1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <linux/pm_qos.h> 30 #include <asm/unaligned.h> 31 32 #define CREATE_TRACE_POINTS 33 #include "trace.h" 34 35 #include "nvme.h" 36 #include "fabrics.h" 37 38 #define NVME_MINORS (1U << MINORBITS) 39 40 unsigned int admin_timeout = 60; 41 module_param(admin_timeout, uint, 0644); 42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 43 EXPORT_SYMBOL_GPL(admin_timeout); 44 45 unsigned int nvme_io_timeout = 30; 46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 48 EXPORT_SYMBOL_GPL(nvme_io_timeout); 49 50 static unsigned char shutdown_timeout = 5; 51 module_param(shutdown_timeout, byte, 0644); 52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 53 54 static u8 nvme_max_retries = 5; 55 module_param_named(max_retries, nvme_max_retries, byte, 0644); 56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 57 58 static unsigned long default_ps_max_latency_us = 100000; 59 module_param(default_ps_max_latency_us, ulong, 0644); 60 MODULE_PARM_DESC(default_ps_max_latency_us, 61 "max power saving latency for new devices; use PM QOS to change per device"); 62 63 static bool force_apst; 64 module_param(force_apst, bool, 0644); 65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 66 67 static bool streams; 68 module_param(streams, bool, 0644); 69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 70 71 /* 72 * nvme_wq - hosts nvme related works that are not reset or delete 73 * nvme_reset_wq - hosts nvme reset works 74 * nvme_delete_wq - hosts nvme delete works 75 * 76 * nvme_wq will host works such are scan, aen handling, fw activation, 77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 78 * runs reset works which also flush works hosted on nvme_wq for 79 * serialization purposes. nvme_delete_wq host controller deletion 80 * works which flush reset works for serialization. 81 */ 82 struct workqueue_struct *nvme_wq; 83 EXPORT_SYMBOL_GPL(nvme_wq); 84 85 struct workqueue_struct *nvme_reset_wq; 86 EXPORT_SYMBOL_GPL(nvme_reset_wq); 87 88 struct workqueue_struct *nvme_delete_wq; 89 EXPORT_SYMBOL_GPL(nvme_delete_wq); 90 91 static DEFINE_IDA(nvme_subsystems_ida); 92 static LIST_HEAD(nvme_subsystems); 93 static DEFINE_MUTEX(nvme_subsystems_lock); 94 95 static DEFINE_IDA(nvme_instance_ida); 96 static dev_t nvme_chr_devt; 97 static struct class *nvme_class; 98 static struct class *nvme_subsys_class; 99 100 static int nvme_revalidate_disk(struct gendisk *disk); 101 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 102 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 103 unsigned nsid); 104 105 static void nvme_set_queue_dying(struct nvme_ns *ns) 106 { 107 /* 108 * Revalidating a dead namespace sets capacity to 0. This will end 109 * buffered writers dirtying pages that can't be synced. 110 */ 111 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 112 return; 113 revalidate_disk(ns->disk); 114 blk_set_queue_dying(ns->queue); 115 /* Forcibly unquiesce queues to avoid blocking dispatch */ 116 blk_mq_unquiesce_queue(ns->queue); 117 } 118 119 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 120 { 121 /* 122 * Only new queue scan work when admin and IO queues are both alive 123 */ 124 if (ctrl->state == NVME_CTRL_LIVE) 125 queue_work(nvme_wq, &ctrl->scan_work); 126 } 127 128 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 129 { 130 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 131 return -EBUSY; 132 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 133 return -EBUSY; 134 return 0; 135 } 136 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 137 138 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 139 { 140 int ret; 141 142 ret = nvme_reset_ctrl(ctrl); 143 if (!ret) { 144 flush_work(&ctrl->reset_work); 145 if (ctrl->state != NVME_CTRL_LIVE && 146 ctrl->state != NVME_CTRL_ADMIN_ONLY) 147 ret = -ENETRESET; 148 } 149 150 return ret; 151 } 152 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 153 154 static void nvme_delete_ctrl_work(struct work_struct *work) 155 { 156 struct nvme_ctrl *ctrl = 157 container_of(work, struct nvme_ctrl, delete_work); 158 159 dev_info(ctrl->device, 160 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 161 162 flush_work(&ctrl->reset_work); 163 nvme_stop_ctrl(ctrl); 164 nvme_remove_namespaces(ctrl); 165 ctrl->ops->delete_ctrl(ctrl); 166 nvme_uninit_ctrl(ctrl); 167 nvme_put_ctrl(ctrl); 168 } 169 170 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 171 { 172 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 173 return -EBUSY; 174 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 175 return -EBUSY; 176 return 0; 177 } 178 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 179 180 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 181 { 182 int ret = 0; 183 184 /* 185 * Keep a reference until the work is flushed since ->delete_ctrl 186 * can free the controller. 187 */ 188 nvme_get_ctrl(ctrl); 189 ret = nvme_delete_ctrl(ctrl); 190 if (!ret) 191 flush_work(&ctrl->delete_work); 192 nvme_put_ctrl(ctrl); 193 return ret; 194 } 195 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync); 196 197 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 198 { 199 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 200 } 201 202 static blk_status_t nvme_error_status(struct request *req) 203 { 204 switch (nvme_req(req)->status & 0x7ff) { 205 case NVME_SC_SUCCESS: 206 return BLK_STS_OK; 207 case NVME_SC_CAP_EXCEEDED: 208 return BLK_STS_NOSPC; 209 case NVME_SC_LBA_RANGE: 210 return BLK_STS_TARGET; 211 case NVME_SC_BAD_ATTRIBUTES: 212 case NVME_SC_ONCS_NOT_SUPPORTED: 213 case NVME_SC_INVALID_OPCODE: 214 case NVME_SC_INVALID_FIELD: 215 case NVME_SC_INVALID_NS: 216 return BLK_STS_NOTSUPP; 217 case NVME_SC_WRITE_FAULT: 218 case NVME_SC_READ_ERROR: 219 case NVME_SC_UNWRITTEN_BLOCK: 220 case NVME_SC_ACCESS_DENIED: 221 case NVME_SC_READ_ONLY: 222 case NVME_SC_COMPARE_FAILED: 223 return BLK_STS_MEDIUM; 224 case NVME_SC_GUARD_CHECK: 225 case NVME_SC_APPTAG_CHECK: 226 case NVME_SC_REFTAG_CHECK: 227 case NVME_SC_INVALID_PI: 228 return BLK_STS_PROTECTION; 229 case NVME_SC_RESERVATION_CONFLICT: 230 return BLK_STS_NEXUS; 231 default: 232 return BLK_STS_IOERR; 233 } 234 } 235 236 static inline bool nvme_req_needs_retry(struct request *req) 237 { 238 if (blk_noretry_request(req)) 239 return false; 240 if (nvme_req(req)->status & NVME_SC_DNR) 241 return false; 242 if (nvme_req(req)->retries >= nvme_max_retries) 243 return false; 244 return true; 245 } 246 247 static void nvme_retry_req(struct request *req) 248 { 249 struct nvme_ns *ns = req->q->queuedata; 250 unsigned long delay = 0; 251 u16 crd; 252 253 /* The mask and shift result must be <= 3 */ 254 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 255 if (ns && crd) 256 delay = ns->ctrl->crdt[crd - 1] * 100; 257 258 nvme_req(req)->retries++; 259 blk_mq_requeue_request(req, false); 260 blk_mq_delay_kick_requeue_list(req->q, delay); 261 } 262 263 void nvme_complete_rq(struct request *req) 264 { 265 blk_status_t status = nvme_error_status(req); 266 267 trace_nvme_complete_rq(req); 268 269 if (nvme_req(req)->ctrl->kas) 270 nvme_req(req)->ctrl->comp_seen = true; 271 272 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 273 if ((req->cmd_flags & REQ_NVME_MPATH) && 274 blk_path_error(status)) { 275 nvme_failover_req(req); 276 return; 277 } 278 279 if (!blk_queue_dying(req->q)) { 280 nvme_retry_req(req); 281 return; 282 } 283 } 284 blk_mq_end_request(req, status); 285 } 286 EXPORT_SYMBOL_GPL(nvme_complete_rq); 287 288 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 289 { 290 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 291 "Cancelling I/O %d", req->tag); 292 293 nvme_req(req)->status = NVME_SC_ABORT_REQ; 294 blk_mq_complete_request(req); 295 return true; 296 } 297 EXPORT_SYMBOL_GPL(nvme_cancel_request); 298 299 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 300 enum nvme_ctrl_state new_state) 301 { 302 enum nvme_ctrl_state old_state; 303 unsigned long flags; 304 bool changed = false; 305 306 spin_lock_irqsave(&ctrl->lock, flags); 307 308 old_state = ctrl->state; 309 switch (new_state) { 310 case NVME_CTRL_ADMIN_ONLY: 311 switch (old_state) { 312 case NVME_CTRL_CONNECTING: 313 changed = true; 314 /* FALLTHRU */ 315 default: 316 break; 317 } 318 break; 319 case NVME_CTRL_LIVE: 320 switch (old_state) { 321 case NVME_CTRL_NEW: 322 case NVME_CTRL_RESETTING: 323 case NVME_CTRL_CONNECTING: 324 changed = true; 325 /* FALLTHRU */ 326 default: 327 break; 328 } 329 break; 330 case NVME_CTRL_RESETTING: 331 switch (old_state) { 332 case NVME_CTRL_NEW: 333 case NVME_CTRL_LIVE: 334 case NVME_CTRL_ADMIN_ONLY: 335 changed = true; 336 /* FALLTHRU */ 337 default: 338 break; 339 } 340 break; 341 case NVME_CTRL_CONNECTING: 342 switch (old_state) { 343 case NVME_CTRL_NEW: 344 case NVME_CTRL_RESETTING: 345 changed = true; 346 /* FALLTHRU */ 347 default: 348 break; 349 } 350 break; 351 case NVME_CTRL_DELETING: 352 switch (old_state) { 353 case NVME_CTRL_LIVE: 354 case NVME_CTRL_ADMIN_ONLY: 355 case NVME_CTRL_RESETTING: 356 case NVME_CTRL_CONNECTING: 357 changed = true; 358 /* FALLTHRU */ 359 default: 360 break; 361 } 362 break; 363 case NVME_CTRL_DEAD: 364 switch (old_state) { 365 case NVME_CTRL_DELETING: 366 changed = true; 367 /* FALLTHRU */ 368 default: 369 break; 370 } 371 break; 372 default: 373 break; 374 } 375 376 if (changed) 377 ctrl->state = new_state; 378 379 spin_unlock_irqrestore(&ctrl->lock, flags); 380 if (changed && ctrl->state == NVME_CTRL_LIVE) 381 nvme_kick_requeue_lists(ctrl); 382 return changed; 383 } 384 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 385 386 static void nvme_free_ns_head(struct kref *ref) 387 { 388 struct nvme_ns_head *head = 389 container_of(ref, struct nvme_ns_head, ref); 390 391 nvme_mpath_remove_disk(head); 392 ida_simple_remove(&head->subsys->ns_ida, head->instance); 393 list_del_init(&head->entry); 394 cleanup_srcu_struct_quiesced(&head->srcu); 395 nvme_put_subsystem(head->subsys); 396 kfree(head); 397 } 398 399 static void nvme_put_ns_head(struct nvme_ns_head *head) 400 { 401 kref_put(&head->ref, nvme_free_ns_head); 402 } 403 404 static void nvme_free_ns(struct kref *kref) 405 { 406 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 407 408 if (ns->ndev) 409 nvme_nvm_unregister(ns); 410 411 put_disk(ns->disk); 412 nvme_put_ns_head(ns->head); 413 nvme_put_ctrl(ns->ctrl); 414 kfree(ns); 415 } 416 417 static void nvme_put_ns(struct nvme_ns *ns) 418 { 419 kref_put(&ns->kref, nvme_free_ns); 420 } 421 422 static inline void nvme_clear_nvme_request(struct request *req) 423 { 424 if (!(req->rq_flags & RQF_DONTPREP)) { 425 nvme_req(req)->retries = 0; 426 nvme_req(req)->flags = 0; 427 req->rq_flags |= RQF_DONTPREP; 428 } 429 } 430 431 struct request *nvme_alloc_request(struct request_queue *q, 432 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 433 { 434 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 435 struct request *req; 436 437 if (qid == NVME_QID_ANY) { 438 req = blk_mq_alloc_request(q, op, flags); 439 } else { 440 req = blk_mq_alloc_request_hctx(q, op, flags, 441 qid ? qid - 1 : 0); 442 } 443 if (IS_ERR(req)) 444 return req; 445 446 req->cmd_flags |= REQ_FAILFAST_DRIVER; 447 nvme_clear_nvme_request(req); 448 nvme_req(req)->cmd = cmd; 449 450 return req; 451 } 452 EXPORT_SYMBOL_GPL(nvme_alloc_request); 453 454 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 455 { 456 struct nvme_command c; 457 458 memset(&c, 0, sizeof(c)); 459 460 c.directive.opcode = nvme_admin_directive_send; 461 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 462 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 463 c.directive.dtype = NVME_DIR_IDENTIFY; 464 c.directive.tdtype = NVME_DIR_STREAMS; 465 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 466 467 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 468 } 469 470 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 471 { 472 return nvme_toggle_streams(ctrl, false); 473 } 474 475 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 476 { 477 return nvme_toggle_streams(ctrl, true); 478 } 479 480 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 481 struct streams_directive_params *s, u32 nsid) 482 { 483 struct nvme_command c; 484 485 memset(&c, 0, sizeof(c)); 486 memset(s, 0, sizeof(*s)); 487 488 c.directive.opcode = nvme_admin_directive_recv; 489 c.directive.nsid = cpu_to_le32(nsid); 490 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 491 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 492 c.directive.dtype = NVME_DIR_STREAMS; 493 494 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 495 } 496 497 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 498 { 499 struct streams_directive_params s; 500 int ret; 501 502 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 503 return 0; 504 if (!streams) 505 return 0; 506 507 ret = nvme_enable_streams(ctrl); 508 if (ret) 509 return ret; 510 511 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 512 if (ret) 513 return ret; 514 515 ctrl->nssa = le16_to_cpu(s.nssa); 516 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 517 dev_info(ctrl->device, "too few streams (%u) available\n", 518 ctrl->nssa); 519 nvme_disable_streams(ctrl); 520 return 0; 521 } 522 523 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 524 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 525 return 0; 526 } 527 528 /* 529 * Check if 'req' has a write hint associated with it. If it does, assign 530 * a valid namespace stream to the write. 531 */ 532 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 533 struct request *req, u16 *control, 534 u32 *dsmgmt) 535 { 536 enum rw_hint streamid = req->write_hint; 537 538 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 539 streamid = 0; 540 else { 541 streamid--; 542 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 543 return; 544 545 *control |= NVME_RW_DTYPE_STREAMS; 546 *dsmgmt |= streamid << 16; 547 } 548 549 if (streamid < ARRAY_SIZE(req->q->write_hints)) 550 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 551 } 552 553 static inline void nvme_setup_flush(struct nvme_ns *ns, 554 struct nvme_command *cmnd) 555 { 556 cmnd->common.opcode = nvme_cmd_flush; 557 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 558 } 559 560 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 561 struct nvme_command *cmnd) 562 { 563 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 564 struct nvme_dsm_range *range; 565 struct bio *bio; 566 567 range = kmalloc_array(segments, sizeof(*range), 568 GFP_ATOMIC | __GFP_NOWARN); 569 if (!range) { 570 /* 571 * If we fail allocation our range, fallback to the controller 572 * discard page. If that's also busy, it's safe to return 573 * busy, as we know we can make progress once that's freed. 574 */ 575 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 576 return BLK_STS_RESOURCE; 577 578 range = page_address(ns->ctrl->discard_page); 579 } 580 581 __rq_for_each_bio(bio, req) { 582 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 583 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 584 585 if (n < segments) { 586 range[n].cattr = cpu_to_le32(0); 587 range[n].nlb = cpu_to_le32(nlb); 588 range[n].slba = cpu_to_le64(slba); 589 } 590 n++; 591 } 592 593 if (WARN_ON_ONCE(n != segments)) { 594 if (virt_to_page(range) == ns->ctrl->discard_page) 595 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 596 else 597 kfree(range); 598 return BLK_STS_IOERR; 599 } 600 601 cmnd->dsm.opcode = nvme_cmd_dsm; 602 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 603 cmnd->dsm.nr = cpu_to_le32(segments - 1); 604 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 605 606 req->special_vec.bv_page = virt_to_page(range); 607 req->special_vec.bv_offset = offset_in_page(range); 608 req->special_vec.bv_len = sizeof(*range) * segments; 609 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 610 611 return BLK_STS_OK; 612 } 613 614 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 615 struct request *req, struct nvme_command *cmnd) 616 { 617 struct nvme_ctrl *ctrl = ns->ctrl; 618 u16 control = 0; 619 u32 dsmgmt = 0; 620 621 if (req->cmd_flags & REQ_FUA) 622 control |= NVME_RW_FUA; 623 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 624 control |= NVME_RW_LR; 625 626 if (req->cmd_flags & REQ_RAHEAD) 627 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 628 629 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 630 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 631 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 632 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 633 634 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 635 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 636 637 if (ns->ms) { 638 /* 639 * If formated with metadata, the block layer always provides a 640 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 641 * we enable the PRACT bit for protection information or set the 642 * namespace capacity to zero to prevent any I/O. 643 */ 644 if (!blk_integrity_rq(req)) { 645 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 646 return BLK_STS_NOTSUPP; 647 control |= NVME_RW_PRINFO_PRACT; 648 } else if (req_op(req) == REQ_OP_WRITE) { 649 t10_pi_prepare(req, ns->pi_type); 650 } 651 652 switch (ns->pi_type) { 653 case NVME_NS_DPS_PI_TYPE3: 654 control |= NVME_RW_PRINFO_PRCHK_GUARD; 655 break; 656 case NVME_NS_DPS_PI_TYPE1: 657 case NVME_NS_DPS_PI_TYPE2: 658 control |= NVME_RW_PRINFO_PRCHK_GUARD | 659 NVME_RW_PRINFO_PRCHK_REF; 660 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 661 break; 662 } 663 } 664 665 cmnd->rw.control = cpu_to_le16(control); 666 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 667 return 0; 668 } 669 670 void nvme_cleanup_cmd(struct request *req) 671 { 672 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 673 nvme_req(req)->status == 0) { 674 struct nvme_ns *ns = req->rq_disk->private_data; 675 676 t10_pi_complete(req, ns->pi_type, 677 blk_rq_bytes(req) >> ns->lba_shift); 678 } 679 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 680 struct nvme_ns *ns = req->rq_disk->private_data; 681 struct page *page = req->special_vec.bv_page; 682 683 if (page == ns->ctrl->discard_page) 684 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 685 else 686 kfree(page_address(page) + req->special_vec.bv_offset); 687 } 688 } 689 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 690 691 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 692 struct nvme_command *cmd) 693 { 694 blk_status_t ret = BLK_STS_OK; 695 696 nvme_clear_nvme_request(req); 697 698 memset(cmd, 0, sizeof(*cmd)); 699 switch (req_op(req)) { 700 case REQ_OP_DRV_IN: 701 case REQ_OP_DRV_OUT: 702 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 703 break; 704 case REQ_OP_FLUSH: 705 nvme_setup_flush(ns, cmd); 706 break; 707 case REQ_OP_WRITE_ZEROES: 708 /* currently only aliased to deallocate for a few ctrls: */ 709 case REQ_OP_DISCARD: 710 ret = nvme_setup_discard(ns, req, cmd); 711 break; 712 case REQ_OP_READ: 713 case REQ_OP_WRITE: 714 ret = nvme_setup_rw(ns, req, cmd); 715 break; 716 default: 717 WARN_ON_ONCE(1); 718 return BLK_STS_IOERR; 719 } 720 721 cmd->common.command_id = req->tag; 722 trace_nvme_setup_cmd(req, cmd); 723 return ret; 724 } 725 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 726 727 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 728 { 729 struct completion *waiting = rq->end_io_data; 730 731 rq->end_io_data = NULL; 732 complete(waiting); 733 } 734 735 static void nvme_execute_rq_polled(struct request_queue *q, 736 struct gendisk *bd_disk, struct request *rq, int at_head) 737 { 738 DECLARE_COMPLETION_ONSTACK(wait); 739 740 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 741 742 rq->cmd_flags |= REQ_HIPRI; 743 rq->end_io_data = &wait; 744 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 745 746 while (!completion_done(&wait)) { 747 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 748 cond_resched(); 749 } 750 } 751 752 /* 753 * Returns 0 on success. If the result is negative, it's a Linux error code; 754 * if the result is positive, it's an NVM Express status code 755 */ 756 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 757 union nvme_result *result, void *buffer, unsigned bufflen, 758 unsigned timeout, int qid, int at_head, 759 blk_mq_req_flags_t flags, bool poll) 760 { 761 struct request *req; 762 int ret; 763 764 req = nvme_alloc_request(q, cmd, flags, qid); 765 if (IS_ERR(req)) 766 return PTR_ERR(req); 767 768 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 769 770 if (buffer && bufflen) { 771 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 772 if (ret) 773 goto out; 774 } 775 776 if (poll) 777 nvme_execute_rq_polled(req->q, NULL, req, at_head); 778 else 779 blk_execute_rq(req->q, NULL, req, at_head); 780 if (result) 781 *result = nvme_req(req)->result; 782 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 783 ret = -EINTR; 784 else 785 ret = nvme_req(req)->status; 786 out: 787 blk_mq_free_request(req); 788 return ret; 789 } 790 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 791 792 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 793 void *buffer, unsigned bufflen) 794 { 795 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 796 NVME_QID_ANY, 0, 0, false); 797 } 798 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 799 800 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 801 unsigned len, u32 seed, bool write) 802 { 803 struct bio_integrity_payload *bip; 804 int ret = -ENOMEM; 805 void *buf; 806 807 buf = kmalloc(len, GFP_KERNEL); 808 if (!buf) 809 goto out; 810 811 ret = -EFAULT; 812 if (write && copy_from_user(buf, ubuf, len)) 813 goto out_free_meta; 814 815 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 816 if (IS_ERR(bip)) { 817 ret = PTR_ERR(bip); 818 goto out_free_meta; 819 } 820 821 bip->bip_iter.bi_size = len; 822 bip->bip_iter.bi_sector = seed; 823 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 824 offset_in_page(buf)); 825 if (ret == len) 826 return buf; 827 ret = -ENOMEM; 828 out_free_meta: 829 kfree(buf); 830 out: 831 return ERR_PTR(ret); 832 } 833 834 static int nvme_submit_user_cmd(struct request_queue *q, 835 struct nvme_command *cmd, void __user *ubuffer, 836 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 837 u32 meta_seed, u32 *result, unsigned timeout) 838 { 839 bool write = nvme_is_write(cmd); 840 struct nvme_ns *ns = q->queuedata; 841 struct gendisk *disk = ns ? ns->disk : NULL; 842 struct request *req; 843 struct bio *bio = NULL; 844 void *meta = NULL; 845 int ret; 846 847 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 848 if (IS_ERR(req)) 849 return PTR_ERR(req); 850 851 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 852 nvme_req(req)->flags |= NVME_REQ_USERCMD; 853 854 if (ubuffer && bufflen) { 855 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 856 GFP_KERNEL); 857 if (ret) 858 goto out; 859 bio = req->bio; 860 bio->bi_disk = disk; 861 if (disk && meta_buffer && meta_len) { 862 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 863 meta_seed, write); 864 if (IS_ERR(meta)) { 865 ret = PTR_ERR(meta); 866 goto out_unmap; 867 } 868 req->cmd_flags |= REQ_INTEGRITY; 869 } 870 } 871 872 blk_execute_rq(req->q, disk, req, 0); 873 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 874 ret = -EINTR; 875 else 876 ret = nvme_req(req)->status; 877 if (result) 878 *result = le32_to_cpu(nvme_req(req)->result.u32); 879 if (meta && !ret && !write) { 880 if (copy_to_user(meta_buffer, meta, meta_len)) 881 ret = -EFAULT; 882 } 883 kfree(meta); 884 out_unmap: 885 if (bio) 886 blk_rq_unmap_user(bio); 887 out: 888 blk_mq_free_request(req); 889 return ret; 890 } 891 892 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 893 { 894 struct nvme_ctrl *ctrl = rq->end_io_data; 895 unsigned long flags; 896 bool startka = false; 897 898 blk_mq_free_request(rq); 899 900 if (status) { 901 dev_err(ctrl->device, 902 "failed nvme_keep_alive_end_io error=%d\n", 903 status); 904 return; 905 } 906 907 ctrl->comp_seen = false; 908 spin_lock_irqsave(&ctrl->lock, flags); 909 if (ctrl->state == NVME_CTRL_LIVE || 910 ctrl->state == NVME_CTRL_CONNECTING) 911 startka = true; 912 spin_unlock_irqrestore(&ctrl->lock, flags); 913 if (startka) 914 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 915 } 916 917 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 918 { 919 struct request *rq; 920 921 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 922 NVME_QID_ANY); 923 if (IS_ERR(rq)) 924 return PTR_ERR(rq); 925 926 rq->timeout = ctrl->kato * HZ; 927 rq->end_io_data = ctrl; 928 929 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 930 931 return 0; 932 } 933 934 static void nvme_keep_alive_work(struct work_struct *work) 935 { 936 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 937 struct nvme_ctrl, ka_work); 938 bool comp_seen = ctrl->comp_seen; 939 940 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 941 dev_dbg(ctrl->device, 942 "reschedule traffic based keep-alive timer\n"); 943 ctrl->comp_seen = false; 944 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 945 return; 946 } 947 948 if (nvme_keep_alive(ctrl)) { 949 /* allocation failure, reset the controller */ 950 dev_err(ctrl->device, "keep-alive failed\n"); 951 nvme_reset_ctrl(ctrl); 952 return; 953 } 954 } 955 956 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 957 { 958 if (unlikely(ctrl->kato == 0)) 959 return; 960 961 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 962 } 963 964 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 965 { 966 if (unlikely(ctrl->kato == 0)) 967 return; 968 969 cancel_delayed_work_sync(&ctrl->ka_work); 970 } 971 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 972 973 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 974 { 975 struct nvme_command c = { }; 976 int error; 977 978 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 979 c.identify.opcode = nvme_admin_identify; 980 c.identify.cns = NVME_ID_CNS_CTRL; 981 982 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 983 if (!*id) 984 return -ENOMEM; 985 986 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 987 sizeof(struct nvme_id_ctrl)); 988 if (error) 989 kfree(*id); 990 return error; 991 } 992 993 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 994 struct nvme_ns_ids *ids) 995 { 996 struct nvme_command c = { }; 997 int status; 998 void *data; 999 int pos; 1000 int len; 1001 1002 c.identify.opcode = nvme_admin_identify; 1003 c.identify.nsid = cpu_to_le32(nsid); 1004 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1005 1006 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1007 if (!data) 1008 return -ENOMEM; 1009 1010 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1011 NVME_IDENTIFY_DATA_SIZE); 1012 if (status) 1013 goto free_data; 1014 1015 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1016 struct nvme_ns_id_desc *cur = data + pos; 1017 1018 if (cur->nidl == 0) 1019 break; 1020 1021 switch (cur->nidt) { 1022 case NVME_NIDT_EUI64: 1023 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1024 dev_warn(ctrl->device, 1025 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 1026 cur->nidl); 1027 goto free_data; 1028 } 1029 len = NVME_NIDT_EUI64_LEN; 1030 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 1031 break; 1032 case NVME_NIDT_NGUID: 1033 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1034 dev_warn(ctrl->device, 1035 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 1036 cur->nidl); 1037 goto free_data; 1038 } 1039 len = NVME_NIDT_NGUID_LEN; 1040 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 1041 break; 1042 case NVME_NIDT_UUID: 1043 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1044 dev_warn(ctrl->device, 1045 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 1046 cur->nidl); 1047 goto free_data; 1048 } 1049 len = NVME_NIDT_UUID_LEN; 1050 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 1051 break; 1052 default: 1053 /* Skip unknown types */ 1054 len = cur->nidl; 1055 break; 1056 } 1057 1058 len += sizeof(*cur); 1059 } 1060 free_data: 1061 kfree(data); 1062 return status; 1063 } 1064 1065 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1066 { 1067 struct nvme_command c = { }; 1068 1069 c.identify.opcode = nvme_admin_identify; 1070 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1071 c.identify.nsid = cpu_to_le32(nsid); 1072 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1073 NVME_IDENTIFY_DATA_SIZE); 1074 } 1075 1076 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 1077 unsigned nsid) 1078 { 1079 struct nvme_id_ns *id; 1080 struct nvme_command c = { }; 1081 int error; 1082 1083 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1084 c.identify.opcode = nvme_admin_identify; 1085 c.identify.nsid = cpu_to_le32(nsid); 1086 c.identify.cns = NVME_ID_CNS_NS; 1087 1088 id = kmalloc(sizeof(*id), GFP_KERNEL); 1089 if (!id) 1090 return NULL; 1091 1092 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1093 if (error) { 1094 dev_warn(ctrl->device, "Identify namespace failed\n"); 1095 kfree(id); 1096 return NULL; 1097 } 1098 1099 return id; 1100 } 1101 1102 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 1103 void *buffer, size_t buflen, u32 *result) 1104 { 1105 struct nvme_command c; 1106 union nvme_result res; 1107 int ret; 1108 1109 memset(&c, 0, sizeof(c)); 1110 c.features.opcode = nvme_admin_set_features; 1111 c.features.fid = cpu_to_le32(fid); 1112 c.features.dword11 = cpu_to_le32(dword11); 1113 1114 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1115 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1116 if (ret >= 0 && result) 1117 *result = le32_to_cpu(res.u32); 1118 return ret; 1119 } 1120 1121 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1122 { 1123 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1124 u32 result; 1125 int status, nr_io_queues; 1126 1127 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1128 &result); 1129 if (status < 0) 1130 return status; 1131 1132 /* 1133 * Degraded controllers might return an error when setting the queue 1134 * count. We still want to be able to bring them online and offer 1135 * access to the admin queue, as that might be only way to fix them up. 1136 */ 1137 if (status > 0) { 1138 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1139 *count = 0; 1140 } else { 1141 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1142 *count = min(*count, nr_io_queues); 1143 } 1144 1145 return 0; 1146 } 1147 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1148 1149 #define NVME_AEN_SUPPORTED \ 1150 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE) 1151 1152 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1153 { 1154 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1155 int status; 1156 1157 if (!supported_aens) 1158 return; 1159 1160 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1161 NULL, 0, &result); 1162 if (status) 1163 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1164 supported_aens); 1165 } 1166 1167 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1168 { 1169 struct nvme_user_io io; 1170 struct nvme_command c; 1171 unsigned length, meta_len; 1172 void __user *metadata; 1173 1174 if (copy_from_user(&io, uio, sizeof(io))) 1175 return -EFAULT; 1176 if (io.flags) 1177 return -EINVAL; 1178 1179 switch (io.opcode) { 1180 case nvme_cmd_write: 1181 case nvme_cmd_read: 1182 case nvme_cmd_compare: 1183 break; 1184 default: 1185 return -EINVAL; 1186 } 1187 1188 length = (io.nblocks + 1) << ns->lba_shift; 1189 meta_len = (io.nblocks + 1) * ns->ms; 1190 metadata = (void __user *)(uintptr_t)io.metadata; 1191 1192 if (ns->ext) { 1193 length += meta_len; 1194 meta_len = 0; 1195 } else if (meta_len) { 1196 if ((io.metadata & 3) || !io.metadata) 1197 return -EINVAL; 1198 } 1199 1200 memset(&c, 0, sizeof(c)); 1201 c.rw.opcode = io.opcode; 1202 c.rw.flags = io.flags; 1203 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1204 c.rw.slba = cpu_to_le64(io.slba); 1205 c.rw.length = cpu_to_le16(io.nblocks); 1206 c.rw.control = cpu_to_le16(io.control); 1207 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1208 c.rw.reftag = cpu_to_le32(io.reftag); 1209 c.rw.apptag = cpu_to_le16(io.apptag); 1210 c.rw.appmask = cpu_to_le16(io.appmask); 1211 1212 return nvme_submit_user_cmd(ns->queue, &c, 1213 (void __user *)(uintptr_t)io.addr, length, 1214 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1215 } 1216 1217 static u32 nvme_known_admin_effects(u8 opcode) 1218 { 1219 switch (opcode) { 1220 case nvme_admin_format_nvm: 1221 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1222 NVME_CMD_EFFECTS_CSE_MASK; 1223 case nvme_admin_sanitize_nvm: 1224 return NVME_CMD_EFFECTS_CSE_MASK; 1225 default: 1226 break; 1227 } 1228 return 0; 1229 } 1230 1231 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1232 u8 opcode) 1233 { 1234 u32 effects = 0; 1235 1236 if (ns) { 1237 if (ctrl->effects) 1238 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1239 if (effects & ~NVME_CMD_EFFECTS_CSUPP) 1240 dev_warn(ctrl->device, 1241 "IO command:%02x has unhandled effects:%08x\n", 1242 opcode, effects); 1243 return 0; 1244 } 1245 1246 if (ctrl->effects) 1247 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1248 else 1249 effects = nvme_known_admin_effects(opcode); 1250 1251 /* 1252 * For simplicity, IO to all namespaces is quiesced even if the command 1253 * effects say only one namespace is affected. 1254 */ 1255 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1256 nvme_start_freeze(ctrl); 1257 nvme_wait_freeze(ctrl); 1258 } 1259 return effects; 1260 } 1261 1262 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1263 { 1264 struct nvme_ns *ns; 1265 1266 down_read(&ctrl->namespaces_rwsem); 1267 list_for_each_entry(ns, &ctrl->namespaces, list) 1268 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1269 nvme_set_queue_dying(ns); 1270 up_read(&ctrl->namespaces_rwsem); 1271 1272 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1273 } 1274 1275 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1276 { 1277 /* 1278 * Revalidate LBA changes prior to unfreezing. This is necessary to 1279 * prevent memory corruption if a logical block size was changed by 1280 * this command. 1281 */ 1282 if (effects & NVME_CMD_EFFECTS_LBCC) 1283 nvme_update_formats(ctrl); 1284 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) 1285 nvme_unfreeze(ctrl); 1286 if (effects & NVME_CMD_EFFECTS_CCC) 1287 nvme_init_identify(ctrl); 1288 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1289 nvme_queue_scan(ctrl); 1290 } 1291 1292 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1293 struct nvme_passthru_cmd __user *ucmd) 1294 { 1295 struct nvme_passthru_cmd cmd; 1296 struct nvme_command c; 1297 unsigned timeout = 0; 1298 u32 effects; 1299 int status; 1300 1301 if (!capable(CAP_SYS_ADMIN)) 1302 return -EACCES; 1303 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1304 return -EFAULT; 1305 if (cmd.flags) 1306 return -EINVAL; 1307 1308 memset(&c, 0, sizeof(c)); 1309 c.common.opcode = cmd.opcode; 1310 c.common.flags = cmd.flags; 1311 c.common.nsid = cpu_to_le32(cmd.nsid); 1312 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1313 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1314 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1315 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1316 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1317 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1318 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1319 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1320 1321 if (cmd.timeout_ms) 1322 timeout = msecs_to_jiffies(cmd.timeout_ms); 1323 1324 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1325 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1326 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1327 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, 1328 0, &cmd.result, timeout); 1329 nvme_passthru_end(ctrl, effects); 1330 1331 if (status >= 0) { 1332 if (put_user(cmd.result, &ucmd->result)) 1333 return -EFAULT; 1334 } 1335 1336 return status; 1337 } 1338 1339 /* 1340 * Issue ioctl requests on the first available path. Note that unlike normal 1341 * block layer requests we will not retry failed request on another controller. 1342 */ 1343 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1344 struct nvme_ns_head **head, int *srcu_idx) 1345 { 1346 #ifdef CONFIG_NVME_MULTIPATH 1347 if (disk->fops == &nvme_ns_head_ops) { 1348 *head = disk->private_data; 1349 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1350 return nvme_find_path(*head); 1351 } 1352 #endif 1353 *head = NULL; 1354 *srcu_idx = -1; 1355 return disk->private_data; 1356 } 1357 1358 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1359 { 1360 if (head) 1361 srcu_read_unlock(&head->srcu, idx); 1362 } 1363 1364 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg) 1365 { 1366 switch (cmd) { 1367 case NVME_IOCTL_ID: 1368 force_successful_syscall_return(); 1369 return ns->head->ns_id; 1370 case NVME_IOCTL_ADMIN_CMD: 1371 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 1372 case NVME_IOCTL_IO_CMD: 1373 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 1374 case NVME_IOCTL_SUBMIT_IO: 1375 return nvme_submit_io(ns, (void __user *)arg); 1376 default: 1377 #ifdef CONFIG_NVM 1378 if (ns->ndev) 1379 return nvme_nvm_ioctl(ns, cmd, arg); 1380 #endif 1381 if (is_sed_ioctl(cmd)) 1382 return sed_ioctl(ns->ctrl->opal_dev, cmd, 1383 (void __user *) arg); 1384 return -ENOTTY; 1385 } 1386 } 1387 1388 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1389 unsigned int cmd, unsigned long arg) 1390 { 1391 struct nvme_ns_head *head = NULL; 1392 struct nvme_ns *ns; 1393 int srcu_idx, ret; 1394 1395 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1396 if (unlikely(!ns)) 1397 ret = -EWOULDBLOCK; 1398 else 1399 ret = nvme_ns_ioctl(ns, cmd, arg); 1400 nvme_put_ns_from_disk(head, srcu_idx); 1401 return ret; 1402 } 1403 1404 static int nvme_open(struct block_device *bdev, fmode_t mode) 1405 { 1406 struct nvme_ns *ns = bdev->bd_disk->private_data; 1407 1408 #ifdef CONFIG_NVME_MULTIPATH 1409 /* should never be called due to GENHD_FL_HIDDEN */ 1410 if (WARN_ON_ONCE(ns->head->disk)) 1411 goto fail; 1412 #endif 1413 if (!kref_get_unless_zero(&ns->kref)) 1414 goto fail; 1415 if (!try_module_get(ns->ctrl->ops->module)) 1416 goto fail_put_ns; 1417 1418 return 0; 1419 1420 fail_put_ns: 1421 nvme_put_ns(ns); 1422 fail: 1423 return -ENXIO; 1424 } 1425 1426 static void nvme_release(struct gendisk *disk, fmode_t mode) 1427 { 1428 struct nvme_ns *ns = disk->private_data; 1429 1430 module_put(ns->ctrl->ops->module); 1431 nvme_put_ns(ns); 1432 } 1433 1434 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1435 { 1436 /* some standard values */ 1437 geo->heads = 1 << 6; 1438 geo->sectors = 1 << 5; 1439 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1440 return 0; 1441 } 1442 1443 #ifdef CONFIG_BLK_DEV_INTEGRITY 1444 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1445 { 1446 struct blk_integrity integrity; 1447 1448 memset(&integrity, 0, sizeof(integrity)); 1449 switch (pi_type) { 1450 case NVME_NS_DPS_PI_TYPE3: 1451 integrity.profile = &t10_pi_type3_crc; 1452 integrity.tag_size = sizeof(u16) + sizeof(u32); 1453 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1454 break; 1455 case NVME_NS_DPS_PI_TYPE1: 1456 case NVME_NS_DPS_PI_TYPE2: 1457 integrity.profile = &t10_pi_type1_crc; 1458 integrity.tag_size = sizeof(u16); 1459 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1460 break; 1461 default: 1462 integrity.profile = NULL; 1463 break; 1464 } 1465 integrity.tuple_size = ms; 1466 blk_integrity_register(disk, &integrity); 1467 blk_queue_max_integrity_segments(disk->queue, 1); 1468 } 1469 #else 1470 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1471 { 1472 } 1473 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1474 1475 static void nvme_set_chunk_size(struct nvme_ns *ns) 1476 { 1477 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1478 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1479 } 1480 1481 static void nvme_config_discard(struct nvme_ns *ns) 1482 { 1483 struct nvme_ctrl *ctrl = ns->ctrl; 1484 struct request_queue *queue = ns->queue; 1485 u32 size = queue_logical_block_size(queue); 1486 1487 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1488 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1489 return; 1490 } 1491 1492 if (ctrl->nr_streams && ns->sws && ns->sgs) 1493 size *= ns->sws * ns->sgs; 1494 1495 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1496 NVME_DSM_MAX_RANGES); 1497 1498 queue->limits.discard_alignment = 0; 1499 queue->limits.discard_granularity = size; 1500 1501 /* If discard is already enabled, don't reset queue limits */ 1502 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1503 return; 1504 1505 blk_queue_max_discard_sectors(queue, UINT_MAX); 1506 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1507 1508 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1509 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1510 } 1511 1512 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1513 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1514 { 1515 memset(ids, 0, sizeof(*ids)); 1516 1517 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1518 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1519 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1520 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1521 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1522 /* Don't treat error as fatal we potentially 1523 * already have a NGUID or EUI-64 1524 */ 1525 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1526 dev_warn(ctrl->device, 1527 "%s: Identify Descriptors failed\n", __func__); 1528 } 1529 } 1530 1531 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1532 { 1533 return !uuid_is_null(&ids->uuid) || 1534 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1535 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1536 } 1537 1538 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1539 { 1540 return uuid_equal(&a->uuid, &b->uuid) && 1541 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1542 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1543 } 1544 1545 static void nvme_update_disk_info(struct gendisk *disk, 1546 struct nvme_ns *ns, struct nvme_id_ns *id) 1547 { 1548 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9); 1549 unsigned short bs = 1 << ns->lba_shift; 1550 1551 blk_mq_freeze_queue(disk->queue); 1552 blk_integrity_unregister(disk); 1553 1554 blk_queue_logical_block_size(disk->queue, bs); 1555 blk_queue_physical_block_size(disk->queue, bs); 1556 blk_queue_io_min(disk->queue, bs); 1557 1558 if (ns->ms && !ns->ext && 1559 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1560 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1561 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) 1562 capacity = 0; 1563 1564 set_capacity(disk, capacity); 1565 nvme_config_discard(ns); 1566 1567 if (id->nsattr & (1 << 0)) 1568 set_disk_ro(disk, true); 1569 else 1570 set_disk_ro(disk, false); 1571 1572 blk_mq_unfreeze_queue(disk->queue); 1573 } 1574 1575 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1576 { 1577 struct nvme_ns *ns = disk->private_data; 1578 1579 /* 1580 * If identify namespace failed, use default 512 byte block size so 1581 * block layer can use before failing read/write for 0 capacity. 1582 */ 1583 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1584 if (ns->lba_shift == 0) 1585 ns->lba_shift = 9; 1586 ns->noiob = le16_to_cpu(id->noiob); 1587 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1588 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1589 /* the PI implementation requires metadata equal t10 pi tuple size */ 1590 if (ns->ms == sizeof(struct t10_pi_tuple)) 1591 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1592 else 1593 ns->pi_type = 0; 1594 1595 if (ns->noiob) 1596 nvme_set_chunk_size(ns); 1597 nvme_update_disk_info(disk, ns, id); 1598 #ifdef CONFIG_NVME_MULTIPATH 1599 if (ns->head->disk) { 1600 nvme_update_disk_info(ns->head->disk, ns, id); 1601 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1602 } 1603 #endif 1604 } 1605 1606 static int nvme_revalidate_disk(struct gendisk *disk) 1607 { 1608 struct nvme_ns *ns = disk->private_data; 1609 struct nvme_ctrl *ctrl = ns->ctrl; 1610 struct nvme_id_ns *id; 1611 struct nvme_ns_ids ids; 1612 int ret = 0; 1613 1614 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1615 set_capacity(disk, 0); 1616 return -ENODEV; 1617 } 1618 1619 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1620 if (!id) 1621 return -ENODEV; 1622 1623 if (id->ncap == 0) { 1624 ret = -ENODEV; 1625 goto out; 1626 } 1627 1628 __nvme_revalidate_disk(disk, id); 1629 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1630 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1631 dev_err(ctrl->device, 1632 "identifiers changed for nsid %d\n", ns->head->ns_id); 1633 ret = -ENODEV; 1634 } 1635 1636 out: 1637 kfree(id); 1638 return ret; 1639 } 1640 1641 static char nvme_pr_type(enum pr_type type) 1642 { 1643 switch (type) { 1644 case PR_WRITE_EXCLUSIVE: 1645 return 1; 1646 case PR_EXCLUSIVE_ACCESS: 1647 return 2; 1648 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1649 return 3; 1650 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1651 return 4; 1652 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1653 return 5; 1654 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1655 return 6; 1656 default: 1657 return 0; 1658 } 1659 }; 1660 1661 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1662 u64 key, u64 sa_key, u8 op) 1663 { 1664 struct nvme_ns_head *head = NULL; 1665 struct nvme_ns *ns; 1666 struct nvme_command c; 1667 int srcu_idx, ret; 1668 u8 data[16] = { 0, }; 1669 1670 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1671 if (unlikely(!ns)) 1672 return -EWOULDBLOCK; 1673 1674 put_unaligned_le64(key, &data[0]); 1675 put_unaligned_le64(sa_key, &data[8]); 1676 1677 memset(&c, 0, sizeof(c)); 1678 c.common.opcode = op; 1679 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1680 c.common.cdw10 = cpu_to_le32(cdw10); 1681 1682 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1683 nvme_put_ns_from_disk(head, srcu_idx); 1684 return ret; 1685 } 1686 1687 static int nvme_pr_register(struct block_device *bdev, u64 old, 1688 u64 new, unsigned flags) 1689 { 1690 u32 cdw10; 1691 1692 if (flags & ~PR_FL_IGNORE_KEY) 1693 return -EOPNOTSUPP; 1694 1695 cdw10 = old ? 2 : 0; 1696 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1697 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1698 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1699 } 1700 1701 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1702 enum pr_type type, unsigned flags) 1703 { 1704 u32 cdw10; 1705 1706 if (flags & ~PR_FL_IGNORE_KEY) 1707 return -EOPNOTSUPP; 1708 1709 cdw10 = nvme_pr_type(type) << 8; 1710 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1711 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1712 } 1713 1714 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1715 enum pr_type type, bool abort) 1716 { 1717 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1718 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1719 } 1720 1721 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1722 { 1723 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1724 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1725 } 1726 1727 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1728 { 1729 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1730 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1731 } 1732 1733 static const struct pr_ops nvme_pr_ops = { 1734 .pr_register = nvme_pr_register, 1735 .pr_reserve = nvme_pr_reserve, 1736 .pr_release = nvme_pr_release, 1737 .pr_preempt = nvme_pr_preempt, 1738 .pr_clear = nvme_pr_clear, 1739 }; 1740 1741 #ifdef CONFIG_BLK_SED_OPAL 1742 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1743 bool send) 1744 { 1745 struct nvme_ctrl *ctrl = data; 1746 struct nvme_command cmd; 1747 1748 memset(&cmd, 0, sizeof(cmd)); 1749 if (send) 1750 cmd.common.opcode = nvme_admin_security_send; 1751 else 1752 cmd.common.opcode = nvme_admin_security_recv; 1753 cmd.common.nsid = 0; 1754 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1755 cmd.common.cdw11 = cpu_to_le32(len); 1756 1757 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1758 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 1759 } 1760 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1761 #endif /* CONFIG_BLK_SED_OPAL */ 1762 1763 static const struct block_device_operations nvme_fops = { 1764 .owner = THIS_MODULE, 1765 .ioctl = nvme_ioctl, 1766 .compat_ioctl = nvme_ioctl, 1767 .open = nvme_open, 1768 .release = nvme_release, 1769 .getgeo = nvme_getgeo, 1770 .revalidate_disk= nvme_revalidate_disk, 1771 .pr_ops = &nvme_pr_ops, 1772 }; 1773 1774 #ifdef CONFIG_NVME_MULTIPATH 1775 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1776 { 1777 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1778 1779 if (!kref_get_unless_zero(&head->ref)) 1780 return -ENXIO; 1781 return 0; 1782 } 1783 1784 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1785 { 1786 nvme_put_ns_head(disk->private_data); 1787 } 1788 1789 const struct block_device_operations nvme_ns_head_ops = { 1790 .owner = THIS_MODULE, 1791 .open = nvme_ns_head_open, 1792 .release = nvme_ns_head_release, 1793 .ioctl = nvme_ioctl, 1794 .compat_ioctl = nvme_ioctl, 1795 .getgeo = nvme_getgeo, 1796 .pr_ops = &nvme_pr_ops, 1797 }; 1798 #endif /* CONFIG_NVME_MULTIPATH */ 1799 1800 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1801 { 1802 unsigned long timeout = 1803 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1804 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1805 int ret; 1806 1807 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1808 if (csts == ~0) 1809 return -ENODEV; 1810 if ((csts & NVME_CSTS_RDY) == bit) 1811 break; 1812 1813 msleep(100); 1814 if (fatal_signal_pending(current)) 1815 return -EINTR; 1816 if (time_after(jiffies, timeout)) { 1817 dev_err(ctrl->device, 1818 "Device not ready; aborting %s\n", enabled ? 1819 "initialisation" : "reset"); 1820 return -ENODEV; 1821 } 1822 } 1823 1824 return ret; 1825 } 1826 1827 /* 1828 * If the device has been passed off to us in an enabled state, just clear 1829 * the enabled bit. The spec says we should set the 'shutdown notification 1830 * bits', but doing so may cause the device to complete commands to the 1831 * admin queue ... and we don't know what memory that might be pointing at! 1832 */ 1833 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1834 { 1835 int ret; 1836 1837 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1838 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1839 1840 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1841 if (ret) 1842 return ret; 1843 1844 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1845 msleep(NVME_QUIRK_DELAY_AMOUNT); 1846 1847 return nvme_wait_ready(ctrl, cap, false); 1848 } 1849 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1850 1851 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1852 { 1853 /* 1854 * Default to a 4K page size, with the intention to update this 1855 * path in the future to accomodate architectures with differing 1856 * kernel and IO page sizes. 1857 */ 1858 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1859 int ret; 1860 1861 if (page_shift < dev_page_min) { 1862 dev_err(ctrl->device, 1863 "Minimum device page size %u too large for host (%u)\n", 1864 1 << dev_page_min, 1 << page_shift); 1865 return -ENODEV; 1866 } 1867 1868 ctrl->page_size = 1 << page_shift; 1869 1870 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1871 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1872 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1873 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1874 ctrl->ctrl_config |= NVME_CC_ENABLE; 1875 1876 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1877 if (ret) 1878 return ret; 1879 return nvme_wait_ready(ctrl, cap, true); 1880 } 1881 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1882 1883 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1884 { 1885 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 1886 u32 csts; 1887 int ret; 1888 1889 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1890 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1891 1892 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1893 if (ret) 1894 return ret; 1895 1896 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1897 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1898 break; 1899 1900 msleep(100); 1901 if (fatal_signal_pending(current)) 1902 return -EINTR; 1903 if (time_after(jiffies, timeout)) { 1904 dev_err(ctrl->device, 1905 "Device shutdown incomplete; abort shutdown\n"); 1906 return -ENODEV; 1907 } 1908 } 1909 1910 return ret; 1911 } 1912 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1913 1914 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1915 struct request_queue *q) 1916 { 1917 bool vwc = false; 1918 1919 if (ctrl->max_hw_sectors) { 1920 u32 max_segments = 1921 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1922 1923 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1924 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1925 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1926 } 1927 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1928 is_power_of_2(ctrl->max_hw_sectors)) 1929 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1930 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1931 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1932 vwc = true; 1933 blk_queue_write_cache(q, vwc, vwc); 1934 } 1935 1936 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 1937 { 1938 __le64 ts; 1939 int ret; 1940 1941 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 1942 return 0; 1943 1944 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 1945 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 1946 NULL); 1947 if (ret) 1948 dev_warn_once(ctrl->device, 1949 "could not set timestamp (%d)\n", ret); 1950 return ret; 1951 } 1952 1953 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 1954 { 1955 struct nvme_feat_host_behavior *host; 1956 int ret; 1957 1958 /* Don't bother enabling the feature if retry delay is not reported */ 1959 if (!ctrl->crdt[0]) 1960 return 0; 1961 1962 host = kzalloc(sizeof(*host), GFP_KERNEL); 1963 if (!host) 1964 return 0; 1965 1966 host->acre = NVME_ENABLE_ACRE; 1967 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 1968 host, sizeof(*host), NULL); 1969 kfree(host); 1970 return ret; 1971 } 1972 1973 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 1974 { 1975 /* 1976 * APST (Autonomous Power State Transition) lets us program a 1977 * table of power state transitions that the controller will 1978 * perform automatically. We configure it with a simple 1979 * heuristic: we are willing to spend at most 2% of the time 1980 * transitioning between power states. Therefore, when running 1981 * in any given state, we will enter the next lower-power 1982 * non-operational state after waiting 50 * (enlat + exlat) 1983 * microseconds, as long as that state's exit latency is under 1984 * the requested maximum latency. 1985 * 1986 * We will not autonomously enter any non-operational state for 1987 * which the total latency exceeds ps_max_latency_us. Users 1988 * can set ps_max_latency_us to zero to turn off APST. 1989 */ 1990 1991 unsigned apste; 1992 struct nvme_feat_auto_pst *table; 1993 u64 max_lat_us = 0; 1994 int max_ps = -1; 1995 int ret; 1996 1997 /* 1998 * If APST isn't supported or if we haven't been initialized yet, 1999 * then don't do anything. 2000 */ 2001 if (!ctrl->apsta) 2002 return 0; 2003 2004 if (ctrl->npss > 31) { 2005 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2006 return 0; 2007 } 2008 2009 table = kzalloc(sizeof(*table), GFP_KERNEL); 2010 if (!table) 2011 return 0; 2012 2013 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2014 /* Turn off APST. */ 2015 apste = 0; 2016 dev_dbg(ctrl->device, "APST disabled\n"); 2017 } else { 2018 __le64 target = cpu_to_le64(0); 2019 int state; 2020 2021 /* 2022 * Walk through all states from lowest- to highest-power. 2023 * According to the spec, lower-numbered states use more 2024 * power. NPSS, despite the name, is the index of the 2025 * lowest-power state, not the number of states. 2026 */ 2027 for (state = (int)ctrl->npss; state >= 0; state--) { 2028 u64 total_latency_us, exit_latency_us, transition_ms; 2029 2030 if (target) 2031 table->entries[state] = target; 2032 2033 /* 2034 * Don't allow transitions to the deepest state 2035 * if it's quirked off. 2036 */ 2037 if (state == ctrl->npss && 2038 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2039 continue; 2040 2041 /* 2042 * Is this state a useful non-operational state for 2043 * higher-power states to autonomously transition to? 2044 */ 2045 if (!(ctrl->psd[state].flags & 2046 NVME_PS_FLAGS_NON_OP_STATE)) 2047 continue; 2048 2049 exit_latency_us = 2050 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2051 if (exit_latency_us > ctrl->ps_max_latency_us) 2052 continue; 2053 2054 total_latency_us = 2055 exit_latency_us + 2056 le32_to_cpu(ctrl->psd[state].entry_lat); 2057 2058 /* 2059 * This state is good. Use it as the APST idle 2060 * target for higher power states. 2061 */ 2062 transition_ms = total_latency_us + 19; 2063 do_div(transition_ms, 20); 2064 if (transition_ms > (1 << 24) - 1) 2065 transition_ms = (1 << 24) - 1; 2066 2067 target = cpu_to_le64((state << 3) | 2068 (transition_ms << 8)); 2069 2070 if (max_ps == -1) 2071 max_ps = state; 2072 2073 if (total_latency_us > max_lat_us) 2074 max_lat_us = total_latency_us; 2075 } 2076 2077 apste = 1; 2078 2079 if (max_ps == -1) { 2080 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2081 } else { 2082 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2083 max_ps, max_lat_us, (int)sizeof(*table), table); 2084 } 2085 } 2086 2087 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2088 table, sizeof(*table), NULL); 2089 if (ret) 2090 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2091 2092 kfree(table); 2093 return ret; 2094 } 2095 2096 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2097 { 2098 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2099 u64 latency; 2100 2101 switch (val) { 2102 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2103 case PM_QOS_LATENCY_ANY: 2104 latency = U64_MAX; 2105 break; 2106 2107 default: 2108 latency = val; 2109 } 2110 2111 if (ctrl->ps_max_latency_us != latency) { 2112 ctrl->ps_max_latency_us = latency; 2113 nvme_configure_apst(ctrl); 2114 } 2115 } 2116 2117 struct nvme_core_quirk_entry { 2118 /* 2119 * NVMe model and firmware strings are padded with spaces. For 2120 * simplicity, strings in the quirk table are padded with NULLs 2121 * instead. 2122 */ 2123 u16 vid; 2124 const char *mn; 2125 const char *fr; 2126 unsigned long quirks; 2127 }; 2128 2129 static const struct nvme_core_quirk_entry core_quirks[] = { 2130 { 2131 /* 2132 * This Toshiba device seems to die using any APST states. See: 2133 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2134 */ 2135 .vid = 0x1179, 2136 .mn = "THNSF5256GPUK TOSHIBA", 2137 .quirks = NVME_QUIRK_NO_APST, 2138 } 2139 }; 2140 2141 /* match is null-terminated but idstr is space-padded. */ 2142 static bool string_matches(const char *idstr, const char *match, size_t len) 2143 { 2144 size_t matchlen; 2145 2146 if (!match) 2147 return true; 2148 2149 matchlen = strlen(match); 2150 WARN_ON_ONCE(matchlen > len); 2151 2152 if (memcmp(idstr, match, matchlen)) 2153 return false; 2154 2155 for (; matchlen < len; matchlen++) 2156 if (idstr[matchlen] != ' ') 2157 return false; 2158 2159 return true; 2160 } 2161 2162 static bool quirk_matches(const struct nvme_id_ctrl *id, 2163 const struct nvme_core_quirk_entry *q) 2164 { 2165 return q->vid == le16_to_cpu(id->vid) && 2166 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2167 string_matches(id->fr, q->fr, sizeof(id->fr)); 2168 } 2169 2170 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2171 struct nvme_id_ctrl *id) 2172 { 2173 size_t nqnlen; 2174 int off; 2175 2176 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2177 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2178 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2179 return; 2180 } 2181 2182 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2183 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2184 2185 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2186 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2187 "nqn.2014.08.org.nvmexpress:%4x%4x", 2188 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2189 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2190 off += sizeof(id->sn); 2191 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2192 off += sizeof(id->mn); 2193 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2194 } 2195 2196 static void __nvme_release_subsystem(struct nvme_subsystem *subsys) 2197 { 2198 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2199 kfree(subsys); 2200 } 2201 2202 static void nvme_release_subsystem(struct device *dev) 2203 { 2204 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev)); 2205 } 2206 2207 static void nvme_destroy_subsystem(struct kref *ref) 2208 { 2209 struct nvme_subsystem *subsys = 2210 container_of(ref, struct nvme_subsystem, ref); 2211 2212 mutex_lock(&nvme_subsystems_lock); 2213 list_del(&subsys->entry); 2214 mutex_unlock(&nvme_subsystems_lock); 2215 2216 ida_destroy(&subsys->ns_ida); 2217 device_del(&subsys->dev); 2218 put_device(&subsys->dev); 2219 } 2220 2221 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2222 { 2223 kref_put(&subsys->ref, nvme_destroy_subsystem); 2224 } 2225 2226 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2227 { 2228 struct nvme_subsystem *subsys; 2229 2230 lockdep_assert_held(&nvme_subsystems_lock); 2231 2232 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2233 if (strcmp(subsys->subnqn, subsysnqn)) 2234 continue; 2235 if (!kref_get_unless_zero(&subsys->ref)) 2236 continue; 2237 return subsys; 2238 } 2239 2240 return NULL; 2241 } 2242 2243 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2244 struct device_attribute subsys_attr_##_name = \ 2245 __ATTR(_name, _mode, _show, NULL) 2246 2247 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2248 struct device_attribute *attr, 2249 char *buf) 2250 { 2251 struct nvme_subsystem *subsys = 2252 container_of(dev, struct nvme_subsystem, dev); 2253 2254 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2255 } 2256 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2257 2258 #define nvme_subsys_show_str_function(field) \ 2259 static ssize_t subsys_##field##_show(struct device *dev, \ 2260 struct device_attribute *attr, char *buf) \ 2261 { \ 2262 struct nvme_subsystem *subsys = \ 2263 container_of(dev, struct nvme_subsystem, dev); \ 2264 return sprintf(buf, "%.*s\n", \ 2265 (int)sizeof(subsys->field), subsys->field); \ 2266 } \ 2267 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2268 2269 nvme_subsys_show_str_function(model); 2270 nvme_subsys_show_str_function(serial); 2271 nvme_subsys_show_str_function(firmware_rev); 2272 2273 static struct attribute *nvme_subsys_attrs[] = { 2274 &subsys_attr_model.attr, 2275 &subsys_attr_serial.attr, 2276 &subsys_attr_firmware_rev.attr, 2277 &subsys_attr_subsysnqn.attr, 2278 NULL, 2279 }; 2280 2281 static struct attribute_group nvme_subsys_attrs_group = { 2282 .attrs = nvme_subsys_attrs, 2283 }; 2284 2285 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2286 &nvme_subsys_attrs_group, 2287 NULL, 2288 }; 2289 2290 static int nvme_active_ctrls(struct nvme_subsystem *subsys) 2291 { 2292 int count = 0; 2293 struct nvme_ctrl *ctrl; 2294 2295 mutex_lock(&subsys->lock); 2296 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { 2297 if (ctrl->state != NVME_CTRL_DELETING && 2298 ctrl->state != NVME_CTRL_DEAD) 2299 count++; 2300 } 2301 mutex_unlock(&subsys->lock); 2302 2303 return count; 2304 } 2305 2306 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2307 { 2308 struct nvme_subsystem *subsys, *found; 2309 int ret; 2310 2311 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2312 if (!subsys) 2313 return -ENOMEM; 2314 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2315 if (ret < 0) { 2316 kfree(subsys); 2317 return ret; 2318 } 2319 subsys->instance = ret; 2320 mutex_init(&subsys->lock); 2321 kref_init(&subsys->ref); 2322 INIT_LIST_HEAD(&subsys->ctrls); 2323 INIT_LIST_HEAD(&subsys->nsheads); 2324 nvme_init_subnqn(subsys, ctrl, id); 2325 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2326 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2327 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2328 subsys->vendor_id = le16_to_cpu(id->vid); 2329 subsys->cmic = id->cmic; 2330 2331 subsys->dev.class = nvme_subsys_class; 2332 subsys->dev.release = nvme_release_subsystem; 2333 subsys->dev.groups = nvme_subsys_attrs_groups; 2334 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2335 device_initialize(&subsys->dev); 2336 2337 mutex_lock(&nvme_subsystems_lock); 2338 found = __nvme_find_get_subsystem(subsys->subnqn); 2339 if (found) { 2340 /* 2341 * Verify that the subsystem actually supports multiple 2342 * controllers, else bail out. 2343 */ 2344 if (!(ctrl->opts && ctrl->opts->discovery_nqn) && 2345 nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) { 2346 dev_err(ctrl->device, 2347 "ignoring ctrl due to duplicate subnqn (%s).\n", 2348 found->subnqn); 2349 nvme_put_subsystem(found); 2350 ret = -EINVAL; 2351 goto out_unlock; 2352 } 2353 2354 __nvme_release_subsystem(subsys); 2355 subsys = found; 2356 } else { 2357 ret = device_add(&subsys->dev); 2358 if (ret) { 2359 dev_err(ctrl->device, 2360 "failed to register subsystem device.\n"); 2361 goto out_unlock; 2362 } 2363 ida_init(&subsys->ns_ida); 2364 list_add_tail(&subsys->entry, &nvme_subsystems); 2365 } 2366 2367 ctrl->subsys = subsys; 2368 mutex_unlock(&nvme_subsystems_lock); 2369 2370 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2371 dev_name(ctrl->device))) { 2372 dev_err(ctrl->device, 2373 "failed to create sysfs link from subsystem.\n"); 2374 /* the transport driver will eventually put the subsystem */ 2375 return -EINVAL; 2376 } 2377 2378 mutex_lock(&subsys->lock); 2379 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2380 mutex_unlock(&subsys->lock); 2381 2382 return 0; 2383 2384 out_unlock: 2385 mutex_unlock(&nvme_subsystems_lock); 2386 put_device(&subsys->dev); 2387 return ret; 2388 } 2389 2390 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2391 void *log, size_t size, u64 offset) 2392 { 2393 struct nvme_command c = { }; 2394 unsigned long dwlen = size / 4 - 1; 2395 2396 c.get_log_page.opcode = nvme_admin_get_log_page; 2397 c.get_log_page.nsid = cpu_to_le32(nsid); 2398 c.get_log_page.lid = log_page; 2399 c.get_log_page.lsp = lsp; 2400 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2401 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2402 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2403 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2404 2405 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2406 } 2407 2408 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2409 { 2410 int ret; 2411 2412 if (!ctrl->effects) 2413 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2414 2415 if (!ctrl->effects) 2416 return 0; 2417 2418 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2419 ctrl->effects, sizeof(*ctrl->effects), 0); 2420 if (ret) { 2421 kfree(ctrl->effects); 2422 ctrl->effects = NULL; 2423 } 2424 return ret; 2425 } 2426 2427 /* 2428 * Initialize the cached copies of the Identify data and various controller 2429 * register in our nvme_ctrl structure. This should be called as soon as 2430 * the admin queue is fully up and running. 2431 */ 2432 int nvme_init_identify(struct nvme_ctrl *ctrl) 2433 { 2434 struct nvme_id_ctrl *id; 2435 u64 cap; 2436 int ret, page_shift; 2437 u32 max_hw_sectors; 2438 bool prev_apst_enabled; 2439 2440 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2441 if (ret) { 2442 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2443 return ret; 2444 } 2445 2446 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2447 if (ret) { 2448 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2449 return ret; 2450 } 2451 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2452 2453 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2454 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2455 2456 ret = nvme_identify_ctrl(ctrl, &id); 2457 if (ret) { 2458 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2459 return -EIO; 2460 } 2461 2462 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2463 ret = nvme_get_effects_log(ctrl); 2464 if (ret < 0) 2465 goto out_free; 2466 } 2467 2468 if (!ctrl->identified) { 2469 int i; 2470 2471 ret = nvme_init_subsystem(ctrl, id); 2472 if (ret) 2473 goto out_free; 2474 2475 /* 2476 * Check for quirks. Quirk can depend on firmware version, 2477 * so, in principle, the set of quirks present can change 2478 * across a reset. As a possible future enhancement, we 2479 * could re-scan for quirks every time we reinitialize 2480 * the device, but we'd have to make sure that the driver 2481 * behaves intelligently if the quirks change. 2482 */ 2483 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2484 if (quirk_matches(id, &core_quirks[i])) 2485 ctrl->quirks |= core_quirks[i].quirks; 2486 } 2487 } 2488 2489 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2490 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2491 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2492 } 2493 2494 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2495 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2496 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2497 2498 ctrl->oacs = le16_to_cpu(id->oacs); 2499 ctrl->oncs = le16_to_cpup(&id->oncs); 2500 ctrl->oaes = le32_to_cpu(id->oaes); 2501 atomic_set(&ctrl->abort_limit, id->acl + 1); 2502 ctrl->vwc = id->vwc; 2503 ctrl->cntlid = le16_to_cpup(&id->cntlid); 2504 if (id->mdts) 2505 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2506 else 2507 max_hw_sectors = UINT_MAX; 2508 ctrl->max_hw_sectors = 2509 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2510 2511 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2512 ctrl->sgls = le32_to_cpu(id->sgls); 2513 ctrl->kas = le16_to_cpu(id->kas); 2514 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2515 ctrl->ctratt = le32_to_cpu(id->ctratt); 2516 2517 if (id->rtd3e) { 2518 /* us -> s */ 2519 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2520 2521 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2522 shutdown_timeout, 60); 2523 2524 if (ctrl->shutdown_timeout != shutdown_timeout) 2525 dev_info(ctrl->device, 2526 "Shutdown timeout set to %u seconds\n", 2527 ctrl->shutdown_timeout); 2528 } else 2529 ctrl->shutdown_timeout = shutdown_timeout; 2530 2531 ctrl->npss = id->npss; 2532 ctrl->apsta = id->apsta; 2533 prev_apst_enabled = ctrl->apst_enabled; 2534 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2535 if (force_apst && id->apsta) { 2536 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2537 ctrl->apst_enabled = true; 2538 } else { 2539 ctrl->apst_enabled = false; 2540 } 2541 } else { 2542 ctrl->apst_enabled = id->apsta; 2543 } 2544 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2545 2546 if (ctrl->ops->flags & NVME_F_FABRICS) { 2547 ctrl->icdoff = le16_to_cpu(id->icdoff); 2548 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2549 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2550 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2551 2552 /* 2553 * In fabrics we need to verify the cntlid matches the 2554 * admin connect 2555 */ 2556 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2557 ret = -EINVAL; 2558 goto out_free; 2559 } 2560 2561 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2562 dev_err(ctrl->device, 2563 "keep-alive support is mandatory for fabrics\n"); 2564 ret = -EINVAL; 2565 goto out_free; 2566 } 2567 } else { 2568 ctrl->cntlid = le16_to_cpu(id->cntlid); 2569 ctrl->hmpre = le32_to_cpu(id->hmpre); 2570 ctrl->hmmin = le32_to_cpu(id->hmmin); 2571 ctrl->hmminds = le32_to_cpu(id->hmminds); 2572 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2573 } 2574 2575 ret = nvme_mpath_init(ctrl, id); 2576 kfree(id); 2577 2578 if (ret < 0) 2579 return ret; 2580 2581 if (ctrl->apst_enabled && !prev_apst_enabled) 2582 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2583 else if (!ctrl->apst_enabled && prev_apst_enabled) 2584 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2585 2586 ret = nvme_configure_apst(ctrl); 2587 if (ret < 0) 2588 return ret; 2589 2590 ret = nvme_configure_timestamp(ctrl); 2591 if (ret < 0) 2592 return ret; 2593 2594 ret = nvme_configure_directives(ctrl); 2595 if (ret < 0) 2596 return ret; 2597 2598 ret = nvme_configure_acre(ctrl); 2599 if (ret < 0) 2600 return ret; 2601 2602 ctrl->identified = true; 2603 2604 return 0; 2605 2606 out_free: 2607 kfree(id); 2608 return ret; 2609 } 2610 EXPORT_SYMBOL_GPL(nvme_init_identify); 2611 2612 static int nvme_dev_open(struct inode *inode, struct file *file) 2613 { 2614 struct nvme_ctrl *ctrl = 2615 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2616 2617 switch (ctrl->state) { 2618 case NVME_CTRL_LIVE: 2619 case NVME_CTRL_ADMIN_ONLY: 2620 break; 2621 default: 2622 return -EWOULDBLOCK; 2623 } 2624 2625 file->private_data = ctrl; 2626 return 0; 2627 } 2628 2629 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2630 { 2631 struct nvme_ns *ns; 2632 int ret; 2633 2634 down_read(&ctrl->namespaces_rwsem); 2635 if (list_empty(&ctrl->namespaces)) { 2636 ret = -ENOTTY; 2637 goto out_unlock; 2638 } 2639 2640 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2641 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2642 dev_warn(ctrl->device, 2643 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2644 ret = -EINVAL; 2645 goto out_unlock; 2646 } 2647 2648 dev_warn(ctrl->device, 2649 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2650 kref_get(&ns->kref); 2651 up_read(&ctrl->namespaces_rwsem); 2652 2653 ret = nvme_user_cmd(ctrl, ns, argp); 2654 nvme_put_ns(ns); 2655 return ret; 2656 2657 out_unlock: 2658 up_read(&ctrl->namespaces_rwsem); 2659 return ret; 2660 } 2661 2662 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2663 unsigned long arg) 2664 { 2665 struct nvme_ctrl *ctrl = file->private_data; 2666 void __user *argp = (void __user *)arg; 2667 2668 switch (cmd) { 2669 case NVME_IOCTL_ADMIN_CMD: 2670 return nvme_user_cmd(ctrl, NULL, argp); 2671 case NVME_IOCTL_IO_CMD: 2672 return nvme_dev_user_cmd(ctrl, argp); 2673 case NVME_IOCTL_RESET: 2674 dev_warn(ctrl->device, "resetting controller\n"); 2675 return nvme_reset_ctrl_sync(ctrl); 2676 case NVME_IOCTL_SUBSYS_RESET: 2677 return nvme_reset_subsystem(ctrl); 2678 case NVME_IOCTL_RESCAN: 2679 nvme_queue_scan(ctrl); 2680 return 0; 2681 default: 2682 return -ENOTTY; 2683 } 2684 } 2685 2686 static const struct file_operations nvme_dev_fops = { 2687 .owner = THIS_MODULE, 2688 .open = nvme_dev_open, 2689 .unlocked_ioctl = nvme_dev_ioctl, 2690 .compat_ioctl = nvme_dev_ioctl, 2691 }; 2692 2693 static ssize_t nvme_sysfs_reset(struct device *dev, 2694 struct device_attribute *attr, const char *buf, 2695 size_t count) 2696 { 2697 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2698 int ret; 2699 2700 ret = nvme_reset_ctrl_sync(ctrl); 2701 if (ret < 0) 2702 return ret; 2703 return count; 2704 } 2705 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2706 2707 static ssize_t nvme_sysfs_rescan(struct device *dev, 2708 struct device_attribute *attr, const char *buf, 2709 size_t count) 2710 { 2711 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2712 2713 nvme_queue_scan(ctrl); 2714 return count; 2715 } 2716 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2717 2718 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2719 { 2720 struct gendisk *disk = dev_to_disk(dev); 2721 2722 if (disk->fops == &nvme_fops) 2723 return nvme_get_ns_from_dev(dev)->head; 2724 else 2725 return disk->private_data; 2726 } 2727 2728 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2729 char *buf) 2730 { 2731 struct nvme_ns_head *head = dev_to_ns_head(dev); 2732 struct nvme_ns_ids *ids = &head->ids; 2733 struct nvme_subsystem *subsys = head->subsys; 2734 int serial_len = sizeof(subsys->serial); 2735 int model_len = sizeof(subsys->model); 2736 2737 if (!uuid_is_null(&ids->uuid)) 2738 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2739 2740 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2741 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2742 2743 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2744 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2745 2746 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2747 subsys->serial[serial_len - 1] == '\0')) 2748 serial_len--; 2749 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2750 subsys->model[model_len - 1] == '\0')) 2751 model_len--; 2752 2753 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2754 serial_len, subsys->serial, model_len, subsys->model, 2755 head->ns_id); 2756 } 2757 static DEVICE_ATTR_RO(wwid); 2758 2759 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2760 char *buf) 2761 { 2762 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2763 } 2764 static DEVICE_ATTR_RO(nguid); 2765 2766 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2767 char *buf) 2768 { 2769 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2770 2771 /* For backward compatibility expose the NGUID to userspace if 2772 * we have no UUID set 2773 */ 2774 if (uuid_is_null(&ids->uuid)) { 2775 printk_ratelimited(KERN_WARNING 2776 "No UUID available providing old NGUID\n"); 2777 return sprintf(buf, "%pU\n", ids->nguid); 2778 } 2779 return sprintf(buf, "%pU\n", &ids->uuid); 2780 } 2781 static DEVICE_ATTR_RO(uuid); 2782 2783 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2784 char *buf) 2785 { 2786 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2787 } 2788 static DEVICE_ATTR_RO(eui); 2789 2790 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2791 char *buf) 2792 { 2793 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2794 } 2795 static DEVICE_ATTR_RO(nsid); 2796 2797 static struct attribute *nvme_ns_id_attrs[] = { 2798 &dev_attr_wwid.attr, 2799 &dev_attr_uuid.attr, 2800 &dev_attr_nguid.attr, 2801 &dev_attr_eui.attr, 2802 &dev_attr_nsid.attr, 2803 #ifdef CONFIG_NVME_MULTIPATH 2804 &dev_attr_ana_grpid.attr, 2805 &dev_attr_ana_state.attr, 2806 #endif 2807 NULL, 2808 }; 2809 2810 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2811 struct attribute *a, int n) 2812 { 2813 struct device *dev = container_of(kobj, struct device, kobj); 2814 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2815 2816 if (a == &dev_attr_uuid.attr) { 2817 if (uuid_is_null(&ids->uuid) && 2818 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2819 return 0; 2820 } 2821 if (a == &dev_attr_nguid.attr) { 2822 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2823 return 0; 2824 } 2825 if (a == &dev_attr_eui.attr) { 2826 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2827 return 0; 2828 } 2829 #ifdef CONFIG_NVME_MULTIPATH 2830 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 2831 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 2832 return 0; 2833 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 2834 return 0; 2835 } 2836 #endif 2837 return a->mode; 2838 } 2839 2840 static const struct attribute_group nvme_ns_id_attr_group = { 2841 .attrs = nvme_ns_id_attrs, 2842 .is_visible = nvme_ns_id_attrs_are_visible, 2843 }; 2844 2845 const struct attribute_group *nvme_ns_id_attr_groups[] = { 2846 &nvme_ns_id_attr_group, 2847 #ifdef CONFIG_NVM 2848 &nvme_nvm_attr_group, 2849 #endif 2850 NULL, 2851 }; 2852 2853 #define nvme_show_str_function(field) \ 2854 static ssize_t field##_show(struct device *dev, \ 2855 struct device_attribute *attr, char *buf) \ 2856 { \ 2857 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2858 return sprintf(buf, "%.*s\n", \ 2859 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2860 } \ 2861 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2862 2863 nvme_show_str_function(model); 2864 nvme_show_str_function(serial); 2865 nvme_show_str_function(firmware_rev); 2866 2867 #define nvme_show_int_function(field) \ 2868 static ssize_t field##_show(struct device *dev, \ 2869 struct device_attribute *attr, char *buf) \ 2870 { \ 2871 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2872 return sprintf(buf, "%d\n", ctrl->field); \ 2873 } \ 2874 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2875 2876 nvme_show_int_function(cntlid); 2877 nvme_show_int_function(numa_node); 2878 2879 static ssize_t nvme_sysfs_delete(struct device *dev, 2880 struct device_attribute *attr, const char *buf, 2881 size_t count) 2882 { 2883 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2884 2885 if (device_remove_file_self(dev, attr)) 2886 nvme_delete_ctrl_sync(ctrl); 2887 return count; 2888 } 2889 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 2890 2891 static ssize_t nvme_sysfs_show_transport(struct device *dev, 2892 struct device_attribute *attr, 2893 char *buf) 2894 { 2895 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2896 2897 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 2898 } 2899 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 2900 2901 static ssize_t nvme_sysfs_show_state(struct device *dev, 2902 struct device_attribute *attr, 2903 char *buf) 2904 { 2905 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2906 static const char *const state_name[] = { 2907 [NVME_CTRL_NEW] = "new", 2908 [NVME_CTRL_LIVE] = "live", 2909 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 2910 [NVME_CTRL_RESETTING] = "resetting", 2911 [NVME_CTRL_CONNECTING] = "connecting", 2912 [NVME_CTRL_DELETING] = "deleting", 2913 [NVME_CTRL_DEAD] = "dead", 2914 }; 2915 2916 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 2917 state_name[ctrl->state]) 2918 return sprintf(buf, "%s\n", state_name[ctrl->state]); 2919 2920 return sprintf(buf, "unknown state\n"); 2921 } 2922 2923 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 2924 2925 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 2926 struct device_attribute *attr, 2927 char *buf) 2928 { 2929 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2930 2931 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 2932 } 2933 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 2934 2935 static ssize_t nvme_sysfs_show_address(struct device *dev, 2936 struct device_attribute *attr, 2937 char *buf) 2938 { 2939 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2940 2941 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 2942 } 2943 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 2944 2945 static struct attribute *nvme_dev_attrs[] = { 2946 &dev_attr_reset_controller.attr, 2947 &dev_attr_rescan_controller.attr, 2948 &dev_attr_model.attr, 2949 &dev_attr_serial.attr, 2950 &dev_attr_firmware_rev.attr, 2951 &dev_attr_cntlid.attr, 2952 &dev_attr_delete_controller.attr, 2953 &dev_attr_transport.attr, 2954 &dev_attr_subsysnqn.attr, 2955 &dev_attr_address.attr, 2956 &dev_attr_state.attr, 2957 &dev_attr_numa_node.attr, 2958 NULL 2959 }; 2960 2961 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 2962 struct attribute *a, int n) 2963 { 2964 struct device *dev = container_of(kobj, struct device, kobj); 2965 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2966 2967 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 2968 return 0; 2969 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 2970 return 0; 2971 2972 return a->mode; 2973 } 2974 2975 static struct attribute_group nvme_dev_attrs_group = { 2976 .attrs = nvme_dev_attrs, 2977 .is_visible = nvme_dev_attrs_are_visible, 2978 }; 2979 2980 static const struct attribute_group *nvme_dev_attr_groups[] = { 2981 &nvme_dev_attrs_group, 2982 NULL, 2983 }; 2984 2985 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 2986 unsigned nsid) 2987 { 2988 struct nvme_ns_head *h; 2989 2990 lockdep_assert_held(&subsys->lock); 2991 2992 list_for_each_entry(h, &subsys->nsheads, entry) { 2993 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 2994 return h; 2995 } 2996 2997 return NULL; 2998 } 2999 3000 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3001 struct nvme_ns_head *new) 3002 { 3003 struct nvme_ns_head *h; 3004 3005 lockdep_assert_held(&subsys->lock); 3006 3007 list_for_each_entry(h, &subsys->nsheads, entry) { 3008 if (nvme_ns_ids_valid(&new->ids) && 3009 !list_empty(&h->list) && 3010 nvme_ns_ids_equal(&new->ids, &h->ids)) 3011 return -EINVAL; 3012 } 3013 3014 return 0; 3015 } 3016 3017 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3018 unsigned nsid, struct nvme_id_ns *id) 3019 { 3020 struct nvme_ns_head *head; 3021 size_t size = sizeof(*head); 3022 int ret = -ENOMEM; 3023 3024 #ifdef CONFIG_NVME_MULTIPATH 3025 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3026 #endif 3027 3028 head = kzalloc(size, GFP_KERNEL); 3029 if (!head) 3030 goto out; 3031 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3032 if (ret < 0) 3033 goto out_free_head; 3034 head->instance = ret; 3035 INIT_LIST_HEAD(&head->list); 3036 ret = init_srcu_struct(&head->srcu); 3037 if (ret) 3038 goto out_ida_remove; 3039 head->subsys = ctrl->subsys; 3040 head->ns_id = nsid; 3041 kref_init(&head->ref); 3042 3043 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 3044 3045 ret = __nvme_check_ids(ctrl->subsys, head); 3046 if (ret) { 3047 dev_err(ctrl->device, 3048 "duplicate IDs for nsid %d\n", nsid); 3049 goto out_cleanup_srcu; 3050 } 3051 3052 ret = nvme_mpath_alloc_disk(ctrl, head); 3053 if (ret) 3054 goto out_cleanup_srcu; 3055 3056 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3057 3058 kref_get(&ctrl->subsys->ref); 3059 3060 return head; 3061 out_cleanup_srcu: 3062 cleanup_srcu_struct(&head->srcu); 3063 out_ida_remove: 3064 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3065 out_free_head: 3066 kfree(head); 3067 out: 3068 return ERR_PTR(ret); 3069 } 3070 3071 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3072 struct nvme_id_ns *id) 3073 { 3074 struct nvme_ctrl *ctrl = ns->ctrl; 3075 bool is_shared = id->nmic & (1 << 0); 3076 struct nvme_ns_head *head = NULL; 3077 int ret = 0; 3078 3079 mutex_lock(&ctrl->subsys->lock); 3080 if (is_shared) 3081 head = __nvme_find_ns_head(ctrl->subsys, nsid); 3082 if (!head) { 3083 head = nvme_alloc_ns_head(ctrl, nsid, id); 3084 if (IS_ERR(head)) { 3085 ret = PTR_ERR(head); 3086 goto out_unlock; 3087 } 3088 } else { 3089 struct nvme_ns_ids ids; 3090 3091 nvme_report_ns_ids(ctrl, nsid, id, &ids); 3092 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3093 dev_err(ctrl->device, 3094 "IDs don't match for shared namespace %d\n", 3095 nsid); 3096 ret = -EINVAL; 3097 goto out_unlock; 3098 } 3099 } 3100 3101 list_add_tail(&ns->siblings, &head->list); 3102 ns->head = head; 3103 3104 out_unlock: 3105 mutex_unlock(&ctrl->subsys->lock); 3106 return ret; 3107 } 3108 3109 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3110 { 3111 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3112 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3113 3114 return nsa->head->ns_id - nsb->head->ns_id; 3115 } 3116 3117 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3118 { 3119 struct nvme_ns *ns, *ret = NULL; 3120 3121 down_read(&ctrl->namespaces_rwsem); 3122 list_for_each_entry(ns, &ctrl->namespaces, list) { 3123 if (ns->head->ns_id == nsid) { 3124 if (!kref_get_unless_zero(&ns->kref)) 3125 continue; 3126 ret = ns; 3127 break; 3128 } 3129 if (ns->head->ns_id > nsid) 3130 break; 3131 } 3132 up_read(&ctrl->namespaces_rwsem); 3133 return ret; 3134 } 3135 3136 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 3137 { 3138 struct streams_directive_params s; 3139 int ret; 3140 3141 if (!ctrl->nr_streams) 3142 return 0; 3143 3144 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 3145 if (ret) 3146 return ret; 3147 3148 ns->sws = le32_to_cpu(s.sws); 3149 ns->sgs = le16_to_cpu(s.sgs); 3150 3151 if (ns->sws) { 3152 unsigned int bs = 1 << ns->lba_shift; 3153 3154 blk_queue_io_min(ns->queue, bs * ns->sws); 3155 if (ns->sgs) 3156 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3157 } 3158 3159 return 0; 3160 } 3161 3162 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3163 { 3164 struct nvme_ns *ns; 3165 struct gendisk *disk; 3166 struct nvme_id_ns *id; 3167 char disk_name[DISK_NAME_LEN]; 3168 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT; 3169 3170 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3171 if (!ns) 3172 return; 3173 3174 ns->queue = blk_mq_init_queue(ctrl->tagset); 3175 if (IS_ERR(ns->queue)) 3176 goto out_free_ns; 3177 3178 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3179 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3180 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3181 3182 ns->queue->queuedata = ns; 3183 ns->ctrl = ctrl; 3184 3185 kref_init(&ns->kref); 3186 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3187 3188 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3189 nvme_set_queue_limits(ctrl, ns->queue); 3190 3191 id = nvme_identify_ns(ctrl, nsid); 3192 if (!id) 3193 goto out_free_queue; 3194 3195 if (id->ncap == 0) 3196 goto out_free_id; 3197 3198 if (nvme_init_ns_head(ns, nsid, id)) 3199 goto out_free_id; 3200 nvme_setup_streams_ns(ctrl, ns); 3201 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3202 3203 disk = alloc_disk_node(0, node); 3204 if (!disk) 3205 goto out_unlink_ns; 3206 3207 disk->fops = &nvme_fops; 3208 disk->private_data = ns; 3209 disk->queue = ns->queue; 3210 disk->flags = flags; 3211 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3212 ns->disk = disk; 3213 3214 __nvme_revalidate_disk(disk, id); 3215 3216 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3217 if (nvme_nvm_register(ns, disk_name, node)) { 3218 dev_warn(ctrl->device, "LightNVM init failure\n"); 3219 goto out_put_disk; 3220 } 3221 } 3222 3223 down_write(&ctrl->namespaces_rwsem); 3224 list_add_tail(&ns->list, &ctrl->namespaces); 3225 up_write(&ctrl->namespaces_rwsem); 3226 3227 nvme_get_ctrl(ctrl); 3228 3229 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3230 3231 nvme_mpath_add_disk(ns, id); 3232 nvme_fault_inject_init(ns); 3233 kfree(id); 3234 3235 return; 3236 out_put_disk: 3237 put_disk(ns->disk); 3238 out_unlink_ns: 3239 mutex_lock(&ctrl->subsys->lock); 3240 list_del_rcu(&ns->siblings); 3241 mutex_unlock(&ctrl->subsys->lock); 3242 out_free_id: 3243 kfree(id); 3244 out_free_queue: 3245 blk_cleanup_queue(ns->queue); 3246 out_free_ns: 3247 kfree(ns); 3248 } 3249 3250 static void nvme_ns_remove(struct nvme_ns *ns) 3251 { 3252 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3253 return; 3254 3255 nvme_fault_inject_fini(ns); 3256 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3257 del_gendisk(ns->disk); 3258 blk_cleanup_queue(ns->queue); 3259 if (blk_get_integrity(ns->disk)) 3260 blk_integrity_unregister(ns->disk); 3261 } 3262 3263 mutex_lock(&ns->ctrl->subsys->lock); 3264 list_del_rcu(&ns->siblings); 3265 nvme_mpath_clear_current_path(ns); 3266 mutex_unlock(&ns->ctrl->subsys->lock); 3267 3268 down_write(&ns->ctrl->namespaces_rwsem); 3269 list_del_init(&ns->list); 3270 up_write(&ns->ctrl->namespaces_rwsem); 3271 3272 synchronize_srcu(&ns->head->srcu); 3273 nvme_mpath_check_last_path(ns); 3274 nvme_put_ns(ns); 3275 } 3276 3277 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3278 { 3279 struct nvme_ns *ns; 3280 3281 ns = nvme_find_get_ns(ctrl, nsid); 3282 if (ns) { 3283 if (ns->disk && revalidate_disk(ns->disk)) 3284 nvme_ns_remove(ns); 3285 nvme_put_ns(ns); 3286 } else 3287 nvme_alloc_ns(ctrl, nsid); 3288 } 3289 3290 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3291 unsigned nsid) 3292 { 3293 struct nvme_ns *ns, *next; 3294 LIST_HEAD(rm_list); 3295 3296 down_write(&ctrl->namespaces_rwsem); 3297 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3298 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3299 list_move_tail(&ns->list, &rm_list); 3300 } 3301 up_write(&ctrl->namespaces_rwsem); 3302 3303 list_for_each_entry_safe(ns, next, &rm_list, list) 3304 nvme_ns_remove(ns); 3305 3306 } 3307 3308 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3309 { 3310 struct nvme_ns *ns; 3311 __le32 *ns_list; 3312 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 3313 int ret = 0; 3314 3315 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3316 if (!ns_list) 3317 return -ENOMEM; 3318 3319 for (i = 0; i < num_lists; i++) { 3320 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3321 if (ret) 3322 goto free; 3323 3324 for (j = 0; j < min(nn, 1024U); j++) { 3325 nsid = le32_to_cpu(ns_list[j]); 3326 if (!nsid) 3327 goto out; 3328 3329 nvme_validate_ns(ctrl, nsid); 3330 3331 while (++prev < nsid) { 3332 ns = nvme_find_get_ns(ctrl, prev); 3333 if (ns) { 3334 nvme_ns_remove(ns); 3335 nvme_put_ns(ns); 3336 } 3337 } 3338 } 3339 nn -= j; 3340 } 3341 out: 3342 nvme_remove_invalid_namespaces(ctrl, prev); 3343 free: 3344 kfree(ns_list); 3345 return ret; 3346 } 3347 3348 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3349 { 3350 unsigned i; 3351 3352 for (i = 1; i <= nn; i++) 3353 nvme_validate_ns(ctrl, i); 3354 3355 nvme_remove_invalid_namespaces(ctrl, nn); 3356 } 3357 3358 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3359 { 3360 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3361 __le32 *log; 3362 int error; 3363 3364 log = kzalloc(log_size, GFP_KERNEL); 3365 if (!log) 3366 return; 3367 3368 /* 3369 * We need to read the log to clear the AEN, but we don't want to rely 3370 * on it for the changed namespace information as userspace could have 3371 * raced with us in reading the log page, which could cause us to miss 3372 * updates. 3373 */ 3374 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3375 log_size, 0); 3376 if (error) 3377 dev_warn(ctrl->device, 3378 "reading changed ns log failed: %d\n", error); 3379 3380 kfree(log); 3381 } 3382 3383 static void nvme_scan_work(struct work_struct *work) 3384 { 3385 struct nvme_ctrl *ctrl = 3386 container_of(work, struct nvme_ctrl, scan_work); 3387 struct nvme_id_ctrl *id; 3388 unsigned nn; 3389 3390 if (ctrl->state != NVME_CTRL_LIVE) 3391 return; 3392 3393 WARN_ON_ONCE(!ctrl->tagset); 3394 3395 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3396 dev_info(ctrl->device, "rescanning namespaces.\n"); 3397 nvme_clear_changed_ns_log(ctrl); 3398 } 3399 3400 if (nvme_identify_ctrl(ctrl, &id)) 3401 return; 3402 3403 nn = le32_to_cpu(id->nn); 3404 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3405 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3406 if (!nvme_scan_ns_list(ctrl, nn)) 3407 goto out_free_id; 3408 } 3409 nvme_scan_ns_sequential(ctrl, nn); 3410 out_free_id: 3411 kfree(id); 3412 down_write(&ctrl->namespaces_rwsem); 3413 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3414 up_write(&ctrl->namespaces_rwsem); 3415 } 3416 3417 /* 3418 * This function iterates the namespace list unlocked to allow recovery from 3419 * controller failure. It is up to the caller to ensure the namespace list is 3420 * not modified by scan work while this function is executing. 3421 */ 3422 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3423 { 3424 struct nvme_ns *ns, *next; 3425 LIST_HEAD(ns_list); 3426 3427 /* prevent racing with ns scanning */ 3428 flush_work(&ctrl->scan_work); 3429 3430 /* 3431 * The dead states indicates the controller was not gracefully 3432 * disconnected. In that case, we won't be able to flush any data while 3433 * removing the namespaces' disks; fail all the queues now to avoid 3434 * potentially having to clean up the failed sync later. 3435 */ 3436 if (ctrl->state == NVME_CTRL_DEAD) 3437 nvme_kill_queues(ctrl); 3438 3439 down_write(&ctrl->namespaces_rwsem); 3440 list_splice_init(&ctrl->namespaces, &ns_list); 3441 up_write(&ctrl->namespaces_rwsem); 3442 3443 list_for_each_entry_safe(ns, next, &ns_list, list) 3444 nvme_ns_remove(ns); 3445 } 3446 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3447 3448 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3449 { 3450 char *envp[2] = { NULL, NULL }; 3451 u32 aen_result = ctrl->aen_result; 3452 3453 ctrl->aen_result = 0; 3454 if (!aen_result) 3455 return; 3456 3457 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3458 if (!envp[0]) 3459 return; 3460 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3461 kfree(envp[0]); 3462 } 3463 3464 static void nvme_async_event_work(struct work_struct *work) 3465 { 3466 struct nvme_ctrl *ctrl = 3467 container_of(work, struct nvme_ctrl, async_event_work); 3468 3469 nvme_aen_uevent(ctrl); 3470 ctrl->ops->submit_async_event(ctrl); 3471 } 3472 3473 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3474 { 3475 3476 u32 csts; 3477 3478 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3479 return false; 3480 3481 if (csts == ~0) 3482 return false; 3483 3484 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3485 } 3486 3487 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3488 { 3489 struct nvme_fw_slot_info_log *log; 3490 3491 log = kmalloc(sizeof(*log), GFP_KERNEL); 3492 if (!log) 3493 return; 3494 3495 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log, 3496 sizeof(*log), 0)) 3497 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 3498 kfree(log); 3499 } 3500 3501 static void nvme_fw_act_work(struct work_struct *work) 3502 { 3503 struct nvme_ctrl *ctrl = container_of(work, 3504 struct nvme_ctrl, fw_act_work); 3505 unsigned long fw_act_timeout; 3506 3507 if (ctrl->mtfa) 3508 fw_act_timeout = jiffies + 3509 msecs_to_jiffies(ctrl->mtfa * 100); 3510 else 3511 fw_act_timeout = jiffies + 3512 msecs_to_jiffies(admin_timeout * 1000); 3513 3514 nvme_stop_queues(ctrl); 3515 while (nvme_ctrl_pp_status(ctrl)) { 3516 if (time_after(jiffies, fw_act_timeout)) { 3517 dev_warn(ctrl->device, 3518 "Fw activation timeout, reset controller\n"); 3519 nvme_reset_ctrl(ctrl); 3520 break; 3521 } 3522 msleep(100); 3523 } 3524 3525 if (ctrl->state != NVME_CTRL_LIVE) 3526 return; 3527 3528 nvme_start_queues(ctrl); 3529 /* read FW slot information to clear the AER */ 3530 nvme_get_fw_slot_info(ctrl); 3531 } 3532 3533 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3534 { 3535 u32 aer_notice_type = (result & 0xff00) >> 8; 3536 3537 switch (aer_notice_type) { 3538 case NVME_AER_NOTICE_NS_CHANGED: 3539 trace_nvme_async_event(ctrl, aer_notice_type); 3540 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3541 nvme_queue_scan(ctrl); 3542 break; 3543 case NVME_AER_NOTICE_FW_ACT_STARTING: 3544 trace_nvme_async_event(ctrl, aer_notice_type); 3545 queue_work(nvme_wq, &ctrl->fw_act_work); 3546 break; 3547 #ifdef CONFIG_NVME_MULTIPATH 3548 case NVME_AER_NOTICE_ANA: 3549 trace_nvme_async_event(ctrl, aer_notice_type); 3550 if (!ctrl->ana_log_buf) 3551 break; 3552 queue_work(nvme_wq, &ctrl->ana_work); 3553 break; 3554 #endif 3555 default: 3556 dev_warn(ctrl->device, "async event result %08x\n", result); 3557 } 3558 } 3559 3560 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3561 volatile union nvme_result *res) 3562 { 3563 u32 result = le32_to_cpu(res->u32); 3564 u32 aer_type = result & 0x07; 3565 3566 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3567 return; 3568 3569 switch (aer_type) { 3570 case NVME_AER_NOTICE: 3571 nvme_handle_aen_notice(ctrl, result); 3572 break; 3573 case NVME_AER_ERROR: 3574 case NVME_AER_SMART: 3575 case NVME_AER_CSS: 3576 case NVME_AER_VS: 3577 trace_nvme_async_event(ctrl, aer_type); 3578 ctrl->aen_result = result; 3579 break; 3580 default: 3581 break; 3582 } 3583 queue_work(nvme_wq, &ctrl->async_event_work); 3584 } 3585 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3586 3587 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3588 { 3589 nvme_mpath_stop(ctrl); 3590 nvme_stop_keep_alive(ctrl); 3591 flush_work(&ctrl->async_event_work); 3592 cancel_work_sync(&ctrl->fw_act_work); 3593 if (ctrl->ops->stop_ctrl) 3594 ctrl->ops->stop_ctrl(ctrl); 3595 } 3596 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3597 3598 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3599 { 3600 if (ctrl->kato) 3601 nvme_start_keep_alive(ctrl); 3602 3603 if (ctrl->queue_count > 1) { 3604 nvme_queue_scan(ctrl); 3605 nvme_enable_aen(ctrl); 3606 queue_work(nvme_wq, &ctrl->async_event_work); 3607 nvme_start_queues(ctrl); 3608 } 3609 } 3610 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3611 3612 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3613 { 3614 cdev_device_del(&ctrl->cdev, ctrl->device); 3615 } 3616 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3617 3618 static void nvme_free_ctrl(struct device *dev) 3619 { 3620 struct nvme_ctrl *ctrl = 3621 container_of(dev, struct nvme_ctrl, ctrl_device); 3622 struct nvme_subsystem *subsys = ctrl->subsys; 3623 3624 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3625 kfree(ctrl->effects); 3626 nvme_mpath_uninit(ctrl); 3627 __free_page(ctrl->discard_page); 3628 3629 if (subsys) { 3630 mutex_lock(&subsys->lock); 3631 list_del(&ctrl->subsys_entry); 3632 mutex_unlock(&subsys->lock); 3633 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3634 } 3635 3636 ctrl->ops->free_ctrl(ctrl); 3637 3638 if (subsys) 3639 nvme_put_subsystem(subsys); 3640 } 3641 3642 /* 3643 * Initialize a NVMe controller structures. This needs to be called during 3644 * earliest initialization so that we have the initialized structured around 3645 * during probing. 3646 */ 3647 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3648 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3649 { 3650 int ret; 3651 3652 ctrl->state = NVME_CTRL_NEW; 3653 spin_lock_init(&ctrl->lock); 3654 INIT_LIST_HEAD(&ctrl->namespaces); 3655 init_rwsem(&ctrl->namespaces_rwsem); 3656 ctrl->dev = dev; 3657 ctrl->ops = ops; 3658 ctrl->quirks = quirks; 3659 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3660 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3661 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3662 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3663 3664 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 3665 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 3666 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 3667 3668 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 3669 PAGE_SIZE); 3670 ctrl->discard_page = alloc_page(GFP_KERNEL); 3671 if (!ctrl->discard_page) { 3672 ret = -ENOMEM; 3673 goto out; 3674 } 3675 3676 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3677 if (ret < 0) 3678 goto out; 3679 ctrl->instance = ret; 3680 3681 device_initialize(&ctrl->ctrl_device); 3682 ctrl->device = &ctrl->ctrl_device; 3683 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3684 ctrl->device->class = nvme_class; 3685 ctrl->device->parent = ctrl->dev; 3686 ctrl->device->groups = nvme_dev_attr_groups; 3687 ctrl->device->release = nvme_free_ctrl; 3688 dev_set_drvdata(ctrl->device, ctrl); 3689 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3690 if (ret) 3691 goto out_release_instance; 3692 3693 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3694 ctrl->cdev.owner = ops->module; 3695 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3696 if (ret) 3697 goto out_free_name; 3698 3699 /* 3700 * Initialize latency tolerance controls. The sysfs files won't 3701 * be visible to userspace unless the device actually supports APST. 3702 */ 3703 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3704 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3705 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3706 3707 return 0; 3708 out_free_name: 3709 kfree_const(ctrl->device->kobj.name); 3710 out_release_instance: 3711 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3712 out: 3713 if (ctrl->discard_page) 3714 __free_page(ctrl->discard_page); 3715 return ret; 3716 } 3717 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3718 3719 /** 3720 * nvme_kill_queues(): Ends all namespace queues 3721 * @ctrl: the dead controller that needs to end 3722 * 3723 * Call this function when the driver determines it is unable to get the 3724 * controller in a state capable of servicing IO. 3725 */ 3726 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3727 { 3728 struct nvme_ns *ns; 3729 3730 down_read(&ctrl->namespaces_rwsem); 3731 3732 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3733 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 3734 blk_mq_unquiesce_queue(ctrl->admin_q); 3735 3736 list_for_each_entry(ns, &ctrl->namespaces, list) 3737 nvme_set_queue_dying(ns); 3738 3739 up_read(&ctrl->namespaces_rwsem); 3740 } 3741 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3742 3743 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3744 { 3745 struct nvme_ns *ns; 3746 3747 down_read(&ctrl->namespaces_rwsem); 3748 list_for_each_entry(ns, &ctrl->namespaces, list) 3749 blk_mq_unfreeze_queue(ns->queue); 3750 up_read(&ctrl->namespaces_rwsem); 3751 } 3752 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3753 3754 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3755 { 3756 struct nvme_ns *ns; 3757 3758 down_read(&ctrl->namespaces_rwsem); 3759 list_for_each_entry(ns, &ctrl->namespaces, list) { 3760 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3761 if (timeout <= 0) 3762 break; 3763 } 3764 up_read(&ctrl->namespaces_rwsem); 3765 } 3766 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3767 3768 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3769 { 3770 struct nvme_ns *ns; 3771 3772 down_read(&ctrl->namespaces_rwsem); 3773 list_for_each_entry(ns, &ctrl->namespaces, list) 3774 blk_mq_freeze_queue_wait(ns->queue); 3775 up_read(&ctrl->namespaces_rwsem); 3776 } 3777 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3778 3779 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3780 { 3781 struct nvme_ns *ns; 3782 3783 down_read(&ctrl->namespaces_rwsem); 3784 list_for_each_entry(ns, &ctrl->namespaces, list) 3785 blk_freeze_queue_start(ns->queue); 3786 up_read(&ctrl->namespaces_rwsem); 3787 } 3788 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3789 3790 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3791 { 3792 struct nvme_ns *ns; 3793 3794 down_read(&ctrl->namespaces_rwsem); 3795 list_for_each_entry(ns, &ctrl->namespaces, list) 3796 blk_mq_quiesce_queue(ns->queue); 3797 up_read(&ctrl->namespaces_rwsem); 3798 } 3799 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3800 3801 void nvme_start_queues(struct nvme_ctrl *ctrl) 3802 { 3803 struct nvme_ns *ns; 3804 3805 down_read(&ctrl->namespaces_rwsem); 3806 list_for_each_entry(ns, &ctrl->namespaces, list) 3807 blk_mq_unquiesce_queue(ns->queue); 3808 up_read(&ctrl->namespaces_rwsem); 3809 } 3810 EXPORT_SYMBOL_GPL(nvme_start_queues); 3811 3812 int __init nvme_core_init(void) 3813 { 3814 int result = -ENOMEM; 3815 3816 nvme_wq = alloc_workqueue("nvme-wq", 3817 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3818 if (!nvme_wq) 3819 goto out; 3820 3821 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 3822 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3823 if (!nvme_reset_wq) 3824 goto destroy_wq; 3825 3826 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 3827 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 3828 if (!nvme_delete_wq) 3829 goto destroy_reset_wq; 3830 3831 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 3832 if (result < 0) 3833 goto destroy_delete_wq; 3834 3835 nvme_class = class_create(THIS_MODULE, "nvme"); 3836 if (IS_ERR(nvme_class)) { 3837 result = PTR_ERR(nvme_class); 3838 goto unregister_chrdev; 3839 } 3840 3841 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 3842 if (IS_ERR(nvme_subsys_class)) { 3843 result = PTR_ERR(nvme_subsys_class); 3844 goto destroy_class; 3845 } 3846 return 0; 3847 3848 destroy_class: 3849 class_destroy(nvme_class); 3850 unregister_chrdev: 3851 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3852 destroy_delete_wq: 3853 destroy_workqueue(nvme_delete_wq); 3854 destroy_reset_wq: 3855 destroy_workqueue(nvme_reset_wq); 3856 destroy_wq: 3857 destroy_workqueue(nvme_wq); 3858 out: 3859 return result; 3860 } 3861 3862 void __exit nvme_core_exit(void) 3863 { 3864 ida_destroy(&nvme_subsystems_ida); 3865 class_destroy(nvme_subsys_class); 3866 class_destroy(nvme_class); 3867 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 3868 destroy_workqueue(nvme_delete_wq); 3869 destroy_workqueue(nvme_reset_wq); 3870 destroy_workqueue(nvme_wq); 3871 } 3872 3873 MODULE_LICENSE("GPL"); 3874 MODULE_VERSION("1.0"); 3875 module_init(nvme_core_init); 3876 module_exit(nvme_core_exit); 3877