1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include "nvme.h" 27 #include "fabrics.h" 28 #include <linux/nvme-auth.h> 29 30 #define CREATE_TRACE_POINTS 31 #include "trace.h" 32 33 #define NVME_MINORS (1U << MINORBITS) 34 35 struct nvme_ns_info { 36 struct nvme_ns_ids ids; 37 u32 nsid; 38 __le32 anagrpid; 39 bool is_shared; 40 bool is_readonly; 41 bool is_ready; 42 bool is_removed; 43 }; 44 45 unsigned int admin_timeout = 60; 46 module_param(admin_timeout, uint, 0644); 47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 48 EXPORT_SYMBOL_GPL(admin_timeout); 49 50 unsigned int nvme_io_timeout = 30; 51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 53 EXPORT_SYMBOL_GPL(nvme_io_timeout); 54 55 static unsigned char shutdown_timeout = 5; 56 module_param(shutdown_timeout, byte, 0644); 57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 58 59 static u8 nvme_max_retries = 5; 60 module_param_named(max_retries, nvme_max_retries, byte, 0644); 61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 62 63 static unsigned long default_ps_max_latency_us = 100000; 64 module_param(default_ps_max_latency_us, ulong, 0644); 65 MODULE_PARM_DESC(default_ps_max_latency_us, 66 "max power saving latency for new devices; use PM QOS to change per device"); 67 68 static bool force_apst; 69 module_param(force_apst, bool, 0644); 70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 71 72 static unsigned long apst_primary_timeout_ms = 100; 73 module_param(apst_primary_timeout_ms, ulong, 0644); 74 MODULE_PARM_DESC(apst_primary_timeout_ms, 75 "primary APST timeout in ms"); 76 77 static unsigned long apst_secondary_timeout_ms = 2000; 78 module_param(apst_secondary_timeout_ms, ulong, 0644); 79 MODULE_PARM_DESC(apst_secondary_timeout_ms, 80 "secondary APST timeout in ms"); 81 82 static unsigned long apst_primary_latency_tol_us = 15000; 83 module_param(apst_primary_latency_tol_us, ulong, 0644); 84 MODULE_PARM_DESC(apst_primary_latency_tol_us, 85 "primary APST latency tolerance in us"); 86 87 static unsigned long apst_secondary_latency_tol_us = 100000; 88 module_param(apst_secondary_latency_tol_us, ulong, 0644); 89 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 90 "secondary APST latency tolerance in us"); 91 92 /* 93 * nvme_wq - hosts nvme related works that are not reset or delete 94 * nvme_reset_wq - hosts nvme reset works 95 * nvme_delete_wq - hosts nvme delete works 96 * 97 * nvme_wq will host works such as scan, aen handling, fw activation, 98 * keep-alive, periodic reconnects etc. nvme_reset_wq 99 * runs reset works which also flush works hosted on nvme_wq for 100 * serialization purposes. nvme_delete_wq host controller deletion 101 * works which flush reset works for serialization. 102 */ 103 struct workqueue_struct *nvme_wq; 104 EXPORT_SYMBOL_GPL(nvme_wq); 105 106 struct workqueue_struct *nvme_reset_wq; 107 EXPORT_SYMBOL_GPL(nvme_reset_wq); 108 109 struct workqueue_struct *nvme_delete_wq; 110 EXPORT_SYMBOL_GPL(nvme_delete_wq); 111 112 static LIST_HEAD(nvme_subsystems); 113 DEFINE_MUTEX(nvme_subsystems_lock); 114 115 static DEFINE_IDA(nvme_instance_ida); 116 static dev_t nvme_ctrl_base_chr_devt; 117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 118 static const struct class nvme_class = { 119 .name = "nvme", 120 .dev_uevent = nvme_class_uevent, 121 }; 122 123 static const struct class nvme_subsys_class = { 124 .name = "nvme-subsystem", 125 }; 126 127 static DEFINE_IDA(nvme_ns_chr_minor_ida); 128 static dev_t nvme_ns_chr_devt; 129 static const struct class nvme_ns_chr_class = { 130 .name = "nvme-generic", 131 }; 132 133 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 135 unsigned nsid); 136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 137 struct nvme_command *cmd); 138 139 void nvme_queue_scan(struct nvme_ctrl *ctrl) 140 { 141 /* 142 * Only new queue scan work when admin and IO queues are both alive 143 */ 144 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 145 queue_work(nvme_wq, &ctrl->scan_work); 146 } 147 148 /* 149 * Use this function to proceed with scheduling reset_work for a controller 150 * that had previously been set to the resetting state. This is intended for 151 * code paths that can't be interrupted by other reset attempts. A hot removal 152 * may prevent this from succeeding. 153 */ 154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 155 { 156 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 157 return -EBUSY; 158 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 159 return -EBUSY; 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 163 164 static void nvme_failfast_work(struct work_struct *work) 165 { 166 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 167 struct nvme_ctrl, failfast_work); 168 169 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 170 return; 171 172 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 173 dev_info(ctrl->device, "failfast expired\n"); 174 nvme_kick_requeue_lists(ctrl); 175 } 176 177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 178 { 179 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 180 return; 181 182 schedule_delayed_work(&ctrl->failfast_work, 183 ctrl->opts->fast_io_fail_tmo * HZ); 184 } 185 186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 187 { 188 if (!ctrl->opts) 189 return; 190 191 cancel_delayed_work_sync(&ctrl->failfast_work); 192 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 193 } 194 195 196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 197 { 198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 199 return -EBUSY; 200 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 201 return -EBUSY; 202 return 0; 203 } 204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 205 206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 207 { 208 int ret; 209 210 ret = nvme_reset_ctrl(ctrl); 211 if (!ret) { 212 flush_work(&ctrl->reset_work); 213 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 214 ret = -ENETRESET; 215 } 216 217 return ret; 218 } 219 220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 221 { 222 dev_info(ctrl->device, 223 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 224 225 flush_work(&ctrl->reset_work); 226 nvme_stop_ctrl(ctrl); 227 nvme_remove_namespaces(ctrl); 228 ctrl->ops->delete_ctrl(ctrl); 229 nvme_uninit_ctrl(ctrl); 230 } 231 232 static void nvme_delete_ctrl_work(struct work_struct *work) 233 { 234 struct nvme_ctrl *ctrl = 235 container_of(work, struct nvme_ctrl, delete_work); 236 237 nvme_do_delete_ctrl(ctrl); 238 } 239 240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 241 { 242 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 243 return -EBUSY; 244 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 245 return -EBUSY; 246 return 0; 247 } 248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 249 250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 251 { 252 /* 253 * Keep a reference until nvme_do_delete_ctrl() complete, 254 * since ->delete_ctrl can free the controller. 255 */ 256 nvme_get_ctrl(ctrl); 257 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 258 nvme_do_delete_ctrl(ctrl); 259 nvme_put_ctrl(ctrl); 260 } 261 262 static blk_status_t nvme_error_status(u16 status) 263 { 264 switch (status & NVME_SCT_SC_MASK) { 265 case NVME_SC_SUCCESS: 266 return BLK_STS_OK; 267 case NVME_SC_CAP_EXCEEDED: 268 return BLK_STS_NOSPC; 269 case NVME_SC_LBA_RANGE: 270 case NVME_SC_CMD_INTERRUPTED: 271 case NVME_SC_NS_NOT_READY: 272 return BLK_STS_TARGET; 273 case NVME_SC_BAD_ATTRIBUTES: 274 case NVME_SC_ONCS_NOT_SUPPORTED: 275 case NVME_SC_INVALID_OPCODE: 276 case NVME_SC_INVALID_FIELD: 277 case NVME_SC_INVALID_NS: 278 return BLK_STS_NOTSUPP; 279 case NVME_SC_WRITE_FAULT: 280 case NVME_SC_READ_ERROR: 281 case NVME_SC_UNWRITTEN_BLOCK: 282 case NVME_SC_ACCESS_DENIED: 283 case NVME_SC_READ_ONLY: 284 case NVME_SC_COMPARE_FAILED: 285 return BLK_STS_MEDIUM; 286 case NVME_SC_GUARD_CHECK: 287 case NVME_SC_APPTAG_CHECK: 288 case NVME_SC_REFTAG_CHECK: 289 case NVME_SC_INVALID_PI: 290 return BLK_STS_PROTECTION; 291 case NVME_SC_RESERVATION_CONFLICT: 292 return BLK_STS_RESV_CONFLICT; 293 case NVME_SC_HOST_PATH_ERROR: 294 return BLK_STS_TRANSPORT; 295 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 296 return BLK_STS_ZONE_ACTIVE_RESOURCE; 297 case NVME_SC_ZONE_TOO_MANY_OPEN: 298 return BLK_STS_ZONE_OPEN_RESOURCE; 299 default: 300 return BLK_STS_IOERR; 301 } 302 } 303 304 static void nvme_retry_req(struct request *req) 305 { 306 unsigned long delay = 0; 307 u16 crd; 308 309 /* The mask and shift result must be <= 3 */ 310 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; 311 if (crd) 312 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 313 314 nvme_req(req)->retries++; 315 blk_mq_requeue_request(req, false); 316 blk_mq_delay_kick_requeue_list(req->q, delay); 317 } 318 319 static void nvme_log_error(struct request *req) 320 { 321 struct nvme_ns *ns = req->q->queuedata; 322 struct nvme_request *nr = nvme_req(req); 323 324 if (ns) { 325 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 326 ns->disk ? ns->disk->disk_name : "?", 327 nvme_get_opcode_str(nr->cmd->common.opcode), 328 nr->cmd->common.opcode, 329 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 330 blk_rq_bytes(req) >> ns->head->lba_shift, 331 nvme_get_error_status_str(nr->status), 332 NVME_SCT(nr->status), /* Status Code Type */ 333 nr->status & NVME_SC_MASK, /* Status Code */ 334 nr->status & NVME_STATUS_MORE ? "MORE " : "", 335 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 336 return; 337 } 338 339 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 340 dev_name(nr->ctrl->device), 341 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 342 nr->cmd->common.opcode, 343 nvme_get_error_status_str(nr->status), 344 NVME_SCT(nr->status), /* Status Code Type */ 345 nr->status & NVME_SC_MASK, /* Status Code */ 346 nr->status & NVME_STATUS_MORE ? "MORE " : "", 347 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 348 } 349 350 static void nvme_log_err_passthru(struct request *req) 351 { 352 struct nvme_ns *ns = req->q->queuedata; 353 struct nvme_request *nr = nvme_req(req); 354 355 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 356 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 357 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 358 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 359 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 360 nr->cmd->common.opcode, 361 nvme_get_error_status_str(nr->status), 362 NVME_SCT(nr->status), /* Status Code Type */ 363 nr->status & NVME_SC_MASK, /* Status Code */ 364 nr->status & NVME_STATUS_MORE ? "MORE " : "", 365 nr->status & NVME_STATUS_DNR ? "DNR " : "", 366 nr->cmd->common.cdw10, 367 nr->cmd->common.cdw11, 368 nr->cmd->common.cdw12, 369 nr->cmd->common.cdw13, 370 nr->cmd->common.cdw14, 371 nr->cmd->common.cdw14); 372 } 373 374 enum nvme_disposition { 375 COMPLETE, 376 RETRY, 377 FAILOVER, 378 AUTHENTICATE, 379 }; 380 381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 382 { 383 if (likely(nvme_req(req)->status == 0)) 384 return COMPLETE; 385 386 if (blk_noretry_request(req) || 387 (nvme_req(req)->status & NVME_STATUS_DNR) || 388 nvme_req(req)->retries >= nvme_max_retries) 389 return COMPLETE; 390 391 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) 392 return AUTHENTICATE; 393 394 if (req->cmd_flags & REQ_NVME_MPATH) { 395 if (nvme_is_path_error(nvme_req(req)->status) || 396 blk_queue_dying(req->q)) 397 return FAILOVER; 398 } else { 399 if (blk_queue_dying(req->q)) 400 return COMPLETE; 401 } 402 403 return RETRY; 404 } 405 406 static inline void nvme_end_req_zoned(struct request *req) 407 { 408 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 409 req_op(req) == REQ_OP_ZONE_APPEND) { 410 struct nvme_ns *ns = req->q->queuedata; 411 412 req->__sector = nvme_lba_to_sect(ns->head, 413 le64_to_cpu(nvme_req(req)->result.u64)); 414 } 415 } 416 417 static inline void __nvme_end_req(struct request *req) 418 { 419 nvme_end_req_zoned(req); 420 nvme_trace_bio_complete(req); 421 if (req->cmd_flags & REQ_NVME_MPATH) 422 nvme_mpath_end_request(req); 423 } 424 425 void nvme_end_req(struct request *req) 426 { 427 blk_status_t status = nvme_error_status(nvme_req(req)->status); 428 429 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 430 if (blk_rq_is_passthrough(req)) 431 nvme_log_err_passthru(req); 432 else 433 nvme_log_error(req); 434 } 435 __nvme_end_req(req); 436 blk_mq_end_request(req, status); 437 } 438 439 void nvme_complete_rq(struct request *req) 440 { 441 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 442 443 trace_nvme_complete_rq(req); 444 nvme_cleanup_cmd(req); 445 446 /* 447 * Completions of long-running commands should not be able to 448 * defer sending of periodic keep alives, since the controller 449 * may have completed processing such commands a long time ago 450 * (arbitrarily close to command submission time). 451 * req->deadline - req->timeout is the command submission time 452 * in jiffies. 453 */ 454 if (ctrl->kas && 455 req->deadline - req->timeout >= ctrl->ka_last_check_time) 456 ctrl->comp_seen = true; 457 458 switch (nvme_decide_disposition(req)) { 459 case COMPLETE: 460 nvme_end_req(req); 461 return; 462 case RETRY: 463 nvme_retry_req(req); 464 return; 465 case FAILOVER: 466 nvme_failover_req(req); 467 return; 468 case AUTHENTICATE: 469 #ifdef CONFIG_NVME_HOST_AUTH 470 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 471 nvme_retry_req(req); 472 #else 473 nvme_end_req(req); 474 #endif 475 return; 476 } 477 } 478 EXPORT_SYMBOL_GPL(nvme_complete_rq); 479 480 void nvme_complete_batch_req(struct request *req) 481 { 482 trace_nvme_complete_rq(req); 483 nvme_cleanup_cmd(req); 484 __nvme_end_req(req); 485 } 486 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 487 488 /* 489 * Called to unwind from ->queue_rq on a failed command submission so that the 490 * multipathing code gets called to potentially failover to another path. 491 * The caller needs to unwind all transport specific resource allocations and 492 * must return propagate the return value. 493 */ 494 blk_status_t nvme_host_path_error(struct request *req) 495 { 496 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 497 blk_mq_set_request_complete(req); 498 nvme_complete_rq(req); 499 return BLK_STS_OK; 500 } 501 EXPORT_SYMBOL_GPL(nvme_host_path_error); 502 503 bool nvme_cancel_request(struct request *req, void *data) 504 { 505 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 506 "Cancelling I/O %d", req->tag); 507 508 /* don't abort one completed or idle request */ 509 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 510 return true; 511 512 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 513 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 514 blk_mq_complete_request(req); 515 return true; 516 } 517 EXPORT_SYMBOL_GPL(nvme_cancel_request); 518 519 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 520 { 521 if (ctrl->tagset) { 522 blk_mq_tagset_busy_iter(ctrl->tagset, 523 nvme_cancel_request, ctrl); 524 blk_mq_tagset_wait_completed_request(ctrl->tagset); 525 } 526 } 527 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 528 529 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 530 { 531 if (ctrl->admin_tagset) { 532 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 533 nvme_cancel_request, ctrl); 534 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 535 } 536 } 537 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 538 539 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 540 enum nvme_ctrl_state new_state) 541 { 542 enum nvme_ctrl_state old_state; 543 unsigned long flags; 544 bool changed = false; 545 546 spin_lock_irqsave(&ctrl->lock, flags); 547 548 old_state = nvme_ctrl_state(ctrl); 549 switch (new_state) { 550 case NVME_CTRL_LIVE: 551 switch (old_state) { 552 case NVME_CTRL_NEW: 553 case NVME_CTRL_RESETTING: 554 case NVME_CTRL_CONNECTING: 555 changed = true; 556 fallthrough; 557 default: 558 break; 559 } 560 break; 561 case NVME_CTRL_RESETTING: 562 switch (old_state) { 563 case NVME_CTRL_NEW: 564 case NVME_CTRL_LIVE: 565 changed = true; 566 fallthrough; 567 default: 568 break; 569 } 570 break; 571 case NVME_CTRL_CONNECTING: 572 switch (old_state) { 573 case NVME_CTRL_NEW: 574 case NVME_CTRL_RESETTING: 575 changed = true; 576 fallthrough; 577 default: 578 break; 579 } 580 break; 581 case NVME_CTRL_DELETING: 582 switch (old_state) { 583 case NVME_CTRL_LIVE: 584 case NVME_CTRL_RESETTING: 585 case NVME_CTRL_CONNECTING: 586 changed = true; 587 fallthrough; 588 default: 589 break; 590 } 591 break; 592 case NVME_CTRL_DELETING_NOIO: 593 switch (old_state) { 594 case NVME_CTRL_DELETING: 595 case NVME_CTRL_DEAD: 596 changed = true; 597 fallthrough; 598 default: 599 break; 600 } 601 break; 602 case NVME_CTRL_DEAD: 603 switch (old_state) { 604 case NVME_CTRL_DELETING: 605 changed = true; 606 fallthrough; 607 default: 608 break; 609 } 610 break; 611 default: 612 break; 613 } 614 615 if (changed) { 616 WRITE_ONCE(ctrl->state, new_state); 617 wake_up_all(&ctrl->state_wq); 618 } 619 620 spin_unlock_irqrestore(&ctrl->lock, flags); 621 if (!changed) 622 return false; 623 624 if (new_state == NVME_CTRL_LIVE) { 625 if (old_state == NVME_CTRL_CONNECTING) 626 nvme_stop_failfast_work(ctrl); 627 nvme_kick_requeue_lists(ctrl); 628 } else if (new_state == NVME_CTRL_CONNECTING && 629 old_state == NVME_CTRL_RESETTING) { 630 nvme_start_failfast_work(ctrl); 631 } 632 return changed; 633 } 634 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 635 636 /* 637 * Waits for the controller state to be resetting, or returns false if it is 638 * not possible to ever transition to that state. 639 */ 640 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 641 { 642 wait_event(ctrl->state_wq, 643 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 644 nvme_state_terminal(ctrl)); 645 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 646 } 647 EXPORT_SYMBOL_GPL(nvme_wait_reset); 648 649 static void nvme_free_ns_head(struct kref *ref) 650 { 651 struct nvme_ns_head *head = 652 container_of(ref, struct nvme_ns_head, ref); 653 654 nvme_mpath_remove_disk(head); 655 ida_free(&head->subsys->ns_ida, head->instance); 656 cleanup_srcu_struct(&head->srcu); 657 nvme_put_subsystem(head->subsys); 658 kfree(head); 659 } 660 661 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 662 { 663 return kref_get_unless_zero(&head->ref); 664 } 665 666 void nvme_put_ns_head(struct nvme_ns_head *head) 667 { 668 kref_put(&head->ref, nvme_free_ns_head); 669 } 670 671 static void nvme_free_ns(struct kref *kref) 672 { 673 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 674 675 put_disk(ns->disk); 676 nvme_put_ns_head(ns->head); 677 nvme_put_ctrl(ns->ctrl); 678 kfree(ns); 679 } 680 681 bool nvme_get_ns(struct nvme_ns *ns) 682 { 683 return kref_get_unless_zero(&ns->kref); 684 } 685 686 void nvme_put_ns(struct nvme_ns *ns) 687 { 688 kref_put(&ns->kref, nvme_free_ns); 689 } 690 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 691 692 static inline void nvme_clear_nvme_request(struct request *req) 693 { 694 nvme_req(req)->status = 0; 695 nvme_req(req)->retries = 0; 696 nvme_req(req)->flags = 0; 697 req->rq_flags |= RQF_DONTPREP; 698 } 699 700 /* initialize a passthrough request */ 701 void nvme_init_request(struct request *req, struct nvme_command *cmd) 702 { 703 struct nvme_request *nr = nvme_req(req); 704 bool logging_enabled; 705 706 if (req->q->queuedata) { 707 struct nvme_ns *ns = req->q->disk->private_data; 708 709 logging_enabled = ns->head->passthru_err_log_enabled; 710 req->timeout = NVME_IO_TIMEOUT; 711 } else { /* no queuedata implies admin queue */ 712 logging_enabled = nr->ctrl->passthru_err_log_enabled; 713 req->timeout = NVME_ADMIN_TIMEOUT; 714 } 715 716 if (!logging_enabled) 717 req->rq_flags |= RQF_QUIET; 718 719 /* passthru commands should let the driver set the SGL flags */ 720 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 721 722 req->cmd_flags |= REQ_FAILFAST_DRIVER; 723 if (req->mq_hctx->type == HCTX_TYPE_POLL) 724 req->cmd_flags |= REQ_POLLED; 725 nvme_clear_nvme_request(req); 726 memcpy(nr->cmd, cmd, sizeof(*cmd)); 727 } 728 EXPORT_SYMBOL_GPL(nvme_init_request); 729 730 /* 731 * For something we're not in a state to send to the device the default action 732 * is to busy it and retry it after the controller state is recovered. However, 733 * if the controller is deleting or if anything is marked for failfast or 734 * nvme multipath it is immediately failed. 735 * 736 * Note: commands used to initialize the controller will be marked for failfast. 737 * Note: nvme cli/ioctl commands are marked for failfast. 738 */ 739 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 740 struct request *rq) 741 { 742 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 743 744 if (state != NVME_CTRL_DELETING_NOIO && 745 state != NVME_CTRL_DELETING && 746 state != NVME_CTRL_DEAD && 747 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 748 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 749 return BLK_STS_RESOURCE; 750 return nvme_host_path_error(rq); 751 } 752 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 753 754 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 755 bool queue_live, enum nvme_ctrl_state state) 756 { 757 struct nvme_request *req = nvme_req(rq); 758 759 /* 760 * currently we have a problem sending passthru commands 761 * on the admin_q if the controller is not LIVE because we can't 762 * make sure that they are going out after the admin connect, 763 * controller enable and/or other commands in the initialization 764 * sequence. until the controller will be LIVE, fail with 765 * BLK_STS_RESOURCE so that they will be rescheduled. 766 */ 767 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 768 return false; 769 770 if (ctrl->ops->flags & NVME_F_FABRICS) { 771 /* 772 * Only allow commands on a live queue, except for the connect 773 * command, which is require to set the queue live in the 774 * appropinquate states. 775 */ 776 switch (state) { 777 case NVME_CTRL_CONNECTING: 778 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 779 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 780 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 781 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 782 return true; 783 break; 784 default: 785 break; 786 case NVME_CTRL_DEAD: 787 return false; 788 } 789 } 790 791 return queue_live; 792 } 793 EXPORT_SYMBOL_GPL(__nvme_check_ready); 794 795 static inline void nvme_setup_flush(struct nvme_ns *ns, 796 struct nvme_command *cmnd) 797 { 798 memset(cmnd, 0, sizeof(*cmnd)); 799 cmnd->common.opcode = nvme_cmd_flush; 800 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 801 } 802 803 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 804 struct nvme_command *cmnd) 805 { 806 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 807 struct nvme_dsm_range *range; 808 struct bio *bio; 809 810 /* 811 * Some devices do not consider the DSM 'Number of Ranges' field when 812 * determining how much data to DMA. Always allocate memory for maximum 813 * number of segments to prevent device reading beyond end of buffer. 814 */ 815 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 816 817 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 818 if (!range) { 819 /* 820 * If we fail allocation our range, fallback to the controller 821 * discard page. If that's also busy, it's safe to return 822 * busy, as we know we can make progress once that's freed. 823 */ 824 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 825 return BLK_STS_RESOURCE; 826 827 range = page_address(ns->ctrl->discard_page); 828 } 829 830 if (queue_max_discard_segments(req->q) == 1) { 831 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 832 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 833 834 range[0].cattr = cpu_to_le32(0); 835 range[0].nlb = cpu_to_le32(nlb); 836 range[0].slba = cpu_to_le64(slba); 837 n = 1; 838 } else { 839 __rq_for_each_bio(bio, req) { 840 u64 slba = nvme_sect_to_lba(ns->head, 841 bio->bi_iter.bi_sector); 842 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 843 844 if (n < segments) { 845 range[n].cattr = cpu_to_le32(0); 846 range[n].nlb = cpu_to_le32(nlb); 847 range[n].slba = cpu_to_le64(slba); 848 } 849 n++; 850 } 851 } 852 853 if (WARN_ON_ONCE(n != segments)) { 854 if (virt_to_page(range) == ns->ctrl->discard_page) 855 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 856 else 857 kfree(range); 858 return BLK_STS_IOERR; 859 } 860 861 memset(cmnd, 0, sizeof(*cmnd)); 862 cmnd->dsm.opcode = nvme_cmd_dsm; 863 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 864 cmnd->dsm.nr = cpu_to_le32(segments - 1); 865 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 866 867 bvec_set_virt(&req->special_vec, range, alloc_size); 868 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 869 870 return BLK_STS_OK; 871 } 872 873 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 874 struct request *req) 875 { 876 u32 upper, lower; 877 u64 ref48; 878 879 /* both rw and write zeroes share the same reftag format */ 880 switch (ns->head->guard_type) { 881 case NVME_NVM_NS_16B_GUARD: 882 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 883 break; 884 case NVME_NVM_NS_64B_GUARD: 885 ref48 = ext_pi_ref_tag(req); 886 lower = lower_32_bits(ref48); 887 upper = upper_32_bits(ref48); 888 889 cmnd->rw.reftag = cpu_to_le32(lower); 890 cmnd->rw.cdw3 = cpu_to_le32(upper); 891 break; 892 default: 893 break; 894 } 895 } 896 897 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 898 struct request *req, struct nvme_command *cmnd) 899 { 900 memset(cmnd, 0, sizeof(*cmnd)); 901 902 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 903 return nvme_setup_discard(ns, req, cmnd); 904 905 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 906 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 907 cmnd->write_zeroes.slba = 908 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 909 cmnd->write_zeroes.length = 910 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 911 912 if (!(req->cmd_flags & REQ_NOUNMAP) && 913 (ns->head->features & NVME_NS_DEAC)) 914 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 915 916 if (nvme_ns_has_pi(ns->head)) { 917 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 918 919 switch (ns->head->pi_type) { 920 case NVME_NS_DPS_PI_TYPE1: 921 case NVME_NS_DPS_PI_TYPE2: 922 nvme_set_ref_tag(ns, cmnd, req); 923 break; 924 } 925 } 926 927 return BLK_STS_OK; 928 } 929 930 /* 931 * NVMe does not support a dedicated command to issue an atomic write. A write 932 * which does adhere to the device atomic limits will silently be executed 933 * non-atomically. The request issuer should ensure that the write is within 934 * the queue atomic writes limits, but just validate this in case it is not. 935 */ 936 static bool nvme_valid_atomic_write(struct request *req) 937 { 938 struct request_queue *q = req->q; 939 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); 940 941 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) 942 return false; 943 944 if (boundary_bytes) { 945 u64 mask = boundary_bytes - 1, imask = ~mask; 946 u64 start = blk_rq_pos(req) << SECTOR_SHIFT; 947 u64 end = start + blk_rq_bytes(req) - 1; 948 949 /* If greater then must be crossing a boundary */ 950 if (blk_rq_bytes(req) > boundary_bytes) 951 return false; 952 953 if ((start & imask) != (end & imask)) 954 return false; 955 } 956 957 return true; 958 } 959 960 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 961 struct request *req, struct nvme_command *cmnd, 962 enum nvme_opcode op) 963 { 964 u16 control = 0; 965 u32 dsmgmt = 0; 966 967 if (req->cmd_flags & REQ_FUA) 968 control |= NVME_RW_FUA; 969 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 970 control |= NVME_RW_LR; 971 972 if (req->cmd_flags & REQ_RAHEAD) 973 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 974 975 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) 976 return BLK_STS_INVAL; 977 978 cmnd->rw.opcode = op; 979 cmnd->rw.flags = 0; 980 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 981 cmnd->rw.cdw2 = 0; 982 cmnd->rw.cdw3 = 0; 983 cmnd->rw.metadata = 0; 984 cmnd->rw.slba = 985 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 986 cmnd->rw.length = 987 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 988 cmnd->rw.reftag = 0; 989 cmnd->rw.apptag = 0; 990 cmnd->rw.appmask = 0; 991 992 if (ns->head->ms) { 993 /* 994 * If formated with metadata, the block layer always provides a 995 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 996 * we enable the PRACT bit for protection information or set the 997 * namespace capacity to zero to prevent any I/O. 998 */ 999 if (!blk_integrity_rq(req)) { 1000 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 1001 return BLK_STS_NOTSUPP; 1002 control |= NVME_RW_PRINFO_PRACT; 1003 } 1004 1005 switch (ns->head->pi_type) { 1006 case NVME_NS_DPS_PI_TYPE3: 1007 control |= NVME_RW_PRINFO_PRCHK_GUARD; 1008 break; 1009 case NVME_NS_DPS_PI_TYPE1: 1010 case NVME_NS_DPS_PI_TYPE2: 1011 control |= NVME_RW_PRINFO_PRCHK_GUARD | 1012 NVME_RW_PRINFO_PRCHK_REF; 1013 if (op == nvme_cmd_zone_append) 1014 control |= NVME_RW_APPEND_PIREMAP; 1015 nvme_set_ref_tag(ns, cmnd, req); 1016 break; 1017 } 1018 } 1019 1020 cmnd->rw.control = cpu_to_le16(control); 1021 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 1022 return 0; 1023 } 1024 1025 void nvme_cleanup_cmd(struct request *req) 1026 { 1027 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 1028 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 1029 1030 if (req->special_vec.bv_page == ctrl->discard_page) 1031 clear_bit_unlock(0, &ctrl->discard_page_busy); 1032 else 1033 kfree(bvec_virt(&req->special_vec)); 1034 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; 1035 } 1036 } 1037 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1038 1039 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1040 { 1041 struct nvme_command *cmd = nvme_req(req)->cmd; 1042 blk_status_t ret = BLK_STS_OK; 1043 1044 if (!(req->rq_flags & RQF_DONTPREP)) 1045 nvme_clear_nvme_request(req); 1046 1047 switch (req_op(req)) { 1048 case REQ_OP_DRV_IN: 1049 case REQ_OP_DRV_OUT: 1050 /* these are setup prior to execution in nvme_init_request() */ 1051 break; 1052 case REQ_OP_FLUSH: 1053 nvme_setup_flush(ns, cmd); 1054 break; 1055 case REQ_OP_ZONE_RESET_ALL: 1056 case REQ_OP_ZONE_RESET: 1057 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1058 break; 1059 case REQ_OP_ZONE_OPEN: 1060 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1061 break; 1062 case REQ_OP_ZONE_CLOSE: 1063 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1064 break; 1065 case REQ_OP_ZONE_FINISH: 1066 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1067 break; 1068 case REQ_OP_WRITE_ZEROES: 1069 ret = nvme_setup_write_zeroes(ns, req, cmd); 1070 break; 1071 case REQ_OP_DISCARD: 1072 ret = nvme_setup_discard(ns, req, cmd); 1073 break; 1074 case REQ_OP_READ: 1075 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1076 break; 1077 case REQ_OP_WRITE: 1078 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1079 break; 1080 case REQ_OP_ZONE_APPEND: 1081 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1082 break; 1083 default: 1084 WARN_ON_ONCE(1); 1085 return BLK_STS_IOERR; 1086 } 1087 1088 cmd->common.command_id = nvme_cid(req); 1089 trace_nvme_setup_cmd(req, cmd); 1090 return ret; 1091 } 1092 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1093 1094 /* 1095 * Return values: 1096 * 0: success 1097 * >0: nvme controller's cqe status response 1098 * <0: kernel error in lieu of controller response 1099 */ 1100 int nvme_execute_rq(struct request *rq, bool at_head) 1101 { 1102 blk_status_t status; 1103 1104 status = blk_execute_rq(rq, at_head); 1105 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1106 return -EINTR; 1107 if (nvme_req(rq)->status) 1108 return nvme_req(rq)->status; 1109 return blk_status_to_errno(status); 1110 } 1111 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1112 1113 /* 1114 * Returns 0 on success. If the result is negative, it's a Linux error code; 1115 * if the result is positive, it's an NVM Express status code 1116 */ 1117 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1118 union nvme_result *result, void *buffer, unsigned bufflen, 1119 int qid, nvme_submit_flags_t flags) 1120 { 1121 struct request *req; 1122 int ret; 1123 blk_mq_req_flags_t blk_flags = 0; 1124 1125 if (flags & NVME_SUBMIT_NOWAIT) 1126 blk_flags |= BLK_MQ_REQ_NOWAIT; 1127 if (flags & NVME_SUBMIT_RESERVED) 1128 blk_flags |= BLK_MQ_REQ_RESERVED; 1129 if (qid == NVME_QID_ANY) 1130 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1131 else 1132 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1133 qid - 1); 1134 1135 if (IS_ERR(req)) 1136 return PTR_ERR(req); 1137 nvme_init_request(req, cmd); 1138 if (flags & NVME_SUBMIT_RETRY) 1139 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1140 1141 if (buffer && bufflen) { 1142 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1143 if (ret) 1144 goto out; 1145 } 1146 1147 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1148 if (result && ret >= 0) 1149 *result = nvme_req(req)->result; 1150 out: 1151 blk_mq_free_request(req); 1152 return ret; 1153 } 1154 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1155 1156 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1157 void *buffer, unsigned bufflen) 1158 { 1159 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1160 NVME_QID_ANY, 0); 1161 } 1162 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1163 1164 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1165 { 1166 u32 effects = 0; 1167 1168 if (ns) { 1169 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1170 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1171 dev_warn_once(ctrl->device, 1172 "IO command:%02x has unusual effects:%08x\n", 1173 opcode, effects); 1174 1175 /* 1176 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1177 * which would deadlock when done on an I/O command. Note that 1178 * We already warn about an unusual effect above. 1179 */ 1180 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1181 } else { 1182 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1183 1184 /* Ignore execution restrictions if any relaxation bits are set */ 1185 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1186 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1187 } 1188 1189 return effects; 1190 } 1191 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1192 1193 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1194 { 1195 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1196 1197 /* 1198 * For simplicity, IO to all namespaces is quiesced even if the command 1199 * effects say only one namespace is affected. 1200 */ 1201 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1202 mutex_lock(&ctrl->scan_lock); 1203 mutex_lock(&ctrl->subsys->lock); 1204 nvme_mpath_start_freeze(ctrl->subsys); 1205 nvme_mpath_wait_freeze(ctrl->subsys); 1206 nvme_start_freeze(ctrl); 1207 nvme_wait_freeze(ctrl); 1208 } 1209 return effects; 1210 } 1211 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1212 1213 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1214 struct nvme_command *cmd, int status) 1215 { 1216 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1217 nvme_unfreeze(ctrl); 1218 nvme_mpath_unfreeze(ctrl->subsys); 1219 mutex_unlock(&ctrl->subsys->lock); 1220 mutex_unlock(&ctrl->scan_lock); 1221 } 1222 if (effects & NVME_CMD_EFFECTS_CCC) { 1223 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1224 &ctrl->flags)) { 1225 dev_info(ctrl->device, 1226 "controller capabilities changed, reset may be required to take effect.\n"); 1227 } 1228 } 1229 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1230 nvme_queue_scan(ctrl); 1231 flush_work(&ctrl->scan_work); 1232 } 1233 if (ns) 1234 return; 1235 1236 switch (cmd->common.opcode) { 1237 case nvme_admin_set_features: 1238 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1239 case NVME_FEAT_KATO: 1240 /* 1241 * Keep alive commands interval on the host should be 1242 * updated when KATO is modified by Set Features 1243 * commands. 1244 */ 1245 if (!status) 1246 nvme_update_keep_alive(ctrl, cmd); 1247 break; 1248 default: 1249 break; 1250 } 1251 break; 1252 default: 1253 break; 1254 } 1255 } 1256 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1257 1258 /* 1259 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1260 * 1261 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1262 * accounting for transport roundtrip times [..]. 1263 */ 1264 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1265 { 1266 unsigned long delay = ctrl->kato * HZ / 2; 1267 1268 /* 1269 * When using Traffic Based Keep Alive, we need to run 1270 * nvme_keep_alive_work at twice the normal frequency, as one 1271 * command completion can postpone sending a keep alive command 1272 * by up to twice the delay between runs. 1273 */ 1274 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1275 delay /= 2; 1276 return delay; 1277 } 1278 1279 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1280 { 1281 unsigned long now = jiffies; 1282 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1283 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1284 1285 if (time_after(now, ka_next_check_tm)) 1286 delay = 0; 1287 else 1288 delay = ka_next_check_tm - now; 1289 1290 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1291 } 1292 1293 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1294 blk_status_t status) 1295 { 1296 struct nvme_ctrl *ctrl = rq->end_io_data; 1297 unsigned long flags; 1298 bool startka = false; 1299 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1300 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1301 1302 /* 1303 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1304 * at the desired frequency. 1305 */ 1306 if (rtt <= delay) { 1307 delay -= rtt; 1308 } else { 1309 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1310 jiffies_to_msecs(rtt)); 1311 delay = 0; 1312 } 1313 1314 blk_mq_free_request(rq); 1315 1316 if (status) { 1317 dev_err(ctrl->device, 1318 "failed nvme_keep_alive_end_io error=%d\n", 1319 status); 1320 return RQ_END_IO_NONE; 1321 } 1322 1323 ctrl->ka_last_check_time = jiffies; 1324 ctrl->comp_seen = false; 1325 spin_lock_irqsave(&ctrl->lock, flags); 1326 if (ctrl->state == NVME_CTRL_LIVE || 1327 ctrl->state == NVME_CTRL_CONNECTING) 1328 startka = true; 1329 spin_unlock_irqrestore(&ctrl->lock, flags); 1330 if (startka) 1331 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1332 return RQ_END_IO_NONE; 1333 } 1334 1335 static void nvme_keep_alive_work(struct work_struct *work) 1336 { 1337 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1338 struct nvme_ctrl, ka_work); 1339 bool comp_seen = ctrl->comp_seen; 1340 struct request *rq; 1341 1342 ctrl->ka_last_check_time = jiffies; 1343 1344 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1345 dev_dbg(ctrl->device, 1346 "reschedule traffic based keep-alive timer\n"); 1347 ctrl->comp_seen = false; 1348 nvme_queue_keep_alive_work(ctrl); 1349 return; 1350 } 1351 1352 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1353 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1354 if (IS_ERR(rq)) { 1355 /* allocation failure, reset the controller */ 1356 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1357 nvme_reset_ctrl(ctrl); 1358 return; 1359 } 1360 nvme_init_request(rq, &ctrl->ka_cmd); 1361 1362 rq->timeout = ctrl->kato * HZ; 1363 rq->end_io = nvme_keep_alive_end_io; 1364 rq->end_io_data = ctrl; 1365 blk_execute_rq_nowait(rq, false); 1366 } 1367 1368 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1369 { 1370 if (unlikely(ctrl->kato == 0)) 1371 return; 1372 1373 nvme_queue_keep_alive_work(ctrl); 1374 } 1375 1376 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1377 { 1378 if (unlikely(ctrl->kato == 0)) 1379 return; 1380 1381 cancel_delayed_work_sync(&ctrl->ka_work); 1382 } 1383 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1384 1385 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1386 struct nvme_command *cmd) 1387 { 1388 unsigned int new_kato = 1389 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1390 1391 dev_info(ctrl->device, 1392 "keep alive interval updated from %u ms to %u ms\n", 1393 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1394 1395 nvme_stop_keep_alive(ctrl); 1396 ctrl->kato = new_kato; 1397 nvme_start_keep_alive(ctrl); 1398 } 1399 1400 /* 1401 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1402 * flag, thus sending any new CNS opcodes has a big chance of not working. 1403 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1404 * (but not for any later version). 1405 */ 1406 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1407 { 1408 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1409 return ctrl->vs < NVME_VS(1, 2, 0); 1410 return ctrl->vs < NVME_VS(1, 1, 0); 1411 } 1412 1413 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1414 { 1415 struct nvme_command c = { }; 1416 int error; 1417 1418 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1419 c.identify.opcode = nvme_admin_identify; 1420 c.identify.cns = NVME_ID_CNS_CTRL; 1421 1422 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1423 if (!*id) 1424 return -ENOMEM; 1425 1426 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1427 sizeof(struct nvme_id_ctrl)); 1428 if (error) { 1429 kfree(*id); 1430 *id = NULL; 1431 } 1432 return error; 1433 } 1434 1435 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1436 struct nvme_ns_id_desc *cur, bool *csi_seen) 1437 { 1438 const char *warn_str = "ctrl returned bogus length:"; 1439 void *data = cur; 1440 1441 switch (cur->nidt) { 1442 case NVME_NIDT_EUI64: 1443 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1444 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1445 warn_str, cur->nidl); 1446 return -1; 1447 } 1448 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1449 return NVME_NIDT_EUI64_LEN; 1450 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1451 return NVME_NIDT_EUI64_LEN; 1452 case NVME_NIDT_NGUID: 1453 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1454 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1455 warn_str, cur->nidl); 1456 return -1; 1457 } 1458 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1459 return NVME_NIDT_NGUID_LEN; 1460 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1461 return NVME_NIDT_NGUID_LEN; 1462 case NVME_NIDT_UUID: 1463 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1464 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1465 warn_str, cur->nidl); 1466 return -1; 1467 } 1468 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1469 return NVME_NIDT_UUID_LEN; 1470 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1471 return NVME_NIDT_UUID_LEN; 1472 case NVME_NIDT_CSI: 1473 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1474 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1475 warn_str, cur->nidl); 1476 return -1; 1477 } 1478 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1479 *csi_seen = true; 1480 return NVME_NIDT_CSI_LEN; 1481 default: 1482 /* Skip unknown types */ 1483 return cur->nidl; 1484 } 1485 } 1486 1487 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1488 struct nvme_ns_info *info) 1489 { 1490 struct nvme_command c = { }; 1491 bool csi_seen = false; 1492 int status, pos, len; 1493 void *data; 1494 1495 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1496 return 0; 1497 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1498 return 0; 1499 1500 c.identify.opcode = nvme_admin_identify; 1501 c.identify.nsid = cpu_to_le32(info->nsid); 1502 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1503 1504 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1505 if (!data) 1506 return -ENOMEM; 1507 1508 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1509 NVME_IDENTIFY_DATA_SIZE); 1510 if (status) { 1511 dev_warn(ctrl->device, 1512 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1513 info->nsid, status); 1514 goto free_data; 1515 } 1516 1517 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1518 struct nvme_ns_id_desc *cur = data + pos; 1519 1520 if (cur->nidl == 0) 1521 break; 1522 1523 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1524 if (len < 0) 1525 break; 1526 1527 len += sizeof(*cur); 1528 } 1529 1530 if (nvme_multi_css(ctrl) && !csi_seen) { 1531 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1532 info->nsid); 1533 status = -EINVAL; 1534 } 1535 1536 free_data: 1537 kfree(data); 1538 return status; 1539 } 1540 1541 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1542 struct nvme_id_ns **id) 1543 { 1544 struct nvme_command c = { }; 1545 int error; 1546 1547 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1548 c.identify.opcode = nvme_admin_identify; 1549 c.identify.nsid = cpu_to_le32(nsid); 1550 c.identify.cns = NVME_ID_CNS_NS; 1551 1552 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1553 if (!*id) 1554 return -ENOMEM; 1555 1556 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1557 if (error) { 1558 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1559 kfree(*id); 1560 *id = NULL; 1561 } 1562 return error; 1563 } 1564 1565 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1566 struct nvme_ns_info *info) 1567 { 1568 struct nvme_ns_ids *ids = &info->ids; 1569 struct nvme_id_ns *id; 1570 int ret; 1571 1572 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1573 if (ret) 1574 return ret; 1575 1576 if (id->ncap == 0) { 1577 /* namespace not allocated or attached */ 1578 info->is_removed = true; 1579 ret = -ENODEV; 1580 goto error; 1581 } 1582 1583 info->anagrpid = id->anagrpid; 1584 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1585 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1586 info->is_ready = true; 1587 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1588 dev_info(ctrl->device, 1589 "Ignoring bogus Namespace Identifiers\n"); 1590 } else { 1591 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1592 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1593 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1594 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1595 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1596 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1597 } 1598 1599 error: 1600 kfree(id); 1601 return ret; 1602 } 1603 1604 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1605 struct nvme_ns_info *info) 1606 { 1607 struct nvme_id_ns_cs_indep *id; 1608 struct nvme_command c = { 1609 .identify.opcode = nvme_admin_identify, 1610 .identify.nsid = cpu_to_le32(info->nsid), 1611 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1612 }; 1613 int ret; 1614 1615 id = kmalloc(sizeof(*id), GFP_KERNEL); 1616 if (!id) 1617 return -ENOMEM; 1618 1619 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1620 if (!ret) { 1621 info->anagrpid = id->anagrpid; 1622 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1623 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1624 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1625 } 1626 kfree(id); 1627 return ret; 1628 } 1629 1630 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1631 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1632 { 1633 union nvme_result res = { 0 }; 1634 struct nvme_command c = { }; 1635 int ret; 1636 1637 c.features.opcode = op; 1638 c.features.fid = cpu_to_le32(fid); 1639 c.features.dword11 = cpu_to_le32(dword11); 1640 1641 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1642 buffer, buflen, NVME_QID_ANY, 0); 1643 if (ret >= 0 && result) 1644 *result = le32_to_cpu(res.u32); 1645 return ret; 1646 } 1647 1648 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1649 unsigned int dword11, void *buffer, size_t buflen, 1650 u32 *result) 1651 { 1652 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1653 buflen, result); 1654 } 1655 EXPORT_SYMBOL_GPL(nvme_set_features); 1656 1657 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1658 unsigned int dword11, void *buffer, size_t buflen, 1659 u32 *result) 1660 { 1661 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1662 buflen, result); 1663 } 1664 EXPORT_SYMBOL_GPL(nvme_get_features); 1665 1666 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1667 { 1668 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1669 u32 result; 1670 int status, nr_io_queues; 1671 1672 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1673 &result); 1674 if (status < 0) 1675 return status; 1676 1677 /* 1678 * Degraded controllers might return an error when setting the queue 1679 * count. We still want to be able to bring them online and offer 1680 * access to the admin queue, as that might be only way to fix them up. 1681 */ 1682 if (status > 0) { 1683 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1684 *count = 0; 1685 } else { 1686 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1687 *count = min(*count, nr_io_queues); 1688 } 1689 1690 return 0; 1691 } 1692 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1693 1694 #define NVME_AEN_SUPPORTED \ 1695 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1696 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1697 1698 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1699 { 1700 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1701 int status; 1702 1703 if (!supported_aens) 1704 return; 1705 1706 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1707 NULL, 0, &result); 1708 if (status) 1709 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1710 supported_aens); 1711 1712 queue_work(nvme_wq, &ctrl->async_event_work); 1713 } 1714 1715 static int nvme_ns_open(struct nvme_ns *ns) 1716 { 1717 1718 /* should never be called due to GENHD_FL_HIDDEN */ 1719 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1720 goto fail; 1721 if (!nvme_get_ns(ns)) 1722 goto fail; 1723 if (!try_module_get(ns->ctrl->ops->module)) 1724 goto fail_put_ns; 1725 1726 return 0; 1727 1728 fail_put_ns: 1729 nvme_put_ns(ns); 1730 fail: 1731 return -ENXIO; 1732 } 1733 1734 static void nvme_ns_release(struct nvme_ns *ns) 1735 { 1736 1737 module_put(ns->ctrl->ops->module); 1738 nvme_put_ns(ns); 1739 } 1740 1741 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1742 { 1743 return nvme_ns_open(disk->private_data); 1744 } 1745 1746 static void nvme_release(struct gendisk *disk) 1747 { 1748 nvme_ns_release(disk->private_data); 1749 } 1750 1751 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1752 { 1753 /* some standard values */ 1754 geo->heads = 1 << 6; 1755 geo->sectors = 1 << 5; 1756 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1757 return 0; 1758 } 1759 1760 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head, 1761 struct queue_limits *lim) 1762 { 1763 struct blk_integrity *bi = &lim->integrity; 1764 1765 memset(bi, 0, sizeof(*bi)); 1766 1767 if (!head->ms) 1768 return true; 1769 1770 /* 1771 * PI can always be supported as we can ask the controller to simply 1772 * insert/strip it, which is not possible for other kinds of metadata. 1773 */ 1774 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1775 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1776 return nvme_ns_has_pi(head); 1777 1778 switch (head->pi_type) { 1779 case NVME_NS_DPS_PI_TYPE3: 1780 switch (head->guard_type) { 1781 case NVME_NVM_NS_16B_GUARD: 1782 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1783 bi->tag_size = sizeof(u16) + sizeof(u32); 1784 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1785 break; 1786 case NVME_NVM_NS_64B_GUARD: 1787 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1788 bi->tag_size = sizeof(u16) + 6; 1789 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1790 break; 1791 default: 1792 break; 1793 } 1794 break; 1795 case NVME_NS_DPS_PI_TYPE1: 1796 case NVME_NS_DPS_PI_TYPE2: 1797 switch (head->guard_type) { 1798 case NVME_NVM_NS_16B_GUARD: 1799 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1800 bi->tag_size = sizeof(u16); 1801 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1802 BLK_INTEGRITY_REF_TAG; 1803 break; 1804 case NVME_NVM_NS_64B_GUARD: 1805 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1806 bi->tag_size = sizeof(u16); 1807 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1808 BLK_INTEGRITY_REF_TAG; 1809 break; 1810 default: 1811 break; 1812 } 1813 break; 1814 default: 1815 break; 1816 } 1817 1818 bi->tuple_size = head->ms; 1819 bi->pi_offset = head->pi_offset; 1820 return true; 1821 } 1822 1823 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1824 { 1825 struct nvme_ctrl *ctrl = ns->ctrl; 1826 1827 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1828 lim->max_hw_discard_sectors = 1829 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1830 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1831 lim->max_hw_discard_sectors = UINT_MAX; 1832 else 1833 lim->max_hw_discard_sectors = 0; 1834 1835 lim->discard_granularity = lim->logical_block_size; 1836 1837 if (ctrl->dmrl) 1838 lim->max_discard_segments = ctrl->dmrl; 1839 else 1840 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1841 } 1842 1843 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1844 { 1845 return uuid_equal(&a->uuid, &b->uuid) && 1846 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1847 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1848 a->csi == b->csi; 1849 } 1850 1851 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1852 struct nvme_id_ns_nvm **nvmp) 1853 { 1854 struct nvme_command c = { 1855 .identify.opcode = nvme_admin_identify, 1856 .identify.nsid = cpu_to_le32(nsid), 1857 .identify.cns = NVME_ID_CNS_CS_NS, 1858 .identify.csi = NVME_CSI_NVM, 1859 }; 1860 struct nvme_id_ns_nvm *nvm; 1861 int ret; 1862 1863 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1864 if (!nvm) 1865 return -ENOMEM; 1866 1867 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1868 if (ret) 1869 kfree(nvm); 1870 else 1871 *nvmp = nvm; 1872 return ret; 1873 } 1874 1875 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1876 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1877 { 1878 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1879 1880 /* no support for storage tag formats right now */ 1881 if (nvme_elbaf_sts(elbaf)) 1882 return; 1883 1884 head->guard_type = nvme_elbaf_guard_type(elbaf); 1885 switch (head->guard_type) { 1886 case NVME_NVM_NS_64B_GUARD: 1887 head->pi_size = sizeof(struct crc64_pi_tuple); 1888 break; 1889 case NVME_NVM_NS_16B_GUARD: 1890 head->pi_size = sizeof(struct t10_pi_tuple); 1891 break; 1892 default: 1893 break; 1894 } 1895 } 1896 1897 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1898 struct nvme_ns_head *head, struct nvme_id_ns *id, 1899 struct nvme_id_ns_nvm *nvm) 1900 { 1901 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1902 head->pi_type = 0; 1903 head->pi_size = 0; 1904 head->pi_offset = 0; 1905 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1906 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1907 return; 1908 1909 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1910 nvme_configure_pi_elbas(head, id, nvm); 1911 } else { 1912 head->pi_size = sizeof(struct t10_pi_tuple); 1913 head->guard_type = NVME_NVM_NS_16B_GUARD; 1914 } 1915 1916 if (head->pi_size && head->ms >= head->pi_size) 1917 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1918 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) 1919 head->pi_offset = head->ms - head->pi_size; 1920 1921 if (ctrl->ops->flags & NVME_F_FABRICS) { 1922 /* 1923 * The NVMe over Fabrics specification only supports metadata as 1924 * part of the extended data LBA. We rely on HCA/HBA support to 1925 * remap the separate metadata buffer from the block layer. 1926 */ 1927 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1928 return; 1929 1930 head->features |= NVME_NS_EXT_LBAS; 1931 1932 /* 1933 * The current fabrics transport drivers support namespace 1934 * metadata formats only if nvme_ns_has_pi() returns true. 1935 * Suppress support for all other formats so the namespace will 1936 * have a 0 capacity and not be usable through the block stack. 1937 * 1938 * Note, this check will need to be modified if any drivers 1939 * gain the ability to use other metadata formats. 1940 */ 1941 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1942 head->features |= NVME_NS_METADATA_SUPPORTED; 1943 } else { 1944 /* 1945 * For PCIe controllers, we can't easily remap the separate 1946 * metadata buffer from the block layer and thus require a 1947 * separate metadata buffer for block layer metadata/PI support. 1948 * We allow extended LBAs for the passthrough interface, though. 1949 */ 1950 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1951 head->features |= NVME_NS_EXT_LBAS; 1952 else 1953 head->features |= NVME_NS_METADATA_SUPPORTED; 1954 } 1955 } 1956 1957 1958 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, 1959 struct nvme_id_ns *id, struct queue_limits *lim, 1960 u32 bs, u32 atomic_bs) 1961 { 1962 unsigned int boundary = 0; 1963 1964 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { 1965 if (le16_to_cpu(id->nabspf)) 1966 boundary = (le16_to_cpu(id->nabspf) + 1) * bs; 1967 } 1968 lim->atomic_write_hw_max = atomic_bs; 1969 lim->atomic_write_hw_boundary = boundary; 1970 lim->atomic_write_hw_unit_min = bs; 1971 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); 1972 } 1973 1974 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 1975 { 1976 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 1977 } 1978 1979 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 1980 struct queue_limits *lim) 1981 { 1982 lim->max_hw_sectors = ctrl->max_hw_sectors; 1983 lim->max_segments = min_t(u32, USHRT_MAX, 1984 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 1985 lim->max_integrity_segments = ctrl->max_integrity_segments; 1986 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 1987 lim->max_segment_size = UINT_MAX; 1988 lim->dma_alignment = 3; 1989 } 1990 1991 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 1992 struct queue_limits *lim) 1993 { 1994 struct nvme_ns_head *head = ns->head; 1995 u32 bs = 1U << head->lba_shift; 1996 u32 atomic_bs, phys_bs, io_opt = 0; 1997 bool valid = true; 1998 1999 /* 2000 * The block layer can't support LBA sizes larger than the page size 2001 * or smaller than a sector size yet, so catch this early and don't 2002 * allow block I/O. 2003 */ 2004 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { 2005 bs = (1 << 9); 2006 valid = false; 2007 } 2008 2009 atomic_bs = phys_bs = bs; 2010 if (id->nabo == 0) { 2011 /* 2012 * Bit 1 indicates whether NAWUPF is defined for this namespace 2013 * and whether it should be used instead of AWUPF. If NAWUPF == 2014 * 0 then AWUPF must be used instead. 2015 */ 2016 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 2017 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2018 else 2019 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2020 2021 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); 2022 } 2023 2024 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2025 /* NPWG = Namespace Preferred Write Granularity */ 2026 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2027 /* NOWS = Namespace Optimal Write Size */ 2028 if (id->nows) 2029 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2030 } 2031 2032 /* 2033 * Linux filesystems assume writing a single physical block is 2034 * an atomic operation. Hence limit the physical block size to the 2035 * value of the Atomic Write Unit Power Fail parameter. 2036 */ 2037 lim->logical_block_size = bs; 2038 lim->physical_block_size = min(phys_bs, atomic_bs); 2039 lim->io_min = phys_bs; 2040 lim->io_opt = io_opt; 2041 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 2042 lim->max_write_zeroes_sectors = UINT_MAX; 2043 else 2044 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 2045 return valid; 2046 } 2047 2048 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 2049 { 2050 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 2051 } 2052 2053 static inline bool nvme_first_scan(struct gendisk *disk) 2054 { 2055 /* nvme_alloc_ns() scans the disk prior to adding it */ 2056 return !disk_live(disk); 2057 } 2058 2059 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2060 struct queue_limits *lim) 2061 { 2062 struct nvme_ctrl *ctrl = ns->ctrl; 2063 u32 iob; 2064 2065 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2066 is_power_of_2(ctrl->max_hw_sectors)) 2067 iob = ctrl->max_hw_sectors; 2068 else 2069 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2070 2071 if (!iob) 2072 return; 2073 2074 if (!is_power_of_2(iob)) { 2075 if (nvme_first_scan(ns->disk)) 2076 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2077 ns->disk->disk_name, iob); 2078 return; 2079 } 2080 2081 if (blk_queue_is_zoned(ns->disk->queue)) { 2082 if (nvme_first_scan(ns->disk)) 2083 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2084 ns->disk->disk_name); 2085 return; 2086 } 2087 2088 lim->chunk_sectors = iob; 2089 } 2090 2091 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2092 struct nvme_ns_info *info) 2093 { 2094 struct queue_limits lim; 2095 int ret; 2096 2097 blk_mq_freeze_queue(ns->disk->queue); 2098 lim = queue_limits_start_update(ns->disk->queue); 2099 nvme_set_ctrl_limits(ns->ctrl, &lim); 2100 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2101 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2102 blk_mq_unfreeze_queue(ns->disk->queue); 2103 2104 /* Hide the block-interface for these devices */ 2105 if (!ret) 2106 ret = -ENODEV; 2107 return ret; 2108 } 2109 2110 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2111 struct nvme_ns_info *info) 2112 { 2113 struct queue_limits lim; 2114 struct nvme_id_ns_nvm *nvm = NULL; 2115 struct nvme_zone_info zi = {}; 2116 struct nvme_id_ns *id; 2117 sector_t capacity; 2118 unsigned lbaf; 2119 int ret; 2120 2121 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2122 if (ret) 2123 return ret; 2124 2125 if (id->ncap == 0) { 2126 /* namespace not allocated or attached */ 2127 info->is_removed = true; 2128 ret = -ENXIO; 2129 goto out; 2130 } 2131 lbaf = nvme_lbaf_index(id->flbas); 2132 2133 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2134 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2135 if (ret < 0) 2136 goto out; 2137 } 2138 2139 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2140 ns->head->ids.csi == NVME_CSI_ZNS) { 2141 ret = nvme_query_zone_info(ns, lbaf, &zi); 2142 if (ret < 0) 2143 goto out; 2144 } 2145 2146 blk_mq_freeze_queue(ns->disk->queue); 2147 ns->head->lba_shift = id->lbaf[lbaf].ds; 2148 ns->head->nuse = le64_to_cpu(id->nuse); 2149 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2150 2151 lim = queue_limits_start_update(ns->disk->queue); 2152 nvme_set_ctrl_limits(ns->ctrl, &lim); 2153 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm); 2154 nvme_set_chunk_sectors(ns, id, &lim); 2155 if (!nvme_update_disk_info(ns, id, &lim)) 2156 capacity = 0; 2157 nvme_config_discard(ns, &lim); 2158 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2159 ns->head->ids.csi == NVME_CSI_ZNS) 2160 nvme_update_zone_info(ns, &lim, &zi); 2161 2162 if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2163 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2164 else 2165 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2166 2167 /* 2168 * Register a metadata profile for PI, or the plain non-integrity NVMe 2169 * metadata masquerading as Type 0 if supported, otherwise reject block 2170 * I/O to namespaces with metadata except when the namespace supports 2171 * PI, as it can strip/insert in that case. 2172 */ 2173 if (!nvme_init_integrity(ns->disk, ns->head, &lim)) 2174 capacity = 0; 2175 2176 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2177 if (ret) { 2178 blk_mq_unfreeze_queue(ns->disk->queue); 2179 goto out; 2180 } 2181 2182 set_capacity_and_notify(ns->disk, capacity); 2183 2184 /* 2185 * Only set the DEAC bit if the device guarantees that reads from 2186 * deallocated data return zeroes. While the DEAC bit does not 2187 * require that, it must be a no-op if reads from deallocated data 2188 * do not return zeroes. 2189 */ 2190 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2191 ns->head->features |= NVME_NS_DEAC; 2192 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2193 set_bit(NVME_NS_READY, &ns->flags); 2194 blk_mq_unfreeze_queue(ns->disk->queue); 2195 2196 if (blk_queue_is_zoned(ns->queue)) { 2197 ret = blk_revalidate_disk_zones(ns->disk); 2198 if (ret && !nvme_first_scan(ns->disk)) 2199 goto out; 2200 } 2201 2202 ret = 0; 2203 out: 2204 kfree(nvm); 2205 kfree(id); 2206 return ret; 2207 } 2208 2209 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2210 { 2211 bool unsupported = false; 2212 int ret; 2213 2214 switch (info->ids.csi) { 2215 case NVME_CSI_ZNS: 2216 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2217 dev_info(ns->ctrl->device, 2218 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2219 info->nsid); 2220 ret = nvme_update_ns_info_generic(ns, info); 2221 break; 2222 } 2223 ret = nvme_update_ns_info_block(ns, info); 2224 break; 2225 case NVME_CSI_NVM: 2226 ret = nvme_update_ns_info_block(ns, info); 2227 break; 2228 default: 2229 dev_info(ns->ctrl->device, 2230 "block device for nsid %u not supported (csi %u)\n", 2231 info->nsid, info->ids.csi); 2232 ret = nvme_update_ns_info_generic(ns, info); 2233 break; 2234 } 2235 2236 /* 2237 * If probing fails due an unsupported feature, hide the block device, 2238 * but still allow other access. 2239 */ 2240 if (ret == -ENODEV) { 2241 ns->disk->flags |= GENHD_FL_HIDDEN; 2242 set_bit(NVME_NS_READY, &ns->flags); 2243 unsupported = true; 2244 ret = 0; 2245 } 2246 2247 if (!ret && nvme_ns_head_multipath(ns->head)) { 2248 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2249 struct queue_limits lim; 2250 2251 blk_mq_freeze_queue(ns->head->disk->queue); 2252 /* 2253 * queue_limits mixes values that are the hardware limitations 2254 * for bio splitting with what is the device configuration. 2255 * 2256 * For NVMe the device configuration can change after e.g. a 2257 * Format command, and we really want to pick up the new format 2258 * value here. But we must still stack the queue limits to the 2259 * least common denominator for multipathing to split the bios 2260 * properly. 2261 * 2262 * To work around this, we explicitly set the device 2263 * configuration to those that we just queried, but only stack 2264 * the splitting limits in to make sure we still obey possibly 2265 * lower limitations of other controllers. 2266 */ 2267 lim = queue_limits_start_update(ns->head->disk->queue); 2268 lim.logical_block_size = ns_lim->logical_block_size; 2269 lim.physical_block_size = ns_lim->physical_block_size; 2270 lim.io_min = ns_lim->io_min; 2271 lim.io_opt = ns_lim->io_opt; 2272 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2273 ns->head->disk->disk_name); 2274 if (unsupported) 2275 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2276 else 2277 nvme_init_integrity(ns->head->disk, ns->head, &lim); 2278 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2279 2280 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2281 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2282 nvme_mpath_revalidate_paths(ns); 2283 2284 blk_mq_unfreeze_queue(ns->head->disk->queue); 2285 } 2286 2287 return ret; 2288 } 2289 2290 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], 2291 enum blk_unique_id type) 2292 { 2293 struct nvme_ns_ids *ids = &ns->head->ids; 2294 2295 if (type != BLK_UID_EUI64) 2296 return -EINVAL; 2297 2298 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { 2299 memcpy(id, &ids->nguid, sizeof(ids->nguid)); 2300 return sizeof(ids->nguid); 2301 } 2302 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { 2303 memcpy(id, &ids->eui64, sizeof(ids->eui64)); 2304 return sizeof(ids->eui64); 2305 } 2306 2307 return -EINVAL; 2308 } 2309 2310 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], 2311 enum blk_unique_id type) 2312 { 2313 return nvme_ns_get_unique_id(disk->private_data, id, type); 2314 } 2315 2316 #ifdef CONFIG_BLK_SED_OPAL 2317 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2318 bool send) 2319 { 2320 struct nvme_ctrl *ctrl = data; 2321 struct nvme_command cmd = { }; 2322 2323 if (send) 2324 cmd.common.opcode = nvme_admin_security_send; 2325 else 2326 cmd.common.opcode = nvme_admin_security_recv; 2327 cmd.common.nsid = 0; 2328 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2329 cmd.common.cdw11 = cpu_to_le32(len); 2330 2331 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2332 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2333 } 2334 2335 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2336 { 2337 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2338 if (!ctrl->opal_dev) 2339 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2340 else if (was_suspended) 2341 opal_unlock_from_suspend(ctrl->opal_dev); 2342 } else { 2343 free_opal_dev(ctrl->opal_dev); 2344 ctrl->opal_dev = NULL; 2345 } 2346 } 2347 #else 2348 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2349 { 2350 } 2351 #endif /* CONFIG_BLK_SED_OPAL */ 2352 2353 #ifdef CONFIG_BLK_DEV_ZONED 2354 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2355 unsigned int nr_zones, report_zones_cb cb, void *data) 2356 { 2357 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2358 data); 2359 } 2360 #else 2361 #define nvme_report_zones NULL 2362 #endif /* CONFIG_BLK_DEV_ZONED */ 2363 2364 const struct block_device_operations nvme_bdev_ops = { 2365 .owner = THIS_MODULE, 2366 .ioctl = nvme_ioctl, 2367 .compat_ioctl = blkdev_compat_ptr_ioctl, 2368 .open = nvme_open, 2369 .release = nvme_release, 2370 .getgeo = nvme_getgeo, 2371 .get_unique_id = nvme_get_unique_id, 2372 .report_zones = nvme_report_zones, 2373 .pr_ops = &nvme_pr_ops, 2374 }; 2375 2376 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2377 u32 timeout, const char *op) 2378 { 2379 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2380 u32 csts; 2381 int ret; 2382 2383 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2384 if (csts == ~0) 2385 return -ENODEV; 2386 if ((csts & mask) == val) 2387 break; 2388 2389 usleep_range(1000, 2000); 2390 if (fatal_signal_pending(current)) 2391 return -EINTR; 2392 if (time_after(jiffies, timeout_jiffies)) { 2393 dev_err(ctrl->device, 2394 "Device not ready; aborting %s, CSTS=0x%x\n", 2395 op, csts); 2396 return -ENODEV; 2397 } 2398 } 2399 2400 return ret; 2401 } 2402 2403 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2404 { 2405 int ret; 2406 2407 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2408 if (shutdown) 2409 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2410 else 2411 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2412 2413 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2414 if (ret) 2415 return ret; 2416 2417 if (shutdown) { 2418 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2419 NVME_CSTS_SHST_CMPLT, 2420 ctrl->shutdown_timeout, "shutdown"); 2421 } 2422 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2423 msleep(NVME_QUIRK_DELAY_AMOUNT); 2424 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2425 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2426 } 2427 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2428 2429 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2430 { 2431 unsigned dev_page_min; 2432 u32 timeout; 2433 int ret; 2434 2435 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2436 if (ret) { 2437 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2438 return ret; 2439 } 2440 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2441 2442 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2443 dev_err(ctrl->device, 2444 "Minimum device page size %u too large for host (%u)\n", 2445 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2446 return -ENODEV; 2447 } 2448 2449 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2450 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2451 else 2452 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2453 2454 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) 2455 ctrl->ctrl_config |= NVME_CC_CRIME; 2456 2457 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2458 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2459 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2460 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2461 if (ret) 2462 return ret; 2463 2464 /* Flush write to device (required if transport is PCI) */ 2465 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2466 if (ret) 2467 return ret; 2468 2469 /* CAP value may change after initial CC write */ 2470 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2471 if (ret) 2472 return ret; 2473 2474 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2475 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2476 u32 crto, ready_timeout; 2477 2478 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2479 if (ret) { 2480 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2481 ret); 2482 return ret; 2483 } 2484 2485 /* 2486 * CRTO should always be greater or equal to CAP.TO, but some 2487 * devices are known to get this wrong. Use the larger of the 2488 * two values. 2489 */ 2490 if (ctrl->ctrl_config & NVME_CC_CRIME) 2491 ready_timeout = NVME_CRTO_CRIMT(crto); 2492 else 2493 ready_timeout = NVME_CRTO_CRWMT(crto); 2494 2495 if (ready_timeout < timeout) 2496 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2497 crto, ctrl->cap); 2498 else 2499 timeout = ready_timeout; 2500 } 2501 2502 ctrl->ctrl_config |= NVME_CC_ENABLE; 2503 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2504 if (ret) 2505 return ret; 2506 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2507 (timeout + 1) / 2, "initialisation"); 2508 } 2509 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2510 2511 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2512 { 2513 __le64 ts; 2514 int ret; 2515 2516 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2517 return 0; 2518 2519 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2520 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2521 NULL); 2522 if (ret) 2523 dev_warn_once(ctrl->device, 2524 "could not set timestamp (%d)\n", ret); 2525 return ret; 2526 } 2527 2528 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2529 { 2530 struct nvme_feat_host_behavior *host; 2531 u8 acre = 0, lbafee = 0; 2532 int ret; 2533 2534 /* Don't bother enabling the feature if retry delay is not reported */ 2535 if (ctrl->crdt[0]) 2536 acre = NVME_ENABLE_ACRE; 2537 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2538 lbafee = NVME_ENABLE_LBAFEE; 2539 2540 if (!acre && !lbafee) 2541 return 0; 2542 2543 host = kzalloc(sizeof(*host), GFP_KERNEL); 2544 if (!host) 2545 return 0; 2546 2547 host->acre = acre; 2548 host->lbafee = lbafee; 2549 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2550 host, sizeof(*host), NULL); 2551 kfree(host); 2552 return ret; 2553 } 2554 2555 /* 2556 * The function checks whether the given total (exlat + enlat) latency of 2557 * a power state allows the latter to be used as an APST transition target. 2558 * It does so by comparing the latency to the primary and secondary latency 2559 * tolerances defined by module params. If there's a match, the corresponding 2560 * timeout value is returned and the matching tolerance index (1 or 2) is 2561 * reported. 2562 */ 2563 static bool nvme_apst_get_transition_time(u64 total_latency, 2564 u64 *transition_time, unsigned *last_index) 2565 { 2566 if (total_latency <= apst_primary_latency_tol_us) { 2567 if (*last_index == 1) 2568 return false; 2569 *last_index = 1; 2570 *transition_time = apst_primary_timeout_ms; 2571 return true; 2572 } 2573 if (apst_secondary_timeout_ms && 2574 total_latency <= apst_secondary_latency_tol_us) { 2575 if (*last_index <= 2) 2576 return false; 2577 *last_index = 2; 2578 *transition_time = apst_secondary_timeout_ms; 2579 return true; 2580 } 2581 return false; 2582 } 2583 2584 /* 2585 * APST (Autonomous Power State Transition) lets us program a table of power 2586 * state transitions that the controller will perform automatically. 2587 * 2588 * Depending on module params, one of the two supported techniques will be used: 2589 * 2590 * - If the parameters provide explicit timeouts and tolerances, they will be 2591 * used to build a table with up to 2 non-operational states to transition to. 2592 * The default parameter values were selected based on the values used by 2593 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2594 * regeneration of the APST table in the event of switching between external 2595 * and battery power, the timeouts and tolerances reflect a compromise 2596 * between values used by Microsoft for AC and battery scenarios. 2597 * - If not, we'll configure the table with a simple heuristic: we are willing 2598 * to spend at most 2% of the time transitioning between power states. 2599 * Therefore, when running in any given state, we will enter the next 2600 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2601 * microseconds, as long as that state's exit latency is under the requested 2602 * maximum latency. 2603 * 2604 * We will not autonomously enter any non-operational state for which the total 2605 * latency exceeds ps_max_latency_us. 2606 * 2607 * Users can set ps_max_latency_us to zero to turn off APST. 2608 */ 2609 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2610 { 2611 struct nvme_feat_auto_pst *table; 2612 unsigned apste = 0; 2613 u64 max_lat_us = 0; 2614 __le64 target = 0; 2615 int max_ps = -1; 2616 int state; 2617 int ret; 2618 unsigned last_lt_index = UINT_MAX; 2619 2620 /* 2621 * If APST isn't supported or if we haven't been initialized yet, 2622 * then don't do anything. 2623 */ 2624 if (!ctrl->apsta) 2625 return 0; 2626 2627 if (ctrl->npss > 31) { 2628 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2629 return 0; 2630 } 2631 2632 table = kzalloc(sizeof(*table), GFP_KERNEL); 2633 if (!table) 2634 return 0; 2635 2636 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2637 /* Turn off APST. */ 2638 dev_dbg(ctrl->device, "APST disabled\n"); 2639 goto done; 2640 } 2641 2642 /* 2643 * Walk through all states from lowest- to highest-power. 2644 * According to the spec, lower-numbered states use more power. NPSS, 2645 * despite the name, is the index of the lowest-power state, not the 2646 * number of states. 2647 */ 2648 for (state = (int)ctrl->npss; state >= 0; state--) { 2649 u64 total_latency_us, exit_latency_us, transition_ms; 2650 2651 if (target) 2652 table->entries[state] = target; 2653 2654 /* 2655 * Don't allow transitions to the deepest state if it's quirked 2656 * off. 2657 */ 2658 if (state == ctrl->npss && 2659 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2660 continue; 2661 2662 /* 2663 * Is this state a useful non-operational state for higher-power 2664 * states to autonomously transition to? 2665 */ 2666 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2667 continue; 2668 2669 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2670 if (exit_latency_us > ctrl->ps_max_latency_us) 2671 continue; 2672 2673 total_latency_us = exit_latency_us + 2674 le32_to_cpu(ctrl->psd[state].entry_lat); 2675 2676 /* 2677 * This state is good. It can be used as the APST idle target 2678 * for higher power states. 2679 */ 2680 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2681 if (!nvme_apst_get_transition_time(total_latency_us, 2682 &transition_ms, &last_lt_index)) 2683 continue; 2684 } else { 2685 transition_ms = total_latency_us + 19; 2686 do_div(transition_ms, 20); 2687 if (transition_ms > (1 << 24) - 1) 2688 transition_ms = (1 << 24) - 1; 2689 } 2690 2691 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2692 if (max_ps == -1) 2693 max_ps = state; 2694 if (total_latency_us > max_lat_us) 2695 max_lat_us = total_latency_us; 2696 } 2697 2698 if (max_ps == -1) 2699 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2700 else 2701 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2702 max_ps, max_lat_us, (int)sizeof(*table), table); 2703 apste = 1; 2704 2705 done: 2706 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2707 table, sizeof(*table), NULL); 2708 if (ret) 2709 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2710 kfree(table); 2711 return ret; 2712 } 2713 2714 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2715 { 2716 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2717 u64 latency; 2718 2719 switch (val) { 2720 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2721 case PM_QOS_LATENCY_ANY: 2722 latency = U64_MAX; 2723 break; 2724 2725 default: 2726 latency = val; 2727 } 2728 2729 if (ctrl->ps_max_latency_us != latency) { 2730 ctrl->ps_max_latency_us = latency; 2731 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2732 nvme_configure_apst(ctrl); 2733 } 2734 } 2735 2736 struct nvme_core_quirk_entry { 2737 /* 2738 * NVMe model and firmware strings are padded with spaces. For 2739 * simplicity, strings in the quirk table are padded with NULLs 2740 * instead. 2741 */ 2742 u16 vid; 2743 const char *mn; 2744 const char *fr; 2745 unsigned long quirks; 2746 }; 2747 2748 static const struct nvme_core_quirk_entry core_quirks[] = { 2749 { 2750 /* 2751 * This Toshiba device seems to die using any APST states. See: 2752 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2753 */ 2754 .vid = 0x1179, 2755 .mn = "THNSF5256GPUK TOSHIBA", 2756 .quirks = NVME_QUIRK_NO_APST, 2757 }, 2758 { 2759 /* 2760 * This LiteON CL1-3D*-Q11 firmware version has a race 2761 * condition associated with actions related to suspend to idle 2762 * LiteON has resolved the problem in future firmware 2763 */ 2764 .vid = 0x14a4, 2765 .fr = "22301111", 2766 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2767 }, 2768 { 2769 /* 2770 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2771 * aborts I/O during any load, but more easily reproducible 2772 * with discards (fstrim). 2773 * 2774 * The device is left in a state where it is also not possible 2775 * to use "nvme set-feature" to disable APST, but booting with 2776 * nvme_core.default_ps_max_latency=0 works. 2777 */ 2778 .vid = 0x1e0f, 2779 .mn = "KCD6XVUL6T40", 2780 .quirks = NVME_QUIRK_NO_APST, 2781 }, 2782 { 2783 /* 2784 * The external Samsung X5 SSD fails initialization without a 2785 * delay before checking if it is ready and has a whole set of 2786 * other problems. To make this even more interesting, it 2787 * shares the PCI ID with internal Samsung 970 Evo Plus that 2788 * does not need or want these quirks. 2789 */ 2790 .vid = 0x144d, 2791 .mn = "Samsung Portable SSD X5", 2792 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2793 NVME_QUIRK_NO_DEEPEST_PS | 2794 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2795 } 2796 }; 2797 2798 /* match is null-terminated but idstr is space-padded. */ 2799 static bool string_matches(const char *idstr, const char *match, size_t len) 2800 { 2801 size_t matchlen; 2802 2803 if (!match) 2804 return true; 2805 2806 matchlen = strlen(match); 2807 WARN_ON_ONCE(matchlen > len); 2808 2809 if (memcmp(idstr, match, matchlen)) 2810 return false; 2811 2812 for (; matchlen < len; matchlen++) 2813 if (idstr[matchlen] != ' ') 2814 return false; 2815 2816 return true; 2817 } 2818 2819 static bool quirk_matches(const struct nvme_id_ctrl *id, 2820 const struct nvme_core_quirk_entry *q) 2821 { 2822 return q->vid == le16_to_cpu(id->vid) && 2823 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2824 string_matches(id->fr, q->fr, sizeof(id->fr)); 2825 } 2826 2827 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2828 struct nvme_id_ctrl *id) 2829 { 2830 size_t nqnlen; 2831 int off; 2832 2833 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2834 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2835 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2836 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2837 return; 2838 } 2839 2840 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2841 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2842 } 2843 2844 /* 2845 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2846 * Base Specification 2.0. It is slightly different from the format 2847 * specified there due to historic reasons, and we can't change it now. 2848 */ 2849 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2850 "nqn.2014.08.org.nvmexpress:%04x%04x", 2851 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2852 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2853 off += sizeof(id->sn); 2854 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2855 off += sizeof(id->mn); 2856 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2857 } 2858 2859 static void nvme_release_subsystem(struct device *dev) 2860 { 2861 struct nvme_subsystem *subsys = 2862 container_of(dev, struct nvme_subsystem, dev); 2863 2864 if (subsys->instance >= 0) 2865 ida_free(&nvme_instance_ida, subsys->instance); 2866 kfree(subsys); 2867 } 2868 2869 static void nvme_destroy_subsystem(struct kref *ref) 2870 { 2871 struct nvme_subsystem *subsys = 2872 container_of(ref, struct nvme_subsystem, ref); 2873 2874 mutex_lock(&nvme_subsystems_lock); 2875 list_del(&subsys->entry); 2876 mutex_unlock(&nvme_subsystems_lock); 2877 2878 ida_destroy(&subsys->ns_ida); 2879 device_del(&subsys->dev); 2880 put_device(&subsys->dev); 2881 } 2882 2883 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2884 { 2885 kref_put(&subsys->ref, nvme_destroy_subsystem); 2886 } 2887 2888 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2889 { 2890 struct nvme_subsystem *subsys; 2891 2892 lockdep_assert_held(&nvme_subsystems_lock); 2893 2894 /* 2895 * Fail matches for discovery subsystems. This results 2896 * in each discovery controller bound to a unique subsystem. 2897 * This avoids issues with validating controller values 2898 * that can only be true when there is a single unique subsystem. 2899 * There may be multiple and completely independent entities 2900 * that provide discovery controllers. 2901 */ 2902 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2903 return NULL; 2904 2905 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2906 if (strcmp(subsys->subnqn, subsysnqn)) 2907 continue; 2908 if (!kref_get_unless_zero(&subsys->ref)) 2909 continue; 2910 return subsys; 2911 } 2912 2913 return NULL; 2914 } 2915 2916 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2917 { 2918 return ctrl->opts && ctrl->opts->discovery_nqn; 2919 } 2920 2921 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2922 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2923 { 2924 struct nvme_ctrl *tmp; 2925 2926 lockdep_assert_held(&nvme_subsystems_lock); 2927 2928 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2929 if (nvme_state_terminal(tmp)) 2930 continue; 2931 2932 if (tmp->cntlid == ctrl->cntlid) { 2933 dev_err(ctrl->device, 2934 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2935 ctrl->cntlid, dev_name(tmp->device), 2936 subsys->subnqn); 2937 return false; 2938 } 2939 2940 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2941 nvme_discovery_ctrl(ctrl)) 2942 continue; 2943 2944 dev_err(ctrl->device, 2945 "Subsystem does not support multiple controllers\n"); 2946 return false; 2947 } 2948 2949 return true; 2950 } 2951 2952 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2953 { 2954 struct nvme_subsystem *subsys, *found; 2955 int ret; 2956 2957 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2958 if (!subsys) 2959 return -ENOMEM; 2960 2961 subsys->instance = -1; 2962 mutex_init(&subsys->lock); 2963 kref_init(&subsys->ref); 2964 INIT_LIST_HEAD(&subsys->ctrls); 2965 INIT_LIST_HEAD(&subsys->nsheads); 2966 nvme_init_subnqn(subsys, ctrl, id); 2967 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2968 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2969 subsys->vendor_id = le16_to_cpu(id->vid); 2970 subsys->cmic = id->cmic; 2971 2972 /* Versions prior to 1.4 don't necessarily report a valid type */ 2973 if (id->cntrltype == NVME_CTRL_DISC || 2974 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2975 subsys->subtype = NVME_NQN_DISC; 2976 else 2977 subsys->subtype = NVME_NQN_NVME; 2978 2979 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2980 dev_err(ctrl->device, 2981 "Subsystem %s is not a discovery controller", 2982 subsys->subnqn); 2983 kfree(subsys); 2984 return -EINVAL; 2985 } 2986 subsys->awupf = le16_to_cpu(id->awupf); 2987 nvme_mpath_default_iopolicy(subsys); 2988 2989 subsys->dev.class = &nvme_subsys_class; 2990 subsys->dev.release = nvme_release_subsystem; 2991 subsys->dev.groups = nvme_subsys_attrs_groups; 2992 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2993 device_initialize(&subsys->dev); 2994 2995 mutex_lock(&nvme_subsystems_lock); 2996 found = __nvme_find_get_subsystem(subsys->subnqn); 2997 if (found) { 2998 put_device(&subsys->dev); 2999 subsys = found; 3000 3001 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 3002 ret = -EINVAL; 3003 goto out_put_subsystem; 3004 } 3005 } else { 3006 ret = device_add(&subsys->dev); 3007 if (ret) { 3008 dev_err(ctrl->device, 3009 "failed to register subsystem device.\n"); 3010 put_device(&subsys->dev); 3011 goto out_unlock; 3012 } 3013 ida_init(&subsys->ns_ida); 3014 list_add_tail(&subsys->entry, &nvme_subsystems); 3015 } 3016 3017 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 3018 dev_name(ctrl->device)); 3019 if (ret) { 3020 dev_err(ctrl->device, 3021 "failed to create sysfs link from subsystem.\n"); 3022 goto out_put_subsystem; 3023 } 3024 3025 if (!found) 3026 subsys->instance = ctrl->instance; 3027 ctrl->subsys = subsys; 3028 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3029 mutex_unlock(&nvme_subsystems_lock); 3030 return 0; 3031 3032 out_put_subsystem: 3033 nvme_put_subsystem(subsys); 3034 out_unlock: 3035 mutex_unlock(&nvme_subsystems_lock); 3036 return ret; 3037 } 3038 3039 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3040 void *log, size_t size, u64 offset) 3041 { 3042 struct nvme_command c = { }; 3043 u32 dwlen = nvme_bytes_to_numd(size); 3044 3045 c.get_log_page.opcode = nvme_admin_get_log_page; 3046 c.get_log_page.nsid = cpu_to_le32(nsid); 3047 c.get_log_page.lid = log_page; 3048 c.get_log_page.lsp = lsp; 3049 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3050 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3051 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3052 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3053 c.get_log_page.csi = csi; 3054 3055 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3056 } 3057 3058 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3059 struct nvme_effects_log **log) 3060 { 3061 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 3062 int ret; 3063 3064 if (cel) 3065 goto out; 3066 3067 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3068 if (!cel) 3069 return -ENOMEM; 3070 3071 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3072 cel, sizeof(*cel), 0); 3073 if (ret) { 3074 kfree(cel); 3075 return ret; 3076 } 3077 3078 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3079 out: 3080 *log = cel; 3081 return 0; 3082 } 3083 3084 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3085 { 3086 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3087 3088 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3089 return UINT_MAX; 3090 return val; 3091 } 3092 3093 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3094 { 3095 struct nvme_command c = { }; 3096 struct nvme_id_ctrl_nvm *id; 3097 int ret; 3098 3099 /* 3100 * Even though NVMe spec explicitly states that MDTS is not applicable 3101 * to the write-zeroes, we are cautious and limit the size to the 3102 * controllers max_hw_sectors value, which is based on the MDTS field 3103 * and possibly other limiting factors. 3104 */ 3105 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3106 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3107 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3108 else 3109 ctrl->max_zeroes_sectors = 0; 3110 3111 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3112 nvme_ctrl_limited_cns(ctrl) || 3113 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3114 return 0; 3115 3116 id = kzalloc(sizeof(*id), GFP_KERNEL); 3117 if (!id) 3118 return -ENOMEM; 3119 3120 c.identify.opcode = nvme_admin_identify; 3121 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3122 c.identify.csi = NVME_CSI_NVM; 3123 3124 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3125 if (ret) 3126 goto free_data; 3127 3128 ctrl->dmrl = id->dmrl; 3129 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3130 if (id->wzsl) 3131 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3132 3133 free_data: 3134 if (ret > 0) 3135 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3136 kfree(id); 3137 return ret; 3138 } 3139 3140 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3141 { 3142 struct nvme_effects_log *log = ctrl->effects; 3143 3144 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3145 NVME_CMD_EFFECTS_NCC | 3146 NVME_CMD_EFFECTS_CSE_MASK); 3147 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3148 NVME_CMD_EFFECTS_CSE_MASK); 3149 3150 /* 3151 * The spec says the result of a security receive command depends on 3152 * the previous security send command. As such, many vendors log this 3153 * command as one to submitted only when no other commands to the same 3154 * namespace are outstanding. The intention is to tell the host to 3155 * prevent mixing security send and receive. 3156 * 3157 * This driver can only enforce such exclusive access against IO 3158 * queues, though. We are not readily able to enforce such a rule for 3159 * two commands to the admin queue, which is the only queue that 3160 * matters for this command. 3161 * 3162 * Rather than blindly freezing the IO queues for this effect that 3163 * doesn't even apply to IO, mask it off. 3164 */ 3165 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3166 3167 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3168 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3169 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3170 } 3171 3172 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3173 { 3174 int ret = 0; 3175 3176 if (ctrl->effects) 3177 return 0; 3178 3179 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3180 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3181 if (ret < 0) 3182 return ret; 3183 } 3184 3185 if (!ctrl->effects) { 3186 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3187 if (!ctrl->effects) 3188 return -ENOMEM; 3189 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3190 } 3191 3192 nvme_init_known_nvm_effects(ctrl); 3193 return 0; 3194 } 3195 3196 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3197 { 3198 /* 3199 * In fabrics we need to verify the cntlid matches the 3200 * admin connect 3201 */ 3202 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3203 dev_err(ctrl->device, 3204 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3205 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3206 return -EINVAL; 3207 } 3208 3209 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3210 dev_err(ctrl->device, 3211 "keep-alive support is mandatory for fabrics\n"); 3212 return -EINVAL; 3213 } 3214 3215 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3216 dev_err(ctrl->device, 3217 "I/O queue command capsule supported size %d < 4\n", 3218 ctrl->ioccsz); 3219 return -EINVAL; 3220 } 3221 3222 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3223 dev_err(ctrl->device, 3224 "I/O queue response capsule supported size %d < 1\n", 3225 ctrl->iorcsz); 3226 return -EINVAL; 3227 } 3228 3229 if (!ctrl->maxcmd) { 3230 dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); 3231 return -EINVAL; 3232 } 3233 3234 return 0; 3235 } 3236 3237 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3238 { 3239 struct queue_limits lim; 3240 struct nvme_id_ctrl *id; 3241 u32 max_hw_sectors; 3242 bool prev_apst_enabled; 3243 int ret; 3244 3245 ret = nvme_identify_ctrl(ctrl, &id); 3246 if (ret) { 3247 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3248 return -EIO; 3249 } 3250 3251 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3252 ctrl->cntlid = le16_to_cpu(id->cntlid); 3253 3254 if (!ctrl->identified) { 3255 unsigned int i; 3256 3257 /* 3258 * Check for quirks. Quirk can depend on firmware version, 3259 * so, in principle, the set of quirks present can change 3260 * across a reset. As a possible future enhancement, we 3261 * could re-scan for quirks every time we reinitialize 3262 * the device, but we'd have to make sure that the driver 3263 * behaves intelligently if the quirks change. 3264 */ 3265 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3266 if (quirk_matches(id, &core_quirks[i])) 3267 ctrl->quirks |= core_quirks[i].quirks; 3268 } 3269 3270 ret = nvme_init_subsystem(ctrl, id); 3271 if (ret) 3272 goto out_free; 3273 3274 ret = nvme_init_effects(ctrl, id); 3275 if (ret) 3276 goto out_free; 3277 } 3278 memcpy(ctrl->subsys->firmware_rev, id->fr, 3279 sizeof(ctrl->subsys->firmware_rev)); 3280 3281 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3282 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3283 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3284 } 3285 3286 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3287 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3288 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3289 3290 ctrl->oacs = le16_to_cpu(id->oacs); 3291 ctrl->oncs = le16_to_cpu(id->oncs); 3292 ctrl->mtfa = le16_to_cpu(id->mtfa); 3293 ctrl->oaes = le32_to_cpu(id->oaes); 3294 ctrl->wctemp = le16_to_cpu(id->wctemp); 3295 ctrl->cctemp = le16_to_cpu(id->cctemp); 3296 3297 atomic_set(&ctrl->abort_limit, id->acl + 1); 3298 ctrl->vwc = id->vwc; 3299 if (id->mdts) 3300 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3301 else 3302 max_hw_sectors = UINT_MAX; 3303 ctrl->max_hw_sectors = 3304 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3305 3306 lim = queue_limits_start_update(ctrl->admin_q); 3307 nvme_set_ctrl_limits(ctrl, &lim); 3308 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3309 if (ret) 3310 goto out_free; 3311 3312 ctrl->sgls = le32_to_cpu(id->sgls); 3313 ctrl->kas = le16_to_cpu(id->kas); 3314 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3315 ctrl->ctratt = le32_to_cpu(id->ctratt); 3316 3317 ctrl->cntrltype = id->cntrltype; 3318 ctrl->dctype = id->dctype; 3319 3320 if (id->rtd3e) { 3321 /* us -> s */ 3322 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3323 3324 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3325 shutdown_timeout, 60); 3326 3327 if (ctrl->shutdown_timeout != shutdown_timeout) 3328 dev_info(ctrl->device, 3329 "D3 entry latency set to %u seconds\n", 3330 ctrl->shutdown_timeout); 3331 } else 3332 ctrl->shutdown_timeout = shutdown_timeout; 3333 3334 ctrl->npss = id->npss; 3335 ctrl->apsta = id->apsta; 3336 prev_apst_enabled = ctrl->apst_enabled; 3337 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3338 if (force_apst && id->apsta) { 3339 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3340 ctrl->apst_enabled = true; 3341 } else { 3342 ctrl->apst_enabled = false; 3343 } 3344 } else { 3345 ctrl->apst_enabled = id->apsta; 3346 } 3347 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3348 3349 if (ctrl->ops->flags & NVME_F_FABRICS) { 3350 ctrl->icdoff = le16_to_cpu(id->icdoff); 3351 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3352 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3353 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3354 3355 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3356 if (ret) 3357 goto out_free; 3358 } else { 3359 ctrl->hmpre = le32_to_cpu(id->hmpre); 3360 ctrl->hmmin = le32_to_cpu(id->hmmin); 3361 ctrl->hmminds = le32_to_cpu(id->hmminds); 3362 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3363 } 3364 3365 ret = nvme_mpath_init_identify(ctrl, id); 3366 if (ret < 0) 3367 goto out_free; 3368 3369 if (ctrl->apst_enabled && !prev_apst_enabled) 3370 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3371 else if (!ctrl->apst_enabled && prev_apst_enabled) 3372 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3373 3374 out_free: 3375 kfree(id); 3376 return ret; 3377 } 3378 3379 /* 3380 * Initialize the cached copies of the Identify data and various controller 3381 * register in our nvme_ctrl structure. This should be called as soon as 3382 * the admin queue is fully up and running. 3383 */ 3384 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3385 { 3386 int ret; 3387 3388 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3389 if (ret) { 3390 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3391 return ret; 3392 } 3393 3394 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3395 3396 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3397 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3398 3399 ret = nvme_init_identify(ctrl); 3400 if (ret) 3401 return ret; 3402 3403 ret = nvme_configure_apst(ctrl); 3404 if (ret < 0) 3405 return ret; 3406 3407 ret = nvme_configure_timestamp(ctrl); 3408 if (ret < 0) 3409 return ret; 3410 3411 ret = nvme_configure_host_options(ctrl); 3412 if (ret < 0) 3413 return ret; 3414 3415 nvme_configure_opal(ctrl, was_suspended); 3416 3417 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3418 /* 3419 * Do not return errors unless we are in a controller reset, 3420 * the controller works perfectly fine without hwmon. 3421 */ 3422 ret = nvme_hwmon_init(ctrl); 3423 if (ret == -EINTR) 3424 return ret; 3425 } 3426 3427 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3428 ctrl->identified = true; 3429 3430 nvme_start_keep_alive(ctrl); 3431 3432 return 0; 3433 } 3434 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3435 3436 static int nvme_dev_open(struct inode *inode, struct file *file) 3437 { 3438 struct nvme_ctrl *ctrl = 3439 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3440 3441 switch (nvme_ctrl_state(ctrl)) { 3442 case NVME_CTRL_LIVE: 3443 break; 3444 default: 3445 return -EWOULDBLOCK; 3446 } 3447 3448 nvme_get_ctrl(ctrl); 3449 if (!try_module_get(ctrl->ops->module)) { 3450 nvme_put_ctrl(ctrl); 3451 return -EINVAL; 3452 } 3453 3454 file->private_data = ctrl; 3455 return 0; 3456 } 3457 3458 static int nvme_dev_release(struct inode *inode, struct file *file) 3459 { 3460 struct nvme_ctrl *ctrl = 3461 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3462 3463 module_put(ctrl->ops->module); 3464 nvme_put_ctrl(ctrl); 3465 return 0; 3466 } 3467 3468 static const struct file_operations nvme_dev_fops = { 3469 .owner = THIS_MODULE, 3470 .open = nvme_dev_open, 3471 .release = nvme_dev_release, 3472 .unlocked_ioctl = nvme_dev_ioctl, 3473 .compat_ioctl = compat_ptr_ioctl, 3474 .uring_cmd = nvme_dev_uring_cmd, 3475 }; 3476 3477 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3478 unsigned nsid) 3479 { 3480 struct nvme_ns_head *h; 3481 3482 lockdep_assert_held(&ctrl->subsys->lock); 3483 3484 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3485 /* 3486 * Private namespaces can share NSIDs under some conditions. 3487 * In that case we can't use the same ns_head for namespaces 3488 * with the same NSID. 3489 */ 3490 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3491 continue; 3492 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3493 return h; 3494 } 3495 3496 return NULL; 3497 } 3498 3499 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3500 struct nvme_ns_ids *ids) 3501 { 3502 bool has_uuid = !uuid_is_null(&ids->uuid); 3503 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3504 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3505 struct nvme_ns_head *h; 3506 3507 lockdep_assert_held(&subsys->lock); 3508 3509 list_for_each_entry(h, &subsys->nsheads, entry) { 3510 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3511 return -EINVAL; 3512 if (has_nguid && 3513 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3514 return -EINVAL; 3515 if (has_eui64 && 3516 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3517 return -EINVAL; 3518 } 3519 3520 return 0; 3521 } 3522 3523 static void nvme_cdev_rel(struct device *dev) 3524 { 3525 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3526 } 3527 3528 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3529 { 3530 cdev_device_del(cdev, cdev_device); 3531 put_device(cdev_device); 3532 } 3533 3534 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3535 const struct file_operations *fops, struct module *owner) 3536 { 3537 int minor, ret; 3538 3539 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3540 if (minor < 0) 3541 return minor; 3542 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3543 cdev_device->class = &nvme_ns_chr_class; 3544 cdev_device->release = nvme_cdev_rel; 3545 device_initialize(cdev_device); 3546 cdev_init(cdev, fops); 3547 cdev->owner = owner; 3548 ret = cdev_device_add(cdev, cdev_device); 3549 if (ret) 3550 put_device(cdev_device); 3551 3552 return ret; 3553 } 3554 3555 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3556 { 3557 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3558 } 3559 3560 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3561 { 3562 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3563 return 0; 3564 } 3565 3566 static const struct file_operations nvme_ns_chr_fops = { 3567 .owner = THIS_MODULE, 3568 .open = nvme_ns_chr_open, 3569 .release = nvme_ns_chr_release, 3570 .unlocked_ioctl = nvme_ns_chr_ioctl, 3571 .compat_ioctl = compat_ptr_ioctl, 3572 .uring_cmd = nvme_ns_chr_uring_cmd, 3573 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3574 }; 3575 3576 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3577 { 3578 int ret; 3579 3580 ns->cdev_device.parent = ns->ctrl->device; 3581 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3582 ns->ctrl->instance, ns->head->instance); 3583 if (ret) 3584 return ret; 3585 3586 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3587 ns->ctrl->ops->module); 3588 } 3589 3590 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3591 struct nvme_ns_info *info) 3592 { 3593 struct nvme_ns_head *head; 3594 size_t size = sizeof(*head); 3595 int ret = -ENOMEM; 3596 3597 #ifdef CONFIG_NVME_MULTIPATH 3598 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3599 #endif 3600 3601 head = kzalloc(size, GFP_KERNEL); 3602 if (!head) 3603 goto out; 3604 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3605 if (ret < 0) 3606 goto out_free_head; 3607 head->instance = ret; 3608 INIT_LIST_HEAD(&head->list); 3609 ret = init_srcu_struct(&head->srcu); 3610 if (ret) 3611 goto out_ida_remove; 3612 head->subsys = ctrl->subsys; 3613 head->ns_id = info->nsid; 3614 head->ids = info->ids; 3615 head->shared = info->is_shared; 3616 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3617 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3618 kref_init(&head->ref); 3619 3620 if (head->ids.csi) { 3621 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3622 if (ret) 3623 goto out_cleanup_srcu; 3624 } else 3625 head->effects = ctrl->effects; 3626 3627 ret = nvme_mpath_alloc_disk(ctrl, head); 3628 if (ret) 3629 goto out_cleanup_srcu; 3630 3631 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3632 3633 kref_get(&ctrl->subsys->ref); 3634 3635 return head; 3636 out_cleanup_srcu: 3637 cleanup_srcu_struct(&head->srcu); 3638 out_ida_remove: 3639 ida_free(&ctrl->subsys->ns_ida, head->instance); 3640 out_free_head: 3641 kfree(head); 3642 out: 3643 if (ret > 0) 3644 ret = blk_status_to_errno(nvme_error_status(ret)); 3645 return ERR_PTR(ret); 3646 } 3647 3648 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3649 struct nvme_ns_ids *ids) 3650 { 3651 struct nvme_subsystem *s; 3652 int ret = 0; 3653 3654 /* 3655 * Note that this check is racy as we try to avoid holding the global 3656 * lock over the whole ns_head creation. But it is only intended as 3657 * a sanity check anyway. 3658 */ 3659 mutex_lock(&nvme_subsystems_lock); 3660 list_for_each_entry(s, &nvme_subsystems, entry) { 3661 if (s == this) 3662 continue; 3663 mutex_lock(&s->lock); 3664 ret = nvme_subsys_check_duplicate_ids(s, ids); 3665 mutex_unlock(&s->lock); 3666 if (ret) 3667 break; 3668 } 3669 mutex_unlock(&nvme_subsystems_lock); 3670 3671 return ret; 3672 } 3673 3674 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3675 { 3676 struct nvme_ctrl *ctrl = ns->ctrl; 3677 struct nvme_ns_head *head = NULL; 3678 int ret; 3679 3680 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3681 if (ret) { 3682 /* 3683 * We've found two different namespaces on two different 3684 * subsystems that report the same ID. This is pretty nasty 3685 * for anything that actually requires unique device 3686 * identification. In the kernel we need this for multipathing, 3687 * and in user space the /dev/disk/by-id/ links rely on it. 3688 * 3689 * If the device also claims to be multi-path capable back off 3690 * here now and refuse the probe the second device as this is a 3691 * recipe for data corruption. If not this is probably a 3692 * cheap consumer device if on the PCIe bus, so let the user 3693 * proceed and use the shiny toy, but warn that with changing 3694 * probing order (which due to our async probing could just be 3695 * device taking longer to startup) the other device could show 3696 * up at any time. 3697 */ 3698 nvme_print_device_info(ctrl); 3699 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3700 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3701 info->is_shared)) { 3702 dev_err(ctrl->device, 3703 "ignoring nsid %d because of duplicate IDs\n", 3704 info->nsid); 3705 return ret; 3706 } 3707 3708 dev_err(ctrl->device, 3709 "clearing duplicate IDs for nsid %d\n", info->nsid); 3710 dev_err(ctrl->device, 3711 "use of /dev/disk/by-id/ may cause data corruption\n"); 3712 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3713 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3714 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3715 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3716 } 3717 3718 mutex_lock(&ctrl->subsys->lock); 3719 head = nvme_find_ns_head(ctrl, info->nsid); 3720 if (!head) { 3721 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3722 if (ret) { 3723 dev_err(ctrl->device, 3724 "duplicate IDs in subsystem for nsid %d\n", 3725 info->nsid); 3726 goto out_unlock; 3727 } 3728 head = nvme_alloc_ns_head(ctrl, info); 3729 if (IS_ERR(head)) { 3730 ret = PTR_ERR(head); 3731 goto out_unlock; 3732 } 3733 } else { 3734 ret = -EINVAL; 3735 if (!info->is_shared || !head->shared) { 3736 dev_err(ctrl->device, 3737 "Duplicate unshared namespace %d\n", 3738 info->nsid); 3739 goto out_put_ns_head; 3740 } 3741 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3742 dev_err(ctrl->device, 3743 "IDs don't match for shared namespace %d\n", 3744 info->nsid); 3745 goto out_put_ns_head; 3746 } 3747 3748 if (!multipath) { 3749 dev_warn(ctrl->device, 3750 "Found shared namespace %d, but multipathing not supported.\n", 3751 info->nsid); 3752 dev_warn_once(ctrl->device, 3753 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3754 } 3755 } 3756 3757 list_add_tail_rcu(&ns->siblings, &head->list); 3758 ns->head = head; 3759 mutex_unlock(&ctrl->subsys->lock); 3760 return 0; 3761 3762 out_put_ns_head: 3763 nvme_put_ns_head(head); 3764 out_unlock: 3765 mutex_unlock(&ctrl->subsys->lock); 3766 return ret; 3767 } 3768 3769 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3770 { 3771 struct nvme_ns *ns, *ret = NULL; 3772 int srcu_idx; 3773 3774 srcu_idx = srcu_read_lock(&ctrl->srcu); 3775 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 3776 if (ns->head->ns_id == nsid) { 3777 if (!nvme_get_ns(ns)) 3778 continue; 3779 ret = ns; 3780 break; 3781 } 3782 if (ns->head->ns_id > nsid) 3783 break; 3784 } 3785 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3786 return ret; 3787 } 3788 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3789 3790 /* 3791 * Add the namespace to the controller list while keeping the list ordered. 3792 */ 3793 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3794 { 3795 struct nvme_ns *tmp; 3796 3797 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3798 if (tmp->head->ns_id < ns->head->ns_id) { 3799 list_add_rcu(&ns->list, &tmp->list); 3800 return; 3801 } 3802 } 3803 list_add(&ns->list, &ns->ctrl->namespaces); 3804 } 3805 3806 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3807 { 3808 struct queue_limits lim = { }; 3809 struct nvme_ns *ns; 3810 struct gendisk *disk; 3811 int node = ctrl->numa_node; 3812 3813 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3814 if (!ns) 3815 return; 3816 3817 if (ctrl->opts && ctrl->opts->data_digest) 3818 lim.features |= BLK_FEAT_STABLE_WRITES; 3819 if (ctrl->ops->supports_pci_p2pdma && 3820 ctrl->ops->supports_pci_p2pdma(ctrl)) 3821 lim.features |= BLK_FEAT_PCI_P2PDMA; 3822 3823 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); 3824 if (IS_ERR(disk)) 3825 goto out_free_ns; 3826 disk->fops = &nvme_bdev_ops; 3827 disk->private_data = ns; 3828 3829 ns->disk = disk; 3830 ns->queue = disk->queue; 3831 ns->ctrl = ctrl; 3832 kref_init(&ns->kref); 3833 3834 if (nvme_init_ns_head(ns, info)) 3835 goto out_cleanup_disk; 3836 3837 /* 3838 * If multipathing is enabled, the device name for all disks and not 3839 * just those that represent shared namespaces needs to be based on the 3840 * subsystem instance. Using the controller instance for private 3841 * namespaces could lead to naming collisions between shared and private 3842 * namespaces if they don't use a common numbering scheme. 3843 * 3844 * If multipathing is not enabled, disk names must use the controller 3845 * instance as shared namespaces will show up as multiple block 3846 * devices. 3847 */ 3848 if (nvme_ns_head_multipath(ns->head)) { 3849 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3850 ctrl->instance, ns->head->instance); 3851 disk->flags |= GENHD_FL_HIDDEN; 3852 } else if (multipath) { 3853 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3854 ns->head->instance); 3855 } else { 3856 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3857 ns->head->instance); 3858 } 3859 3860 if (nvme_update_ns_info(ns, info)) 3861 goto out_unlink_ns; 3862 3863 mutex_lock(&ctrl->namespaces_lock); 3864 /* 3865 * Ensure that no namespaces are added to the ctrl list after the queues 3866 * are frozen, thereby avoiding a deadlock between scan and reset. 3867 */ 3868 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3869 mutex_unlock(&ctrl->namespaces_lock); 3870 goto out_unlink_ns; 3871 } 3872 nvme_ns_add_to_ctrl_list(ns); 3873 mutex_unlock(&ctrl->namespaces_lock); 3874 synchronize_srcu(&ctrl->srcu); 3875 nvme_get_ctrl(ctrl); 3876 3877 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3878 goto out_cleanup_ns_from_list; 3879 3880 if (!nvme_ns_head_multipath(ns->head)) 3881 nvme_add_ns_cdev(ns); 3882 3883 nvme_mpath_add_disk(ns, info->anagrpid); 3884 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3885 3886 /* 3887 * Set ns->disk->device->driver_data to ns so we can access 3888 * ns->head->passthru_err_log_enabled in 3889 * nvme_io_passthru_err_log_enabled_[store | show](). 3890 */ 3891 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3892 3893 return; 3894 3895 out_cleanup_ns_from_list: 3896 nvme_put_ctrl(ctrl); 3897 mutex_lock(&ctrl->namespaces_lock); 3898 list_del_rcu(&ns->list); 3899 mutex_unlock(&ctrl->namespaces_lock); 3900 synchronize_srcu(&ctrl->srcu); 3901 out_unlink_ns: 3902 mutex_lock(&ctrl->subsys->lock); 3903 list_del_rcu(&ns->siblings); 3904 if (list_empty(&ns->head->list)) 3905 list_del_init(&ns->head->entry); 3906 mutex_unlock(&ctrl->subsys->lock); 3907 nvme_put_ns_head(ns->head); 3908 out_cleanup_disk: 3909 put_disk(disk); 3910 out_free_ns: 3911 kfree(ns); 3912 } 3913 3914 static void nvme_ns_remove(struct nvme_ns *ns) 3915 { 3916 bool last_path = false; 3917 3918 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3919 return; 3920 3921 clear_bit(NVME_NS_READY, &ns->flags); 3922 set_capacity(ns->disk, 0); 3923 nvme_fault_inject_fini(&ns->fault_inject); 3924 3925 /* 3926 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3927 * this ns going back into current_path. 3928 */ 3929 synchronize_srcu(&ns->head->srcu); 3930 3931 /* wait for concurrent submissions */ 3932 if (nvme_mpath_clear_current_path(ns)) 3933 synchronize_srcu(&ns->head->srcu); 3934 3935 mutex_lock(&ns->ctrl->subsys->lock); 3936 list_del_rcu(&ns->siblings); 3937 if (list_empty(&ns->head->list)) { 3938 list_del_init(&ns->head->entry); 3939 last_path = true; 3940 } 3941 mutex_unlock(&ns->ctrl->subsys->lock); 3942 3943 /* guarantee not available in head->list */ 3944 synchronize_srcu(&ns->head->srcu); 3945 3946 if (!nvme_ns_head_multipath(ns->head)) 3947 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3948 del_gendisk(ns->disk); 3949 3950 mutex_lock(&ns->ctrl->namespaces_lock); 3951 list_del_rcu(&ns->list); 3952 mutex_unlock(&ns->ctrl->namespaces_lock); 3953 synchronize_srcu(&ns->ctrl->srcu); 3954 3955 if (last_path) 3956 nvme_mpath_shutdown_disk(ns->head); 3957 nvme_put_ns(ns); 3958 } 3959 3960 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3961 { 3962 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3963 3964 if (ns) { 3965 nvme_ns_remove(ns); 3966 nvme_put_ns(ns); 3967 } 3968 } 3969 3970 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3971 { 3972 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; 3973 3974 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3975 dev_err(ns->ctrl->device, 3976 "identifiers changed for nsid %d\n", ns->head->ns_id); 3977 goto out; 3978 } 3979 3980 ret = nvme_update_ns_info(ns, info); 3981 out: 3982 /* 3983 * Only remove the namespace if we got a fatal error back from the 3984 * device, otherwise ignore the error and just move on. 3985 * 3986 * TODO: we should probably schedule a delayed retry here. 3987 */ 3988 if (ret > 0 && (ret & NVME_STATUS_DNR)) 3989 nvme_ns_remove(ns); 3990 } 3991 3992 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3993 { 3994 struct nvme_ns_info info = { .nsid = nsid }; 3995 struct nvme_ns *ns; 3996 int ret; 3997 3998 if (nvme_identify_ns_descs(ctrl, &info)) 3999 return; 4000 4001 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4002 dev_warn(ctrl->device, 4003 "command set not reported for nsid: %d\n", nsid); 4004 return; 4005 } 4006 4007 /* 4008 * If available try to use the Command Set Idependent Identify Namespace 4009 * data structure to find all the generic information that is needed to 4010 * set up a namespace. If not fall back to the legacy version. 4011 */ 4012 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4013 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 4014 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 4015 else 4016 ret = nvme_ns_info_from_identify(ctrl, &info); 4017 4018 if (info.is_removed) 4019 nvme_ns_remove_by_nsid(ctrl, nsid); 4020 4021 /* 4022 * Ignore the namespace if it is not ready. We will get an AEN once it 4023 * becomes ready and restart the scan. 4024 */ 4025 if (ret || !info.is_ready) 4026 return; 4027 4028 ns = nvme_find_get_ns(ctrl, nsid); 4029 if (ns) { 4030 nvme_validate_ns(ns, &info); 4031 nvme_put_ns(ns); 4032 } else { 4033 nvme_alloc_ns(ctrl, &info); 4034 } 4035 } 4036 4037 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4038 unsigned nsid) 4039 { 4040 struct nvme_ns *ns, *next; 4041 LIST_HEAD(rm_list); 4042 4043 mutex_lock(&ctrl->namespaces_lock); 4044 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4045 if (ns->head->ns_id > nsid) { 4046 list_del_rcu(&ns->list); 4047 synchronize_srcu(&ctrl->srcu); 4048 list_add_tail_rcu(&ns->list, &rm_list); 4049 } 4050 } 4051 mutex_unlock(&ctrl->namespaces_lock); 4052 4053 list_for_each_entry_safe(ns, next, &rm_list, list) 4054 nvme_ns_remove(ns); 4055 } 4056 4057 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4058 { 4059 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4060 __le32 *ns_list; 4061 u32 prev = 0; 4062 int ret = 0, i; 4063 4064 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4065 if (!ns_list) 4066 return -ENOMEM; 4067 4068 for (;;) { 4069 struct nvme_command cmd = { 4070 .identify.opcode = nvme_admin_identify, 4071 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4072 .identify.nsid = cpu_to_le32(prev), 4073 }; 4074 4075 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4076 NVME_IDENTIFY_DATA_SIZE); 4077 if (ret) { 4078 dev_warn(ctrl->device, 4079 "Identify NS List failed (status=0x%x)\n", ret); 4080 goto free; 4081 } 4082 4083 for (i = 0; i < nr_entries; i++) { 4084 u32 nsid = le32_to_cpu(ns_list[i]); 4085 4086 if (!nsid) /* end of the list? */ 4087 goto out; 4088 nvme_scan_ns(ctrl, nsid); 4089 while (++prev < nsid) 4090 nvme_ns_remove_by_nsid(ctrl, prev); 4091 } 4092 } 4093 out: 4094 nvme_remove_invalid_namespaces(ctrl, prev); 4095 free: 4096 kfree(ns_list); 4097 return ret; 4098 } 4099 4100 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4101 { 4102 struct nvme_id_ctrl *id; 4103 u32 nn, i; 4104 4105 if (nvme_identify_ctrl(ctrl, &id)) 4106 return; 4107 nn = le32_to_cpu(id->nn); 4108 kfree(id); 4109 4110 for (i = 1; i <= nn; i++) 4111 nvme_scan_ns(ctrl, i); 4112 4113 nvme_remove_invalid_namespaces(ctrl, nn); 4114 } 4115 4116 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4117 { 4118 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4119 __le32 *log; 4120 int error; 4121 4122 log = kzalloc(log_size, GFP_KERNEL); 4123 if (!log) 4124 return; 4125 4126 /* 4127 * We need to read the log to clear the AEN, but we don't want to rely 4128 * on it for the changed namespace information as userspace could have 4129 * raced with us in reading the log page, which could cause us to miss 4130 * updates. 4131 */ 4132 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4133 NVME_CSI_NVM, log, log_size, 0); 4134 if (error) 4135 dev_warn(ctrl->device, 4136 "reading changed ns log failed: %d\n", error); 4137 4138 kfree(log); 4139 } 4140 4141 static void nvme_scan_work(struct work_struct *work) 4142 { 4143 struct nvme_ctrl *ctrl = 4144 container_of(work, struct nvme_ctrl, scan_work); 4145 int ret; 4146 4147 /* No tagset on a live ctrl means IO queues could not created */ 4148 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4149 return; 4150 4151 /* 4152 * Identify controller limits can change at controller reset due to 4153 * new firmware download, even though it is not common we cannot ignore 4154 * such scenario. Controller's non-mdts limits are reported in the unit 4155 * of logical blocks that is dependent on the format of attached 4156 * namespace. Hence re-read the limits at the time of ns allocation. 4157 */ 4158 ret = nvme_init_non_mdts_limits(ctrl); 4159 if (ret < 0) { 4160 dev_warn(ctrl->device, 4161 "reading non-mdts-limits failed: %d\n", ret); 4162 return; 4163 } 4164 4165 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4166 dev_info(ctrl->device, "rescanning namespaces.\n"); 4167 nvme_clear_changed_ns_log(ctrl); 4168 } 4169 4170 mutex_lock(&ctrl->scan_lock); 4171 if (nvme_ctrl_limited_cns(ctrl)) { 4172 nvme_scan_ns_sequential(ctrl); 4173 } else { 4174 /* 4175 * Fall back to sequential scan if DNR is set to handle broken 4176 * devices which should support Identify NS List (as per the VS 4177 * they report) but don't actually support it. 4178 */ 4179 ret = nvme_scan_ns_list(ctrl); 4180 if (ret > 0 && ret & NVME_STATUS_DNR) 4181 nvme_scan_ns_sequential(ctrl); 4182 } 4183 mutex_unlock(&ctrl->scan_lock); 4184 } 4185 4186 /* 4187 * This function iterates the namespace list unlocked to allow recovery from 4188 * controller failure. It is up to the caller to ensure the namespace list is 4189 * not modified by scan work while this function is executing. 4190 */ 4191 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4192 { 4193 struct nvme_ns *ns, *next; 4194 LIST_HEAD(ns_list); 4195 4196 /* 4197 * make sure to requeue I/O to all namespaces as these 4198 * might result from the scan itself and must complete 4199 * for the scan_work to make progress 4200 */ 4201 nvme_mpath_clear_ctrl_paths(ctrl); 4202 4203 /* 4204 * Unquiesce io queues so any pending IO won't hang, especially 4205 * those submitted from scan work 4206 */ 4207 nvme_unquiesce_io_queues(ctrl); 4208 4209 /* prevent racing with ns scanning */ 4210 flush_work(&ctrl->scan_work); 4211 4212 /* 4213 * The dead states indicates the controller was not gracefully 4214 * disconnected. In that case, we won't be able to flush any data while 4215 * removing the namespaces' disks; fail all the queues now to avoid 4216 * potentially having to clean up the failed sync later. 4217 */ 4218 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4219 nvme_mark_namespaces_dead(ctrl); 4220 4221 /* this is a no-op when called from the controller reset handler */ 4222 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4223 4224 mutex_lock(&ctrl->namespaces_lock); 4225 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4226 mutex_unlock(&ctrl->namespaces_lock); 4227 synchronize_srcu(&ctrl->srcu); 4228 4229 list_for_each_entry_safe(ns, next, &ns_list, list) 4230 nvme_ns_remove(ns); 4231 } 4232 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4233 4234 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4235 { 4236 const struct nvme_ctrl *ctrl = 4237 container_of(dev, struct nvme_ctrl, ctrl_device); 4238 struct nvmf_ctrl_options *opts = ctrl->opts; 4239 int ret; 4240 4241 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4242 if (ret) 4243 return ret; 4244 4245 if (opts) { 4246 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4247 if (ret) 4248 return ret; 4249 4250 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4251 opts->trsvcid ?: "none"); 4252 if (ret) 4253 return ret; 4254 4255 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4256 opts->host_traddr ?: "none"); 4257 if (ret) 4258 return ret; 4259 4260 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4261 opts->host_iface ?: "none"); 4262 } 4263 return ret; 4264 } 4265 4266 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4267 { 4268 char *envp[2] = { envdata, NULL }; 4269 4270 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4271 } 4272 4273 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4274 { 4275 char *envp[2] = { NULL, NULL }; 4276 u32 aen_result = ctrl->aen_result; 4277 4278 ctrl->aen_result = 0; 4279 if (!aen_result) 4280 return; 4281 4282 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4283 if (!envp[0]) 4284 return; 4285 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4286 kfree(envp[0]); 4287 } 4288 4289 static void nvme_async_event_work(struct work_struct *work) 4290 { 4291 struct nvme_ctrl *ctrl = 4292 container_of(work, struct nvme_ctrl, async_event_work); 4293 4294 nvme_aen_uevent(ctrl); 4295 4296 /* 4297 * The transport drivers must guarantee AER submission here is safe by 4298 * flushing ctrl async_event_work after changing the controller state 4299 * from LIVE and before freeing the admin queue. 4300 */ 4301 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4302 ctrl->ops->submit_async_event(ctrl); 4303 } 4304 4305 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4306 { 4307 4308 u32 csts; 4309 4310 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4311 return false; 4312 4313 if (csts == ~0) 4314 return false; 4315 4316 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4317 } 4318 4319 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4320 { 4321 struct nvme_fw_slot_info_log *log; 4322 u8 next_fw_slot, cur_fw_slot; 4323 4324 log = kmalloc(sizeof(*log), GFP_KERNEL); 4325 if (!log) 4326 return; 4327 4328 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4329 log, sizeof(*log), 0)) { 4330 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4331 goto out_free_log; 4332 } 4333 4334 cur_fw_slot = log->afi & 0x7; 4335 next_fw_slot = (log->afi & 0x70) >> 4; 4336 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4337 dev_info(ctrl->device, 4338 "Firmware is activated after next Controller Level Reset\n"); 4339 goto out_free_log; 4340 } 4341 4342 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4343 sizeof(ctrl->subsys->firmware_rev)); 4344 4345 out_free_log: 4346 kfree(log); 4347 } 4348 4349 static void nvme_fw_act_work(struct work_struct *work) 4350 { 4351 struct nvme_ctrl *ctrl = container_of(work, 4352 struct nvme_ctrl, fw_act_work); 4353 unsigned long fw_act_timeout; 4354 4355 nvme_auth_stop(ctrl); 4356 4357 if (ctrl->mtfa) 4358 fw_act_timeout = jiffies + 4359 msecs_to_jiffies(ctrl->mtfa * 100); 4360 else 4361 fw_act_timeout = jiffies + 4362 msecs_to_jiffies(admin_timeout * 1000); 4363 4364 nvme_quiesce_io_queues(ctrl); 4365 while (nvme_ctrl_pp_status(ctrl)) { 4366 if (time_after(jiffies, fw_act_timeout)) { 4367 dev_warn(ctrl->device, 4368 "Fw activation timeout, reset controller\n"); 4369 nvme_try_sched_reset(ctrl); 4370 return; 4371 } 4372 msleep(100); 4373 } 4374 4375 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4376 return; 4377 4378 nvme_unquiesce_io_queues(ctrl); 4379 /* read FW slot information to clear the AER */ 4380 nvme_get_fw_slot_info(ctrl); 4381 4382 queue_work(nvme_wq, &ctrl->async_event_work); 4383 } 4384 4385 static u32 nvme_aer_type(u32 result) 4386 { 4387 return result & 0x7; 4388 } 4389 4390 static u32 nvme_aer_subtype(u32 result) 4391 { 4392 return (result & 0xff00) >> 8; 4393 } 4394 4395 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4396 { 4397 u32 aer_notice_type = nvme_aer_subtype(result); 4398 bool requeue = true; 4399 4400 switch (aer_notice_type) { 4401 case NVME_AER_NOTICE_NS_CHANGED: 4402 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4403 nvme_queue_scan(ctrl); 4404 break; 4405 case NVME_AER_NOTICE_FW_ACT_STARTING: 4406 /* 4407 * We are (ab)using the RESETTING state to prevent subsequent 4408 * recovery actions from interfering with the controller's 4409 * firmware activation. 4410 */ 4411 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4412 requeue = false; 4413 queue_work(nvme_wq, &ctrl->fw_act_work); 4414 } 4415 break; 4416 #ifdef CONFIG_NVME_MULTIPATH 4417 case NVME_AER_NOTICE_ANA: 4418 if (!ctrl->ana_log_buf) 4419 break; 4420 queue_work(nvme_wq, &ctrl->ana_work); 4421 break; 4422 #endif 4423 case NVME_AER_NOTICE_DISC_CHANGED: 4424 ctrl->aen_result = result; 4425 break; 4426 default: 4427 dev_warn(ctrl->device, "async event result %08x\n", result); 4428 } 4429 return requeue; 4430 } 4431 4432 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4433 { 4434 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4435 nvme_reset_ctrl(ctrl); 4436 } 4437 4438 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4439 volatile union nvme_result *res) 4440 { 4441 u32 result = le32_to_cpu(res->u32); 4442 u32 aer_type = nvme_aer_type(result); 4443 u32 aer_subtype = nvme_aer_subtype(result); 4444 bool requeue = true; 4445 4446 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4447 return; 4448 4449 trace_nvme_async_event(ctrl, result); 4450 switch (aer_type) { 4451 case NVME_AER_NOTICE: 4452 requeue = nvme_handle_aen_notice(ctrl, result); 4453 break; 4454 case NVME_AER_ERROR: 4455 /* 4456 * For a persistent internal error, don't run async_event_work 4457 * to submit a new AER. The controller reset will do it. 4458 */ 4459 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4460 nvme_handle_aer_persistent_error(ctrl); 4461 return; 4462 } 4463 fallthrough; 4464 case NVME_AER_SMART: 4465 case NVME_AER_CSS: 4466 case NVME_AER_VS: 4467 ctrl->aen_result = result; 4468 break; 4469 default: 4470 break; 4471 } 4472 4473 if (requeue) 4474 queue_work(nvme_wq, &ctrl->async_event_work); 4475 } 4476 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4477 4478 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4479 const struct blk_mq_ops *ops, unsigned int cmd_size) 4480 { 4481 struct queue_limits lim = {}; 4482 int ret; 4483 4484 memset(set, 0, sizeof(*set)); 4485 set->ops = ops; 4486 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4487 if (ctrl->ops->flags & NVME_F_FABRICS) 4488 /* Reserved for fabric connect and keep alive */ 4489 set->reserved_tags = 2; 4490 set->numa_node = ctrl->numa_node; 4491 set->flags = BLK_MQ_F_NO_SCHED; 4492 if (ctrl->ops->flags & NVME_F_BLOCKING) 4493 set->flags |= BLK_MQ_F_BLOCKING; 4494 set->cmd_size = cmd_size; 4495 set->driver_data = ctrl; 4496 set->nr_hw_queues = 1; 4497 set->timeout = NVME_ADMIN_TIMEOUT; 4498 ret = blk_mq_alloc_tag_set(set); 4499 if (ret) 4500 return ret; 4501 4502 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4503 if (IS_ERR(ctrl->admin_q)) { 4504 ret = PTR_ERR(ctrl->admin_q); 4505 goto out_free_tagset; 4506 } 4507 4508 if (ctrl->ops->flags & NVME_F_FABRICS) { 4509 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4510 if (IS_ERR(ctrl->fabrics_q)) { 4511 ret = PTR_ERR(ctrl->fabrics_q); 4512 goto out_cleanup_admin_q; 4513 } 4514 } 4515 4516 ctrl->admin_tagset = set; 4517 return 0; 4518 4519 out_cleanup_admin_q: 4520 blk_mq_destroy_queue(ctrl->admin_q); 4521 blk_put_queue(ctrl->admin_q); 4522 out_free_tagset: 4523 blk_mq_free_tag_set(set); 4524 ctrl->admin_q = NULL; 4525 ctrl->fabrics_q = NULL; 4526 return ret; 4527 } 4528 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4529 4530 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4531 { 4532 blk_mq_destroy_queue(ctrl->admin_q); 4533 blk_put_queue(ctrl->admin_q); 4534 if (ctrl->ops->flags & NVME_F_FABRICS) { 4535 blk_mq_destroy_queue(ctrl->fabrics_q); 4536 blk_put_queue(ctrl->fabrics_q); 4537 } 4538 blk_mq_free_tag_set(ctrl->admin_tagset); 4539 } 4540 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4541 4542 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4543 const struct blk_mq_ops *ops, unsigned int nr_maps, 4544 unsigned int cmd_size) 4545 { 4546 int ret; 4547 4548 memset(set, 0, sizeof(*set)); 4549 set->ops = ops; 4550 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4551 /* 4552 * Some Apple controllers requires tags to be unique across admin and 4553 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4554 */ 4555 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4556 set->reserved_tags = NVME_AQ_DEPTH; 4557 else if (ctrl->ops->flags & NVME_F_FABRICS) 4558 /* Reserved for fabric connect */ 4559 set->reserved_tags = 1; 4560 set->numa_node = ctrl->numa_node; 4561 set->flags = BLK_MQ_F_SHOULD_MERGE; 4562 if (ctrl->ops->flags & NVME_F_BLOCKING) 4563 set->flags |= BLK_MQ_F_BLOCKING; 4564 set->cmd_size = cmd_size, 4565 set->driver_data = ctrl; 4566 set->nr_hw_queues = ctrl->queue_count - 1; 4567 set->timeout = NVME_IO_TIMEOUT; 4568 set->nr_maps = nr_maps; 4569 ret = blk_mq_alloc_tag_set(set); 4570 if (ret) 4571 return ret; 4572 4573 if (ctrl->ops->flags & NVME_F_FABRICS) { 4574 struct queue_limits lim = { 4575 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, 4576 }; 4577 4578 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); 4579 if (IS_ERR(ctrl->connect_q)) { 4580 ret = PTR_ERR(ctrl->connect_q); 4581 goto out_free_tag_set; 4582 } 4583 } 4584 4585 ctrl->tagset = set; 4586 return 0; 4587 4588 out_free_tag_set: 4589 blk_mq_free_tag_set(set); 4590 ctrl->connect_q = NULL; 4591 return ret; 4592 } 4593 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4594 4595 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4596 { 4597 if (ctrl->ops->flags & NVME_F_FABRICS) { 4598 blk_mq_destroy_queue(ctrl->connect_q); 4599 blk_put_queue(ctrl->connect_q); 4600 } 4601 blk_mq_free_tag_set(ctrl->tagset); 4602 } 4603 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4604 4605 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4606 { 4607 nvme_mpath_stop(ctrl); 4608 nvme_auth_stop(ctrl); 4609 nvme_stop_keep_alive(ctrl); 4610 nvme_stop_failfast_work(ctrl); 4611 flush_work(&ctrl->async_event_work); 4612 cancel_work_sync(&ctrl->fw_act_work); 4613 if (ctrl->ops->stop_ctrl) 4614 ctrl->ops->stop_ctrl(ctrl); 4615 } 4616 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4617 4618 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4619 { 4620 nvme_enable_aen(ctrl); 4621 4622 /* 4623 * persistent discovery controllers need to send indication to userspace 4624 * to re-read the discovery log page to learn about possible changes 4625 * that were missed. We identify persistent discovery controllers by 4626 * checking that they started once before, hence are reconnecting back. 4627 */ 4628 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4629 nvme_discovery_ctrl(ctrl)) 4630 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4631 4632 if (ctrl->queue_count > 1) { 4633 nvme_queue_scan(ctrl); 4634 nvme_unquiesce_io_queues(ctrl); 4635 nvme_mpath_update(ctrl); 4636 } 4637 4638 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4639 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4640 } 4641 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4642 4643 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4644 { 4645 nvme_hwmon_exit(ctrl); 4646 nvme_fault_inject_fini(&ctrl->fault_inject); 4647 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4648 cdev_device_del(&ctrl->cdev, ctrl->device); 4649 nvme_put_ctrl(ctrl); 4650 } 4651 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4652 4653 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4654 { 4655 struct nvme_effects_log *cel; 4656 unsigned long i; 4657 4658 xa_for_each(&ctrl->cels, i, cel) { 4659 xa_erase(&ctrl->cels, i); 4660 kfree(cel); 4661 } 4662 4663 xa_destroy(&ctrl->cels); 4664 } 4665 4666 static void nvme_free_ctrl(struct device *dev) 4667 { 4668 struct nvme_ctrl *ctrl = 4669 container_of(dev, struct nvme_ctrl, ctrl_device); 4670 struct nvme_subsystem *subsys = ctrl->subsys; 4671 4672 if (!subsys || ctrl->instance != subsys->instance) 4673 ida_free(&nvme_instance_ida, ctrl->instance); 4674 key_put(ctrl->tls_key); 4675 nvme_free_cels(ctrl); 4676 nvme_mpath_uninit(ctrl); 4677 cleanup_srcu_struct(&ctrl->srcu); 4678 nvme_auth_stop(ctrl); 4679 nvme_auth_free(ctrl); 4680 __free_page(ctrl->discard_page); 4681 free_opal_dev(ctrl->opal_dev); 4682 4683 if (subsys) { 4684 mutex_lock(&nvme_subsystems_lock); 4685 list_del(&ctrl->subsys_entry); 4686 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4687 mutex_unlock(&nvme_subsystems_lock); 4688 } 4689 4690 ctrl->ops->free_ctrl(ctrl); 4691 4692 if (subsys) 4693 nvme_put_subsystem(subsys); 4694 } 4695 4696 /* 4697 * Initialize a NVMe controller structures. This needs to be called during 4698 * earliest initialization so that we have the initialized structured around 4699 * during probing. 4700 * 4701 * On success, the caller must use the nvme_put_ctrl() to release this when 4702 * needed, which also invokes the ops->free_ctrl() callback. 4703 */ 4704 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4705 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4706 { 4707 int ret; 4708 4709 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4710 ctrl->passthru_err_log_enabled = false; 4711 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4712 spin_lock_init(&ctrl->lock); 4713 mutex_init(&ctrl->namespaces_lock); 4714 4715 ret = init_srcu_struct(&ctrl->srcu); 4716 if (ret) 4717 return ret; 4718 4719 mutex_init(&ctrl->scan_lock); 4720 INIT_LIST_HEAD(&ctrl->namespaces); 4721 xa_init(&ctrl->cels); 4722 ctrl->dev = dev; 4723 ctrl->ops = ops; 4724 ctrl->quirks = quirks; 4725 ctrl->numa_node = NUMA_NO_NODE; 4726 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4727 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4728 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4729 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4730 init_waitqueue_head(&ctrl->state_wq); 4731 4732 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4733 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4734 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4735 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4736 ctrl->ka_last_check_time = jiffies; 4737 4738 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4739 PAGE_SIZE); 4740 ctrl->discard_page = alloc_page(GFP_KERNEL); 4741 if (!ctrl->discard_page) { 4742 ret = -ENOMEM; 4743 goto out; 4744 } 4745 4746 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4747 if (ret < 0) 4748 goto out; 4749 ctrl->instance = ret; 4750 4751 ret = nvme_auth_init_ctrl(ctrl); 4752 if (ret) 4753 goto out_release_instance; 4754 4755 nvme_mpath_init_ctrl(ctrl); 4756 4757 device_initialize(&ctrl->ctrl_device); 4758 ctrl->device = &ctrl->ctrl_device; 4759 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4760 ctrl->instance); 4761 ctrl->device->class = &nvme_class; 4762 ctrl->device->parent = ctrl->dev; 4763 if (ops->dev_attr_groups) 4764 ctrl->device->groups = ops->dev_attr_groups; 4765 else 4766 ctrl->device->groups = nvme_dev_attr_groups; 4767 ctrl->device->release = nvme_free_ctrl; 4768 dev_set_drvdata(ctrl->device, ctrl); 4769 4770 return ret; 4771 4772 out_release_instance: 4773 ida_free(&nvme_instance_ida, ctrl->instance); 4774 out: 4775 if (ctrl->discard_page) 4776 __free_page(ctrl->discard_page); 4777 cleanup_srcu_struct(&ctrl->srcu); 4778 return ret; 4779 } 4780 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4781 4782 /* 4783 * On success, returns with an elevated controller reference and caller must 4784 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. 4785 */ 4786 int nvme_add_ctrl(struct nvme_ctrl *ctrl) 4787 { 4788 int ret; 4789 4790 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4791 if (ret) 4792 return ret; 4793 4794 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4795 ctrl->cdev.owner = ctrl->ops->module; 4796 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4797 if (ret) 4798 return ret; 4799 4800 /* 4801 * Initialize latency tolerance controls. The sysfs files won't 4802 * be visible to userspace unless the device actually supports APST. 4803 */ 4804 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4805 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4806 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4807 4808 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4809 nvme_get_ctrl(ctrl); 4810 4811 return 0; 4812 } 4813 EXPORT_SYMBOL_GPL(nvme_add_ctrl); 4814 4815 /* let I/O to all namespaces fail in preparation for surprise removal */ 4816 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4817 { 4818 struct nvme_ns *ns; 4819 int srcu_idx; 4820 4821 srcu_idx = srcu_read_lock(&ctrl->srcu); 4822 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4823 blk_mark_disk_dead(ns->disk); 4824 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4825 } 4826 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4827 4828 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4829 { 4830 struct nvme_ns *ns; 4831 int srcu_idx; 4832 4833 srcu_idx = srcu_read_lock(&ctrl->srcu); 4834 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4835 blk_mq_unfreeze_queue(ns->queue); 4836 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4837 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4838 } 4839 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4840 4841 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4842 { 4843 struct nvme_ns *ns; 4844 int srcu_idx; 4845 4846 srcu_idx = srcu_read_lock(&ctrl->srcu); 4847 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 4848 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4849 if (timeout <= 0) 4850 break; 4851 } 4852 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4853 return timeout; 4854 } 4855 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4856 4857 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4858 { 4859 struct nvme_ns *ns; 4860 int srcu_idx; 4861 4862 srcu_idx = srcu_read_lock(&ctrl->srcu); 4863 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4864 blk_mq_freeze_queue_wait(ns->queue); 4865 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4866 } 4867 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4868 4869 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4870 { 4871 struct nvme_ns *ns; 4872 int srcu_idx; 4873 4874 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4875 srcu_idx = srcu_read_lock(&ctrl->srcu); 4876 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4877 blk_freeze_queue_start(ns->queue); 4878 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4879 } 4880 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4881 4882 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4883 { 4884 if (!ctrl->tagset) 4885 return; 4886 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4887 blk_mq_quiesce_tagset(ctrl->tagset); 4888 else 4889 blk_mq_wait_quiesce_done(ctrl->tagset); 4890 } 4891 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4892 4893 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4894 { 4895 if (!ctrl->tagset) 4896 return; 4897 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4898 blk_mq_unquiesce_tagset(ctrl->tagset); 4899 } 4900 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4901 4902 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4903 { 4904 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4905 blk_mq_quiesce_queue(ctrl->admin_q); 4906 else 4907 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4908 } 4909 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4910 4911 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4912 { 4913 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4914 blk_mq_unquiesce_queue(ctrl->admin_q); 4915 } 4916 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4917 4918 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4919 { 4920 struct nvme_ns *ns; 4921 int srcu_idx; 4922 4923 srcu_idx = srcu_read_lock(&ctrl->srcu); 4924 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4925 blk_sync_queue(ns->queue); 4926 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4927 } 4928 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4929 4930 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4931 { 4932 nvme_sync_io_queues(ctrl); 4933 if (ctrl->admin_q) 4934 blk_sync_queue(ctrl->admin_q); 4935 } 4936 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4937 4938 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4939 { 4940 if (file->f_op != &nvme_dev_fops) 4941 return NULL; 4942 return file->private_data; 4943 } 4944 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4945 4946 /* 4947 * Check we didn't inadvertently grow the command structure sizes: 4948 */ 4949 static inline void _nvme_check_size(void) 4950 { 4951 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4952 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4953 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4954 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4955 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4956 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4957 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4958 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4959 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4960 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4961 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4962 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4963 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4964 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4965 NVME_IDENTIFY_DATA_SIZE); 4966 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4967 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4968 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4969 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4970 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4971 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4972 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4973 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4974 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4975 } 4976 4977 4978 static int __init nvme_core_init(void) 4979 { 4980 int result = -ENOMEM; 4981 4982 _nvme_check_size(); 4983 4984 nvme_wq = alloc_workqueue("nvme-wq", 4985 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4986 if (!nvme_wq) 4987 goto out; 4988 4989 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4990 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4991 if (!nvme_reset_wq) 4992 goto destroy_wq; 4993 4994 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4995 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4996 if (!nvme_delete_wq) 4997 goto destroy_reset_wq; 4998 4999 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5000 NVME_MINORS, "nvme"); 5001 if (result < 0) 5002 goto destroy_delete_wq; 5003 5004 result = class_register(&nvme_class); 5005 if (result) 5006 goto unregister_chrdev; 5007 5008 result = class_register(&nvme_subsys_class); 5009 if (result) 5010 goto destroy_class; 5011 5012 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5013 "nvme-generic"); 5014 if (result < 0) 5015 goto destroy_subsys_class; 5016 5017 result = class_register(&nvme_ns_chr_class); 5018 if (result) 5019 goto unregister_generic_ns; 5020 5021 result = nvme_init_auth(); 5022 if (result) 5023 goto destroy_ns_chr; 5024 return 0; 5025 5026 destroy_ns_chr: 5027 class_unregister(&nvme_ns_chr_class); 5028 unregister_generic_ns: 5029 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5030 destroy_subsys_class: 5031 class_unregister(&nvme_subsys_class); 5032 destroy_class: 5033 class_unregister(&nvme_class); 5034 unregister_chrdev: 5035 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5036 destroy_delete_wq: 5037 destroy_workqueue(nvme_delete_wq); 5038 destroy_reset_wq: 5039 destroy_workqueue(nvme_reset_wq); 5040 destroy_wq: 5041 destroy_workqueue(nvme_wq); 5042 out: 5043 return result; 5044 } 5045 5046 static void __exit nvme_core_exit(void) 5047 { 5048 nvme_exit_auth(); 5049 class_unregister(&nvme_ns_chr_class); 5050 class_unregister(&nvme_subsys_class); 5051 class_unregister(&nvme_class); 5052 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5053 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5054 destroy_workqueue(nvme_delete_wq); 5055 destroy_workqueue(nvme_reset_wq); 5056 destroy_workqueue(nvme_wq); 5057 ida_destroy(&nvme_ns_chr_minor_ida); 5058 ida_destroy(&nvme_instance_ida); 5059 } 5060 5061 MODULE_LICENSE("GPL"); 5062 MODULE_VERSION("1.0"); 5063 MODULE_DESCRIPTION("NVMe host core framework"); 5064 module_init(nvme_core_init); 5065 module_exit(nvme_core_exit); 5066