840 if (ctrl->ops->flags & NVME_F_FABRICS) { 1841 /* 1842 * The NVMe over Fabrics specification only supports metadata as 1843 * part of the extended data LBA. We rely on HCA/HBA support to 1844 * remap the separate metadata buffer from the block layer. 1845 */ 1846 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1847 return 0; 1848 1849 ns->features |= NVME_NS_EXT_LBAS; 1850 1851 /* 1852 * The current fabrics transport drivers support namespace 1853 * metadata formats only if nvme_ns_has_pi() returns true. 1854 * Suppress support for all other formats so the namespace will 1855 * have a 0 capacity and not be usable through the block stack. 1856 * 1857 * Note, this check will need to be modified if any drivers 1858 * gain the ability to use other metadata formats. 1859 */ 1860 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1861 ns->features |= NVME_NS_METADATA_SUPPORTED; 1862 } else { 1863 /* 1864 * For PCIe controllers, we can't easily remap the separate 1865 * metadata buffer from the block layer and thus require a 1866 * separate metadata buffer for block layer metadata/PI support. 1867 * We allow extended LBAs for the passthrough interface, though. 1868 */ 1869 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1870 ns->features |= NVME_NS_EXT_LBAS; 1871 else 1872 ns->features |= NVME_NS_METADATA_SUPPORTED; 1873 } 1874 return 0; 1875 } 1876 1877 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1878 struct request_queue *q) 1879 { 1880 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1881 1882 if (ctrl->max_hw_sectors) { 1883 u32 max_segments = 1884 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1885 1886 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1887 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1888 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1889 } 1890 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1891 blk_queue_dma_alignment(q, 3); 1892 blk_queue_write_cache(q, vwc, vwc); 1893 } 1894 1895 static void nvme_update_disk_info(struct gendisk *disk, 1896 struct nvme_ns *ns, struct nvme_id_ns *id) 1897 { 1898 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1899 u32 bs = 1U << ns->lba_shift; 1900 u32 atomic_bs, phys_bs, io_opt = 0; 1901 1902 /* 1903 * The block layer can't support LBA sizes larger than the page size 1904 * or smaller than a sector size yet, so catch this early and don't 1905 * allow block I/O. 1906 */ 1907 if (ns->lba_shift > PAGE_SHIFT || ns->lba_shift < SECTOR_SHIFT) { 1908 capacity = 0; 1909 bs = (1 << 9); 1910 } 1911 1912 blk_integrity_unregister(disk); 1913 1914 atomic_bs = phys_bs = bs; 1915 if (id->nabo == 0) { 1916 /* 1917 * Bit 1 indicates whether NAWUPF is defined for this namespace 1918 * and whether it should be used instead of AWUPF. If NAWUPF == 1919 * 0 then AWUPF must be used instead. 1920 */ 1921 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1922 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1923 else 1924 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1925 } 1926 1927 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1928 /* NPWG = Namespace Preferred Write Granularity */ 1929 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1930 /* NOWS = Namespace Optimal Write Size */ 1931 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1932 } 1933 1934 blk_queue_logical_block_size(disk->queue, bs); 1935 /* 1936 * Linux filesystems assume writing a single physical block is 1937 * an atomic operation. Hence limit the physical block size to the 1938 * value of the Atomic Write Unit Power Fail parameter. 1939 */ 1940 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1941 blk_queue_io_min(disk->queue, phys_bs); 1942 blk_queue_io_opt(disk->queue, io_opt); 1943 1944 /* 1945 * Register a metadata profile for PI, or the plain non-integrity NVMe 1946 * metadata masquerading as Type 0 if supported, otherwise reject block 1947 * I/O to namespaces with metadata except when the namespace supports 1948 * PI, as it can strip/insert in that case. 1949 */ 1950 if (ns->ms) { 1951 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1952 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1953 nvme_init_integrity(disk, ns, 1954 ns->ctrl->max_integrity_segments); 1955 else if (!nvme_ns_has_pi(ns)) 1956 capacity = 0; 1957 } 1958 1959 set_capacity_and_notify(disk, capacity); 1960 1961 nvme_config_discard(disk, ns); 1962 blk_queue_max_write_zeroes_sectors(disk->queue, 1963 ns->ctrl->max_zeroes_sectors); 1964 } 1965 1966 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 1967 { 1968 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 1969 } 1970 1971 static inline bool nvme_first_scan(struct gendisk *disk) 1972 { 1973 /* nvme_alloc_ns() scans the disk prior to adding it */ 1974 return !disk_live(disk); 1975 } 1976 1977 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1978 { 1979 struct nvme_ctrl *ctrl = ns->ctrl; 1980 u32 iob; 1981 1982 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1983 is_power_of_2(ctrl->max_hw_sectors)) 1984 iob = ctrl->max_hw_sectors; 1985 else 1986 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1987 1988 if (!iob) 1989 return; 1990 1991 if (!is_power_of_2(iob)) { 1992 if (nvme_first_scan(ns->disk)) 1993 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1994 ns->disk->disk_name, iob); 1995 return; 1996 } 1997 1998 if (blk_queue_is_zoned(ns->disk->queue)) { 1999 if (nvme_first_scan(ns->disk)) 2000 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2001 ns->disk->disk_name); 2002 return; 2003 } 2004 2005 blk_queue_chunk_sectors(ns->queue, iob); 2006 } 2007 2008 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2009 struct nvme_ns_info *info) 2010 { 2011 blk_mq_freeze_queue(ns->disk->queue); 2012 nvme_set_queue_limits(ns->ctrl, ns->queue); 2013 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2014 blk_mq_unfreeze_queue(ns->disk->queue); 2015 2016 if (nvme_ns_head_multipath(ns->head)) { 2017 blk_mq_freeze_queue(ns->head->disk->queue); 2018 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2019 nvme_mpath_revalidate_paths(ns); 2020 blk_stack_limits(&ns->head->disk->queue->limits, 2021 &ns->queue->limits, 0); 2022 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2023 blk_mq_unfreeze_queue(ns->head->disk->queue); 2024 } 2025 2026 /* Hide the block-interface for these devices */ 2027 ns->disk->flags |= GENHD_FL_HIDDEN; 2028 set_bit(NVME_NS_READY, &ns->flags); 2029 2030 return 0; 2031 } 2032 2033 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2034 struct nvme_ns_info *info) 2035 { 2036 struct nvme_id_ns *id; 2037 unsigned lbaf; 2038 int ret; 2039 2040 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2041 if (ret) 2042 return ret; 2043 2044 if (id->ncap == 0) { 2045 /* namespace not allocated or attached */ 2046 info->is_removed = true; 2047 ret = -ENODEV; 2048 goto error; 2049 } 2050 2051 blk_mq_freeze_queue(ns->disk->queue); 2052 lbaf = nvme_lbaf_index(id->flbas); 2053 ns->lba_shift = id->lbaf[lbaf].ds; 2054 nvme_set_queue_limits(ns->ctrl, ns->queue); 2055 2056 ret = nvme_configure_metadata(ns, id); 2057 if (ret < 0) { 2058 blk_mq_unfreeze_queue(ns->disk->queue); 2059 goto out; 2060 } 2061 nvme_set_chunk_sectors(ns, id); 2062 nvme_update_disk_info(ns->disk, ns, id); 2063 2064 if (ns->head->ids.csi == NVME_CSI_ZNS) { 2065 ret = nvme_update_zone_info(ns, lbaf); 2066 if (ret) { 2067 blk_mq_unfreeze_queue(ns->disk->queue); 2068 goto out; 2069 } 2070 } 2071 2072 /* 2073 * Only set the DEAC bit if the device guarantees that reads from 2074 * deallocated data return zeroes. While the DEAC bit does not 2075 * require that, it must be a no-op if reads from deallocated data 2076 * do not return zeroes. 2077 */ 2078 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2079 ns->features |= NVME_NS_DEAC; 2080 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2081 set_bit(NVME_NS_READY, &ns->flags); 2082 blk_mq_unfreeze_queue(ns->disk->queue); 2083 2084 if (blk_queue_is_zoned(ns->queue)) { 2085 ret = nvme_revalidate_zones(ns); 2086 if (ret && !nvme_first_scan(ns->disk)) 2087 goto out; 2088 } 2089 2090 if (nvme_ns_head_multipath(ns->head)) { 2091 blk_mq_freeze_queue(ns->head->disk->queue); 2092 nvme_update_disk_info(ns->head->disk, ns, id); 2093 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2094 nvme_mpath_revalidate_paths(ns); 2095 blk_stack_limits(&ns->head->disk->queue->limits, 2096 &ns->queue->limits, 0); 2097 disk_update_readahead(ns->head->disk); 2098 blk_mq_unfreeze_queue(ns->head->disk->queue); 2099 } 2100 2101 ret = 0; 2102 out: 2103 /* 2104 * If probing fails due an unsupported feature, hide the block device, 2105 * but still allow other access. 2106 */ 2107 if (ret == -ENODEV) { 2108 ns->disk->flags |= GENHD_FL_HIDDEN; 2109 set_bit(NVME_NS_READY, &ns->flags); 2110 ret = 0; 2111 } 2112 2113 error: 2114 kfree(id); 2115 return ret; 2116 } 2117 2118 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2119 { 2120 switch (info->ids.csi) { 2121 case NVME_CSI_ZNS: 2122 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2123 dev_info(ns->ctrl->device, 2124 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2125 info->nsid); 2126 return nvme_update_ns_info_generic(ns, info); 2127 } 2128 return nvme_update_ns_info_block(ns, info); 2129 case NVME_CSI_NVM: 2130 return nvme_update_ns_info_block(ns, info); 2131 default: 2132 dev_info(ns->ctrl->device, 2133 "block device for nsid %u not supported (csi %u)\n", 2134 info->nsid, info->ids.csi); 2135 return nvme_update_ns_info_generic(ns, info); 2136 } 2137 } 2138 2139 #ifdef CONFIG_BLK_SED_OPAL 2140 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2141 bool send) 2142 { 2143 struct nvme_ctrl *ctrl = data; 2144 struct nvme_command cmd = { }; 2145 2146 if (send) 2147 cmd.common.opcode = nvme_admin_security_send; 2148 else 2149 cmd.common.opcode = nvme_admin_security_recv; 2150 cmd.common.nsid = 0; 2151 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2152 cmd.common.cdw11 = cpu_to_le32(len); 2153 2154 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2155 NVME_QID_ANY, 1, 0); 2156 } 2157 2158 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2159 { 2160 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2161 if (!ctrl->opal_dev) 2162 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2163 else if (was_suspended) 2164 opal_unlock_from_suspend(ctrl->opal_dev); 2165 } else { 2166 free_opal_dev(ctrl->opal_dev); 2167 ctrl->opal_dev = NULL; 2168 } 2169 } 2170 #else 2171 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2172 { 2173 } 2174 #endif /* CONFIG_BLK_SED_OPAL */ 2175 2176 #ifdef CONFIG_BLK_DEV_ZONED 2177 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2178 unsigned int nr_zones, report_zones_cb cb, void *data) 2179 { 2180 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2181 data); 2182 } 2183 #else 2184 #define nvme_report_zones NULL 2185 #endif /* CONFIG_BLK_DEV_ZONED */ 2186 2187 const struct block_device_operations nvme_bdev_ops = { 2188 .owner = THIS_MODULE, 2189 .ioctl = nvme_ioctl, 2190 .compat_ioctl = blkdev_compat_ptr_ioctl, 2191 .open = nvme_open, 2192 .release = nvme_release, 2193 .getgeo = nvme_getgeo, 2194 .report_zones = nvme_report_zones, 2195 .pr_ops = &nvme_pr_ops, 2196 }; 2197 2198 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2199 u32 timeout, const char *op) 2200 { 2201 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2202 u32 csts; 2203 int ret; 2204 2205 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2206 if (csts == ~0) 2207 return -ENODEV; 2208 if ((csts & mask) == val) 2209 break; 2210 2211 usleep_range(1000, 2000); 2212 if (fatal_signal_pending(current)) 2213 return -EINTR; 2214 if (time_after(jiffies, timeout_jiffies)) { 2215 dev_err(ctrl->device, 2216 "Device not ready; aborting %s, CSTS=0x%x\n", 2217 op, csts); 2218 return -ENODEV; 2219 } 2220 } 2221 2222 return ret; 2223 } 2224 2225 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2226 { 2227 int ret; 2228 2229 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2230 if (shutdown) 2231 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2232 else 2233 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2234 2235 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2236 if (ret) 2237 return ret; 2238 2239 if (shutdown) { 2240 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2241 NVME_CSTS_SHST_CMPLT, 2242 ctrl->shutdown_timeout, "shutdown"); 2243 } 2244 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2245 msleep(NVME_QUIRK_DELAY_AMOUNT); 2246 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2247 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2248 } 2249 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2250 2251 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2252 { 2253 unsigned dev_page_min; 2254 u32 timeout; 2255 int ret; 2256 2257 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2258 if (ret) { 2259 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2260 return ret; 2261 } 2262 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2263 2264 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2265 dev_err(ctrl->device, 2266 "Minimum device page size %u too large for host (%u)\n", 2267 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2268 return -ENODEV; 2269 } 2270 2271 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2272 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2273 else 2274 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2275 2276 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) 2277 ctrl->ctrl_config |= NVME_CC_CRIME; 2278 2279 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2280 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2281 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2282 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2283 if (ret) 2284 return ret; 2285 2286 /* Flush write to device (required if transport is PCI) */ 2287 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2288 if (ret) 2289 return ret; 2290 2291 /* CAP value may change after initial CC write */ 2292 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2293 if (ret) 2294 return ret; 2295 2296 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2297 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2298 u32 crto, ready_timeout; 2299 2300 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2301 if (ret) { 2302 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2303 ret); 2304 return ret; 2305 } 2306 2307 /* 2308 * CRTO should always be greater or equal to CAP.TO, but some 2309 * devices are known to get this wrong. Use the larger of the 2310 * two values. 2311 */ 2312 if (ctrl->ctrl_config & NVME_CC_CRIME) 2313 ready_timeout = NVME_CRTO_CRIMT(crto); 2314 else 2315 ready_timeout = NVME_CRTO_CRWMT(crto); 2316 2317 if (ready_timeout < timeout) 2318 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2319 crto, ctrl->cap); 2320 else 2321 timeout = ready_timeout; 2322 } 2323 2324 ctrl->ctrl_config |= NVME_CC_ENABLE; 2325 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2326 if (ret) 2327 return ret; 2328 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2329 (timeout + 1) / 2, "initialisation"); 2330 } 2331 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2332 2333 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2334 { 2335 __le64 ts; 2336 int ret; 2337 2338 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2339 return 0; 2340 2341 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2342 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2343 NULL); 2344 if (ret) 2345 dev_warn_once(ctrl->device, 2346 "could not set timestamp (%d)\n", ret); 2347 return ret; 2348 } 2349 2350 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2351 { 2352 struct nvme_feat_host_behavior *host; 2353 u8 acre = 0, lbafee = 0; 2354 int ret; 2355 2356 /* Don't bother enabling the feature if retry delay is not reported */ 2357 if (ctrl->crdt[0]) 2358 acre = NVME_ENABLE_ACRE; 2359 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2360 lbafee = NVME_ENABLE_LBAFEE; 2361 2362 if (!acre && !lbafee) 2363 return 0; 2364 2365 host = kzalloc(sizeof(*host), GFP_KERNEL); 2366 if (!host) 2367 return 0; 2368 2369 host->acre = acre; 2370 host->lbafee = lbafee; 2371 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2372 host, sizeof(*host), NULL); 2373 kfree(host); 2374 return ret; 2375 } 2376 2377 /* 2378 * The function checks whether the given total (exlat + enlat) latency of 2379 * a power state allows the latter to be used as an APST transition target. 2380 * It does so by comparing the latency to the primary and secondary latency 2381 * tolerances defined by module params. If there's a match, the corresponding 2382 * timeout value is returned and the matching tolerance index (1 or 2) is 2383 * reported. 2384 */ 2385 static bool nvme_apst_get_transition_time(u64 total_latency, 2386 u64 *transition_time, unsigned *last_index) 2387 { 2388 if (total_latency <= apst_primary_latency_tol_us) { 2389 if (*last_index == 1) 2390 return false; 2391 *last_index = 1; 2392 *transition_time = apst_primary_timeout_ms; 2393 return true; 2394 } 2395 if (apst_secondary_timeout_ms && 2396 total_latency <= apst_secondary_latency_tol_us) { 2397 if (*last_index <= 2) 2398 return false; 2399 *last_index = 2; 2400 *transition_time = apst_secondary_timeout_ms; 2401 return true; 2402 } 2403 return false; 2404 } 2405 2406 /* 2407 * APST (Autonomous Power State Transition) lets us program a table of power 2408 * state transitions that the controller will perform automatically. 2409 * 2410 * Depending on module params, one of the two supported techniques will be used: 2411 * 2412 * - If the parameters provide explicit timeouts and tolerances, they will be 2413 * used to build a table with up to 2 non-operational states to transition to. 2414 * The default parameter values were selected based on the values used by 2415 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2416 * regeneration of the APST table in the event of switching between external 2417 * and battery power, the timeouts and tolerances reflect a compromise 2418 * between values used by Microsoft for AC and battery scenarios. 2419 * - If not, we'll configure the table with a simple heuristic: we are willing 2420 * to spend at most 2% of the time transitioning between power states. 2421 * Therefore, when running in any given state, we will enter the next 2422 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2423 * microseconds, as long as that state's exit latency is under the requested 2424 * maximum latency. 2425 * 2426 * We will not autonomously enter any non-operational state for which the total 2427 * latency exceeds ps_max_latency_us. 2428 * 2429 * Users can set ps_max_latency_us to zero to turn off APST. 2430 */ 2431 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2432 { 2433 struct nvme_feat_auto_pst *table; 2434 unsigned apste = 0; 2435 u64 max_lat_us = 0; 2436 __le64 target = 0; 2437 int max_ps = -1; 2438 int state; 2439 int ret; 2440 unsigned last_lt_index = UINT_MAX; 2441 2442 /* 2443 * If APST isn't supported or if we haven't been initialized yet, 2444 * then don't do anything. 2445 */ 2446 if (!ctrl->apsta) 2447 return 0; 2448 2449 if (ctrl->npss > 31) { 2450 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2451 return 0; 2452 } 2453 2454 table = kzalloc(sizeof(*table), GFP_KERNEL); 2455 if (!table) 2456 return 0; 2457 2458 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2459 /* Turn off APST. */ 2460 dev_dbg(ctrl->device, "APST disabled\n"); 2461 goto done; 2462 } 2463 2464 /* 2465 * Walk through all states from lowest- to highest-power. 2466 * According to the spec, lower-numbered states use more power. NPSS, 2467 * despite the name, is the index of the lowest-power state, not the 2468 * number of states. 2469 */ 2470 for (state = (int)ctrl->npss; state >= 0; state--) { 2471 u64 total_latency_us, exit_latency_us, transition_ms; 2472 2473 if (target) 2474 table->entries[state] = target; 2475 2476 /* 2477 * Don't allow transitions to the deepest state if it's quirked 2478 * off. 2479 */ 2480 if (state == ctrl->npss && 2481 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2482 continue; 2483 2484 /* 2485 * Is this state a useful non-operational state for higher-power 2486 * states to autonomously transition to? 2487 */ 2488 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2489 continue; 2490 2491 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2492 if (exit_latency_us > ctrl->ps_max_latency_us) 2493 continue; 2494 2495 total_latency_us = exit_latency_us + 2496 le32_to_cpu(ctrl->psd[state].entry_lat); 2497 2498 /* 2499 * This state is good. It can be used as the APST idle target 2500 * for higher power states. 2501 */ 2502 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2503 if (!nvme_apst_get_transition_time(total_latency_us, 2504 &transition_ms, &last_lt_index)) 2505 continue; 2506 } else { 2507 transition_ms = total_latency_us + 19; 2508 do_div(transition_ms, 20); 2509 if (transition_ms > (1 << 24) - 1) 2510 transition_ms = (1 << 24) - 1; 2511 } 2512 2513 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2514 if (max_ps == -1) 2515 max_ps = state; 2516 if (total_latency_us > max_lat_us) 2517 max_lat_us = total_latency_us; 2518 } 2519 2520 if (max_ps == -1) 2521 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2522 else 2523 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2524 max_ps, max_lat_us, (int)sizeof(*table), table); 2525 apste = 1; 2526 2527 done: 2528 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2529 table, sizeof(*table), NULL); 2530 if (ret) 2531 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2532 kfree(table); 2533 return ret; 2534 } 2535 2536 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2537 { 2538 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2539 u64 latency; 2540 2541 switch (val) { 2542 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2543 case PM_QOS_LATENCY_ANY: 2544 latency = U64_MAX; 2545 break; 2546 2547 default: 2548 latency = val; 2549 } 2550 2551 if (ctrl->ps_max_latency_us != latency) { 2552 ctrl->ps_max_latency_us = latency; 2553 if (ctrl->state == NVME_CTRL_LIVE) 2554 nvme_configure_apst(ctrl); 2555 } 2556 } 2557 2558 struct nvme_core_quirk_entry { 2559 /* 2560 * NVMe model and firmware strings are padded with spaces. For 2561 * simplicity, strings in the quirk table are padded with NULLs 2562 * instead. 2563 */ 2564 u16 vid; 2565 const char *mn; 2566 const char *fr; 2567 unsigned long quirks; 2568 }; 2569 2570 static const struct nvme_core_quirk_entry core_quirks[] = { 2571 { 2572 /* 2573 * This Toshiba device seems to die using any APST states. See: 2574 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2575 */ 2576 .vid = 0x1179, 2577 .mn = "THNSF5256GPUK TOSHIBA", 2578 .quirks = NVME_QUIRK_NO_APST, 2579 }, 2580 { 2581 /* 2582 * This LiteON CL1-3D*-Q11 firmware version has a race 2583 * condition associated with actions related to suspend to idle 2584 * LiteON has resolved the problem in future firmware 2585 */ 2586 .vid = 0x14a4, 2587 .fr = "22301111", 2588 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2589 }, 2590 { 2591 /* 2592 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2593 * aborts I/O during any load, but more easily reproducible 2594 * with discards (fstrim). 2595 * 2596 * The device is left in a state where it is also not possible 2597 * to use "nvme set-feature" to disable APST, but booting with 2598 * nvme_core.default_ps_max_latency=0 works. 2599 */ 2600 .vid = 0x1e0f, 2601 .mn = "KCD6XVUL6T40", 2602 .quirks = NVME_QUIRK_NO_APST, 2603 }, 2604 { 2605 /* 2606 * The external Samsung X5 SSD fails initialization without a 2607 * delay before checking if it is ready and has a whole set of 2608 * other problems. To make this even more interesting, it 2609 * shares the PCI ID with internal Samsung 970 Evo Plus that 2610 * does not need or want these quirks. 2611 */ 2612 .vid = 0x144d, 2613 .mn = "Samsung Portable SSD X5", 2614 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2615 NVME_QUIRK_NO_DEEPEST_PS | 2616 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2617 } 2618 }; 2619 2620 /* match is null-terminated but idstr is space-padded. */ 2621 static bool string_matches(const char *idstr, const char *match, size_t len) 2622 { 2623 size_t matchlen; 2624 2625 if (!match) 2626 return true; 2627 2628 matchlen = strlen(match); 2629 WARN_ON_ONCE(matchlen > len); 2630 2631 if (memcmp(idstr, match, matchlen)) 2632 return false; 2633 2634 for (; matchlen < len; matchlen++) 2635 if (idstr[matchlen] != ' ') 2636 return false; 2637 2638 return true; 2639 } 2640 2641 static bool quirk_matches(const struct nvme_id_ctrl *id, 2642 const struct nvme_core_quirk_entry *q) 2643 { 2644 return q->vid == le16_to_cpu(id->vid) && 2645 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2646 string_matches(id->fr, q->fr, sizeof(id->fr)); 2647 } 2648 2649 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2650 struct nvme_id_ctrl *id) 2651 { 2652 size_t nqnlen; 2653 int off; 2654 2655 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2656 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2657 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2658 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2659 return; 2660 } 2661 2662 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2663 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2664 } 2665 2666 /* 2667 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2668 * Base Specification 2.0. It is slightly different from the format 2669 * specified there due to historic reasons, and we can't change it now. 2670 */ 2671 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2672 "nqn.2014.08.org.nvmexpress:%04x%04x", 2673 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2674 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2675 off += sizeof(id->sn); 2676 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2677 off += sizeof(id->mn); 2678 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2679 } 2680 2681 static void nvme_release_subsystem(struct device *dev) 2682 { 2683 struct nvme_subsystem *subsys = 2684 container_of(dev, struct nvme_subsystem, dev); 2685 2686 if (subsys->instance >= 0) 2687 ida_free(&nvme_instance_ida, subsys->instance); 2688 kfree(subsys); 2689 } 2690 2691 static void nvme_destroy_subsystem(struct kref *ref) 2692 { 2693 struct nvme_subsystem *subsys = 2694 container_of(ref, struct nvme_subsystem, ref); 2695 2696 mutex_lock(&nvme_subsystems_lock); 2697 list_del(&subsys->entry); 2698 mutex_unlock(&nvme_subsystems_lock); 2699 2700 ida_destroy(&subsys->ns_ida); 2701 device_del(&subsys->dev); 2702 put_device(&subsys->dev); 2703 } 2704 2705 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2706 { 2707 kref_put(&subsys->ref, nvme_destroy_subsystem); 2708 } 2709 2710 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2711 { 2712 struct nvme_subsystem *subsys; 2713 2714 lockdep_assert_held(&nvme_subsystems_lock); 2715 2716 /* 2717 * Fail matches for discovery subsystems. This results 2718 * in each discovery controller bound to a unique subsystem. 2719 * This avoids issues with validating controller values 2720 * that can only be true when there is a single unique subsystem. 2721 * There may be multiple and completely independent entities 2722 * that provide discovery controllers. 2723 */ 2724 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2725 return NULL; 2726 2727 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2728 if (strcmp(subsys->subnqn, subsysnqn)) 2729 continue; 2730 if (!kref_get_unless_zero(&subsys->ref)) 2731 continue; 2732 return subsys; 2733 } 2734 2735 return NULL; 2736 } 2737 2738 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2739 { 2740 return ctrl->opts && ctrl->opts->discovery_nqn; 2741 } 2742 2743 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2744 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2745 { 2746 struct nvme_ctrl *tmp; 2747 2748 lockdep_assert_held(&nvme_subsystems_lock); 2749 2750 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2751 if (nvme_state_terminal(tmp)) 2752 continue; 2753 2754 if (tmp->cntlid == ctrl->cntlid) { 2755 dev_err(ctrl->device, 2756 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2757 ctrl->cntlid, dev_name(tmp->device), 2758 subsys->subnqn); 2759 return false; 2760 } 2761 2762 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2763 nvme_discovery_ctrl(ctrl)) 2764 continue; 2765 2766 dev_err(ctrl->device, 2767 "Subsystem does not support multiple controllers\n"); 2768 return false; 2769 } 2770 2771 return true; 2772 } 2773 2774 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2775 { 2776 struct nvme_subsystem *subsys, *found; 2777 int ret; 2778 2779 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2780 if (!subsys) 2781 return -ENOMEM; 2782 2783 subsys->instance = -1; 2784 mutex_init(&subsys->lock); 2785 kref_init(&subsys->ref); 2786 INIT_LIST_HEAD(&subsys->ctrls); 2787 INIT_LIST_HEAD(&subsys->nsheads); 2788 nvme_init_subnqn(subsys, ctrl, id); 2789 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2790 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2791 subsys->vendor_id = le16_to_cpu(id->vid); 2792 subsys->cmic = id->cmic; 2793 2794 /* Versions prior to 1.4 don't necessarily report a valid type */ 2795 if (id->cntrltype == NVME_CTRL_DISC || 2796 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2797 subsys->subtype = NVME_NQN_DISC; 2798 else 2799 subsys->subtype = NVME_NQN_NVME; 2800 2801 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2802 dev_err(ctrl->device, 2803 "Subsystem %s is not a discovery controller", 2804 subsys->subnqn); 2805 kfree(subsys); 2806 return -EINVAL; 2807 } 2808 subsys->awupf = le16_to_cpu(id->awupf); 2809 nvme_mpath_default_iopolicy(subsys); 2810 2811 subsys->dev.class = nvme_subsys_class; 2812 subsys->dev.release = nvme_release_subsystem; 2813 subsys->dev.groups = nvme_subsys_attrs_groups; 2814 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2815 device_initialize(&subsys->dev); 2816 2817 mutex_lock(&nvme_subsystems_lock); 2818 found = __nvme_find_get_subsystem(subsys->subnqn); 2819 if (found) { 2820 put_device(&subsys->dev); 2821 subsys = found; 2822 2823 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2824 ret = -EINVAL; 2825 goto out_put_subsystem; 2826 } 2827 } else { 2828 ret = device_add(&subsys->dev); 2829 if (ret) { 2830 dev_err(ctrl->device, 2831 "failed to register subsystem device.\n"); 2832 put_device(&subsys->dev); 2833 goto out_unlock; 2834 } 2835 ida_init(&subsys->ns_ida); 2836 list_add_tail(&subsys->entry, &nvme_subsystems); 2837 } 2838 2839 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2840 dev_name(ctrl->device)); 2841 if (ret) { 2842 dev_err(ctrl->device, 2843 "failed to create sysfs link from subsystem.\n"); 2844 goto out_put_subsystem; 2845 } 2846 2847 if (!found) 2848 subsys->instance = ctrl->instance; 2849 ctrl->subsys = subsys; 2850 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2851 mutex_unlock(&nvme_subsystems_lock); 2852 return 0; 2853 2854 out_put_subsystem: 2855 nvme_put_subsystem(subsys); 2856 out_unlock: 2857 mutex_unlock(&nvme_subsystems_lock); 2858 return ret; 2859 } 2860 2861 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2862 void *log, size_t size, u64 offset) 2863 { 2864 struct nvme_command c = { }; 2865 u32 dwlen = nvme_bytes_to_numd(size); 2866 2867 c.get_log_page.opcode = nvme_admin_get_log_page; 2868 c.get_log_page.nsid = cpu_to_le32(nsid); 2869 c.get_log_page.lid = log_page; 2870 c.get_log_page.lsp = lsp; 2871 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2872 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2873 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2874 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2875 c.get_log_page.csi = csi; 2876 2877 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2878 } 2879 2880 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2881 struct nvme_effects_log **log) 2882 { 2883 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2884 int ret; 2885 2886 if (cel) 2887 goto out; 2888 2889 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2890 if (!cel) 2891 return -ENOMEM; 2892 2893 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2894 cel, sizeof(*cel), 0); 2895 if (ret) { 2896 kfree(cel); 2897 return ret; 2898 } 2899 2900 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2901 out: 2902 *log = cel; 2903 return 0; 2904 } 2905 2906 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2907 { 2908 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2909 2910 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2911 return UINT_MAX; 2912 return val; 2913 } 2914 2915 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2916 { 2917 struct nvme_command c = { }; 2918 struct nvme_id_ctrl_nvm *id; 2919 int ret; 2920 2921 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2922 ctrl->max_discard_sectors = UINT_MAX; 2923 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2924 } else { 2925 ctrl->max_discard_sectors = 0; 2926 ctrl->max_discard_segments = 0; 2927 } 2928 2929 /* 2930 * Even though NVMe spec explicitly states that MDTS is not applicable 2931 * to the write-zeroes, we are cautious and limit the size to the 2932 * controllers max_hw_sectors value, which is based on the MDTS field 2933 * and possibly other limiting factors. 2934 */ 2935 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2936 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2937 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2938 else 2939 ctrl->max_zeroes_sectors = 0; 2940 2941 if (ctrl->subsys->subtype != NVME_NQN_NVME || 2942 nvme_ctrl_limited_cns(ctrl) || 2943 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 2944 return 0; 2945 2946 id = kzalloc(sizeof(*id), GFP_KERNEL); 2947 if (!id) 2948 return -ENOMEM; 2949 2950 c.identify.opcode = nvme_admin_identify; 2951 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2952 c.identify.csi = NVME_CSI_NVM; 2953 2954 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2955 if (ret) 2956 goto free_data; 2957 2958 if (id->dmrl) 2959 ctrl->max_discard_segments = id->dmrl; 2960 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 2961 if (id->wzsl) 2962 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2963 2964 free_data: 2965 if (ret > 0) 2966 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 2967 kfree(id); 2968 return ret; 2969 } 2970 2971 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 2972 { 2973 struct nvme_effects_log *log = ctrl->effects; 2974 2975 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 2976 NVME_CMD_EFFECTS_NCC | 2977 NVME_CMD_EFFECTS_CSE_MASK); 2978 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 2979 NVME_CMD_EFFECTS_CSE_MASK); 2980 2981 /* 2982 * The spec says the result of a security receive command depends on 2983 * the previous security send command. As such, many vendors log this 2984 * command as one to submitted only when no other commands to the same 2985 * namespace are outstanding. The intention is to tell the host to 2986 * prevent mixing security send and receive. 2987 * 2988 * This driver can only enforce such exclusive access against IO 2989 * queues, though. We are not readily able to enforce such a rule for 2990 * two commands to the admin queue, which is the only queue that 2991 * matters for this command. 2992 * 2993 * Rather than blindly freezing the IO queues for this effect that 2994 * doesn't even apply to IO, mask it off. 2995 */ 2996 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 2997 2998 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 2999 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3000 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3001 } 3002 3003 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3004 { 3005 int ret = 0; 3006 3007 if (ctrl->effects) 3008 return 0; 3009 3010 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3011 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3012 if (ret < 0) 3013 return ret; 3014 } 3015 3016 if (!ctrl->effects) { 3017 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3018 if (!ctrl->effects) 3019 return -ENOMEM; 3020 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3021 } 3022 3023 nvme_init_known_nvm_effects(ctrl); 3024 return 0; 3025 } 3026 3027 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3028 { 3029 struct nvme_id_ctrl *id; 3030 u32 max_hw_sectors; 3031 bool prev_apst_enabled; 3032 int ret; 3033 3034 ret = nvme_identify_ctrl(ctrl, &id); 3035 if (ret) { 3036 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3037 return -EIO; 3038 } 3039 3040 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3041 ctrl->cntlid = le16_to_cpu(id->cntlid); 3042 3043 if (!ctrl->identified) { 3044 unsigned int i; 3045 3046 /* 3047 * Check for quirks. Quirk can depend on firmware version, 3048 * so, in principle, the set of quirks present can change 3049 * across a reset. As a possible future enhancement, we 3050 * could re-scan for quirks every time we reinitialize 3051 * the device, but we'd have to make sure that the driver 3052 * behaves intelligently if the quirks change. 3053 */ 3054 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3055 if (quirk_matches(id, &core_quirks[i])) 3056 ctrl->quirks |= core_quirks[i].quirks; 3057 } 3058 3059 ret = nvme_init_subsystem(ctrl, id); 3060 if (ret) 3061 goto out_free; 3062 3063 ret = nvme_init_effects(ctrl, id); 3064 if (ret) 3065 goto out_free; 3066 } 3067 memcpy(ctrl->subsys->firmware_rev, id->fr, 3068 sizeof(ctrl->subsys->firmware_rev)); 3069 3070 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3071 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3072 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3073 } 3074 3075 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3076 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3077 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3078 3079 ctrl->oacs = le16_to_cpu(id->oacs); 3080 ctrl->oncs = le16_to_cpu(id->oncs); 3081 ctrl->mtfa = le16_to_cpu(id->mtfa); 3082 ctrl->oaes = le32_to_cpu(id->oaes); 3083 ctrl->wctemp = le16_to_cpu(id->wctemp); 3084 ctrl->cctemp = le16_to_cpu(id->cctemp); 3085 3086 atomic_set(&ctrl->abort_limit, id->acl + 1); 3087 ctrl->vwc = id->vwc; 3088 if (id->mdts) 3089 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3090 else 3091 max_hw_sectors = UINT_MAX; 3092 ctrl->max_hw_sectors = 3093 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3094 3095 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3096 ctrl->sgls = le32_to_cpu(id->sgls); 3097 ctrl->kas = le16_to_cpu(id->kas); 3098 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3099 ctrl->ctratt = le32_to_cpu(id->ctratt); 3100 3101 ctrl->cntrltype = id->cntrltype; 3102 ctrl->dctype = id->dctype; 3103 3104 if (id->rtd3e) { 3105 /* us -> s */ 3106 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3107 3108 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3109 shutdown_timeout, 60); 3110 3111 if (ctrl->shutdown_timeout != shutdown_timeout) 3112 dev_info(ctrl->device, 3113 "Shutdown timeout set to %u seconds\n", 3114 ctrl->shutdown_timeout); 3115 } else 3116 ctrl->shutdown_timeout = shutdown_timeout; 3117 3118 ctrl->npss = id->npss; 3119 ctrl->apsta = id->apsta; 3120 prev_apst_enabled = ctrl->apst_enabled; 3121 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3122 if (force_apst && id->apsta) { 3123 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3124 ctrl->apst_enabled = true; 3125 } else { 3126 ctrl->apst_enabled = false; 3127 } 3128 } else { 3129 ctrl->apst_enabled = id->apsta; 3130 } 3131 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3132 3133 if (ctrl->ops->flags & NVME_F_FABRICS) { 3134 ctrl->icdoff = le16_to_cpu(id->icdoff); 3135 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3136 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3137 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3138 3139 /* 3140 * In fabrics we need to verify the cntlid matches the 3141 * admin connect 3142 */ 3143 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3144 dev_err(ctrl->device, 3145 "Mismatching cntlid: Connect %u vs Identify " 3146 "%u, rejecting\n", 3147 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3148 ret = -EINVAL; 3149 goto out_free; 3150 } 3151 3152 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3153 dev_err(ctrl->device, 3154 "keep-alive support is mandatory for fabrics\n"); 3155 ret = -EINVAL; 3156 goto out_free; 3157 } 3158 } else { 3159 ctrl->hmpre = le32_to_cpu(id->hmpre); 3160 ctrl->hmmin = le32_to_cpu(id->hmmin); 3161 ctrl->hmminds = le32_to_cpu(id->hmminds); 3162 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3163 } 3164 3165 ret = nvme_mpath_init_identify(ctrl, id); 3166 if (ret < 0) 3167 goto out_free; 3168 3169 if (ctrl->apst_enabled && !prev_apst_enabled) 3170 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3171 else if (!ctrl->apst_enabled && prev_apst_enabled) 3172 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3173 3174 out_free: 3175 kfree(id); 3176 return ret; 3177 } 3178 3179 /* 3180 * Initialize the cached copies of the Identify data and various controller 3181 * register in our nvme_ctrl structure. This should be called as soon as 3182 * the admin queue is fully up and running. 3183 */ 3184 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3185 { 3186 int ret; 3187 3188 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3189 if (ret) { 3190 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3191 return ret; 3192 } 3193 3194 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3195 3196 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3197 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3198 3199 ret = nvme_init_identify(ctrl); 3200 if (ret) 3201 return ret; 3202 3203 ret = nvme_configure_apst(ctrl); 3204 if (ret < 0) 3205 return ret; 3206 3207 ret = nvme_configure_timestamp(ctrl); 3208 if (ret < 0) 3209 return ret; 3210 3211 ret = nvme_configure_host_options(ctrl); 3212 if (ret < 0) 3213 return ret; 3214 3215 nvme_configure_opal(ctrl, was_suspended); 3216 3217 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3218 /* 3219 * Do not return errors unless we are in a controller reset, 3220 * the controller works perfectly fine without hwmon. 3221 */ 3222 ret = nvme_hwmon_init(ctrl); 3223 if (ret == -EINTR) 3224 return ret; 3225 } 3226 3227 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3228 ctrl->identified = true; 3229 3230 nvme_start_keep_alive(ctrl); 3231 3232 return 0; 3233 } 3234 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3235 3236 static int nvme_dev_open(struct inode *inode, struct file *file) 3237 { 3238 struct nvme_ctrl *ctrl = 3239 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3240 3241 switch (ctrl->state) { 3242 case NVME_CTRL_LIVE: 3243 break; 3244 default: 3245 return -EWOULDBLOCK; 3246 } 3247 3248 nvme_get_ctrl(ctrl); 3249 if (!try_module_get(ctrl->ops->module)) { 3250 nvme_put_ctrl(ctrl); 3251 return -EINVAL; 3252 } 3253 3254 file->private_data = ctrl; 3255 return 0; 3256 } 3257 3258 static int nvme_dev_release(struct inode *inode, struct file *file) 3259 { 3260 struct nvme_ctrl *ctrl = 3261 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3262 3263 module_put(ctrl->ops->module); 3264 nvme_put_ctrl(ctrl); 3265 return 0; 3266 } 3267 3268 static const struct file_operations nvme_dev_fops = { 3269 .owner = THIS_MODULE, 3270 .open = nvme_dev_open, 3271 .release = nvme_dev_release, 3272 .unlocked_ioctl = nvme_dev_ioctl, 3273 .compat_ioctl = compat_ptr_ioctl, 3274 .uring_cmd = nvme_dev_uring_cmd, 3275 }; 3276 3277 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3278 unsigned nsid) 3279 { 3280 struct nvme_ns_head *h; 3281 3282 lockdep_assert_held(&ctrl->subsys->lock); 3283 3284 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3285 /* 3286 * Private namespaces can share NSIDs under some conditions. 3287 * In that case we can't use the same ns_head for namespaces 3288 * with the same NSID. 3289 */ 3290 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3291 continue; 3292 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3293 return h; 3294 } 3295 3296 return NULL; 3297 } 3298 3299 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3300 struct nvme_ns_ids *ids) 3301 { 3302 bool has_uuid = !uuid_is_null(&ids->uuid); 3303 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3304 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3305 struct nvme_ns_head *h; 3306 3307 lockdep_assert_held(&subsys->lock); 3308 3309 list_for_each_entry(h, &subsys->nsheads, entry) { 3310 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3311 return -EINVAL; 3312 if (has_nguid && 3313 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3314 return -EINVAL; 3315 if (has_eui64 && 3316 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3317 return -EINVAL; 3318 } 3319 3320 return 0; 3321 } 3322 3323 static void nvme_cdev_rel(struct device *dev) 3324 { 3325 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3326 } 3327 3328 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3329 { 3330 cdev_device_del(cdev, cdev_device); 3331 put_device(cdev_device); 3332 } 3333 3334 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3335 const struct file_operations *fops, struct module *owner) 3336 { 3337 int minor, ret; 3338 3339 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3340 if (minor < 0) 3341 return minor; 3342 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3343 cdev_device->class = nvme_ns_chr_class; 3344 cdev_device->release = nvme_cdev_rel; 3345 device_initialize(cdev_device); 3346 cdev_init(cdev, fops); 3347 cdev->owner = owner; 3348 ret = cdev_device_add(cdev, cdev_device); 3349 if (ret) 3350 put_device(cdev_device); 3351 3352 return ret; 3353 } 3354 3355 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3356 { 3357 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3358 } 3359 3360 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3361 { 3362 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3363 return 0; 3364 } 3365 3366 static const struct file_operations nvme_ns_chr_fops = { 3367 .owner = THIS_MODULE, 3368 .open = nvme_ns_chr_open, 3369 .release = nvme_ns_chr_release, 3370 .unlocked_ioctl = nvme_ns_chr_ioctl, 3371 .compat_ioctl = compat_ptr_ioctl, 3372 .uring_cmd = nvme_ns_chr_uring_cmd, 3373 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3374 }; 3375 3376 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3377 { 3378 int ret; 3379 3380 ns->cdev_device.parent = ns->ctrl->device; 3381 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3382 ns->ctrl->instance, ns->head->instance); 3383 if (ret) 3384 return ret; 3385 3386 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3387 ns->ctrl->ops->module); 3388 } 3389 3390 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3391 struct nvme_ns_info *info) 3392 { 3393 struct nvme_ns_head *head; 3394 size_t size = sizeof(*head); 3395 int ret = -ENOMEM; 3396 3397 #ifdef CONFIG_NVME_MULTIPATH 3398 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3399 #endif 3400 3401 head = kzalloc(size, GFP_KERNEL); 3402 if (!head) 3403 goto out; 3404 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3405 if (ret < 0) 3406 goto out_free_head; 3407 head->instance = ret; 3408 INIT_LIST_HEAD(&head->list); 3409 ret = init_srcu_struct(&head->srcu); 3410 if (ret) 3411 goto out_ida_remove; 3412 head->subsys = ctrl->subsys; 3413 head->ns_id = info->nsid; 3414 head->ids = info->ids; 3415 head->shared = info->is_shared; 3416 kref_init(&head->ref); 3417 3418 if (head->ids.csi) { 3419 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3420 if (ret) 3421 goto out_cleanup_srcu; 3422 } else 3423 head->effects = ctrl->effects; 3424 3425 ret = nvme_mpath_alloc_disk(ctrl, head); 3426 if (ret) 3427 goto out_cleanup_srcu; 3428 3429 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3430 3431 kref_get(&ctrl->subsys->ref); 3432 3433 return head; 3434 out_cleanup_srcu: 3435 cleanup_srcu_struct(&head->srcu); 3436 out_ida_remove: 3437 ida_free(&ctrl->subsys->ns_ida, head->instance); 3438 out_free_head: 3439 kfree(head); 3440 out: 3441 if (ret > 0) 3442 ret = blk_status_to_errno(nvme_error_status(ret)); 3443 return ERR_PTR(ret); 3444 } 3445 3446 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3447 struct nvme_ns_ids *ids) 3448 { 3449 struct nvme_subsystem *s; 3450 int ret = 0; 3451 3452 /* 3453 * Note that this check is racy as we try to avoid holding the global 3454 * lock over the whole ns_head creation. But it is only intended as 3455 * a sanity check anyway. 3456 */ 3457 mutex_lock(&nvme_subsystems_lock); 3458 list_for_each_entry(s, &nvme_subsystems, entry) { 3459 if (s == this) 3460 continue; 3461 mutex_lock(&s->lock); 3462 ret = nvme_subsys_check_duplicate_ids(s, ids); 3463 mutex_unlock(&s->lock); 3464 if (ret) 3465 break; 3466 } 3467 mutex_unlock(&nvme_subsystems_lock); 3468 3469 return ret; 3470 } 3471 3472 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3473 { 3474 struct nvme_ctrl *ctrl = ns->ctrl; 3475 struct nvme_ns_head *head = NULL; 3476 int ret; 3477 3478 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3479 if (ret) { 3480 /* 3481 * We've found two different namespaces on two different 3482 * subsystems that report the same ID. This is pretty nasty 3483 * for anything that actually requires unique device 3484 * identification. In the kernel we need this for multipathing, 3485 * and in user space the /dev/disk/by-id/ links rely on it. 3486 * 3487 * If the device also claims to be multi-path capable back off 3488 * here now and refuse the probe the second device as this is a 3489 * recipe for data corruption. If not this is probably a 3490 * cheap consumer device if on the PCIe bus, so let the user 3491 * proceed and use the shiny toy, but warn that with changing 3492 * probing order (which due to our async probing could just be 3493 * device taking longer to startup) the other device could show 3494 * up at any time. 3495 */ 3496 nvme_print_device_info(ctrl); 3497 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3498 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3499 info->is_shared)) { 3500 dev_err(ctrl->device, 3501 "ignoring nsid %d because of duplicate IDs\n", 3502 info->nsid); 3503 return ret; 3504 } 3505 3506 dev_err(ctrl->device, 3507 "clearing duplicate IDs for nsid %d\n", info->nsid); 3508 dev_err(ctrl->device, 3509 "use of /dev/disk/by-id/ may cause data corruption\n"); 3510 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3511 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3512 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3513 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3514 } 3515 3516 mutex_lock(&ctrl->subsys->lock); 3517 head = nvme_find_ns_head(ctrl, info->nsid); 3518 if (!head) { 3519 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3520 if (ret) { 3521 dev_err(ctrl->device, 3522 "duplicate IDs in subsystem for nsid %d\n", 3523 info->nsid); 3524 goto out_unlock; 3525 } 3526 head = nvme_alloc_ns_head(ctrl, info); 3527 if (IS_ERR(head)) { 3528 ret = PTR_ERR(head); 3529 goto out_unlock; 3530 } 3531 } else { 3532 ret = -EINVAL; 3533 if (!info->is_shared || !head->shared) { 3534 dev_err(ctrl->device, 3535 "Duplicate unshared namespace %d\n", 3536 info->nsid); 3537 goto out_put_ns_head; 3538 } 3539 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3540 dev_err(ctrl->device, 3541 "IDs don't match for shared namespace %d\n", 3542 info->nsid); 3543 goto out_put_ns_head; 3544 } 3545 3546 if (!multipath) { 3547 dev_warn(ctrl->device, 3548 "Found shared namespace %d, but multipathing not supported.\n", 3549 info->nsid); 3550 dev_warn_once(ctrl->device, 3551 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); 3552 } 3553 } 3554 3555 list_add_tail_rcu(&ns->siblings, &head->list); 3556 ns->head = head; 3557 mutex_unlock(&ctrl->subsys->lock); 3558 return 0; 3559 3560 out_put_ns_head: 3561 nvme_put_ns_head(head); 3562 out_unlock: 3563 mutex_unlock(&ctrl->subsys->lock); 3564 return ret; 3565 } 3566 3567 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3568 { 3569 struct nvme_ns *ns, *ret = NULL; 3570 3571 down_read(&ctrl->namespaces_rwsem); 3572 list_for_each_entry(ns, &ctrl->namespaces, list) { 3573 if (ns->head->ns_id == nsid) { 3574 if (!nvme_get_ns(ns)) 3575 continue; 3576 ret = ns; 3577 break; 3578 } 3579 if (ns->head->ns_id > nsid) 3580 break; 3581 } 3582 up_read(&ctrl->namespaces_rwsem); 3583 return ret; 3584 } 3585 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3586 3587 /* 3588 * Add the namespace to the controller list while keeping the list ordered. 3589 */ 3590 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3591 { 3592 struct nvme_ns *tmp; 3593 3594 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3595 if (tmp->head->ns_id < ns->head->ns_id) { 3596 list_add(&ns->list, &tmp->list); 3597 return; 3598 } 3599 } 3600 list_add(&ns->list, &ns->ctrl->namespaces); 3601 } 3602 3603 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3604 { 3605 struct nvme_ns *ns; 3606 struct gendisk *disk; 3607 int node = ctrl->numa_node; 3608 3609 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3610 if (!ns) 3611 return; 3612 3613 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3614 if (IS_ERR(disk)) 3615 goto out_free_ns; 3616 disk->fops = &nvme_bdev_ops; 3617 disk->private_data = ns; 3618 3619 ns->disk = disk; 3620 ns->queue = disk->queue; 3621 3622 if (ctrl->opts && ctrl->opts->data_digest) 3623 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3624 3625 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3626 if (ctrl->ops->supports_pci_p2pdma && 3627 ctrl->ops->supports_pci_p2pdma(ctrl)) 3628 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3629 3630 ns->ctrl = ctrl; 3631 kref_init(&ns->kref); 3632 3633 if (nvme_init_ns_head(ns, info)) 3634 goto out_cleanup_disk; 3635 3636 /* 3637 * If multipathing is enabled, the device name for all disks and not 3638 * just those that represent shared namespaces needs to be based on the 3639 * subsystem instance. Using the controller instance for private 3640 * namespaces could lead to naming collisions between shared and private 3641 * namespaces if they don't use a common numbering scheme. 3642 * 3643 * If multipathing is not enabled, disk names must use the controller 3644 * instance as shared namespaces will show up as multiple block 3645 * devices. 3646 */ 3647 if (nvme_ns_head_multipath(ns->head)) { 3648 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3649 ctrl->instance, ns->head->instance); 3650 disk->flags |= GENHD_FL_HIDDEN; 3651 } else if (multipath) { 3652 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3653 ns->head->instance); 3654 } else { 3655 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3656 ns->head->instance); 3657 } 3658 3659 if (nvme_update_ns_info(ns, info)) 3660 goto out_unlink_ns; 3661 3662 down_write(&ctrl->namespaces_rwsem); 3663 nvme_ns_add_to_ctrl_list(ns); 3664 up_write(&ctrl->namespaces_rwsem); 3665 nvme_get_ctrl(ctrl); 3666 3667 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 3668 goto out_cleanup_ns_from_list; 3669 3670 if (!nvme_ns_head_multipath(ns->head)) 3671 nvme_add_ns_cdev(ns); 3672 3673 nvme_mpath_add_disk(ns, info->anagrpid); 3674 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3675 3676 return; 3677 3678 out_cleanup_ns_from_list: 3679 nvme_put_ctrl(ctrl); 3680 down_write(&ctrl->namespaces_rwsem); 3681 list_del_init(&ns->list); 3682 up_write(&ctrl->namespaces_rwsem); 3683 out_unlink_ns: 3684 mutex_lock(&ctrl->subsys->lock); 3685 list_del_rcu(&ns->siblings); 3686 if (list_empty(&ns->head->list)) 3687 list_del_init(&ns->head->entry); 3688 mutex_unlock(&ctrl->subsys->lock); 3689 nvme_put_ns_head(ns->head); 3690 out_cleanup_disk: 3691 put_disk(disk); 3692 out_free_ns: 3693 kfree(ns); 3694 } 3695 3696 static void nvme_ns_remove(struct nvme_ns *ns) 3697 { 3698 bool last_path = false; 3699 3700 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3701 return; 3702 3703 clear_bit(NVME_NS_READY, &ns->flags); 3704 set_capacity(ns->disk, 0); 3705 nvme_fault_inject_fini(&ns->fault_inject); 3706 3707 /* 3708 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3709 * this ns going back into current_path. 3710 */ 3711 synchronize_srcu(&ns->head->srcu); 3712 3713 /* wait for concurrent submissions */ 3714 if (nvme_mpath_clear_current_path(ns)) 3715 synchronize_srcu(&ns->head->srcu); 3716 3717 mutex_lock(&ns->ctrl->subsys->lock); 3718 list_del_rcu(&ns->siblings); 3719 if (list_empty(&ns->head->list)) { 3720 list_del_init(&ns->head->entry); 3721 last_path = true; 3722 } 3723 mutex_unlock(&ns->ctrl->subsys->lock); 3724 3725 /* guarantee not available in head->list */ 3726 synchronize_srcu(&ns->head->srcu); 3727 3728 if (!nvme_ns_head_multipath(ns->head)) 3729 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3730 del_gendisk(ns->disk); 3731 3732 down_write(&ns->ctrl->namespaces_rwsem); 3733 list_del_init(&ns->list); 3734 up_write(&ns->ctrl->namespaces_rwsem); 3735 3736 if (last_path) 3737 nvme_mpath_shutdown_disk(ns->head); 3738 nvme_put_ns(ns); 3739 } 3740 3741 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3742 { 3743 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3744 3745 if (ns) { 3746 nvme_ns_remove(ns); 3747 nvme_put_ns(ns); 3748 } 3749 } 3750 3751 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3752 { 3753 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3754 3755 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3756 dev_err(ns->ctrl->device, 3757 "identifiers changed for nsid %d\n", ns->head->ns_id); 3758 goto out; 3759 } 3760 3761 ret = nvme_update_ns_info(ns, info); 3762 out: 3763 /* 3764 * Only remove the namespace if we got a fatal error back from the 3765 * device, otherwise ignore the error and just move on. 3766 * 3767 * TODO: we should probably schedule a delayed retry here. 3768 */ 3769 if (ret > 0 && (ret & NVME_SC_DNR)) 3770 nvme_ns_remove(ns); 3771 } 3772 3773 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3774 { 3775 struct nvme_ns_info info = { .nsid = nsid }; 3776 struct nvme_ns *ns; 3777 int ret; 3778 3779 if (nvme_identify_ns_descs(ctrl, &info)) 3780 return; 3781 3782 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 3783 dev_warn(ctrl->device, 3784 "command set not reported for nsid: %d\n", nsid); 3785 return; 3786 } 3787 3788 /* 3789 * If available try to use the Command Set Idependent Identify Namespace 3790 * data structure to find all the generic information that is needed to 3791 * set up a namespace. If not fall back to the legacy version. 3792 */ 3793 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 3794 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 3795 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 3796 else 3797 ret = nvme_ns_info_from_identify(ctrl, &info); 3798 3799 if (info.is_removed) 3800 nvme_ns_remove_by_nsid(ctrl, nsid); 3801 3802 /* 3803 * Ignore the namespace if it is not ready. We will get an AEN once it 3804 * becomes ready and restart the scan. 3805 */ 3806 if (ret || !info.is_ready) 3807 return; 3808 3809 ns = nvme_find_get_ns(ctrl, nsid); 3810 if (ns) { 3811 nvme_validate_ns(ns, &info); 3812 nvme_put_ns(ns); 3813 } else { 3814 nvme_alloc_ns(ctrl, &info); 3815 } 3816 } 3817 3818 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3819 unsigned nsid) 3820 { 3821 struct nvme_ns *ns, *next; 3822 LIST_HEAD(rm_list); 3823 3824 down_write(&ctrl->namespaces_rwsem); 3825 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3826 if (ns->head->ns_id > nsid) 3827 list_move_tail(&ns->list, &rm_list); 3828 } 3829 up_write(&ctrl->namespaces_rwsem); 3830 3831 list_for_each_entry_safe(ns, next, &rm_list, list) 3832 nvme_ns_remove(ns); 3833 3834 } 3835 3836 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3837 { 3838 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3839 __le32 *ns_list; 3840 u32 prev = 0; 3841 int ret = 0, i; 3842 3843 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3844 if (!ns_list) 3845 return -ENOMEM; 3846 3847 for (;;) { 3848 struct nvme_command cmd = { 3849 .identify.opcode = nvme_admin_identify, 3850 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 3851 .identify.nsid = cpu_to_le32(prev), 3852 }; 3853 3854 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 3855 NVME_IDENTIFY_DATA_SIZE); 3856 if (ret) { 3857 dev_warn(ctrl->device, 3858 "Identify NS List failed (status=0x%x)\n", ret); 3859 goto free; 3860 } 3861 3862 for (i = 0; i < nr_entries; i++) { 3863 u32 nsid = le32_to_cpu(ns_list[i]); 3864 3865 if (!nsid) /* end of the list? */ 3866 goto out; 3867 nvme_scan_ns(ctrl, nsid); 3868 while (++prev < nsid) 3869 nvme_ns_remove_by_nsid(ctrl, prev); 3870 } 3871 } 3872 out: 3873 nvme_remove_invalid_namespaces(ctrl, prev); 3874 free: 3875 kfree(ns_list); 3876 return ret; 3877 } 3878 3879 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 3880 { 3881 struct nvme_id_ctrl *id; 3882 u32 nn, i; 3883 3884 if (nvme_identify_ctrl(ctrl, &id)) 3885 return; 3886 nn = le32_to_cpu(id->nn); 3887 kfree(id); 3888 3889 for (i = 1; i <= nn; i++) 3890 nvme_scan_ns(ctrl, i); 3891 3892 nvme_remove_invalid_namespaces(ctrl, nn); 3893 } 3894 3895 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3896 { 3897 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3898 __le32 *log; 3899 int error; 3900 3901 log = kzalloc(log_size, GFP_KERNEL); 3902 if (!log) 3903 return; 3904 3905 /* 3906 * We need to read the log to clear the AEN, but we don't want to rely 3907 * on it for the changed namespace information as userspace could have 3908 * raced with us in reading the log page, which could cause us to miss 3909 * updates. 3910 */ 3911 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 3912 NVME_CSI_NVM, log, log_size, 0); 3913 if (error) 3914 dev_warn(ctrl->device, 3915 "reading changed ns log failed: %d\n", error); 3916 3917 kfree(log); 3918 } 3919 3920 static void nvme_scan_work(struct work_struct *work) 3921 { 3922 struct nvme_ctrl *ctrl = 3923 container_of(work, struct nvme_ctrl, scan_work); 3924 int ret; 3925 3926 /* No tagset on a live ctrl means IO queues could not created */ 3927 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 3928 return; 3929 3930 /* 3931 * Identify controller limits can change at controller reset due to 3932 * new firmware download, even though it is not common we cannot ignore 3933 * such scenario. Controller's non-mdts limits are reported in the unit 3934 * of logical blocks that is dependent on the format of attached 3935 * namespace. Hence re-read the limits at the time of ns allocation. 3936 */ 3937 ret = nvme_init_non_mdts_limits(ctrl); 3938 if (ret < 0) { 3939 dev_warn(ctrl->device, 3940 "reading non-mdts-limits failed: %d\n", ret); 3941 return; 3942 } 3943 3944 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3945 dev_info(ctrl->device, "rescanning namespaces.\n"); 3946 nvme_clear_changed_ns_log(ctrl); 3947 } 3948 3949 mutex_lock(&ctrl->scan_lock); 3950 if (nvme_ctrl_limited_cns(ctrl)) { 3951 nvme_scan_ns_sequential(ctrl); 3952 } else { 3953 /* 3954 * Fall back to sequential scan if DNR is set to handle broken 3955 * devices which should support Identify NS List (as per the VS 3956 * they report) but don't actually support it. 3957 */ 3958 ret = nvme_scan_ns_list(ctrl); 3959 if (ret > 0 && ret & NVME_SC_DNR) 3960 nvme_scan_ns_sequential(ctrl); 3961 } 3962 mutex_unlock(&ctrl->scan_lock); 3963 } 3964 3965 /* 3966 * This function iterates the namespace list unlocked to allow recovery from 3967 * controller failure. It is up to the caller to ensure the namespace list is 3968 * not modified by scan work while this function is executing. 3969 */ 3970 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3971 { 3972 struct nvme_ns *ns, *next; 3973 LIST_HEAD(ns_list); 3974 3975 /* 3976 * make sure to requeue I/O to all namespaces as these 3977 * might result from the scan itself and must complete 3978 * for the scan_work to make progress 3979 */ 3980 nvme_mpath_clear_ctrl_paths(ctrl); 3981 3982 /* 3983 * Unquiesce io queues so any pending IO won't hang, especially 3984 * those submitted from scan work 3985 */ 3986 nvme_unquiesce_io_queues(ctrl); 3987 3988 /* prevent racing with ns scanning */ 3989 flush_work(&ctrl->scan_work); 3990 3991 /* 3992 * The dead states indicates the controller was not gracefully 3993 * disconnected. In that case, we won't be able to flush any data while 3994 * removing the namespaces' disks; fail all the queues now to avoid 3995 * potentially having to clean up the failed sync later. 3996 */ 3997 if (ctrl->state == NVME_CTRL_DEAD) 3998 nvme_mark_namespaces_dead(ctrl); 3999 4000 /* this is a no-op when called from the controller reset handler */ 4001 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4002 4003 down_write(&ctrl->namespaces_rwsem); 4004 list_splice_init(&ctrl->namespaces, &ns_list); 4005 up_write(&ctrl->namespaces_rwsem); 4006 4007 list_for_each_entry_safe(ns, next, &ns_list, list) 4008 nvme_ns_remove(ns); 4009 } 4010 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4011 4012 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4013 { 4014 const struct nvme_ctrl *ctrl = 4015 container_of(dev, struct nvme_ctrl, ctrl_device); 4016 struct nvmf_ctrl_options *opts = ctrl->opts; 4017 int ret; 4018 4019 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4020 if (ret) 4021 return ret; 4022 4023 if (opts) { 4024 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4025 if (ret) 4026 return ret; 4027 4028 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4029 opts->trsvcid ?: "none"); 4030 if (ret) 4031 return ret; 4032 4033 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4034 opts->host_traddr ?: "none"); 4035 if (ret) 4036 return ret; 4037 4038 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4039 opts->host_iface ?: "none"); 4040 } 4041 return ret; 4042 } 4043 4044 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4045 { 4046 char *envp[2] = { envdata, NULL }; 4047 4048 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4049 } 4050 4051 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4052 { 4053 char *envp[2] = { NULL, NULL }; 4054 u32 aen_result = ctrl->aen_result; 4055 4056 ctrl->aen_result = 0; 4057 if (!aen_result) 4058 return; 4059 4060 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4061 if (!envp[0]) 4062 return; 4063 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4064 kfree(envp[0]); 4065 } 4066 4067 static void nvme_async_event_work(struct work_struct *work) 4068 { 4069 struct nvme_ctrl *ctrl = 4070 container_of(work, struct nvme_ctrl, async_event_work); 4071 4072 nvme_aen_uevent(ctrl); 4073 4074 /* 4075 * The transport drivers must guarantee AER submission here is safe by 4076 * flushing ctrl async_event_work after changing the controller state 4077 * from LIVE and before freeing the admin queue. 4078 */ 4079 if (ctrl->state == NVME_CTRL_LIVE) 4080 ctrl->ops->submit_async_event(ctrl); 4081 } 4082 4083 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4084 { 4085 4086 u32 csts; 4087 4088 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4089 return false; 4090 4091 if (csts == ~0) 4092 return false; 4093 4094 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4095 } 4096 4097 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4098 { 4099 struct nvme_fw_slot_info_log *log; 4100 4101 log = kmalloc(sizeof(*log), GFP_KERNEL); 4102 if (!log) 4103 return; 4104 4105 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4106 log, sizeof(*log), 0)) { 4107 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4108 goto out_free_log; 4109 } 4110 4111 if (log->afi & 0x70 || !(log->afi & 0x7)) { 4112 dev_info(ctrl->device, 4113 "Firmware is activated after next Controller Level Reset\n"); 4114 goto out_free_log; 4115 } 4116 4117 memcpy(ctrl->subsys->firmware_rev, &log->frs[(log->afi & 0x7) - 1], 4118 sizeof(ctrl->subsys->firmware_rev)); 4119 4120 out_free_log: 4121 kfree(log); 4122 } 4123 4124 static void nvme_fw_act_work(struct work_struct *work) 4125 { 4126 struct nvme_ctrl *ctrl = container_of(work, 4127 struct nvme_ctrl, fw_act_work); 4128 unsigned long fw_act_timeout; 4129 4130 if (ctrl->mtfa) 4131 fw_act_timeout = jiffies + 4132 msecs_to_jiffies(ctrl->mtfa * 100); 4133 else 4134 fw_act_timeout = jiffies + 4135 msecs_to_jiffies(admin_timeout * 1000); 4136 4137 nvme_quiesce_io_queues(ctrl); 4138 while (nvme_ctrl_pp_status(ctrl)) { 4139 if (time_after(jiffies, fw_act_timeout)) { 4140 dev_warn(ctrl->device, 4141 "Fw activation timeout, reset controller\n"); 4142 nvme_try_sched_reset(ctrl); 4143 return; 4144 } 4145 msleep(100); 4146 } 4147 4148 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4149 return; 4150 4151 nvme_unquiesce_io_queues(ctrl); 4152 /* read FW slot information to clear the AER */ 4153 nvme_get_fw_slot_info(ctrl); 4154 4155 queue_work(nvme_wq, &ctrl->async_event_work); 4156 } 4157 4158 static u32 nvme_aer_type(u32 result) 4159 { 4160 return result & 0x7; 4161 } 4162 4163 static u32 nvme_aer_subtype(u32 result) 4164 { 4165 return (result & 0xff00) >> 8; 4166 } 4167 4168 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4169 { 4170 u32 aer_notice_type = nvme_aer_subtype(result); 4171 bool requeue = true; 4172 4173 switch (aer_notice_type) { 4174 case NVME_AER_NOTICE_NS_CHANGED: 4175 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4176 nvme_queue_scan(ctrl); 4177 break; 4178 case NVME_AER_NOTICE_FW_ACT_STARTING: 4179 /* 4180 * We are (ab)using the RESETTING state to prevent subsequent 4181 * recovery actions from interfering with the controller's 4182 * firmware activation. 4183 */ 4184 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4185 nvme_auth_stop(ctrl); 4186 requeue = false; 4187 queue_work(nvme_wq, &ctrl->fw_act_work); 4188 } 4189 break; 4190 #ifdef CONFIG_NVME_MULTIPATH 4191 case NVME_AER_NOTICE_ANA: 4192 if (!ctrl->ana_log_buf) 4193 break; 4194 queue_work(nvme_wq, &ctrl->ana_work); 4195 break; 4196 #endif 4197 case NVME_AER_NOTICE_DISC_CHANGED: 4198 ctrl->aen_result = result; 4199 break; 4200 default: 4201 dev_warn(ctrl->device, "async event result %08x\n", result); 4202 } 4203 return requeue; 4204 } 4205 4206 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4207 { 4208 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4209 nvme_reset_ctrl(ctrl); 4210 } 4211 4212 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4213 volatile union nvme_result *res) 4214 { 4215 u32 result = le32_to_cpu(res->u32); 4216 u32 aer_type = nvme_aer_type(result); 4217 u32 aer_subtype = nvme_aer_subtype(result); 4218 bool requeue = true; 4219 4220 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4221 return; 4222 4223 trace_nvme_async_event(ctrl, result); 4224 switch (aer_type) { 4225 case NVME_AER_NOTICE: 4226 requeue = nvme_handle_aen_notice(ctrl, result); 4227 break; 4228 case NVME_AER_ERROR: 4229 /* 4230 * For a persistent internal error, don't run async_event_work 4231 * to submit a new AER. The controller reset will do it. 4232 */ 4233 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4234 nvme_handle_aer_persistent_error(ctrl); 4235 return; 4236 } 4237 fallthrough; 4238 case NVME_AER_SMART: 4239 case NVME_AER_CSS: 4240 case NVME_AER_VS: 4241 ctrl->aen_result = result; 4242 break; 4243 default: 4244 break; 4245 } 4246 4247 if (requeue) 4248 queue_work(nvme_wq, &ctrl->async_event_work); 4249 } 4250 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4251 4252 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4253 const struct blk_mq_ops *ops, unsigned int cmd_size) 4254 { 4255 int ret; 4256 4257 memset(set, 0, sizeof(*set)); 4258 set->ops = ops; 4259 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4260 if (ctrl->ops->flags & NVME_F_FABRICS) 4261 set->reserved_tags = NVMF_RESERVED_TAGS; 4262 set->numa_node = ctrl->numa_node; 4263 set->flags = BLK_MQ_F_NO_SCHED; 4264 if (ctrl->ops->flags & NVME_F_BLOCKING) 4265 set->flags |= BLK_MQ_F_BLOCKING; 4266 set->cmd_size = cmd_size; 4267 set->driver_data = ctrl; 4268 set->nr_hw_queues = 1; 4269 set->timeout = NVME_ADMIN_TIMEOUT; 4270 ret = blk_mq_alloc_tag_set(set); 4271 if (ret) 4272 return ret; 4273 4274 ctrl->admin_q = blk_mq_init_queue(set); 4275 if (IS_ERR(ctrl->admin_q)) { 4276 ret = PTR_ERR(ctrl->admin_q); 4277 goto out_free_tagset; 4278 } 4279 4280 if (ctrl->ops->flags & NVME_F_FABRICS) { 4281 ctrl->fabrics_q = blk_mq_init_queue(set); 4282 if (IS_ERR(ctrl->fabrics_q)) { 4283 ret = PTR_ERR(ctrl->fabrics_q); 4284 goto out_cleanup_admin_q; 4285 } 4286 } 4287 4288 ctrl->admin_tagset = set; 4289 return 0; 4290 4291 out_cleanup_admin_q: 4292 blk_mq_destroy_queue(ctrl->admin_q); 4293 blk_put_queue(ctrl->admin_q); 4294 out_free_tagset: 4295 blk_mq_free_tag_set(set); 4296 ctrl->admin_q = NULL; 4297 ctrl->fabrics_q = NULL; 4298 return ret; 4299 } 4300 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4301 4302 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4303 { 4304 blk_mq_destroy_queue(ctrl->admin_q); 4305 blk_put_queue(ctrl->admin_q); 4306 if (ctrl->ops->flags & NVME_F_FABRICS) { 4307 blk_mq_destroy_queue(ctrl->fabrics_q); 4308 blk_put_queue(ctrl->fabrics_q); 4309 } 4310 blk_mq_free_tag_set(ctrl->admin_tagset); 4311 } 4312 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4313 4314 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4315 const struct blk_mq_ops *ops, unsigned int nr_maps, 4316 unsigned int cmd_size) 4317 { 4318 int ret; 4319 4320 memset(set, 0, sizeof(*set)); 4321 set->ops = ops; 4322 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4323 /* 4324 * Some Apple controllers requires tags to be unique across admin and 4325 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4326 */ 4327 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4328 set->reserved_tags = NVME_AQ_DEPTH; 4329 else if (ctrl->ops->flags & NVME_F_FABRICS) 4330 set->reserved_tags = NVMF_RESERVED_TAGS; 4331 set->numa_node = ctrl->numa_node; 4332 set->flags = BLK_MQ_F_SHOULD_MERGE; 4333 if (ctrl->ops->flags & NVME_F_BLOCKING) 4334 set->flags |= BLK_MQ_F_BLOCKING; 4335 set->cmd_size = cmd_size, 4336 set->driver_data = ctrl; 4337 set->nr_hw_queues = ctrl->queue_count - 1; 4338 set->timeout = NVME_IO_TIMEOUT; 4339 set->nr_maps = nr_maps; 4340 ret = blk_mq_alloc_tag_set(set); 4341 if (ret) 4342 return ret; 4343 4344 if (ctrl->ops->flags & NVME_F_FABRICS) { 4345 ctrl->connect_q = blk_mq_init_queue(set); 4346 if (IS_ERR(ctrl->connect_q)) { 4347 ret = PTR_ERR(ctrl->connect_q); 4348 goto out_free_tag_set; 4349 } 4350 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, 4351 ctrl->connect_q); 4352 } 4353 4354 ctrl->tagset = set; 4355 return 0; 4356 4357 out_free_tag_set: 4358 blk_mq_free_tag_set(set); 4359 ctrl->connect_q = NULL; 4360 return ret; 4361 } 4362 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4363 4364 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4365 { 4366 if (ctrl->ops->flags & NVME_F_FABRICS) { 4367 blk_mq_destroy_queue(ctrl->connect_q); 4368 blk_put_queue(ctrl->connect_q); 4369 } 4370 blk_mq_free_tag_set(ctrl->tagset); 4371 } 4372 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4373 4374 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4375 { 4376 nvme_mpath_stop(ctrl); 4377 nvme_auth_stop(ctrl); 4378 nvme_stop_keep_alive(ctrl); 4379 nvme_stop_failfast_work(ctrl); 4380 flush_work(&ctrl->async_event_work); 4381 cancel_work_sync(&ctrl->fw_act_work); 4382 if (ctrl->ops->stop_ctrl) 4383 ctrl->ops->stop_ctrl(ctrl); 4384 } 4385 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4386 4387 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4388 { 4389 nvme_enable_aen(ctrl); 4390 4391 /* 4392 * persistent discovery controllers need to send indication to userspace 4393 * to re-read the discovery log page to learn about possible changes 4394 * that were missed. We identify persistent discovery controllers by 4395 * checking that they started once before, hence are reconnecting back. 4396 */ 4397 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4398 nvme_discovery_ctrl(ctrl)) 4399 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4400 4401 if (ctrl->queue_count > 1) { 4402 nvme_queue_scan(ctrl); 4403 nvme_unquiesce_io_queues(ctrl); 4404 nvme_mpath_update(ctrl); 4405 } 4406 4407 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4408 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4409 } 4410 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4411 4412 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4413 { 4414 nvme_hwmon_exit(ctrl); 4415 nvme_fault_inject_fini(&ctrl->fault_inject); 4416 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4417 cdev_device_del(&ctrl->cdev, ctrl->device); 4418 nvme_put_ctrl(ctrl); 4419 } 4420 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4421 4422 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4423 { 4424 struct nvme_effects_log *cel; 4425 unsigned long i; 4426 4427 xa_for_each(&ctrl->cels, i, cel) { 4428 xa_erase(&ctrl->cels, i); 4429 kfree(cel); 4430 } 4431 4432 xa_destroy(&ctrl->cels); 4433 } 4434 4435 static void nvme_free_ctrl(struct device *dev) 4436 { 4437 struct nvme_ctrl *ctrl = 4438 container_of(dev, struct nvme_ctrl, ctrl_device); 4439 struct nvme_subsystem *subsys = ctrl->subsys; 4440 4441 if (!subsys || ctrl->instance != subsys->instance) 4442 ida_free(&nvme_instance_ida, ctrl->instance); 4443 key_put(ctrl->tls_key); 4444 nvme_free_cels(ctrl); 4445 nvme_mpath_uninit(ctrl); 4446 nvme_auth_stop(ctrl); 4447 nvme_auth_free(ctrl); 4448 __free_page(ctrl->discard_page); 4449 free_opal_dev(ctrl->opal_dev); 4450 4451 if (subsys) { 4452 mutex_lock(&nvme_subsystems_lock); 4453 list_del(&ctrl->subsys_entry); 4454 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4455 mutex_unlock(&nvme_subsystems_lock); 4456 } 4457 4458 ctrl->ops->free_ctrl(ctrl); 4459 4460 if (subsys) 4461 nvme_put_subsystem(subsys); 4462 } 4463 4464 /* 4465 * Initialize a NVMe controller structures. This needs to be called during 4466 * earliest initialization so that we have the initialized structured around 4467 * during probing. 4468 */ 4469 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4470 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4471 { 4472 int ret; 4473 4474 ctrl->state = NVME_CTRL_NEW; 4475 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4476 spin_lock_init(&ctrl->lock); 4477 mutex_init(&ctrl->scan_lock); 4478 INIT_LIST_HEAD(&ctrl->namespaces); 4479 xa_init(&ctrl->cels); 4480 init_rwsem(&ctrl->namespaces_rwsem); 4481 ctrl->dev = dev; 4482 ctrl->ops = ops; 4483 ctrl->quirks = quirks; 4484 ctrl->numa_node = NUMA_NO_NODE; 4485 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4486 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4487 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4488 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4489 init_waitqueue_head(&ctrl->state_wq); 4490 4491 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4492 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4493 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4494 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4495 ctrl->ka_last_check_time = jiffies; 4496 4497 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4498 PAGE_SIZE); 4499 ctrl->discard_page = alloc_page(GFP_KERNEL); 4500 if (!ctrl->discard_page) { 4501 ret = -ENOMEM; 4502 goto out; 4503 } 4504 4505 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4506 if (ret < 0) 4507 goto out; 4508 ctrl->instance = ret; 4509 4510 device_initialize(&ctrl->ctrl_device); 4511 ctrl->device = &ctrl->ctrl_device; 4512 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4513 ctrl->instance); 4514 ctrl->device->class = nvme_class; 4515 ctrl->device->parent = ctrl->dev; 4516 if (ops->dev_attr_groups) 4517 ctrl->device->groups = ops->dev_attr_groups; 4518 else 4519 ctrl->device->groups = nvme_dev_attr_groups; 4520 ctrl->device->release = nvme_free_ctrl; 4521 dev_set_drvdata(ctrl->device, ctrl); 4522 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4523 if (ret) 4524 goto out_release_instance; 4525 4526 nvme_get_ctrl(ctrl); 4527 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4528 ctrl->cdev.owner = ops->module; 4529 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4530 if (ret) 4531 goto out_free_name; 4532 4533 /* 4534 * Initialize latency tolerance controls. The sysfs files won't 4535 * be visible to userspace unless the device actually supports APST. 4536 */ 4537 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4538 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4539 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4540 4541 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4542 nvme_mpath_init_ctrl(ctrl); 4543 ret = nvme_auth_init_ctrl(ctrl); 4544 if (ret) 4545 goto out_free_cdev; 4546 4547 return 0; 4548 out_free_cdev: 4549 nvme_fault_inject_fini(&ctrl->fault_inject); 4550 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4551 cdev_device_del(&ctrl->cdev, ctrl->device); 4552 out_free_name: 4553 nvme_put_ctrl(ctrl); 4554 kfree_const(ctrl->device->kobj.name); 4555 out_release_instance: 4556 ida_free(&nvme_instance_ida, ctrl->instance); 4557 out: 4558 if (ctrl->discard_page) 4559 __free_page(ctrl->discard_page); 4560 return ret; 4561 } 4562 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4563 4564 /* let I/O to all namespaces fail in preparation for surprise removal */ 4565 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4566 { 4567 struct nvme_ns *ns; 4568 4569 down_read(&ctrl->namespaces_rwsem); 4570 list_for_each_entry(ns, &ctrl->namespaces, list) 4571 blk_mark_disk_dead(ns->disk); 4572 up_read(&ctrl->namespaces_rwsem); 4573 } 4574 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4575 4576 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4577 { 4578 struct nvme_ns *ns; 4579 4580 down_read(&ctrl->namespaces_rwsem); 4581 list_for_each_entry(ns, &ctrl->namespaces, list) 4582 blk_mq_unfreeze_queue(ns->queue); 4583 up_read(&ctrl->namespaces_rwsem); 4584 } 4585 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4586 4587 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4588 { 4589 struct nvme_ns *ns; 4590 4591 down_read(&ctrl->namespaces_rwsem); 4592 list_for_each_entry(ns, &ctrl->namespaces, list) { 4593 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4594 if (timeout <= 0) 4595 break; 4596 } 4597 up_read(&ctrl->namespaces_rwsem); 4598 return timeout; 4599 } 4600 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4601 4602 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4603 { 4604 struct nvme_ns *ns; 4605 4606 down_read(&ctrl->namespaces_rwsem); 4607 list_for_each_entry(ns, &ctrl->namespaces, list) 4608 blk_mq_freeze_queue_wait(ns->queue); 4609 up_read(&ctrl->namespaces_rwsem); 4610 } 4611 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4612 4613 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4614 { 4615 struct nvme_ns *ns; 4616 4617 down_read(&ctrl->namespaces_rwsem); 4618 list_for_each_entry(ns, &ctrl->namespaces, list) 4619 blk_freeze_queue_start(ns->queue); 4620 up_read(&ctrl->namespaces_rwsem); 4621 } 4622 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4623 4624 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4625 { 4626 if (!ctrl->tagset) 4627 return; 4628 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4629 blk_mq_quiesce_tagset(ctrl->tagset); 4630 else 4631 blk_mq_wait_quiesce_done(ctrl->tagset); 4632 } 4633 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4634 4635 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4636 { 4637 if (!ctrl->tagset) 4638 return; 4639 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4640 blk_mq_unquiesce_tagset(ctrl->tagset); 4641 } 4642 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4643 4644 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4645 { 4646 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4647 blk_mq_quiesce_queue(ctrl->admin_q); 4648 else 4649 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4650 } 4651 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4652 4653 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4654 { 4655 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4656 blk_mq_unquiesce_queue(ctrl->admin_q); 4657 } 4658 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4659 4660 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4661 { 4662 struct nvme_ns *ns; 4663 4664 down_read(&ctrl->namespaces_rwsem); 4665 list_for_each_entry(ns, &ctrl->namespaces, list) 4666 blk_sync_queue(ns->queue); 4667 up_read(&ctrl->namespaces_rwsem); 4668 } 4669 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4670 4671 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4672 { 4673 nvme_sync_io_queues(ctrl); 4674 if (ctrl->admin_q) 4675 blk_sync_queue(ctrl->admin_q); 4676 } 4677 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4678 4679 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4680 { 4681 if (file->f_op != &nvme_dev_fops) 4682 return NULL; 4683 return file->private_data; 4684 } 4685 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4686 4687 /* 4688 * Check we didn't inadvertently grow the command structure sizes: 4689 */ 4690 static inline void _nvme_check_size(void) 4691 { 4692 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4693 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4694 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4695 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4696 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4697 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4698 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4699 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4700 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4701 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4702 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4703 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4704 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4705 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4706 NVME_IDENTIFY_DATA_SIZE); 4707 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4708 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4709 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4710 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4711 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4712 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4713 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4714 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4715 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4716 } 4717 4718 4719 static int __init nvme_core_init(void) 4720 { 4721 int result = -ENOMEM; 4722 4723 _nvme_check_size(); 4724 4725 nvme_wq = alloc_workqueue("nvme-wq", 4726 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4727 if (!nvme_wq) 4728 goto out; 4729 4730 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4731 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4732 if (!nvme_reset_wq) 4733 goto destroy_wq; 4734 4735 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4736 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4737 if (!nvme_delete_wq) 4738 goto destroy_reset_wq; 4739 4740 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4741 NVME_MINORS, "nvme"); 4742 if (result < 0) 4743 goto destroy_delete_wq; 4744 4745 nvme_class = class_create("nvme"); 4746 if (IS_ERR(nvme_class)) { 4747 result = PTR_ERR(nvme_class); 4748 goto unregister_chrdev; 4749 } 4750 nvme_class->dev_uevent = nvme_class_uevent; 4751 4752 nvme_subsys_class = class_create("nvme-subsystem"); 4753 if (IS_ERR(nvme_subsys_class)) { 4754 result = PTR_ERR(nvme_subsys_class); 4755 goto destroy_class; 4756 } 4757 4758 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4759 "nvme-generic"); 4760 if (result < 0) 4761 goto destroy_subsys_class; 4762 4763 nvme_ns_chr_class = class_create("nvme-generic"); 4764 if (IS_ERR(nvme_ns_chr_class)) { 4765 result = PTR_ERR(nvme_ns_chr_class); 4766 goto unregister_generic_ns; 4767 } 4768 result = nvme_init_auth(); 4769 if (result) 4770 goto destroy_ns_chr; 4771 return 0; 4772 4773 destroy_ns_chr: 4774 class_destroy(nvme_ns_chr_class); 4775 unregister_generic_ns: 4776 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4777 destroy_subsys_class: 4778 class_destroy(nvme_subsys_class); 4779 destroy_class: 4780 class_destroy(nvme_class); 4781 unregister_chrdev: 4782 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4783 destroy_delete_wq: 4784 destroy_workqueue(nvme_delete_wq); 4785 destroy_reset_wq: 4786 destroy_workqueue(nvme_reset_wq); 4787 destroy_wq: 4788 destroy_workqueue(nvme_wq); 4789 out: 4790 return result; 4791 } 4792 4793 static void __exit nvme_core_exit(void) 4794 { 4795 nvme_exit_auth(); 4796 class_destroy(nvme_ns_chr_class); 4797 class_destroy(nvme_subsys_class); 4798 class_destroy(nvme_class); 4799 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4800 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4801 destroy_workqueue(nvme_delete_wq); 4802 destroy_workqueue(nvme_reset_wq); 4803 destroy_workqueue(nvme_wq); 4804 ida_destroy(&nvme_ns_chr_minor_ida); 4805 ida_destroy(&nvme_instance_ida); 4806 } 4807 4808 MODULE_LICENSE("GPL"); 4809 MODULE_VERSION("1.0"); 4810 module_init(nvme_core_init); 4811 module_exit(nvme_core_exit); 4812