xref: /linux/drivers/nvme/host/core.c (revision d40981350844c2cfa437abfc80596e10ea8f1149)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include "nvme.h"
27 #include "fabrics.h"
28 #include <linux/nvme-auth.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #define NVME_MINORS		(1U << MINORBITS)
34 
35 struct nvme_ns_info {
36 	struct nvme_ns_ids ids;
37 	u32 nsid;
38 	__le32 anagrpid;
39 	bool is_shared;
40 	bool is_readonly;
41 	bool is_ready;
42 	bool is_removed;
43 };
44 
45 unsigned int admin_timeout = 60;
46 module_param(admin_timeout, uint, 0644);
47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
48 EXPORT_SYMBOL_GPL(admin_timeout);
49 
50 unsigned int nvme_io_timeout = 30;
51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
53 EXPORT_SYMBOL_GPL(nvme_io_timeout);
54 
55 static unsigned char shutdown_timeout = 5;
56 module_param(shutdown_timeout, byte, 0644);
57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58 
59 static u8 nvme_max_retries = 5;
60 module_param_named(max_retries, nvme_max_retries, byte, 0644);
61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62 
63 static unsigned long default_ps_max_latency_us = 100000;
64 module_param(default_ps_max_latency_us, ulong, 0644);
65 MODULE_PARM_DESC(default_ps_max_latency_us,
66 		 "max power saving latency for new devices; use PM QOS to change per device");
67 
68 static bool force_apst;
69 module_param(force_apst, bool, 0644);
70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71 
72 static unsigned long apst_primary_timeout_ms = 100;
73 module_param(apst_primary_timeout_ms, ulong, 0644);
74 MODULE_PARM_DESC(apst_primary_timeout_ms,
75 	"primary APST timeout in ms");
76 
77 static unsigned long apst_secondary_timeout_ms = 2000;
78 module_param(apst_secondary_timeout_ms, ulong, 0644);
79 MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 	"secondary APST timeout in ms");
81 
82 static unsigned long apst_primary_latency_tol_us = 15000;
83 module_param(apst_primary_latency_tol_us, ulong, 0644);
84 MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 	"primary APST latency tolerance in us");
86 
87 static unsigned long apst_secondary_latency_tol_us = 100000;
88 module_param(apst_secondary_latency_tol_us, ulong, 0644);
89 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 	"secondary APST latency tolerance in us");
91 
92 /*
93  * nvme_wq - hosts nvme related works that are not reset or delete
94  * nvme_reset_wq - hosts nvme reset works
95  * nvme_delete_wq - hosts nvme delete works
96  *
97  * nvme_wq will host works such as scan, aen handling, fw activation,
98  * keep-alive, periodic reconnects etc. nvme_reset_wq
99  * runs reset works which also flush works hosted on nvme_wq for
100  * serialization purposes. nvme_delete_wq host controller deletion
101  * works which flush reset works for serialization.
102  */
103 struct workqueue_struct *nvme_wq;
104 EXPORT_SYMBOL_GPL(nvme_wq);
105 
106 struct workqueue_struct *nvme_reset_wq;
107 EXPORT_SYMBOL_GPL(nvme_reset_wq);
108 
109 struct workqueue_struct *nvme_delete_wq;
110 EXPORT_SYMBOL_GPL(nvme_delete_wq);
111 
112 static LIST_HEAD(nvme_subsystems);
113 DEFINE_MUTEX(nvme_subsystems_lock);
114 
115 static DEFINE_IDA(nvme_instance_ida);
116 static dev_t nvme_ctrl_base_chr_devt;
117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
118 static const struct class nvme_class = {
119 	.name = "nvme",
120 	.dev_uevent = nvme_class_uevent,
121 };
122 
123 static const struct class nvme_subsys_class = {
124 	.name = "nvme-subsystem",
125 };
126 
127 static DEFINE_IDA(nvme_ns_chr_minor_ida);
128 static dev_t nvme_ns_chr_devt;
129 static const struct class nvme_ns_chr_class = {
130 	.name = "nvme-generic",
131 };
132 
133 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
135 					   unsigned nsid);
136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
137 				   struct nvme_command *cmd);
138 
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141 	/*
142 	 * Only new queue scan work when admin and IO queues are both alive
143 	 */
144 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
145 		queue_work(nvme_wq, &ctrl->scan_work);
146 }
147 
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
157 		return -EBUSY;
158 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 		return -EBUSY;
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163 
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 			struct nvme_ctrl, failfast_work);
168 
169 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
170 		return;
171 
172 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 	dev_info(ctrl->device, "failfast expired\n");
174 	nvme_kick_requeue_lists(ctrl);
175 }
176 
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 		return;
181 
182 	schedule_delayed_work(&ctrl->failfast_work,
183 			      ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185 
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188 	if (!ctrl->opts)
189 		return;
190 
191 	cancel_delayed_work_sync(&ctrl->failfast_work);
192 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194 
195 
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205 
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	int ret;
209 
210 	ret = nvme_reset_ctrl(ctrl);
211 	if (!ret) {
212 		flush_work(&ctrl->reset_work);
213 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
214 			ret = -ENETRESET;
215 	}
216 
217 	return ret;
218 }
219 
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	dev_info(ctrl->device,
223 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
224 
225 	flush_work(&ctrl->reset_work);
226 	nvme_stop_ctrl(ctrl);
227 	nvme_remove_namespaces(ctrl);
228 	ctrl->ops->delete_ctrl(ctrl);
229 	nvme_uninit_ctrl(ctrl);
230 }
231 
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234 	struct nvme_ctrl *ctrl =
235 		container_of(work, struct nvme_ctrl, delete_work);
236 
237 	nvme_do_delete_ctrl(ctrl);
238 }
239 
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 		return -EBUSY;
244 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245 		return -EBUSY;
246 	return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249 
250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252 	/*
253 	 * Keep a reference until nvme_do_delete_ctrl() complete,
254 	 * since ->delete_ctrl can free the controller.
255 	 */
256 	nvme_get_ctrl(ctrl);
257 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		nvme_do_delete_ctrl(ctrl);
259 	nvme_put_ctrl(ctrl);
260 }
261 
262 static blk_status_t nvme_error_status(u16 status)
263 {
264 	switch (status & NVME_SCT_SC_MASK) {
265 	case NVME_SC_SUCCESS:
266 		return BLK_STS_OK;
267 	case NVME_SC_CAP_EXCEEDED:
268 		return BLK_STS_NOSPC;
269 	case NVME_SC_LBA_RANGE:
270 	case NVME_SC_CMD_INTERRUPTED:
271 	case NVME_SC_NS_NOT_READY:
272 		return BLK_STS_TARGET;
273 	case NVME_SC_BAD_ATTRIBUTES:
274 	case NVME_SC_ONCS_NOT_SUPPORTED:
275 	case NVME_SC_INVALID_OPCODE:
276 	case NVME_SC_INVALID_FIELD:
277 	case NVME_SC_INVALID_NS:
278 		return BLK_STS_NOTSUPP;
279 	case NVME_SC_WRITE_FAULT:
280 	case NVME_SC_READ_ERROR:
281 	case NVME_SC_UNWRITTEN_BLOCK:
282 	case NVME_SC_ACCESS_DENIED:
283 	case NVME_SC_READ_ONLY:
284 	case NVME_SC_COMPARE_FAILED:
285 		return BLK_STS_MEDIUM;
286 	case NVME_SC_GUARD_CHECK:
287 	case NVME_SC_APPTAG_CHECK:
288 	case NVME_SC_REFTAG_CHECK:
289 	case NVME_SC_INVALID_PI:
290 		return BLK_STS_PROTECTION;
291 	case NVME_SC_RESERVATION_CONFLICT:
292 		return BLK_STS_RESV_CONFLICT;
293 	case NVME_SC_HOST_PATH_ERROR:
294 		return BLK_STS_TRANSPORT;
295 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 	case NVME_SC_ZONE_TOO_MANY_OPEN:
298 		return BLK_STS_ZONE_OPEN_RESOURCE;
299 	default:
300 		return BLK_STS_IOERR;
301 	}
302 }
303 
304 static void nvme_retry_req(struct request *req)
305 {
306 	unsigned long delay = 0;
307 	u16 crd;
308 
309 	/* The mask and shift result must be <= 3 */
310 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
311 	if (crd)
312 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313 
314 	nvme_req(req)->retries++;
315 	blk_mq_requeue_request(req, false);
316 	blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318 
319 static void nvme_log_error(struct request *req)
320 {
321 	struct nvme_ns *ns = req->q->queuedata;
322 	struct nvme_request *nr = nvme_req(req);
323 
324 	if (ns) {
325 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
326 		       ns->disk ? ns->disk->disk_name : "?",
327 		       nvme_get_opcode_str(nr->cmd->common.opcode),
328 		       nr->cmd->common.opcode,
329 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
330 		       blk_rq_bytes(req) >> ns->head->lba_shift,
331 		       nvme_get_error_status_str(nr->status),
332 		       NVME_SCT(nr->status),		/* Status Code Type */
333 		       nr->status & NVME_SC_MASK,	/* Status Code */
334 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
335 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
336 		return;
337 	}
338 
339 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
340 			   dev_name(nr->ctrl->device),
341 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
342 			   nr->cmd->common.opcode,
343 			   nvme_get_error_status_str(nr->status),
344 			   NVME_SCT(nr->status),	/* Status Code Type */
345 			   nr->status & NVME_SC_MASK,	/* Status Code */
346 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
347 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
348 }
349 
350 static void nvme_log_err_passthru(struct request *req)
351 {
352 	struct nvme_ns *ns = req->q->queuedata;
353 	struct nvme_request *nr = nvme_req(req);
354 
355 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
356 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
357 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
358 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
359 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 		nr->cmd->common.opcode,
361 		nvme_get_error_status_str(nr->status),
362 		NVME_SCT(nr->status),		/* Status Code Type */
363 		nr->status & NVME_SC_MASK,	/* Status Code */
364 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
365 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
366 		nr->cmd->common.cdw10,
367 		nr->cmd->common.cdw11,
368 		nr->cmd->common.cdw12,
369 		nr->cmd->common.cdw13,
370 		nr->cmd->common.cdw14,
371 		nr->cmd->common.cdw14);
372 }
373 
374 enum nvme_disposition {
375 	COMPLETE,
376 	RETRY,
377 	FAILOVER,
378 	AUTHENTICATE,
379 };
380 
381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
382 {
383 	if (likely(nvme_req(req)->status == 0))
384 		return COMPLETE;
385 
386 	if (blk_noretry_request(req) ||
387 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
388 	    nvme_req(req)->retries >= nvme_max_retries)
389 		return COMPLETE;
390 
391 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
392 		return AUTHENTICATE;
393 
394 	if (req->cmd_flags & REQ_NVME_MPATH) {
395 		if (nvme_is_path_error(nvme_req(req)->status) ||
396 		    blk_queue_dying(req->q))
397 			return FAILOVER;
398 	} else {
399 		if (blk_queue_dying(req->q))
400 			return COMPLETE;
401 	}
402 
403 	return RETRY;
404 }
405 
406 static inline void nvme_end_req_zoned(struct request *req)
407 {
408 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
409 	    req_op(req) == REQ_OP_ZONE_APPEND) {
410 		struct nvme_ns *ns = req->q->queuedata;
411 
412 		req->__sector = nvme_lba_to_sect(ns->head,
413 			le64_to_cpu(nvme_req(req)->result.u64));
414 	}
415 }
416 
417 static inline void __nvme_end_req(struct request *req)
418 {
419 	nvme_end_req_zoned(req);
420 	nvme_trace_bio_complete(req);
421 	if (req->cmd_flags & REQ_NVME_MPATH)
422 		nvme_mpath_end_request(req);
423 }
424 
425 void nvme_end_req(struct request *req)
426 {
427 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
428 
429 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
430 		if (blk_rq_is_passthrough(req))
431 			nvme_log_err_passthru(req);
432 		else
433 			nvme_log_error(req);
434 	}
435 	__nvme_end_req(req);
436 	blk_mq_end_request(req, status);
437 }
438 
439 void nvme_complete_rq(struct request *req)
440 {
441 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
442 
443 	trace_nvme_complete_rq(req);
444 	nvme_cleanup_cmd(req);
445 
446 	/*
447 	 * Completions of long-running commands should not be able to
448 	 * defer sending of periodic keep alives, since the controller
449 	 * may have completed processing such commands a long time ago
450 	 * (arbitrarily close to command submission time).
451 	 * req->deadline - req->timeout is the command submission time
452 	 * in jiffies.
453 	 */
454 	if (ctrl->kas &&
455 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
456 		ctrl->comp_seen = true;
457 
458 	switch (nvme_decide_disposition(req)) {
459 	case COMPLETE:
460 		nvme_end_req(req);
461 		return;
462 	case RETRY:
463 		nvme_retry_req(req);
464 		return;
465 	case FAILOVER:
466 		nvme_failover_req(req);
467 		return;
468 	case AUTHENTICATE:
469 #ifdef CONFIG_NVME_HOST_AUTH
470 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
471 		nvme_retry_req(req);
472 #else
473 		nvme_end_req(req);
474 #endif
475 		return;
476 	}
477 }
478 EXPORT_SYMBOL_GPL(nvme_complete_rq);
479 
480 void nvme_complete_batch_req(struct request *req)
481 {
482 	trace_nvme_complete_rq(req);
483 	nvme_cleanup_cmd(req);
484 	__nvme_end_req(req);
485 }
486 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
487 
488 /*
489  * Called to unwind from ->queue_rq on a failed command submission so that the
490  * multipathing code gets called to potentially failover to another path.
491  * The caller needs to unwind all transport specific resource allocations and
492  * must return propagate the return value.
493  */
494 blk_status_t nvme_host_path_error(struct request *req)
495 {
496 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
497 	blk_mq_set_request_complete(req);
498 	nvme_complete_rq(req);
499 	return BLK_STS_OK;
500 }
501 EXPORT_SYMBOL_GPL(nvme_host_path_error);
502 
503 bool nvme_cancel_request(struct request *req, void *data)
504 {
505 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
506 				"Cancelling I/O %d", req->tag);
507 
508 	/* don't abort one completed or idle request */
509 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
510 		return true;
511 
512 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
513 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
514 	blk_mq_complete_request(req);
515 	return true;
516 }
517 EXPORT_SYMBOL_GPL(nvme_cancel_request);
518 
519 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
520 {
521 	if (ctrl->tagset) {
522 		blk_mq_tagset_busy_iter(ctrl->tagset,
523 				nvme_cancel_request, ctrl);
524 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
525 	}
526 }
527 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
528 
529 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
530 {
531 	if (ctrl->admin_tagset) {
532 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
533 				nvme_cancel_request, ctrl);
534 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
535 	}
536 }
537 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
538 
539 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
540 		enum nvme_ctrl_state new_state)
541 {
542 	enum nvme_ctrl_state old_state;
543 	unsigned long flags;
544 	bool changed = false;
545 
546 	spin_lock_irqsave(&ctrl->lock, flags);
547 
548 	old_state = nvme_ctrl_state(ctrl);
549 	switch (new_state) {
550 	case NVME_CTRL_LIVE:
551 		switch (old_state) {
552 		case NVME_CTRL_NEW:
553 		case NVME_CTRL_RESETTING:
554 		case NVME_CTRL_CONNECTING:
555 			changed = true;
556 			fallthrough;
557 		default:
558 			break;
559 		}
560 		break;
561 	case NVME_CTRL_RESETTING:
562 		switch (old_state) {
563 		case NVME_CTRL_NEW:
564 		case NVME_CTRL_LIVE:
565 			changed = true;
566 			fallthrough;
567 		default:
568 			break;
569 		}
570 		break;
571 	case NVME_CTRL_CONNECTING:
572 		switch (old_state) {
573 		case NVME_CTRL_NEW:
574 		case NVME_CTRL_RESETTING:
575 			changed = true;
576 			fallthrough;
577 		default:
578 			break;
579 		}
580 		break;
581 	case NVME_CTRL_DELETING:
582 		switch (old_state) {
583 		case NVME_CTRL_LIVE:
584 		case NVME_CTRL_RESETTING:
585 		case NVME_CTRL_CONNECTING:
586 			changed = true;
587 			fallthrough;
588 		default:
589 			break;
590 		}
591 		break;
592 	case NVME_CTRL_DELETING_NOIO:
593 		switch (old_state) {
594 		case NVME_CTRL_DELETING:
595 		case NVME_CTRL_DEAD:
596 			changed = true;
597 			fallthrough;
598 		default:
599 			break;
600 		}
601 		break;
602 	case NVME_CTRL_DEAD:
603 		switch (old_state) {
604 		case NVME_CTRL_DELETING:
605 			changed = true;
606 			fallthrough;
607 		default:
608 			break;
609 		}
610 		break;
611 	default:
612 		break;
613 	}
614 
615 	if (changed) {
616 		WRITE_ONCE(ctrl->state, new_state);
617 		wake_up_all(&ctrl->state_wq);
618 	}
619 
620 	spin_unlock_irqrestore(&ctrl->lock, flags);
621 	if (!changed)
622 		return false;
623 
624 	if (new_state == NVME_CTRL_LIVE) {
625 		if (old_state == NVME_CTRL_CONNECTING)
626 			nvme_stop_failfast_work(ctrl);
627 		nvme_kick_requeue_lists(ctrl);
628 	} else if (new_state == NVME_CTRL_CONNECTING &&
629 		old_state == NVME_CTRL_RESETTING) {
630 		nvme_start_failfast_work(ctrl);
631 	}
632 	return changed;
633 }
634 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
635 
636 /*
637  * Waits for the controller state to be resetting, or returns false if it is
638  * not possible to ever transition to that state.
639  */
640 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
641 {
642 	wait_event(ctrl->state_wq,
643 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
644 		   nvme_state_terminal(ctrl));
645 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
646 }
647 EXPORT_SYMBOL_GPL(nvme_wait_reset);
648 
649 static void nvme_free_ns_head(struct kref *ref)
650 {
651 	struct nvme_ns_head *head =
652 		container_of(ref, struct nvme_ns_head, ref);
653 
654 	nvme_mpath_remove_disk(head);
655 	ida_free(&head->subsys->ns_ida, head->instance);
656 	cleanup_srcu_struct(&head->srcu);
657 	nvme_put_subsystem(head->subsys);
658 	kfree(head);
659 }
660 
661 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
662 {
663 	return kref_get_unless_zero(&head->ref);
664 }
665 
666 void nvme_put_ns_head(struct nvme_ns_head *head)
667 {
668 	kref_put(&head->ref, nvme_free_ns_head);
669 }
670 
671 static void nvme_free_ns(struct kref *kref)
672 {
673 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
674 
675 	put_disk(ns->disk);
676 	nvme_put_ns_head(ns->head);
677 	nvme_put_ctrl(ns->ctrl);
678 	kfree(ns);
679 }
680 
681 bool nvme_get_ns(struct nvme_ns *ns)
682 {
683 	return kref_get_unless_zero(&ns->kref);
684 }
685 
686 void nvme_put_ns(struct nvme_ns *ns)
687 {
688 	kref_put(&ns->kref, nvme_free_ns);
689 }
690 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
691 
692 static inline void nvme_clear_nvme_request(struct request *req)
693 {
694 	nvme_req(req)->status = 0;
695 	nvme_req(req)->retries = 0;
696 	nvme_req(req)->flags = 0;
697 	req->rq_flags |= RQF_DONTPREP;
698 }
699 
700 /* initialize a passthrough request */
701 void nvme_init_request(struct request *req, struct nvme_command *cmd)
702 {
703 	struct nvme_request *nr = nvme_req(req);
704 	bool logging_enabled;
705 
706 	if (req->q->queuedata) {
707 		struct nvme_ns *ns = req->q->disk->private_data;
708 
709 		logging_enabled = ns->head->passthru_err_log_enabled;
710 		req->timeout = NVME_IO_TIMEOUT;
711 	} else { /* no queuedata implies admin queue */
712 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
713 		req->timeout = NVME_ADMIN_TIMEOUT;
714 	}
715 
716 	if (!logging_enabled)
717 		req->rq_flags |= RQF_QUIET;
718 
719 	/* passthru commands should let the driver set the SGL flags */
720 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
721 
722 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
723 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
724 		req->cmd_flags |= REQ_POLLED;
725 	nvme_clear_nvme_request(req);
726 	memcpy(nr->cmd, cmd, sizeof(*cmd));
727 }
728 EXPORT_SYMBOL_GPL(nvme_init_request);
729 
730 /*
731  * For something we're not in a state to send to the device the default action
732  * is to busy it and retry it after the controller state is recovered.  However,
733  * if the controller is deleting or if anything is marked for failfast or
734  * nvme multipath it is immediately failed.
735  *
736  * Note: commands used to initialize the controller will be marked for failfast.
737  * Note: nvme cli/ioctl commands are marked for failfast.
738  */
739 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
740 		struct request *rq)
741 {
742 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
743 
744 	if (state != NVME_CTRL_DELETING_NOIO &&
745 	    state != NVME_CTRL_DELETING &&
746 	    state != NVME_CTRL_DEAD &&
747 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
748 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
749 		return BLK_STS_RESOURCE;
750 	return nvme_host_path_error(rq);
751 }
752 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
753 
754 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
755 		bool queue_live, enum nvme_ctrl_state state)
756 {
757 	struct nvme_request *req = nvme_req(rq);
758 
759 	/*
760 	 * currently we have a problem sending passthru commands
761 	 * on the admin_q if the controller is not LIVE because we can't
762 	 * make sure that they are going out after the admin connect,
763 	 * controller enable and/or other commands in the initialization
764 	 * sequence. until the controller will be LIVE, fail with
765 	 * BLK_STS_RESOURCE so that they will be rescheduled.
766 	 */
767 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
768 		return false;
769 
770 	if (ctrl->ops->flags & NVME_F_FABRICS) {
771 		/*
772 		 * Only allow commands on a live queue, except for the connect
773 		 * command, which is require to set the queue live in the
774 		 * appropinquate states.
775 		 */
776 		switch (state) {
777 		case NVME_CTRL_CONNECTING:
778 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
779 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
780 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
781 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
782 				return true;
783 			break;
784 		default:
785 			break;
786 		case NVME_CTRL_DEAD:
787 			return false;
788 		}
789 	}
790 
791 	return queue_live;
792 }
793 EXPORT_SYMBOL_GPL(__nvme_check_ready);
794 
795 static inline void nvme_setup_flush(struct nvme_ns *ns,
796 		struct nvme_command *cmnd)
797 {
798 	memset(cmnd, 0, sizeof(*cmnd));
799 	cmnd->common.opcode = nvme_cmd_flush;
800 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
801 }
802 
803 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
804 		struct nvme_command *cmnd)
805 {
806 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
807 	struct nvme_dsm_range *range;
808 	struct bio *bio;
809 
810 	/*
811 	 * Some devices do not consider the DSM 'Number of Ranges' field when
812 	 * determining how much data to DMA. Always allocate memory for maximum
813 	 * number of segments to prevent device reading beyond end of buffer.
814 	 */
815 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
816 
817 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
818 	if (!range) {
819 		/*
820 		 * If we fail allocation our range, fallback to the controller
821 		 * discard page. If that's also busy, it's safe to return
822 		 * busy, as we know we can make progress once that's freed.
823 		 */
824 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
825 			return BLK_STS_RESOURCE;
826 
827 		range = page_address(ns->ctrl->discard_page);
828 	}
829 
830 	if (queue_max_discard_segments(req->q) == 1) {
831 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
832 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
833 
834 		range[0].cattr = cpu_to_le32(0);
835 		range[0].nlb = cpu_to_le32(nlb);
836 		range[0].slba = cpu_to_le64(slba);
837 		n = 1;
838 	} else {
839 		__rq_for_each_bio(bio, req) {
840 			u64 slba = nvme_sect_to_lba(ns->head,
841 						    bio->bi_iter.bi_sector);
842 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
843 
844 			if (n < segments) {
845 				range[n].cattr = cpu_to_le32(0);
846 				range[n].nlb = cpu_to_le32(nlb);
847 				range[n].slba = cpu_to_le64(slba);
848 			}
849 			n++;
850 		}
851 	}
852 
853 	if (WARN_ON_ONCE(n != segments)) {
854 		if (virt_to_page(range) == ns->ctrl->discard_page)
855 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
856 		else
857 			kfree(range);
858 		return BLK_STS_IOERR;
859 	}
860 
861 	memset(cmnd, 0, sizeof(*cmnd));
862 	cmnd->dsm.opcode = nvme_cmd_dsm;
863 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
864 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
865 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
866 
867 	bvec_set_virt(&req->special_vec, range, alloc_size);
868 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
869 
870 	return BLK_STS_OK;
871 }
872 
873 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
874 			      struct request *req)
875 {
876 	u32 upper, lower;
877 	u64 ref48;
878 
879 	/* both rw and write zeroes share the same reftag format */
880 	switch (ns->head->guard_type) {
881 	case NVME_NVM_NS_16B_GUARD:
882 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
883 		break;
884 	case NVME_NVM_NS_64B_GUARD:
885 		ref48 = ext_pi_ref_tag(req);
886 		lower = lower_32_bits(ref48);
887 		upper = upper_32_bits(ref48);
888 
889 		cmnd->rw.reftag = cpu_to_le32(lower);
890 		cmnd->rw.cdw3 = cpu_to_le32(upper);
891 		break;
892 	default:
893 		break;
894 	}
895 }
896 
897 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
898 		struct request *req, struct nvme_command *cmnd)
899 {
900 	memset(cmnd, 0, sizeof(*cmnd));
901 
902 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
903 		return nvme_setup_discard(ns, req, cmnd);
904 
905 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
906 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
907 	cmnd->write_zeroes.slba =
908 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
909 	cmnd->write_zeroes.length =
910 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
911 
912 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
913 	    (ns->head->features & NVME_NS_DEAC))
914 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
915 
916 	if (nvme_ns_has_pi(ns->head)) {
917 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
918 
919 		switch (ns->head->pi_type) {
920 		case NVME_NS_DPS_PI_TYPE1:
921 		case NVME_NS_DPS_PI_TYPE2:
922 			nvme_set_ref_tag(ns, cmnd, req);
923 			break;
924 		}
925 	}
926 
927 	return BLK_STS_OK;
928 }
929 
930 /*
931  * NVMe does not support a dedicated command to issue an atomic write. A write
932  * which does adhere to the device atomic limits will silently be executed
933  * non-atomically. The request issuer should ensure that the write is within
934  * the queue atomic writes limits, but just validate this in case it is not.
935  */
936 static bool nvme_valid_atomic_write(struct request *req)
937 {
938 	struct request_queue *q = req->q;
939 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
940 
941 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
942 		return false;
943 
944 	if (boundary_bytes) {
945 		u64 mask = boundary_bytes - 1, imask = ~mask;
946 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
947 		u64 end = start + blk_rq_bytes(req) - 1;
948 
949 		/* If greater then must be crossing a boundary */
950 		if (blk_rq_bytes(req) > boundary_bytes)
951 			return false;
952 
953 		if ((start & imask) != (end & imask))
954 			return false;
955 	}
956 
957 	return true;
958 }
959 
960 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
961 		struct request *req, struct nvme_command *cmnd,
962 		enum nvme_opcode op)
963 {
964 	u16 control = 0;
965 	u32 dsmgmt = 0;
966 
967 	if (req->cmd_flags & REQ_FUA)
968 		control |= NVME_RW_FUA;
969 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
970 		control |= NVME_RW_LR;
971 
972 	if (req->cmd_flags & REQ_RAHEAD)
973 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
974 
975 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
976 		return BLK_STS_INVAL;
977 
978 	cmnd->rw.opcode = op;
979 	cmnd->rw.flags = 0;
980 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
981 	cmnd->rw.cdw2 = 0;
982 	cmnd->rw.cdw3 = 0;
983 	cmnd->rw.metadata = 0;
984 	cmnd->rw.slba =
985 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
986 	cmnd->rw.length =
987 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
988 	cmnd->rw.reftag = 0;
989 	cmnd->rw.apptag = 0;
990 	cmnd->rw.appmask = 0;
991 
992 	if (ns->head->ms) {
993 		/*
994 		 * If formated with metadata, the block layer always provides a
995 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
996 		 * we enable the PRACT bit for protection information or set the
997 		 * namespace capacity to zero to prevent any I/O.
998 		 */
999 		if (!blk_integrity_rq(req)) {
1000 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1001 				return BLK_STS_NOTSUPP;
1002 			control |= NVME_RW_PRINFO_PRACT;
1003 		}
1004 
1005 		switch (ns->head->pi_type) {
1006 		case NVME_NS_DPS_PI_TYPE3:
1007 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1008 			break;
1009 		case NVME_NS_DPS_PI_TYPE1:
1010 		case NVME_NS_DPS_PI_TYPE2:
1011 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
1012 					NVME_RW_PRINFO_PRCHK_REF;
1013 			if (op == nvme_cmd_zone_append)
1014 				control |= NVME_RW_APPEND_PIREMAP;
1015 			nvme_set_ref_tag(ns, cmnd, req);
1016 			break;
1017 		}
1018 	}
1019 
1020 	cmnd->rw.control = cpu_to_le16(control);
1021 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1022 	return 0;
1023 }
1024 
1025 void nvme_cleanup_cmd(struct request *req)
1026 {
1027 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1028 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1029 
1030 		if (req->special_vec.bv_page == ctrl->discard_page)
1031 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1032 		else
1033 			kfree(bvec_virt(&req->special_vec));
1034 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1035 	}
1036 }
1037 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1038 
1039 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1040 {
1041 	struct nvme_command *cmd = nvme_req(req)->cmd;
1042 	blk_status_t ret = BLK_STS_OK;
1043 
1044 	if (!(req->rq_flags & RQF_DONTPREP))
1045 		nvme_clear_nvme_request(req);
1046 
1047 	switch (req_op(req)) {
1048 	case REQ_OP_DRV_IN:
1049 	case REQ_OP_DRV_OUT:
1050 		/* these are setup prior to execution in nvme_init_request() */
1051 		break;
1052 	case REQ_OP_FLUSH:
1053 		nvme_setup_flush(ns, cmd);
1054 		break;
1055 	case REQ_OP_ZONE_RESET_ALL:
1056 	case REQ_OP_ZONE_RESET:
1057 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1058 		break;
1059 	case REQ_OP_ZONE_OPEN:
1060 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1061 		break;
1062 	case REQ_OP_ZONE_CLOSE:
1063 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1064 		break;
1065 	case REQ_OP_ZONE_FINISH:
1066 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1067 		break;
1068 	case REQ_OP_WRITE_ZEROES:
1069 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1070 		break;
1071 	case REQ_OP_DISCARD:
1072 		ret = nvme_setup_discard(ns, req, cmd);
1073 		break;
1074 	case REQ_OP_READ:
1075 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1076 		break;
1077 	case REQ_OP_WRITE:
1078 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1079 		break;
1080 	case REQ_OP_ZONE_APPEND:
1081 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1082 		break;
1083 	default:
1084 		WARN_ON_ONCE(1);
1085 		return BLK_STS_IOERR;
1086 	}
1087 
1088 	cmd->common.command_id = nvme_cid(req);
1089 	trace_nvme_setup_cmd(req, cmd);
1090 	return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1093 
1094 /*
1095  * Return values:
1096  * 0:  success
1097  * >0: nvme controller's cqe status response
1098  * <0: kernel error in lieu of controller response
1099  */
1100 int nvme_execute_rq(struct request *rq, bool at_head)
1101 {
1102 	blk_status_t status;
1103 
1104 	status = blk_execute_rq(rq, at_head);
1105 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1106 		return -EINTR;
1107 	if (nvme_req(rq)->status)
1108 		return nvme_req(rq)->status;
1109 	return blk_status_to_errno(status);
1110 }
1111 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1112 
1113 /*
1114  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1115  * if the result is positive, it's an NVM Express status code
1116  */
1117 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1118 		union nvme_result *result, void *buffer, unsigned bufflen,
1119 		int qid, nvme_submit_flags_t flags)
1120 {
1121 	struct request *req;
1122 	int ret;
1123 	blk_mq_req_flags_t blk_flags = 0;
1124 
1125 	if (flags & NVME_SUBMIT_NOWAIT)
1126 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1127 	if (flags & NVME_SUBMIT_RESERVED)
1128 		blk_flags |= BLK_MQ_REQ_RESERVED;
1129 	if (qid == NVME_QID_ANY)
1130 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1131 	else
1132 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1133 						qid - 1);
1134 
1135 	if (IS_ERR(req))
1136 		return PTR_ERR(req);
1137 	nvme_init_request(req, cmd);
1138 	if (flags & NVME_SUBMIT_RETRY)
1139 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1140 
1141 	if (buffer && bufflen) {
1142 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1143 		if (ret)
1144 			goto out;
1145 	}
1146 
1147 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1148 	if (result && ret >= 0)
1149 		*result = nvme_req(req)->result;
1150  out:
1151 	blk_mq_free_request(req);
1152 	return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1155 
1156 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1157 		void *buffer, unsigned bufflen)
1158 {
1159 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1160 			NVME_QID_ANY, 0);
1161 }
1162 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1163 
1164 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1165 {
1166 	u32 effects = 0;
1167 
1168 	if (ns) {
1169 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1170 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1171 			dev_warn_once(ctrl->device,
1172 				"IO command:%02x has unusual effects:%08x\n",
1173 				opcode, effects);
1174 
1175 		/*
1176 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1177 		 * which would deadlock when done on an I/O command.  Note that
1178 		 * We already warn about an unusual effect above.
1179 		 */
1180 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1181 	} else {
1182 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1183 
1184 		/* Ignore execution restrictions if any relaxation bits are set */
1185 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1186 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1187 	}
1188 
1189 	return effects;
1190 }
1191 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1192 
1193 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1194 {
1195 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1196 
1197 	/*
1198 	 * For simplicity, IO to all namespaces is quiesced even if the command
1199 	 * effects say only one namespace is affected.
1200 	 */
1201 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1202 		mutex_lock(&ctrl->scan_lock);
1203 		mutex_lock(&ctrl->subsys->lock);
1204 		nvme_mpath_start_freeze(ctrl->subsys);
1205 		nvme_mpath_wait_freeze(ctrl->subsys);
1206 		nvme_start_freeze(ctrl);
1207 		nvme_wait_freeze(ctrl);
1208 	}
1209 	return effects;
1210 }
1211 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1212 
1213 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1214 		       struct nvme_command *cmd, int status)
1215 {
1216 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1217 		nvme_unfreeze(ctrl);
1218 		nvme_mpath_unfreeze(ctrl->subsys);
1219 		mutex_unlock(&ctrl->subsys->lock);
1220 		mutex_unlock(&ctrl->scan_lock);
1221 	}
1222 	if (effects & NVME_CMD_EFFECTS_CCC) {
1223 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1224 				      &ctrl->flags)) {
1225 			dev_info(ctrl->device,
1226 "controller capabilities changed, reset may be required to take effect.\n");
1227 		}
1228 	}
1229 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1230 		nvme_queue_scan(ctrl);
1231 		flush_work(&ctrl->scan_work);
1232 	}
1233 	if (ns)
1234 		return;
1235 
1236 	switch (cmd->common.opcode) {
1237 	case nvme_admin_set_features:
1238 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1239 		case NVME_FEAT_KATO:
1240 			/*
1241 			 * Keep alive commands interval on the host should be
1242 			 * updated when KATO is modified by Set Features
1243 			 * commands.
1244 			 */
1245 			if (!status)
1246 				nvme_update_keep_alive(ctrl, cmd);
1247 			break;
1248 		default:
1249 			break;
1250 		}
1251 		break;
1252 	default:
1253 		break;
1254 	}
1255 }
1256 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1257 
1258 /*
1259  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1260  *
1261  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1262  *   accounting for transport roundtrip times [..].
1263  */
1264 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1265 {
1266 	unsigned long delay = ctrl->kato * HZ / 2;
1267 
1268 	/*
1269 	 * When using Traffic Based Keep Alive, we need to run
1270 	 * nvme_keep_alive_work at twice the normal frequency, as one
1271 	 * command completion can postpone sending a keep alive command
1272 	 * by up to twice the delay between runs.
1273 	 */
1274 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1275 		delay /= 2;
1276 	return delay;
1277 }
1278 
1279 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1280 {
1281 	unsigned long now = jiffies;
1282 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1283 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1284 
1285 	if (time_after(now, ka_next_check_tm))
1286 		delay = 0;
1287 	else
1288 		delay = ka_next_check_tm - now;
1289 
1290 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1291 }
1292 
1293 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1294 						 blk_status_t status)
1295 {
1296 	struct nvme_ctrl *ctrl = rq->end_io_data;
1297 	unsigned long flags;
1298 	bool startka = false;
1299 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1300 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1301 
1302 	/*
1303 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1304 	 * at the desired frequency.
1305 	 */
1306 	if (rtt <= delay) {
1307 		delay -= rtt;
1308 	} else {
1309 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1310 			 jiffies_to_msecs(rtt));
1311 		delay = 0;
1312 	}
1313 
1314 	blk_mq_free_request(rq);
1315 
1316 	if (status) {
1317 		dev_err(ctrl->device,
1318 			"failed nvme_keep_alive_end_io error=%d\n",
1319 				status);
1320 		return RQ_END_IO_NONE;
1321 	}
1322 
1323 	ctrl->ka_last_check_time = jiffies;
1324 	ctrl->comp_seen = false;
1325 	spin_lock_irqsave(&ctrl->lock, flags);
1326 	if (ctrl->state == NVME_CTRL_LIVE ||
1327 	    ctrl->state == NVME_CTRL_CONNECTING)
1328 		startka = true;
1329 	spin_unlock_irqrestore(&ctrl->lock, flags);
1330 	if (startka)
1331 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1332 	return RQ_END_IO_NONE;
1333 }
1334 
1335 static void nvme_keep_alive_work(struct work_struct *work)
1336 {
1337 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1338 			struct nvme_ctrl, ka_work);
1339 	bool comp_seen = ctrl->comp_seen;
1340 	struct request *rq;
1341 
1342 	ctrl->ka_last_check_time = jiffies;
1343 
1344 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1345 		dev_dbg(ctrl->device,
1346 			"reschedule traffic based keep-alive timer\n");
1347 		ctrl->comp_seen = false;
1348 		nvme_queue_keep_alive_work(ctrl);
1349 		return;
1350 	}
1351 
1352 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1353 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1354 	if (IS_ERR(rq)) {
1355 		/* allocation failure, reset the controller */
1356 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1357 		nvme_reset_ctrl(ctrl);
1358 		return;
1359 	}
1360 	nvme_init_request(rq, &ctrl->ka_cmd);
1361 
1362 	rq->timeout = ctrl->kato * HZ;
1363 	rq->end_io = nvme_keep_alive_end_io;
1364 	rq->end_io_data = ctrl;
1365 	blk_execute_rq_nowait(rq, false);
1366 }
1367 
1368 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1369 {
1370 	if (unlikely(ctrl->kato == 0))
1371 		return;
1372 
1373 	nvme_queue_keep_alive_work(ctrl);
1374 }
1375 
1376 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1377 {
1378 	if (unlikely(ctrl->kato == 0))
1379 		return;
1380 
1381 	cancel_delayed_work_sync(&ctrl->ka_work);
1382 }
1383 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1384 
1385 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1386 				   struct nvme_command *cmd)
1387 {
1388 	unsigned int new_kato =
1389 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1390 
1391 	dev_info(ctrl->device,
1392 		 "keep alive interval updated from %u ms to %u ms\n",
1393 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1394 
1395 	nvme_stop_keep_alive(ctrl);
1396 	ctrl->kato = new_kato;
1397 	nvme_start_keep_alive(ctrl);
1398 }
1399 
1400 /*
1401  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1402  * flag, thus sending any new CNS opcodes has a big chance of not working.
1403  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1404  * (but not for any later version).
1405  */
1406 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1407 {
1408 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1409 		return ctrl->vs < NVME_VS(1, 2, 0);
1410 	return ctrl->vs < NVME_VS(1, 1, 0);
1411 }
1412 
1413 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1414 {
1415 	struct nvme_command c = { };
1416 	int error;
1417 
1418 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1419 	c.identify.opcode = nvme_admin_identify;
1420 	c.identify.cns = NVME_ID_CNS_CTRL;
1421 
1422 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1423 	if (!*id)
1424 		return -ENOMEM;
1425 
1426 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1427 			sizeof(struct nvme_id_ctrl));
1428 	if (error) {
1429 		kfree(*id);
1430 		*id = NULL;
1431 	}
1432 	return error;
1433 }
1434 
1435 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1436 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1437 {
1438 	const char *warn_str = "ctrl returned bogus length:";
1439 	void *data = cur;
1440 
1441 	switch (cur->nidt) {
1442 	case NVME_NIDT_EUI64:
1443 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1444 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1445 				 warn_str, cur->nidl);
1446 			return -1;
1447 		}
1448 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1449 			return NVME_NIDT_EUI64_LEN;
1450 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1451 		return NVME_NIDT_EUI64_LEN;
1452 	case NVME_NIDT_NGUID:
1453 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1454 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1455 				 warn_str, cur->nidl);
1456 			return -1;
1457 		}
1458 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1459 			return NVME_NIDT_NGUID_LEN;
1460 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1461 		return NVME_NIDT_NGUID_LEN;
1462 	case NVME_NIDT_UUID:
1463 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1464 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1465 				 warn_str, cur->nidl);
1466 			return -1;
1467 		}
1468 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1469 			return NVME_NIDT_UUID_LEN;
1470 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1471 		return NVME_NIDT_UUID_LEN;
1472 	case NVME_NIDT_CSI:
1473 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1474 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1475 				 warn_str, cur->nidl);
1476 			return -1;
1477 		}
1478 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1479 		*csi_seen = true;
1480 		return NVME_NIDT_CSI_LEN;
1481 	default:
1482 		/* Skip unknown types */
1483 		return cur->nidl;
1484 	}
1485 }
1486 
1487 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1488 		struct nvme_ns_info *info)
1489 {
1490 	struct nvme_command c = { };
1491 	bool csi_seen = false;
1492 	int status, pos, len;
1493 	void *data;
1494 
1495 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1496 		return 0;
1497 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1498 		return 0;
1499 
1500 	c.identify.opcode = nvme_admin_identify;
1501 	c.identify.nsid = cpu_to_le32(info->nsid);
1502 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1503 
1504 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1505 	if (!data)
1506 		return -ENOMEM;
1507 
1508 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1509 				      NVME_IDENTIFY_DATA_SIZE);
1510 	if (status) {
1511 		dev_warn(ctrl->device,
1512 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1513 			info->nsid, status);
1514 		goto free_data;
1515 	}
1516 
1517 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1518 		struct nvme_ns_id_desc *cur = data + pos;
1519 
1520 		if (cur->nidl == 0)
1521 			break;
1522 
1523 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1524 		if (len < 0)
1525 			break;
1526 
1527 		len += sizeof(*cur);
1528 	}
1529 
1530 	if (nvme_multi_css(ctrl) && !csi_seen) {
1531 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1532 			 info->nsid);
1533 		status = -EINVAL;
1534 	}
1535 
1536 free_data:
1537 	kfree(data);
1538 	return status;
1539 }
1540 
1541 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1542 			struct nvme_id_ns **id)
1543 {
1544 	struct nvme_command c = { };
1545 	int error;
1546 
1547 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1548 	c.identify.opcode = nvme_admin_identify;
1549 	c.identify.nsid = cpu_to_le32(nsid);
1550 	c.identify.cns = NVME_ID_CNS_NS;
1551 
1552 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1553 	if (!*id)
1554 		return -ENOMEM;
1555 
1556 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1557 	if (error) {
1558 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1559 		kfree(*id);
1560 		*id = NULL;
1561 	}
1562 	return error;
1563 }
1564 
1565 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1566 		struct nvme_ns_info *info)
1567 {
1568 	struct nvme_ns_ids *ids = &info->ids;
1569 	struct nvme_id_ns *id;
1570 	int ret;
1571 
1572 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1573 	if (ret)
1574 		return ret;
1575 
1576 	if (id->ncap == 0) {
1577 		/* namespace not allocated or attached */
1578 		info->is_removed = true;
1579 		ret = -ENODEV;
1580 		goto error;
1581 	}
1582 
1583 	info->anagrpid = id->anagrpid;
1584 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1585 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1586 	info->is_ready = true;
1587 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1588 		dev_info(ctrl->device,
1589 			 "Ignoring bogus Namespace Identifiers\n");
1590 	} else {
1591 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1592 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1593 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1594 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1595 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1596 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1597 	}
1598 
1599 error:
1600 	kfree(id);
1601 	return ret;
1602 }
1603 
1604 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1605 		struct nvme_ns_info *info)
1606 {
1607 	struct nvme_id_ns_cs_indep *id;
1608 	struct nvme_command c = {
1609 		.identify.opcode	= nvme_admin_identify,
1610 		.identify.nsid		= cpu_to_le32(info->nsid),
1611 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1612 	};
1613 	int ret;
1614 
1615 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1616 	if (!id)
1617 		return -ENOMEM;
1618 
1619 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1620 	if (!ret) {
1621 		info->anagrpid = id->anagrpid;
1622 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1623 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1624 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1625 	}
1626 	kfree(id);
1627 	return ret;
1628 }
1629 
1630 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1631 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1632 {
1633 	union nvme_result res = { 0 };
1634 	struct nvme_command c = { };
1635 	int ret;
1636 
1637 	c.features.opcode = op;
1638 	c.features.fid = cpu_to_le32(fid);
1639 	c.features.dword11 = cpu_to_le32(dword11);
1640 
1641 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1642 			buffer, buflen, NVME_QID_ANY, 0);
1643 	if (ret >= 0 && result)
1644 		*result = le32_to_cpu(res.u32);
1645 	return ret;
1646 }
1647 
1648 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1649 		      unsigned int dword11, void *buffer, size_t buflen,
1650 		      u32 *result)
1651 {
1652 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1653 			     buflen, result);
1654 }
1655 EXPORT_SYMBOL_GPL(nvme_set_features);
1656 
1657 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1658 		      unsigned int dword11, void *buffer, size_t buflen,
1659 		      u32 *result)
1660 {
1661 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1662 			     buflen, result);
1663 }
1664 EXPORT_SYMBOL_GPL(nvme_get_features);
1665 
1666 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1667 {
1668 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1669 	u32 result;
1670 	int status, nr_io_queues;
1671 
1672 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1673 			&result);
1674 	if (status < 0)
1675 		return status;
1676 
1677 	/*
1678 	 * Degraded controllers might return an error when setting the queue
1679 	 * count.  We still want to be able to bring them online and offer
1680 	 * access to the admin queue, as that might be only way to fix them up.
1681 	 */
1682 	if (status > 0) {
1683 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1684 		*count = 0;
1685 	} else {
1686 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1687 		*count = min(*count, nr_io_queues);
1688 	}
1689 
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1693 
1694 #define NVME_AEN_SUPPORTED \
1695 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1696 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1697 
1698 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1699 {
1700 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1701 	int status;
1702 
1703 	if (!supported_aens)
1704 		return;
1705 
1706 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1707 			NULL, 0, &result);
1708 	if (status)
1709 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1710 			 supported_aens);
1711 
1712 	queue_work(nvme_wq, &ctrl->async_event_work);
1713 }
1714 
1715 static int nvme_ns_open(struct nvme_ns *ns)
1716 {
1717 
1718 	/* should never be called due to GENHD_FL_HIDDEN */
1719 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1720 		goto fail;
1721 	if (!nvme_get_ns(ns))
1722 		goto fail;
1723 	if (!try_module_get(ns->ctrl->ops->module))
1724 		goto fail_put_ns;
1725 
1726 	return 0;
1727 
1728 fail_put_ns:
1729 	nvme_put_ns(ns);
1730 fail:
1731 	return -ENXIO;
1732 }
1733 
1734 static void nvme_ns_release(struct nvme_ns *ns)
1735 {
1736 
1737 	module_put(ns->ctrl->ops->module);
1738 	nvme_put_ns(ns);
1739 }
1740 
1741 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1742 {
1743 	return nvme_ns_open(disk->private_data);
1744 }
1745 
1746 static void nvme_release(struct gendisk *disk)
1747 {
1748 	nvme_ns_release(disk->private_data);
1749 }
1750 
1751 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1752 {
1753 	/* some standard values */
1754 	geo->heads = 1 << 6;
1755 	geo->sectors = 1 << 5;
1756 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1757 	return 0;
1758 }
1759 
1760 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head,
1761 		struct queue_limits *lim)
1762 {
1763 	struct blk_integrity *bi = &lim->integrity;
1764 
1765 	memset(bi, 0, sizeof(*bi));
1766 
1767 	if (!head->ms)
1768 		return true;
1769 
1770 	/*
1771 	 * PI can always be supported as we can ask the controller to simply
1772 	 * insert/strip it, which is not possible for other kinds of metadata.
1773 	 */
1774 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1775 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1776 		return nvme_ns_has_pi(head);
1777 
1778 	switch (head->pi_type) {
1779 	case NVME_NS_DPS_PI_TYPE3:
1780 		switch (head->guard_type) {
1781 		case NVME_NVM_NS_16B_GUARD:
1782 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1783 			bi->tag_size = sizeof(u16) + sizeof(u32);
1784 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1785 			break;
1786 		case NVME_NVM_NS_64B_GUARD:
1787 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1788 			bi->tag_size = sizeof(u16) + 6;
1789 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1790 			break;
1791 		default:
1792 			break;
1793 		}
1794 		break;
1795 	case NVME_NS_DPS_PI_TYPE1:
1796 	case NVME_NS_DPS_PI_TYPE2:
1797 		switch (head->guard_type) {
1798 		case NVME_NVM_NS_16B_GUARD:
1799 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1800 			bi->tag_size = sizeof(u16);
1801 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1802 				     BLK_INTEGRITY_REF_TAG;
1803 			break;
1804 		case NVME_NVM_NS_64B_GUARD:
1805 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1806 			bi->tag_size = sizeof(u16);
1807 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1808 				     BLK_INTEGRITY_REF_TAG;
1809 			break;
1810 		default:
1811 			break;
1812 		}
1813 		break;
1814 	default:
1815 		break;
1816 	}
1817 
1818 	bi->tuple_size = head->ms;
1819 	bi->pi_offset = head->pi_offset;
1820 	return true;
1821 }
1822 
1823 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1824 {
1825 	struct nvme_ctrl *ctrl = ns->ctrl;
1826 
1827 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1828 		lim->max_hw_discard_sectors =
1829 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1830 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1831 		lim->max_hw_discard_sectors = UINT_MAX;
1832 	else
1833 		lim->max_hw_discard_sectors = 0;
1834 
1835 	lim->discard_granularity = lim->logical_block_size;
1836 
1837 	if (ctrl->dmrl)
1838 		lim->max_discard_segments = ctrl->dmrl;
1839 	else
1840 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1841 }
1842 
1843 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1844 {
1845 	return uuid_equal(&a->uuid, &b->uuid) &&
1846 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1847 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1848 		a->csi == b->csi;
1849 }
1850 
1851 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1852 		struct nvme_id_ns_nvm **nvmp)
1853 {
1854 	struct nvme_command c = {
1855 		.identify.opcode	= nvme_admin_identify,
1856 		.identify.nsid		= cpu_to_le32(nsid),
1857 		.identify.cns		= NVME_ID_CNS_CS_NS,
1858 		.identify.csi		= NVME_CSI_NVM,
1859 	};
1860 	struct nvme_id_ns_nvm *nvm;
1861 	int ret;
1862 
1863 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1864 	if (!nvm)
1865 		return -ENOMEM;
1866 
1867 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1868 	if (ret)
1869 		kfree(nvm);
1870 	else
1871 		*nvmp = nvm;
1872 	return ret;
1873 }
1874 
1875 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1876 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1877 {
1878 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1879 	u8 guard_type;
1880 
1881 	/* no support for storage tag formats right now */
1882 	if (nvme_elbaf_sts(elbaf))
1883 		return;
1884 
1885 	guard_type = nvme_elbaf_guard_type(elbaf);
1886 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1887 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1888 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1889 
1890 	head->guard_type = guard_type;
1891 	switch (head->guard_type) {
1892 	case NVME_NVM_NS_64B_GUARD:
1893 		head->pi_size = sizeof(struct crc64_pi_tuple);
1894 		break;
1895 	case NVME_NVM_NS_16B_GUARD:
1896 		head->pi_size = sizeof(struct t10_pi_tuple);
1897 		break;
1898 	default:
1899 		break;
1900 	}
1901 }
1902 
1903 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1904 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1905 		struct nvme_id_ns_nvm *nvm)
1906 {
1907 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1908 	head->pi_type = 0;
1909 	head->pi_size = 0;
1910 	head->pi_offset = 0;
1911 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1912 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1913 		return;
1914 
1915 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1916 		nvme_configure_pi_elbas(head, id, nvm);
1917 	} else {
1918 		head->pi_size = sizeof(struct t10_pi_tuple);
1919 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1920 	}
1921 
1922 	if (head->pi_size && head->ms >= head->pi_size)
1923 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1924 	if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1925 		head->pi_offset = head->ms - head->pi_size;
1926 
1927 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1928 		/*
1929 		 * The NVMe over Fabrics specification only supports metadata as
1930 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1931 		 * remap the separate metadata buffer from the block layer.
1932 		 */
1933 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1934 			return;
1935 
1936 		head->features |= NVME_NS_EXT_LBAS;
1937 
1938 		/*
1939 		 * The current fabrics transport drivers support namespace
1940 		 * metadata formats only if nvme_ns_has_pi() returns true.
1941 		 * Suppress support for all other formats so the namespace will
1942 		 * have a 0 capacity and not be usable through the block stack.
1943 		 *
1944 		 * Note, this check will need to be modified if any drivers
1945 		 * gain the ability to use other metadata formats.
1946 		 */
1947 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1948 			head->features |= NVME_NS_METADATA_SUPPORTED;
1949 	} else {
1950 		/*
1951 		 * For PCIe controllers, we can't easily remap the separate
1952 		 * metadata buffer from the block layer and thus require a
1953 		 * separate metadata buffer for block layer metadata/PI support.
1954 		 * We allow extended LBAs for the passthrough interface, though.
1955 		 */
1956 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1957 			head->features |= NVME_NS_EXT_LBAS;
1958 		else
1959 			head->features |= NVME_NS_METADATA_SUPPORTED;
1960 	}
1961 }
1962 
1963 
1964 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1965 			struct nvme_id_ns *id, struct queue_limits *lim,
1966 			u32 bs, u32 atomic_bs)
1967 {
1968 	unsigned int boundary = 0;
1969 
1970 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1971 		if (le16_to_cpu(id->nabspf))
1972 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
1973 	}
1974 	lim->atomic_write_hw_max = atomic_bs;
1975 	lim->atomic_write_hw_boundary = boundary;
1976 	lim->atomic_write_hw_unit_min = bs;
1977 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
1978 }
1979 
1980 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1981 {
1982 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1983 }
1984 
1985 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1986 		struct queue_limits *lim)
1987 {
1988 	lim->max_hw_sectors = ctrl->max_hw_sectors;
1989 	lim->max_segments = min_t(u32, USHRT_MAX,
1990 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1991 	lim->max_integrity_segments = ctrl->max_integrity_segments;
1992 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1993 	lim->max_segment_size = UINT_MAX;
1994 	lim->dma_alignment = 3;
1995 }
1996 
1997 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1998 		struct queue_limits *lim)
1999 {
2000 	struct nvme_ns_head *head = ns->head;
2001 	u32 bs = 1U << head->lba_shift;
2002 	u32 atomic_bs, phys_bs, io_opt = 0;
2003 	bool valid = true;
2004 
2005 	/*
2006 	 * The block layer can't support LBA sizes larger than the page size
2007 	 * or smaller than a sector size yet, so catch this early and don't
2008 	 * allow block I/O.
2009 	 */
2010 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
2011 		bs = (1 << 9);
2012 		valid = false;
2013 	}
2014 
2015 	atomic_bs = phys_bs = bs;
2016 	if (id->nabo == 0) {
2017 		/*
2018 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2019 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2020 		 * 0 then AWUPF must be used instead.
2021 		 */
2022 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2023 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2024 		else
2025 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2026 
2027 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2028 	}
2029 
2030 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2031 		/* NPWG = Namespace Preferred Write Granularity */
2032 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2033 		/* NOWS = Namespace Optimal Write Size */
2034 		if (id->nows)
2035 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2036 	}
2037 
2038 	/*
2039 	 * Linux filesystems assume writing a single physical block is
2040 	 * an atomic operation. Hence limit the physical block size to the
2041 	 * value of the Atomic Write Unit Power Fail parameter.
2042 	 */
2043 	lim->logical_block_size = bs;
2044 	lim->physical_block_size = min(phys_bs, atomic_bs);
2045 	lim->io_min = phys_bs;
2046 	lim->io_opt = io_opt;
2047 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2048 		lim->max_write_zeroes_sectors = UINT_MAX;
2049 	else
2050 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2051 	return valid;
2052 }
2053 
2054 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2055 {
2056 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2057 }
2058 
2059 static inline bool nvme_first_scan(struct gendisk *disk)
2060 {
2061 	/* nvme_alloc_ns() scans the disk prior to adding it */
2062 	return !disk_live(disk);
2063 }
2064 
2065 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2066 		struct queue_limits *lim)
2067 {
2068 	struct nvme_ctrl *ctrl = ns->ctrl;
2069 	u32 iob;
2070 
2071 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2072 	    is_power_of_2(ctrl->max_hw_sectors))
2073 		iob = ctrl->max_hw_sectors;
2074 	else
2075 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2076 
2077 	if (!iob)
2078 		return;
2079 
2080 	if (!is_power_of_2(iob)) {
2081 		if (nvme_first_scan(ns->disk))
2082 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2083 				ns->disk->disk_name, iob);
2084 		return;
2085 	}
2086 
2087 	if (blk_queue_is_zoned(ns->disk->queue)) {
2088 		if (nvme_first_scan(ns->disk))
2089 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2090 				ns->disk->disk_name);
2091 		return;
2092 	}
2093 
2094 	lim->chunk_sectors = iob;
2095 }
2096 
2097 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2098 		struct nvme_ns_info *info)
2099 {
2100 	struct queue_limits lim;
2101 	int ret;
2102 
2103 	blk_mq_freeze_queue(ns->disk->queue);
2104 	lim = queue_limits_start_update(ns->disk->queue);
2105 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2106 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2107 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2108 	blk_mq_unfreeze_queue(ns->disk->queue);
2109 
2110 	/* Hide the block-interface for these devices */
2111 	if (!ret)
2112 		ret = -ENODEV;
2113 	return ret;
2114 }
2115 
2116 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2117 		struct nvme_ns_info *info)
2118 {
2119 	struct queue_limits lim;
2120 	struct nvme_id_ns_nvm *nvm = NULL;
2121 	struct nvme_zone_info zi = {};
2122 	struct nvme_id_ns *id;
2123 	sector_t capacity;
2124 	unsigned lbaf;
2125 	int ret;
2126 
2127 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2128 	if (ret)
2129 		return ret;
2130 
2131 	if (id->ncap == 0) {
2132 		/* namespace not allocated or attached */
2133 		info->is_removed = true;
2134 		ret = -ENXIO;
2135 		goto out;
2136 	}
2137 	lbaf = nvme_lbaf_index(id->flbas);
2138 
2139 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2140 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2141 		if (ret < 0)
2142 			goto out;
2143 	}
2144 
2145 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2146 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2147 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2148 		if (ret < 0)
2149 			goto out;
2150 	}
2151 
2152 	blk_mq_freeze_queue(ns->disk->queue);
2153 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2154 	ns->head->nuse = le64_to_cpu(id->nuse);
2155 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2156 
2157 	lim = queue_limits_start_update(ns->disk->queue);
2158 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2159 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm);
2160 	nvme_set_chunk_sectors(ns, id, &lim);
2161 	if (!nvme_update_disk_info(ns, id, &lim))
2162 		capacity = 0;
2163 	nvme_config_discard(ns, &lim);
2164 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2165 	    ns->head->ids.csi == NVME_CSI_ZNS)
2166 		nvme_update_zone_info(ns, &lim, &zi);
2167 
2168 	if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2169 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2170 	else
2171 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2172 
2173 	/*
2174 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2175 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2176 	 * I/O to namespaces with metadata except when the namespace supports
2177 	 * PI, as it can strip/insert in that case.
2178 	 */
2179 	if (!nvme_init_integrity(ns->disk, ns->head, &lim))
2180 		capacity = 0;
2181 
2182 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2183 	if (ret) {
2184 		blk_mq_unfreeze_queue(ns->disk->queue);
2185 		goto out;
2186 	}
2187 
2188 	set_capacity_and_notify(ns->disk, capacity);
2189 
2190 	/*
2191 	 * Only set the DEAC bit if the device guarantees that reads from
2192 	 * deallocated data return zeroes.  While the DEAC bit does not
2193 	 * require that, it must be a no-op if reads from deallocated data
2194 	 * do not return zeroes.
2195 	 */
2196 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2197 		ns->head->features |= NVME_NS_DEAC;
2198 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2199 	set_bit(NVME_NS_READY, &ns->flags);
2200 	blk_mq_unfreeze_queue(ns->disk->queue);
2201 
2202 	if (blk_queue_is_zoned(ns->queue)) {
2203 		ret = blk_revalidate_disk_zones(ns->disk);
2204 		if (ret && !nvme_first_scan(ns->disk))
2205 			goto out;
2206 	}
2207 
2208 	ret = 0;
2209 out:
2210 	kfree(nvm);
2211 	kfree(id);
2212 	return ret;
2213 }
2214 
2215 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2216 {
2217 	bool unsupported = false;
2218 	int ret;
2219 
2220 	switch (info->ids.csi) {
2221 	case NVME_CSI_ZNS:
2222 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2223 			dev_info(ns->ctrl->device,
2224 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2225 				info->nsid);
2226 			ret = nvme_update_ns_info_generic(ns, info);
2227 			break;
2228 		}
2229 		ret = nvme_update_ns_info_block(ns, info);
2230 		break;
2231 	case NVME_CSI_NVM:
2232 		ret = nvme_update_ns_info_block(ns, info);
2233 		break;
2234 	default:
2235 		dev_info(ns->ctrl->device,
2236 			"block device for nsid %u not supported (csi %u)\n",
2237 			info->nsid, info->ids.csi);
2238 		ret = nvme_update_ns_info_generic(ns, info);
2239 		break;
2240 	}
2241 
2242 	/*
2243 	 * If probing fails due an unsupported feature, hide the block device,
2244 	 * but still allow other access.
2245 	 */
2246 	if (ret == -ENODEV) {
2247 		ns->disk->flags |= GENHD_FL_HIDDEN;
2248 		set_bit(NVME_NS_READY, &ns->flags);
2249 		unsupported = true;
2250 		ret = 0;
2251 	}
2252 
2253 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2254 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2255 		struct queue_limits lim;
2256 
2257 		blk_mq_freeze_queue(ns->head->disk->queue);
2258 		/*
2259 		 * queue_limits mixes values that are the hardware limitations
2260 		 * for bio splitting with what is the device configuration.
2261 		 *
2262 		 * For NVMe the device configuration can change after e.g. a
2263 		 * Format command, and we really want to pick up the new format
2264 		 * value here.  But we must still stack the queue limits to the
2265 		 * least common denominator for multipathing to split the bios
2266 		 * properly.
2267 		 *
2268 		 * To work around this, we explicitly set the device
2269 		 * configuration to those that we just queried, but only stack
2270 		 * the splitting limits in to make sure we still obey possibly
2271 		 * lower limitations of other controllers.
2272 		 */
2273 		lim = queue_limits_start_update(ns->head->disk->queue);
2274 		lim.logical_block_size = ns_lim->logical_block_size;
2275 		lim.physical_block_size = ns_lim->physical_block_size;
2276 		lim.io_min = ns_lim->io_min;
2277 		lim.io_opt = ns_lim->io_opt;
2278 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2279 					ns->head->disk->disk_name);
2280 		if (unsupported)
2281 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2282 		else
2283 			nvme_init_integrity(ns->head->disk, ns->head, &lim);
2284 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2285 
2286 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2287 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2288 		nvme_mpath_revalidate_paths(ns);
2289 
2290 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2291 	}
2292 
2293 	return ret;
2294 }
2295 
2296 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2297 		enum blk_unique_id type)
2298 {
2299 	struct nvme_ns_ids *ids = &ns->head->ids;
2300 
2301 	if (type != BLK_UID_EUI64)
2302 		return -EINVAL;
2303 
2304 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2305 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2306 		return sizeof(ids->nguid);
2307 	}
2308 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2309 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2310 		return sizeof(ids->eui64);
2311 	}
2312 
2313 	return -EINVAL;
2314 }
2315 
2316 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2317 		enum blk_unique_id type)
2318 {
2319 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2320 }
2321 
2322 #ifdef CONFIG_BLK_SED_OPAL
2323 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2324 		bool send)
2325 {
2326 	struct nvme_ctrl *ctrl = data;
2327 	struct nvme_command cmd = { };
2328 
2329 	if (send)
2330 		cmd.common.opcode = nvme_admin_security_send;
2331 	else
2332 		cmd.common.opcode = nvme_admin_security_recv;
2333 	cmd.common.nsid = 0;
2334 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2335 	cmd.common.cdw11 = cpu_to_le32(len);
2336 
2337 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2338 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2339 }
2340 
2341 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2342 {
2343 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2344 		if (!ctrl->opal_dev)
2345 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2346 		else if (was_suspended)
2347 			opal_unlock_from_suspend(ctrl->opal_dev);
2348 	} else {
2349 		free_opal_dev(ctrl->opal_dev);
2350 		ctrl->opal_dev = NULL;
2351 	}
2352 }
2353 #else
2354 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2355 {
2356 }
2357 #endif /* CONFIG_BLK_SED_OPAL */
2358 
2359 #ifdef CONFIG_BLK_DEV_ZONED
2360 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2361 		unsigned int nr_zones, report_zones_cb cb, void *data)
2362 {
2363 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2364 			data);
2365 }
2366 #else
2367 #define nvme_report_zones	NULL
2368 #endif /* CONFIG_BLK_DEV_ZONED */
2369 
2370 const struct block_device_operations nvme_bdev_ops = {
2371 	.owner		= THIS_MODULE,
2372 	.ioctl		= nvme_ioctl,
2373 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2374 	.open		= nvme_open,
2375 	.release	= nvme_release,
2376 	.getgeo		= nvme_getgeo,
2377 	.get_unique_id	= nvme_get_unique_id,
2378 	.report_zones	= nvme_report_zones,
2379 	.pr_ops		= &nvme_pr_ops,
2380 };
2381 
2382 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2383 		u32 timeout, const char *op)
2384 {
2385 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2386 	u32 csts;
2387 	int ret;
2388 
2389 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2390 		if (csts == ~0)
2391 			return -ENODEV;
2392 		if ((csts & mask) == val)
2393 			break;
2394 
2395 		usleep_range(1000, 2000);
2396 		if (fatal_signal_pending(current))
2397 			return -EINTR;
2398 		if (time_after(jiffies, timeout_jiffies)) {
2399 			dev_err(ctrl->device,
2400 				"Device not ready; aborting %s, CSTS=0x%x\n",
2401 				op, csts);
2402 			return -ENODEV;
2403 		}
2404 	}
2405 
2406 	return ret;
2407 }
2408 
2409 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2410 {
2411 	int ret;
2412 
2413 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2414 	if (shutdown)
2415 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2416 	else
2417 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2418 
2419 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2420 	if (ret)
2421 		return ret;
2422 
2423 	if (shutdown) {
2424 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2425 				       NVME_CSTS_SHST_CMPLT,
2426 				       ctrl->shutdown_timeout, "shutdown");
2427 	}
2428 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2429 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2430 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2431 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2432 }
2433 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2434 
2435 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2436 {
2437 	unsigned dev_page_min;
2438 	u32 timeout;
2439 	int ret;
2440 
2441 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2442 	if (ret) {
2443 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2444 		return ret;
2445 	}
2446 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2447 
2448 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2449 		dev_err(ctrl->device,
2450 			"Minimum device page size %u too large for host (%u)\n",
2451 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2452 		return -ENODEV;
2453 	}
2454 
2455 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2456 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2457 	else
2458 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2459 
2460 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2461 		ctrl->ctrl_config |= NVME_CC_CRIME;
2462 
2463 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2464 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2465 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2466 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2467 	if (ret)
2468 		return ret;
2469 
2470 	/* Flush write to device (required if transport is PCI) */
2471 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2472 	if (ret)
2473 		return ret;
2474 
2475 	/* CAP value may change after initial CC write */
2476 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2477 	if (ret)
2478 		return ret;
2479 
2480 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2481 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2482 		u32 crto, ready_timeout;
2483 
2484 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2485 		if (ret) {
2486 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2487 				ret);
2488 			return ret;
2489 		}
2490 
2491 		/*
2492 		 * CRTO should always be greater or equal to CAP.TO, but some
2493 		 * devices are known to get this wrong. Use the larger of the
2494 		 * two values.
2495 		 */
2496 		if (ctrl->ctrl_config & NVME_CC_CRIME)
2497 			ready_timeout = NVME_CRTO_CRIMT(crto);
2498 		else
2499 			ready_timeout = NVME_CRTO_CRWMT(crto);
2500 
2501 		if (ready_timeout < timeout)
2502 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2503 				      crto, ctrl->cap);
2504 		else
2505 			timeout = ready_timeout;
2506 	}
2507 
2508 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2509 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2510 	if (ret)
2511 		return ret;
2512 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2513 			       (timeout + 1) / 2, "initialisation");
2514 }
2515 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2516 
2517 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2518 {
2519 	__le64 ts;
2520 	int ret;
2521 
2522 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2523 		return 0;
2524 
2525 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2526 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2527 			NULL);
2528 	if (ret)
2529 		dev_warn_once(ctrl->device,
2530 			"could not set timestamp (%d)\n", ret);
2531 	return ret;
2532 }
2533 
2534 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2535 {
2536 	struct nvme_feat_host_behavior *host;
2537 	u8 acre = 0, lbafee = 0;
2538 	int ret;
2539 
2540 	/* Don't bother enabling the feature if retry delay is not reported */
2541 	if (ctrl->crdt[0])
2542 		acre = NVME_ENABLE_ACRE;
2543 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2544 		lbafee = NVME_ENABLE_LBAFEE;
2545 
2546 	if (!acre && !lbafee)
2547 		return 0;
2548 
2549 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2550 	if (!host)
2551 		return 0;
2552 
2553 	host->acre = acre;
2554 	host->lbafee = lbafee;
2555 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2556 				host, sizeof(*host), NULL);
2557 	kfree(host);
2558 	return ret;
2559 }
2560 
2561 /*
2562  * The function checks whether the given total (exlat + enlat) latency of
2563  * a power state allows the latter to be used as an APST transition target.
2564  * It does so by comparing the latency to the primary and secondary latency
2565  * tolerances defined by module params. If there's a match, the corresponding
2566  * timeout value is returned and the matching tolerance index (1 or 2) is
2567  * reported.
2568  */
2569 static bool nvme_apst_get_transition_time(u64 total_latency,
2570 		u64 *transition_time, unsigned *last_index)
2571 {
2572 	if (total_latency <= apst_primary_latency_tol_us) {
2573 		if (*last_index == 1)
2574 			return false;
2575 		*last_index = 1;
2576 		*transition_time = apst_primary_timeout_ms;
2577 		return true;
2578 	}
2579 	if (apst_secondary_timeout_ms &&
2580 		total_latency <= apst_secondary_latency_tol_us) {
2581 		if (*last_index <= 2)
2582 			return false;
2583 		*last_index = 2;
2584 		*transition_time = apst_secondary_timeout_ms;
2585 		return true;
2586 	}
2587 	return false;
2588 }
2589 
2590 /*
2591  * APST (Autonomous Power State Transition) lets us program a table of power
2592  * state transitions that the controller will perform automatically.
2593  *
2594  * Depending on module params, one of the two supported techniques will be used:
2595  *
2596  * - If the parameters provide explicit timeouts and tolerances, they will be
2597  *   used to build a table with up to 2 non-operational states to transition to.
2598  *   The default parameter values were selected based on the values used by
2599  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2600  *   regeneration of the APST table in the event of switching between external
2601  *   and battery power, the timeouts and tolerances reflect a compromise
2602  *   between values used by Microsoft for AC and battery scenarios.
2603  * - If not, we'll configure the table with a simple heuristic: we are willing
2604  *   to spend at most 2% of the time transitioning between power states.
2605  *   Therefore, when running in any given state, we will enter the next
2606  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2607  *   microseconds, as long as that state's exit latency is under the requested
2608  *   maximum latency.
2609  *
2610  * We will not autonomously enter any non-operational state for which the total
2611  * latency exceeds ps_max_latency_us.
2612  *
2613  * Users can set ps_max_latency_us to zero to turn off APST.
2614  */
2615 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2616 {
2617 	struct nvme_feat_auto_pst *table;
2618 	unsigned apste = 0;
2619 	u64 max_lat_us = 0;
2620 	__le64 target = 0;
2621 	int max_ps = -1;
2622 	int state;
2623 	int ret;
2624 	unsigned last_lt_index = UINT_MAX;
2625 
2626 	/*
2627 	 * If APST isn't supported or if we haven't been initialized yet,
2628 	 * then don't do anything.
2629 	 */
2630 	if (!ctrl->apsta)
2631 		return 0;
2632 
2633 	if (ctrl->npss > 31) {
2634 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2635 		return 0;
2636 	}
2637 
2638 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2639 	if (!table)
2640 		return 0;
2641 
2642 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2643 		/* Turn off APST. */
2644 		dev_dbg(ctrl->device, "APST disabled\n");
2645 		goto done;
2646 	}
2647 
2648 	/*
2649 	 * Walk through all states from lowest- to highest-power.
2650 	 * According to the spec, lower-numbered states use more power.  NPSS,
2651 	 * despite the name, is the index of the lowest-power state, not the
2652 	 * number of states.
2653 	 */
2654 	for (state = (int)ctrl->npss; state >= 0; state--) {
2655 		u64 total_latency_us, exit_latency_us, transition_ms;
2656 
2657 		if (target)
2658 			table->entries[state] = target;
2659 
2660 		/*
2661 		 * Don't allow transitions to the deepest state if it's quirked
2662 		 * off.
2663 		 */
2664 		if (state == ctrl->npss &&
2665 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2666 			continue;
2667 
2668 		/*
2669 		 * Is this state a useful non-operational state for higher-power
2670 		 * states to autonomously transition to?
2671 		 */
2672 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2673 			continue;
2674 
2675 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2676 		if (exit_latency_us > ctrl->ps_max_latency_us)
2677 			continue;
2678 
2679 		total_latency_us = exit_latency_us +
2680 			le32_to_cpu(ctrl->psd[state].entry_lat);
2681 
2682 		/*
2683 		 * This state is good. It can be used as the APST idle target
2684 		 * for higher power states.
2685 		 */
2686 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2687 			if (!nvme_apst_get_transition_time(total_latency_us,
2688 					&transition_ms, &last_lt_index))
2689 				continue;
2690 		} else {
2691 			transition_ms = total_latency_us + 19;
2692 			do_div(transition_ms, 20);
2693 			if (transition_ms > (1 << 24) - 1)
2694 				transition_ms = (1 << 24) - 1;
2695 		}
2696 
2697 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2698 		if (max_ps == -1)
2699 			max_ps = state;
2700 		if (total_latency_us > max_lat_us)
2701 			max_lat_us = total_latency_us;
2702 	}
2703 
2704 	if (max_ps == -1)
2705 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2706 	else
2707 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2708 			max_ps, max_lat_us, (int)sizeof(*table), table);
2709 	apste = 1;
2710 
2711 done:
2712 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2713 				table, sizeof(*table), NULL);
2714 	if (ret)
2715 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2716 	kfree(table);
2717 	return ret;
2718 }
2719 
2720 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2721 {
2722 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2723 	u64 latency;
2724 
2725 	switch (val) {
2726 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2727 	case PM_QOS_LATENCY_ANY:
2728 		latency = U64_MAX;
2729 		break;
2730 
2731 	default:
2732 		latency = val;
2733 	}
2734 
2735 	if (ctrl->ps_max_latency_us != latency) {
2736 		ctrl->ps_max_latency_us = latency;
2737 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2738 			nvme_configure_apst(ctrl);
2739 	}
2740 }
2741 
2742 struct nvme_core_quirk_entry {
2743 	/*
2744 	 * NVMe model and firmware strings are padded with spaces.  For
2745 	 * simplicity, strings in the quirk table are padded with NULLs
2746 	 * instead.
2747 	 */
2748 	u16 vid;
2749 	const char *mn;
2750 	const char *fr;
2751 	unsigned long quirks;
2752 };
2753 
2754 static const struct nvme_core_quirk_entry core_quirks[] = {
2755 	{
2756 		/*
2757 		 * This Toshiba device seems to die using any APST states.  See:
2758 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2759 		 */
2760 		.vid = 0x1179,
2761 		.mn = "THNSF5256GPUK TOSHIBA",
2762 		.quirks = NVME_QUIRK_NO_APST,
2763 	},
2764 	{
2765 		/*
2766 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2767 		 * condition associated with actions related to suspend to idle
2768 		 * LiteON has resolved the problem in future firmware
2769 		 */
2770 		.vid = 0x14a4,
2771 		.fr = "22301111",
2772 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2773 	},
2774 	{
2775 		/*
2776 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2777 		 * aborts I/O during any load, but more easily reproducible
2778 		 * with discards (fstrim).
2779 		 *
2780 		 * The device is left in a state where it is also not possible
2781 		 * to use "nvme set-feature" to disable APST, but booting with
2782 		 * nvme_core.default_ps_max_latency=0 works.
2783 		 */
2784 		.vid = 0x1e0f,
2785 		.mn = "KCD6XVUL6T40",
2786 		.quirks = NVME_QUIRK_NO_APST,
2787 	},
2788 	{
2789 		/*
2790 		 * The external Samsung X5 SSD fails initialization without a
2791 		 * delay before checking if it is ready and has a whole set of
2792 		 * other problems.  To make this even more interesting, it
2793 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2794 		 * does not need or want these quirks.
2795 		 */
2796 		.vid = 0x144d,
2797 		.mn = "Samsung Portable SSD X5",
2798 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2799 			  NVME_QUIRK_NO_DEEPEST_PS |
2800 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2801 	}
2802 };
2803 
2804 /* match is null-terminated but idstr is space-padded. */
2805 static bool string_matches(const char *idstr, const char *match, size_t len)
2806 {
2807 	size_t matchlen;
2808 
2809 	if (!match)
2810 		return true;
2811 
2812 	matchlen = strlen(match);
2813 	WARN_ON_ONCE(matchlen > len);
2814 
2815 	if (memcmp(idstr, match, matchlen))
2816 		return false;
2817 
2818 	for (; matchlen < len; matchlen++)
2819 		if (idstr[matchlen] != ' ')
2820 			return false;
2821 
2822 	return true;
2823 }
2824 
2825 static bool quirk_matches(const struct nvme_id_ctrl *id,
2826 			  const struct nvme_core_quirk_entry *q)
2827 {
2828 	return q->vid == le16_to_cpu(id->vid) &&
2829 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2830 		string_matches(id->fr, q->fr, sizeof(id->fr));
2831 }
2832 
2833 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2834 		struct nvme_id_ctrl *id)
2835 {
2836 	size_t nqnlen;
2837 	int off;
2838 
2839 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2840 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2841 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2842 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2843 			return;
2844 		}
2845 
2846 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2847 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2848 	}
2849 
2850 	/*
2851 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2852 	 * Base Specification 2.0.  It is slightly different from the format
2853 	 * specified there due to historic reasons, and we can't change it now.
2854 	 */
2855 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2856 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2857 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2858 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2859 	off += sizeof(id->sn);
2860 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2861 	off += sizeof(id->mn);
2862 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2863 }
2864 
2865 static void nvme_release_subsystem(struct device *dev)
2866 {
2867 	struct nvme_subsystem *subsys =
2868 		container_of(dev, struct nvme_subsystem, dev);
2869 
2870 	if (subsys->instance >= 0)
2871 		ida_free(&nvme_instance_ida, subsys->instance);
2872 	kfree(subsys);
2873 }
2874 
2875 static void nvme_destroy_subsystem(struct kref *ref)
2876 {
2877 	struct nvme_subsystem *subsys =
2878 			container_of(ref, struct nvme_subsystem, ref);
2879 
2880 	mutex_lock(&nvme_subsystems_lock);
2881 	list_del(&subsys->entry);
2882 	mutex_unlock(&nvme_subsystems_lock);
2883 
2884 	ida_destroy(&subsys->ns_ida);
2885 	device_del(&subsys->dev);
2886 	put_device(&subsys->dev);
2887 }
2888 
2889 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2890 {
2891 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2892 }
2893 
2894 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2895 {
2896 	struct nvme_subsystem *subsys;
2897 
2898 	lockdep_assert_held(&nvme_subsystems_lock);
2899 
2900 	/*
2901 	 * Fail matches for discovery subsystems. This results
2902 	 * in each discovery controller bound to a unique subsystem.
2903 	 * This avoids issues with validating controller values
2904 	 * that can only be true when there is a single unique subsystem.
2905 	 * There may be multiple and completely independent entities
2906 	 * that provide discovery controllers.
2907 	 */
2908 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2909 		return NULL;
2910 
2911 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2912 		if (strcmp(subsys->subnqn, subsysnqn))
2913 			continue;
2914 		if (!kref_get_unless_zero(&subsys->ref))
2915 			continue;
2916 		return subsys;
2917 	}
2918 
2919 	return NULL;
2920 }
2921 
2922 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2923 {
2924 	return ctrl->opts && ctrl->opts->discovery_nqn;
2925 }
2926 
2927 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2928 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2929 {
2930 	struct nvme_ctrl *tmp;
2931 
2932 	lockdep_assert_held(&nvme_subsystems_lock);
2933 
2934 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2935 		if (nvme_state_terminal(tmp))
2936 			continue;
2937 
2938 		if (tmp->cntlid == ctrl->cntlid) {
2939 			dev_err(ctrl->device,
2940 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2941 				ctrl->cntlid, dev_name(tmp->device),
2942 				subsys->subnqn);
2943 			return false;
2944 		}
2945 
2946 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2947 		    nvme_discovery_ctrl(ctrl))
2948 			continue;
2949 
2950 		dev_err(ctrl->device,
2951 			"Subsystem does not support multiple controllers\n");
2952 		return false;
2953 	}
2954 
2955 	return true;
2956 }
2957 
2958 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2959 {
2960 	struct nvme_subsystem *subsys, *found;
2961 	int ret;
2962 
2963 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2964 	if (!subsys)
2965 		return -ENOMEM;
2966 
2967 	subsys->instance = -1;
2968 	mutex_init(&subsys->lock);
2969 	kref_init(&subsys->ref);
2970 	INIT_LIST_HEAD(&subsys->ctrls);
2971 	INIT_LIST_HEAD(&subsys->nsheads);
2972 	nvme_init_subnqn(subsys, ctrl, id);
2973 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2974 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2975 	subsys->vendor_id = le16_to_cpu(id->vid);
2976 	subsys->cmic = id->cmic;
2977 
2978 	/* Versions prior to 1.4 don't necessarily report a valid type */
2979 	if (id->cntrltype == NVME_CTRL_DISC ||
2980 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2981 		subsys->subtype = NVME_NQN_DISC;
2982 	else
2983 		subsys->subtype = NVME_NQN_NVME;
2984 
2985 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2986 		dev_err(ctrl->device,
2987 			"Subsystem %s is not a discovery controller",
2988 			subsys->subnqn);
2989 		kfree(subsys);
2990 		return -EINVAL;
2991 	}
2992 	subsys->awupf = le16_to_cpu(id->awupf);
2993 	nvme_mpath_default_iopolicy(subsys);
2994 
2995 	subsys->dev.class = &nvme_subsys_class;
2996 	subsys->dev.release = nvme_release_subsystem;
2997 	subsys->dev.groups = nvme_subsys_attrs_groups;
2998 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2999 	device_initialize(&subsys->dev);
3000 
3001 	mutex_lock(&nvme_subsystems_lock);
3002 	found = __nvme_find_get_subsystem(subsys->subnqn);
3003 	if (found) {
3004 		put_device(&subsys->dev);
3005 		subsys = found;
3006 
3007 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3008 			ret = -EINVAL;
3009 			goto out_put_subsystem;
3010 		}
3011 	} else {
3012 		ret = device_add(&subsys->dev);
3013 		if (ret) {
3014 			dev_err(ctrl->device,
3015 				"failed to register subsystem device.\n");
3016 			put_device(&subsys->dev);
3017 			goto out_unlock;
3018 		}
3019 		ida_init(&subsys->ns_ida);
3020 		list_add_tail(&subsys->entry, &nvme_subsystems);
3021 	}
3022 
3023 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3024 				dev_name(ctrl->device));
3025 	if (ret) {
3026 		dev_err(ctrl->device,
3027 			"failed to create sysfs link from subsystem.\n");
3028 		goto out_put_subsystem;
3029 	}
3030 
3031 	if (!found)
3032 		subsys->instance = ctrl->instance;
3033 	ctrl->subsys = subsys;
3034 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3035 	mutex_unlock(&nvme_subsystems_lock);
3036 	return 0;
3037 
3038 out_put_subsystem:
3039 	nvme_put_subsystem(subsys);
3040 out_unlock:
3041 	mutex_unlock(&nvme_subsystems_lock);
3042 	return ret;
3043 }
3044 
3045 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3046 		void *log, size_t size, u64 offset)
3047 {
3048 	struct nvme_command c = { };
3049 	u32 dwlen = nvme_bytes_to_numd(size);
3050 
3051 	c.get_log_page.opcode = nvme_admin_get_log_page;
3052 	c.get_log_page.nsid = cpu_to_le32(nsid);
3053 	c.get_log_page.lid = log_page;
3054 	c.get_log_page.lsp = lsp;
3055 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3056 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3057 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3058 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3059 	c.get_log_page.csi = csi;
3060 
3061 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3062 }
3063 
3064 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3065 				struct nvme_effects_log **log)
3066 {
3067 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3068 	int ret;
3069 
3070 	if (cel)
3071 		goto out;
3072 
3073 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3074 	if (!cel)
3075 		return -ENOMEM;
3076 
3077 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3078 			cel, sizeof(*cel), 0);
3079 	if (ret) {
3080 		kfree(cel);
3081 		return ret;
3082 	}
3083 
3084 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3085 out:
3086 	*log = cel;
3087 	return 0;
3088 }
3089 
3090 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3091 {
3092 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3093 
3094 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3095 		return UINT_MAX;
3096 	return val;
3097 }
3098 
3099 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3100 {
3101 	struct nvme_command c = { };
3102 	struct nvme_id_ctrl_nvm *id;
3103 	int ret;
3104 
3105 	/*
3106 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3107 	 * to the write-zeroes, we are cautious and limit the size to the
3108 	 * controllers max_hw_sectors value, which is based on the MDTS field
3109 	 * and possibly other limiting factors.
3110 	 */
3111 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3112 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3113 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3114 	else
3115 		ctrl->max_zeroes_sectors = 0;
3116 
3117 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3118 	    nvme_ctrl_limited_cns(ctrl) ||
3119 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3120 		return 0;
3121 
3122 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3123 	if (!id)
3124 		return -ENOMEM;
3125 
3126 	c.identify.opcode = nvme_admin_identify;
3127 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3128 	c.identify.csi = NVME_CSI_NVM;
3129 
3130 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3131 	if (ret)
3132 		goto free_data;
3133 
3134 	ctrl->dmrl = id->dmrl;
3135 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3136 	if (id->wzsl)
3137 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3138 
3139 free_data:
3140 	if (ret > 0)
3141 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3142 	kfree(id);
3143 	return ret;
3144 }
3145 
3146 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3147 {
3148 	struct nvme_effects_log	*log = ctrl->effects;
3149 
3150 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3151 						NVME_CMD_EFFECTS_NCC |
3152 						NVME_CMD_EFFECTS_CSE_MASK);
3153 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3154 						NVME_CMD_EFFECTS_CSE_MASK);
3155 
3156 	/*
3157 	 * The spec says the result of a security receive command depends on
3158 	 * the previous security send command. As such, many vendors log this
3159 	 * command as one to submitted only when no other commands to the same
3160 	 * namespace are outstanding. The intention is to tell the host to
3161 	 * prevent mixing security send and receive.
3162 	 *
3163 	 * This driver can only enforce such exclusive access against IO
3164 	 * queues, though. We are not readily able to enforce such a rule for
3165 	 * two commands to the admin queue, which is the only queue that
3166 	 * matters for this command.
3167 	 *
3168 	 * Rather than blindly freezing the IO queues for this effect that
3169 	 * doesn't even apply to IO, mask it off.
3170 	 */
3171 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3172 
3173 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3174 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3175 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3176 }
3177 
3178 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3179 {
3180 	int ret = 0;
3181 
3182 	if (ctrl->effects)
3183 		return 0;
3184 
3185 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3186 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3187 		if (ret < 0)
3188 			return ret;
3189 	}
3190 
3191 	if (!ctrl->effects) {
3192 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3193 		if (!ctrl->effects)
3194 			return -ENOMEM;
3195 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3196 	}
3197 
3198 	nvme_init_known_nvm_effects(ctrl);
3199 	return 0;
3200 }
3201 
3202 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3203 {
3204 	/*
3205 	 * In fabrics we need to verify the cntlid matches the
3206 	 * admin connect
3207 	 */
3208 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3209 		dev_err(ctrl->device,
3210 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3211 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3212 		return -EINVAL;
3213 	}
3214 
3215 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3216 		dev_err(ctrl->device,
3217 			"keep-alive support is mandatory for fabrics\n");
3218 		return -EINVAL;
3219 	}
3220 
3221 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3222 		dev_err(ctrl->device,
3223 			"I/O queue command capsule supported size %d < 4\n",
3224 			ctrl->ioccsz);
3225 		return -EINVAL;
3226 	}
3227 
3228 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3229 		dev_err(ctrl->device,
3230 			"I/O queue response capsule supported size %d < 1\n",
3231 			ctrl->iorcsz);
3232 		return -EINVAL;
3233 	}
3234 
3235 	if (!ctrl->maxcmd) {
3236 		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3237 		return -EINVAL;
3238 	}
3239 
3240 	return 0;
3241 }
3242 
3243 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3244 {
3245 	struct queue_limits lim;
3246 	struct nvme_id_ctrl *id;
3247 	u32 max_hw_sectors;
3248 	bool prev_apst_enabled;
3249 	int ret;
3250 
3251 	ret = nvme_identify_ctrl(ctrl, &id);
3252 	if (ret) {
3253 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3254 		return -EIO;
3255 	}
3256 
3257 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3258 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3259 
3260 	if (!ctrl->identified) {
3261 		unsigned int i;
3262 
3263 		/*
3264 		 * Check for quirks.  Quirk can depend on firmware version,
3265 		 * so, in principle, the set of quirks present can change
3266 		 * across a reset.  As a possible future enhancement, we
3267 		 * could re-scan for quirks every time we reinitialize
3268 		 * the device, but we'd have to make sure that the driver
3269 		 * behaves intelligently if the quirks change.
3270 		 */
3271 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3272 			if (quirk_matches(id, &core_quirks[i]))
3273 				ctrl->quirks |= core_quirks[i].quirks;
3274 		}
3275 
3276 		ret = nvme_init_subsystem(ctrl, id);
3277 		if (ret)
3278 			goto out_free;
3279 
3280 		ret = nvme_init_effects(ctrl, id);
3281 		if (ret)
3282 			goto out_free;
3283 	}
3284 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3285 	       sizeof(ctrl->subsys->firmware_rev));
3286 
3287 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3288 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3289 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3290 	}
3291 
3292 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3293 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3294 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3295 
3296 	ctrl->oacs = le16_to_cpu(id->oacs);
3297 	ctrl->oncs = le16_to_cpu(id->oncs);
3298 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3299 	ctrl->oaes = le32_to_cpu(id->oaes);
3300 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3301 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3302 
3303 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3304 	ctrl->vwc = id->vwc;
3305 	if (id->mdts)
3306 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3307 	else
3308 		max_hw_sectors = UINT_MAX;
3309 	ctrl->max_hw_sectors =
3310 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3311 
3312 	lim = queue_limits_start_update(ctrl->admin_q);
3313 	nvme_set_ctrl_limits(ctrl, &lim);
3314 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3315 	if (ret)
3316 		goto out_free;
3317 
3318 	ctrl->sgls = le32_to_cpu(id->sgls);
3319 	ctrl->kas = le16_to_cpu(id->kas);
3320 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3321 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3322 
3323 	ctrl->cntrltype = id->cntrltype;
3324 	ctrl->dctype = id->dctype;
3325 
3326 	if (id->rtd3e) {
3327 		/* us -> s */
3328 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3329 
3330 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3331 						 shutdown_timeout, 60);
3332 
3333 		if (ctrl->shutdown_timeout != shutdown_timeout)
3334 			dev_info(ctrl->device,
3335 				 "D3 entry latency set to %u seconds\n",
3336 				 ctrl->shutdown_timeout);
3337 	} else
3338 		ctrl->shutdown_timeout = shutdown_timeout;
3339 
3340 	ctrl->npss = id->npss;
3341 	ctrl->apsta = id->apsta;
3342 	prev_apst_enabled = ctrl->apst_enabled;
3343 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3344 		if (force_apst && id->apsta) {
3345 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3346 			ctrl->apst_enabled = true;
3347 		} else {
3348 			ctrl->apst_enabled = false;
3349 		}
3350 	} else {
3351 		ctrl->apst_enabled = id->apsta;
3352 	}
3353 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3354 
3355 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3356 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3357 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3358 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3359 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3360 
3361 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3362 		if (ret)
3363 			goto out_free;
3364 	} else {
3365 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3366 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3367 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3368 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3369 	}
3370 
3371 	ret = nvme_mpath_init_identify(ctrl, id);
3372 	if (ret < 0)
3373 		goto out_free;
3374 
3375 	if (ctrl->apst_enabled && !prev_apst_enabled)
3376 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3377 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3378 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3379 
3380 out_free:
3381 	kfree(id);
3382 	return ret;
3383 }
3384 
3385 /*
3386  * Initialize the cached copies of the Identify data and various controller
3387  * register in our nvme_ctrl structure.  This should be called as soon as
3388  * the admin queue is fully up and running.
3389  */
3390 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3391 {
3392 	int ret;
3393 
3394 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3395 	if (ret) {
3396 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3397 		return ret;
3398 	}
3399 
3400 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3401 
3402 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3403 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3404 
3405 	ret = nvme_init_identify(ctrl);
3406 	if (ret)
3407 		return ret;
3408 
3409 	ret = nvme_configure_apst(ctrl);
3410 	if (ret < 0)
3411 		return ret;
3412 
3413 	ret = nvme_configure_timestamp(ctrl);
3414 	if (ret < 0)
3415 		return ret;
3416 
3417 	ret = nvme_configure_host_options(ctrl);
3418 	if (ret < 0)
3419 		return ret;
3420 
3421 	nvme_configure_opal(ctrl, was_suspended);
3422 
3423 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3424 		/*
3425 		 * Do not return errors unless we are in a controller reset,
3426 		 * the controller works perfectly fine without hwmon.
3427 		 */
3428 		ret = nvme_hwmon_init(ctrl);
3429 		if (ret == -EINTR)
3430 			return ret;
3431 	}
3432 
3433 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3434 	ctrl->identified = true;
3435 
3436 	nvme_start_keep_alive(ctrl);
3437 
3438 	return 0;
3439 }
3440 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3441 
3442 static int nvme_dev_open(struct inode *inode, struct file *file)
3443 {
3444 	struct nvme_ctrl *ctrl =
3445 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3446 
3447 	switch (nvme_ctrl_state(ctrl)) {
3448 	case NVME_CTRL_LIVE:
3449 		break;
3450 	default:
3451 		return -EWOULDBLOCK;
3452 	}
3453 
3454 	nvme_get_ctrl(ctrl);
3455 	if (!try_module_get(ctrl->ops->module)) {
3456 		nvme_put_ctrl(ctrl);
3457 		return -EINVAL;
3458 	}
3459 
3460 	file->private_data = ctrl;
3461 	return 0;
3462 }
3463 
3464 static int nvme_dev_release(struct inode *inode, struct file *file)
3465 {
3466 	struct nvme_ctrl *ctrl =
3467 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3468 
3469 	module_put(ctrl->ops->module);
3470 	nvme_put_ctrl(ctrl);
3471 	return 0;
3472 }
3473 
3474 static const struct file_operations nvme_dev_fops = {
3475 	.owner		= THIS_MODULE,
3476 	.open		= nvme_dev_open,
3477 	.release	= nvme_dev_release,
3478 	.unlocked_ioctl	= nvme_dev_ioctl,
3479 	.compat_ioctl	= compat_ptr_ioctl,
3480 	.uring_cmd	= nvme_dev_uring_cmd,
3481 };
3482 
3483 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3484 		unsigned nsid)
3485 {
3486 	struct nvme_ns_head *h;
3487 
3488 	lockdep_assert_held(&ctrl->subsys->lock);
3489 
3490 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3491 		/*
3492 		 * Private namespaces can share NSIDs under some conditions.
3493 		 * In that case we can't use the same ns_head for namespaces
3494 		 * with the same NSID.
3495 		 */
3496 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3497 			continue;
3498 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3499 			return h;
3500 	}
3501 
3502 	return NULL;
3503 }
3504 
3505 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3506 		struct nvme_ns_ids *ids)
3507 {
3508 	bool has_uuid = !uuid_is_null(&ids->uuid);
3509 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3510 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3511 	struct nvme_ns_head *h;
3512 
3513 	lockdep_assert_held(&subsys->lock);
3514 
3515 	list_for_each_entry(h, &subsys->nsheads, entry) {
3516 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3517 			return -EINVAL;
3518 		if (has_nguid &&
3519 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3520 			return -EINVAL;
3521 		if (has_eui64 &&
3522 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3523 			return -EINVAL;
3524 	}
3525 
3526 	return 0;
3527 }
3528 
3529 static void nvme_cdev_rel(struct device *dev)
3530 {
3531 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3532 }
3533 
3534 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3535 {
3536 	cdev_device_del(cdev, cdev_device);
3537 	put_device(cdev_device);
3538 }
3539 
3540 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3541 		const struct file_operations *fops, struct module *owner)
3542 {
3543 	int minor, ret;
3544 
3545 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3546 	if (minor < 0)
3547 		return minor;
3548 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3549 	cdev_device->class = &nvme_ns_chr_class;
3550 	cdev_device->release = nvme_cdev_rel;
3551 	device_initialize(cdev_device);
3552 	cdev_init(cdev, fops);
3553 	cdev->owner = owner;
3554 	ret = cdev_device_add(cdev, cdev_device);
3555 	if (ret)
3556 		put_device(cdev_device);
3557 
3558 	return ret;
3559 }
3560 
3561 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3562 {
3563 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3564 }
3565 
3566 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3567 {
3568 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3569 	return 0;
3570 }
3571 
3572 static const struct file_operations nvme_ns_chr_fops = {
3573 	.owner		= THIS_MODULE,
3574 	.open		= nvme_ns_chr_open,
3575 	.release	= nvme_ns_chr_release,
3576 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3577 	.compat_ioctl	= compat_ptr_ioctl,
3578 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3579 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3580 };
3581 
3582 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3583 {
3584 	int ret;
3585 
3586 	ns->cdev_device.parent = ns->ctrl->device;
3587 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3588 			   ns->ctrl->instance, ns->head->instance);
3589 	if (ret)
3590 		return ret;
3591 
3592 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3593 			     ns->ctrl->ops->module);
3594 }
3595 
3596 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3597 		struct nvme_ns_info *info)
3598 {
3599 	struct nvme_ns_head *head;
3600 	size_t size = sizeof(*head);
3601 	int ret = -ENOMEM;
3602 
3603 #ifdef CONFIG_NVME_MULTIPATH
3604 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3605 #endif
3606 
3607 	head = kzalloc(size, GFP_KERNEL);
3608 	if (!head)
3609 		goto out;
3610 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3611 	if (ret < 0)
3612 		goto out_free_head;
3613 	head->instance = ret;
3614 	INIT_LIST_HEAD(&head->list);
3615 	ret = init_srcu_struct(&head->srcu);
3616 	if (ret)
3617 		goto out_ida_remove;
3618 	head->subsys = ctrl->subsys;
3619 	head->ns_id = info->nsid;
3620 	head->ids = info->ids;
3621 	head->shared = info->is_shared;
3622 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3623 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3624 	kref_init(&head->ref);
3625 
3626 	if (head->ids.csi) {
3627 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3628 		if (ret)
3629 			goto out_cleanup_srcu;
3630 	} else
3631 		head->effects = ctrl->effects;
3632 
3633 	ret = nvme_mpath_alloc_disk(ctrl, head);
3634 	if (ret)
3635 		goto out_cleanup_srcu;
3636 
3637 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3638 
3639 	kref_get(&ctrl->subsys->ref);
3640 
3641 	return head;
3642 out_cleanup_srcu:
3643 	cleanup_srcu_struct(&head->srcu);
3644 out_ida_remove:
3645 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3646 out_free_head:
3647 	kfree(head);
3648 out:
3649 	if (ret > 0)
3650 		ret = blk_status_to_errno(nvme_error_status(ret));
3651 	return ERR_PTR(ret);
3652 }
3653 
3654 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3655 		struct nvme_ns_ids *ids)
3656 {
3657 	struct nvme_subsystem *s;
3658 	int ret = 0;
3659 
3660 	/*
3661 	 * Note that this check is racy as we try to avoid holding the global
3662 	 * lock over the whole ns_head creation.  But it is only intended as
3663 	 * a sanity check anyway.
3664 	 */
3665 	mutex_lock(&nvme_subsystems_lock);
3666 	list_for_each_entry(s, &nvme_subsystems, entry) {
3667 		if (s == this)
3668 			continue;
3669 		mutex_lock(&s->lock);
3670 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3671 		mutex_unlock(&s->lock);
3672 		if (ret)
3673 			break;
3674 	}
3675 	mutex_unlock(&nvme_subsystems_lock);
3676 
3677 	return ret;
3678 }
3679 
3680 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3681 {
3682 	struct nvme_ctrl *ctrl = ns->ctrl;
3683 	struct nvme_ns_head *head = NULL;
3684 	int ret;
3685 
3686 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3687 	if (ret) {
3688 		/*
3689 		 * We've found two different namespaces on two different
3690 		 * subsystems that report the same ID.  This is pretty nasty
3691 		 * for anything that actually requires unique device
3692 		 * identification.  In the kernel we need this for multipathing,
3693 		 * and in user space the /dev/disk/by-id/ links rely on it.
3694 		 *
3695 		 * If the device also claims to be multi-path capable back off
3696 		 * here now and refuse the probe the second device as this is a
3697 		 * recipe for data corruption.  If not this is probably a
3698 		 * cheap consumer device if on the PCIe bus, so let the user
3699 		 * proceed and use the shiny toy, but warn that with changing
3700 		 * probing order (which due to our async probing could just be
3701 		 * device taking longer to startup) the other device could show
3702 		 * up at any time.
3703 		 */
3704 		nvme_print_device_info(ctrl);
3705 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3706 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3707 		     info->is_shared)) {
3708 			dev_err(ctrl->device,
3709 				"ignoring nsid %d because of duplicate IDs\n",
3710 				info->nsid);
3711 			return ret;
3712 		}
3713 
3714 		dev_err(ctrl->device,
3715 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3716 		dev_err(ctrl->device,
3717 			"use of /dev/disk/by-id/ may cause data corruption\n");
3718 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3719 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3720 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3721 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3722 	}
3723 
3724 	mutex_lock(&ctrl->subsys->lock);
3725 	head = nvme_find_ns_head(ctrl, info->nsid);
3726 	if (!head) {
3727 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3728 		if (ret) {
3729 			dev_err(ctrl->device,
3730 				"duplicate IDs in subsystem for nsid %d\n",
3731 				info->nsid);
3732 			goto out_unlock;
3733 		}
3734 		head = nvme_alloc_ns_head(ctrl, info);
3735 		if (IS_ERR(head)) {
3736 			ret = PTR_ERR(head);
3737 			goto out_unlock;
3738 		}
3739 	} else {
3740 		ret = -EINVAL;
3741 		if (!info->is_shared || !head->shared) {
3742 			dev_err(ctrl->device,
3743 				"Duplicate unshared namespace %d\n",
3744 				info->nsid);
3745 			goto out_put_ns_head;
3746 		}
3747 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3748 			dev_err(ctrl->device,
3749 				"IDs don't match for shared namespace %d\n",
3750 					info->nsid);
3751 			goto out_put_ns_head;
3752 		}
3753 
3754 		if (!multipath) {
3755 			dev_warn(ctrl->device,
3756 				"Found shared namespace %d, but multipathing not supported.\n",
3757 				info->nsid);
3758 			dev_warn_once(ctrl->device,
3759 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3760 		}
3761 	}
3762 
3763 	list_add_tail_rcu(&ns->siblings, &head->list);
3764 	ns->head = head;
3765 	mutex_unlock(&ctrl->subsys->lock);
3766 	return 0;
3767 
3768 out_put_ns_head:
3769 	nvme_put_ns_head(head);
3770 out_unlock:
3771 	mutex_unlock(&ctrl->subsys->lock);
3772 	return ret;
3773 }
3774 
3775 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3776 {
3777 	struct nvme_ns *ns, *ret = NULL;
3778 	int srcu_idx;
3779 
3780 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3781 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
3782 		if (ns->head->ns_id == nsid) {
3783 			if (!nvme_get_ns(ns))
3784 				continue;
3785 			ret = ns;
3786 			break;
3787 		}
3788 		if (ns->head->ns_id > nsid)
3789 			break;
3790 	}
3791 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3792 	return ret;
3793 }
3794 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3795 
3796 /*
3797  * Add the namespace to the controller list while keeping the list ordered.
3798  */
3799 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3800 {
3801 	struct nvme_ns *tmp;
3802 
3803 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3804 		if (tmp->head->ns_id < ns->head->ns_id) {
3805 			list_add_rcu(&ns->list, &tmp->list);
3806 			return;
3807 		}
3808 	}
3809 	list_add(&ns->list, &ns->ctrl->namespaces);
3810 }
3811 
3812 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3813 {
3814 	struct queue_limits lim = { };
3815 	struct nvme_ns *ns;
3816 	struct gendisk *disk;
3817 	int node = ctrl->numa_node;
3818 
3819 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3820 	if (!ns)
3821 		return;
3822 
3823 	if (ctrl->opts && ctrl->opts->data_digest)
3824 		lim.features |= BLK_FEAT_STABLE_WRITES;
3825 	if (ctrl->ops->supports_pci_p2pdma &&
3826 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3827 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3828 
3829 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3830 	if (IS_ERR(disk))
3831 		goto out_free_ns;
3832 	disk->fops = &nvme_bdev_ops;
3833 	disk->private_data = ns;
3834 
3835 	ns->disk = disk;
3836 	ns->queue = disk->queue;
3837 	ns->ctrl = ctrl;
3838 	kref_init(&ns->kref);
3839 
3840 	if (nvme_init_ns_head(ns, info))
3841 		goto out_cleanup_disk;
3842 
3843 	/*
3844 	 * If multipathing is enabled, the device name for all disks and not
3845 	 * just those that represent shared namespaces needs to be based on the
3846 	 * subsystem instance.  Using the controller instance for private
3847 	 * namespaces could lead to naming collisions between shared and private
3848 	 * namespaces if they don't use a common numbering scheme.
3849 	 *
3850 	 * If multipathing is not enabled, disk names must use the controller
3851 	 * instance as shared namespaces will show up as multiple block
3852 	 * devices.
3853 	 */
3854 	if (nvme_ns_head_multipath(ns->head)) {
3855 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3856 			ctrl->instance, ns->head->instance);
3857 		disk->flags |= GENHD_FL_HIDDEN;
3858 	} else if (multipath) {
3859 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3860 			ns->head->instance);
3861 	} else {
3862 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3863 			ns->head->instance);
3864 	}
3865 
3866 	if (nvme_update_ns_info(ns, info))
3867 		goto out_unlink_ns;
3868 
3869 	mutex_lock(&ctrl->namespaces_lock);
3870 	/*
3871 	 * Ensure that no namespaces are added to the ctrl list after the queues
3872 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3873 	 */
3874 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3875 		mutex_unlock(&ctrl->namespaces_lock);
3876 		goto out_unlink_ns;
3877 	}
3878 	nvme_ns_add_to_ctrl_list(ns);
3879 	mutex_unlock(&ctrl->namespaces_lock);
3880 	synchronize_srcu(&ctrl->srcu);
3881 	nvme_get_ctrl(ctrl);
3882 
3883 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3884 		goto out_cleanup_ns_from_list;
3885 
3886 	if (!nvme_ns_head_multipath(ns->head))
3887 		nvme_add_ns_cdev(ns);
3888 
3889 	nvme_mpath_add_disk(ns, info->anagrpid);
3890 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3891 
3892 	/*
3893 	 * Set ns->disk->device->driver_data to ns so we can access
3894 	 * ns->head->passthru_err_log_enabled in
3895 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3896 	 */
3897 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3898 
3899 	return;
3900 
3901  out_cleanup_ns_from_list:
3902 	nvme_put_ctrl(ctrl);
3903 	mutex_lock(&ctrl->namespaces_lock);
3904 	list_del_rcu(&ns->list);
3905 	mutex_unlock(&ctrl->namespaces_lock);
3906 	synchronize_srcu(&ctrl->srcu);
3907  out_unlink_ns:
3908 	mutex_lock(&ctrl->subsys->lock);
3909 	list_del_rcu(&ns->siblings);
3910 	if (list_empty(&ns->head->list))
3911 		list_del_init(&ns->head->entry);
3912 	mutex_unlock(&ctrl->subsys->lock);
3913 	nvme_put_ns_head(ns->head);
3914  out_cleanup_disk:
3915 	put_disk(disk);
3916  out_free_ns:
3917 	kfree(ns);
3918 }
3919 
3920 static void nvme_ns_remove(struct nvme_ns *ns)
3921 {
3922 	bool last_path = false;
3923 
3924 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3925 		return;
3926 
3927 	clear_bit(NVME_NS_READY, &ns->flags);
3928 	set_capacity(ns->disk, 0);
3929 	nvme_fault_inject_fini(&ns->fault_inject);
3930 
3931 	/*
3932 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3933 	 * this ns going back into current_path.
3934 	 */
3935 	synchronize_srcu(&ns->head->srcu);
3936 
3937 	/* wait for concurrent submissions */
3938 	if (nvme_mpath_clear_current_path(ns))
3939 		synchronize_srcu(&ns->head->srcu);
3940 
3941 	mutex_lock(&ns->ctrl->subsys->lock);
3942 	list_del_rcu(&ns->siblings);
3943 	if (list_empty(&ns->head->list)) {
3944 		list_del_init(&ns->head->entry);
3945 		last_path = true;
3946 	}
3947 	mutex_unlock(&ns->ctrl->subsys->lock);
3948 
3949 	/* guarantee not available in head->list */
3950 	synchronize_srcu(&ns->head->srcu);
3951 
3952 	if (!nvme_ns_head_multipath(ns->head))
3953 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3954 	del_gendisk(ns->disk);
3955 
3956 	mutex_lock(&ns->ctrl->namespaces_lock);
3957 	list_del_rcu(&ns->list);
3958 	mutex_unlock(&ns->ctrl->namespaces_lock);
3959 	synchronize_srcu(&ns->ctrl->srcu);
3960 
3961 	if (last_path)
3962 		nvme_mpath_shutdown_disk(ns->head);
3963 	nvme_put_ns(ns);
3964 }
3965 
3966 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3967 {
3968 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3969 
3970 	if (ns) {
3971 		nvme_ns_remove(ns);
3972 		nvme_put_ns(ns);
3973 	}
3974 }
3975 
3976 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3977 {
3978 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
3979 
3980 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3981 		dev_err(ns->ctrl->device,
3982 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3983 		goto out;
3984 	}
3985 
3986 	ret = nvme_update_ns_info(ns, info);
3987 out:
3988 	/*
3989 	 * Only remove the namespace if we got a fatal error back from the
3990 	 * device, otherwise ignore the error and just move on.
3991 	 *
3992 	 * TODO: we should probably schedule a delayed retry here.
3993 	 */
3994 	if (ret > 0 && (ret & NVME_STATUS_DNR))
3995 		nvme_ns_remove(ns);
3996 }
3997 
3998 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3999 {
4000 	struct nvme_ns_info info = { .nsid = nsid };
4001 	struct nvme_ns *ns;
4002 	int ret;
4003 
4004 	if (nvme_identify_ns_descs(ctrl, &info))
4005 		return;
4006 
4007 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4008 		dev_warn(ctrl->device,
4009 			"command set not reported for nsid: %d\n", nsid);
4010 		return;
4011 	}
4012 
4013 	/*
4014 	 * If available try to use the Command Set Idependent Identify Namespace
4015 	 * data structure to find all the generic information that is needed to
4016 	 * set up a namespace.  If not fall back to the legacy version.
4017 	 */
4018 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4019 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
4020 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4021 	else
4022 		ret = nvme_ns_info_from_identify(ctrl, &info);
4023 
4024 	if (info.is_removed)
4025 		nvme_ns_remove_by_nsid(ctrl, nsid);
4026 
4027 	/*
4028 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4029 	 * becomes ready and restart the scan.
4030 	 */
4031 	if (ret || !info.is_ready)
4032 		return;
4033 
4034 	ns = nvme_find_get_ns(ctrl, nsid);
4035 	if (ns) {
4036 		nvme_validate_ns(ns, &info);
4037 		nvme_put_ns(ns);
4038 	} else {
4039 		nvme_alloc_ns(ctrl, &info);
4040 	}
4041 }
4042 
4043 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4044 					unsigned nsid)
4045 {
4046 	struct nvme_ns *ns, *next;
4047 	LIST_HEAD(rm_list);
4048 
4049 	mutex_lock(&ctrl->namespaces_lock);
4050 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4051 		if (ns->head->ns_id > nsid) {
4052 			list_del_rcu(&ns->list);
4053 			synchronize_srcu(&ctrl->srcu);
4054 			list_add_tail_rcu(&ns->list, &rm_list);
4055 		}
4056 	}
4057 	mutex_unlock(&ctrl->namespaces_lock);
4058 
4059 	list_for_each_entry_safe(ns, next, &rm_list, list)
4060 		nvme_ns_remove(ns);
4061 }
4062 
4063 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4064 {
4065 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4066 	__le32 *ns_list;
4067 	u32 prev = 0;
4068 	int ret = 0, i;
4069 
4070 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4071 	if (!ns_list)
4072 		return -ENOMEM;
4073 
4074 	for (;;) {
4075 		struct nvme_command cmd = {
4076 			.identify.opcode	= nvme_admin_identify,
4077 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4078 			.identify.nsid		= cpu_to_le32(prev),
4079 		};
4080 
4081 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4082 					    NVME_IDENTIFY_DATA_SIZE);
4083 		if (ret) {
4084 			dev_warn(ctrl->device,
4085 				"Identify NS List failed (status=0x%x)\n", ret);
4086 			goto free;
4087 		}
4088 
4089 		for (i = 0; i < nr_entries; i++) {
4090 			u32 nsid = le32_to_cpu(ns_list[i]);
4091 
4092 			if (!nsid)	/* end of the list? */
4093 				goto out;
4094 			nvme_scan_ns(ctrl, nsid);
4095 			while (++prev < nsid)
4096 				nvme_ns_remove_by_nsid(ctrl, prev);
4097 		}
4098 	}
4099  out:
4100 	nvme_remove_invalid_namespaces(ctrl, prev);
4101  free:
4102 	kfree(ns_list);
4103 	return ret;
4104 }
4105 
4106 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4107 {
4108 	struct nvme_id_ctrl *id;
4109 	u32 nn, i;
4110 
4111 	if (nvme_identify_ctrl(ctrl, &id))
4112 		return;
4113 	nn = le32_to_cpu(id->nn);
4114 	kfree(id);
4115 
4116 	for (i = 1; i <= nn; i++)
4117 		nvme_scan_ns(ctrl, i);
4118 
4119 	nvme_remove_invalid_namespaces(ctrl, nn);
4120 }
4121 
4122 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4123 {
4124 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4125 	__le32 *log;
4126 	int error;
4127 
4128 	log = kzalloc(log_size, GFP_KERNEL);
4129 	if (!log)
4130 		return;
4131 
4132 	/*
4133 	 * We need to read the log to clear the AEN, but we don't want to rely
4134 	 * on it for the changed namespace information as userspace could have
4135 	 * raced with us in reading the log page, which could cause us to miss
4136 	 * updates.
4137 	 */
4138 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4139 			NVME_CSI_NVM, log, log_size, 0);
4140 	if (error)
4141 		dev_warn(ctrl->device,
4142 			"reading changed ns log failed: %d\n", error);
4143 
4144 	kfree(log);
4145 }
4146 
4147 static void nvme_scan_work(struct work_struct *work)
4148 {
4149 	struct nvme_ctrl *ctrl =
4150 		container_of(work, struct nvme_ctrl, scan_work);
4151 	int ret;
4152 
4153 	/* No tagset on a live ctrl means IO queues could not created */
4154 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4155 		return;
4156 
4157 	/*
4158 	 * Identify controller limits can change at controller reset due to
4159 	 * new firmware download, even though it is not common we cannot ignore
4160 	 * such scenario. Controller's non-mdts limits are reported in the unit
4161 	 * of logical blocks that is dependent on the format of attached
4162 	 * namespace. Hence re-read the limits at the time of ns allocation.
4163 	 */
4164 	ret = nvme_init_non_mdts_limits(ctrl);
4165 	if (ret < 0) {
4166 		dev_warn(ctrl->device,
4167 			"reading non-mdts-limits failed: %d\n", ret);
4168 		return;
4169 	}
4170 
4171 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4172 		dev_info(ctrl->device, "rescanning namespaces.\n");
4173 		nvme_clear_changed_ns_log(ctrl);
4174 	}
4175 
4176 	mutex_lock(&ctrl->scan_lock);
4177 	if (nvme_ctrl_limited_cns(ctrl)) {
4178 		nvme_scan_ns_sequential(ctrl);
4179 	} else {
4180 		/*
4181 		 * Fall back to sequential scan if DNR is set to handle broken
4182 		 * devices which should support Identify NS List (as per the VS
4183 		 * they report) but don't actually support it.
4184 		 */
4185 		ret = nvme_scan_ns_list(ctrl);
4186 		if (ret > 0 && ret & NVME_STATUS_DNR)
4187 			nvme_scan_ns_sequential(ctrl);
4188 	}
4189 	mutex_unlock(&ctrl->scan_lock);
4190 }
4191 
4192 /*
4193  * This function iterates the namespace list unlocked to allow recovery from
4194  * controller failure. It is up to the caller to ensure the namespace list is
4195  * not modified by scan work while this function is executing.
4196  */
4197 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4198 {
4199 	struct nvme_ns *ns, *next;
4200 	LIST_HEAD(ns_list);
4201 
4202 	/*
4203 	 * make sure to requeue I/O to all namespaces as these
4204 	 * might result from the scan itself and must complete
4205 	 * for the scan_work to make progress
4206 	 */
4207 	nvme_mpath_clear_ctrl_paths(ctrl);
4208 
4209 	/*
4210 	 * Unquiesce io queues so any pending IO won't hang, especially
4211 	 * those submitted from scan work
4212 	 */
4213 	nvme_unquiesce_io_queues(ctrl);
4214 
4215 	/* prevent racing with ns scanning */
4216 	flush_work(&ctrl->scan_work);
4217 
4218 	/*
4219 	 * The dead states indicates the controller was not gracefully
4220 	 * disconnected. In that case, we won't be able to flush any data while
4221 	 * removing the namespaces' disks; fail all the queues now to avoid
4222 	 * potentially having to clean up the failed sync later.
4223 	 */
4224 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4225 		nvme_mark_namespaces_dead(ctrl);
4226 
4227 	/* this is a no-op when called from the controller reset handler */
4228 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4229 
4230 	mutex_lock(&ctrl->namespaces_lock);
4231 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4232 	mutex_unlock(&ctrl->namespaces_lock);
4233 	synchronize_srcu(&ctrl->srcu);
4234 
4235 	list_for_each_entry_safe(ns, next, &ns_list, list)
4236 		nvme_ns_remove(ns);
4237 }
4238 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4239 
4240 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4241 {
4242 	const struct nvme_ctrl *ctrl =
4243 		container_of(dev, struct nvme_ctrl, ctrl_device);
4244 	struct nvmf_ctrl_options *opts = ctrl->opts;
4245 	int ret;
4246 
4247 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4248 	if (ret)
4249 		return ret;
4250 
4251 	if (opts) {
4252 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4253 		if (ret)
4254 			return ret;
4255 
4256 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4257 				opts->trsvcid ?: "none");
4258 		if (ret)
4259 			return ret;
4260 
4261 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4262 				opts->host_traddr ?: "none");
4263 		if (ret)
4264 			return ret;
4265 
4266 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4267 				opts->host_iface ?: "none");
4268 	}
4269 	return ret;
4270 }
4271 
4272 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4273 {
4274 	char *envp[2] = { envdata, NULL };
4275 
4276 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4277 }
4278 
4279 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4280 {
4281 	char *envp[2] = { NULL, NULL };
4282 	u32 aen_result = ctrl->aen_result;
4283 
4284 	ctrl->aen_result = 0;
4285 	if (!aen_result)
4286 		return;
4287 
4288 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4289 	if (!envp[0])
4290 		return;
4291 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4292 	kfree(envp[0]);
4293 }
4294 
4295 static void nvme_async_event_work(struct work_struct *work)
4296 {
4297 	struct nvme_ctrl *ctrl =
4298 		container_of(work, struct nvme_ctrl, async_event_work);
4299 
4300 	nvme_aen_uevent(ctrl);
4301 
4302 	/*
4303 	 * The transport drivers must guarantee AER submission here is safe by
4304 	 * flushing ctrl async_event_work after changing the controller state
4305 	 * from LIVE and before freeing the admin queue.
4306 	*/
4307 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4308 		ctrl->ops->submit_async_event(ctrl);
4309 }
4310 
4311 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4312 {
4313 
4314 	u32 csts;
4315 
4316 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4317 		return false;
4318 
4319 	if (csts == ~0)
4320 		return false;
4321 
4322 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4323 }
4324 
4325 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4326 {
4327 	struct nvme_fw_slot_info_log *log;
4328 	u8 next_fw_slot, cur_fw_slot;
4329 
4330 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4331 	if (!log)
4332 		return;
4333 
4334 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4335 			 log, sizeof(*log), 0)) {
4336 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4337 		goto out_free_log;
4338 	}
4339 
4340 	cur_fw_slot = log->afi & 0x7;
4341 	next_fw_slot = (log->afi & 0x70) >> 4;
4342 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4343 		dev_info(ctrl->device,
4344 			 "Firmware is activated after next Controller Level Reset\n");
4345 		goto out_free_log;
4346 	}
4347 
4348 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4349 		sizeof(ctrl->subsys->firmware_rev));
4350 
4351 out_free_log:
4352 	kfree(log);
4353 }
4354 
4355 static void nvme_fw_act_work(struct work_struct *work)
4356 {
4357 	struct nvme_ctrl *ctrl = container_of(work,
4358 				struct nvme_ctrl, fw_act_work);
4359 	unsigned long fw_act_timeout;
4360 
4361 	nvme_auth_stop(ctrl);
4362 
4363 	if (ctrl->mtfa)
4364 		fw_act_timeout = jiffies +
4365 				msecs_to_jiffies(ctrl->mtfa * 100);
4366 	else
4367 		fw_act_timeout = jiffies +
4368 				msecs_to_jiffies(admin_timeout * 1000);
4369 
4370 	nvme_quiesce_io_queues(ctrl);
4371 	while (nvme_ctrl_pp_status(ctrl)) {
4372 		if (time_after(jiffies, fw_act_timeout)) {
4373 			dev_warn(ctrl->device,
4374 				"Fw activation timeout, reset controller\n");
4375 			nvme_try_sched_reset(ctrl);
4376 			return;
4377 		}
4378 		msleep(100);
4379 	}
4380 
4381 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4382 		return;
4383 
4384 	nvme_unquiesce_io_queues(ctrl);
4385 	/* read FW slot information to clear the AER */
4386 	nvme_get_fw_slot_info(ctrl);
4387 
4388 	queue_work(nvme_wq, &ctrl->async_event_work);
4389 }
4390 
4391 static u32 nvme_aer_type(u32 result)
4392 {
4393 	return result & 0x7;
4394 }
4395 
4396 static u32 nvme_aer_subtype(u32 result)
4397 {
4398 	return (result & 0xff00) >> 8;
4399 }
4400 
4401 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4402 {
4403 	u32 aer_notice_type = nvme_aer_subtype(result);
4404 	bool requeue = true;
4405 
4406 	switch (aer_notice_type) {
4407 	case NVME_AER_NOTICE_NS_CHANGED:
4408 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4409 		nvme_queue_scan(ctrl);
4410 		break;
4411 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4412 		/*
4413 		 * We are (ab)using the RESETTING state to prevent subsequent
4414 		 * recovery actions from interfering with the controller's
4415 		 * firmware activation.
4416 		 */
4417 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4418 			requeue = false;
4419 			queue_work(nvme_wq, &ctrl->fw_act_work);
4420 		}
4421 		break;
4422 #ifdef CONFIG_NVME_MULTIPATH
4423 	case NVME_AER_NOTICE_ANA:
4424 		if (!ctrl->ana_log_buf)
4425 			break;
4426 		queue_work(nvme_wq, &ctrl->ana_work);
4427 		break;
4428 #endif
4429 	case NVME_AER_NOTICE_DISC_CHANGED:
4430 		ctrl->aen_result = result;
4431 		break;
4432 	default:
4433 		dev_warn(ctrl->device, "async event result %08x\n", result);
4434 	}
4435 	return requeue;
4436 }
4437 
4438 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4439 {
4440 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4441 	nvme_reset_ctrl(ctrl);
4442 }
4443 
4444 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4445 		volatile union nvme_result *res)
4446 {
4447 	u32 result = le32_to_cpu(res->u32);
4448 	u32 aer_type = nvme_aer_type(result);
4449 	u32 aer_subtype = nvme_aer_subtype(result);
4450 	bool requeue = true;
4451 
4452 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4453 		return;
4454 
4455 	trace_nvme_async_event(ctrl, result);
4456 	switch (aer_type) {
4457 	case NVME_AER_NOTICE:
4458 		requeue = nvme_handle_aen_notice(ctrl, result);
4459 		break;
4460 	case NVME_AER_ERROR:
4461 		/*
4462 		 * For a persistent internal error, don't run async_event_work
4463 		 * to submit a new AER. The controller reset will do it.
4464 		 */
4465 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4466 			nvme_handle_aer_persistent_error(ctrl);
4467 			return;
4468 		}
4469 		fallthrough;
4470 	case NVME_AER_SMART:
4471 	case NVME_AER_CSS:
4472 	case NVME_AER_VS:
4473 		ctrl->aen_result = result;
4474 		break;
4475 	default:
4476 		break;
4477 	}
4478 
4479 	if (requeue)
4480 		queue_work(nvme_wq, &ctrl->async_event_work);
4481 }
4482 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4483 
4484 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4485 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4486 {
4487 	struct queue_limits lim = {};
4488 	int ret;
4489 
4490 	memset(set, 0, sizeof(*set));
4491 	set->ops = ops;
4492 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4493 	if (ctrl->ops->flags & NVME_F_FABRICS)
4494 		/* Reserved for fabric connect and keep alive */
4495 		set->reserved_tags = 2;
4496 	set->numa_node = ctrl->numa_node;
4497 	set->flags = BLK_MQ_F_NO_SCHED;
4498 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4499 		set->flags |= BLK_MQ_F_BLOCKING;
4500 	set->cmd_size = cmd_size;
4501 	set->driver_data = ctrl;
4502 	set->nr_hw_queues = 1;
4503 	set->timeout = NVME_ADMIN_TIMEOUT;
4504 	ret = blk_mq_alloc_tag_set(set);
4505 	if (ret)
4506 		return ret;
4507 
4508 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4509 	if (IS_ERR(ctrl->admin_q)) {
4510 		ret = PTR_ERR(ctrl->admin_q);
4511 		goto out_free_tagset;
4512 	}
4513 
4514 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4515 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4516 		if (IS_ERR(ctrl->fabrics_q)) {
4517 			ret = PTR_ERR(ctrl->fabrics_q);
4518 			goto out_cleanup_admin_q;
4519 		}
4520 	}
4521 
4522 	ctrl->admin_tagset = set;
4523 	return 0;
4524 
4525 out_cleanup_admin_q:
4526 	blk_mq_destroy_queue(ctrl->admin_q);
4527 	blk_put_queue(ctrl->admin_q);
4528 out_free_tagset:
4529 	blk_mq_free_tag_set(set);
4530 	ctrl->admin_q = NULL;
4531 	ctrl->fabrics_q = NULL;
4532 	return ret;
4533 }
4534 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4535 
4536 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4537 {
4538 	blk_mq_destroy_queue(ctrl->admin_q);
4539 	blk_put_queue(ctrl->admin_q);
4540 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4541 		blk_mq_destroy_queue(ctrl->fabrics_q);
4542 		blk_put_queue(ctrl->fabrics_q);
4543 	}
4544 	blk_mq_free_tag_set(ctrl->admin_tagset);
4545 }
4546 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4547 
4548 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4549 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4550 		unsigned int cmd_size)
4551 {
4552 	int ret;
4553 
4554 	memset(set, 0, sizeof(*set));
4555 	set->ops = ops;
4556 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4557 	/*
4558 	 * Some Apple controllers requires tags to be unique across admin and
4559 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4560 	 */
4561 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4562 		set->reserved_tags = NVME_AQ_DEPTH;
4563 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4564 		/* Reserved for fabric connect */
4565 		set->reserved_tags = 1;
4566 	set->numa_node = ctrl->numa_node;
4567 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4568 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4569 		set->flags |= BLK_MQ_F_BLOCKING;
4570 	set->cmd_size = cmd_size,
4571 	set->driver_data = ctrl;
4572 	set->nr_hw_queues = ctrl->queue_count - 1;
4573 	set->timeout = NVME_IO_TIMEOUT;
4574 	set->nr_maps = nr_maps;
4575 	ret = blk_mq_alloc_tag_set(set);
4576 	if (ret)
4577 		return ret;
4578 
4579 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4580 		struct queue_limits lim = {
4581 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4582 		};
4583 
4584 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4585         	if (IS_ERR(ctrl->connect_q)) {
4586 			ret = PTR_ERR(ctrl->connect_q);
4587 			goto out_free_tag_set;
4588 		}
4589 	}
4590 
4591 	ctrl->tagset = set;
4592 	return 0;
4593 
4594 out_free_tag_set:
4595 	blk_mq_free_tag_set(set);
4596 	ctrl->connect_q = NULL;
4597 	return ret;
4598 }
4599 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4600 
4601 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4602 {
4603 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4604 		blk_mq_destroy_queue(ctrl->connect_q);
4605 		blk_put_queue(ctrl->connect_q);
4606 	}
4607 	blk_mq_free_tag_set(ctrl->tagset);
4608 }
4609 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4610 
4611 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4612 {
4613 	nvme_mpath_stop(ctrl);
4614 	nvme_auth_stop(ctrl);
4615 	nvme_stop_keep_alive(ctrl);
4616 	nvme_stop_failfast_work(ctrl);
4617 	flush_work(&ctrl->async_event_work);
4618 	cancel_work_sync(&ctrl->fw_act_work);
4619 	if (ctrl->ops->stop_ctrl)
4620 		ctrl->ops->stop_ctrl(ctrl);
4621 }
4622 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4623 
4624 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4625 {
4626 	nvme_enable_aen(ctrl);
4627 
4628 	/*
4629 	 * persistent discovery controllers need to send indication to userspace
4630 	 * to re-read the discovery log page to learn about possible changes
4631 	 * that were missed. We identify persistent discovery controllers by
4632 	 * checking that they started once before, hence are reconnecting back.
4633 	 */
4634 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4635 	    nvme_discovery_ctrl(ctrl))
4636 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4637 
4638 	if (ctrl->queue_count > 1) {
4639 		nvme_queue_scan(ctrl);
4640 		nvme_unquiesce_io_queues(ctrl);
4641 		nvme_mpath_update(ctrl);
4642 	}
4643 
4644 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4645 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4646 }
4647 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4648 
4649 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4650 {
4651 	nvme_hwmon_exit(ctrl);
4652 	nvme_fault_inject_fini(&ctrl->fault_inject);
4653 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4654 	cdev_device_del(&ctrl->cdev, ctrl->device);
4655 	nvme_put_ctrl(ctrl);
4656 }
4657 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4658 
4659 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4660 {
4661 	struct nvme_effects_log	*cel;
4662 	unsigned long i;
4663 
4664 	xa_for_each(&ctrl->cels, i, cel) {
4665 		xa_erase(&ctrl->cels, i);
4666 		kfree(cel);
4667 	}
4668 
4669 	xa_destroy(&ctrl->cels);
4670 }
4671 
4672 static void nvme_free_ctrl(struct device *dev)
4673 {
4674 	struct nvme_ctrl *ctrl =
4675 		container_of(dev, struct nvme_ctrl, ctrl_device);
4676 	struct nvme_subsystem *subsys = ctrl->subsys;
4677 
4678 	if (!subsys || ctrl->instance != subsys->instance)
4679 		ida_free(&nvme_instance_ida, ctrl->instance);
4680 	key_put(ctrl->tls_key);
4681 	nvme_free_cels(ctrl);
4682 	nvme_mpath_uninit(ctrl);
4683 	cleanup_srcu_struct(&ctrl->srcu);
4684 	nvme_auth_stop(ctrl);
4685 	nvme_auth_free(ctrl);
4686 	__free_page(ctrl->discard_page);
4687 	free_opal_dev(ctrl->opal_dev);
4688 
4689 	if (subsys) {
4690 		mutex_lock(&nvme_subsystems_lock);
4691 		list_del(&ctrl->subsys_entry);
4692 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4693 		mutex_unlock(&nvme_subsystems_lock);
4694 	}
4695 
4696 	ctrl->ops->free_ctrl(ctrl);
4697 
4698 	if (subsys)
4699 		nvme_put_subsystem(subsys);
4700 }
4701 
4702 /*
4703  * Initialize a NVMe controller structures.  This needs to be called during
4704  * earliest initialization so that we have the initialized structured around
4705  * during probing.
4706  *
4707  * On success, the caller must use the nvme_put_ctrl() to release this when
4708  * needed, which also invokes the ops->free_ctrl() callback.
4709  */
4710 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4711 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4712 {
4713 	int ret;
4714 
4715 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4716 	ctrl->passthru_err_log_enabled = false;
4717 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4718 	spin_lock_init(&ctrl->lock);
4719 	mutex_init(&ctrl->namespaces_lock);
4720 
4721 	ret = init_srcu_struct(&ctrl->srcu);
4722 	if (ret)
4723 		return ret;
4724 
4725 	mutex_init(&ctrl->scan_lock);
4726 	INIT_LIST_HEAD(&ctrl->namespaces);
4727 	xa_init(&ctrl->cels);
4728 	ctrl->dev = dev;
4729 	ctrl->ops = ops;
4730 	ctrl->quirks = quirks;
4731 	ctrl->numa_node = NUMA_NO_NODE;
4732 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4733 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4734 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4735 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4736 	init_waitqueue_head(&ctrl->state_wq);
4737 
4738 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4739 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4740 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4741 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4742 	ctrl->ka_last_check_time = jiffies;
4743 
4744 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4745 			PAGE_SIZE);
4746 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4747 	if (!ctrl->discard_page) {
4748 		ret = -ENOMEM;
4749 		goto out;
4750 	}
4751 
4752 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4753 	if (ret < 0)
4754 		goto out;
4755 	ctrl->instance = ret;
4756 
4757 	ret = nvme_auth_init_ctrl(ctrl);
4758 	if (ret)
4759 		goto out_release_instance;
4760 
4761 	nvme_mpath_init_ctrl(ctrl);
4762 
4763 	device_initialize(&ctrl->ctrl_device);
4764 	ctrl->device = &ctrl->ctrl_device;
4765 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4766 			ctrl->instance);
4767 	ctrl->device->class = &nvme_class;
4768 	ctrl->device->parent = ctrl->dev;
4769 	if (ops->dev_attr_groups)
4770 		ctrl->device->groups = ops->dev_attr_groups;
4771 	else
4772 		ctrl->device->groups = nvme_dev_attr_groups;
4773 	ctrl->device->release = nvme_free_ctrl;
4774 	dev_set_drvdata(ctrl->device, ctrl);
4775 
4776 	return ret;
4777 
4778 out_release_instance:
4779 	ida_free(&nvme_instance_ida, ctrl->instance);
4780 out:
4781 	if (ctrl->discard_page)
4782 		__free_page(ctrl->discard_page);
4783 	cleanup_srcu_struct(&ctrl->srcu);
4784 	return ret;
4785 }
4786 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4787 
4788 /*
4789  * On success, returns with an elevated controller reference and caller must
4790  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4791  */
4792 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4793 {
4794 	int ret;
4795 
4796 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4797 	if (ret)
4798 		return ret;
4799 
4800 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4801 	ctrl->cdev.owner = ctrl->ops->module;
4802 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4803 	if (ret)
4804 		return ret;
4805 
4806 	/*
4807 	 * Initialize latency tolerance controls.  The sysfs files won't
4808 	 * be visible to userspace unless the device actually supports APST.
4809 	 */
4810 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4811 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4812 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4813 
4814 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4815 	nvme_get_ctrl(ctrl);
4816 
4817 	return 0;
4818 }
4819 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4820 
4821 /* let I/O to all namespaces fail in preparation for surprise removal */
4822 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4823 {
4824 	struct nvme_ns *ns;
4825 	int srcu_idx;
4826 
4827 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4828 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4829 		blk_mark_disk_dead(ns->disk);
4830 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4831 }
4832 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4833 
4834 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4835 {
4836 	struct nvme_ns *ns;
4837 	int srcu_idx;
4838 
4839 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4840 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4841 		blk_mq_unfreeze_queue(ns->queue);
4842 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4843 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4844 }
4845 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4846 
4847 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4848 {
4849 	struct nvme_ns *ns;
4850 	int srcu_idx;
4851 
4852 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4853 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
4854 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4855 		if (timeout <= 0)
4856 			break;
4857 	}
4858 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4859 	return timeout;
4860 }
4861 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4862 
4863 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4864 {
4865 	struct nvme_ns *ns;
4866 	int srcu_idx;
4867 
4868 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4869 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4870 		blk_mq_freeze_queue_wait(ns->queue);
4871 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4872 }
4873 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4874 
4875 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4876 {
4877 	struct nvme_ns *ns;
4878 	int srcu_idx;
4879 
4880 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4881 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4882 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4883 		blk_freeze_queue_start(ns->queue);
4884 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4885 }
4886 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4887 
4888 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4889 {
4890 	if (!ctrl->tagset)
4891 		return;
4892 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4893 		blk_mq_quiesce_tagset(ctrl->tagset);
4894 	else
4895 		blk_mq_wait_quiesce_done(ctrl->tagset);
4896 }
4897 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4898 
4899 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4900 {
4901 	if (!ctrl->tagset)
4902 		return;
4903 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4904 		blk_mq_unquiesce_tagset(ctrl->tagset);
4905 }
4906 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4907 
4908 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4909 {
4910 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4911 		blk_mq_quiesce_queue(ctrl->admin_q);
4912 	else
4913 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4914 }
4915 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4916 
4917 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4918 {
4919 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4920 		blk_mq_unquiesce_queue(ctrl->admin_q);
4921 }
4922 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4923 
4924 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4925 {
4926 	struct nvme_ns *ns;
4927 	int srcu_idx;
4928 
4929 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4930 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4931 		blk_sync_queue(ns->queue);
4932 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4933 }
4934 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4935 
4936 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4937 {
4938 	nvme_sync_io_queues(ctrl);
4939 	if (ctrl->admin_q)
4940 		blk_sync_queue(ctrl->admin_q);
4941 }
4942 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4943 
4944 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4945 {
4946 	if (file->f_op != &nvme_dev_fops)
4947 		return NULL;
4948 	return file->private_data;
4949 }
4950 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4951 
4952 /*
4953  * Check we didn't inadvertently grow the command structure sizes:
4954  */
4955 static inline void _nvme_check_size(void)
4956 {
4957 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4958 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4959 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4960 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4961 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4962 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4963 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4964 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4965 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4966 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4967 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4968 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4969 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4970 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4971 			NVME_IDENTIFY_DATA_SIZE);
4972 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4973 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4974 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4975 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4976 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4977 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4978 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4979 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4980 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4981 }
4982 
4983 
4984 static int __init nvme_core_init(void)
4985 {
4986 	int result = -ENOMEM;
4987 
4988 	_nvme_check_size();
4989 
4990 	nvme_wq = alloc_workqueue("nvme-wq",
4991 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4992 	if (!nvme_wq)
4993 		goto out;
4994 
4995 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4996 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4997 	if (!nvme_reset_wq)
4998 		goto destroy_wq;
4999 
5000 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5001 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5002 	if (!nvme_delete_wq)
5003 		goto destroy_reset_wq;
5004 
5005 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5006 			NVME_MINORS, "nvme");
5007 	if (result < 0)
5008 		goto destroy_delete_wq;
5009 
5010 	result = class_register(&nvme_class);
5011 	if (result)
5012 		goto unregister_chrdev;
5013 
5014 	result = class_register(&nvme_subsys_class);
5015 	if (result)
5016 		goto destroy_class;
5017 
5018 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5019 				     "nvme-generic");
5020 	if (result < 0)
5021 		goto destroy_subsys_class;
5022 
5023 	result = class_register(&nvme_ns_chr_class);
5024 	if (result)
5025 		goto unregister_generic_ns;
5026 
5027 	result = nvme_init_auth();
5028 	if (result)
5029 		goto destroy_ns_chr;
5030 	return 0;
5031 
5032 destroy_ns_chr:
5033 	class_unregister(&nvme_ns_chr_class);
5034 unregister_generic_ns:
5035 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5036 destroy_subsys_class:
5037 	class_unregister(&nvme_subsys_class);
5038 destroy_class:
5039 	class_unregister(&nvme_class);
5040 unregister_chrdev:
5041 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5042 destroy_delete_wq:
5043 	destroy_workqueue(nvme_delete_wq);
5044 destroy_reset_wq:
5045 	destroy_workqueue(nvme_reset_wq);
5046 destroy_wq:
5047 	destroy_workqueue(nvme_wq);
5048 out:
5049 	return result;
5050 }
5051 
5052 static void __exit nvme_core_exit(void)
5053 {
5054 	nvme_exit_auth();
5055 	class_unregister(&nvme_ns_chr_class);
5056 	class_unregister(&nvme_subsys_class);
5057 	class_unregister(&nvme_class);
5058 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5059 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5060 	destroy_workqueue(nvme_delete_wq);
5061 	destroy_workqueue(nvme_reset_wq);
5062 	destroy_workqueue(nvme_wq);
5063 	ida_destroy(&nvme_ns_chr_minor_ida);
5064 	ida_destroy(&nvme_instance_ida);
5065 }
5066 
5067 MODULE_LICENSE("GPL");
5068 MODULE_VERSION("1.0");
5069 MODULE_DESCRIPTION("NVMe host core framework");
5070 module_init(nvme_core_init);
5071 module_exit(nvme_core_exit);
5072