xref: /linux/drivers/nvme/host/core.c (revision c434e25b62f8efcfbb6bf1f7ce55960206c1137e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include "nvme.h"
27 #include "fabrics.h"
28 #include <linux/nvme-auth.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #define NVME_MINORS		(1U << MINORBITS)
34 
35 struct nvme_ns_info {
36 	struct nvme_ns_ids ids;
37 	u32 nsid;
38 	__le32 anagrpid;
39 	bool is_shared;
40 	bool is_readonly;
41 	bool is_ready;
42 	bool is_removed;
43 };
44 
45 unsigned int admin_timeout = 60;
46 module_param(admin_timeout, uint, 0644);
47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
48 EXPORT_SYMBOL_GPL(admin_timeout);
49 
50 unsigned int nvme_io_timeout = 30;
51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
53 EXPORT_SYMBOL_GPL(nvme_io_timeout);
54 
55 static unsigned char shutdown_timeout = 5;
56 module_param(shutdown_timeout, byte, 0644);
57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58 
59 static u8 nvme_max_retries = 5;
60 module_param_named(max_retries, nvme_max_retries, byte, 0644);
61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62 
63 static unsigned long default_ps_max_latency_us = 100000;
64 module_param(default_ps_max_latency_us, ulong, 0644);
65 MODULE_PARM_DESC(default_ps_max_latency_us,
66 		 "max power saving latency for new devices; use PM QOS to change per device");
67 
68 static bool force_apst;
69 module_param(force_apst, bool, 0644);
70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71 
72 static unsigned long apst_primary_timeout_ms = 100;
73 module_param(apst_primary_timeout_ms, ulong, 0644);
74 MODULE_PARM_DESC(apst_primary_timeout_ms,
75 	"primary APST timeout in ms");
76 
77 static unsigned long apst_secondary_timeout_ms = 2000;
78 module_param(apst_secondary_timeout_ms, ulong, 0644);
79 MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 	"secondary APST timeout in ms");
81 
82 static unsigned long apst_primary_latency_tol_us = 15000;
83 module_param(apst_primary_latency_tol_us, ulong, 0644);
84 MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 	"primary APST latency tolerance in us");
86 
87 static unsigned long apst_secondary_latency_tol_us = 100000;
88 module_param(apst_secondary_latency_tol_us, ulong, 0644);
89 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 	"secondary APST latency tolerance in us");
91 
92 /*
93  * nvme_wq - hosts nvme related works that are not reset or delete
94  * nvme_reset_wq - hosts nvme reset works
95  * nvme_delete_wq - hosts nvme delete works
96  *
97  * nvme_wq will host works such as scan, aen handling, fw activation,
98  * keep-alive, periodic reconnects etc. nvme_reset_wq
99  * runs reset works which also flush works hosted on nvme_wq for
100  * serialization purposes. nvme_delete_wq host controller deletion
101  * works which flush reset works for serialization.
102  */
103 struct workqueue_struct *nvme_wq;
104 EXPORT_SYMBOL_GPL(nvme_wq);
105 
106 struct workqueue_struct *nvme_reset_wq;
107 EXPORT_SYMBOL_GPL(nvme_reset_wq);
108 
109 struct workqueue_struct *nvme_delete_wq;
110 EXPORT_SYMBOL_GPL(nvme_delete_wq);
111 
112 static LIST_HEAD(nvme_subsystems);
113 DEFINE_MUTEX(nvme_subsystems_lock);
114 
115 static DEFINE_IDA(nvme_instance_ida);
116 static dev_t nvme_ctrl_base_chr_devt;
117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
118 static const struct class nvme_class = {
119 	.name = "nvme",
120 	.dev_uevent = nvme_class_uevent,
121 };
122 
123 static const struct class nvme_subsys_class = {
124 	.name = "nvme-subsystem",
125 };
126 
127 static DEFINE_IDA(nvme_ns_chr_minor_ida);
128 static dev_t nvme_ns_chr_devt;
129 static const struct class nvme_ns_chr_class = {
130 	.name = "nvme-generic",
131 };
132 
133 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
135 					   unsigned nsid);
136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
137 				   struct nvme_command *cmd);
138 
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141 	/*
142 	 * Only new queue scan work when admin and IO queues are both alive
143 	 */
144 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
145 		queue_work(nvme_wq, &ctrl->scan_work);
146 }
147 
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
157 		return -EBUSY;
158 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 		return -EBUSY;
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163 
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 			struct nvme_ctrl, failfast_work);
168 
169 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
170 		return;
171 
172 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 	dev_info(ctrl->device, "failfast expired\n");
174 	nvme_kick_requeue_lists(ctrl);
175 }
176 
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 		return;
181 
182 	schedule_delayed_work(&ctrl->failfast_work,
183 			      ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185 
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188 	if (!ctrl->opts)
189 		return;
190 
191 	cancel_delayed_work_sync(&ctrl->failfast_work);
192 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194 
195 
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205 
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	int ret;
209 
210 	ret = nvme_reset_ctrl(ctrl);
211 	if (!ret) {
212 		flush_work(&ctrl->reset_work);
213 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
214 			ret = -ENETRESET;
215 	}
216 
217 	return ret;
218 }
219 
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	dev_info(ctrl->device,
223 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
224 
225 	flush_work(&ctrl->reset_work);
226 	nvme_stop_ctrl(ctrl);
227 	nvme_remove_namespaces(ctrl);
228 	ctrl->ops->delete_ctrl(ctrl);
229 	nvme_uninit_ctrl(ctrl);
230 }
231 
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234 	struct nvme_ctrl *ctrl =
235 		container_of(work, struct nvme_ctrl, delete_work);
236 
237 	nvme_do_delete_ctrl(ctrl);
238 }
239 
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 		return -EBUSY;
244 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245 		return -EBUSY;
246 	return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249 
250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252 	/*
253 	 * Keep a reference until nvme_do_delete_ctrl() complete,
254 	 * since ->delete_ctrl can free the controller.
255 	 */
256 	nvme_get_ctrl(ctrl);
257 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		nvme_do_delete_ctrl(ctrl);
259 	nvme_put_ctrl(ctrl);
260 }
261 
262 static blk_status_t nvme_error_status(u16 status)
263 {
264 	switch (status & NVME_SCT_SC_MASK) {
265 	case NVME_SC_SUCCESS:
266 		return BLK_STS_OK;
267 	case NVME_SC_CAP_EXCEEDED:
268 		return BLK_STS_NOSPC;
269 	case NVME_SC_LBA_RANGE:
270 	case NVME_SC_CMD_INTERRUPTED:
271 	case NVME_SC_NS_NOT_READY:
272 		return BLK_STS_TARGET;
273 	case NVME_SC_BAD_ATTRIBUTES:
274 	case NVME_SC_ONCS_NOT_SUPPORTED:
275 	case NVME_SC_INVALID_OPCODE:
276 	case NVME_SC_INVALID_FIELD:
277 	case NVME_SC_INVALID_NS:
278 		return BLK_STS_NOTSUPP;
279 	case NVME_SC_WRITE_FAULT:
280 	case NVME_SC_READ_ERROR:
281 	case NVME_SC_UNWRITTEN_BLOCK:
282 	case NVME_SC_ACCESS_DENIED:
283 	case NVME_SC_READ_ONLY:
284 	case NVME_SC_COMPARE_FAILED:
285 		return BLK_STS_MEDIUM;
286 	case NVME_SC_GUARD_CHECK:
287 	case NVME_SC_APPTAG_CHECK:
288 	case NVME_SC_REFTAG_CHECK:
289 	case NVME_SC_INVALID_PI:
290 		return BLK_STS_PROTECTION;
291 	case NVME_SC_RESERVATION_CONFLICT:
292 		return BLK_STS_RESV_CONFLICT;
293 	case NVME_SC_HOST_PATH_ERROR:
294 		return BLK_STS_TRANSPORT;
295 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 	case NVME_SC_ZONE_TOO_MANY_OPEN:
298 		return BLK_STS_ZONE_OPEN_RESOURCE;
299 	default:
300 		return BLK_STS_IOERR;
301 	}
302 }
303 
304 static void nvme_retry_req(struct request *req)
305 {
306 	unsigned long delay = 0;
307 	u16 crd;
308 
309 	/* The mask and shift result must be <= 3 */
310 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
311 	if (crd)
312 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313 
314 	nvme_req(req)->retries++;
315 	blk_mq_requeue_request(req, false);
316 	blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318 
319 static void nvme_log_error(struct request *req)
320 {
321 	struct nvme_ns *ns = req->q->queuedata;
322 	struct nvme_request *nr = nvme_req(req);
323 
324 	if (ns) {
325 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
326 		       ns->disk ? ns->disk->disk_name : "?",
327 		       nvme_get_opcode_str(nr->cmd->common.opcode),
328 		       nr->cmd->common.opcode,
329 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
330 		       blk_rq_bytes(req) >> ns->head->lba_shift,
331 		       nvme_get_error_status_str(nr->status),
332 		       NVME_SCT(nr->status),		/* Status Code Type */
333 		       nr->status & NVME_SC_MASK,	/* Status Code */
334 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
335 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
336 		return;
337 	}
338 
339 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
340 			   dev_name(nr->ctrl->device),
341 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
342 			   nr->cmd->common.opcode,
343 			   nvme_get_error_status_str(nr->status),
344 			   NVME_SCT(nr->status),	/* Status Code Type */
345 			   nr->status & NVME_SC_MASK,	/* Status Code */
346 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
347 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
348 }
349 
350 static void nvme_log_err_passthru(struct request *req)
351 {
352 	struct nvme_ns *ns = req->q->queuedata;
353 	struct nvme_request *nr = nvme_req(req);
354 
355 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
356 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
357 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
358 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
359 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 		nr->cmd->common.opcode,
361 		nvme_get_error_status_str(nr->status),
362 		NVME_SCT(nr->status),		/* Status Code Type */
363 		nr->status & NVME_SC_MASK,	/* Status Code */
364 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
365 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
366 		nr->cmd->common.cdw10,
367 		nr->cmd->common.cdw11,
368 		nr->cmd->common.cdw12,
369 		nr->cmd->common.cdw13,
370 		nr->cmd->common.cdw14,
371 		nr->cmd->common.cdw14);
372 }
373 
374 enum nvme_disposition {
375 	COMPLETE,
376 	RETRY,
377 	FAILOVER,
378 	AUTHENTICATE,
379 };
380 
381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
382 {
383 	if (likely(nvme_req(req)->status == 0))
384 		return COMPLETE;
385 
386 	if (blk_noretry_request(req) ||
387 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
388 	    nvme_req(req)->retries >= nvme_max_retries)
389 		return COMPLETE;
390 
391 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
392 		return AUTHENTICATE;
393 
394 	if (req->cmd_flags & REQ_NVME_MPATH) {
395 		if (nvme_is_path_error(nvme_req(req)->status) ||
396 		    blk_queue_dying(req->q))
397 			return FAILOVER;
398 	} else {
399 		if (blk_queue_dying(req->q))
400 			return COMPLETE;
401 	}
402 
403 	return RETRY;
404 }
405 
406 static inline void nvme_end_req_zoned(struct request *req)
407 {
408 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
409 	    req_op(req) == REQ_OP_ZONE_APPEND) {
410 		struct nvme_ns *ns = req->q->queuedata;
411 
412 		req->__sector = nvme_lba_to_sect(ns->head,
413 			le64_to_cpu(nvme_req(req)->result.u64));
414 	}
415 }
416 
417 static inline void __nvme_end_req(struct request *req)
418 {
419 	nvme_end_req_zoned(req);
420 	nvme_trace_bio_complete(req);
421 	if (req->cmd_flags & REQ_NVME_MPATH)
422 		nvme_mpath_end_request(req);
423 }
424 
425 void nvme_end_req(struct request *req)
426 {
427 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
428 
429 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
430 		if (blk_rq_is_passthrough(req))
431 			nvme_log_err_passthru(req);
432 		else
433 			nvme_log_error(req);
434 	}
435 	__nvme_end_req(req);
436 	blk_mq_end_request(req, status);
437 }
438 
439 void nvme_complete_rq(struct request *req)
440 {
441 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
442 
443 	trace_nvme_complete_rq(req);
444 	nvme_cleanup_cmd(req);
445 
446 	/*
447 	 * Completions of long-running commands should not be able to
448 	 * defer sending of periodic keep alives, since the controller
449 	 * may have completed processing such commands a long time ago
450 	 * (arbitrarily close to command submission time).
451 	 * req->deadline - req->timeout is the command submission time
452 	 * in jiffies.
453 	 */
454 	if (ctrl->kas &&
455 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
456 		ctrl->comp_seen = true;
457 
458 	switch (nvme_decide_disposition(req)) {
459 	case COMPLETE:
460 		nvme_end_req(req);
461 		return;
462 	case RETRY:
463 		nvme_retry_req(req);
464 		return;
465 	case FAILOVER:
466 		nvme_failover_req(req);
467 		return;
468 	case AUTHENTICATE:
469 #ifdef CONFIG_NVME_HOST_AUTH
470 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
471 		nvme_retry_req(req);
472 #else
473 		nvme_end_req(req);
474 #endif
475 		return;
476 	}
477 }
478 EXPORT_SYMBOL_GPL(nvme_complete_rq);
479 
480 void nvme_complete_batch_req(struct request *req)
481 {
482 	trace_nvme_complete_rq(req);
483 	nvme_cleanup_cmd(req);
484 	__nvme_end_req(req);
485 }
486 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
487 
488 /*
489  * Called to unwind from ->queue_rq on a failed command submission so that the
490  * multipathing code gets called to potentially failover to another path.
491  * The caller needs to unwind all transport specific resource allocations and
492  * must return propagate the return value.
493  */
494 blk_status_t nvme_host_path_error(struct request *req)
495 {
496 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
497 	blk_mq_set_request_complete(req);
498 	nvme_complete_rq(req);
499 	return BLK_STS_OK;
500 }
501 EXPORT_SYMBOL_GPL(nvme_host_path_error);
502 
503 bool nvme_cancel_request(struct request *req, void *data)
504 {
505 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
506 				"Cancelling I/O %d", req->tag);
507 
508 	/* don't abort one completed or idle request */
509 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
510 		return true;
511 
512 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
513 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
514 	blk_mq_complete_request(req);
515 	return true;
516 }
517 EXPORT_SYMBOL_GPL(nvme_cancel_request);
518 
519 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
520 {
521 	if (ctrl->tagset) {
522 		blk_mq_tagset_busy_iter(ctrl->tagset,
523 				nvme_cancel_request, ctrl);
524 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
525 	}
526 }
527 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
528 
529 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
530 {
531 	if (ctrl->admin_tagset) {
532 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
533 				nvme_cancel_request, ctrl);
534 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
535 	}
536 }
537 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
538 
539 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
540 		enum nvme_ctrl_state new_state)
541 {
542 	enum nvme_ctrl_state old_state;
543 	unsigned long flags;
544 	bool changed = false;
545 
546 	spin_lock_irqsave(&ctrl->lock, flags);
547 
548 	old_state = nvme_ctrl_state(ctrl);
549 	switch (new_state) {
550 	case NVME_CTRL_LIVE:
551 		switch (old_state) {
552 		case NVME_CTRL_NEW:
553 		case NVME_CTRL_RESETTING:
554 		case NVME_CTRL_CONNECTING:
555 			changed = true;
556 			fallthrough;
557 		default:
558 			break;
559 		}
560 		break;
561 	case NVME_CTRL_RESETTING:
562 		switch (old_state) {
563 		case NVME_CTRL_NEW:
564 		case NVME_CTRL_LIVE:
565 			changed = true;
566 			fallthrough;
567 		default:
568 			break;
569 		}
570 		break;
571 	case NVME_CTRL_CONNECTING:
572 		switch (old_state) {
573 		case NVME_CTRL_NEW:
574 		case NVME_CTRL_RESETTING:
575 			changed = true;
576 			fallthrough;
577 		default:
578 			break;
579 		}
580 		break;
581 	case NVME_CTRL_DELETING:
582 		switch (old_state) {
583 		case NVME_CTRL_LIVE:
584 		case NVME_CTRL_RESETTING:
585 		case NVME_CTRL_CONNECTING:
586 			changed = true;
587 			fallthrough;
588 		default:
589 			break;
590 		}
591 		break;
592 	case NVME_CTRL_DELETING_NOIO:
593 		switch (old_state) {
594 		case NVME_CTRL_DELETING:
595 		case NVME_CTRL_DEAD:
596 			changed = true;
597 			fallthrough;
598 		default:
599 			break;
600 		}
601 		break;
602 	case NVME_CTRL_DEAD:
603 		switch (old_state) {
604 		case NVME_CTRL_DELETING:
605 			changed = true;
606 			fallthrough;
607 		default:
608 			break;
609 		}
610 		break;
611 	default:
612 		break;
613 	}
614 
615 	if (changed) {
616 		WRITE_ONCE(ctrl->state, new_state);
617 		wake_up_all(&ctrl->state_wq);
618 	}
619 
620 	spin_unlock_irqrestore(&ctrl->lock, flags);
621 	if (!changed)
622 		return false;
623 
624 	if (new_state == NVME_CTRL_LIVE) {
625 		if (old_state == NVME_CTRL_CONNECTING)
626 			nvme_stop_failfast_work(ctrl);
627 		nvme_kick_requeue_lists(ctrl);
628 	} else if (new_state == NVME_CTRL_CONNECTING &&
629 		old_state == NVME_CTRL_RESETTING) {
630 		nvme_start_failfast_work(ctrl);
631 	}
632 	return changed;
633 }
634 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
635 
636 /*
637  * Waits for the controller state to be resetting, or returns false if it is
638  * not possible to ever transition to that state.
639  */
640 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
641 {
642 	wait_event(ctrl->state_wq,
643 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
644 		   nvme_state_terminal(ctrl));
645 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
646 }
647 EXPORT_SYMBOL_GPL(nvme_wait_reset);
648 
649 static void nvme_free_ns_head(struct kref *ref)
650 {
651 	struct nvme_ns_head *head =
652 		container_of(ref, struct nvme_ns_head, ref);
653 
654 	nvme_mpath_remove_disk(head);
655 	ida_free(&head->subsys->ns_ida, head->instance);
656 	cleanup_srcu_struct(&head->srcu);
657 	nvme_put_subsystem(head->subsys);
658 	kfree(head);
659 }
660 
661 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
662 {
663 	return kref_get_unless_zero(&head->ref);
664 }
665 
666 void nvme_put_ns_head(struct nvme_ns_head *head)
667 {
668 	kref_put(&head->ref, nvme_free_ns_head);
669 }
670 
671 static void nvme_free_ns(struct kref *kref)
672 {
673 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
674 
675 	put_disk(ns->disk);
676 	nvme_put_ns_head(ns->head);
677 	nvme_put_ctrl(ns->ctrl);
678 	kfree(ns);
679 }
680 
681 bool nvme_get_ns(struct nvme_ns *ns)
682 {
683 	return kref_get_unless_zero(&ns->kref);
684 }
685 
686 void nvme_put_ns(struct nvme_ns *ns)
687 {
688 	kref_put(&ns->kref, nvme_free_ns);
689 }
690 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
691 
692 static inline void nvme_clear_nvme_request(struct request *req)
693 {
694 	nvme_req(req)->status = 0;
695 	nvme_req(req)->retries = 0;
696 	nvme_req(req)->flags = 0;
697 	req->rq_flags |= RQF_DONTPREP;
698 }
699 
700 /* initialize a passthrough request */
701 void nvme_init_request(struct request *req, struct nvme_command *cmd)
702 {
703 	struct nvme_request *nr = nvme_req(req);
704 	bool logging_enabled;
705 
706 	if (req->q->queuedata) {
707 		struct nvme_ns *ns = req->q->disk->private_data;
708 
709 		logging_enabled = ns->head->passthru_err_log_enabled;
710 		req->timeout = NVME_IO_TIMEOUT;
711 	} else { /* no queuedata implies admin queue */
712 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
713 		req->timeout = NVME_ADMIN_TIMEOUT;
714 	}
715 
716 	if (!logging_enabled)
717 		req->rq_flags |= RQF_QUIET;
718 
719 	/* passthru commands should let the driver set the SGL flags */
720 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
721 
722 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
723 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
724 		req->cmd_flags |= REQ_POLLED;
725 	nvme_clear_nvme_request(req);
726 	memcpy(nr->cmd, cmd, sizeof(*cmd));
727 }
728 EXPORT_SYMBOL_GPL(nvme_init_request);
729 
730 /*
731  * For something we're not in a state to send to the device the default action
732  * is to busy it and retry it after the controller state is recovered.  However,
733  * if the controller is deleting or if anything is marked for failfast or
734  * nvme multipath it is immediately failed.
735  *
736  * Note: commands used to initialize the controller will be marked for failfast.
737  * Note: nvme cli/ioctl commands are marked for failfast.
738  */
739 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
740 		struct request *rq)
741 {
742 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
743 
744 	if (state != NVME_CTRL_DELETING_NOIO &&
745 	    state != NVME_CTRL_DELETING &&
746 	    state != NVME_CTRL_DEAD &&
747 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
748 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
749 		return BLK_STS_RESOURCE;
750 	return nvme_host_path_error(rq);
751 }
752 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
753 
754 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
755 		bool queue_live, enum nvme_ctrl_state state)
756 {
757 	struct nvme_request *req = nvme_req(rq);
758 
759 	/*
760 	 * currently we have a problem sending passthru commands
761 	 * on the admin_q if the controller is not LIVE because we can't
762 	 * make sure that they are going out after the admin connect,
763 	 * controller enable and/or other commands in the initialization
764 	 * sequence. until the controller will be LIVE, fail with
765 	 * BLK_STS_RESOURCE so that they will be rescheduled.
766 	 */
767 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
768 		return false;
769 
770 	if (ctrl->ops->flags & NVME_F_FABRICS) {
771 		/*
772 		 * Only allow commands on a live queue, except for the connect
773 		 * command, which is require to set the queue live in the
774 		 * appropinquate states.
775 		 */
776 		switch (state) {
777 		case NVME_CTRL_CONNECTING:
778 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
779 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
780 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
781 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
782 				return true;
783 			break;
784 		default:
785 			break;
786 		case NVME_CTRL_DEAD:
787 			return false;
788 		}
789 	}
790 
791 	return queue_live;
792 }
793 EXPORT_SYMBOL_GPL(__nvme_check_ready);
794 
795 static inline void nvme_setup_flush(struct nvme_ns *ns,
796 		struct nvme_command *cmnd)
797 {
798 	memset(cmnd, 0, sizeof(*cmnd));
799 	cmnd->common.opcode = nvme_cmd_flush;
800 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
801 }
802 
803 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
804 		struct nvme_command *cmnd)
805 {
806 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
807 	struct nvme_dsm_range *range;
808 	struct bio *bio;
809 
810 	/*
811 	 * Some devices do not consider the DSM 'Number of Ranges' field when
812 	 * determining how much data to DMA. Always allocate memory for maximum
813 	 * number of segments to prevent device reading beyond end of buffer.
814 	 */
815 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
816 
817 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
818 	if (!range) {
819 		/*
820 		 * If we fail allocation our range, fallback to the controller
821 		 * discard page. If that's also busy, it's safe to return
822 		 * busy, as we know we can make progress once that's freed.
823 		 */
824 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
825 			return BLK_STS_RESOURCE;
826 
827 		range = page_address(ns->ctrl->discard_page);
828 	}
829 
830 	if (queue_max_discard_segments(req->q) == 1) {
831 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
832 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
833 
834 		range[0].cattr = cpu_to_le32(0);
835 		range[0].nlb = cpu_to_le32(nlb);
836 		range[0].slba = cpu_to_le64(slba);
837 		n = 1;
838 	} else {
839 		__rq_for_each_bio(bio, req) {
840 			u64 slba = nvme_sect_to_lba(ns->head,
841 						    bio->bi_iter.bi_sector);
842 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
843 
844 			if (n < segments) {
845 				range[n].cattr = cpu_to_le32(0);
846 				range[n].nlb = cpu_to_le32(nlb);
847 				range[n].slba = cpu_to_le64(slba);
848 			}
849 			n++;
850 		}
851 	}
852 
853 	if (WARN_ON_ONCE(n != segments)) {
854 		if (virt_to_page(range) == ns->ctrl->discard_page)
855 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
856 		else
857 			kfree(range);
858 		return BLK_STS_IOERR;
859 	}
860 
861 	memset(cmnd, 0, sizeof(*cmnd));
862 	cmnd->dsm.opcode = nvme_cmd_dsm;
863 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
864 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
865 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
866 
867 	bvec_set_virt(&req->special_vec, range, alloc_size);
868 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
869 
870 	return BLK_STS_OK;
871 }
872 
873 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
874 			      struct request *req)
875 {
876 	u32 upper, lower;
877 	u64 ref48;
878 
879 	/* both rw and write zeroes share the same reftag format */
880 	switch (ns->head->guard_type) {
881 	case NVME_NVM_NS_16B_GUARD:
882 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
883 		break;
884 	case NVME_NVM_NS_64B_GUARD:
885 		ref48 = ext_pi_ref_tag(req);
886 		lower = lower_32_bits(ref48);
887 		upper = upper_32_bits(ref48);
888 
889 		cmnd->rw.reftag = cpu_to_le32(lower);
890 		cmnd->rw.cdw3 = cpu_to_le32(upper);
891 		break;
892 	default:
893 		break;
894 	}
895 }
896 
897 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
898 		struct request *req, struct nvme_command *cmnd)
899 {
900 	memset(cmnd, 0, sizeof(*cmnd));
901 
902 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
903 		return nvme_setup_discard(ns, req, cmnd);
904 
905 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
906 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
907 	cmnd->write_zeroes.slba =
908 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
909 	cmnd->write_zeroes.length =
910 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
911 
912 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
913 	    (ns->head->features & NVME_NS_DEAC))
914 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
915 
916 	if (nvme_ns_has_pi(ns->head)) {
917 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
918 
919 		switch (ns->head->pi_type) {
920 		case NVME_NS_DPS_PI_TYPE1:
921 		case NVME_NS_DPS_PI_TYPE2:
922 			nvme_set_ref_tag(ns, cmnd, req);
923 			break;
924 		}
925 	}
926 
927 	return BLK_STS_OK;
928 }
929 
930 /*
931  * NVMe does not support a dedicated command to issue an atomic write. A write
932  * which does adhere to the device atomic limits will silently be executed
933  * non-atomically. The request issuer should ensure that the write is within
934  * the queue atomic writes limits, but just validate this in case it is not.
935  */
936 static bool nvme_valid_atomic_write(struct request *req)
937 {
938 	struct request_queue *q = req->q;
939 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
940 
941 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
942 		return false;
943 
944 	if (boundary_bytes) {
945 		u64 mask = boundary_bytes - 1, imask = ~mask;
946 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
947 		u64 end = start + blk_rq_bytes(req) - 1;
948 
949 		/* If greater then must be crossing a boundary */
950 		if (blk_rq_bytes(req) > boundary_bytes)
951 			return false;
952 
953 		if ((start & imask) != (end & imask))
954 			return false;
955 	}
956 
957 	return true;
958 }
959 
960 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
961 		struct request *req, struct nvme_command *cmnd,
962 		enum nvme_opcode op)
963 {
964 	u16 control = 0;
965 	u32 dsmgmt = 0;
966 
967 	if (req->cmd_flags & REQ_FUA)
968 		control |= NVME_RW_FUA;
969 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
970 		control |= NVME_RW_LR;
971 
972 	if (req->cmd_flags & REQ_RAHEAD)
973 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
974 
975 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
976 		return BLK_STS_INVAL;
977 
978 	cmnd->rw.opcode = op;
979 	cmnd->rw.flags = 0;
980 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
981 	cmnd->rw.cdw2 = 0;
982 	cmnd->rw.cdw3 = 0;
983 	cmnd->rw.metadata = 0;
984 	cmnd->rw.slba =
985 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
986 	cmnd->rw.length =
987 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
988 	cmnd->rw.reftag = 0;
989 	cmnd->rw.apptag = 0;
990 	cmnd->rw.appmask = 0;
991 
992 	if (ns->head->ms) {
993 		/*
994 		 * If formated with metadata, the block layer always provides a
995 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
996 		 * we enable the PRACT bit for protection information or set the
997 		 * namespace capacity to zero to prevent any I/O.
998 		 */
999 		if (!blk_integrity_rq(req)) {
1000 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1001 				return BLK_STS_NOTSUPP;
1002 			control |= NVME_RW_PRINFO_PRACT;
1003 		}
1004 
1005 		switch (ns->head->pi_type) {
1006 		case NVME_NS_DPS_PI_TYPE3:
1007 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1008 			break;
1009 		case NVME_NS_DPS_PI_TYPE1:
1010 		case NVME_NS_DPS_PI_TYPE2:
1011 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
1012 					NVME_RW_PRINFO_PRCHK_REF;
1013 			if (op == nvme_cmd_zone_append)
1014 				control |= NVME_RW_APPEND_PIREMAP;
1015 			nvme_set_ref_tag(ns, cmnd, req);
1016 			break;
1017 		}
1018 	}
1019 
1020 	cmnd->rw.control = cpu_to_le16(control);
1021 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1022 	return 0;
1023 }
1024 
1025 void nvme_cleanup_cmd(struct request *req)
1026 {
1027 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1028 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1029 
1030 		if (req->special_vec.bv_page == ctrl->discard_page)
1031 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1032 		else
1033 			kfree(bvec_virt(&req->special_vec));
1034 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1035 	}
1036 }
1037 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1038 
1039 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1040 {
1041 	struct nvme_command *cmd = nvme_req(req)->cmd;
1042 	blk_status_t ret = BLK_STS_OK;
1043 
1044 	if (!(req->rq_flags & RQF_DONTPREP))
1045 		nvme_clear_nvme_request(req);
1046 
1047 	switch (req_op(req)) {
1048 	case REQ_OP_DRV_IN:
1049 	case REQ_OP_DRV_OUT:
1050 		/* these are setup prior to execution in nvme_init_request() */
1051 		break;
1052 	case REQ_OP_FLUSH:
1053 		nvme_setup_flush(ns, cmd);
1054 		break;
1055 	case REQ_OP_ZONE_RESET_ALL:
1056 	case REQ_OP_ZONE_RESET:
1057 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1058 		break;
1059 	case REQ_OP_ZONE_OPEN:
1060 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1061 		break;
1062 	case REQ_OP_ZONE_CLOSE:
1063 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1064 		break;
1065 	case REQ_OP_ZONE_FINISH:
1066 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1067 		break;
1068 	case REQ_OP_WRITE_ZEROES:
1069 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1070 		break;
1071 	case REQ_OP_DISCARD:
1072 		ret = nvme_setup_discard(ns, req, cmd);
1073 		break;
1074 	case REQ_OP_READ:
1075 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1076 		break;
1077 	case REQ_OP_WRITE:
1078 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1079 		break;
1080 	case REQ_OP_ZONE_APPEND:
1081 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1082 		break;
1083 	default:
1084 		WARN_ON_ONCE(1);
1085 		return BLK_STS_IOERR;
1086 	}
1087 
1088 	cmd->common.command_id = nvme_cid(req);
1089 	trace_nvme_setup_cmd(req, cmd);
1090 	return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1093 
1094 /*
1095  * Return values:
1096  * 0:  success
1097  * >0: nvme controller's cqe status response
1098  * <0: kernel error in lieu of controller response
1099  */
1100 int nvme_execute_rq(struct request *rq, bool at_head)
1101 {
1102 	blk_status_t status;
1103 
1104 	status = blk_execute_rq(rq, at_head);
1105 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1106 		return -EINTR;
1107 	if (nvme_req(rq)->status)
1108 		return nvme_req(rq)->status;
1109 	return blk_status_to_errno(status);
1110 }
1111 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1112 
1113 /*
1114  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1115  * if the result is positive, it's an NVM Express status code
1116  */
1117 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1118 		union nvme_result *result, void *buffer, unsigned bufflen,
1119 		int qid, nvme_submit_flags_t flags)
1120 {
1121 	struct request *req;
1122 	int ret;
1123 	blk_mq_req_flags_t blk_flags = 0;
1124 
1125 	if (flags & NVME_SUBMIT_NOWAIT)
1126 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1127 	if (flags & NVME_SUBMIT_RESERVED)
1128 		blk_flags |= BLK_MQ_REQ_RESERVED;
1129 	if (qid == NVME_QID_ANY)
1130 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1131 	else
1132 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1133 						qid - 1);
1134 
1135 	if (IS_ERR(req))
1136 		return PTR_ERR(req);
1137 	nvme_init_request(req, cmd);
1138 	if (flags & NVME_SUBMIT_RETRY)
1139 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1140 
1141 	if (buffer && bufflen) {
1142 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1143 		if (ret)
1144 			goto out;
1145 	}
1146 
1147 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1148 	if (result && ret >= 0)
1149 		*result = nvme_req(req)->result;
1150  out:
1151 	blk_mq_free_request(req);
1152 	return ret;
1153 }
1154 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1155 
1156 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1157 		void *buffer, unsigned bufflen)
1158 {
1159 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1160 			NVME_QID_ANY, 0);
1161 }
1162 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1163 
1164 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1165 {
1166 	u32 effects = 0;
1167 
1168 	if (ns) {
1169 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1170 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1171 			dev_warn_once(ctrl->device,
1172 				"IO command:%02x has unusual effects:%08x\n",
1173 				opcode, effects);
1174 
1175 		/*
1176 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1177 		 * which would deadlock when done on an I/O command.  Note that
1178 		 * We already warn about an unusual effect above.
1179 		 */
1180 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1181 	} else {
1182 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1183 
1184 		/* Ignore execution restrictions if any relaxation bits are set */
1185 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1186 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1187 	}
1188 
1189 	return effects;
1190 }
1191 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1192 
1193 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1194 {
1195 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1196 
1197 	/*
1198 	 * For simplicity, IO to all namespaces is quiesced even if the command
1199 	 * effects say only one namespace is affected.
1200 	 */
1201 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1202 		mutex_lock(&ctrl->scan_lock);
1203 		mutex_lock(&ctrl->subsys->lock);
1204 		nvme_mpath_start_freeze(ctrl->subsys);
1205 		nvme_mpath_wait_freeze(ctrl->subsys);
1206 		nvme_start_freeze(ctrl);
1207 		nvme_wait_freeze(ctrl);
1208 	}
1209 	return effects;
1210 }
1211 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1212 
1213 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1214 		       struct nvme_command *cmd, int status)
1215 {
1216 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1217 		nvme_unfreeze(ctrl);
1218 		nvme_mpath_unfreeze(ctrl->subsys);
1219 		mutex_unlock(&ctrl->subsys->lock);
1220 		mutex_unlock(&ctrl->scan_lock);
1221 	}
1222 	if (effects & NVME_CMD_EFFECTS_CCC) {
1223 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1224 				      &ctrl->flags)) {
1225 			dev_info(ctrl->device,
1226 "controller capabilities changed, reset may be required to take effect.\n");
1227 		}
1228 	}
1229 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1230 		nvme_queue_scan(ctrl);
1231 		flush_work(&ctrl->scan_work);
1232 	}
1233 	if (ns)
1234 		return;
1235 
1236 	switch (cmd->common.opcode) {
1237 	case nvme_admin_set_features:
1238 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1239 		case NVME_FEAT_KATO:
1240 			/*
1241 			 * Keep alive commands interval on the host should be
1242 			 * updated when KATO is modified by Set Features
1243 			 * commands.
1244 			 */
1245 			if (!status)
1246 				nvme_update_keep_alive(ctrl, cmd);
1247 			break;
1248 		default:
1249 			break;
1250 		}
1251 		break;
1252 	default:
1253 		break;
1254 	}
1255 }
1256 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1257 
1258 /*
1259  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1260  *
1261  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1262  *   accounting for transport roundtrip times [..].
1263  */
1264 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1265 {
1266 	unsigned long delay = ctrl->kato * HZ / 2;
1267 
1268 	/*
1269 	 * When using Traffic Based Keep Alive, we need to run
1270 	 * nvme_keep_alive_work at twice the normal frequency, as one
1271 	 * command completion can postpone sending a keep alive command
1272 	 * by up to twice the delay between runs.
1273 	 */
1274 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1275 		delay /= 2;
1276 	return delay;
1277 }
1278 
1279 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1280 {
1281 	unsigned long now = jiffies;
1282 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1283 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1284 
1285 	if (time_after(now, ka_next_check_tm))
1286 		delay = 0;
1287 	else
1288 		delay = ka_next_check_tm - now;
1289 
1290 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1291 }
1292 
1293 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1294 						 blk_status_t status)
1295 {
1296 	struct nvme_ctrl *ctrl = rq->end_io_data;
1297 	unsigned long flags;
1298 	bool startka = false;
1299 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1300 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1301 
1302 	/*
1303 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1304 	 * at the desired frequency.
1305 	 */
1306 	if (rtt <= delay) {
1307 		delay -= rtt;
1308 	} else {
1309 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1310 			 jiffies_to_msecs(rtt));
1311 		delay = 0;
1312 	}
1313 
1314 	blk_mq_free_request(rq);
1315 
1316 	if (status) {
1317 		dev_err(ctrl->device,
1318 			"failed nvme_keep_alive_end_io error=%d\n",
1319 				status);
1320 		return RQ_END_IO_NONE;
1321 	}
1322 
1323 	ctrl->ka_last_check_time = jiffies;
1324 	ctrl->comp_seen = false;
1325 	spin_lock_irqsave(&ctrl->lock, flags);
1326 	if (ctrl->state == NVME_CTRL_LIVE ||
1327 	    ctrl->state == NVME_CTRL_CONNECTING)
1328 		startka = true;
1329 	spin_unlock_irqrestore(&ctrl->lock, flags);
1330 	if (startka)
1331 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1332 	return RQ_END_IO_NONE;
1333 }
1334 
1335 static void nvme_keep_alive_work(struct work_struct *work)
1336 {
1337 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1338 			struct nvme_ctrl, ka_work);
1339 	bool comp_seen = ctrl->comp_seen;
1340 	struct request *rq;
1341 
1342 	ctrl->ka_last_check_time = jiffies;
1343 
1344 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1345 		dev_dbg(ctrl->device,
1346 			"reschedule traffic based keep-alive timer\n");
1347 		ctrl->comp_seen = false;
1348 		nvme_queue_keep_alive_work(ctrl);
1349 		return;
1350 	}
1351 
1352 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1353 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1354 	if (IS_ERR(rq)) {
1355 		/* allocation failure, reset the controller */
1356 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1357 		nvme_reset_ctrl(ctrl);
1358 		return;
1359 	}
1360 	nvme_init_request(rq, &ctrl->ka_cmd);
1361 
1362 	rq->timeout = ctrl->kato * HZ;
1363 	rq->end_io = nvme_keep_alive_end_io;
1364 	rq->end_io_data = ctrl;
1365 	blk_execute_rq_nowait(rq, false);
1366 }
1367 
1368 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1369 {
1370 	if (unlikely(ctrl->kato == 0))
1371 		return;
1372 
1373 	nvme_queue_keep_alive_work(ctrl);
1374 }
1375 
1376 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1377 {
1378 	if (unlikely(ctrl->kato == 0))
1379 		return;
1380 
1381 	cancel_delayed_work_sync(&ctrl->ka_work);
1382 }
1383 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1384 
1385 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1386 				   struct nvme_command *cmd)
1387 {
1388 	unsigned int new_kato =
1389 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1390 
1391 	dev_info(ctrl->device,
1392 		 "keep alive interval updated from %u ms to %u ms\n",
1393 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1394 
1395 	nvme_stop_keep_alive(ctrl);
1396 	ctrl->kato = new_kato;
1397 	nvme_start_keep_alive(ctrl);
1398 }
1399 
1400 /*
1401  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1402  * flag, thus sending any new CNS opcodes has a big chance of not working.
1403  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1404  * (but not for any later version).
1405  */
1406 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1407 {
1408 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1409 		return ctrl->vs < NVME_VS(1, 2, 0);
1410 	return ctrl->vs < NVME_VS(1, 1, 0);
1411 }
1412 
1413 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1414 {
1415 	struct nvme_command c = { };
1416 	int error;
1417 
1418 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1419 	c.identify.opcode = nvme_admin_identify;
1420 	c.identify.cns = NVME_ID_CNS_CTRL;
1421 
1422 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1423 	if (!*id)
1424 		return -ENOMEM;
1425 
1426 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1427 			sizeof(struct nvme_id_ctrl));
1428 	if (error) {
1429 		kfree(*id);
1430 		*id = NULL;
1431 	}
1432 	return error;
1433 }
1434 
1435 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1436 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1437 {
1438 	const char *warn_str = "ctrl returned bogus length:";
1439 	void *data = cur;
1440 
1441 	switch (cur->nidt) {
1442 	case NVME_NIDT_EUI64:
1443 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1444 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1445 				 warn_str, cur->nidl);
1446 			return -1;
1447 		}
1448 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1449 			return NVME_NIDT_EUI64_LEN;
1450 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1451 		return NVME_NIDT_EUI64_LEN;
1452 	case NVME_NIDT_NGUID:
1453 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1454 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1455 				 warn_str, cur->nidl);
1456 			return -1;
1457 		}
1458 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1459 			return NVME_NIDT_NGUID_LEN;
1460 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1461 		return NVME_NIDT_NGUID_LEN;
1462 	case NVME_NIDT_UUID:
1463 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1464 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1465 				 warn_str, cur->nidl);
1466 			return -1;
1467 		}
1468 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1469 			return NVME_NIDT_UUID_LEN;
1470 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1471 		return NVME_NIDT_UUID_LEN;
1472 	case NVME_NIDT_CSI:
1473 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1474 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1475 				 warn_str, cur->nidl);
1476 			return -1;
1477 		}
1478 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1479 		*csi_seen = true;
1480 		return NVME_NIDT_CSI_LEN;
1481 	default:
1482 		/* Skip unknown types */
1483 		return cur->nidl;
1484 	}
1485 }
1486 
1487 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1488 		struct nvme_ns_info *info)
1489 {
1490 	struct nvme_command c = { };
1491 	bool csi_seen = false;
1492 	int status, pos, len;
1493 	void *data;
1494 
1495 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1496 		return 0;
1497 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1498 		return 0;
1499 
1500 	c.identify.opcode = nvme_admin_identify;
1501 	c.identify.nsid = cpu_to_le32(info->nsid);
1502 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1503 
1504 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1505 	if (!data)
1506 		return -ENOMEM;
1507 
1508 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1509 				      NVME_IDENTIFY_DATA_SIZE);
1510 	if (status) {
1511 		dev_warn(ctrl->device,
1512 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1513 			info->nsid, status);
1514 		goto free_data;
1515 	}
1516 
1517 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1518 		struct nvme_ns_id_desc *cur = data + pos;
1519 
1520 		if (cur->nidl == 0)
1521 			break;
1522 
1523 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1524 		if (len < 0)
1525 			break;
1526 
1527 		len += sizeof(*cur);
1528 	}
1529 
1530 	if (nvme_multi_css(ctrl) && !csi_seen) {
1531 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1532 			 info->nsid);
1533 		status = -EINVAL;
1534 	}
1535 
1536 free_data:
1537 	kfree(data);
1538 	return status;
1539 }
1540 
1541 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1542 			struct nvme_id_ns **id)
1543 {
1544 	struct nvme_command c = { };
1545 	int error;
1546 
1547 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1548 	c.identify.opcode = nvme_admin_identify;
1549 	c.identify.nsid = cpu_to_le32(nsid);
1550 	c.identify.cns = NVME_ID_CNS_NS;
1551 
1552 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1553 	if (!*id)
1554 		return -ENOMEM;
1555 
1556 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1557 	if (error) {
1558 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1559 		kfree(*id);
1560 		*id = NULL;
1561 	}
1562 	return error;
1563 }
1564 
1565 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1566 		struct nvme_ns_info *info)
1567 {
1568 	struct nvme_ns_ids *ids = &info->ids;
1569 	struct nvme_id_ns *id;
1570 	int ret;
1571 
1572 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1573 	if (ret)
1574 		return ret;
1575 
1576 	if (id->ncap == 0) {
1577 		/* namespace not allocated or attached */
1578 		info->is_removed = true;
1579 		ret = -ENODEV;
1580 		goto error;
1581 	}
1582 
1583 	info->anagrpid = id->anagrpid;
1584 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1585 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1586 	info->is_ready = true;
1587 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1588 		dev_info(ctrl->device,
1589 			 "Ignoring bogus Namespace Identifiers\n");
1590 	} else {
1591 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1592 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1593 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1594 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1595 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1596 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1597 	}
1598 
1599 error:
1600 	kfree(id);
1601 	return ret;
1602 }
1603 
1604 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1605 		struct nvme_ns_info *info)
1606 {
1607 	struct nvme_id_ns_cs_indep *id;
1608 	struct nvme_command c = {
1609 		.identify.opcode	= nvme_admin_identify,
1610 		.identify.nsid		= cpu_to_le32(info->nsid),
1611 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1612 	};
1613 	int ret;
1614 
1615 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1616 	if (!id)
1617 		return -ENOMEM;
1618 
1619 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1620 	if (!ret) {
1621 		info->anagrpid = id->anagrpid;
1622 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1623 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1624 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1625 	}
1626 	kfree(id);
1627 	return ret;
1628 }
1629 
1630 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1631 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1632 {
1633 	union nvme_result res = { 0 };
1634 	struct nvme_command c = { };
1635 	int ret;
1636 
1637 	c.features.opcode = op;
1638 	c.features.fid = cpu_to_le32(fid);
1639 	c.features.dword11 = cpu_to_le32(dword11);
1640 
1641 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1642 			buffer, buflen, NVME_QID_ANY, 0);
1643 	if (ret >= 0 && result)
1644 		*result = le32_to_cpu(res.u32);
1645 	return ret;
1646 }
1647 
1648 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1649 		      unsigned int dword11, void *buffer, size_t buflen,
1650 		      u32 *result)
1651 {
1652 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1653 			     buflen, result);
1654 }
1655 EXPORT_SYMBOL_GPL(nvme_set_features);
1656 
1657 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1658 		      unsigned int dword11, void *buffer, size_t buflen,
1659 		      u32 *result)
1660 {
1661 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1662 			     buflen, result);
1663 }
1664 EXPORT_SYMBOL_GPL(nvme_get_features);
1665 
1666 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1667 {
1668 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1669 	u32 result;
1670 	int status, nr_io_queues;
1671 
1672 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1673 			&result);
1674 	if (status < 0)
1675 		return status;
1676 
1677 	/*
1678 	 * Degraded controllers might return an error when setting the queue
1679 	 * count.  We still want to be able to bring them online and offer
1680 	 * access to the admin queue, as that might be only way to fix them up.
1681 	 */
1682 	if (status > 0) {
1683 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1684 		*count = 0;
1685 	} else {
1686 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1687 		*count = min(*count, nr_io_queues);
1688 	}
1689 
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1693 
1694 #define NVME_AEN_SUPPORTED \
1695 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1696 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1697 
1698 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1699 {
1700 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1701 	int status;
1702 
1703 	if (!supported_aens)
1704 		return;
1705 
1706 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1707 			NULL, 0, &result);
1708 	if (status)
1709 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1710 			 supported_aens);
1711 
1712 	queue_work(nvme_wq, &ctrl->async_event_work);
1713 }
1714 
1715 static int nvme_ns_open(struct nvme_ns *ns)
1716 {
1717 
1718 	/* should never be called due to GENHD_FL_HIDDEN */
1719 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1720 		goto fail;
1721 	if (!nvme_get_ns(ns))
1722 		goto fail;
1723 	if (!try_module_get(ns->ctrl->ops->module))
1724 		goto fail_put_ns;
1725 
1726 	return 0;
1727 
1728 fail_put_ns:
1729 	nvme_put_ns(ns);
1730 fail:
1731 	return -ENXIO;
1732 }
1733 
1734 static void nvme_ns_release(struct nvme_ns *ns)
1735 {
1736 
1737 	module_put(ns->ctrl->ops->module);
1738 	nvme_put_ns(ns);
1739 }
1740 
1741 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1742 {
1743 	return nvme_ns_open(disk->private_data);
1744 }
1745 
1746 static void nvme_release(struct gendisk *disk)
1747 {
1748 	nvme_ns_release(disk->private_data);
1749 }
1750 
1751 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1752 {
1753 	/* some standard values */
1754 	geo->heads = 1 << 6;
1755 	geo->sectors = 1 << 5;
1756 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1757 	return 0;
1758 }
1759 
1760 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head,
1761 		struct queue_limits *lim)
1762 {
1763 	struct blk_integrity *bi = &lim->integrity;
1764 
1765 	memset(bi, 0, sizeof(*bi));
1766 
1767 	if (!head->ms)
1768 		return true;
1769 
1770 	/*
1771 	 * PI can always be supported as we can ask the controller to simply
1772 	 * insert/strip it, which is not possible for other kinds of metadata.
1773 	 */
1774 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1775 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1776 		return nvme_ns_has_pi(head);
1777 
1778 	switch (head->pi_type) {
1779 	case NVME_NS_DPS_PI_TYPE3:
1780 		switch (head->guard_type) {
1781 		case NVME_NVM_NS_16B_GUARD:
1782 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1783 			bi->tag_size = sizeof(u16) + sizeof(u32);
1784 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1785 			break;
1786 		case NVME_NVM_NS_64B_GUARD:
1787 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1788 			bi->tag_size = sizeof(u16) + 6;
1789 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1790 			break;
1791 		default:
1792 			break;
1793 		}
1794 		break;
1795 	case NVME_NS_DPS_PI_TYPE1:
1796 	case NVME_NS_DPS_PI_TYPE2:
1797 		switch (head->guard_type) {
1798 		case NVME_NVM_NS_16B_GUARD:
1799 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1800 			bi->tag_size = sizeof(u16);
1801 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1802 				     BLK_INTEGRITY_REF_TAG;
1803 			break;
1804 		case NVME_NVM_NS_64B_GUARD:
1805 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1806 			bi->tag_size = sizeof(u16);
1807 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1808 				     BLK_INTEGRITY_REF_TAG;
1809 			break;
1810 		default:
1811 			break;
1812 		}
1813 		break;
1814 	default:
1815 		break;
1816 	}
1817 
1818 	bi->tuple_size = head->ms;
1819 	bi->pi_offset = head->pi_offset;
1820 	return true;
1821 }
1822 
1823 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1824 {
1825 	struct nvme_ctrl *ctrl = ns->ctrl;
1826 
1827 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1828 		lim->max_hw_discard_sectors =
1829 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1830 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1831 		lim->max_hw_discard_sectors = UINT_MAX;
1832 	else
1833 		lim->max_hw_discard_sectors = 0;
1834 
1835 	lim->discard_granularity = lim->logical_block_size;
1836 
1837 	if (ctrl->dmrl)
1838 		lim->max_discard_segments = ctrl->dmrl;
1839 	else
1840 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1841 }
1842 
1843 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1844 {
1845 	return uuid_equal(&a->uuid, &b->uuid) &&
1846 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1847 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1848 		a->csi == b->csi;
1849 }
1850 
1851 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1852 		struct nvme_id_ns_nvm **nvmp)
1853 {
1854 	struct nvme_command c = {
1855 		.identify.opcode	= nvme_admin_identify,
1856 		.identify.nsid		= cpu_to_le32(nsid),
1857 		.identify.cns		= NVME_ID_CNS_CS_NS,
1858 		.identify.csi		= NVME_CSI_NVM,
1859 	};
1860 	struct nvme_id_ns_nvm *nvm;
1861 	int ret;
1862 
1863 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1864 	if (!nvm)
1865 		return -ENOMEM;
1866 
1867 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1868 	if (ret)
1869 		kfree(nvm);
1870 	else
1871 		*nvmp = nvm;
1872 	return ret;
1873 }
1874 
1875 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1876 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1877 {
1878 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1879 
1880 	/* no support for storage tag formats right now */
1881 	if (nvme_elbaf_sts(elbaf))
1882 		return;
1883 
1884 	head->guard_type = nvme_elbaf_guard_type(elbaf);
1885 	switch (head->guard_type) {
1886 	case NVME_NVM_NS_64B_GUARD:
1887 		head->pi_size = sizeof(struct crc64_pi_tuple);
1888 		break;
1889 	case NVME_NVM_NS_16B_GUARD:
1890 		head->pi_size = sizeof(struct t10_pi_tuple);
1891 		break;
1892 	default:
1893 		break;
1894 	}
1895 }
1896 
1897 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1898 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1899 		struct nvme_id_ns_nvm *nvm)
1900 {
1901 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1902 	head->pi_type = 0;
1903 	head->pi_size = 0;
1904 	head->pi_offset = 0;
1905 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1906 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1907 		return;
1908 
1909 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1910 		nvme_configure_pi_elbas(head, id, nvm);
1911 	} else {
1912 		head->pi_size = sizeof(struct t10_pi_tuple);
1913 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1914 	}
1915 
1916 	if (head->pi_size && head->ms >= head->pi_size)
1917 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1918 	if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1919 		head->pi_offset = head->ms - head->pi_size;
1920 
1921 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1922 		/*
1923 		 * The NVMe over Fabrics specification only supports metadata as
1924 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1925 		 * remap the separate metadata buffer from the block layer.
1926 		 */
1927 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1928 			return;
1929 
1930 		head->features |= NVME_NS_EXT_LBAS;
1931 
1932 		/*
1933 		 * The current fabrics transport drivers support namespace
1934 		 * metadata formats only if nvme_ns_has_pi() returns true.
1935 		 * Suppress support for all other formats so the namespace will
1936 		 * have a 0 capacity and not be usable through the block stack.
1937 		 *
1938 		 * Note, this check will need to be modified if any drivers
1939 		 * gain the ability to use other metadata formats.
1940 		 */
1941 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1942 			head->features |= NVME_NS_METADATA_SUPPORTED;
1943 	} else {
1944 		/*
1945 		 * For PCIe controllers, we can't easily remap the separate
1946 		 * metadata buffer from the block layer and thus require a
1947 		 * separate metadata buffer for block layer metadata/PI support.
1948 		 * We allow extended LBAs for the passthrough interface, though.
1949 		 */
1950 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1951 			head->features |= NVME_NS_EXT_LBAS;
1952 		else
1953 			head->features |= NVME_NS_METADATA_SUPPORTED;
1954 	}
1955 }
1956 
1957 
1958 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1959 			struct nvme_id_ns *id, struct queue_limits *lim,
1960 			u32 bs, u32 atomic_bs)
1961 {
1962 	unsigned int boundary = 0;
1963 
1964 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1965 		if (le16_to_cpu(id->nabspf))
1966 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
1967 	}
1968 	lim->atomic_write_hw_max = atomic_bs;
1969 	lim->atomic_write_hw_boundary = boundary;
1970 	lim->atomic_write_hw_unit_min = bs;
1971 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
1972 }
1973 
1974 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1975 {
1976 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1977 }
1978 
1979 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1980 		struct queue_limits *lim)
1981 {
1982 	lim->max_hw_sectors = ctrl->max_hw_sectors;
1983 	lim->max_segments = min_t(u32, USHRT_MAX,
1984 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1985 	lim->max_integrity_segments = ctrl->max_integrity_segments;
1986 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1987 	lim->max_segment_size = UINT_MAX;
1988 	lim->dma_alignment = 3;
1989 }
1990 
1991 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1992 		struct queue_limits *lim)
1993 {
1994 	struct nvme_ns_head *head = ns->head;
1995 	u32 bs = 1U << head->lba_shift;
1996 	u32 atomic_bs, phys_bs, io_opt = 0;
1997 	bool valid = true;
1998 
1999 	/*
2000 	 * The block layer can't support LBA sizes larger than the page size
2001 	 * or smaller than a sector size yet, so catch this early and don't
2002 	 * allow block I/O.
2003 	 */
2004 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
2005 		bs = (1 << 9);
2006 		valid = false;
2007 	}
2008 
2009 	atomic_bs = phys_bs = bs;
2010 	if (id->nabo == 0) {
2011 		/*
2012 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2013 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2014 		 * 0 then AWUPF must be used instead.
2015 		 */
2016 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2017 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2018 		else
2019 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2020 
2021 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2022 	}
2023 
2024 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2025 		/* NPWG = Namespace Preferred Write Granularity */
2026 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2027 		/* NOWS = Namespace Optimal Write Size */
2028 		if (id->nows)
2029 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2030 	}
2031 
2032 	/*
2033 	 * Linux filesystems assume writing a single physical block is
2034 	 * an atomic operation. Hence limit the physical block size to the
2035 	 * value of the Atomic Write Unit Power Fail parameter.
2036 	 */
2037 	lim->logical_block_size = bs;
2038 	lim->physical_block_size = min(phys_bs, atomic_bs);
2039 	lim->io_min = phys_bs;
2040 	lim->io_opt = io_opt;
2041 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2042 		lim->max_write_zeroes_sectors = UINT_MAX;
2043 	else
2044 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2045 	return valid;
2046 }
2047 
2048 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2049 {
2050 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2051 }
2052 
2053 static inline bool nvme_first_scan(struct gendisk *disk)
2054 {
2055 	/* nvme_alloc_ns() scans the disk prior to adding it */
2056 	return !disk_live(disk);
2057 }
2058 
2059 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2060 		struct queue_limits *lim)
2061 {
2062 	struct nvme_ctrl *ctrl = ns->ctrl;
2063 	u32 iob;
2064 
2065 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2066 	    is_power_of_2(ctrl->max_hw_sectors))
2067 		iob = ctrl->max_hw_sectors;
2068 	else
2069 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2070 
2071 	if (!iob)
2072 		return;
2073 
2074 	if (!is_power_of_2(iob)) {
2075 		if (nvme_first_scan(ns->disk))
2076 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2077 				ns->disk->disk_name, iob);
2078 		return;
2079 	}
2080 
2081 	if (blk_queue_is_zoned(ns->disk->queue)) {
2082 		if (nvme_first_scan(ns->disk))
2083 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2084 				ns->disk->disk_name);
2085 		return;
2086 	}
2087 
2088 	lim->chunk_sectors = iob;
2089 }
2090 
2091 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2092 		struct nvme_ns_info *info)
2093 {
2094 	struct queue_limits lim;
2095 	int ret;
2096 
2097 	blk_mq_freeze_queue(ns->disk->queue);
2098 	lim = queue_limits_start_update(ns->disk->queue);
2099 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2100 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2101 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2102 	blk_mq_unfreeze_queue(ns->disk->queue);
2103 
2104 	/* Hide the block-interface for these devices */
2105 	if (!ret)
2106 		ret = -ENODEV;
2107 	return ret;
2108 }
2109 
2110 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2111 		struct nvme_ns_info *info)
2112 {
2113 	struct queue_limits lim;
2114 	struct nvme_id_ns_nvm *nvm = NULL;
2115 	struct nvme_zone_info zi = {};
2116 	struct nvme_id_ns *id;
2117 	sector_t capacity;
2118 	unsigned lbaf;
2119 	int ret;
2120 
2121 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2122 	if (ret)
2123 		return ret;
2124 
2125 	if (id->ncap == 0) {
2126 		/* namespace not allocated or attached */
2127 		info->is_removed = true;
2128 		ret = -ENXIO;
2129 		goto out;
2130 	}
2131 	lbaf = nvme_lbaf_index(id->flbas);
2132 
2133 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2134 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2135 		if (ret < 0)
2136 			goto out;
2137 	}
2138 
2139 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2140 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2141 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2142 		if (ret < 0)
2143 			goto out;
2144 	}
2145 
2146 	blk_mq_freeze_queue(ns->disk->queue);
2147 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2148 	ns->head->nuse = le64_to_cpu(id->nuse);
2149 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2150 
2151 	lim = queue_limits_start_update(ns->disk->queue);
2152 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2153 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm);
2154 	nvme_set_chunk_sectors(ns, id, &lim);
2155 	if (!nvme_update_disk_info(ns, id, &lim))
2156 		capacity = 0;
2157 	nvme_config_discard(ns, &lim);
2158 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2159 	    ns->head->ids.csi == NVME_CSI_ZNS)
2160 		nvme_update_zone_info(ns, &lim, &zi);
2161 
2162 	if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2163 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2164 	else
2165 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2166 
2167 	/*
2168 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2169 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2170 	 * I/O to namespaces with metadata except when the namespace supports
2171 	 * PI, as it can strip/insert in that case.
2172 	 */
2173 	if (!nvme_init_integrity(ns->disk, ns->head, &lim))
2174 		capacity = 0;
2175 
2176 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2177 	if (ret) {
2178 		blk_mq_unfreeze_queue(ns->disk->queue);
2179 		goto out;
2180 	}
2181 
2182 	set_capacity_and_notify(ns->disk, capacity);
2183 
2184 	/*
2185 	 * Only set the DEAC bit if the device guarantees that reads from
2186 	 * deallocated data return zeroes.  While the DEAC bit does not
2187 	 * require that, it must be a no-op if reads from deallocated data
2188 	 * do not return zeroes.
2189 	 */
2190 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2191 		ns->head->features |= NVME_NS_DEAC;
2192 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2193 	set_bit(NVME_NS_READY, &ns->flags);
2194 	blk_mq_unfreeze_queue(ns->disk->queue);
2195 
2196 	if (blk_queue_is_zoned(ns->queue)) {
2197 		ret = blk_revalidate_disk_zones(ns->disk);
2198 		if (ret && !nvme_first_scan(ns->disk))
2199 			goto out;
2200 	}
2201 
2202 	ret = 0;
2203 out:
2204 	kfree(nvm);
2205 	kfree(id);
2206 	return ret;
2207 }
2208 
2209 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2210 {
2211 	bool unsupported = false;
2212 	int ret;
2213 
2214 	switch (info->ids.csi) {
2215 	case NVME_CSI_ZNS:
2216 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2217 			dev_info(ns->ctrl->device,
2218 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2219 				info->nsid);
2220 			ret = nvme_update_ns_info_generic(ns, info);
2221 			break;
2222 		}
2223 		ret = nvme_update_ns_info_block(ns, info);
2224 		break;
2225 	case NVME_CSI_NVM:
2226 		ret = nvme_update_ns_info_block(ns, info);
2227 		break;
2228 	default:
2229 		dev_info(ns->ctrl->device,
2230 			"block device for nsid %u not supported (csi %u)\n",
2231 			info->nsid, info->ids.csi);
2232 		ret = nvme_update_ns_info_generic(ns, info);
2233 		break;
2234 	}
2235 
2236 	/*
2237 	 * If probing fails due an unsupported feature, hide the block device,
2238 	 * but still allow other access.
2239 	 */
2240 	if (ret == -ENODEV) {
2241 		ns->disk->flags |= GENHD_FL_HIDDEN;
2242 		set_bit(NVME_NS_READY, &ns->flags);
2243 		unsupported = true;
2244 		ret = 0;
2245 	}
2246 
2247 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2248 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2249 		struct queue_limits lim;
2250 
2251 		blk_mq_freeze_queue(ns->head->disk->queue);
2252 		/*
2253 		 * queue_limits mixes values that are the hardware limitations
2254 		 * for bio splitting with what is the device configuration.
2255 		 *
2256 		 * For NVMe the device configuration can change after e.g. a
2257 		 * Format command, and we really want to pick up the new format
2258 		 * value here.  But we must still stack the queue limits to the
2259 		 * least common denominator for multipathing to split the bios
2260 		 * properly.
2261 		 *
2262 		 * To work around this, we explicitly set the device
2263 		 * configuration to those that we just queried, but only stack
2264 		 * the splitting limits in to make sure we still obey possibly
2265 		 * lower limitations of other controllers.
2266 		 */
2267 		lim = queue_limits_start_update(ns->head->disk->queue);
2268 		lim.logical_block_size = ns_lim->logical_block_size;
2269 		lim.physical_block_size = ns_lim->physical_block_size;
2270 		lim.io_min = ns_lim->io_min;
2271 		lim.io_opt = ns_lim->io_opt;
2272 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2273 					ns->head->disk->disk_name);
2274 		if (unsupported)
2275 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2276 		else
2277 			nvme_init_integrity(ns->head->disk, ns->head, &lim);
2278 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2279 
2280 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2281 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2282 		nvme_mpath_revalidate_paths(ns);
2283 
2284 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2285 	}
2286 
2287 	return ret;
2288 }
2289 
2290 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2291 		enum blk_unique_id type)
2292 {
2293 	struct nvme_ns_ids *ids = &ns->head->ids;
2294 
2295 	if (type != BLK_UID_EUI64)
2296 		return -EINVAL;
2297 
2298 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2299 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2300 		return sizeof(ids->nguid);
2301 	}
2302 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2303 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2304 		return sizeof(ids->eui64);
2305 	}
2306 
2307 	return -EINVAL;
2308 }
2309 
2310 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2311 		enum blk_unique_id type)
2312 {
2313 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2314 }
2315 
2316 #ifdef CONFIG_BLK_SED_OPAL
2317 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2318 		bool send)
2319 {
2320 	struct nvme_ctrl *ctrl = data;
2321 	struct nvme_command cmd = { };
2322 
2323 	if (send)
2324 		cmd.common.opcode = nvme_admin_security_send;
2325 	else
2326 		cmd.common.opcode = nvme_admin_security_recv;
2327 	cmd.common.nsid = 0;
2328 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2329 	cmd.common.cdw11 = cpu_to_le32(len);
2330 
2331 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2332 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2333 }
2334 
2335 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2336 {
2337 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2338 		if (!ctrl->opal_dev)
2339 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2340 		else if (was_suspended)
2341 			opal_unlock_from_suspend(ctrl->opal_dev);
2342 	} else {
2343 		free_opal_dev(ctrl->opal_dev);
2344 		ctrl->opal_dev = NULL;
2345 	}
2346 }
2347 #else
2348 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2349 {
2350 }
2351 #endif /* CONFIG_BLK_SED_OPAL */
2352 
2353 #ifdef CONFIG_BLK_DEV_ZONED
2354 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2355 		unsigned int nr_zones, report_zones_cb cb, void *data)
2356 {
2357 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2358 			data);
2359 }
2360 #else
2361 #define nvme_report_zones	NULL
2362 #endif /* CONFIG_BLK_DEV_ZONED */
2363 
2364 const struct block_device_operations nvme_bdev_ops = {
2365 	.owner		= THIS_MODULE,
2366 	.ioctl		= nvme_ioctl,
2367 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2368 	.open		= nvme_open,
2369 	.release	= nvme_release,
2370 	.getgeo		= nvme_getgeo,
2371 	.get_unique_id	= nvme_get_unique_id,
2372 	.report_zones	= nvme_report_zones,
2373 	.pr_ops		= &nvme_pr_ops,
2374 };
2375 
2376 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2377 		u32 timeout, const char *op)
2378 {
2379 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2380 	u32 csts;
2381 	int ret;
2382 
2383 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2384 		if (csts == ~0)
2385 			return -ENODEV;
2386 		if ((csts & mask) == val)
2387 			break;
2388 
2389 		usleep_range(1000, 2000);
2390 		if (fatal_signal_pending(current))
2391 			return -EINTR;
2392 		if (time_after(jiffies, timeout_jiffies)) {
2393 			dev_err(ctrl->device,
2394 				"Device not ready; aborting %s, CSTS=0x%x\n",
2395 				op, csts);
2396 			return -ENODEV;
2397 		}
2398 	}
2399 
2400 	return ret;
2401 }
2402 
2403 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2404 {
2405 	int ret;
2406 
2407 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2408 	if (shutdown)
2409 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2410 	else
2411 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2412 
2413 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2414 	if (ret)
2415 		return ret;
2416 
2417 	if (shutdown) {
2418 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2419 				       NVME_CSTS_SHST_CMPLT,
2420 				       ctrl->shutdown_timeout, "shutdown");
2421 	}
2422 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2423 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2424 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2425 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2426 }
2427 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2428 
2429 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2430 {
2431 	unsigned dev_page_min;
2432 	u32 timeout;
2433 	int ret;
2434 
2435 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2436 	if (ret) {
2437 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2438 		return ret;
2439 	}
2440 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2441 
2442 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2443 		dev_err(ctrl->device,
2444 			"Minimum device page size %u too large for host (%u)\n",
2445 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2446 		return -ENODEV;
2447 	}
2448 
2449 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2450 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2451 	else
2452 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2453 
2454 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2455 		ctrl->ctrl_config |= NVME_CC_CRIME;
2456 
2457 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2458 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2459 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2460 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2461 	if (ret)
2462 		return ret;
2463 
2464 	/* Flush write to device (required if transport is PCI) */
2465 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2466 	if (ret)
2467 		return ret;
2468 
2469 	/* CAP value may change after initial CC write */
2470 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2471 	if (ret)
2472 		return ret;
2473 
2474 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2475 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2476 		u32 crto, ready_timeout;
2477 
2478 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2479 		if (ret) {
2480 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2481 				ret);
2482 			return ret;
2483 		}
2484 
2485 		/*
2486 		 * CRTO should always be greater or equal to CAP.TO, but some
2487 		 * devices are known to get this wrong. Use the larger of the
2488 		 * two values.
2489 		 */
2490 		if (ctrl->ctrl_config & NVME_CC_CRIME)
2491 			ready_timeout = NVME_CRTO_CRIMT(crto);
2492 		else
2493 			ready_timeout = NVME_CRTO_CRWMT(crto);
2494 
2495 		if (ready_timeout < timeout)
2496 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2497 				      crto, ctrl->cap);
2498 		else
2499 			timeout = ready_timeout;
2500 	}
2501 
2502 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2503 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2504 	if (ret)
2505 		return ret;
2506 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2507 			       (timeout + 1) / 2, "initialisation");
2508 }
2509 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2510 
2511 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2512 {
2513 	__le64 ts;
2514 	int ret;
2515 
2516 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2517 		return 0;
2518 
2519 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2520 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2521 			NULL);
2522 	if (ret)
2523 		dev_warn_once(ctrl->device,
2524 			"could not set timestamp (%d)\n", ret);
2525 	return ret;
2526 }
2527 
2528 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2529 {
2530 	struct nvme_feat_host_behavior *host;
2531 	u8 acre = 0, lbafee = 0;
2532 	int ret;
2533 
2534 	/* Don't bother enabling the feature if retry delay is not reported */
2535 	if (ctrl->crdt[0])
2536 		acre = NVME_ENABLE_ACRE;
2537 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2538 		lbafee = NVME_ENABLE_LBAFEE;
2539 
2540 	if (!acre && !lbafee)
2541 		return 0;
2542 
2543 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2544 	if (!host)
2545 		return 0;
2546 
2547 	host->acre = acre;
2548 	host->lbafee = lbafee;
2549 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2550 				host, sizeof(*host), NULL);
2551 	kfree(host);
2552 	return ret;
2553 }
2554 
2555 /*
2556  * The function checks whether the given total (exlat + enlat) latency of
2557  * a power state allows the latter to be used as an APST transition target.
2558  * It does so by comparing the latency to the primary and secondary latency
2559  * tolerances defined by module params. If there's a match, the corresponding
2560  * timeout value is returned and the matching tolerance index (1 or 2) is
2561  * reported.
2562  */
2563 static bool nvme_apst_get_transition_time(u64 total_latency,
2564 		u64 *transition_time, unsigned *last_index)
2565 {
2566 	if (total_latency <= apst_primary_latency_tol_us) {
2567 		if (*last_index == 1)
2568 			return false;
2569 		*last_index = 1;
2570 		*transition_time = apst_primary_timeout_ms;
2571 		return true;
2572 	}
2573 	if (apst_secondary_timeout_ms &&
2574 		total_latency <= apst_secondary_latency_tol_us) {
2575 		if (*last_index <= 2)
2576 			return false;
2577 		*last_index = 2;
2578 		*transition_time = apst_secondary_timeout_ms;
2579 		return true;
2580 	}
2581 	return false;
2582 }
2583 
2584 /*
2585  * APST (Autonomous Power State Transition) lets us program a table of power
2586  * state transitions that the controller will perform automatically.
2587  *
2588  * Depending on module params, one of the two supported techniques will be used:
2589  *
2590  * - If the parameters provide explicit timeouts and tolerances, they will be
2591  *   used to build a table with up to 2 non-operational states to transition to.
2592  *   The default parameter values were selected based on the values used by
2593  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2594  *   regeneration of the APST table in the event of switching between external
2595  *   and battery power, the timeouts and tolerances reflect a compromise
2596  *   between values used by Microsoft for AC and battery scenarios.
2597  * - If not, we'll configure the table with a simple heuristic: we are willing
2598  *   to spend at most 2% of the time transitioning between power states.
2599  *   Therefore, when running in any given state, we will enter the next
2600  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2601  *   microseconds, as long as that state's exit latency is under the requested
2602  *   maximum latency.
2603  *
2604  * We will not autonomously enter any non-operational state for which the total
2605  * latency exceeds ps_max_latency_us.
2606  *
2607  * Users can set ps_max_latency_us to zero to turn off APST.
2608  */
2609 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2610 {
2611 	struct nvme_feat_auto_pst *table;
2612 	unsigned apste = 0;
2613 	u64 max_lat_us = 0;
2614 	__le64 target = 0;
2615 	int max_ps = -1;
2616 	int state;
2617 	int ret;
2618 	unsigned last_lt_index = UINT_MAX;
2619 
2620 	/*
2621 	 * If APST isn't supported or if we haven't been initialized yet,
2622 	 * then don't do anything.
2623 	 */
2624 	if (!ctrl->apsta)
2625 		return 0;
2626 
2627 	if (ctrl->npss > 31) {
2628 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2629 		return 0;
2630 	}
2631 
2632 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2633 	if (!table)
2634 		return 0;
2635 
2636 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2637 		/* Turn off APST. */
2638 		dev_dbg(ctrl->device, "APST disabled\n");
2639 		goto done;
2640 	}
2641 
2642 	/*
2643 	 * Walk through all states from lowest- to highest-power.
2644 	 * According to the spec, lower-numbered states use more power.  NPSS,
2645 	 * despite the name, is the index of the lowest-power state, not the
2646 	 * number of states.
2647 	 */
2648 	for (state = (int)ctrl->npss; state >= 0; state--) {
2649 		u64 total_latency_us, exit_latency_us, transition_ms;
2650 
2651 		if (target)
2652 			table->entries[state] = target;
2653 
2654 		/*
2655 		 * Don't allow transitions to the deepest state if it's quirked
2656 		 * off.
2657 		 */
2658 		if (state == ctrl->npss &&
2659 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2660 			continue;
2661 
2662 		/*
2663 		 * Is this state a useful non-operational state for higher-power
2664 		 * states to autonomously transition to?
2665 		 */
2666 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2667 			continue;
2668 
2669 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2670 		if (exit_latency_us > ctrl->ps_max_latency_us)
2671 			continue;
2672 
2673 		total_latency_us = exit_latency_us +
2674 			le32_to_cpu(ctrl->psd[state].entry_lat);
2675 
2676 		/*
2677 		 * This state is good. It can be used as the APST idle target
2678 		 * for higher power states.
2679 		 */
2680 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2681 			if (!nvme_apst_get_transition_time(total_latency_us,
2682 					&transition_ms, &last_lt_index))
2683 				continue;
2684 		} else {
2685 			transition_ms = total_latency_us + 19;
2686 			do_div(transition_ms, 20);
2687 			if (transition_ms > (1 << 24) - 1)
2688 				transition_ms = (1 << 24) - 1;
2689 		}
2690 
2691 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2692 		if (max_ps == -1)
2693 			max_ps = state;
2694 		if (total_latency_us > max_lat_us)
2695 			max_lat_us = total_latency_us;
2696 	}
2697 
2698 	if (max_ps == -1)
2699 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2700 	else
2701 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2702 			max_ps, max_lat_us, (int)sizeof(*table), table);
2703 	apste = 1;
2704 
2705 done:
2706 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2707 				table, sizeof(*table), NULL);
2708 	if (ret)
2709 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2710 	kfree(table);
2711 	return ret;
2712 }
2713 
2714 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2715 {
2716 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2717 	u64 latency;
2718 
2719 	switch (val) {
2720 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2721 	case PM_QOS_LATENCY_ANY:
2722 		latency = U64_MAX;
2723 		break;
2724 
2725 	default:
2726 		latency = val;
2727 	}
2728 
2729 	if (ctrl->ps_max_latency_us != latency) {
2730 		ctrl->ps_max_latency_us = latency;
2731 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2732 			nvme_configure_apst(ctrl);
2733 	}
2734 }
2735 
2736 struct nvme_core_quirk_entry {
2737 	/*
2738 	 * NVMe model and firmware strings are padded with spaces.  For
2739 	 * simplicity, strings in the quirk table are padded with NULLs
2740 	 * instead.
2741 	 */
2742 	u16 vid;
2743 	const char *mn;
2744 	const char *fr;
2745 	unsigned long quirks;
2746 };
2747 
2748 static const struct nvme_core_quirk_entry core_quirks[] = {
2749 	{
2750 		/*
2751 		 * This Toshiba device seems to die using any APST states.  See:
2752 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2753 		 */
2754 		.vid = 0x1179,
2755 		.mn = "THNSF5256GPUK TOSHIBA",
2756 		.quirks = NVME_QUIRK_NO_APST,
2757 	},
2758 	{
2759 		/*
2760 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2761 		 * condition associated with actions related to suspend to idle
2762 		 * LiteON has resolved the problem in future firmware
2763 		 */
2764 		.vid = 0x14a4,
2765 		.fr = "22301111",
2766 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2767 	},
2768 	{
2769 		/*
2770 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2771 		 * aborts I/O during any load, but more easily reproducible
2772 		 * with discards (fstrim).
2773 		 *
2774 		 * The device is left in a state where it is also not possible
2775 		 * to use "nvme set-feature" to disable APST, but booting with
2776 		 * nvme_core.default_ps_max_latency=0 works.
2777 		 */
2778 		.vid = 0x1e0f,
2779 		.mn = "KCD6XVUL6T40",
2780 		.quirks = NVME_QUIRK_NO_APST,
2781 	},
2782 	{
2783 		/*
2784 		 * The external Samsung X5 SSD fails initialization without a
2785 		 * delay before checking if it is ready and has a whole set of
2786 		 * other problems.  To make this even more interesting, it
2787 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2788 		 * does not need or want these quirks.
2789 		 */
2790 		.vid = 0x144d,
2791 		.mn = "Samsung Portable SSD X5",
2792 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2793 			  NVME_QUIRK_NO_DEEPEST_PS |
2794 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2795 	}
2796 };
2797 
2798 /* match is null-terminated but idstr is space-padded. */
2799 static bool string_matches(const char *idstr, const char *match, size_t len)
2800 {
2801 	size_t matchlen;
2802 
2803 	if (!match)
2804 		return true;
2805 
2806 	matchlen = strlen(match);
2807 	WARN_ON_ONCE(matchlen > len);
2808 
2809 	if (memcmp(idstr, match, matchlen))
2810 		return false;
2811 
2812 	for (; matchlen < len; matchlen++)
2813 		if (idstr[matchlen] != ' ')
2814 			return false;
2815 
2816 	return true;
2817 }
2818 
2819 static bool quirk_matches(const struct nvme_id_ctrl *id,
2820 			  const struct nvme_core_quirk_entry *q)
2821 {
2822 	return q->vid == le16_to_cpu(id->vid) &&
2823 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2824 		string_matches(id->fr, q->fr, sizeof(id->fr));
2825 }
2826 
2827 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2828 		struct nvme_id_ctrl *id)
2829 {
2830 	size_t nqnlen;
2831 	int off;
2832 
2833 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2834 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2835 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2836 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2837 			return;
2838 		}
2839 
2840 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2841 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2842 	}
2843 
2844 	/*
2845 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2846 	 * Base Specification 2.0.  It is slightly different from the format
2847 	 * specified there due to historic reasons, and we can't change it now.
2848 	 */
2849 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2850 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2851 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2852 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2853 	off += sizeof(id->sn);
2854 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2855 	off += sizeof(id->mn);
2856 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2857 }
2858 
2859 static void nvme_release_subsystem(struct device *dev)
2860 {
2861 	struct nvme_subsystem *subsys =
2862 		container_of(dev, struct nvme_subsystem, dev);
2863 
2864 	if (subsys->instance >= 0)
2865 		ida_free(&nvme_instance_ida, subsys->instance);
2866 	kfree(subsys);
2867 }
2868 
2869 static void nvme_destroy_subsystem(struct kref *ref)
2870 {
2871 	struct nvme_subsystem *subsys =
2872 			container_of(ref, struct nvme_subsystem, ref);
2873 
2874 	mutex_lock(&nvme_subsystems_lock);
2875 	list_del(&subsys->entry);
2876 	mutex_unlock(&nvme_subsystems_lock);
2877 
2878 	ida_destroy(&subsys->ns_ida);
2879 	device_del(&subsys->dev);
2880 	put_device(&subsys->dev);
2881 }
2882 
2883 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2884 {
2885 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2886 }
2887 
2888 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2889 {
2890 	struct nvme_subsystem *subsys;
2891 
2892 	lockdep_assert_held(&nvme_subsystems_lock);
2893 
2894 	/*
2895 	 * Fail matches for discovery subsystems. This results
2896 	 * in each discovery controller bound to a unique subsystem.
2897 	 * This avoids issues with validating controller values
2898 	 * that can only be true when there is a single unique subsystem.
2899 	 * There may be multiple and completely independent entities
2900 	 * that provide discovery controllers.
2901 	 */
2902 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2903 		return NULL;
2904 
2905 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2906 		if (strcmp(subsys->subnqn, subsysnqn))
2907 			continue;
2908 		if (!kref_get_unless_zero(&subsys->ref))
2909 			continue;
2910 		return subsys;
2911 	}
2912 
2913 	return NULL;
2914 }
2915 
2916 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2917 {
2918 	return ctrl->opts && ctrl->opts->discovery_nqn;
2919 }
2920 
2921 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2922 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2923 {
2924 	struct nvme_ctrl *tmp;
2925 
2926 	lockdep_assert_held(&nvme_subsystems_lock);
2927 
2928 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2929 		if (nvme_state_terminal(tmp))
2930 			continue;
2931 
2932 		if (tmp->cntlid == ctrl->cntlid) {
2933 			dev_err(ctrl->device,
2934 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2935 				ctrl->cntlid, dev_name(tmp->device),
2936 				subsys->subnqn);
2937 			return false;
2938 		}
2939 
2940 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2941 		    nvme_discovery_ctrl(ctrl))
2942 			continue;
2943 
2944 		dev_err(ctrl->device,
2945 			"Subsystem does not support multiple controllers\n");
2946 		return false;
2947 	}
2948 
2949 	return true;
2950 }
2951 
2952 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2953 {
2954 	struct nvme_subsystem *subsys, *found;
2955 	int ret;
2956 
2957 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2958 	if (!subsys)
2959 		return -ENOMEM;
2960 
2961 	subsys->instance = -1;
2962 	mutex_init(&subsys->lock);
2963 	kref_init(&subsys->ref);
2964 	INIT_LIST_HEAD(&subsys->ctrls);
2965 	INIT_LIST_HEAD(&subsys->nsheads);
2966 	nvme_init_subnqn(subsys, ctrl, id);
2967 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2968 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2969 	subsys->vendor_id = le16_to_cpu(id->vid);
2970 	subsys->cmic = id->cmic;
2971 
2972 	/* Versions prior to 1.4 don't necessarily report a valid type */
2973 	if (id->cntrltype == NVME_CTRL_DISC ||
2974 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2975 		subsys->subtype = NVME_NQN_DISC;
2976 	else
2977 		subsys->subtype = NVME_NQN_NVME;
2978 
2979 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2980 		dev_err(ctrl->device,
2981 			"Subsystem %s is not a discovery controller",
2982 			subsys->subnqn);
2983 		kfree(subsys);
2984 		return -EINVAL;
2985 	}
2986 	subsys->awupf = le16_to_cpu(id->awupf);
2987 	nvme_mpath_default_iopolicy(subsys);
2988 
2989 	subsys->dev.class = &nvme_subsys_class;
2990 	subsys->dev.release = nvme_release_subsystem;
2991 	subsys->dev.groups = nvme_subsys_attrs_groups;
2992 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2993 	device_initialize(&subsys->dev);
2994 
2995 	mutex_lock(&nvme_subsystems_lock);
2996 	found = __nvme_find_get_subsystem(subsys->subnqn);
2997 	if (found) {
2998 		put_device(&subsys->dev);
2999 		subsys = found;
3000 
3001 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3002 			ret = -EINVAL;
3003 			goto out_put_subsystem;
3004 		}
3005 	} else {
3006 		ret = device_add(&subsys->dev);
3007 		if (ret) {
3008 			dev_err(ctrl->device,
3009 				"failed to register subsystem device.\n");
3010 			put_device(&subsys->dev);
3011 			goto out_unlock;
3012 		}
3013 		ida_init(&subsys->ns_ida);
3014 		list_add_tail(&subsys->entry, &nvme_subsystems);
3015 	}
3016 
3017 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3018 				dev_name(ctrl->device));
3019 	if (ret) {
3020 		dev_err(ctrl->device,
3021 			"failed to create sysfs link from subsystem.\n");
3022 		goto out_put_subsystem;
3023 	}
3024 
3025 	if (!found)
3026 		subsys->instance = ctrl->instance;
3027 	ctrl->subsys = subsys;
3028 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3029 	mutex_unlock(&nvme_subsystems_lock);
3030 	return 0;
3031 
3032 out_put_subsystem:
3033 	nvme_put_subsystem(subsys);
3034 out_unlock:
3035 	mutex_unlock(&nvme_subsystems_lock);
3036 	return ret;
3037 }
3038 
3039 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3040 		void *log, size_t size, u64 offset)
3041 {
3042 	struct nvme_command c = { };
3043 	u32 dwlen = nvme_bytes_to_numd(size);
3044 
3045 	c.get_log_page.opcode = nvme_admin_get_log_page;
3046 	c.get_log_page.nsid = cpu_to_le32(nsid);
3047 	c.get_log_page.lid = log_page;
3048 	c.get_log_page.lsp = lsp;
3049 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3050 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3051 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3052 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3053 	c.get_log_page.csi = csi;
3054 
3055 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3056 }
3057 
3058 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3059 				struct nvme_effects_log **log)
3060 {
3061 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3062 	int ret;
3063 
3064 	if (cel)
3065 		goto out;
3066 
3067 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3068 	if (!cel)
3069 		return -ENOMEM;
3070 
3071 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3072 			cel, sizeof(*cel), 0);
3073 	if (ret) {
3074 		kfree(cel);
3075 		return ret;
3076 	}
3077 
3078 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3079 out:
3080 	*log = cel;
3081 	return 0;
3082 }
3083 
3084 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3085 {
3086 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3087 
3088 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3089 		return UINT_MAX;
3090 	return val;
3091 }
3092 
3093 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3094 {
3095 	struct nvme_command c = { };
3096 	struct nvme_id_ctrl_nvm *id;
3097 	int ret;
3098 
3099 	/*
3100 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3101 	 * to the write-zeroes, we are cautious and limit the size to the
3102 	 * controllers max_hw_sectors value, which is based on the MDTS field
3103 	 * and possibly other limiting factors.
3104 	 */
3105 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3106 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3107 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3108 	else
3109 		ctrl->max_zeroes_sectors = 0;
3110 
3111 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3112 	    nvme_ctrl_limited_cns(ctrl) ||
3113 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3114 		return 0;
3115 
3116 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3117 	if (!id)
3118 		return -ENOMEM;
3119 
3120 	c.identify.opcode = nvme_admin_identify;
3121 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3122 	c.identify.csi = NVME_CSI_NVM;
3123 
3124 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3125 	if (ret)
3126 		goto free_data;
3127 
3128 	ctrl->dmrl = id->dmrl;
3129 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3130 	if (id->wzsl)
3131 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3132 
3133 free_data:
3134 	if (ret > 0)
3135 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3136 	kfree(id);
3137 	return ret;
3138 }
3139 
3140 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3141 {
3142 	struct nvme_effects_log	*log = ctrl->effects;
3143 
3144 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3145 						NVME_CMD_EFFECTS_NCC |
3146 						NVME_CMD_EFFECTS_CSE_MASK);
3147 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3148 						NVME_CMD_EFFECTS_CSE_MASK);
3149 
3150 	/*
3151 	 * The spec says the result of a security receive command depends on
3152 	 * the previous security send command. As such, many vendors log this
3153 	 * command as one to submitted only when no other commands to the same
3154 	 * namespace are outstanding. The intention is to tell the host to
3155 	 * prevent mixing security send and receive.
3156 	 *
3157 	 * This driver can only enforce such exclusive access against IO
3158 	 * queues, though. We are not readily able to enforce such a rule for
3159 	 * two commands to the admin queue, which is the only queue that
3160 	 * matters for this command.
3161 	 *
3162 	 * Rather than blindly freezing the IO queues for this effect that
3163 	 * doesn't even apply to IO, mask it off.
3164 	 */
3165 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3166 
3167 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3168 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3169 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3170 }
3171 
3172 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3173 {
3174 	int ret = 0;
3175 
3176 	if (ctrl->effects)
3177 		return 0;
3178 
3179 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3180 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3181 		if (ret < 0)
3182 			return ret;
3183 	}
3184 
3185 	if (!ctrl->effects) {
3186 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3187 		if (!ctrl->effects)
3188 			return -ENOMEM;
3189 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3190 	}
3191 
3192 	nvme_init_known_nvm_effects(ctrl);
3193 	return 0;
3194 }
3195 
3196 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3197 {
3198 	/*
3199 	 * In fabrics we need to verify the cntlid matches the
3200 	 * admin connect
3201 	 */
3202 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3203 		dev_err(ctrl->device,
3204 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3205 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3206 		return -EINVAL;
3207 	}
3208 
3209 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3210 		dev_err(ctrl->device,
3211 			"keep-alive support is mandatory for fabrics\n");
3212 		return -EINVAL;
3213 	}
3214 
3215 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3216 		dev_err(ctrl->device,
3217 			"I/O queue command capsule supported size %d < 4\n",
3218 			ctrl->ioccsz);
3219 		return -EINVAL;
3220 	}
3221 
3222 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3223 		dev_err(ctrl->device,
3224 			"I/O queue response capsule supported size %d < 1\n",
3225 			ctrl->iorcsz);
3226 		return -EINVAL;
3227 	}
3228 
3229 	if (!ctrl->maxcmd) {
3230 		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3231 		return -EINVAL;
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3238 {
3239 	struct queue_limits lim;
3240 	struct nvme_id_ctrl *id;
3241 	u32 max_hw_sectors;
3242 	bool prev_apst_enabled;
3243 	int ret;
3244 
3245 	ret = nvme_identify_ctrl(ctrl, &id);
3246 	if (ret) {
3247 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3248 		return -EIO;
3249 	}
3250 
3251 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3252 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3253 
3254 	if (!ctrl->identified) {
3255 		unsigned int i;
3256 
3257 		/*
3258 		 * Check for quirks.  Quirk can depend on firmware version,
3259 		 * so, in principle, the set of quirks present can change
3260 		 * across a reset.  As a possible future enhancement, we
3261 		 * could re-scan for quirks every time we reinitialize
3262 		 * the device, but we'd have to make sure that the driver
3263 		 * behaves intelligently if the quirks change.
3264 		 */
3265 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3266 			if (quirk_matches(id, &core_quirks[i]))
3267 				ctrl->quirks |= core_quirks[i].quirks;
3268 		}
3269 
3270 		ret = nvme_init_subsystem(ctrl, id);
3271 		if (ret)
3272 			goto out_free;
3273 
3274 		ret = nvme_init_effects(ctrl, id);
3275 		if (ret)
3276 			goto out_free;
3277 	}
3278 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3279 	       sizeof(ctrl->subsys->firmware_rev));
3280 
3281 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3282 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3283 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3284 	}
3285 
3286 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3287 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3288 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3289 
3290 	ctrl->oacs = le16_to_cpu(id->oacs);
3291 	ctrl->oncs = le16_to_cpu(id->oncs);
3292 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3293 	ctrl->oaes = le32_to_cpu(id->oaes);
3294 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3295 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3296 
3297 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3298 	ctrl->vwc = id->vwc;
3299 	if (id->mdts)
3300 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3301 	else
3302 		max_hw_sectors = UINT_MAX;
3303 	ctrl->max_hw_sectors =
3304 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3305 
3306 	lim = queue_limits_start_update(ctrl->admin_q);
3307 	nvme_set_ctrl_limits(ctrl, &lim);
3308 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3309 	if (ret)
3310 		goto out_free;
3311 
3312 	ctrl->sgls = le32_to_cpu(id->sgls);
3313 	ctrl->kas = le16_to_cpu(id->kas);
3314 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3315 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3316 
3317 	ctrl->cntrltype = id->cntrltype;
3318 	ctrl->dctype = id->dctype;
3319 
3320 	if (id->rtd3e) {
3321 		/* us -> s */
3322 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3323 
3324 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3325 						 shutdown_timeout, 60);
3326 
3327 		if (ctrl->shutdown_timeout != shutdown_timeout)
3328 			dev_info(ctrl->device,
3329 				 "D3 entry latency set to %u seconds\n",
3330 				 ctrl->shutdown_timeout);
3331 	} else
3332 		ctrl->shutdown_timeout = shutdown_timeout;
3333 
3334 	ctrl->npss = id->npss;
3335 	ctrl->apsta = id->apsta;
3336 	prev_apst_enabled = ctrl->apst_enabled;
3337 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3338 		if (force_apst && id->apsta) {
3339 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3340 			ctrl->apst_enabled = true;
3341 		} else {
3342 			ctrl->apst_enabled = false;
3343 		}
3344 	} else {
3345 		ctrl->apst_enabled = id->apsta;
3346 	}
3347 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3348 
3349 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3350 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3351 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3352 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3353 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3354 
3355 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3356 		if (ret)
3357 			goto out_free;
3358 	} else {
3359 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3360 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3361 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3362 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3363 	}
3364 
3365 	ret = nvme_mpath_init_identify(ctrl, id);
3366 	if (ret < 0)
3367 		goto out_free;
3368 
3369 	if (ctrl->apst_enabled && !prev_apst_enabled)
3370 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3371 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3372 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3373 
3374 out_free:
3375 	kfree(id);
3376 	return ret;
3377 }
3378 
3379 /*
3380  * Initialize the cached copies of the Identify data and various controller
3381  * register in our nvme_ctrl structure.  This should be called as soon as
3382  * the admin queue is fully up and running.
3383  */
3384 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3385 {
3386 	int ret;
3387 
3388 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3389 	if (ret) {
3390 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3391 		return ret;
3392 	}
3393 
3394 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3395 
3396 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3397 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3398 
3399 	ret = nvme_init_identify(ctrl);
3400 	if (ret)
3401 		return ret;
3402 
3403 	ret = nvme_configure_apst(ctrl);
3404 	if (ret < 0)
3405 		return ret;
3406 
3407 	ret = nvme_configure_timestamp(ctrl);
3408 	if (ret < 0)
3409 		return ret;
3410 
3411 	ret = nvme_configure_host_options(ctrl);
3412 	if (ret < 0)
3413 		return ret;
3414 
3415 	nvme_configure_opal(ctrl, was_suspended);
3416 
3417 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3418 		/*
3419 		 * Do not return errors unless we are in a controller reset,
3420 		 * the controller works perfectly fine without hwmon.
3421 		 */
3422 		ret = nvme_hwmon_init(ctrl);
3423 		if (ret == -EINTR)
3424 			return ret;
3425 	}
3426 
3427 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3428 	ctrl->identified = true;
3429 
3430 	nvme_start_keep_alive(ctrl);
3431 
3432 	return 0;
3433 }
3434 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3435 
3436 static int nvme_dev_open(struct inode *inode, struct file *file)
3437 {
3438 	struct nvme_ctrl *ctrl =
3439 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3440 
3441 	switch (nvme_ctrl_state(ctrl)) {
3442 	case NVME_CTRL_LIVE:
3443 		break;
3444 	default:
3445 		return -EWOULDBLOCK;
3446 	}
3447 
3448 	nvme_get_ctrl(ctrl);
3449 	if (!try_module_get(ctrl->ops->module)) {
3450 		nvme_put_ctrl(ctrl);
3451 		return -EINVAL;
3452 	}
3453 
3454 	file->private_data = ctrl;
3455 	return 0;
3456 }
3457 
3458 static int nvme_dev_release(struct inode *inode, struct file *file)
3459 {
3460 	struct nvme_ctrl *ctrl =
3461 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3462 
3463 	module_put(ctrl->ops->module);
3464 	nvme_put_ctrl(ctrl);
3465 	return 0;
3466 }
3467 
3468 static const struct file_operations nvme_dev_fops = {
3469 	.owner		= THIS_MODULE,
3470 	.open		= nvme_dev_open,
3471 	.release	= nvme_dev_release,
3472 	.unlocked_ioctl	= nvme_dev_ioctl,
3473 	.compat_ioctl	= compat_ptr_ioctl,
3474 	.uring_cmd	= nvme_dev_uring_cmd,
3475 };
3476 
3477 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3478 		unsigned nsid)
3479 {
3480 	struct nvme_ns_head *h;
3481 
3482 	lockdep_assert_held(&ctrl->subsys->lock);
3483 
3484 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3485 		/*
3486 		 * Private namespaces can share NSIDs under some conditions.
3487 		 * In that case we can't use the same ns_head for namespaces
3488 		 * with the same NSID.
3489 		 */
3490 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3491 			continue;
3492 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3493 			return h;
3494 	}
3495 
3496 	return NULL;
3497 }
3498 
3499 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3500 		struct nvme_ns_ids *ids)
3501 {
3502 	bool has_uuid = !uuid_is_null(&ids->uuid);
3503 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3504 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3505 	struct nvme_ns_head *h;
3506 
3507 	lockdep_assert_held(&subsys->lock);
3508 
3509 	list_for_each_entry(h, &subsys->nsheads, entry) {
3510 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3511 			return -EINVAL;
3512 		if (has_nguid &&
3513 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3514 			return -EINVAL;
3515 		if (has_eui64 &&
3516 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3517 			return -EINVAL;
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 static void nvme_cdev_rel(struct device *dev)
3524 {
3525 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3526 }
3527 
3528 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3529 {
3530 	cdev_device_del(cdev, cdev_device);
3531 	put_device(cdev_device);
3532 }
3533 
3534 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3535 		const struct file_operations *fops, struct module *owner)
3536 {
3537 	int minor, ret;
3538 
3539 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3540 	if (minor < 0)
3541 		return minor;
3542 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3543 	cdev_device->class = &nvme_ns_chr_class;
3544 	cdev_device->release = nvme_cdev_rel;
3545 	device_initialize(cdev_device);
3546 	cdev_init(cdev, fops);
3547 	cdev->owner = owner;
3548 	ret = cdev_device_add(cdev, cdev_device);
3549 	if (ret)
3550 		put_device(cdev_device);
3551 
3552 	return ret;
3553 }
3554 
3555 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3556 {
3557 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3558 }
3559 
3560 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3561 {
3562 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3563 	return 0;
3564 }
3565 
3566 static const struct file_operations nvme_ns_chr_fops = {
3567 	.owner		= THIS_MODULE,
3568 	.open		= nvme_ns_chr_open,
3569 	.release	= nvme_ns_chr_release,
3570 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3571 	.compat_ioctl	= compat_ptr_ioctl,
3572 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3573 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3574 };
3575 
3576 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3577 {
3578 	int ret;
3579 
3580 	ns->cdev_device.parent = ns->ctrl->device;
3581 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3582 			   ns->ctrl->instance, ns->head->instance);
3583 	if (ret)
3584 		return ret;
3585 
3586 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3587 			     ns->ctrl->ops->module);
3588 }
3589 
3590 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3591 		struct nvme_ns_info *info)
3592 {
3593 	struct nvme_ns_head *head;
3594 	size_t size = sizeof(*head);
3595 	int ret = -ENOMEM;
3596 
3597 #ifdef CONFIG_NVME_MULTIPATH
3598 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3599 #endif
3600 
3601 	head = kzalloc(size, GFP_KERNEL);
3602 	if (!head)
3603 		goto out;
3604 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3605 	if (ret < 0)
3606 		goto out_free_head;
3607 	head->instance = ret;
3608 	INIT_LIST_HEAD(&head->list);
3609 	ret = init_srcu_struct(&head->srcu);
3610 	if (ret)
3611 		goto out_ida_remove;
3612 	head->subsys = ctrl->subsys;
3613 	head->ns_id = info->nsid;
3614 	head->ids = info->ids;
3615 	head->shared = info->is_shared;
3616 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3617 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3618 	kref_init(&head->ref);
3619 
3620 	if (head->ids.csi) {
3621 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3622 		if (ret)
3623 			goto out_cleanup_srcu;
3624 	} else
3625 		head->effects = ctrl->effects;
3626 
3627 	ret = nvme_mpath_alloc_disk(ctrl, head);
3628 	if (ret)
3629 		goto out_cleanup_srcu;
3630 
3631 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3632 
3633 	kref_get(&ctrl->subsys->ref);
3634 
3635 	return head;
3636 out_cleanup_srcu:
3637 	cleanup_srcu_struct(&head->srcu);
3638 out_ida_remove:
3639 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3640 out_free_head:
3641 	kfree(head);
3642 out:
3643 	if (ret > 0)
3644 		ret = blk_status_to_errno(nvme_error_status(ret));
3645 	return ERR_PTR(ret);
3646 }
3647 
3648 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3649 		struct nvme_ns_ids *ids)
3650 {
3651 	struct nvme_subsystem *s;
3652 	int ret = 0;
3653 
3654 	/*
3655 	 * Note that this check is racy as we try to avoid holding the global
3656 	 * lock over the whole ns_head creation.  But it is only intended as
3657 	 * a sanity check anyway.
3658 	 */
3659 	mutex_lock(&nvme_subsystems_lock);
3660 	list_for_each_entry(s, &nvme_subsystems, entry) {
3661 		if (s == this)
3662 			continue;
3663 		mutex_lock(&s->lock);
3664 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3665 		mutex_unlock(&s->lock);
3666 		if (ret)
3667 			break;
3668 	}
3669 	mutex_unlock(&nvme_subsystems_lock);
3670 
3671 	return ret;
3672 }
3673 
3674 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3675 {
3676 	struct nvme_ctrl *ctrl = ns->ctrl;
3677 	struct nvme_ns_head *head = NULL;
3678 	int ret;
3679 
3680 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3681 	if (ret) {
3682 		/*
3683 		 * We've found two different namespaces on two different
3684 		 * subsystems that report the same ID.  This is pretty nasty
3685 		 * for anything that actually requires unique device
3686 		 * identification.  In the kernel we need this for multipathing,
3687 		 * and in user space the /dev/disk/by-id/ links rely on it.
3688 		 *
3689 		 * If the device also claims to be multi-path capable back off
3690 		 * here now and refuse the probe the second device as this is a
3691 		 * recipe for data corruption.  If not this is probably a
3692 		 * cheap consumer device if on the PCIe bus, so let the user
3693 		 * proceed and use the shiny toy, but warn that with changing
3694 		 * probing order (which due to our async probing could just be
3695 		 * device taking longer to startup) the other device could show
3696 		 * up at any time.
3697 		 */
3698 		nvme_print_device_info(ctrl);
3699 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3700 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3701 		     info->is_shared)) {
3702 			dev_err(ctrl->device,
3703 				"ignoring nsid %d because of duplicate IDs\n",
3704 				info->nsid);
3705 			return ret;
3706 		}
3707 
3708 		dev_err(ctrl->device,
3709 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3710 		dev_err(ctrl->device,
3711 			"use of /dev/disk/by-id/ may cause data corruption\n");
3712 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3713 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3714 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3715 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3716 	}
3717 
3718 	mutex_lock(&ctrl->subsys->lock);
3719 	head = nvme_find_ns_head(ctrl, info->nsid);
3720 	if (!head) {
3721 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3722 		if (ret) {
3723 			dev_err(ctrl->device,
3724 				"duplicate IDs in subsystem for nsid %d\n",
3725 				info->nsid);
3726 			goto out_unlock;
3727 		}
3728 		head = nvme_alloc_ns_head(ctrl, info);
3729 		if (IS_ERR(head)) {
3730 			ret = PTR_ERR(head);
3731 			goto out_unlock;
3732 		}
3733 	} else {
3734 		ret = -EINVAL;
3735 		if (!info->is_shared || !head->shared) {
3736 			dev_err(ctrl->device,
3737 				"Duplicate unshared namespace %d\n",
3738 				info->nsid);
3739 			goto out_put_ns_head;
3740 		}
3741 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3742 			dev_err(ctrl->device,
3743 				"IDs don't match for shared namespace %d\n",
3744 					info->nsid);
3745 			goto out_put_ns_head;
3746 		}
3747 
3748 		if (!multipath) {
3749 			dev_warn(ctrl->device,
3750 				"Found shared namespace %d, but multipathing not supported.\n",
3751 				info->nsid);
3752 			dev_warn_once(ctrl->device,
3753 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3754 		}
3755 	}
3756 
3757 	list_add_tail_rcu(&ns->siblings, &head->list);
3758 	ns->head = head;
3759 	mutex_unlock(&ctrl->subsys->lock);
3760 	return 0;
3761 
3762 out_put_ns_head:
3763 	nvme_put_ns_head(head);
3764 out_unlock:
3765 	mutex_unlock(&ctrl->subsys->lock);
3766 	return ret;
3767 }
3768 
3769 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3770 {
3771 	struct nvme_ns *ns, *ret = NULL;
3772 	int srcu_idx;
3773 
3774 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3775 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
3776 		if (ns->head->ns_id == nsid) {
3777 			if (!nvme_get_ns(ns))
3778 				continue;
3779 			ret = ns;
3780 			break;
3781 		}
3782 		if (ns->head->ns_id > nsid)
3783 			break;
3784 	}
3785 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3786 	return ret;
3787 }
3788 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3789 
3790 /*
3791  * Add the namespace to the controller list while keeping the list ordered.
3792  */
3793 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3794 {
3795 	struct nvme_ns *tmp;
3796 
3797 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3798 		if (tmp->head->ns_id < ns->head->ns_id) {
3799 			list_add_rcu(&ns->list, &tmp->list);
3800 			return;
3801 		}
3802 	}
3803 	list_add(&ns->list, &ns->ctrl->namespaces);
3804 }
3805 
3806 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3807 {
3808 	struct queue_limits lim = { };
3809 	struct nvme_ns *ns;
3810 	struct gendisk *disk;
3811 	int node = ctrl->numa_node;
3812 
3813 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3814 	if (!ns)
3815 		return;
3816 
3817 	if (ctrl->opts && ctrl->opts->data_digest)
3818 		lim.features |= BLK_FEAT_STABLE_WRITES;
3819 	if (ctrl->ops->supports_pci_p2pdma &&
3820 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3821 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3822 
3823 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3824 	if (IS_ERR(disk))
3825 		goto out_free_ns;
3826 	disk->fops = &nvme_bdev_ops;
3827 	disk->private_data = ns;
3828 
3829 	ns->disk = disk;
3830 	ns->queue = disk->queue;
3831 	ns->ctrl = ctrl;
3832 	kref_init(&ns->kref);
3833 
3834 	if (nvme_init_ns_head(ns, info))
3835 		goto out_cleanup_disk;
3836 
3837 	/*
3838 	 * If multipathing is enabled, the device name for all disks and not
3839 	 * just those that represent shared namespaces needs to be based on the
3840 	 * subsystem instance.  Using the controller instance for private
3841 	 * namespaces could lead to naming collisions between shared and private
3842 	 * namespaces if they don't use a common numbering scheme.
3843 	 *
3844 	 * If multipathing is not enabled, disk names must use the controller
3845 	 * instance as shared namespaces will show up as multiple block
3846 	 * devices.
3847 	 */
3848 	if (nvme_ns_head_multipath(ns->head)) {
3849 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3850 			ctrl->instance, ns->head->instance);
3851 		disk->flags |= GENHD_FL_HIDDEN;
3852 	} else if (multipath) {
3853 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3854 			ns->head->instance);
3855 	} else {
3856 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3857 			ns->head->instance);
3858 	}
3859 
3860 	if (nvme_update_ns_info(ns, info))
3861 		goto out_unlink_ns;
3862 
3863 	mutex_lock(&ctrl->namespaces_lock);
3864 	/*
3865 	 * Ensure that no namespaces are added to the ctrl list after the queues
3866 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3867 	 */
3868 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3869 		mutex_unlock(&ctrl->namespaces_lock);
3870 		goto out_unlink_ns;
3871 	}
3872 	nvme_ns_add_to_ctrl_list(ns);
3873 	mutex_unlock(&ctrl->namespaces_lock);
3874 	synchronize_srcu(&ctrl->srcu);
3875 	nvme_get_ctrl(ctrl);
3876 
3877 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3878 		goto out_cleanup_ns_from_list;
3879 
3880 	if (!nvme_ns_head_multipath(ns->head))
3881 		nvme_add_ns_cdev(ns);
3882 
3883 	nvme_mpath_add_disk(ns, info->anagrpid);
3884 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3885 
3886 	/*
3887 	 * Set ns->disk->device->driver_data to ns so we can access
3888 	 * ns->head->passthru_err_log_enabled in
3889 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3890 	 */
3891 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3892 
3893 	return;
3894 
3895  out_cleanup_ns_from_list:
3896 	nvme_put_ctrl(ctrl);
3897 	mutex_lock(&ctrl->namespaces_lock);
3898 	list_del_rcu(&ns->list);
3899 	mutex_unlock(&ctrl->namespaces_lock);
3900 	synchronize_srcu(&ctrl->srcu);
3901  out_unlink_ns:
3902 	mutex_lock(&ctrl->subsys->lock);
3903 	list_del_rcu(&ns->siblings);
3904 	if (list_empty(&ns->head->list))
3905 		list_del_init(&ns->head->entry);
3906 	mutex_unlock(&ctrl->subsys->lock);
3907 	nvme_put_ns_head(ns->head);
3908  out_cleanup_disk:
3909 	put_disk(disk);
3910  out_free_ns:
3911 	kfree(ns);
3912 }
3913 
3914 static void nvme_ns_remove(struct nvme_ns *ns)
3915 {
3916 	bool last_path = false;
3917 
3918 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3919 		return;
3920 
3921 	clear_bit(NVME_NS_READY, &ns->flags);
3922 	set_capacity(ns->disk, 0);
3923 	nvme_fault_inject_fini(&ns->fault_inject);
3924 
3925 	/*
3926 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3927 	 * this ns going back into current_path.
3928 	 */
3929 	synchronize_srcu(&ns->head->srcu);
3930 
3931 	/* wait for concurrent submissions */
3932 	if (nvme_mpath_clear_current_path(ns))
3933 		synchronize_srcu(&ns->head->srcu);
3934 
3935 	mutex_lock(&ns->ctrl->subsys->lock);
3936 	list_del_rcu(&ns->siblings);
3937 	if (list_empty(&ns->head->list)) {
3938 		list_del_init(&ns->head->entry);
3939 		last_path = true;
3940 	}
3941 	mutex_unlock(&ns->ctrl->subsys->lock);
3942 
3943 	/* guarantee not available in head->list */
3944 	synchronize_srcu(&ns->head->srcu);
3945 
3946 	if (!nvme_ns_head_multipath(ns->head))
3947 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3948 	del_gendisk(ns->disk);
3949 
3950 	mutex_lock(&ns->ctrl->namespaces_lock);
3951 	list_del_rcu(&ns->list);
3952 	mutex_unlock(&ns->ctrl->namespaces_lock);
3953 	synchronize_srcu(&ns->ctrl->srcu);
3954 
3955 	if (last_path)
3956 		nvme_mpath_shutdown_disk(ns->head);
3957 	nvme_put_ns(ns);
3958 }
3959 
3960 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3961 {
3962 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3963 
3964 	if (ns) {
3965 		nvme_ns_remove(ns);
3966 		nvme_put_ns(ns);
3967 	}
3968 }
3969 
3970 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3971 {
3972 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
3973 
3974 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3975 		dev_err(ns->ctrl->device,
3976 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3977 		goto out;
3978 	}
3979 
3980 	ret = nvme_update_ns_info(ns, info);
3981 out:
3982 	/*
3983 	 * Only remove the namespace if we got a fatal error back from the
3984 	 * device, otherwise ignore the error and just move on.
3985 	 *
3986 	 * TODO: we should probably schedule a delayed retry here.
3987 	 */
3988 	if (ret > 0 && (ret & NVME_STATUS_DNR))
3989 		nvme_ns_remove(ns);
3990 }
3991 
3992 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3993 {
3994 	struct nvme_ns_info info = { .nsid = nsid };
3995 	struct nvme_ns *ns;
3996 	int ret;
3997 
3998 	if (nvme_identify_ns_descs(ctrl, &info))
3999 		return;
4000 
4001 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4002 		dev_warn(ctrl->device,
4003 			"command set not reported for nsid: %d\n", nsid);
4004 		return;
4005 	}
4006 
4007 	/*
4008 	 * If available try to use the Command Set Idependent Identify Namespace
4009 	 * data structure to find all the generic information that is needed to
4010 	 * set up a namespace.  If not fall back to the legacy version.
4011 	 */
4012 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4013 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
4014 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4015 	else
4016 		ret = nvme_ns_info_from_identify(ctrl, &info);
4017 
4018 	if (info.is_removed)
4019 		nvme_ns_remove_by_nsid(ctrl, nsid);
4020 
4021 	/*
4022 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4023 	 * becomes ready and restart the scan.
4024 	 */
4025 	if (ret || !info.is_ready)
4026 		return;
4027 
4028 	ns = nvme_find_get_ns(ctrl, nsid);
4029 	if (ns) {
4030 		nvme_validate_ns(ns, &info);
4031 		nvme_put_ns(ns);
4032 	} else {
4033 		nvme_alloc_ns(ctrl, &info);
4034 	}
4035 }
4036 
4037 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4038 					unsigned nsid)
4039 {
4040 	struct nvme_ns *ns, *next;
4041 	LIST_HEAD(rm_list);
4042 
4043 	mutex_lock(&ctrl->namespaces_lock);
4044 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4045 		if (ns->head->ns_id > nsid) {
4046 			list_del_rcu(&ns->list);
4047 			synchronize_srcu(&ctrl->srcu);
4048 			list_add_tail_rcu(&ns->list, &rm_list);
4049 		}
4050 	}
4051 	mutex_unlock(&ctrl->namespaces_lock);
4052 
4053 	list_for_each_entry_safe(ns, next, &rm_list, list)
4054 		nvme_ns_remove(ns);
4055 }
4056 
4057 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4058 {
4059 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4060 	__le32 *ns_list;
4061 	u32 prev = 0;
4062 	int ret = 0, i;
4063 
4064 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4065 	if (!ns_list)
4066 		return -ENOMEM;
4067 
4068 	for (;;) {
4069 		struct nvme_command cmd = {
4070 			.identify.opcode	= nvme_admin_identify,
4071 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4072 			.identify.nsid		= cpu_to_le32(prev),
4073 		};
4074 
4075 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4076 					    NVME_IDENTIFY_DATA_SIZE);
4077 		if (ret) {
4078 			dev_warn(ctrl->device,
4079 				"Identify NS List failed (status=0x%x)\n", ret);
4080 			goto free;
4081 		}
4082 
4083 		for (i = 0; i < nr_entries; i++) {
4084 			u32 nsid = le32_to_cpu(ns_list[i]);
4085 
4086 			if (!nsid)	/* end of the list? */
4087 				goto out;
4088 			nvme_scan_ns(ctrl, nsid);
4089 			while (++prev < nsid)
4090 				nvme_ns_remove_by_nsid(ctrl, prev);
4091 		}
4092 	}
4093  out:
4094 	nvme_remove_invalid_namespaces(ctrl, prev);
4095  free:
4096 	kfree(ns_list);
4097 	return ret;
4098 }
4099 
4100 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4101 {
4102 	struct nvme_id_ctrl *id;
4103 	u32 nn, i;
4104 
4105 	if (nvme_identify_ctrl(ctrl, &id))
4106 		return;
4107 	nn = le32_to_cpu(id->nn);
4108 	kfree(id);
4109 
4110 	for (i = 1; i <= nn; i++)
4111 		nvme_scan_ns(ctrl, i);
4112 
4113 	nvme_remove_invalid_namespaces(ctrl, nn);
4114 }
4115 
4116 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4117 {
4118 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4119 	__le32 *log;
4120 	int error;
4121 
4122 	log = kzalloc(log_size, GFP_KERNEL);
4123 	if (!log)
4124 		return;
4125 
4126 	/*
4127 	 * We need to read the log to clear the AEN, but we don't want to rely
4128 	 * on it for the changed namespace information as userspace could have
4129 	 * raced with us in reading the log page, which could cause us to miss
4130 	 * updates.
4131 	 */
4132 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4133 			NVME_CSI_NVM, log, log_size, 0);
4134 	if (error)
4135 		dev_warn(ctrl->device,
4136 			"reading changed ns log failed: %d\n", error);
4137 
4138 	kfree(log);
4139 }
4140 
4141 static void nvme_scan_work(struct work_struct *work)
4142 {
4143 	struct nvme_ctrl *ctrl =
4144 		container_of(work, struct nvme_ctrl, scan_work);
4145 	int ret;
4146 
4147 	/* No tagset on a live ctrl means IO queues could not created */
4148 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4149 		return;
4150 
4151 	/*
4152 	 * Identify controller limits can change at controller reset due to
4153 	 * new firmware download, even though it is not common we cannot ignore
4154 	 * such scenario. Controller's non-mdts limits are reported in the unit
4155 	 * of logical blocks that is dependent on the format of attached
4156 	 * namespace. Hence re-read the limits at the time of ns allocation.
4157 	 */
4158 	ret = nvme_init_non_mdts_limits(ctrl);
4159 	if (ret < 0) {
4160 		dev_warn(ctrl->device,
4161 			"reading non-mdts-limits failed: %d\n", ret);
4162 		return;
4163 	}
4164 
4165 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4166 		dev_info(ctrl->device, "rescanning namespaces.\n");
4167 		nvme_clear_changed_ns_log(ctrl);
4168 	}
4169 
4170 	mutex_lock(&ctrl->scan_lock);
4171 	if (nvme_ctrl_limited_cns(ctrl)) {
4172 		nvme_scan_ns_sequential(ctrl);
4173 	} else {
4174 		/*
4175 		 * Fall back to sequential scan if DNR is set to handle broken
4176 		 * devices which should support Identify NS List (as per the VS
4177 		 * they report) but don't actually support it.
4178 		 */
4179 		ret = nvme_scan_ns_list(ctrl);
4180 		if (ret > 0 && ret & NVME_STATUS_DNR)
4181 			nvme_scan_ns_sequential(ctrl);
4182 	}
4183 	mutex_unlock(&ctrl->scan_lock);
4184 }
4185 
4186 /*
4187  * This function iterates the namespace list unlocked to allow recovery from
4188  * controller failure. It is up to the caller to ensure the namespace list is
4189  * not modified by scan work while this function is executing.
4190  */
4191 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4192 {
4193 	struct nvme_ns *ns, *next;
4194 	LIST_HEAD(ns_list);
4195 
4196 	/*
4197 	 * make sure to requeue I/O to all namespaces as these
4198 	 * might result from the scan itself and must complete
4199 	 * for the scan_work to make progress
4200 	 */
4201 	nvme_mpath_clear_ctrl_paths(ctrl);
4202 
4203 	/*
4204 	 * Unquiesce io queues so any pending IO won't hang, especially
4205 	 * those submitted from scan work
4206 	 */
4207 	nvme_unquiesce_io_queues(ctrl);
4208 
4209 	/* prevent racing with ns scanning */
4210 	flush_work(&ctrl->scan_work);
4211 
4212 	/*
4213 	 * The dead states indicates the controller was not gracefully
4214 	 * disconnected. In that case, we won't be able to flush any data while
4215 	 * removing the namespaces' disks; fail all the queues now to avoid
4216 	 * potentially having to clean up the failed sync later.
4217 	 */
4218 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4219 		nvme_mark_namespaces_dead(ctrl);
4220 
4221 	/* this is a no-op when called from the controller reset handler */
4222 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4223 
4224 	mutex_lock(&ctrl->namespaces_lock);
4225 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4226 	mutex_unlock(&ctrl->namespaces_lock);
4227 	synchronize_srcu(&ctrl->srcu);
4228 
4229 	list_for_each_entry_safe(ns, next, &ns_list, list)
4230 		nvme_ns_remove(ns);
4231 }
4232 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4233 
4234 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4235 {
4236 	const struct nvme_ctrl *ctrl =
4237 		container_of(dev, struct nvme_ctrl, ctrl_device);
4238 	struct nvmf_ctrl_options *opts = ctrl->opts;
4239 	int ret;
4240 
4241 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4242 	if (ret)
4243 		return ret;
4244 
4245 	if (opts) {
4246 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4247 		if (ret)
4248 			return ret;
4249 
4250 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4251 				opts->trsvcid ?: "none");
4252 		if (ret)
4253 			return ret;
4254 
4255 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4256 				opts->host_traddr ?: "none");
4257 		if (ret)
4258 			return ret;
4259 
4260 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4261 				opts->host_iface ?: "none");
4262 	}
4263 	return ret;
4264 }
4265 
4266 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4267 {
4268 	char *envp[2] = { envdata, NULL };
4269 
4270 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4271 }
4272 
4273 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4274 {
4275 	char *envp[2] = { NULL, NULL };
4276 	u32 aen_result = ctrl->aen_result;
4277 
4278 	ctrl->aen_result = 0;
4279 	if (!aen_result)
4280 		return;
4281 
4282 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4283 	if (!envp[0])
4284 		return;
4285 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4286 	kfree(envp[0]);
4287 }
4288 
4289 static void nvme_async_event_work(struct work_struct *work)
4290 {
4291 	struct nvme_ctrl *ctrl =
4292 		container_of(work, struct nvme_ctrl, async_event_work);
4293 
4294 	nvme_aen_uevent(ctrl);
4295 
4296 	/*
4297 	 * The transport drivers must guarantee AER submission here is safe by
4298 	 * flushing ctrl async_event_work after changing the controller state
4299 	 * from LIVE and before freeing the admin queue.
4300 	*/
4301 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4302 		ctrl->ops->submit_async_event(ctrl);
4303 }
4304 
4305 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4306 {
4307 
4308 	u32 csts;
4309 
4310 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4311 		return false;
4312 
4313 	if (csts == ~0)
4314 		return false;
4315 
4316 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4317 }
4318 
4319 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4320 {
4321 	struct nvme_fw_slot_info_log *log;
4322 	u8 next_fw_slot, cur_fw_slot;
4323 
4324 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4325 	if (!log)
4326 		return;
4327 
4328 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4329 			 log, sizeof(*log), 0)) {
4330 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4331 		goto out_free_log;
4332 	}
4333 
4334 	cur_fw_slot = log->afi & 0x7;
4335 	next_fw_slot = (log->afi & 0x70) >> 4;
4336 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4337 		dev_info(ctrl->device,
4338 			 "Firmware is activated after next Controller Level Reset\n");
4339 		goto out_free_log;
4340 	}
4341 
4342 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4343 		sizeof(ctrl->subsys->firmware_rev));
4344 
4345 out_free_log:
4346 	kfree(log);
4347 }
4348 
4349 static void nvme_fw_act_work(struct work_struct *work)
4350 {
4351 	struct nvme_ctrl *ctrl = container_of(work,
4352 				struct nvme_ctrl, fw_act_work);
4353 	unsigned long fw_act_timeout;
4354 
4355 	nvme_auth_stop(ctrl);
4356 
4357 	if (ctrl->mtfa)
4358 		fw_act_timeout = jiffies +
4359 				msecs_to_jiffies(ctrl->mtfa * 100);
4360 	else
4361 		fw_act_timeout = jiffies +
4362 				msecs_to_jiffies(admin_timeout * 1000);
4363 
4364 	nvme_quiesce_io_queues(ctrl);
4365 	while (nvme_ctrl_pp_status(ctrl)) {
4366 		if (time_after(jiffies, fw_act_timeout)) {
4367 			dev_warn(ctrl->device,
4368 				"Fw activation timeout, reset controller\n");
4369 			nvme_try_sched_reset(ctrl);
4370 			return;
4371 		}
4372 		msleep(100);
4373 	}
4374 
4375 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4376 		return;
4377 
4378 	nvme_unquiesce_io_queues(ctrl);
4379 	/* read FW slot information to clear the AER */
4380 	nvme_get_fw_slot_info(ctrl);
4381 
4382 	queue_work(nvme_wq, &ctrl->async_event_work);
4383 }
4384 
4385 static u32 nvme_aer_type(u32 result)
4386 {
4387 	return result & 0x7;
4388 }
4389 
4390 static u32 nvme_aer_subtype(u32 result)
4391 {
4392 	return (result & 0xff00) >> 8;
4393 }
4394 
4395 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4396 {
4397 	u32 aer_notice_type = nvme_aer_subtype(result);
4398 	bool requeue = true;
4399 
4400 	switch (aer_notice_type) {
4401 	case NVME_AER_NOTICE_NS_CHANGED:
4402 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4403 		nvme_queue_scan(ctrl);
4404 		break;
4405 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4406 		/*
4407 		 * We are (ab)using the RESETTING state to prevent subsequent
4408 		 * recovery actions from interfering with the controller's
4409 		 * firmware activation.
4410 		 */
4411 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4412 			requeue = false;
4413 			queue_work(nvme_wq, &ctrl->fw_act_work);
4414 		}
4415 		break;
4416 #ifdef CONFIG_NVME_MULTIPATH
4417 	case NVME_AER_NOTICE_ANA:
4418 		if (!ctrl->ana_log_buf)
4419 			break;
4420 		queue_work(nvme_wq, &ctrl->ana_work);
4421 		break;
4422 #endif
4423 	case NVME_AER_NOTICE_DISC_CHANGED:
4424 		ctrl->aen_result = result;
4425 		break;
4426 	default:
4427 		dev_warn(ctrl->device, "async event result %08x\n", result);
4428 	}
4429 	return requeue;
4430 }
4431 
4432 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4433 {
4434 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4435 	nvme_reset_ctrl(ctrl);
4436 }
4437 
4438 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4439 		volatile union nvme_result *res)
4440 {
4441 	u32 result = le32_to_cpu(res->u32);
4442 	u32 aer_type = nvme_aer_type(result);
4443 	u32 aer_subtype = nvme_aer_subtype(result);
4444 	bool requeue = true;
4445 
4446 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4447 		return;
4448 
4449 	trace_nvme_async_event(ctrl, result);
4450 	switch (aer_type) {
4451 	case NVME_AER_NOTICE:
4452 		requeue = nvme_handle_aen_notice(ctrl, result);
4453 		break;
4454 	case NVME_AER_ERROR:
4455 		/*
4456 		 * For a persistent internal error, don't run async_event_work
4457 		 * to submit a new AER. The controller reset will do it.
4458 		 */
4459 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4460 			nvme_handle_aer_persistent_error(ctrl);
4461 			return;
4462 		}
4463 		fallthrough;
4464 	case NVME_AER_SMART:
4465 	case NVME_AER_CSS:
4466 	case NVME_AER_VS:
4467 		ctrl->aen_result = result;
4468 		break;
4469 	default:
4470 		break;
4471 	}
4472 
4473 	if (requeue)
4474 		queue_work(nvme_wq, &ctrl->async_event_work);
4475 }
4476 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4477 
4478 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4479 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4480 {
4481 	struct queue_limits lim = {};
4482 	int ret;
4483 
4484 	memset(set, 0, sizeof(*set));
4485 	set->ops = ops;
4486 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4487 	if (ctrl->ops->flags & NVME_F_FABRICS)
4488 		/* Reserved for fabric connect and keep alive */
4489 		set->reserved_tags = 2;
4490 	set->numa_node = ctrl->numa_node;
4491 	set->flags = BLK_MQ_F_NO_SCHED;
4492 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4493 		set->flags |= BLK_MQ_F_BLOCKING;
4494 	set->cmd_size = cmd_size;
4495 	set->driver_data = ctrl;
4496 	set->nr_hw_queues = 1;
4497 	set->timeout = NVME_ADMIN_TIMEOUT;
4498 	ret = blk_mq_alloc_tag_set(set);
4499 	if (ret)
4500 		return ret;
4501 
4502 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4503 	if (IS_ERR(ctrl->admin_q)) {
4504 		ret = PTR_ERR(ctrl->admin_q);
4505 		goto out_free_tagset;
4506 	}
4507 
4508 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4509 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4510 		if (IS_ERR(ctrl->fabrics_q)) {
4511 			ret = PTR_ERR(ctrl->fabrics_q);
4512 			goto out_cleanup_admin_q;
4513 		}
4514 	}
4515 
4516 	ctrl->admin_tagset = set;
4517 	return 0;
4518 
4519 out_cleanup_admin_q:
4520 	blk_mq_destroy_queue(ctrl->admin_q);
4521 	blk_put_queue(ctrl->admin_q);
4522 out_free_tagset:
4523 	blk_mq_free_tag_set(set);
4524 	ctrl->admin_q = NULL;
4525 	ctrl->fabrics_q = NULL;
4526 	return ret;
4527 }
4528 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4529 
4530 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4531 {
4532 	blk_mq_destroy_queue(ctrl->admin_q);
4533 	blk_put_queue(ctrl->admin_q);
4534 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4535 		blk_mq_destroy_queue(ctrl->fabrics_q);
4536 		blk_put_queue(ctrl->fabrics_q);
4537 	}
4538 	blk_mq_free_tag_set(ctrl->admin_tagset);
4539 }
4540 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4541 
4542 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4543 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4544 		unsigned int cmd_size)
4545 {
4546 	int ret;
4547 
4548 	memset(set, 0, sizeof(*set));
4549 	set->ops = ops;
4550 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4551 	/*
4552 	 * Some Apple controllers requires tags to be unique across admin and
4553 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4554 	 */
4555 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4556 		set->reserved_tags = NVME_AQ_DEPTH;
4557 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4558 		/* Reserved for fabric connect */
4559 		set->reserved_tags = 1;
4560 	set->numa_node = ctrl->numa_node;
4561 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4562 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4563 		set->flags |= BLK_MQ_F_BLOCKING;
4564 	set->cmd_size = cmd_size,
4565 	set->driver_data = ctrl;
4566 	set->nr_hw_queues = ctrl->queue_count - 1;
4567 	set->timeout = NVME_IO_TIMEOUT;
4568 	set->nr_maps = nr_maps;
4569 	ret = blk_mq_alloc_tag_set(set);
4570 	if (ret)
4571 		return ret;
4572 
4573 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4574 		struct queue_limits lim = {
4575 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4576 		};
4577 
4578 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4579         	if (IS_ERR(ctrl->connect_q)) {
4580 			ret = PTR_ERR(ctrl->connect_q);
4581 			goto out_free_tag_set;
4582 		}
4583 	}
4584 
4585 	ctrl->tagset = set;
4586 	return 0;
4587 
4588 out_free_tag_set:
4589 	blk_mq_free_tag_set(set);
4590 	ctrl->connect_q = NULL;
4591 	return ret;
4592 }
4593 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4594 
4595 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4596 {
4597 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4598 		blk_mq_destroy_queue(ctrl->connect_q);
4599 		blk_put_queue(ctrl->connect_q);
4600 	}
4601 	blk_mq_free_tag_set(ctrl->tagset);
4602 }
4603 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4604 
4605 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4606 {
4607 	nvme_mpath_stop(ctrl);
4608 	nvme_auth_stop(ctrl);
4609 	nvme_stop_keep_alive(ctrl);
4610 	nvme_stop_failfast_work(ctrl);
4611 	flush_work(&ctrl->async_event_work);
4612 	cancel_work_sync(&ctrl->fw_act_work);
4613 	if (ctrl->ops->stop_ctrl)
4614 		ctrl->ops->stop_ctrl(ctrl);
4615 }
4616 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4617 
4618 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4619 {
4620 	nvme_enable_aen(ctrl);
4621 
4622 	/*
4623 	 * persistent discovery controllers need to send indication to userspace
4624 	 * to re-read the discovery log page to learn about possible changes
4625 	 * that were missed. We identify persistent discovery controllers by
4626 	 * checking that they started once before, hence are reconnecting back.
4627 	 */
4628 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4629 	    nvme_discovery_ctrl(ctrl))
4630 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4631 
4632 	if (ctrl->queue_count > 1) {
4633 		nvme_queue_scan(ctrl);
4634 		nvme_unquiesce_io_queues(ctrl);
4635 		nvme_mpath_update(ctrl);
4636 	}
4637 
4638 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4639 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4640 }
4641 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4642 
4643 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4644 {
4645 	nvme_hwmon_exit(ctrl);
4646 	nvme_fault_inject_fini(&ctrl->fault_inject);
4647 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4648 	cdev_device_del(&ctrl->cdev, ctrl->device);
4649 	nvme_put_ctrl(ctrl);
4650 }
4651 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4652 
4653 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4654 {
4655 	struct nvme_effects_log	*cel;
4656 	unsigned long i;
4657 
4658 	xa_for_each(&ctrl->cels, i, cel) {
4659 		xa_erase(&ctrl->cels, i);
4660 		kfree(cel);
4661 	}
4662 
4663 	xa_destroy(&ctrl->cels);
4664 }
4665 
4666 static void nvme_free_ctrl(struct device *dev)
4667 {
4668 	struct nvme_ctrl *ctrl =
4669 		container_of(dev, struct nvme_ctrl, ctrl_device);
4670 	struct nvme_subsystem *subsys = ctrl->subsys;
4671 
4672 	if (!subsys || ctrl->instance != subsys->instance)
4673 		ida_free(&nvme_instance_ida, ctrl->instance);
4674 	key_put(ctrl->tls_key);
4675 	nvme_free_cels(ctrl);
4676 	nvme_mpath_uninit(ctrl);
4677 	cleanup_srcu_struct(&ctrl->srcu);
4678 	nvme_auth_stop(ctrl);
4679 	nvme_auth_free(ctrl);
4680 	__free_page(ctrl->discard_page);
4681 	free_opal_dev(ctrl->opal_dev);
4682 
4683 	if (subsys) {
4684 		mutex_lock(&nvme_subsystems_lock);
4685 		list_del(&ctrl->subsys_entry);
4686 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4687 		mutex_unlock(&nvme_subsystems_lock);
4688 	}
4689 
4690 	ctrl->ops->free_ctrl(ctrl);
4691 
4692 	if (subsys)
4693 		nvme_put_subsystem(subsys);
4694 }
4695 
4696 /*
4697  * Initialize a NVMe controller structures.  This needs to be called during
4698  * earliest initialization so that we have the initialized structured around
4699  * during probing.
4700  *
4701  * On success, the caller must use the nvme_put_ctrl() to release this when
4702  * needed, which also invokes the ops->free_ctrl() callback.
4703  */
4704 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4705 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4706 {
4707 	int ret;
4708 
4709 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4710 	ctrl->passthru_err_log_enabled = false;
4711 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4712 	spin_lock_init(&ctrl->lock);
4713 	mutex_init(&ctrl->namespaces_lock);
4714 
4715 	ret = init_srcu_struct(&ctrl->srcu);
4716 	if (ret)
4717 		return ret;
4718 
4719 	mutex_init(&ctrl->scan_lock);
4720 	INIT_LIST_HEAD(&ctrl->namespaces);
4721 	xa_init(&ctrl->cels);
4722 	ctrl->dev = dev;
4723 	ctrl->ops = ops;
4724 	ctrl->quirks = quirks;
4725 	ctrl->numa_node = NUMA_NO_NODE;
4726 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4727 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4728 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4729 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4730 	init_waitqueue_head(&ctrl->state_wq);
4731 
4732 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4733 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4734 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4735 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4736 	ctrl->ka_last_check_time = jiffies;
4737 
4738 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4739 			PAGE_SIZE);
4740 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4741 	if (!ctrl->discard_page) {
4742 		ret = -ENOMEM;
4743 		goto out;
4744 	}
4745 
4746 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4747 	if (ret < 0)
4748 		goto out;
4749 	ctrl->instance = ret;
4750 
4751 	ret = nvme_auth_init_ctrl(ctrl);
4752 	if (ret)
4753 		goto out_release_instance;
4754 
4755 	nvme_mpath_init_ctrl(ctrl);
4756 
4757 	device_initialize(&ctrl->ctrl_device);
4758 	ctrl->device = &ctrl->ctrl_device;
4759 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4760 			ctrl->instance);
4761 	ctrl->device->class = &nvme_class;
4762 	ctrl->device->parent = ctrl->dev;
4763 	if (ops->dev_attr_groups)
4764 		ctrl->device->groups = ops->dev_attr_groups;
4765 	else
4766 		ctrl->device->groups = nvme_dev_attr_groups;
4767 	ctrl->device->release = nvme_free_ctrl;
4768 	dev_set_drvdata(ctrl->device, ctrl);
4769 
4770 	return ret;
4771 
4772 out_release_instance:
4773 	ida_free(&nvme_instance_ida, ctrl->instance);
4774 out:
4775 	if (ctrl->discard_page)
4776 		__free_page(ctrl->discard_page);
4777 	cleanup_srcu_struct(&ctrl->srcu);
4778 	return ret;
4779 }
4780 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4781 
4782 /*
4783  * On success, returns with an elevated controller reference and caller must
4784  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4785  */
4786 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4787 {
4788 	int ret;
4789 
4790 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4791 	if (ret)
4792 		return ret;
4793 
4794 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4795 	ctrl->cdev.owner = ctrl->ops->module;
4796 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4797 	if (ret)
4798 		return ret;
4799 
4800 	/*
4801 	 * Initialize latency tolerance controls.  The sysfs files won't
4802 	 * be visible to userspace unless the device actually supports APST.
4803 	 */
4804 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4805 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4806 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4807 
4808 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4809 	nvme_get_ctrl(ctrl);
4810 
4811 	return 0;
4812 }
4813 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4814 
4815 /* let I/O to all namespaces fail in preparation for surprise removal */
4816 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4817 {
4818 	struct nvme_ns *ns;
4819 	int srcu_idx;
4820 
4821 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4822 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4823 		blk_mark_disk_dead(ns->disk);
4824 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4825 }
4826 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4827 
4828 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4829 {
4830 	struct nvme_ns *ns;
4831 	int srcu_idx;
4832 
4833 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4834 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4835 		blk_mq_unfreeze_queue(ns->queue);
4836 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4837 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4838 }
4839 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4840 
4841 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4842 {
4843 	struct nvme_ns *ns;
4844 	int srcu_idx;
4845 
4846 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4847 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
4848 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4849 		if (timeout <= 0)
4850 			break;
4851 	}
4852 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4853 	return timeout;
4854 }
4855 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4856 
4857 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4858 {
4859 	struct nvme_ns *ns;
4860 	int srcu_idx;
4861 
4862 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4863 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4864 		blk_mq_freeze_queue_wait(ns->queue);
4865 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4866 }
4867 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4868 
4869 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4870 {
4871 	struct nvme_ns *ns;
4872 	int srcu_idx;
4873 
4874 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4875 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4876 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4877 		blk_freeze_queue_start(ns->queue);
4878 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4879 }
4880 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4881 
4882 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4883 {
4884 	if (!ctrl->tagset)
4885 		return;
4886 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4887 		blk_mq_quiesce_tagset(ctrl->tagset);
4888 	else
4889 		blk_mq_wait_quiesce_done(ctrl->tagset);
4890 }
4891 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4892 
4893 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4894 {
4895 	if (!ctrl->tagset)
4896 		return;
4897 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4898 		blk_mq_unquiesce_tagset(ctrl->tagset);
4899 }
4900 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4901 
4902 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4903 {
4904 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4905 		blk_mq_quiesce_queue(ctrl->admin_q);
4906 	else
4907 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4908 }
4909 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4910 
4911 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4912 {
4913 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4914 		blk_mq_unquiesce_queue(ctrl->admin_q);
4915 }
4916 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4917 
4918 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4919 {
4920 	struct nvme_ns *ns;
4921 	int srcu_idx;
4922 
4923 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4924 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4925 		blk_sync_queue(ns->queue);
4926 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4927 }
4928 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4929 
4930 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4931 {
4932 	nvme_sync_io_queues(ctrl);
4933 	if (ctrl->admin_q)
4934 		blk_sync_queue(ctrl->admin_q);
4935 }
4936 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4937 
4938 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4939 {
4940 	if (file->f_op != &nvme_dev_fops)
4941 		return NULL;
4942 	return file->private_data;
4943 }
4944 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4945 
4946 /*
4947  * Check we didn't inadvertently grow the command structure sizes:
4948  */
4949 static inline void _nvme_check_size(void)
4950 {
4951 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4952 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4953 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4954 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4955 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4956 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4957 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4958 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4959 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4960 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4961 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4962 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4963 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4964 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4965 			NVME_IDENTIFY_DATA_SIZE);
4966 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4967 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4968 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4969 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4970 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4971 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4972 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4973 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4974 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4975 }
4976 
4977 
4978 static int __init nvme_core_init(void)
4979 {
4980 	int result = -ENOMEM;
4981 
4982 	_nvme_check_size();
4983 
4984 	nvme_wq = alloc_workqueue("nvme-wq",
4985 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4986 	if (!nvme_wq)
4987 		goto out;
4988 
4989 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4990 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4991 	if (!nvme_reset_wq)
4992 		goto destroy_wq;
4993 
4994 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4995 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4996 	if (!nvme_delete_wq)
4997 		goto destroy_reset_wq;
4998 
4999 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5000 			NVME_MINORS, "nvme");
5001 	if (result < 0)
5002 		goto destroy_delete_wq;
5003 
5004 	result = class_register(&nvme_class);
5005 	if (result)
5006 		goto unregister_chrdev;
5007 
5008 	result = class_register(&nvme_subsys_class);
5009 	if (result)
5010 		goto destroy_class;
5011 
5012 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5013 				     "nvme-generic");
5014 	if (result < 0)
5015 		goto destroy_subsys_class;
5016 
5017 	result = class_register(&nvme_ns_chr_class);
5018 	if (result)
5019 		goto unregister_generic_ns;
5020 
5021 	result = nvme_init_auth();
5022 	if (result)
5023 		goto destroy_ns_chr;
5024 	return 0;
5025 
5026 destroy_ns_chr:
5027 	class_unregister(&nvme_ns_chr_class);
5028 unregister_generic_ns:
5029 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5030 destroy_subsys_class:
5031 	class_unregister(&nvme_subsys_class);
5032 destroy_class:
5033 	class_unregister(&nvme_class);
5034 unregister_chrdev:
5035 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5036 destroy_delete_wq:
5037 	destroy_workqueue(nvme_delete_wq);
5038 destroy_reset_wq:
5039 	destroy_workqueue(nvme_reset_wq);
5040 destroy_wq:
5041 	destroy_workqueue(nvme_wq);
5042 out:
5043 	return result;
5044 }
5045 
5046 static void __exit nvme_core_exit(void)
5047 {
5048 	nvme_exit_auth();
5049 	class_unregister(&nvme_ns_chr_class);
5050 	class_unregister(&nvme_subsys_class);
5051 	class_unregister(&nvme_class);
5052 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5053 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5054 	destroy_workqueue(nvme_delete_wq);
5055 	destroy_workqueue(nvme_reset_wq);
5056 	destroy_workqueue(nvme_wq);
5057 	ida_destroy(&nvme_ns_chr_minor_ida);
5058 	ida_destroy(&nvme_instance_ida);
5059 }
5060 
5061 MODULE_LICENSE("GPL");
5062 MODULE_VERSION("1.0");
5063 MODULE_DESCRIPTION("NVMe host core framework");
5064 module_init(nvme_core_init);
5065 module_exit(nvme_core_exit);
5066