1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/async.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-mq.h> 10 #include <linux/blk-integrity.h> 11 #include <linux/compat.h> 12 #include <linux/delay.h> 13 #include <linux/errno.h> 14 #include <linux/hdreg.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/pr.h> 21 #include <linux/ptrace.h> 22 #include <linux/nvme_ioctl.h> 23 #include <linux/pm_qos.h> 24 #include <linux/ratelimit.h> 25 #include <asm/unaligned.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 #include <linux/nvme-auth.h> 30 31 #define CREATE_TRACE_POINTS 32 #include "trace.h" 33 34 #define NVME_MINORS (1U << MINORBITS) 35 36 struct nvme_ns_info { 37 struct nvme_ns_ids ids; 38 u32 nsid; 39 __le32 anagrpid; 40 u8 pi_offset; 41 bool is_shared; 42 bool is_readonly; 43 bool is_ready; 44 bool is_removed; 45 }; 46 47 unsigned int admin_timeout = 60; 48 module_param(admin_timeout, uint, 0644); 49 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 50 EXPORT_SYMBOL_GPL(admin_timeout); 51 52 unsigned int nvme_io_timeout = 30; 53 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 54 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 55 EXPORT_SYMBOL_GPL(nvme_io_timeout); 56 57 static unsigned char shutdown_timeout = 5; 58 module_param(shutdown_timeout, byte, 0644); 59 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 60 61 static u8 nvme_max_retries = 5; 62 module_param_named(max_retries, nvme_max_retries, byte, 0644); 63 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 64 65 static unsigned long default_ps_max_latency_us = 100000; 66 module_param(default_ps_max_latency_us, ulong, 0644); 67 MODULE_PARM_DESC(default_ps_max_latency_us, 68 "max power saving latency for new devices; use PM QOS to change per device"); 69 70 static bool force_apst; 71 module_param(force_apst, bool, 0644); 72 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 73 74 static unsigned long apst_primary_timeout_ms = 100; 75 module_param(apst_primary_timeout_ms, ulong, 0644); 76 MODULE_PARM_DESC(apst_primary_timeout_ms, 77 "primary APST timeout in ms"); 78 79 static unsigned long apst_secondary_timeout_ms = 2000; 80 module_param(apst_secondary_timeout_ms, ulong, 0644); 81 MODULE_PARM_DESC(apst_secondary_timeout_ms, 82 "secondary APST timeout in ms"); 83 84 static unsigned long apst_primary_latency_tol_us = 15000; 85 module_param(apst_primary_latency_tol_us, ulong, 0644); 86 MODULE_PARM_DESC(apst_primary_latency_tol_us, 87 "primary APST latency tolerance in us"); 88 89 static unsigned long apst_secondary_latency_tol_us = 100000; 90 module_param(apst_secondary_latency_tol_us, ulong, 0644); 91 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 92 "secondary APST latency tolerance in us"); 93 94 /* 95 * nvme_wq - hosts nvme related works that are not reset or delete 96 * nvme_reset_wq - hosts nvme reset works 97 * nvme_delete_wq - hosts nvme delete works 98 * 99 * nvme_wq will host works such as scan, aen handling, fw activation, 100 * keep-alive, periodic reconnects etc. nvme_reset_wq 101 * runs reset works which also flush works hosted on nvme_wq for 102 * serialization purposes. nvme_delete_wq host controller deletion 103 * works which flush reset works for serialization. 104 */ 105 struct workqueue_struct *nvme_wq; 106 EXPORT_SYMBOL_GPL(nvme_wq); 107 108 struct workqueue_struct *nvme_reset_wq; 109 EXPORT_SYMBOL_GPL(nvme_reset_wq); 110 111 struct workqueue_struct *nvme_delete_wq; 112 EXPORT_SYMBOL_GPL(nvme_delete_wq); 113 114 static LIST_HEAD(nvme_subsystems); 115 DEFINE_MUTEX(nvme_subsystems_lock); 116 117 static DEFINE_IDA(nvme_instance_ida); 118 static dev_t nvme_ctrl_base_chr_devt; 119 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 120 static const struct class nvme_class = { 121 .name = "nvme", 122 .dev_uevent = nvme_class_uevent, 123 }; 124 125 static const struct class nvme_subsys_class = { 126 .name = "nvme-subsystem", 127 }; 128 129 static DEFINE_IDA(nvme_ns_chr_minor_ida); 130 static dev_t nvme_ns_chr_devt; 131 static const struct class nvme_ns_chr_class = { 132 .name = "nvme-generic", 133 }; 134 135 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 136 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 137 unsigned nsid); 138 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 139 struct nvme_command *cmd); 140 141 void nvme_queue_scan(struct nvme_ctrl *ctrl) 142 { 143 /* 144 * Only new queue scan work when admin and IO queues are both alive 145 */ 146 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 147 queue_work(nvme_wq, &ctrl->scan_work); 148 } 149 150 /* 151 * Use this function to proceed with scheduling reset_work for a controller 152 * that had previously been set to the resetting state. This is intended for 153 * code paths that can't be interrupted by other reset attempts. A hot removal 154 * may prevent this from succeeding. 155 */ 156 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 157 { 158 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 159 return -EBUSY; 160 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 161 return -EBUSY; 162 return 0; 163 } 164 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 165 166 static void nvme_failfast_work(struct work_struct *work) 167 { 168 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 169 struct nvme_ctrl, failfast_work); 170 171 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 172 return; 173 174 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 175 dev_info(ctrl->device, "failfast expired\n"); 176 nvme_kick_requeue_lists(ctrl); 177 } 178 179 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 180 { 181 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 182 return; 183 184 schedule_delayed_work(&ctrl->failfast_work, 185 ctrl->opts->fast_io_fail_tmo * HZ); 186 } 187 188 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 189 { 190 if (!ctrl->opts) 191 return; 192 193 cancel_delayed_work_sync(&ctrl->failfast_work); 194 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 195 } 196 197 198 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 199 { 200 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 201 return -EBUSY; 202 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 203 return -EBUSY; 204 return 0; 205 } 206 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 207 208 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 209 { 210 int ret; 211 212 ret = nvme_reset_ctrl(ctrl); 213 if (!ret) { 214 flush_work(&ctrl->reset_work); 215 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 216 ret = -ENETRESET; 217 } 218 219 return ret; 220 } 221 222 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 223 { 224 dev_info(ctrl->device, 225 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 226 227 flush_work(&ctrl->reset_work); 228 nvme_stop_ctrl(ctrl); 229 nvme_remove_namespaces(ctrl); 230 ctrl->ops->delete_ctrl(ctrl); 231 nvme_uninit_ctrl(ctrl); 232 } 233 234 static void nvme_delete_ctrl_work(struct work_struct *work) 235 { 236 struct nvme_ctrl *ctrl = 237 container_of(work, struct nvme_ctrl, delete_work); 238 239 nvme_do_delete_ctrl(ctrl); 240 } 241 242 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 243 { 244 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 245 return -EBUSY; 246 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 247 return -EBUSY; 248 return 0; 249 } 250 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 251 252 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 253 { 254 /* 255 * Keep a reference until nvme_do_delete_ctrl() complete, 256 * since ->delete_ctrl can free the controller. 257 */ 258 nvme_get_ctrl(ctrl); 259 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 260 nvme_do_delete_ctrl(ctrl); 261 nvme_put_ctrl(ctrl); 262 } 263 264 static blk_status_t nvme_error_status(u16 status) 265 { 266 switch (status & NVME_SCT_SC_MASK) { 267 case NVME_SC_SUCCESS: 268 return BLK_STS_OK; 269 case NVME_SC_CAP_EXCEEDED: 270 return BLK_STS_NOSPC; 271 case NVME_SC_LBA_RANGE: 272 case NVME_SC_CMD_INTERRUPTED: 273 case NVME_SC_NS_NOT_READY: 274 return BLK_STS_TARGET; 275 case NVME_SC_BAD_ATTRIBUTES: 276 case NVME_SC_ONCS_NOT_SUPPORTED: 277 case NVME_SC_INVALID_OPCODE: 278 case NVME_SC_INVALID_FIELD: 279 case NVME_SC_INVALID_NS: 280 return BLK_STS_NOTSUPP; 281 case NVME_SC_WRITE_FAULT: 282 case NVME_SC_READ_ERROR: 283 case NVME_SC_UNWRITTEN_BLOCK: 284 case NVME_SC_ACCESS_DENIED: 285 case NVME_SC_READ_ONLY: 286 case NVME_SC_COMPARE_FAILED: 287 return BLK_STS_MEDIUM; 288 case NVME_SC_GUARD_CHECK: 289 case NVME_SC_APPTAG_CHECK: 290 case NVME_SC_REFTAG_CHECK: 291 case NVME_SC_INVALID_PI: 292 return BLK_STS_PROTECTION; 293 case NVME_SC_RESERVATION_CONFLICT: 294 return BLK_STS_RESV_CONFLICT; 295 case NVME_SC_HOST_PATH_ERROR: 296 return BLK_STS_TRANSPORT; 297 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 298 return BLK_STS_ZONE_ACTIVE_RESOURCE; 299 case NVME_SC_ZONE_TOO_MANY_OPEN: 300 return BLK_STS_ZONE_OPEN_RESOURCE; 301 default: 302 return BLK_STS_IOERR; 303 } 304 } 305 306 static void nvme_retry_req(struct request *req) 307 { 308 unsigned long delay = 0; 309 u16 crd; 310 311 /* The mask and shift result must be <= 3 */ 312 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; 313 if (crd) 314 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 315 316 nvme_req(req)->retries++; 317 blk_mq_requeue_request(req, false); 318 blk_mq_delay_kick_requeue_list(req->q, delay); 319 } 320 321 static void nvme_log_error(struct request *req) 322 { 323 struct nvme_ns *ns = req->q->queuedata; 324 struct nvme_request *nr = nvme_req(req); 325 326 if (ns) { 327 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 328 ns->disk ? ns->disk->disk_name : "?", 329 nvme_get_opcode_str(nr->cmd->common.opcode), 330 nr->cmd->common.opcode, 331 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 332 blk_rq_bytes(req) >> ns->head->lba_shift, 333 nvme_get_error_status_str(nr->status), 334 NVME_SCT(nr->status), /* Status Code Type */ 335 nr->status & NVME_SC_MASK, /* Status Code */ 336 nr->status & NVME_STATUS_MORE ? "MORE " : "", 337 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 338 return; 339 } 340 341 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 342 dev_name(nr->ctrl->device), 343 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 344 nr->cmd->common.opcode, 345 nvme_get_error_status_str(nr->status), 346 NVME_SCT(nr->status), /* Status Code Type */ 347 nr->status & NVME_SC_MASK, /* Status Code */ 348 nr->status & NVME_STATUS_MORE ? "MORE " : "", 349 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 350 } 351 352 static void nvme_log_err_passthru(struct request *req) 353 { 354 struct nvme_ns *ns = req->q->queuedata; 355 struct nvme_request *nr = nvme_req(req); 356 357 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 358 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 359 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 360 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 361 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 362 nr->cmd->common.opcode, 363 nvme_get_error_status_str(nr->status), 364 NVME_SCT(nr->status), /* Status Code Type */ 365 nr->status & NVME_SC_MASK, /* Status Code */ 366 nr->status & NVME_STATUS_MORE ? "MORE " : "", 367 nr->status & NVME_STATUS_DNR ? "DNR " : "", 368 nr->cmd->common.cdw10, 369 nr->cmd->common.cdw11, 370 nr->cmd->common.cdw12, 371 nr->cmd->common.cdw13, 372 nr->cmd->common.cdw14, 373 nr->cmd->common.cdw14); 374 } 375 376 enum nvme_disposition { 377 COMPLETE, 378 RETRY, 379 FAILOVER, 380 AUTHENTICATE, 381 }; 382 383 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 384 { 385 if (likely(nvme_req(req)->status == 0)) 386 return COMPLETE; 387 388 if (blk_noretry_request(req) || 389 (nvme_req(req)->status & NVME_STATUS_DNR) || 390 nvme_req(req)->retries >= nvme_max_retries) 391 return COMPLETE; 392 393 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) 394 return AUTHENTICATE; 395 396 if (req->cmd_flags & REQ_NVME_MPATH) { 397 if (nvme_is_path_error(nvme_req(req)->status) || 398 blk_queue_dying(req->q)) 399 return FAILOVER; 400 } else { 401 if (blk_queue_dying(req->q)) 402 return COMPLETE; 403 } 404 405 return RETRY; 406 } 407 408 static inline void nvme_end_req_zoned(struct request *req) 409 { 410 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 411 req_op(req) == REQ_OP_ZONE_APPEND) { 412 struct nvme_ns *ns = req->q->queuedata; 413 414 req->__sector = nvme_lba_to_sect(ns->head, 415 le64_to_cpu(nvme_req(req)->result.u64)); 416 } 417 } 418 419 static inline void __nvme_end_req(struct request *req) 420 { 421 nvme_end_req_zoned(req); 422 nvme_trace_bio_complete(req); 423 if (req->cmd_flags & REQ_NVME_MPATH) 424 nvme_mpath_end_request(req); 425 } 426 427 void nvme_end_req(struct request *req) 428 { 429 blk_status_t status = nvme_error_status(nvme_req(req)->status); 430 431 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 432 if (blk_rq_is_passthrough(req)) 433 nvme_log_err_passthru(req); 434 else 435 nvme_log_error(req); 436 } 437 __nvme_end_req(req); 438 blk_mq_end_request(req, status); 439 } 440 441 void nvme_complete_rq(struct request *req) 442 { 443 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 444 445 trace_nvme_complete_rq(req); 446 nvme_cleanup_cmd(req); 447 448 /* 449 * Completions of long-running commands should not be able to 450 * defer sending of periodic keep alives, since the controller 451 * may have completed processing such commands a long time ago 452 * (arbitrarily close to command submission time). 453 * req->deadline - req->timeout is the command submission time 454 * in jiffies. 455 */ 456 if (ctrl->kas && 457 req->deadline - req->timeout >= ctrl->ka_last_check_time) 458 ctrl->comp_seen = true; 459 460 switch (nvme_decide_disposition(req)) { 461 case COMPLETE: 462 nvme_end_req(req); 463 return; 464 case RETRY: 465 nvme_retry_req(req); 466 return; 467 case FAILOVER: 468 nvme_failover_req(req); 469 return; 470 case AUTHENTICATE: 471 #ifdef CONFIG_NVME_HOST_AUTH 472 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 473 nvme_retry_req(req); 474 #else 475 nvme_end_req(req); 476 #endif 477 return; 478 } 479 } 480 EXPORT_SYMBOL_GPL(nvme_complete_rq); 481 482 void nvme_complete_batch_req(struct request *req) 483 { 484 trace_nvme_complete_rq(req); 485 nvme_cleanup_cmd(req); 486 __nvme_end_req(req); 487 } 488 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 489 490 /* 491 * Called to unwind from ->queue_rq on a failed command submission so that the 492 * multipathing code gets called to potentially failover to another path. 493 * The caller needs to unwind all transport specific resource allocations and 494 * must return propagate the return value. 495 */ 496 blk_status_t nvme_host_path_error(struct request *req) 497 { 498 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 499 blk_mq_set_request_complete(req); 500 nvme_complete_rq(req); 501 return BLK_STS_OK; 502 } 503 EXPORT_SYMBOL_GPL(nvme_host_path_error); 504 505 bool nvme_cancel_request(struct request *req, void *data) 506 { 507 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 508 "Cancelling I/O %d", req->tag); 509 510 /* don't abort one completed or idle request */ 511 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 512 return true; 513 514 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 515 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 516 blk_mq_complete_request(req); 517 return true; 518 } 519 EXPORT_SYMBOL_GPL(nvme_cancel_request); 520 521 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 522 { 523 if (ctrl->tagset) { 524 blk_mq_tagset_busy_iter(ctrl->tagset, 525 nvme_cancel_request, ctrl); 526 blk_mq_tagset_wait_completed_request(ctrl->tagset); 527 } 528 } 529 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 530 531 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 532 { 533 if (ctrl->admin_tagset) { 534 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 535 nvme_cancel_request, ctrl); 536 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 537 } 538 } 539 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 540 541 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 542 enum nvme_ctrl_state new_state) 543 { 544 enum nvme_ctrl_state old_state; 545 unsigned long flags; 546 bool changed = false; 547 548 spin_lock_irqsave(&ctrl->lock, flags); 549 550 old_state = nvme_ctrl_state(ctrl); 551 switch (new_state) { 552 case NVME_CTRL_LIVE: 553 switch (old_state) { 554 case NVME_CTRL_NEW: 555 case NVME_CTRL_RESETTING: 556 case NVME_CTRL_CONNECTING: 557 changed = true; 558 fallthrough; 559 default: 560 break; 561 } 562 break; 563 case NVME_CTRL_RESETTING: 564 switch (old_state) { 565 case NVME_CTRL_NEW: 566 case NVME_CTRL_LIVE: 567 changed = true; 568 fallthrough; 569 default: 570 break; 571 } 572 break; 573 case NVME_CTRL_CONNECTING: 574 switch (old_state) { 575 case NVME_CTRL_NEW: 576 case NVME_CTRL_RESETTING: 577 changed = true; 578 fallthrough; 579 default: 580 break; 581 } 582 break; 583 case NVME_CTRL_DELETING: 584 switch (old_state) { 585 case NVME_CTRL_LIVE: 586 case NVME_CTRL_RESETTING: 587 case NVME_CTRL_CONNECTING: 588 changed = true; 589 fallthrough; 590 default: 591 break; 592 } 593 break; 594 case NVME_CTRL_DELETING_NOIO: 595 switch (old_state) { 596 case NVME_CTRL_DELETING: 597 case NVME_CTRL_DEAD: 598 changed = true; 599 fallthrough; 600 default: 601 break; 602 } 603 break; 604 case NVME_CTRL_DEAD: 605 switch (old_state) { 606 case NVME_CTRL_DELETING: 607 changed = true; 608 fallthrough; 609 default: 610 break; 611 } 612 break; 613 default: 614 break; 615 } 616 617 if (changed) { 618 WRITE_ONCE(ctrl->state, new_state); 619 wake_up_all(&ctrl->state_wq); 620 } 621 622 spin_unlock_irqrestore(&ctrl->lock, flags); 623 if (!changed) 624 return false; 625 626 if (new_state == NVME_CTRL_LIVE) { 627 if (old_state == NVME_CTRL_CONNECTING) 628 nvme_stop_failfast_work(ctrl); 629 nvme_kick_requeue_lists(ctrl); 630 } else if (new_state == NVME_CTRL_CONNECTING && 631 old_state == NVME_CTRL_RESETTING) { 632 nvme_start_failfast_work(ctrl); 633 } 634 return changed; 635 } 636 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 637 638 /* 639 * Waits for the controller state to be resetting, or returns false if it is 640 * not possible to ever transition to that state. 641 */ 642 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 643 { 644 wait_event(ctrl->state_wq, 645 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 646 nvme_state_terminal(ctrl)); 647 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 648 } 649 EXPORT_SYMBOL_GPL(nvme_wait_reset); 650 651 static void nvme_free_ns_head(struct kref *ref) 652 { 653 struct nvme_ns_head *head = 654 container_of(ref, struct nvme_ns_head, ref); 655 656 nvme_mpath_remove_disk(head); 657 ida_free(&head->subsys->ns_ida, head->instance); 658 cleanup_srcu_struct(&head->srcu); 659 nvme_put_subsystem(head->subsys); 660 kfree(head); 661 } 662 663 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 664 { 665 return kref_get_unless_zero(&head->ref); 666 } 667 668 void nvme_put_ns_head(struct nvme_ns_head *head) 669 { 670 kref_put(&head->ref, nvme_free_ns_head); 671 } 672 673 static void nvme_free_ns(struct kref *kref) 674 { 675 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 676 677 put_disk(ns->disk); 678 nvme_put_ns_head(ns->head); 679 nvme_put_ctrl(ns->ctrl); 680 kfree(ns); 681 } 682 683 bool nvme_get_ns(struct nvme_ns *ns) 684 { 685 return kref_get_unless_zero(&ns->kref); 686 } 687 688 void nvme_put_ns(struct nvme_ns *ns) 689 { 690 kref_put(&ns->kref, nvme_free_ns); 691 } 692 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 693 694 static inline void nvme_clear_nvme_request(struct request *req) 695 { 696 nvme_req(req)->status = 0; 697 nvme_req(req)->retries = 0; 698 nvme_req(req)->flags = 0; 699 req->rq_flags |= RQF_DONTPREP; 700 } 701 702 /* initialize a passthrough request */ 703 void nvme_init_request(struct request *req, struct nvme_command *cmd) 704 { 705 struct nvme_request *nr = nvme_req(req); 706 bool logging_enabled; 707 708 if (req->q->queuedata) { 709 struct nvme_ns *ns = req->q->disk->private_data; 710 711 logging_enabled = ns->head->passthru_err_log_enabled; 712 req->timeout = NVME_IO_TIMEOUT; 713 } else { /* no queuedata implies admin queue */ 714 logging_enabled = nr->ctrl->passthru_err_log_enabled; 715 req->timeout = NVME_ADMIN_TIMEOUT; 716 } 717 718 if (!logging_enabled) 719 req->rq_flags |= RQF_QUIET; 720 721 /* passthru commands should let the driver set the SGL flags */ 722 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 723 724 req->cmd_flags |= REQ_FAILFAST_DRIVER; 725 if (req->mq_hctx->type == HCTX_TYPE_POLL) 726 req->cmd_flags |= REQ_POLLED; 727 nvme_clear_nvme_request(req); 728 memcpy(nr->cmd, cmd, sizeof(*cmd)); 729 } 730 EXPORT_SYMBOL_GPL(nvme_init_request); 731 732 /* 733 * For something we're not in a state to send to the device the default action 734 * is to busy it and retry it after the controller state is recovered. However, 735 * if the controller is deleting or if anything is marked for failfast or 736 * nvme multipath it is immediately failed. 737 * 738 * Note: commands used to initialize the controller will be marked for failfast. 739 * Note: nvme cli/ioctl commands are marked for failfast. 740 */ 741 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 742 struct request *rq) 743 { 744 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 745 746 if (state != NVME_CTRL_DELETING_NOIO && 747 state != NVME_CTRL_DELETING && 748 state != NVME_CTRL_DEAD && 749 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 750 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 751 return BLK_STS_RESOURCE; 752 return nvme_host_path_error(rq); 753 } 754 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 755 756 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 757 bool queue_live, enum nvme_ctrl_state state) 758 { 759 struct nvme_request *req = nvme_req(rq); 760 761 /* 762 * currently we have a problem sending passthru commands 763 * on the admin_q if the controller is not LIVE because we can't 764 * make sure that they are going out after the admin connect, 765 * controller enable and/or other commands in the initialization 766 * sequence. until the controller will be LIVE, fail with 767 * BLK_STS_RESOURCE so that they will be rescheduled. 768 */ 769 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 770 return false; 771 772 if (ctrl->ops->flags & NVME_F_FABRICS) { 773 /* 774 * Only allow commands on a live queue, except for the connect 775 * command, which is require to set the queue live in the 776 * appropinquate states. 777 */ 778 switch (state) { 779 case NVME_CTRL_CONNECTING: 780 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 781 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 782 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 783 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 784 return true; 785 break; 786 default: 787 break; 788 case NVME_CTRL_DEAD: 789 return false; 790 } 791 } 792 793 return queue_live; 794 } 795 EXPORT_SYMBOL_GPL(__nvme_check_ready); 796 797 static inline void nvme_setup_flush(struct nvme_ns *ns, 798 struct nvme_command *cmnd) 799 { 800 memset(cmnd, 0, sizeof(*cmnd)); 801 cmnd->common.opcode = nvme_cmd_flush; 802 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 803 } 804 805 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 806 struct nvme_command *cmnd) 807 { 808 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 809 struct nvme_dsm_range *range; 810 struct bio *bio; 811 812 /* 813 * Some devices do not consider the DSM 'Number of Ranges' field when 814 * determining how much data to DMA. Always allocate memory for maximum 815 * number of segments to prevent device reading beyond end of buffer. 816 */ 817 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 818 819 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 820 if (!range) { 821 /* 822 * If we fail allocation our range, fallback to the controller 823 * discard page. If that's also busy, it's safe to return 824 * busy, as we know we can make progress once that's freed. 825 */ 826 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 827 return BLK_STS_RESOURCE; 828 829 range = page_address(ns->ctrl->discard_page); 830 } 831 832 if (queue_max_discard_segments(req->q) == 1) { 833 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 834 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 835 836 range[0].cattr = cpu_to_le32(0); 837 range[0].nlb = cpu_to_le32(nlb); 838 range[0].slba = cpu_to_le64(slba); 839 n = 1; 840 } else { 841 __rq_for_each_bio(bio, req) { 842 u64 slba = nvme_sect_to_lba(ns->head, 843 bio->bi_iter.bi_sector); 844 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 845 846 if (n < segments) { 847 range[n].cattr = cpu_to_le32(0); 848 range[n].nlb = cpu_to_le32(nlb); 849 range[n].slba = cpu_to_le64(slba); 850 } 851 n++; 852 } 853 } 854 855 if (WARN_ON_ONCE(n != segments)) { 856 if (virt_to_page(range) == ns->ctrl->discard_page) 857 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 858 else 859 kfree(range); 860 return BLK_STS_IOERR; 861 } 862 863 memset(cmnd, 0, sizeof(*cmnd)); 864 cmnd->dsm.opcode = nvme_cmd_dsm; 865 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 866 cmnd->dsm.nr = cpu_to_le32(segments - 1); 867 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 868 869 bvec_set_virt(&req->special_vec, range, alloc_size); 870 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 871 872 return BLK_STS_OK; 873 } 874 875 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 876 struct request *req) 877 { 878 u32 upper, lower; 879 u64 ref48; 880 881 /* both rw and write zeroes share the same reftag format */ 882 switch (ns->head->guard_type) { 883 case NVME_NVM_NS_16B_GUARD: 884 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 885 break; 886 case NVME_NVM_NS_64B_GUARD: 887 ref48 = ext_pi_ref_tag(req); 888 lower = lower_32_bits(ref48); 889 upper = upper_32_bits(ref48); 890 891 cmnd->rw.reftag = cpu_to_le32(lower); 892 cmnd->rw.cdw3 = cpu_to_le32(upper); 893 break; 894 default: 895 break; 896 } 897 } 898 899 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 900 struct request *req, struct nvme_command *cmnd) 901 { 902 memset(cmnd, 0, sizeof(*cmnd)); 903 904 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 905 return nvme_setup_discard(ns, req, cmnd); 906 907 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 908 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 909 cmnd->write_zeroes.slba = 910 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 911 cmnd->write_zeroes.length = 912 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 913 914 if (!(req->cmd_flags & REQ_NOUNMAP) && 915 (ns->head->features & NVME_NS_DEAC)) 916 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 917 918 if (nvme_ns_has_pi(ns->head)) { 919 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 920 921 switch (ns->head->pi_type) { 922 case NVME_NS_DPS_PI_TYPE1: 923 case NVME_NS_DPS_PI_TYPE2: 924 nvme_set_ref_tag(ns, cmnd, req); 925 break; 926 } 927 } 928 929 return BLK_STS_OK; 930 } 931 932 /* 933 * NVMe does not support a dedicated command to issue an atomic write. A write 934 * which does adhere to the device atomic limits will silently be executed 935 * non-atomically. The request issuer should ensure that the write is within 936 * the queue atomic writes limits, but just validate this in case it is not. 937 */ 938 static bool nvme_valid_atomic_write(struct request *req) 939 { 940 struct request_queue *q = req->q; 941 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); 942 943 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) 944 return false; 945 946 if (boundary_bytes) { 947 u64 mask = boundary_bytes - 1, imask = ~mask; 948 u64 start = blk_rq_pos(req) << SECTOR_SHIFT; 949 u64 end = start + blk_rq_bytes(req) - 1; 950 951 /* If greater then must be crossing a boundary */ 952 if (blk_rq_bytes(req) > boundary_bytes) 953 return false; 954 955 if ((start & imask) != (end & imask)) 956 return false; 957 } 958 959 return true; 960 } 961 962 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 963 struct request *req, struct nvme_command *cmnd, 964 enum nvme_opcode op) 965 { 966 u16 control = 0; 967 u32 dsmgmt = 0; 968 969 if (req->cmd_flags & REQ_FUA) 970 control |= NVME_RW_FUA; 971 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 972 control |= NVME_RW_LR; 973 974 if (req->cmd_flags & REQ_RAHEAD) 975 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 976 977 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) 978 return BLK_STS_INVAL; 979 980 cmnd->rw.opcode = op; 981 cmnd->rw.flags = 0; 982 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 983 cmnd->rw.cdw2 = 0; 984 cmnd->rw.cdw3 = 0; 985 cmnd->rw.metadata = 0; 986 cmnd->rw.slba = 987 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 988 cmnd->rw.length = 989 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 990 cmnd->rw.reftag = 0; 991 cmnd->rw.lbat = 0; 992 cmnd->rw.lbatm = 0; 993 994 if (ns->head->ms) { 995 /* 996 * If formated with metadata, the block layer always provides a 997 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 998 * we enable the PRACT bit for protection information or set the 999 * namespace capacity to zero to prevent any I/O. 1000 */ 1001 if (!blk_integrity_rq(req)) { 1002 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 1003 return BLK_STS_NOTSUPP; 1004 control |= NVME_RW_PRINFO_PRACT; 1005 } 1006 1007 switch (ns->head->pi_type) { 1008 case NVME_NS_DPS_PI_TYPE3: 1009 control |= NVME_RW_PRINFO_PRCHK_GUARD; 1010 break; 1011 case NVME_NS_DPS_PI_TYPE1: 1012 case NVME_NS_DPS_PI_TYPE2: 1013 control |= NVME_RW_PRINFO_PRCHK_GUARD | 1014 NVME_RW_PRINFO_PRCHK_REF; 1015 if (op == nvme_cmd_zone_append) 1016 control |= NVME_RW_APPEND_PIREMAP; 1017 nvme_set_ref_tag(ns, cmnd, req); 1018 break; 1019 } 1020 } 1021 1022 cmnd->rw.control = cpu_to_le16(control); 1023 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 1024 return 0; 1025 } 1026 1027 void nvme_cleanup_cmd(struct request *req) 1028 { 1029 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 1030 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 1031 1032 if (req->special_vec.bv_page == ctrl->discard_page) 1033 clear_bit_unlock(0, &ctrl->discard_page_busy); 1034 else 1035 kfree(bvec_virt(&req->special_vec)); 1036 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; 1037 } 1038 } 1039 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1040 1041 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1042 { 1043 struct nvme_command *cmd = nvme_req(req)->cmd; 1044 blk_status_t ret = BLK_STS_OK; 1045 1046 if (!(req->rq_flags & RQF_DONTPREP)) 1047 nvme_clear_nvme_request(req); 1048 1049 switch (req_op(req)) { 1050 case REQ_OP_DRV_IN: 1051 case REQ_OP_DRV_OUT: 1052 /* these are setup prior to execution in nvme_init_request() */ 1053 break; 1054 case REQ_OP_FLUSH: 1055 nvme_setup_flush(ns, cmd); 1056 break; 1057 case REQ_OP_ZONE_RESET_ALL: 1058 case REQ_OP_ZONE_RESET: 1059 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1060 break; 1061 case REQ_OP_ZONE_OPEN: 1062 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1063 break; 1064 case REQ_OP_ZONE_CLOSE: 1065 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1066 break; 1067 case REQ_OP_ZONE_FINISH: 1068 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1069 break; 1070 case REQ_OP_WRITE_ZEROES: 1071 ret = nvme_setup_write_zeroes(ns, req, cmd); 1072 break; 1073 case REQ_OP_DISCARD: 1074 ret = nvme_setup_discard(ns, req, cmd); 1075 break; 1076 case REQ_OP_READ: 1077 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1078 break; 1079 case REQ_OP_WRITE: 1080 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1081 break; 1082 case REQ_OP_ZONE_APPEND: 1083 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1084 break; 1085 default: 1086 WARN_ON_ONCE(1); 1087 return BLK_STS_IOERR; 1088 } 1089 1090 cmd->common.command_id = nvme_cid(req); 1091 trace_nvme_setup_cmd(req, cmd); 1092 return ret; 1093 } 1094 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1095 1096 /* 1097 * Return values: 1098 * 0: success 1099 * >0: nvme controller's cqe status response 1100 * <0: kernel error in lieu of controller response 1101 */ 1102 int nvme_execute_rq(struct request *rq, bool at_head) 1103 { 1104 blk_status_t status; 1105 1106 status = blk_execute_rq(rq, at_head); 1107 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1108 return -EINTR; 1109 if (nvme_req(rq)->status) 1110 return nvme_req(rq)->status; 1111 return blk_status_to_errno(status); 1112 } 1113 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1114 1115 /* 1116 * Returns 0 on success. If the result is negative, it's a Linux error code; 1117 * if the result is positive, it's an NVM Express status code 1118 */ 1119 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1120 union nvme_result *result, void *buffer, unsigned bufflen, 1121 int qid, nvme_submit_flags_t flags) 1122 { 1123 struct request *req; 1124 int ret; 1125 blk_mq_req_flags_t blk_flags = 0; 1126 1127 if (flags & NVME_SUBMIT_NOWAIT) 1128 blk_flags |= BLK_MQ_REQ_NOWAIT; 1129 if (flags & NVME_SUBMIT_RESERVED) 1130 blk_flags |= BLK_MQ_REQ_RESERVED; 1131 if (qid == NVME_QID_ANY) 1132 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1133 else 1134 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1135 qid - 1); 1136 1137 if (IS_ERR(req)) 1138 return PTR_ERR(req); 1139 nvme_init_request(req, cmd); 1140 if (flags & NVME_SUBMIT_RETRY) 1141 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1142 1143 if (buffer && bufflen) { 1144 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1145 if (ret) 1146 goto out; 1147 } 1148 1149 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1150 if (result && ret >= 0) 1151 *result = nvme_req(req)->result; 1152 out: 1153 blk_mq_free_request(req); 1154 return ret; 1155 } 1156 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1157 1158 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1159 void *buffer, unsigned bufflen) 1160 { 1161 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1162 NVME_QID_ANY, 0); 1163 } 1164 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1165 1166 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1167 { 1168 u32 effects = 0; 1169 1170 if (ns) { 1171 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1172 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1173 dev_warn_once(ctrl->device, 1174 "IO command:%02x has unusual effects:%08x\n", 1175 opcode, effects); 1176 1177 /* 1178 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1179 * which would deadlock when done on an I/O command. Note that 1180 * We already warn about an unusual effect above. 1181 */ 1182 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1183 } else { 1184 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1185 1186 /* Ignore execution restrictions if any relaxation bits are set */ 1187 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1188 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1189 } 1190 1191 return effects; 1192 } 1193 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1194 1195 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1196 { 1197 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1198 1199 /* 1200 * For simplicity, IO to all namespaces is quiesced even if the command 1201 * effects say only one namespace is affected. 1202 */ 1203 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1204 mutex_lock(&ctrl->scan_lock); 1205 mutex_lock(&ctrl->subsys->lock); 1206 nvme_mpath_start_freeze(ctrl->subsys); 1207 nvme_mpath_wait_freeze(ctrl->subsys); 1208 nvme_start_freeze(ctrl); 1209 nvme_wait_freeze(ctrl); 1210 } 1211 return effects; 1212 } 1213 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1214 1215 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1216 struct nvme_command *cmd, int status) 1217 { 1218 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1219 nvme_unfreeze(ctrl); 1220 nvme_mpath_unfreeze(ctrl->subsys); 1221 mutex_unlock(&ctrl->subsys->lock); 1222 mutex_unlock(&ctrl->scan_lock); 1223 } 1224 if (effects & NVME_CMD_EFFECTS_CCC) { 1225 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1226 &ctrl->flags)) { 1227 dev_info(ctrl->device, 1228 "controller capabilities changed, reset may be required to take effect.\n"); 1229 } 1230 } 1231 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1232 nvme_queue_scan(ctrl); 1233 flush_work(&ctrl->scan_work); 1234 } 1235 if (ns) 1236 return; 1237 1238 switch (cmd->common.opcode) { 1239 case nvme_admin_set_features: 1240 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1241 case NVME_FEAT_KATO: 1242 /* 1243 * Keep alive commands interval on the host should be 1244 * updated when KATO is modified by Set Features 1245 * commands. 1246 */ 1247 if (!status) 1248 nvme_update_keep_alive(ctrl, cmd); 1249 break; 1250 default: 1251 break; 1252 } 1253 break; 1254 default: 1255 break; 1256 } 1257 } 1258 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1259 1260 /* 1261 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1262 * 1263 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1264 * accounting for transport roundtrip times [..]. 1265 */ 1266 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1267 { 1268 unsigned long delay = ctrl->kato * HZ / 2; 1269 1270 /* 1271 * When using Traffic Based Keep Alive, we need to run 1272 * nvme_keep_alive_work at twice the normal frequency, as one 1273 * command completion can postpone sending a keep alive command 1274 * by up to twice the delay between runs. 1275 */ 1276 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1277 delay /= 2; 1278 return delay; 1279 } 1280 1281 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1282 { 1283 unsigned long now = jiffies; 1284 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1285 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1286 1287 if (time_after(now, ka_next_check_tm)) 1288 delay = 0; 1289 else 1290 delay = ka_next_check_tm - now; 1291 1292 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1293 } 1294 1295 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1296 blk_status_t status) 1297 { 1298 struct nvme_ctrl *ctrl = rq->end_io_data; 1299 unsigned long flags; 1300 bool startka = false; 1301 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1302 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1303 1304 /* 1305 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1306 * at the desired frequency. 1307 */ 1308 if (rtt <= delay) { 1309 delay -= rtt; 1310 } else { 1311 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1312 jiffies_to_msecs(rtt)); 1313 delay = 0; 1314 } 1315 1316 blk_mq_free_request(rq); 1317 1318 if (status) { 1319 dev_err(ctrl->device, 1320 "failed nvme_keep_alive_end_io error=%d\n", 1321 status); 1322 return RQ_END_IO_NONE; 1323 } 1324 1325 ctrl->ka_last_check_time = jiffies; 1326 ctrl->comp_seen = false; 1327 spin_lock_irqsave(&ctrl->lock, flags); 1328 if (ctrl->state == NVME_CTRL_LIVE || 1329 ctrl->state == NVME_CTRL_CONNECTING) 1330 startka = true; 1331 spin_unlock_irqrestore(&ctrl->lock, flags); 1332 if (startka) 1333 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1334 return RQ_END_IO_NONE; 1335 } 1336 1337 static void nvme_keep_alive_work(struct work_struct *work) 1338 { 1339 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1340 struct nvme_ctrl, ka_work); 1341 bool comp_seen = ctrl->comp_seen; 1342 struct request *rq; 1343 1344 ctrl->ka_last_check_time = jiffies; 1345 1346 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1347 dev_dbg(ctrl->device, 1348 "reschedule traffic based keep-alive timer\n"); 1349 ctrl->comp_seen = false; 1350 nvme_queue_keep_alive_work(ctrl); 1351 return; 1352 } 1353 1354 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1355 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1356 if (IS_ERR(rq)) { 1357 /* allocation failure, reset the controller */ 1358 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1359 nvme_reset_ctrl(ctrl); 1360 return; 1361 } 1362 nvme_init_request(rq, &ctrl->ka_cmd); 1363 1364 rq->timeout = ctrl->kato * HZ; 1365 rq->end_io = nvme_keep_alive_end_io; 1366 rq->end_io_data = ctrl; 1367 blk_execute_rq_nowait(rq, false); 1368 } 1369 1370 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1371 { 1372 if (unlikely(ctrl->kato == 0)) 1373 return; 1374 1375 nvme_queue_keep_alive_work(ctrl); 1376 } 1377 1378 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1379 { 1380 if (unlikely(ctrl->kato == 0)) 1381 return; 1382 1383 cancel_delayed_work_sync(&ctrl->ka_work); 1384 } 1385 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1386 1387 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1388 struct nvme_command *cmd) 1389 { 1390 unsigned int new_kato = 1391 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1392 1393 dev_info(ctrl->device, 1394 "keep alive interval updated from %u ms to %u ms\n", 1395 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1396 1397 nvme_stop_keep_alive(ctrl); 1398 ctrl->kato = new_kato; 1399 nvme_start_keep_alive(ctrl); 1400 } 1401 1402 /* 1403 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1404 * flag, thus sending any new CNS opcodes has a big chance of not working. 1405 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1406 * (but not for any later version). 1407 */ 1408 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1409 { 1410 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1411 return ctrl->vs < NVME_VS(1, 2, 0); 1412 return ctrl->vs < NVME_VS(1, 1, 0); 1413 } 1414 1415 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1416 { 1417 struct nvme_command c = { }; 1418 int error; 1419 1420 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1421 c.identify.opcode = nvme_admin_identify; 1422 c.identify.cns = NVME_ID_CNS_CTRL; 1423 1424 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1425 if (!*id) 1426 return -ENOMEM; 1427 1428 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1429 sizeof(struct nvme_id_ctrl)); 1430 if (error) { 1431 kfree(*id); 1432 *id = NULL; 1433 } 1434 return error; 1435 } 1436 1437 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1438 struct nvme_ns_id_desc *cur, bool *csi_seen) 1439 { 1440 const char *warn_str = "ctrl returned bogus length:"; 1441 void *data = cur; 1442 1443 switch (cur->nidt) { 1444 case NVME_NIDT_EUI64: 1445 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1446 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1447 warn_str, cur->nidl); 1448 return -1; 1449 } 1450 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1451 return NVME_NIDT_EUI64_LEN; 1452 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1453 return NVME_NIDT_EUI64_LEN; 1454 case NVME_NIDT_NGUID: 1455 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1456 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1457 warn_str, cur->nidl); 1458 return -1; 1459 } 1460 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1461 return NVME_NIDT_NGUID_LEN; 1462 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1463 return NVME_NIDT_NGUID_LEN; 1464 case NVME_NIDT_UUID: 1465 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1466 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1467 warn_str, cur->nidl); 1468 return -1; 1469 } 1470 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1471 return NVME_NIDT_UUID_LEN; 1472 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1473 return NVME_NIDT_UUID_LEN; 1474 case NVME_NIDT_CSI: 1475 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1476 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1477 warn_str, cur->nidl); 1478 return -1; 1479 } 1480 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1481 *csi_seen = true; 1482 return NVME_NIDT_CSI_LEN; 1483 default: 1484 /* Skip unknown types */ 1485 return cur->nidl; 1486 } 1487 } 1488 1489 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1490 struct nvme_ns_info *info) 1491 { 1492 struct nvme_command c = { }; 1493 bool csi_seen = false; 1494 int status, pos, len; 1495 void *data; 1496 1497 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1498 return 0; 1499 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1500 return 0; 1501 1502 c.identify.opcode = nvme_admin_identify; 1503 c.identify.nsid = cpu_to_le32(info->nsid); 1504 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1505 1506 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1507 if (!data) 1508 return -ENOMEM; 1509 1510 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1511 NVME_IDENTIFY_DATA_SIZE); 1512 if (status) { 1513 dev_warn(ctrl->device, 1514 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1515 info->nsid, status); 1516 goto free_data; 1517 } 1518 1519 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1520 struct nvme_ns_id_desc *cur = data + pos; 1521 1522 if (cur->nidl == 0) 1523 break; 1524 1525 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1526 if (len < 0) 1527 break; 1528 1529 len += sizeof(*cur); 1530 } 1531 1532 if (nvme_multi_css(ctrl) && !csi_seen) { 1533 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1534 info->nsid); 1535 status = -EINVAL; 1536 } 1537 1538 free_data: 1539 kfree(data); 1540 return status; 1541 } 1542 1543 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1544 struct nvme_id_ns **id) 1545 { 1546 struct nvme_command c = { }; 1547 int error; 1548 1549 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1550 c.identify.opcode = nvme_admin_identify; 1551 c.identify.nsid = cpu_to_le32(nsid); 1552 c.identify.cns = NVME_ID_CNS_NS; 1553 1554 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1555 if (!*id) 1556 return -ENOMEM; 1557 1558 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1559 if (error) { 1560 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1561 kfree(*id); 1562 *id = NULL; 1563 } 1564 return error; 1565 } 1566 1567 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1568 struct nvme_ns_info *info) 1569 { 1570 struct nvme_ns_ids *ids = &info->ids; 1571 struct nvme_id_ns *id; 1572 int ret; 1573 1574 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1575 if (ret) 1576 return ret; 1577 1578 if (id->ncap == 0) { 1579 /* namespace not allocated or attached */ 1580 info->is_removed = true; 1581 ret = -ENODEV; 1582 goto error; 1583 } 1584 1585 info->anagrpid = id->anagrpid; 1586 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1587 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1588 info->is_ready = true; 1589 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1590 dev_info(ctrl->device, 1591 "Ignoring bogus Namespace Identifiers\n"); 1592 } else { 1593 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1594 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1595 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1596 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1597 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1598 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1599 } 1600 1601 error: 1602 kfree(id); 1603 return ret; 1604 } 1605 1606 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1607 struct nvme_ns_info *info) 1608 { 1609 struct nvme_id_ns_cs_indep *id; 1610 struct nvme_command c = { 1611 .identify.opcode = nvme_admin_identify, 1612 .identify.nsid = cpu_to_le32(info->nsid), 1613 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1614 }; 1615 int ret; 1616 1617 id = kmalloc(sizeof(*id), GFP_KERNEL); 1618 if (!id) 1619 return -ENOMEM; 1620 1621 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1622 if (!ret) { 1623 info->anagrpid = id->anagrpid; 1624 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1625 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1626 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1627 } 1628 kfree(id); 1629 return ret; 1630 } 1631 1632 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1633 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1634 { 1635 union nvme_result res = { 0 }; 1636 struct nvme_command c = { }; 1637 int ret; 1638 1639 c.features.opcode = op; 1640 c.features.fid = cpu_to_le32(fid); 1641 c.features.dword11 = cpu_to_le32(dword11); 1642 1643 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1644 buffer, buflen, NVME_QID_ANY, 0); 1645 if (ret >= 0 && result) 1646 *result = le32_to_cpu(res.u32); 1647 return ret; 1648 } 1649 1650 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1651 unsigned int dword11, void *buffer, size_t buflen, 1652 u32 *result) 1653 { 1654 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1655 buflen, result); 1656 } 1657 EXPORT_SYMBOL_GPL(nvme_set_features); 1658 1659 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1660 unsigned int dword11, void *buffer, size_t buflen, 1661 u32 *result) 1662 { 1663 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1664 buflen, result); 1665 } 1666 EXPORT_SYMBOL_GPL(nvme_get_features); 1667 1668 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1669 { 1670 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1671 u32 result; 1672 int status, nr_io_queues; 1673 1674 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1675 &result); 1676 if (status < 0) 1677 return status; 1678 1679 /* 1680 * Degraded controllers might return an error when setting the queue 1681 * count. We still want to be able to bring them online and offer 1682 * access to the admin queue, as that might be only way to fix them up. 1683 */ 1684 if (status > 0) { 1685 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1686 *count = 0; 1687 } else { 1688 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1689 *count = min(*count, nr_io_queues); 1690 } 1691 1692 return 0; 1693 } 1694 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1695 1696 #define NVME_AEN_SUPPORTED \ 1697 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1698 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1699 1700 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1701 { 1702 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1703 int status; 1704 1705 if (!supported_aens) 1706 return; 1707 1708 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1709 NULL, 0, &result); 1710 if (status) 1711 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1712 supported_aens); 1713 1714 queue_work(nvme_wq, &ctrl->async_event_work); 1715 } 1716 1717 static int nvme_ns_open(struct nvme_ns *ns) 1718 { 1719 1720 /* should never be called due to GENHD_FL_HIDDEN */ 1721 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1722 goto fail; 1723 if (!nvme_get_ns(ns)) 1724 goto fail; 1725 if (!try_module_get(ns->ctrl->ops->module)) 1726 goto fail_put_ns; 1727 1728 return 0; 1729 1730 fail_put_ns: 1731 nvme_put_ns(ns); 1732 fail: 1733 return -ENXIO; 1734 } 1735 1736 static void nvme_ns_release(struct nvme_ns *ns) 1737 { 1738 1739 module_put(ns->ctrl->ops->module); 1740 nvme_put_ns(ns); 1741 } 1742 1743 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1744 { 1745 return nvme_ns_open(disk->private_data); 1746 } 1747 1748 static void nvme_release(struct gendisk *disk) 1749 { 1750 nvme_ns_release(disk->private_data); 1751 } 1752 1753 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1754 { 1755 /* some standard values */ 1756 geo->heads = 1 << 6; 1757 geo->sectors = 1 << 5; 1758 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1759 return 0; 1760 } 1761 1762 static bool nvme_init_integrity(struct nvme_ns_head *head, 1763 struct queue_limits *lim, struct nvme_ns_info *info) 1764 { 1765 struct blk_integrity *bi = &lim->integrity; 1766 1767 memset(bi, 0, sizeof(*bi)); 1768 1769 if (!head->ms) 1770 return true; 1771 1772 /* 1773 * PI can always be supported as we can ask the controller to simply 1774 * insert/strip it, which is not possible for other kinds of metadata. 1775 */ 1776 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1777 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1778 return nvme_ns_has_pi(head); 1779 1780 switch (head->pi_type) { 1781 case NVME_NS_DPS_PI_TYPE3: 1782 switch (head->guard_type) { 1783 case NVME_NVM_NS_16B_GUARD: 1784 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1785 bi->tag_size = sizeof(u16) + sizeof(u32); 1786 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1787 break; 1788 case NVME_NVM_NS_64B_GUARD: 1789 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1790 bi->tag_size = sizeof(u16) + 6; 1791 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1792 break; 1793 default: 1794 break; 1795 } 1796 break; 1797 case NVME_NS_DPS_PI_TYPE1: 1798 case NVME_NS_DPS_PI_TYPE2: 1799 switch (head->guard_type) { 1800 case NVME_NVM_NS_16B_GUARD: 1801 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1802 bi->tag_size = sizeof(u16); 1803 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1804 BLK_INTEGRITY_REF_TAG; 1805 break; 1806 case NVME_NVM_NS_64B_GUARD: 1807 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1808 bi->tag_size = sizeof(u16); 1809 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1810 BLK_INTEGRITY_REF_TAG; 1811 break; 1812 default: 1813 break; 1814 } 1815 break; 1816 default: 1817 break; 1818 } 1819 1820 bi->tuple_size = head->ms; 1821 bi->pi_offset = info->pi_offset; 1822 return true; 1823 } 1824 1825 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1826 { 1827 struct nvme_ctrl *ctrl = ns->ctrl; 1828 1829 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1830 lim->max_hw_discard_sectors = 1831 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1832 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1833 lim->max_hw_discard_sectors = UINT_MAX; 1834 else 1835 lim->max_hw_discard_sectors = 0; 1836 1837 lim->discard_granularity = lim->logical_block_size; 1838 1839 if (ctrl->dmrl) 1840 lim->max_discard_segments = ctrl->dmrl; 1841 else 1842 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1843 } 1844 1845 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1846 { 1847 return uuid_equal(&a->uuid, &b->uuid) && 1848 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1849 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1850 a->csi == b->csi; 1851 } 1852 1853 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1854 struct nvme_id_ns_nvm **nvmp) 1855 { 1856 struct nvme_command c = { 1857 .identify.opcode = nvme_admin_identify, 1858 .identify.nsid = cpu_to_le32(nsid), 1859 .identify.cns = NVME_ID_CNS_CS_NS, 1860 .identify.csi = NVME_CSI_NVM, 1861 }; 1862 struct nvme_id_ns_nvm *nvm; 1863 int ret; 1864 1865 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1866 if (!nvm) 1867 return -ENOMEM; 1868 1869 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1870 if (ret) 1871 kfree(nvm); 1872 else 1873 *nvmp = nvm; 1874 return ret; 1875 } 1876 1877 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1878 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1879 { 1880 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1881 u8 guard_type; 1882 1883 /* no support for storage tag formats right now */ 1884 if (nvme_elbaf_sts(elbaf)) 1885 return; 1886 1887 guard_type = nvme_elbaf_guard_type(elbaf); 1888 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && 1889 guard_type == NVME_NVM_NS_QTYPE_GUARD) 1890 guard_type = nvme_elbaf_qualified_guard_type(elbaf); 1891 1892 head->guard_type = guard_type; 1893 switch (head->guard_type) { 1894 case NVME_NVM_NS_64B_GUARD: 1895 head->pi_size = sizeof(struct crc64_pi_tuple); 1896 break; 1897 case NVME_NVM_NS_16B_GUARD: 1898 head->pi_size = sizeof(struct t10_pi_tuple); 1899 break; 1900 default: 1901 break; 1902 } 1903 } 1904 1905 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1906 struct nvme_ns_head *head, struct nvme_id_ns *id, 1907 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) 1908 { 1909 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1910 head->pi_type = 0; 1911 head->pi_size = 0; 1912 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1913 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1914 return; 1915 1916 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1917 nvme_configure_pi_elbas(head, id, nvm); 1918 } else { 1919 head->pi_size = sizeof(struct t10_pi_tuple); 1920 head->guard_type = NVME_NVM_NS_16B_GUARD; 1921 } 1922 1923 if (head->pi_size && head->ms >= head->pi_size) 1924 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1925 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) 1926 info->pi_offset = head->ms - head->pi_size; 1927 1928 if (ctrl->ops->flags & NVME_F_FABRICS) { 1929 /* 1930 * The NVMe over Fabrics specification only supports metadata as 1931 * part of the extended data LBA. We rely on HCA/HBA support to 1932 * remap the separate metadata buffer from the block layer. 1933 */ 1934 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1935 return; 1936 1937 head->features |= NVME_NS_EXT_LBAS; 1938 1939 /* 1940 * The current fabrics transport drivers support namespace 1941 * metadata formats only if nvme_ns_has_pi() returns true. 1942 * Suppress support for all other formats so the namespace will 1943 * have a 0 capacity and not be usable through the block stack. 1944 * 1945 * Note, this check will need to be modified if any drivers 1946 * gain the ability to use other metadata formats. 1947 */ 1948 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1949 head->features |= NVME_NS_METADATA_SUPPORTED; 1950 } else { 1951 /* 1952 * For PCIe controllers, we can't easily remap the separate 1953 * metadata buffer from the block layer and thus require a 1954 * separate metadata buffer for block layer metadata/PI support. 1955 * We allow extended LBAs for the passthrough interface, though. 1956 */ 1957 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1958 head->features |= NVME_NS_EXT_LBAS; 1959 else 1960 head->features |= NVME_NS_METADATA_SUPPORTED; 1961 } 1962 } 1963 1964 1965 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, 1966 struct nvme_id_ns *id, struct queue_limits *lim, 1967 u32 bs, u32 atomic_bs) 1968 { 1969 unsigned int boundary = 0; 1970 1971 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { 1972 if (le16_to_cpu(id->nabspf)) 1973 boundary = (le16_to_cpu(id->nabspf) + 1) * bs; 1974 } 1975 lim->atomic_write_hw_max = atomic_bs; 1976 lim->atomic_write_hw_boundary = boundary; 1977 lim->atomic_write_hw_unit_min = bs; 1978 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); 1979 } 1980 1981 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 1982 { 1983 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 1984 } 1985 1986 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 1987 struct queue_limits *lim) 1988 { 1989 lim->max_hw_sectors = ctrl->max_hw_sectors; 1990 lim->max_segments = min_t(u32, USHRT_MAX, 1991 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 1992 lim->max_integrity_segments = ctrl->max_integrity_segments; 1993 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 1994 lim->max_segment_size = UINT_MAX; 1995 lim->dma_alignment = 3; 1996 } 1997 1998 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 1999 struct queue_limits *lim) 2000 { 2001 struct nvme_ns_head *head = ns->head; 2002 u32 bs = 1U << head->lba_shift; 2003 u32 atomic_bs, phys_bs, io_opt = 0; 2004 bool valid = true; 2005 2006 /* 2007 * The block layer can't support LBA sizes larger than the page size 2008 * or smaller than a sector size yet, so catch this early and don't 2009 * allow block I/O. 2010 */ 2011 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { 2012 bs = (1 << 9); 2013 valid = false; 2014 } 2015 2016 atomic_bs = phys_bs = bs; 2017 if (id->nabo == 0) { 2018 /* 2019 * Bit 1 indicates whether NAWUPF is defined for this namespace 2020 * and whether it should be used instead of AWUPF. If NAWUPF == 2021 * 0 then AWUPF must be used instead. 2022 */ 2023 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 2024 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2025 else 2026 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2027 2028 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); 2029 } 2030 2031 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2032 /* NPWG = Namespace Preferred Write Granularity */ 2033 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2034 /* NOWS = Namespace Optimal Write Size */ 2035 if (id->nows) 2036 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2037 } 2038 2039 /* 2040 * Linux filesystems assume writing a single physical block is 2041 * an atomic operation. Hence limit the physical block size to the 2042 * value of the Atomic Write Unit Power Fail parameter. 2043 */ 2044 lim->logical_block_size = bs; 2045 lim->physical_block_size = min(phys_bs, atomic_bs); 2046 lim->io_min = phys_bs; 2047 lim->io_opt = io_opt; 2048 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 2049 lim->max_write_zeroes_sectors = UINT_MAX; 2050 else 2051 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 2052 return valid; 2053 } 2054 2055 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 2056 { 2057 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 2058 } 2059 2060 static inline bool nvme_first_scan(struct gendisk *disk) 2061 { 2062 /* nvme_alloc_ns() scans the disk prior to adding it */ 2063 return !disk_live(disk); 2064 } 2065 2066 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2067 struct queue_limits *lim) 2068 { 2069 struct nvme_ctrl *ctrl = ns->ctrl; 2070 u32 iob; 2071 2072 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2073 is_power_of_2(ctrl->max_hw_sectors)) 2074 iob = ctrl->max_hw_sectors; 2075 else 2076 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2077 2078 if (!iob) 2079 return; 2080 2081 if (!is_power_of_2(iob)) { 2082 if (nvme_first_scan(ns->disk)) 2083 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2084 ns->disk->disk_name, iob); 2085 return; 2086 } 2087 2088 if (blk_queue_is_zoned(ns->disk->queue)) { 2089 if (nvme_first_scan(ns->disk)) 2090 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2091 ns->disk->disk_name); 2092 return; 2093 } 2094 2095 lim->chunk_sectors = iob; 2096 } 2097 2098 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2099 struct nvme_ns_info *info) 2100 { 2101 struct queue_limits lim; 2102 int ret; 2103 2104 blk_mq_freeze_queue(ns->disk->queue); 2105 lim = queue_limits_start_update(ns->disk->queue); 2106 nvme_set_ctrl_limits(ns->ctrl, &lim); 2107 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2108 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2109 blk_mq_unfreeze_queue(ns->disk->queue); 2110 2111 /* Hide the block-interface for these devices */ 2112 if (!ret) 2113 ret = -ENODEV; 2114 return ret; 2115 } 2116 2117 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2118 struct nvme_ns_info *info) 2119 { 2120 struct queue_limits lim; 2121 struct nvme_id_ns_nvm *nvm = NULL; 2122 struct nvme_zone_info zi = {}; 2123 struct nvme_id_ns *id; 2124 sector_t capacity; 2125 unsigned lbaf; 2126 int ret; 2127 2128 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2129 if (ret) 2130 return ret; 2131 2132 if (id->ncap == 0) { 2133 /* namespace not allocated or attached */ 2134 info->is_removed = true; 2135 ret = -ENXIO; 2136 goto out; 2137 } 2138 lbaf = nvme_lbaf_index(id->flbas); 2139 2140 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2141 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2142 if (ret < 0) 2143 goto out; 2144 } 2145 2146 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2147 ns->head->ids.csi == NVME_CSI_ZNS) { 2148 ret = nvme_query_zone_info(ns, lbaf, &zi); 2149 if (ret < 0) 2150 goto out; 2151 } 2152 2153 blk_mq_freeze_queue(ns->disk->queue); 2154 ns->head->lba_shift = id->lbaf[lbaf].ds; 2155 ns->head->nuse = le64_to_cpu(id->nuse); 2156 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2157 2158 lim = queue_limits_start_update(ns->disk->queue); 2159 nvme_set_ctrl_limits(ns->ctrl, &lim); 2160 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info); 2161 nvme_set_chunk_sectors(ns, id, &lim); 2162 if (!nvme_update_disk_info(ns, id, &lim)) 2163 capacity = 0; 2164 nvme_config_discard(ns, &lim); 2165 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2166 ns->head->ids.csi == NVME_CSI_ZNS) 2167 nvme_update_zone_info(ns, &lim, &zi); 2168 2169 if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2170 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2171 else 2172 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2173 2174 /* 2175 * Register a metadata profile for PI, or the plain non-integrity NVMe 2176 * metadata masquerading as Type 0 if supported, otherwise reject block 2177 * I/O to namespaces with metadata except when the namespace supports 2178 * PI, as it can strip/insert in that case. 2179 */ 2180 if (!nvme_init_integrity(ns->head, &lim, info)) 2181 capacity = 0; 2182 2183 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2184 if (ret) { 2185 blk_mq_unfreeze_queue(ns->disk->queue); 2186 goto out; 2187 } 2188 2189 set_capacity_and_notify(ns->disk, capacity); 2190 2191 /* 2192 * Only set the DEAC bit if the device guarantees that reads from 2193 * deallocated data return zeroes. While the DEAC bit does not 2194 * require that, it must be a no-op if reads from deallocated data 2195 * do not return zeroes. 2196 */ 2197 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2198 ns->head->features |= NVME_NS_DEAC; 2199 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2200 set_bit(NVME_NS_READY, &ns->flags); 2201 blk_mq_unfreeze_queue(ns->disk->queue); 2202 2203 if (blk_queue_is_zoned(ns->queue)) { 2204 ret = blk_revalidate_disk_zones(ns->disk); 2205 if (ret && !nvme_first_scan(ns->disk)) 2206 goto out; 2207 } 2208 2209 ret = 0; 2210 out: 2211 kfree(nvm); 2212 kfree(id); 2213 return ret; 2214 } 2215 2216 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2217 { 2218 bool unsupported = false; 2219 int ret; 2220 2221 switch (info->ids.csi) { 2222 case NVME_CSI_ZNS: 2223 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2224 dev_info(ns->ctrl->device, 2225 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2226 info->nsid); 2227 ret = nvme_update_ns_info_generic(ns, info); 2228 break; 2229 } 2230 ret = nvme_update_ns_info_block(ns, info); 2231 break; 2232 case NVME_CSI_NVM: 2233 ret = nvme_update_ns_info_block(ns, info); 2234 break; 2235 default: 2236 dev_info(ns->ctrl->device, 2237 "block device for nsid %u not supported (csi %u)\n", 2238 info->nsid, info->ids.csi); 2239 ret = nvme_update_ns_info_generic(ns, info); 2240 break; 2241 } 2242 2243 /* 2244 * If probing fails due an unsupported feature, hide the block device, 2245 * but still allow other access. 2246 */ 2247 if (ret == -ENODEV) { 2248 ns->disk->flags |= GENHD_FL_HIDDEN; 2249 set_bit(NVME_NS_READY, &ns->flags); 2250 unsupported = true; 2251 ret = 0; 2252 } 2253 2254 if (!ret && nvme_ns_head_multipath(ns->head)) { 2255 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2256 struct queue_limits lim; 2257 2258 blk_mq_freeze_queue(ns->head->disk->queue); 2259 /* 2260 * queue_limits mixes values that are the hardware limitations 2261 * for bio splitting with what is the device configuration. 2262 * 2263 * For NVMe the device configuration can change after e.g. a 2264 * Format command, and we really want to pick up the new format 2265 * value here. But we must still stack the queue limits to the 2266 * least common denominator for multipathing to split the bios 2267 * properly. 2268 * 2269 * To work around this, we explicitly set the device 2270 * configuration to those that we just queried, but only stack 2271 * the splitting limits in to make sure we still obey possibly 2272 * lower limitations of other controllers. 2273 */ 2274 lim = queue_limits_start_update(ns->head->disk->queue); 2275 lim.logical_block_size = ns_lim->logical_block_size; 2276 lim.physical_block_size = ns_lim->physical_block_size; 2277 lim.io_min = ns_lim->io_min; 2278 lim.io_opt = ns_lim->io_opt; 2279 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2280 ns->head->disk->disk_name); 2281 if (unsupported) 2282 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2283 else 2284 nvme_init_integrity(ns->head, &lim, info); 2285 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2286 2287 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2288 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2289 nvme_mpath_revalidate_paths(ns); 2290 2291 blk_mq_unfreeze_queue(ns->head->disk->queue); 2292 } 2293 2294 return ret; 2295 } 2296 2297 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], 2298 enum blk_unique_id type) 2299 { 2300 struct nvme_ns_ids *ids = &ns->head->ids; 2301 2302 if (type != BLK_UID_EUI64) 2303 return -EINVAL; 2304 2305 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { 2306 memcpy(id, &ids->nguid, sizeof(ids->nguid)); 2307 return sizeof(ids->nguid); 2308 } 2309 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { 2310 memcpy(id, &ids->eui64, sizeof(ids->eui64)); 2311 return sizeof(ids->eui64); 2312 } 2313 2314 return -EINVAL; 2315 } 2316 2317 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], 2318 enum blk_unique_id type) 2319 { 2320 return nvme_ns_get_unique_id(disk->private_data, id, type); 2321 } 2322 2323 #ifdef CONFIG_BLK_SED_OPAL 2324 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2325 bool send) 2326 { 2327 struct nvme_ctrl *ctrl = data; 2328 struct nvme_command cmd = { }; 2329 2330 if (send) 2331 cmd.common.opcode = nvme_admin_security_send; 2332 else 2333 cmd.common.opcode = nvme_admin_security_recv; 2334 cmd.common.nsid = 0; 2335 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2336 cmd.common.cdw11 = cpu_to_le32(len); 2337 2338 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2339 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2340 } 2341 2342 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2343 { 2344 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2345 if (!ctrl->opal_dev) 2346 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2347 else if (was_suspended) 2348 opal_unlock_from_suspend(ctrl->opal_dev); 2349 } else { 2350 free_opal_dev(ctrl->opal_dev); 2351 ctrl->opal_dev = NULL; 2352 } 2353 } 2354 #else 2355 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2356 { 2357 } 2358 #endif /* CONFIG_BLK_SED_OPAL */ 2359 2360 #ifdef CONFIG_BLK_DEV_ZONED 2361 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2362 unsigned int nr_zones, report_zones_cb cb, void *data) 2363 { 2364 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2365 data); 2366 } 2367 #else 2368 #define nvme_report_zones NULL 2369 #endif /* CONFIG_BLK_DEV_ZONED */ 2370 2371 const struct block_device_operations nvme_bdev_ops = { 2372 .owner = THIS_MODULE, 2373 .ioctl = nvme_ioctl, 2374 .compat_ioctl = blkdev_compat_ptr_ioctl, 2375 .open = nvme_open, 2376 .release = nvme_release, 2377 .getgeo = nvme_getgeo, 2378 .get_unique_id = nvme_get_unique_id, 2379 .report_zones = nvme_report_zones, 2380 .pr_ops = &nvme_pr_ops, 2381 }; 2382 2383 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2384 u32 timeout, const char *op) 2385 { 2386 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2387 u32 csts; 2388 int ret; 2389 2390 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2391 if (csts == ~0) 2392 return -ENODEV; 2393 if ((csts & mask) == val) 2394 break; 2395 2396 usleep_range(1000, 2000); 2397 if (fatal_signal_pending(current)) 2398 return -EINTR; 2399 if (time_after(jiffies, timeout_jiffies)) { 2400 dev_err(ctrl->device, 2401 "Device not ready; aborting %s, CSTS=0x%x\n", 2402 op, csts); 2403 return -ENODEV; 2404 } 2405 } 2406 2407 return ret; 2408 } 2409 2410 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2411 { 2412 int ret; 2413 2414 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2415 if (shutdown) 2416 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2417 else 2418 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2419 2420 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2421 if (ret) 2422 return ret; 2423 2424 if (shutdown) { 2425 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2426 NVME_CSTS_SHST_CMPLT, 2427 ctrl->shutdown_timeout, "shutdown"); 2428 } 2429 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2430 msleep(NVME_QUIRK_DELAY_AMOUNT); 2431 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2432 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2433 } 2434 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2435 2436 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2437 { 2438 unsigned dev_page_min; 2439 u32 timeout; 2440 int ret; 2441 2442 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2443 if (ret) { 2444 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2445 return ret; 2446 } 2447 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2448 2449 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2450 dev_err(ctrl->device, 2451 "Minimum device page size %u too large for host (%u)\n", 2452 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2453 return -ENODEV; 2454 } 2455 2456 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2457 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2458 else 2459 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2460 2461 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) 2462 ctrl->ctrl_config |= NVME_CC_CRIME; 2463 2464 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2465 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2466 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2467 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2468 if (ret) 2469 return ret; 2470 2471 /* Flush write to device (required if transport is PCI) */ 2472 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2473 if (ret) 2474 return ret; 2475 2476 /* CAP value may change after initial CC write */ 2477 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2478 if (ret) 2479 return ret; 2480 2481 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2482 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2483 u32 crto, ready_timeout; 2484 2485 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2486 if (ret) { 2487 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2488 ret); 2489 return ret; 2490 } 2491 2492 /* 2493 * CRTO should always be greater or equal to CAP.TO, but some 2494 * devices are known to get this wrong. Use the larger of the 2495 * two values. 2496 */ 2497 if (ctrl->ctrl_config & NVME_CC_CRIME) 2498 ready_timeout = NVME_CRTO_CRIMT(crto); 2499 else 2500 ready_timeout = NVME_CRTO_CRWMT(crto); 2501 2502 if (ready_timeout < timeout) 2503 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2504 crto, ctrl->cap); 2505 else 2506 timeout = ready_timeout; 2507 } 2508 2509 ctrl->ctrl_config |= NVME_CC_ENABLE; 2510 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2511 if (ret) 2512 return ret; 2513 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2514 (timeout + 1) / 2, "initialisation"); 2515 } 2516 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2517 2518 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2519 { 2520 __le64 ts; 2521 int ret; 2522 2523 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2524 return 0; 2525 2526 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2527 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2528 NULL); 2529 if (ret) 2530 dev_warn_once(ctrl->device, 2531 "could not set timestamp (%d)\n", ret); 2532 return ret; 2533 } 2534 2535 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2536 { 2537 struct nvme_feat_host_behavior *host; 2538 u8 acre = 0, lbafee = 0; 2539 int ret; 2540 2541 /* Don't bother enabling the feature if retry delay is not reported */ 2542 if (ctrl->crdt[0]) 2543 acre = NVME_ENABLE_ACRE; 2544 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2545 lbafee = NVME_ENABLE_LBAFEE; 2546 2547 if (!acre && !lbafee) 2548 return 0; 2549 2550 host = kzalloc(sizeof(*host), GFP_KERNEL); 2551 if (!host) 2552 return 0; 2553 2554 host->acre = acre; 2555 host->lbafee = lbafee; 2556 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2557 host, sizeof(*host), NULL); 2558 kfree(host); 2559 return ret; 2560 } 2561 2562 /* 2563 * The function checks whether the given total (exlat + enlat) latency of 2564 * a power state allows the latter to be used as an APST transition target. 2565 * It does so by comparing the latency to the primary and secondary latency 2566 * tolerances defined by module params. If there's a match, the corresponding 2567 * timeout value is returned and the matching tolerance index (1 or 2) is 2568 * reported. 2569 */ 2570 static bool nvme_apst_get_transition_time(u64 total_latency, 2571 u64 *transition_time, unsigned *last_index) 2572 { 2573 if (total_latency <= apst_primary_latency_tol_us) { 2574 if (*last_index == 1) 2575 return false; 2576 *last_index = 1; 2577 *transition_time = apst_primary_timeout_ms; 2578 return true; 2579 } 2580 if (apst_secondary_timeout_ms && 2581 total_latency <= apst_secondary_latency_tol_us) { 2582 if (*last_index <= 2) 2583 return false; 2584 *last_index = 2; 2585 *transition_time = apst_secondary_timeout_ms; 2586 return true; 2587 } 2588 return false; 2589 } 2590 2591 /* 2592 * APST (Autonomous Power State Transition) lets us program a table of power 2593 * state transitions that the controller will perform automatically. 2594 * 2595 * Depending on module params, one of the two supported techniques will be used: 2596 * 2597 * - If the parameters provide explicit timeouts and tolerances, they will be 2598 * used to build a table with up to 2 non-operational states to transition to. 2599 * The default parameter values were selected based on the values used by 2600 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2601 * regeneration of the APST table in the event of switching between external 2602 * and battery power, the timeouts and tolerances reflect a compromise 2603 * between values used by Microsoft for AC and battery scenarios. 2604 * - If not, we'll configure the table with a simple heuristic: we are willing 2605 * to spend at most 2% of the time transitioning between power states. 2606 * Therefore, when running in any given state, we will enter the next 2607 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2608 * microseconds, as long as that state's exit latency is under the requested 2609 * maximum latency. 2610 * 2611 * We will not autonomously enter any non-operational state for which the total 2612 * latency exceeds ps_max_latency_us. 2613 * 2614 * Users can set ps_max_latency_us to zero to turn off APST. 2615 */ 2616 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2617 { 2618 struct nvme_feat_auto_pst *table; 2619 unsigned apste = 0; 2620 u64 max_lat_us = 0; 2621 __le64 target = 0; 2622 int max_ps = -1; 2623 int state; 2624 int ret; 2625 unsigned last_lt_index = UINT_MAX; 2626 2627 /* 2628 * If APST isn't supported or if we haven't been initialized yet, 2629 * then don't do anything. 2630 */ 2631 if (!ctrl->apsta) 2632 return 0; 2633 2634 if (ctrl->npss > 31) { 2635 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2636 return 0; 2637 } 2638 2639 table = kzalloc(sizeof(*table), GFP_KERNEL); 2640 if (!table) 2641 return 0; 2642 2643 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2644 /* Turn off APST. */ 2645 dev_dbg(ctrl->device, "APST disabled\n"); 2646 goto done; 2647 } 2648 2649 /* 2650 * Walk through all states from lowest- to highest-power. 2651 * According to the spec, lower-numbered states use more power. NPSS, 2652 * despite the name, is the index of the lowest-power state, not the 2653 * number of states. 2654 */ 2655 for (state = (int)ctrl->npss; state >= 0; state--) { 2656 u64 total_latency_us, exit_latency_us, transition_ms; 2657 2658 if (target) 2659 table->entries[state] = target; 2660 2661 /* 2662 * Don't allow transitions to the deepest state if it's quirked 2663 * off. 2664 */ 2665 if (state == ctrl->npss && 2666 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2667 continue; 2668 2669 /* 2670 * Is this state a useful non-operational state for higher-power 2671 * states to autonomously transition to? 2672 */ 2673 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2674 continue; 2675 2676 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2677 if (exit_latency_us > ctrl->ps_max_latency_us) 2678 continue; 2679 2680 total_latency_us = exit_latency_us + 2681 le32_to_cpu(ctrl->psd[state].entry_lat); 2682 2683 /* 2684 * This state is good. It can be used as the APST idle target 2685 * for higher power states. 2686 */ 2687 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2688 if (!nvme_apst_get_transition_time(total_latency_us, 2689 &transition_ms, &last_lt_index)) 2690 continue; 2691 } else { 2692 transition_ms = total_latency_us + 19; 2693 do_div(transition_ms, 20); 2694 if (transition_ms > (1 << 24) - 1) 2695 transition_ms = (1 << 24) - 1; 2696 } 2697 2698 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2699 if (max_ps == -1) 2700 max_ps = state; 2701 if (total_latency_us > max_lat_us) 2702 max_lat_us = total_latency_us; 2703 } 2704 2705 if (max_ps == -1) 2706 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2707 else 2708 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2709 max_ps, max_lat_us, (int)sizeof(*table), table); 2710 apste = 1; 2711 2712 done: 2713 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2714 table, sizeof(*table), NULL); 2715 if (ret) 2716 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2717 kfree(table); 2718 return ret; 2719 } 2720 2721 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2722 { 2723 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2724 u64 latency; 2725 2726 switch (val) { 2727 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2728 case PM_QOS_LATENCY_ANY: 2729 latency = U64_MAX; 2730 break; 2731 2732 default: 2733 latency = val; 2734 } 2735 2736 if (ctrl->ps_max_latency_us != latency) { 2737 ctrl->ps_max_latency_us = latency; 2738 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2739 nvme_configure_apst(ctrl); 2740 } 2741 } 2742 2743 struct nvme_core_quirk_entry { 2744 /* 2745 * NVMe model and firmware strings are padded with spaces. For 2746 * simplicity, strings in the quirk table are padded with NULLs 2747 * instead. 2748 */ 2749 u16 vid; 2750 const char *mn; 2751 const char *fr; 2752 unsigned long quirks; 2753 }; 2754 2755 static const struct nvme_core_quirk_entry core_quirks[] = { 2756 { 2757 /* 2758 * This Toshiba device seems to die using any APST states. See: 2759 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2760 */ 2761 .vid = 0x1179, 2762 .mn = "THNSF5256GPUK TOSHIBA", 2763 .quirks = NVME_QUIRK_NO_APST, 2764 }, 2765 { 2766 /* 2767 * This LiteON CL1-3D*-Q11 firmware version has a race 2768 * condition associated with actions related to suspend to idle 2769 * LiteON has resolved the problem in future firmware 2770 */ 2771 .vid = 0x14a4, 2772 .fr = "22301111", 2773 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2774 }, 2775 { 2776 /* 2777 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2778 * aborts I/O during any load, but more easily reproducible 2779 * with discards (fstrim). 2780 * 2781 * The device is left in a state where it is also not possible 2782 * to use "nvme set-feature" to disable APST, but booting with 2783 * nvme_core.default_ps_max_latency=0 works. 2784 */ 2785 .vid = 0x1e0f, 2786 .mn = "KCD6XVUL6T40", 2787 .quirks = NVME_QUIRK_NO_APST, 2788 }, 2789 { 2790 /* 2791 * The external Samsung X5 SSD fails initialization without a 2792 * delay before checking if it is ready and has a whole set of 2793 * other problems. To make this even more interesting, it 2794 * shares the PCI ID with internal Samsung 970 Evo Plus that 2795 * does not need or want these quirks. 2796 */ 2797 .vid = 0x144d, 2798 .mn = "Samsung Portable SSD X5", 2799 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2800 NVME_QUIRK_NO_DEEPEST_PS | 2801 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2802 } 2803 }; 2804 2805 /* match is null-terminated but idstr is space-padded. */ 2806 static bool string_matches(const char *idstr, const char *match, size_t len) 2807 { 2808 size_t matchlen; 2809 2810 if (!match) 2811 return true; 2812 2813 matchlen = strlen(match); 2814 WARN_ON_ONCE(matchlen > len); 2815 2816 if (memcmp(idstr, match, matchlen)) 2817 return false; 2818 2819 for (; matchlen < len; matchlen++) 2820 if (idstr[matchlen] != ' ') 2821 return false; 2822 2823 return true; 2824 } 2825 2826 static bool quirk_matches(const struct nvme_id_ctrl *id, 2827 const struct nvme_core_quirk_entry *q) 2828 { 2829 return q->vid == le16_to_cpu(id->vid) && 2830 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2831 string_matches(id->fr, q->fr, sizeof(id->fr)); 2832 } 2833 2834 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2835 struct nvme_id_ctrl *id) 2836 { 2837 size_t nqnlen; 2838 int off; 2839 2840 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2841 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2842 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2843 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2844 return; 2845 } 2846 2847 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2848 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2849 } 2850 2851 /* 2852 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2853 * Base Specification 2.0. It is slightly different from the format 2854 * specified there due to historic reasons, and we can't change it now. 2855 */ 2856 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2857 "nqn.2014.08.org.nvmexpress:%04x%04x", 2858 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2859 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2860 off += sizeof(id->sn); 2861 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2862 off += sizeof(id->mn); 2863 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2864 } 2865 2866 static void nvme_release_subsystem(struct device *dev) 2867 { 2868 struct nvme_subsystem *subsys = 2869 container_of(dev, struct nvme_subsystem, dev); 2870 2871 if (subsys->instance >= 0) 2872 ida_free(&nvme_instance_ida, subsys->instance); 2873 kfree(subsys); 2874 } 2875 2876 static void nvme_destroy_subsystem(struct kref *ref) 2877 { 2878 struct nvme_subsystem *subsys = 2879 container_of(ref, struct nvme_subsystem, ref); 2880 2881 mutex_lock(&nvme_subsystems_lock); 2882 list_del(&subsys->entry); 2883 mutex_unlock(&nvme_subsystems_lock); 2884 2885 ida_destroy(&subsys->ns_ida); 2886 device_del(&subsys->dev); 2887 put_device(&subsys->dev); 2888 } 2889 2890 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2891 { 2892 kref_put(&subsys->ref, nvme_destroy_subsystem); 2893 } 2894 2895 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2896 { 2897 struct nvme_subsystem *subsys; 2898 2899 lockdep_assert_held(&nvme_subsystems_lock); 2900 2901 /* 2902 * Fail matches for discovery subsystems. This results 2903 * in each discovery controller bound to a unique subsystem. 2904 * This avoids issues with validating controller values 2905 * that can only be true when there is a single unique subsystem. 2906 * There may be multiple and completely independent entities 2907 * that provide discovery controllers. 2908 */ 2909 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2910 return NULL; 2911 2912 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2913 if (strcmp(subsys->subnqn, subsysnqn)) 2914 continue; 2915 if (!kref_get_unless_zero(&subsys->ref)) 2916 continue; 2917 return subsys; 2918 } 2919 2920 return NULL; 2921 } 2922 2923 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2924 { 2925 return ctrl->opts && ctrl->opts->discovery_nqn; 2926 } 2927 2928 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2929 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2930 { 2931 struct nvme_ctrl *tmp; 2932 2933 lockdep_assert_held(&nvme_subsystems_lock); 2934 2935 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2936 if (nvme_state_terminal(tmp)) 2937 continue; 2938 2939 if (tmp->cntlid == ctrl->cntlid) { 2940 dev_err(ctrl->device, 2941 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2942 ctrl->cntlid, dev_name(tmp->device), 2943 subsys->subnqn); 2944 return false; 2945 } 2946 2947 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2948 nvme_discovery_ctrl(ctrl)) 2949 continue; 2950 2951 dev_err(ctrl->device, 2952 "Subsystem does not support multiple controllers\n"); 2953 return false; 2954 } 2955 2956 return true; 2957 } 2958 2959 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2960 { 2961 struct nvme_subsystem *subsys, *found; 2962 int ret; 2963 2964 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2965 if (!subsys) 2966 return -ENOMEM; 2967 2968 subsys->instance = -1; 2969 mutex_init(&subsys->lock); 2970 kref_init(&subsys->ref); 2971 INIT_LIST_HEAD(&subsys->ctrls); 2972 INIT_LIST_HEAD(&subsys->nsheads); 2973 nvme_init_subnqn(subsys, ctrl, id); 2974 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2975 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2976 subsys->vendor_id = le16_to_cpu(id->vid); 2977 subsys->cmic = id->cmic; 2978 2979 /* Versions prior to 1.4 don't necessarily report a valid type */ 2980 if (id->cntrltype == NVME_CTRL_DISC || 2981 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2982 subsys->subtype = NVME_NQN_DISC; 2983 else 2984 subsys->subtype = NVME_NQN_NVME; 2985 2986 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2987 dev_err(ctrl->device, 2988 "Subsystem %s is not a discovery controller", 2989 subsys->subnqn); 2990 kfree(subsys); 2991 return -EINVAL; 2992 } 2993 subsys->awupf = le16_to_cpu(id->awupf); 2994 nvme_mpath_default_iopolicy(subsys); 2995 2996 subsys->dev.class = &nvme_subsys_class; 2997 subsys->dev.release = nvme_release_subsystem; 2998 subsys->dev.groups = nvme_subsys_attrs_groups; 2999 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 3000 device_initialize(&subsys->dev); 3001 3002 mutex_lock(&nvme_subsystems_lock); 3003 found = __nvme_find_get_subsystem(subsys->subnqn); 3004 if (found) { 3005 put_device(&subsys->dev); 3006 subsys = found; 3007 3008 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 3009 ret = -EINVAL; 3010 goto out_put_subsystem; 3011 } 3012 } else { 3013 ret = device_add(&subsys->dev); 3014 if (ret) { 3015 dev_err(ctrl->device, 3016 "failed to register subsystem device.\n"); 3017 put_device(&subsys->dev); 3018 goto out_unlock; 3019 } 3020 ida_init(&subsys->ns_ida); 3021 list_add_tail(&subsys->entry, &nvme_subsystems); 3022 } 3023 3024 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 3025 dev_name(ctrl->device)); 3026 if (ret) { 3027 dev_err(ctrl->device, 3028 "failed to create sysfs link from subsystem.\n"); 3029 goto out_put_subsystem; 3030 } 3031 3032 if (!found) 3033 subsys->instance = ctrl->instance; 3034 ctrl->subsys = subsys; 3035 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3036 mutex_unlock(&nvme_subsystems_lock); 3037 return 0; 3038 3039 out_put_subsystem: 3040 nvme_put_subsystem(subsys); 3041 out_unlock: 3042 mutex_unlock(&nvme_subsystems_lock); 3043 return ret; 3044 } 3045 3046 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3047 void *log, size_t size, u64 offset) 3048 { 3049 struct nvme_command c = { }; 3050 u32 dwlen = nvme_bytes_to_numd(size); 3051 3052 c.get_log_page.opcode = nvme_admin_get_log_page; 3053 c.get_log_page.nsid = cpu_to_le32(nsid); 3054 c.get_log_page.lid = log_page; 3055 c.get_log_page.lsp = lsp; 3056 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3057 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3058 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3059 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3060 c.get_log_page.csi = csi; 3061 3062 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3063 } 3064 3065 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3066 struct nvme_effects_log **log) 3067 { 3068 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 3069 int ret; 3070 3071 if (cel) 3072 goto out; 3073 3074 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3075 if (!cel) 3076 return -ENOMEM; 3077 3078 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3079 cel, sizeof(*cel), 0); 3080 if (ret) { 3081 kfree(cel); 3082 return ret; 3083 } 3084 3085 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3086 out: 3087 *log = cel; 3088 return 0; 3089 } 3090 3091 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3092 { 3093 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3094 3095 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3096 return UINT_MAX; 3097 return val; 3098 } 3099 3100 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3101 { 3102 struct nvme_command c = { }; 3103 struct nvme_id_ctrl_nvm *id; 3104 int ret; 3105 3106 /* 3107 * Even though NVMe spec explicitly states that MDTS is not applicable 3108 * to the write-zeroes, we are cautious and limit the size to the 3109 * controllers max_hw_sectors value, which is based on the MDTS field 3110 * and possibly other limiting factors. 3111 */ 3112 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3113 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3114 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3115 else 3116 ctrl->max_zeroes_sectors = 0; 3117 3118 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3119 nvme_ctrl_limited_cns(ctrl) || 3120 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3121 return 0; 3122 3123 id = kzalloc(sizeof(*id), GFP_KERNEL); 3124 if (!id) 3125 return -ENOMEM; 3126 3127 c.identify.opcode = nvme_admin_identify; 3128 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3129 c.identify.csi = NVME_CSI_NVM; 3130 3131 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3132 if (ret) 3133 goto free_data; 3134 3135 ctrl->dmrl = id->dmrl; 3136 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3137 if (id->wzsl) 3138 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3139 3140 free_data: 3141 if (ret > 0) 3142 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3143 kfree(id); 3144 return ret; 3145 } 3146 3147 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3148 { 3149 struct nvme_effects_log *log = ctrl->effects; 3150 3151 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3152 NVME_CMD_EFFECTS_NCC | 3153 NVME_CMD_EFFECTS_CSE_MASK); 3154 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3155 NVME_CMD_EFFECTS_CSE_MASK); 3156 3157 /* 3158 * The spec says the result of a security receive command depends on 3159 * the previous security send command. As such, many vendors log this 3160 * command as one to submitted only when no other commands to the same 3161 * namespace are outstanding. The intention is to tell the host to 3162 * prevent mixing security send and receive. 3163 * 3164 * This driver can only enforce such exclusive access against IO 3165 * queues, though. We are not readily able to enforce such a rule for 3166 * two commands to the admin queue, which is the only queue that 3167 * matters for this command. 3168 * 3169 * Rather than blindly freezing the IO queues for this effect that 3170 * doesn't even apply to IO, mask it off. 3171 */ 3172 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3173 3174 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3175 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3176 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3177 } 3178 3179 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3180 { 3181 int ret = 0; 3182 3183 if (ctrl->effects) 3184 return 0; 3185 3186 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3187 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3188 if (ret < 0) 3189 return ret; 3190 } 3191 3192 if (!ctrl->effects) { 3193 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3194 if (!ctrl->effects) 3195 return -ENOMEM; 3196 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3197 } 3198 3199 nvme_init_known_nvm_effects(ctrl); 3200 return 0; 3201 } 3202 3203 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3204 { 3205 /* 3206 * In fabrics we need to verify the cntlid matches the 3207 * admin connect 3208 */ 3209 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3210 dev_err(ctrl->device, 3211 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3212 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3213 return -EINVAL; 3214 } 3215 3216 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3217 dev_err(ctrl->device, 3218 "keep-alive support is mandatory for fabrics\n"); 3219 return -EINVAL; 3220 } 3221 3222 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3223 dev_err(ctrl->device, 3224 "I/O queue command capsule supported size %d < 4\n", 3225 ctrl->ioccsz); 3226 return -EINVAL; 3227 } 3228 3229 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3230 dev_err(ctrl->device, 3231 "I/O queue response capsule supported size %d < 1\n", 3232 ctrl->iorcsz); 3233 return -EINVAL; 3234 } 3235 3236 if (!ctrl->maxcmd) { 3237 dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); 3238 return -EINVAL; 3239 } 3240 3241 return 0; 3242 } 3243 3244 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3245 { 3246 struct queue_limits lim; 3247 struct nvme_id_ctrl *id; 3248 u32 max_hw_sectors; 3249 bool prev_apst_enabled; 3250 int ret; 3251 3252 ret = nvme_identify_ctrl(ctrl, &id); 3253 if (ret) { 3254 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3255 return -EIO; 3256 } 3257 3258 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3259 ctrl->cntlid = le16_to_cpu(id->cntlid); 3260 3261 if (!ctrl->identified) { 3262 unsigned int i; 3263 3264 /* 3265 * Check for quirks. Quirk can depend on firmware version, 3266 * so, in principle, the set of quirks present can change 3267 * across a reset. As a possible future enhancement, we 3268 * could re-scan for quirks every time we reinitialize 3269 * the device, but we'd have to make sure that the driver 3270 * behaves intelligently if the quirks change. 3271 */ 3272 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3273 if (quirk_matches(id, &core_quirks[i])) 3274 ctrl->quirks |= core_quirks[i].quirks; 3275 } 3276 3277 ret = nvme_init_subsystem(ctrl, id); 3278 if (ret) 3279 goto out_free; 3280 3281 ret = nvme_init_effects(ctrl, id); 3282 if (ret) 3283 goto out_free; 3284 } 3285 memcpy(ctrl->subsys->firmware_rev, id->fr, 3286 sizeof(ctrl->subsys->firmware_rev)); 3287 3288 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3289 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3290 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3291 } 3292 3293 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3294 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3295 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3296 3297 ctrl->oacs = le16_to_cpu(id->oacs); 3298 ctrl->oncs = le16_to_cpu(id->oncs); 3299 ctrl->mtfa = le16_to_cpu(id->mtfa); 3300 ctrl->oaes = le32_to_cpu(id->oaes); 3301 ctrl->wctemp = le16_to_cpu(id->wctemp); 3302 ctrl->cctemp = le16_to_cpu(id->cctemp); 3303 3304 atomic_set(&ctrl->abort_limit, id->acl + 1); 3305 ctrl->vwc = id->vwc; 3306 if (id->mdts) 3307 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3308 else 3309 max_hw_sectors = UINT_MAX; 3310 ctrl->max_hw_sectors = 3311 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3312 3313 lim = queue_limits_start_update(ctrl->admin_q); 3314 nvme_set_ctrl_limits(ctrl, &lim); 3315 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3316 if (ret) 3317 goto out_free; 3318 3319 ctrl->sgls = le32_to_cpu(id->sgls); 3320 ctrl->kas = le16_to_cpu(id->kas); 3321 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3322 ctrl->ctratt = le32_to_cpu(id->ctratt); 3323 3324 ctrl->cntrltype = id->cntrltype; 3325 ctrl->dctype = id->dctype; 3326 3327 if (id->rtd3e) { 3328 /* us -> s */ 3329 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3330 3331 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3332 shutdown_timeout, 60); 3333 3334 if (ctrl->shutdown_timeout != shutdown_timeout) 3335 dev_info(ctrl->device, 3336 "D3 entry latency set to %u seconds\n", 3337 ctrl->shutdown_timeout); 3338 } else 3339 ctrl->shutdown_timeout = shutdown_timeout; 3340 3341 ctrl->npss = id->npss; 3342 ctrl->apsta = id->apsta; 3343 prev_apst_enabled = ctrl->apst_enabled; 3344 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3345 if (force_apst && id->apsta) { 3346 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3347 ctrl->apst_enabled = true; 3348 } else { 3349 ctrl->apst_enabled = false; 3350 } 3351 } else { 3352 ctrl->apst_enabled = id->apsta; 3353 } 3354 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3355 3356 if (ctrl->ops->flags & NVME_F_FABRICS) { 3357 ctrl->icdoff = le16_to_cpu(id->icdoff); 3358 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3359 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3360 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3361 3362 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3363 if (ret) 3364 goto out_free; 3365 } else { 3366 ctrl->hmpre = le32_to_cpu(id->hmpre); 3367 ctrl->hmmin = le32_to_cpu(id->hmmin); 3368 ctrl->hmminds = le32_to_cpu(id->hmminds); 3369 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3370 } 3371 3372 ret = nvme_mpath_init_identify(ctrl, id); 3373 if (ret < 0) 3374 goto out_free; 3375 3376 if (ctrl->apst_enabled && !prev_apst_enabled) 3377 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3378 else if (!ctrl->apst_enabled && prev_apst_enabled) 3379 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3380 3381 out_free: 3382 kfree(id); 3383 return ret; 3384 } 3385 3386 /* 3387 * Initialize the cached copies of the Identify data and various controller 3388 * register in our nvme_ctrl structure. This should be called as soon as 3389 * the admin queue is fully up and running. 3390 */ 3391 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3392 { 3393 int ret; 3394 3395 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3396 if (ret) { 3397 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3398 return ret; 3399 } 3400 3401 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3402 3403 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3404 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3405 3406 ret = nvme_init_identify(ctrl); 3407 if (ret) 3408 return ret; 3409 3410 ret = nvme_configure_apst(ctrl); 3411 if (ret < 0) 3412 return ret; 3413 3414 ret = nvme_configure_timestamp(ctrl); 3415 if (ret < 0) 3416 return ret; 3417 3418 ret = nvme_configure_host_options(ctrl); 3419 if (ret < 0) 3420 return ret; 3421 3422 nvme_configure_opal(ctrl, was_suspended); 3423 3424 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3425 /* 3426 * Do not return errors unless we are in a controller reset, 3427 * the controller works perfectly fine without hwmon. 3428 */ 3429 ret = nvme_hwmon_init(ctrl); 3430 if (ret == -EINTR) 3431 return ret; 3432 } 3433 3434 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3435 ctrl->identified = true; 3436 3437 nvme_start_keep_alive(ctrl); 3438 3439 return 0; 3440 } 3441 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3442 3443 static int nvme_dev_open(struct inode *inode, struct file *file) 3444 { 3445 struct nvme_ctrl *ctrl = 3446 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3447 3448 switch (nvme_ctrl_state(ctrl)) { 3449 case NVME_CTRL_LIVE: 3450 break; 3451 default: 3452 return -EWOULDBLOCK; 3453 } 3454 3455 nvme_get_ctrl(ctrl); 3456 if (!try_module_get(ctrl->ops->module)) { 3457 nvme_put_ctrl(ctrl); 3458 return -EINVAL; 3459 } 3460 3461 file->private_data = ctrl; 3462 return 0; 3463 } 3464 3465 static int nvme_dev_release(struct inode *inode, struct file *file) 3466 { 3467 struct nvme_ctrl *ctrl = 3468 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3469 3470 module_put(ctrl->ops->module); 3471 nvme_put_ctrl(ctrl); 3472 return 0; 3473 } 3474 3475 static const struct file_operations nvme_dev_fops = { 3476 .owner = THIS_MODULE, 3477 .open = nvme_dev_open, 3478 .release = nvme_dev_release, 3479 .unlocked_ioctl = nvme_dev_ioctl, 3480 .compat_ioctl = compat_ptr_ioctl, 3481 .uring_cmd = nvme_dev_uring_cmd, 3482 }; 3483 3484 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3485 unsigned nsid) 3486 { 3487 struct nvme_ns_head *h; 3488 3489 lockdep_assert_held(&ctrl->subsys->lock); 3490 3491 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3492 /* 3493 * Private namespaces can share NSIDs under some conditions. 3494 * In that case we can't use the same ns_head for namespaces 3495 * with the same NSID. 3496 */ 3497 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3498 continue; 3499 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3500 return h; 3501 } 3502 3503 return NULL; 3504 } 3505 3506 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3507 struct nvme_ns_ids *ids) 3508 { 3509 bool has_uuid = !uuid_is_null(&ids->uuid); 3510 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3511 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3512 struct nvme_ns_head *h; 3513 3514 lockdep_assert_held(&subsys->lock); 3515 3516 list_for_each_entry(h, &subsys->nsheads, entry) { 3517 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3518 return -EINVAL; 3519 if (has_nguid && 3520 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3521 return -EINVAL; 3522 if (has_eui64 && 3523 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3524 return -EINVAL; 3525 } 3526 3527 return 0; 3528 } 3529 3530 static void nvme_cdev_rel(struct device *dev) 3531 { 3532 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3533 } 3534 3535 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3536 { 3537 cdev_device_del(cdev, cdev_device); 3538 put_device(cdev_device); 3539 } 3540 3541 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3542 const struct file_operations *fops, struct module *owner) 3543 { 3544 int minor, ret; 3545 3546 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3547 if (minor < 0) 3548 return minor; 3549 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3550 cdev_device->class = &nvme_ns_chr_class; 3551 cdev_device->release = nvme_cdev_rel; 3552 device_initialize(cdev_device); 3553 cdev_init(cdev, fops); 3554 cdev->owner = owner; 3555 ret = cdev_device_add(cdev, cdev_device); 3556 if (ret) 3557 put_device(cdev_device); 3558 3559 return ret; 3560 } 3561 3562 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3563 { 3564 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3565 } 3566 3567 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3568 { 3569 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3570 return 0; 3571 } 3572 3573 static const struct file_operations nvme_ns_chr_fops = { 3574 .owner = THIS_MODULE, 3575 .open = nvme_ns_chr_open, 3576 .release = nvme_ns_chr_release, 3577 .unlocked_ioctl = nvme_ns_chr_ioctl, 3578 .compat_ioctl = compat_ptr_ioctl, 3579 .uring_cmd = nvme_ns_chr_uring_cmd, 3580 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3581 }; 3582 3583 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3584 { 3585 int ret; 3586 3587 ns->cdev_device.parent = ns->ctrl->device; 3588 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3589 ns->ctrl->instance, ns->head->instance); 3590 if (ret) 3591 return ret; 3592 3593 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3594 ns->ctrl->ops->module); 3595 } 3596 3597 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3598 struct nvme_ns_info *info) 3599 { 3600 struct nvme_ns_head *head; 3601 size_t size = sizeof(*head); 3602 int ret = -ENOMEM; 3603 3604 #ifdef CONFIG_NVME_MULTIPATH 3605 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3606 #endif 3607 3608 head = kzalloc(size, GFP_KERNEL); 3609 if (!head) 3610 goto out; 3611 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3612 if (ret < 0) 3613 goto out_free_head; 3614 head->instance = ret; 3615 INIT_LIST_HEAD(&head->list); 3616 ret = init_srcu_struct(&head->srcu); 3617 if (ret) 3618 goto out_ida_remove; 3619 head->subsys = ctrl->subsys; 3620 head->ns_id = info->nsid; 3621 head->ids = info->ids; 3622 head->shared = info->is_shared; 3623 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3624 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3625 kref_init(&head->ref); 3626 3627 if (head->ids.csi) { 3628 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3629 if (ret) 3630 goto out_cleanup_srcu; 3631 } else 3632 head->effects = ctrl->effects; 3633 3634 ret = nvme_mpath_alloc_disk(ctrl, head); 3635 if (ret) 3636 goto out_cleanup_srcu; 3637 3638 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3639 3640 kref_get(&ctrl->subsys->ref); 3641 3642 return head; 3643 out_cleanup_srcu: 3644 cleanup_srcu_struct(&head->srcu); 3645 out_ida_remove: 3646 ida_free(&ctrl->subsys->ns_ida, head->instance); 3647 out_free_head: 3648 kfree(head); 3649 out: 3650 if (ret > 0) 3651 ret = blk_status_to_errno(nvme_error_status(ret)); 3652 return ERR_PTR(ret); 3653 } 3654 3655 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3656 struct nvme_ns_ids *ids) 3657 { 3658 struct nvme_subsystem *s; 3659 int ret = 0; 3660 3661 /* 3662 * Note that this check is racy as we try to avoid holding the global 3663 * lock over the whole ns_head creation. But it is only intended as 3664 * a sanity check anyway. 3665 */ 3666 mutex_lock(&nvme_subsystems_lock); 3667 list_for_each_entry(s, &nvme_subsystems, entry) { 3668 if (s == this) 3669 continue; 3670 mutex_lock(&s->lock); 3671 ret = nvme_subsys_check_duplicate_ids(s, ids); 3672 mutex_unlock(&s->lock); 3673 if (ret) 3674 break; 3675 } 3676 mutex_unlock(&nvme_subsystems_lock); 3677 3678 return ret; 3679 } 3680 3681 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3682 { 3683 struct nvme_ctrl *ctrl = ns->ctrl; 3684 struct nvme_ns_head *head = NULL; 3685 int ret; 3686 3687 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3688 if (ret) { 3689 /* 3690 * We've found two different namespaces on two different 3691 * subsystems that report the same ID. This is pretty nasty 3692 * for anything that actually requires unique device 3693 * identification. In the kernel we need this for multipathing, 3694 * and in user space the /dev/disk/by-id/ links rely on it. 3695 * 3696 * If the device also claims to be multi-path capable back off 3697 * here now and refuse the probe the second device as this is a 3698 * recipe for data corruption. If not this is probably a 3699 * cheap consumer device if on the PCIe bus, so let the user 3700 * proceed and use the shiny toy, but warn that with changing 3701 * probing order (which due to our async probing could just be 3702 * device taking longer to startup) the other device could show 3703 * up at any time. 3704 */ 3705 nvme_print_device_info(ctrl); 3706 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3707 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3708 info->is_shared)) { 3709 dev_err(ctrl->device, 3710 "ignoring nsid %d because of duplicate IDs\n", 3711 info->nsid); 3712 return ret; 3713 } 3714 3715 dev_err(ctrl->device, 3716 "clearing duplicate IDs for nsid %d\n", info->nsid); 3717 dev_err(ctrl->device, 3718 "use of /dev/disk/by-id/ may cause data corruption\n"); 3719 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3720 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3721 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3722 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3723 } 3724 3725 mutex_lock(&ctrl->subsys->lock); 3726 head = nvme_find_ns_head(ctrl, info->nsid); 3727 if (!head) { 3728 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3729 if (ret) { 3730 dev_err(ctrl->device, 3731 "duplicate IDs in subsystem for nsid %d\n", 3732 info->nsid); 3733 goto out_unlock; 3734 } 3735 head = nvme_alloc_ns_head(ctrl, info); 3736 if (IS_ERR(head)) { 3737 ret = PTR_ERR(head); 3738 goto out_unlock; 3739 } 3740 } else { 3741 ret = -EINVAL; 3742 if (!info->is_shared || !head->shared) { 3743 dev_err(ctrl->device, 3744 "Duplicate unshared namespace %d\n", 3745 info->nsid); 3746 goto out_put_ns_head; 3747 } 3748 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3749 dev_err(ctrl->device, 3750 "IDs don't match for shared namespace %d\n", 3751 info->nsid); 3752 goto out_put_ns_head; 3753 } 3754 3755 if (!multipath) { 3756 dev_warn(ctrl->device, 3757 "Found shared namespace %d, but multipathing not supported.\n", 3758 info->nsid); 3759 dev_warn_once(ctrl->device, 3760 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3761 } 3762 } 3763 3764 list_add_tail_rcu(&ns->siblings, &head->list); 3765 ns->head = head; 3766 mutex_unlock(&ctrl->subsys->lock); 3767 return 0; 3768 3769 out_put_ns_head: 3770 nvme_put_ns_head(head); 3771 out_unlock: 3772 mutex_unlock(&ctrl->subsys->lock); 3773 return ret; 3774 } 3775 3776 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3777 { 3778 struct nvme_ns *ns, *ret = NULL; 3779 int srcu_idx; 3780 3781 srcu_idx = srcu_read_lock(&ctrl->srcu); 3782 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 3783 if (ns->head->ns_id == nsid) { 3784 if (!nvme_get_ns(ns)) 3785 continue; 3786 ret = ns; 3787 break; 3788 } 3789 if (ns->head->ns_id > nsid) 3790 break; 3791 } 3792 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3793 return ret; 3794 } 3795 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3796 3797 /* 3798 * Add the namespace to the controller list while keeping the list ordered. 3799 */ 3800 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3801 { 3802 struct nvme_ns *tmp; 3803 3804 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3805 if (tmp->head->ns_id < ns->head->ns_id) { 3806 list_add_rcu(&ns->list, &tmp->list); 3807 return; 3808 } 3809 } 3810 list_add(&ns->list, &ns->ctrl->namespaces); 3811 } 3812 3813 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3814 { 3815 struct queue_limits lim = { }; 3816 struct nvme_ns *ns; 3817 struct gendisk *disk; 3818 int node = ctrl->numa_node; 3819 3820 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3821 if (!ns) 3822 return; 3823 3824 if (ctrl->opts && ctrl->opts->data_digest) 3825 lim.features |= BLK_FEAT_STABLE_WRITES; 3826 if (ctrl->ops->supports_pci_p2pdma && 3827 ctrl->ops->supports_pci_p2pdma(ctrl)) 3828 lim.features |= BLK_FEAT_PCI_P2PDMA; 3829 3830 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); 3831 if (IS_ERR(disk)) 3832 goto out_free_ns; 3833 disk->fops = &nvme_bdev_ops; 3834 disk->private_data = ns; 3835 3836 ns->disk = disk; 3837 ns->queue = disk->queue; 3838 ns->ctrl = ctrl; 3839 kref_init(&ns->kref); 3840 3841 if (nvme_init_ns_head(ns, info)) 3842 goto out_cleanup_disk; 3843 3844 /* 3845 * If multipathing is enabled, the device name for all disks and not 3846 * just those that represent shared namespaces needs to be based on the 3847 * subsystem instance. Using the controller instance for private 3848 * namespaces could lead to naming collisions between shared and private 3849 * namespaces if they don't use a common numbering scheme. 3850 * 3851 * If multipathing is not enabled, disk names must use the controller 3852 * instance as shared namespaces will show up as multiple block 3853 * devices. 3854 */ 3855 if (nvme_ns_head_multipath(ns->head)) { 3856 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3857 ctrl->instance, ns->head->instance); 3858 disk->flags |= GENHD_FL_HIDDEN; 3859 } else if (multipath) { 3860 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3861 ns->head->instance); 3862 } else { 3863 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3864 ns->head->instance); 3865 } 3866 3867 if (nvme_update_ns_info(ns, info)) 3868 goto out_unlink_ns; 3869 3870 mutex_lock(&ctrl->namespaces_lock); 3871 /* 3872 * Ensure that no namespaces are added to the ctrl list after the queues 3873 * are frozen, thereby avoiding a deadlock between scan and reset. 3874 */ 3875 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3876 mutex_unlock(&ctrl->namespaces_lock); 3877 goto out_unlink_ns; 3878 } 3879 nvme_ns_add_to_ctrl_list(ns); 3880 mutex_unlock(&ctrl->namespaces_lock); 3881 synchronize_srcu(&ctrl->srcu); 3882 nvme_get_ctrl(ctrl); 3883 3884 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3885 goto out_cleanup_ns_from_list; 3886 3887 if (!nvme_ns_head_multipath(ns->head)) 3888 nvme_add_ns_cdev(ns); 3889 3890 nvme_mpath_add_disk(ns, info->anagrpid); 3891 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3892 3893 /* 3894 * Set ns->disk->device->driver_data to ns so we can access 3895 * ns->head->passthru_err_log_enabled in 3896 * nvme_io_passthru_err_log_enabled_[store | show](). 3897 */ 3898 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3899 3900 return; 3901 3902 out_cleanup_ns_from_list: 3903 nvme_put_ctrl(ctrl); 3904 mutex_lock(&ctrl->namespaces_lock); 3905 list_del_rcu(&ns->list); 3906 mutex_unlock(&ctrl->namespaces_lock); 3907 synchronize_srcu(&ctrl->srcu); 3908 out_unlink_ns: 3909 mutex_lock(&ctrl->subsys->lock); 3910 list_del_rcu(&ns->siblings); 3911 if (list_empty(&ns->head->list)) 3912 list_del_init(&ns->head->entry); 3913 mutex_unlock(&ctrl->subsys->lock); 3914 nvme_put_ns_head(ns->head); 3915 out_cleanup_disk: 3916 put_disk(disk); 3917 out_free_ns: 3918 kfree(ns); 3919 } 3920 3921 static void nvme_ns_remove(struct nvme_ns *ns) 3922 { 3923 bool last_path = false; 3924 3925 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3926 return; 3927 3928 clear_bit(NVME_NS_READY, &ns->flags); 3929 set_capacity(ns->disk, 0); 3930 nvme_fault_inject_fini(&ns->fault_inject); 3931 3932 /* 3933 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3934 * this ns going back into current_path. 3935 */ 3936 synchronize_srcu(&ns->head->srcu); 3937 3938 /* wait for concurrent submissions */ 3939 if (nvme_mpath_clear_current_path(ns)) 3940 synchronize_srcu(&ns->head->srcu); 3941 3942 mutex_lock(&ns->ctrl->subsys->lock); 3943 list_del_rcu(&ns->siblings); 3944 if (list_empty(&ns->head->list)) { 3945 list_del_init(&ns->head->entry); 3946 last_path = true; 3947 } 3948 mutex_unlock(&ns->ctrl->subsys->lock); 3949 3950 /* guarantee not available in head->list */ 3951 synchronize_srcu(&ns->head->srcu); 3952 3953 if (!nvme_ns_head_multipath(ns->head)) 3954 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3955 del_gendisk(ns->disk); 3956 3957 mutex_lock(&ns->ctrl->namespaces_lock); 3958 list_del_rcu(&ns->list); 3959 mutex_unlock(&ns->ctrl->namespaces_lock); 3960 synchronize_srcu(&ns->ctrl->srcu); 3961 3962 if (last_path) 3963 nvme_mpath_shutdown_disk(ns->head); 3964 nvme_put_ns(ns); 3965 } 3966 3967 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3968 { 3969 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3970 3971 if (ns) { 3972 nvme_ns_remove(ns); 3973 nvme_put_ns(ns); 3974 } 3975 } 3976 3977 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3978 { 3979 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; 3980 3981 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3982 dev_err(ns->ctrl->device, 3983 "identifiers changed for nsid %d\n", ns->head->ns_id); 3984 goto out; 3985 } 3986 3987 ret = nvme_update_ns_info(ns, info); 3988 out: 3989 /* 3990 * Only remove the namespace if we got a fatal error back from the 3991 * device, otherwise ignore the error and just move on. 3992 * 3993 * TODO: we should probably schedule a delayed retry here. 3994 */ 3995 if (ret > 0 && (ret & NVME_STATUS_DNR)) 3996 nvme_ns_remove(ns); 3997 } 3998 3999 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4000 { 4001 struct nvme_ns_info info = { .nsid = nsid }; 4002 struct nvme_ns *ns; 4003 int ret; 4004 4005 if (nvme_identify_ns_descs(ctrl, &info)) 4006 return; 4007 4008 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4009 dev_warn(ctrl->device, 4010 "command set not reported for nsid: %d\n", nsid); 4011 return; 4012 } 4013 4014 /* 4015 * If available try to use the Command Set Idependent Identify Namespace 4016 * data structure to find all the generic information that is needed to 4017 * set up a namespace. If not fall back to the legacy version. 4018 */ 4019 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4020 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 4021 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 4022 else 4023 ret = nvme_ns_info_from_identify(ctrl, &info); 4024 4025 if (info.is_removed) 4026 nvme_ns_remove_by_nsid(ctrl, nsid); 4027 4028 /* 4029 * Ignore the namespace if it is not ready. We will get an AEN once it 4030 * becomes ready and restart the scan. 4031 */ 4032 if (ret || !info.is_ready) 4033 return; 4034 4035 ns = nvme_find_get_ns(ctrl, nsid); 4036 if (ns) { 4037 nvme_validate_ns(ns, &info); 4038 nvme_put_ns(ns); 4039 } else { 4040 nvme_alloc_ns(ctrl, &info); 4041 } 4042 } 4043 4044 /** 4045 * struct async_scan_info - keeps track of controller & NSIDs to scan 4046 * @ctrl: Controller on which namespaces are being scanned 4047 * @next_nsid: Index of next NSID to scan in ns_list 4048 * @ns_list: Pointer to list of NSIDs to scan 4049 * 4050 * Note: There is a single async_scan_info structure shared by all instances 4051 * of nvme_scan_ns_async() scanning a given controller, so the atomic 4052 * operations on next_nsid are critical to ensure each instance scans a unique 4053 * NSID. 4054 */ 4055 struct async_scan_info { 4056 struct nvme_ctrl *ctrl; 4057 atomic_t next_nsid; 4058 __le32 *ns_list; 4059 }; 4060 4061 static void nvme_scan_ns_async(void *data, async_cookie_t cookie) 4062 { 4063 struct async_scan_info *scan_info = data; 4064 int idx; 4065 u32 nsid; 4066 4067 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid); 4068 nsid = le32_to_cpu(scan_info->ns_list[idx]); 4069 4070 nvme_scan_ns(scan_info->ctrl, nsid); 4071 } 4072 4073 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4074 unsigned nsid) 4075 { 4076 struct nvme_ns *ns, *next; 4077 LIST_HEAD(rm_list); 4078 4079 mutex_lock(&ctrl->namespaces_lock); 4080 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4081 if (ns->head->ns_id > nsid) { 4082 list_del_rcu(&ns->list); 4083 synchronize_srcu(&ctrl->srcu); 4084 list_add_tail_rcu(&ns->list, &rm_list); 4085 } 4086 } 4087 mutex_unlock(&ctrl->namespaces_lock); 4088 4089 list_for_each_entry_safe(ns, next, &rm_list, list) 4090 nvme_ns_remove(ns); 4091 } 4092 4093 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4094 { 4095 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4096 __le32 *ns_list; 4097 u32 prev = 0; 4098 int ret = 0, i; 4099 ASYNC_DOMAIN(domain); 4100 struct async_scan_info scan_info; 4101 4102 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4103 if (!ns_list) 4104 return -ENOMEM; 4105 4106 scan_info.ctrl = ctrl; 4107 scan_info.ns_list = ns_list; 4108 for (;;) { 4109 struct nvme_command cmd = { 4110 .identify.opcode = nvme_admin_identify, 4111 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4112 .identify.nsid = cpu_to_le32(prev), 4113 }; 4114 4115 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4116 NVME_IDENTIFY_DATA_SIZE); 4117 if (ret) { 4118 dev_warn(ctrl->device, 4119 "Identify NS List failed (status=0x%x)\n", ret); 4120 goto free; 4121 } 4122 4123 atomic_set(&scan_info.next_nsid, 0); 4124 for (i = 0; i < nr_entries; i++) { 4125 u32 nsid = le32_to_cpu(ns_list[i]); 4126 4127 if (!nsid) /* end of the list? */ 4128 goto out; 4129 async_schedule_domain(nvme_scan_ns_async, &scan_info, 4130 &domain); 4131 while (++prev < nsid) 4132 nvme_ns_remove_by_nsid(ctrl, prev); 4133 } 4134 async_synchronize_full_domain(&domain); 4135 } 4136 out: 4137 nvme_remove_invalid_namespaces(ctrl, prev); 4138 free: 4139 async_synchronize_full_domain(&domain); 4140 kfree(ns_list); 4141 return ret; 4142 } 4143 4144 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4145 { 4146 struct nvme_id_ctrl *id; 4147 u32 nn, i; 4148 4149 if (nvme_identify_ctrl(ctrl, &id)) 4150 return; 4151 nn = le32_to_cpu(id->nn); 4152 kfree(id); 4153 4154 for (i = 1; i <= nn; i++) 4155 nvme_scan_ns(ctrl, i); 4156 4157 nvme_remove_invalid_namespaces(ctrl, nn); 4158 } 4159 4160 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4161 { 4162 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4163 __le32 *log; 4164 int error; 4165 4166 log = kzalloc(log_size, GFP_KERNEL); 4167 if (!log) 4168 return; 4169 4170 /* 4171 * We need to read the log to clear the AEN, but we don't want to rely 4172 * on it for the changed namespace information as userspace could have 4173 * raced with us in reading the log page, which could cause us to miss 4174 * updates. 4175 */ 4176 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4177 NVME_CSI_NVM, log, log_size, 0); 4178 if (error) 4179 dev_warn(ctrl->device, 4180 "reading changed ns log failed: %d\n", error); 4181 4182 kfree(log); 4183 } 4184 4185 static void nvme_scan_work(struct work_struct *work) 4186 { 4187 struct nvme_ctrl *ctrl = 4188 container_of(work, struct nvme_ctrl, scan_work); 4189 int ret; 4190 4191 /* No tagset on a live ctrl means IO queues could not created */ 4192 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4193 return; 4194 4195 /* 4196 * Identify controller limits can change at controller reset due to 4197 * new firmware download, even though it is not common we cannot ignore 4198 * such scenario. Controller's non-mdts limits are reported in the unit 4199 * of logical blocks that is dependent on the format of attached 4200 * namespace. Hence re-read the limits at the time of ns allocation. 4201 */ 4202 ret = nvme_init_non_mdts_limits(ctrl); 4203 if (ret < 0) { 4204 dev_warn(ctrl->device, 4205 "reading non-mdts-limits failed: %d\n", ret); 4206 return; 4207 } 4208 4209 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4210 dev_info(ctrl->device, "rescanning namespaces.\n"); 4211 nvme_clear_changed_ns_log(ctrl); 4212 } 4213 4214 mutex_lock(&ctrl->scan_lock); 4215 if (nvme_ctrl_limited_cns(ctrl)) { 4216 nvme_scan_ns_sequential(ctrl); 4217 } else { 4218 /* 4219 * Fall back to sequential scan if DNR is set to handle broken 4220 * devices which should support Identify NS List (as per the VS 4221 * they report) but don't actually support it. 4222 */ 4223 ret = nvme_scan_ns_list(ctrl); 4224 if (ret > 0 && ret & NVME_STATUS_DNR) 4225 nvme_scan_ns_sequential(ctrl); 4226 } 4227 mutex_unlock(&ctrl->scan_lock); 4228 } 4229 4230 /* 4231 * This function iterates the namespace list unlocked to allow recovery from 4232 * controller failure. It is up to the caller to ensure the namespace list is 4233 * not modified by scan work while this function is executing. 4234 */ 4235 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4236 { 4237 struct nvme_ns *ns, *next; 4238 LIST_HEAD(ns_list); 4239 4240 /* 4241 * make sure to requeue I/O to all namespaces as these 4242 * might result from the scan itself and must complete 4243 * for the scan_work to make progress 4244 */ 4245 nvme_mpath_clear_ctrl_paths(ctrl); 4246 4247 /* 4248 * Unquiesce io queues so any pending IO won't hang, especially 4249 * those submitted from scan work 4250 */ 4251 nvme_unquiesce_io_queues(ctrl); 4252 4253 /* prevent racing with ns scanning */ 4254 flush_work(&ctrl->scan_work); 4255 4256 /* 4257 * The dead states indicates the controller was not gracefully 4258 * disconnected. In that case, we won't be able to flush any data while 4259 * removing the namespaces' disks; fail all the queues now to avoid 4260 * potentially having to clean up the failed sync later. 4261 */ 4262 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4263 nvme_mark_namespaces_dead(ctrl); 4264 4265 /* this is a no-op when called from the controller reset handler */ 4266 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4267 4268 mutex_lock(&ctrl->namespaces_lock); 4269 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4270 mutex_unlock(&ctrl->namespaces_lock); 4271 synchronize_srcu(&ctrl->srcu); 4272 4273 list_for_each_entry_safe(ns, next, &ns_list, list) 4274 nvme_ns_remove(ns); 4275 } 4276 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4277 4278 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4279 { 4280 const struct nvme_ctrl *ctrl = 4281 container_of(dev, struct nvme_ctrl, ctrl_device); 4282 struct nvmf_ctrl_options *opts = ctrl->opts; 4283 int ret; 4284 4285 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4286 if (ret) 4287 return ret; 4288 4289 if (opts) { 4290 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4291 if (ret) 4292 return ret; 4293 4294 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4295 opts->trsvcid ?: "none"); 4296 if (ret) 4297 return ret; 4298 4299 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4300 opts->host_traddr ?: "none"); 4301 if (ret) 4302 return ret; 4303 4304 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4305 opts->host_iface ?: "none"); 4306 } 4307 return ret; 4308 } 4309 4310 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4311 { 4312 char *envp[2] = { envdata, NULL }; 4313 4314 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4315 } 4316 4317 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4318 { 4319 char *envp[2] = { NULL, NULL }; 4320 u32 aen_result = ctrl->aen_result; 4321 4322 ctrl->aen_result = 0; 4323 if (!aen_result) 4324 return; 4325 4326 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4327 if (!envp[0]) 4328 return; 4329 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4330 kfree(envp[0]); 4331 } 4332 4333 static void nvme_async_event_work(struct work_struct *work) 4334 { 4335 struct nvme_ctrl *ctrl = 4336 container_of(work, struct nvme_ctrl, async_event_work); 4337 4338 nvme_aen_uevent(ctrl); 4339 4340 /* 4341 * The transport drivers must guarantee AER submission here is safe by 4342 * flushing ctrl async_event_work after changing the controller state 4343 * from LIVE and before freeing the admin queue. 4344 */ 4345 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4346 ctrl->ops->submit_async_event(ctrl); 4347 } 4348 4349 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4350 { 4351 4352 u32 csts; 4353 4354 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4355 return false; 4356 4357 if (csts == ~0) 4358 return false; 4359 4360 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4361 } 4362 4363 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4364 { 4365 struct nvme_fw_slot_info_log *log; 4366 u8 next_fw_slot, cur_fw_slot; 4367 4368 log = kmalloc(sizeof(*log), GFP_KERNEL); 4369 if (!log) 4370 return; 4371 4372 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4373 log, sizeof(*log), 0)) { 4374 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4375 goto out_free_log; 4376 } 4377 4378 cur_fw_slot = log->afi & 0x7; 4379 next_fw_slot = (log->afi & 0x70) >> 4; 4380 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4381 dev_info(ctrl->device, 4382 "Firmware is activated after next Controller Level Reset\n"); 4383 goto out_free_log; 4384 } 4385 4386 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4387 sizeof(ctrl->subsys->firmware_rev)); 4388 4389 out_free_log: 4390 kfree(log); 4391 } 4392 4393 static void nvme_fw_act_work(struct work_struct *work) 4394 { 4395 struct nvme_ctrl *ctrl = container_of(work, 4396 struct nvme_ctrl, fw_act_work); 4397 unsigned long fw_act_timeout; 4398 4399 nvme_auth_stop(ctrl); 4400 4401 if (ctrl->mtfa) 4402 fw_act_timeout = jiffies + 4403 msecs_to_jiffies(ctrl->mtfa * 100); 4404 else 4405 fw_act_timeout = jiffies + 4406 msecs_to_jiffies(admin_timeout * 1000); 4407 4408 nvme_quiesce_io_queues(ctrl); 4409 while (nvme_ctrl_pp_status(ctrl)) { 4410 if (time_after(jiffies, fw_act_timeout)) { 4411 dev_warn(ctrl->device, 4412 "Fw activation timeout, reset controller\n"); 4413 nvme_try_sched_reset(ctrl); 4414 return; 4415 } 4416 msleep(100); 4417 } 4418 4419 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4420 return; 4421 4422 nvme_unquiesce_io_queues(ctrl); 4423 /* read FW slot information to clear the AER */ 4424 nvme_get_fw_slot_info(ctrl); 4425 4426 queue_work(nvme_wq, &ctrl->async_event_work); 4427 } 4428 4429 static u32 nvme_aer_type(u32 result) 4430 { 4431 return result & 0x7; 4432 } 4433 4434 static u32 nvme_aer_subtype(u32 result) 4435 { 4436 return (result & 0xff00) >> 8; 4437 } 4438 4439 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4440 { 4441 u32 aer_notice_type = nvme_aer_subtype(result); 4442 bool requeue = true; 4443 4444 switch (aer_notice_type) { 4445 case NVME_AER_NOTICE_NS_CHANGED: 4446 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4447 nvme_queue_scan(ctrl); 4448 break; 4449 case NVME_AER_NOTICE_FW_ACT_STARTING: 4450 /* 4451 * We are (ab)using the RESETTING state to prevent subsequent 4452 * recovery actions from interfering with the controller's 4453 * firmware activation. 4454 */ 4455 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4456 requeue = false; 4457 queue_work(nvme_wq, &ctrl->fw_act_work); 4458 } 4459 break; 4460 #ifdef CONFIG_NVME_MULTIPATH 4461 case NVME_AER_NOTICE_ANA: 4462 if (!ctrl->ana_log_buf) 4463 break; 4464 queue_work(nvme_wq, &ctrl->ana_work); 4465 break; 4466 #endif 4467 case NVME_AER_NOTICE_DISC_CHANGED: 4468 ctrl->aen_result = result; 4469 break; 4470 default: 4471 dev_warn(ctrl->device, "async event result %08x\n", result); 4472 } 4473 return requeue; 4474 } 4475 4476 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4477 { 4478 dev_warn(ctrl->device, 4479 "resetting controller due to persistent internal error\n"); 4480 nvme_reset_ctrl(ctrl); 4481 } 4482 4483 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4484 volatile union nvme_result *res) 4485 { 4486 u32 result = le32_to_cpu(res->u32); 4487 u32 aer_type = nvme_aer_type(result); 4488 u32 aer_subtype = nvme_aer_subtype(result); 4489 bool requeue = true; 4490 4491 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4492 return; 4493 4494 trace_nvme_async_event(ctrl, result); 4495 switch (aer_type) { 4496 case NVME_AER_NOTICE: 4497 requeue = nvme_handle_aen_notice(ctrl, result); 4498 break; 4499 case NVME_AER_ERROR: 4500 /* 4501 * For a persistent internal error, don't run async_event_work 4502 * to submit a new AER. The controller reset will do it. 4503 */ 4504 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4505 nvme_handle_aer_persistent_error(ctrl); 4506 return; 4507 } 4508 fallthrough; 4509 case NVME_AER_SMART: 4510 case NVME_AER_CSS: 4511 case NVME_AER_VS: 4512 ctrl->aen_result = result; 4513 break; 4514 default: 4515 break; 4516 } 4517 4518 if (requeue) 4519 queue_work(nvme_wq, &ctrl->async_event_work); 4520 } 4521 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4522 4523 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4524 const struct blk_mq_ops *ops, unsigned int cmd_size) 4525 { 4526 struct queue_limits lim = {}; 4527 int ret; 4528 4529 memset(set, 0, sizeof(*set)); 4530 set->ops = ops; 4531 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4532 if (ctrl->ops->flags & NVME_F_FABRICS) 4533 /* Reserved for fabric connect and keep alive */ 4534 set->reserved_tags = 2; 4535 set->numa_node = ctrl->numa_node; 4536 set->flags = BLK_MQ_F_NO_SCHED; 4537 if (ctrl->ops->flags & NVME_F_BLOCKING) 4538 set->flags |= BLK_MQ_F_BLOCKING; 4539 set->cmd_size = cmd_size; 4540 set->driver_data = ctrl; 4541 set->nr_hw_queues = 1; 4542 set->timeout = NVME_ADMIN_TIMEOUT; 4543 ret = blk_mq_alloc_tag_set(set); 4544 if (ret) 4545 return ret; 4546 4547 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4548 if (IS_ERR(ctrl->admin_q)) { 4549 ret = PTR_ERR(ctrl->admin_q); 4550 goto out_free_tagset; 4551 } 4552 4553 if (ctrl->ops->flags & NVME_F_FABRICS) { 4554 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4555 if (IS_ERR(ctrl->fabrics_q)) { 4556 ret = PTR_ERR(ctrl->fabrics_q); 4557 goto out_cleanup_admin_q; 4558 } 4559 } 4560 4561 ctrl->admin_tagset = set; 4562 return 0; 4563 4564 out_cleanup_admin_q: 4565 blk_mq_destroy_queue(ctrl->admin_q); 4566 blk_put_queue(ctrl->admin_q); 4567 out_free_tagset: 4568 blk_mq_free_tag_set(set); 4569 ctrl->admin_q = NULL; 4570 ctrl->fabrics_q = NULL; 4571 return ret; 4572 } 4573 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4574 4575 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4576 { 4577 blk_mq_destroy_queue(ctrl->admin_q); 4578 blk_put_queue(ctrl->admin_q); 4579 if (ctrl->ops->flags & NVME_F_FABRICS) { 4580 blk_mq_destroy_queue(ctrl->fabrics_q); 4581 blk_put_queue(ctrl->fabrics_q); 4582 } 4583 blk_mq_free_tag_set(ctrl->admin_tagset); 4584 } 4585 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4586 4587 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4588 const struct blk_mq_ops *ops, unsigned int nr_maps, 4589 unsigned int cmd_size) 4590 { 4591 int ret; 4592 4593 memset(set, 0, sizeof(*set)); 4594 set->ops = ops; 4595 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4596 /* 4597 * Some Apple controllers requires tags to be unique across admin and 4598 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4599 */ 4600 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4601 set->reserved_tags = NVME_AQ_DEPTH; 4602 else if (ctrl->ops->flags & NVME_F_FABRICS) 4603 /* Reserved for fabric connect */ 4604 set->reserved_tags = 1; 4605 set->numa_node = ctrl->numa_node; 4606 set->flags = BLK_MQ_F_SHOULD_MERGE; 4607 if (ctrl->ops->flags & NVME_F_BLOCKING) 4608 set->flags |= BLK_MQ_F_BLOCKING; 4609 set->cmd_size = cmd_size; 4610 set->driver_data = ctrl; 4611 set->nr_hw_queues = ctrl->queue_count - 1; 4612 set->timeout = NVME_IO_TIMEOUT; 4613 set->nr_maps = nr_maps; 4614 ret = blk_mq_alloc_tag_set(set); 4615 if (ret) 4616 return ret; 4617 4618 if (ctrl->ops->flags & NVME_F_FABRICS) { 4619 struct queue_limits lim = { 4620 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, 4621 }; 4622 4623 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); 4624 if (IS_ERR(ctrl->connect_q)) { 4625 ret = PTR_ERR(ctrl->connect_q); 4626 goto out_free_tag_set; 4627 } 4628 } 4629 4630 ctrl->tagset = set; 4631 return 0; 4632 4633 out_free_tag_set: 4634 blk_mq_free_tag_set(set); 4635 ctrl->connect_q = NULL; 4636 return ret; 4637 } 4638 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4639 4640 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4641 { 4642 if (ctrl->ops->flags & NVME_F_FABRICS) { 4643 blk_mq_destroy_queue(ctrl->connect_q); 4644 blk_put_queue(ctrl->connect_q); 4645 } 4646 blk_mq_free_tag_set(ctrl->tagset); 4647 } 4648 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4649 4650 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4651 { 4652 nvme_mpath_stop(ctrl); 4653 nvme_auth_stop(ctrl); 4654 nvme_stop_failfast_work(ctrl); 4655 flush_work(&ctrl->async_event_work); 4656 cancel_work_sync(&ctrl->fw_act_work); 4657 if (ctrl->ops->stop_ctrl) 4658 ctrl->ops->stop_ctrl(ctrl); 4659 } 4660 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4661 4662 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4663 { 4664 nvme_enable_aen(ctrl); 4665 4666 /* 4667 * persistent discovery controllers need to send indication to userspace 4668 * to re-read the discovery log page to learn about possible changes 4669 * that were missed. We identify persistent discovery controllers by 4670 * checking that they started once before, hence are reconnecting back. 4671 */ 4672 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4673 nvme_discovery_ctrl(ctrl)) 4674 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4675 4676 if (ctrl->queue_count > 1) { 4677 nvme_queue_scan(ctrl); 4678 nvme_unquiesce_io_queues(ctrl); 4679 nvme_mpath_update(ctrl); 4680 } 4681 4682 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4683 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4684 } 4685 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4686 4687 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4688 { 4689 nvme_stop_keep_alive(ctrl); 4690 nvme_hwmon_exit(ctrl); 4691 nvme_fault_inject_fini(&ctrl->fault_inject); 4692 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4693 cdev_device_del(&ctrl->cdev, ctrl->device); 4694 nvme_put_ctrl(ctrl); 4695 } 4696 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4697 4698 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4699 { 4700 struct nvme_effects_log *cel; 4701 unsigned long i; 4702 4703 xa_for_each(&ctrl->cels, i, cel) { 4704 xa_erase(&ctrl->cels, i); 4705 kfree(cel); 4706 } 4707 4708 xa_destroy(&ctrl->cels); 4709 } 4710 4711 static void nvme_free_ctrl(struct device *dev) 4712 { 4713 struct nvme_ctrl *ctrl = 4714 container_of(dev, struct nvme_ctrl, ctrl_device); 4715 struct nvme_subsystem *subsys = ctrl->subsys; 4716 4717 if (!subsys || ctrl->instance != subsys->instance) 4718 ida_free(&nvme_instance_ida, ctrl->instance); 4719 nvme_free_cels(ctrl); 4720 nvme_mpath_uninit(ctrl); 4721 cleanup_srcu_struct(&ctrl->srcu); 4722 nvme_auth_stop(ctrl); 4723 nvme_auth_free(ctrl); 4724 __free_page(ctrl->discard_page); 4725 free_opal_dev(ctrl->opal_dev); 4726 4727 if (subsys) { 4728 mutex_lock(&nvme_subsystems_lock); 4729 list_del(&ctrl->subsys_entry); 4730 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4731 mutex_unlock(&nvme_subsystems_lock); 4732 } 4733 4734 ctrl->ops->free_ctrl(ctrl); 4735 4736 if (subsys) 4737 nvme_put_subsystem(subsys); 4738 } 4739 4740 /* 4741 * Initialize a NVMe controller structures. This needs to be called during 4742 * earliest initialization so that we have the initialized structured around 4743 * during probing. 4744 * 4745 * On success, the caller must use the nvme_put_ctrl() to release this when 4746 * needed, which also invokes the ops->free_ctrl() callback. 4747 */ 4748 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4749 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4750 { 4751 int ret; 4752 4753 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4754 ctrl->passthru_err_log_enabled = false; 4755 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4756 spin_lock_init(&ctrl->lock); 4757 mutex_init(&ctrl->namespaces_lock); 4758 4759 ret = init_srcu_struct(&ctrl->srcu); 4760 if (ret) 4761 return ret; 4762 4763 mutex_init(&ctrl->scan_lock); 4764 INIT_LIST_HEAD(&ctrl->namespaces); 4765 xa_init(&ctrl->cels); 4766 ctrl->dev = dev; 4767 ctrl->ops = ops; 4768 ctrl->quirks = quirks; 4769 ctrl->numa_node = NUMA_NO_NODE; 4770 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4771 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4772 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4773 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4774 init_waitqueue_head(&ctrl->state_wq); 4775 4776 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4777 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4778 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4779 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4780 ctrl->ka_last_check_time = jiffies; 4781 4782 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4783 PAGE_SIZE); 4784 ctrl->discard_page = alloc_page(GFP_KERNEL); 4785 if (!ctrl->discard_page) { 4786 ret = -ENOMEM; 4787 goto out; 4788 } 4789 4790 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4791 if (ret < 0) 4792 goto out; 4793 ctrl->instance = ret; 4794 4795 ret = nvme_auth_init_ctrl(ctrl); 4796 if (ret) 4797 goto out_release_instance; 4798 4799 nvme_mpath_init_ctrl(ctrl); 4800 4801 device_initialize(&ctrl->ctrl_device); 4802 ctrl->device = &ctrl->ctrl_device; 4803 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4804 ctrl->instance); 4805 ctrl->device->class = &nvme_class; 4806 ctrl->device->parent = ctrl->dev; 4807 if (ops->dev_attr_groups) 4808 ctrl->device->groups = ops->dev_attr_groups; 4809 else 4810 ctrl->device->groups = nvme_dev_attr_groups; 4811 ctrl->device->release = nvme_free_ctrl; 4812 dev_set_drvdata(ctrl->device, ctrl); 4813 4814 return ret; 4815 4816 out_release_instance: 4817 ida_free(&nvme_instance_ida, ctrl->instance); 4818 out: 4819 if (ctrl->discard_page) 4820 __free_page(ctrl->discard_page); 4821 cleanup_srcu_struct(&ctrl->srcu); 4822 return ret; 4823 } 4824 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4825 4826 /* 4827 * On success, returns with an elevated controller reference and caller must 4828 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. 4829 */ 4830 int nvme_add_ctrl(struct nvme_ctrl *ctrl) 4831 { 4832 int ret; 4833 4834 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4835 if (ret) 4836 return ret; 4837 4838 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4839 ctrl->cdev.owner = ctrl->ops->module; 4840 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4841 if (ret) 4842 return ret; 4843 4844 /* 4845 * Initialize latency tolerance controls. The sysfs files won't 4846 * be visible to userspace unless the device actually supports APST. 4847 */ 4848 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4849 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4850 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4851 4852 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4853 nvme_get_ctrl(ctrl); 4854 4855 return 0; 4856 } 4857 EXPORT_SYMBOL_GPL(nvme_add_ctrl); 4858 4859 /* let I/O to all namespaces fail in preparation for surprise removal */ 4860 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4861 { 4862 struct nvme_ns *ns; 4863 int srcu_idx; 4864 4865 srcu_idx = srcu_read_lock(&ctrl->srcu); 4866 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4867 blk_mark_disk_dead(ns->disk); 4868 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4869 } 4870 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4871 4872 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4873 { 4874 struct nvme_ns *ns; 4875 int srcu_idx; 4876 4877 srcu_idx = srcu_read_lock(&ctrl->srcu); 4878 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4879 blk_mq_unfreeze_queue(ns->queue); 4880 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4881 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4882 } 4883 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4884 4885 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4886 { 4887 struct nvme_ns *ns; 4888 int srcu_idx; 4889 4890 srcu_idx = srcu_read_lock(&ctrl->srcu); 4891 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 4892 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4893 if (timeout <= 0) 4894 break; 4895 } 4896 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4897 return timeout; 4898 } 4899 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4900 4901 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4902 { 4903 struct nvme_ns *ns; 4904 int srcu_idx; 4905 4906 srcu_idx = srcu_read_lock(&ctrl->srcu); 4907 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4908 blk_mq_freeze_queue_wait(ns->queue); 4909 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4910 } 4911 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4912 4913 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4914 { 4915 struct nvme_ns *ns; 4916 int srcu_idx; 4917 4918 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4919 srcu_idx = srcu_read_lock(&ctrl->srcu); 4920 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4921 blk_freeze_queue_start(ns->queue); 4922 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4923 } 4924 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4925 4926 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4927 { 4928 if (!ctrl->tagset) 4929 return; 4930 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4931 blk_mq_quiesce_tagset(ctrl->tagset); 4932 else 4933 blk_mq_wait_quiesce_done(ctrl->tagset); 4934 } 4935 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4936 4937 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4938 { 4939 if (!ctrl->tagset) 4940 return; 4941 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4942 blk_mq_unquiesce_tagset(ctrl->tagset); 4943 } 4944 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4945 4946 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4947 { 4948 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4949 blk_mq_quiesce_queue(ctrl->admin_q); 4950 else 4951 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4952 } 4953 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4954 4955 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4956 { 4957 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4958 blk_mq_unquiesce_queue(ctrl->admin_q); 4959 } 4960 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4961 4962 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4963 { 4964 struct nvme_ns *ns; 4965 int srcu_idx; 4966 4967 srcu_idx = srcu_read_lock(&ctrl->srcu); 4968 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4969 blk_sync_queue(ns->queue); 4970 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4971 } 4972 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4973 4974 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4975 { 4976 nvme_sync_io_queues(ctrl); 4977 if (ctrl->admin_q) 4978 blk_sync_queue(ctrl->admin_q); 4979 } 4980 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4981 4982 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4983 { 4984 if (file->f_op != &nvme_dev_fops) 4985 return NULL; 4986 return file->private_data; 4987 } 4988 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4989 4990 /* 4991 * Check we didn't inadvertently grow the command structure sizes: 4992 */ 4993 static inline void _nvme_check_size(void) 4994 { 4995 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4996 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4997 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4998 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4999 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 5000 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 5001 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 5002 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 5003 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 5004 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 5005 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 5006 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 5007 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 5008 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 5009 NVME_IDENTIFY_DATA_SIZE); 5010 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 5011 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 5012 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 5013 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 5014 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 5015 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 5016 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 5017 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 5018 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 5019 } 5020 5021 5022 static int __init nvme_core_init(void) 5023 { 5024 int result = -ENOMEM; 5025 5026 _nvme_check_size(); 5027 5028 nvme_wq = alloc_workqueue("nvme-wq", 5029 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5030 if (!nvme_wq) 5031 goto out; 5032 5033 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 5034 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5035 if (!nvme_reset_wq) 5036 goto destroy_wq; 5037 5038 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 5039 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5040 if (!nvme_delete_wq) 5041 goto destroy_reset_wq; 5042 5043 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5044 NVME_MINORS, "nvme"); 5045 if (result < 0) 5046 goto destroy_delete_wq; 5047 5048 result = class_register(&nvme_class); 5049 if (result) 5050 goto unregister_chrdev; 5051 5052 result = class_register(&nvme_subsys_class); 5053 if (result) 5054 goto destroy_class; 5055 5056 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5057 "nvme-generic"); 5058 if (result < 0) 5059 goto destroy_subsys_class; 5060 5061 result = class_register(&nvme_ns_chr_class); 5062 if (result) 5063 goto unregister_generic_ns; 5064 5065 result = nvme_init_auth(); 5066 if (result) 5067 goto destroy_ns_chr; 5068 return 0; 5069 5070 destroy_ns_chr: 5071 class_unregister(&nvme_ns_chr_class); 5072 unregister_generic_ns: 5073 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5074 destroy_subsys_class: 5075 class_unregister(&nvme_subsys_class); 5076 destroy_class: 5077 class_unregister(&nvme_class); 5078 unregister_chrdev: 5079 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5080 destroy_delete_wq: 5081 destroy_workqueue(nvme_delete_wq); 5082 destroy_reset_wq: 5083 destroy_workqueue(nvme_reset_wq); 5084 destroy_wq: 5085 destroy_workqueue(nvme_wq); 5086 out: 5087 return result; 5088 } 5089 5090 static void __exit nvme_core_exit(void) 5091 { 5092 nvme_exit_auth(); 5093 class_unregister(&nvme_ns_chr_class); 5094 class_unregister(&nvme_subsys_class); 5095 class_unregister(&nvme_class); 5096 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5097 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5098 destroy_workqueue(nvme_delete_wq); 5099 destroy_workqueue(nvme_reset_wq); 5100 destroy_workqueue(nvme_wq); 5101 ida_destroy(&nvme_ns_chr_minor_ida); 5102 ida_destroy(&nvme_instance_ida); 5103 } 5104 5105 MODULE_LICENSE("GPL"); 5106 MODULE_VERSION("1.0"); 5107 MODULE_DESCRIPTION("NVMe host core framework"); 5108 module_init(nvme_core_init); 5109 module_exit(nvme_core_exit); 5110