1 /* 2 * NVM Express device driver 3 * Copyright (c) 2011-2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 */ 14 15 #include <linux/blkdev.h> 16 #include <linux/blk-mq.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/hdreg.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/list_sort.h> 23 #include <linux/slab.h> 24 #include <linux/types.h> 25 #include <linux/pr.h> 26 #include <linux/ptrace.h> 27 #include <linux/nvme_ioctl.h> 28 #include <linux/t10-pi.h> 29 #include <scsi/sg.h> 30 #include <asm/unaligned.h> 31 32 #include "nvme.h" 33 #include "fabrics.h" 34 35 #define NVME_MINORS (1U << MINORBITS) 36 37 unsigned char admin_timeout = 60; 38 module_param(admin_timeout, byte, 0644); 39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 40 EXPORT_SYMBOL_GPL(admin_timeout); 41 42 unsigned char nvme_io_timeout = 30; 43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644); 44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 45 EXPORT_SYMBOL_GPL(nvme_io_timeout); 46 47 unsigned char shutdown_timeout = 5; 48 module_param(shutdown_timeout, byte, 0644); 49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 50 51 unsigned int nvme_max_retries = 5; 52 module_param_named(max_retries, nvme_max_retries, uint, 0644); 53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 54 EXPORT_SYMBOL_GPL(nvme_max_retries); 55 56 static int nvme_char_major; 57 module_param(nvme_char_major, int, 0); 58 59 static LIST_HEAD(nvme_ctrl_list); 60 static DEFINE_SPINLOCK(dev_list_lock); 61 62 static struct class *nvme_class; 63 64 void nvme_cancel_request(struct request *req, void *data, bool reserved) 65 { 66 int status; 67 68 if (!blk_mq_request_started(req)) 69 return; 70 71 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 72 "Cancelling I/O %d", req->tag); 73 74 status = NVME_SC_ABORT_REQ; 75 if (blk_queue_dying(req->q)) 76 status |= NVME_SC_DNR; 77 blk_mq_complete_request(req, status); 78 } 79 EXPORT_SYMBOL_GPL(nvme_cancel_request); 80 81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 82 enum nvme_ctrl_state new_state) 83 { 84 enum nvme_ctrl_state old_state; 85 bool changed = false; 86 87 spin_lock_irq(&ctrl->lock); 88 89 old_state = ctrl->state; 90 switch (new_state) { 91 case NVME_CTRL_LIVE: 92 switch (old_state) { 93 case NVME_CTRL_NEW: 94 case NVME_CTRL_RESETTING: 95 case NVME_CTRL_RECONNECTING: 96 changed = true; 97 /* FALLTHRU */ 98 default: 99 break; 100 } 101 break; 102 case NVME_CTRL_RESETTING: 103 switch (old_state) { 104 case NVME_CTRL_NEW: 105 case NVME_CTRL_LIVE: 106 case NVME_CTRL_RECONNECTING: 107 changed = true; 108 /* FALLTHRU */ 109 default: 110 break; 111 } 112 break; 113 case NVME_CTRL_RECONNECTING: 114 switch (old_state) { 115 case NVME_CTRL_LIVE: 116 changed = true; 117 /* FALLTHRU */ 118 default: 119 break; 120 } 121 break; 122 case NVME_CTRL_DELETING: 123 switch (old_state) { 124 case NVME_CTRL_LIVE: 125 case NVME_CTRL_RESETTING: 126 case NVME_CTRL_RECONNECTING: 127 changed = true; 128 /* FALLTHRU */ 129 default: 130 break; 131 } 132 break; 133 case NVME_CTRL_DEAD: 134 switch (old_state) { 135 case NVME_CTRL_DELETING: 136 changed = true; 137 /* FALLTHRU */ 138 default: 139 break; 140 } 141 break; 142 default: 143 break; 144 } 145 146 if (changed) 147 ctrl->state = new_state; 148 149 spin_unlock_irq(&ctrl->lock); 150 151 return changed; 152 } 153 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 154 155 static void nvme_free_ns(struct kref *kref) 156 { 157 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 158 159 if (ns->ndev) 160 nvme_nvm_unregister(ns); 161 162 if (ns->disk) { 163 spin_lock(&dev_list_lock); 164 ns->disk->private_data = NULL; 165 spin_unlock(&dev_list_lock); 166 } 167 168 put_disk(ns->disk); 169 ida_simple_remove(&ns->ctrl->ns_ida, ns->instance); 170 nvme_put_ctrl(ns->ctrl); 171 kfree(ns); 172 } 173 174 static void nvme_put_ns(struct nvme_ns *ns) 175 { 176 kref_put(&ns->kref, nvme_free_ns); 177 } 178 179 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk) 180 { 181 struct nvme_ns *ns; 182 183 spin_lock(&dev_list_lock); 184 ns = disk->private_data; 185 if (ns) { 186 if (!kref_get_unless_zero(&ns->kref)) 187 goto fail; 188 if (!try_module_get(ns->ctrl->ops->module)) 189 goto fail_put_ns; 190 } 191 spin_unlock(&dev_list_lock); 192 193 return ns; 194 195 fail_put_ns: 196 kref_put(&ns->kref, nvme_free_ns); 197 fail: 198 spin_unlock(&dev_list_lock); 199 return NULL; 200 } 201 202 void nvme_requeue_req(struct request *req) 203 { 204 blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q)); 205 } 206 EXPORT_SYMBOL_GPL(nvme_requeue_req); 207 208 struct request *nvme_alloc_request(struct request_queue *q, 209 struct nvme_command *cmd, unsigned int flags, int qid) 210 { 211 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 212 struct request *req; 213 214 if (qid == NVME_QID_ANY) { 215 req = blk_mq_alloc_request(q, op, flags); 216 } else { 217 req = blk_mq_alloc_request_hctx(q, op, flags, 218 qid ? qid - 1 : 0); 219 } 220 if (IS_ERR(req)) 221 return req; 222 223 req->cmd_flags |= REQ_FAILFAST_DRIVER; 224 nvme_req(req)->cmd = cmd; 225 226 return req; 227 } 228 EXPORT_SYMBOL_GPL(nvme_alloc_request); 229 230 static inline void nvme_setup_flush(struct nvme_ns *ns, 231 struct nvme_command *cmnd) 232 { 233 memset(cmnd, 0, sizeof(*cmnd)); 234 cmnd->common.opcode = nvme_cmd_flush; 235 cmnd->common.nsid = cpu_to_le32(ns->ns_id); 236 } 237 238 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req, 239 struct nvme_command *cmnd) 240 { 241 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 242 struct nvme_dsm_range *range; 243 struct bio *bio; 244 245 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); 246 if (!range) 247 return BLK_MQ_RQ_QUEUE_BUSY; 248 249 __rq_for_each_bio(bio, req) { 250 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 251 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 252 253 range[n].cattr = cpu_to_le32(0); 254 range[n].nlb = cpu_to_le32(nlb); 255 range[n].slba = cpu_to_le64(slba); 256 n++; 257 } 258 259 if (WARN_ON_ONCE(n != segments)) { 260 kfree(range); 261 return BLK_MQ_RQ_QUEUE_ERROR; 262 } 263 264 memset(cmnd, 0, sizeof(*cmnd)); 265 cmnd->dsm.opcode = nvme_cmd_dsm; 266 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); 267 cmnd->dsm.nr = segments - 1; 268 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 269 270 req->special_vec.bv_page = virt_to_page(range); 271 req->special_vec.bv_offset = offset_in_page(range); 272 req->special_vec.bv_len = sizeof(*range) * segments; 273 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 274 275 return BLK_MQ_RQ_QUEUE_OK; 276 } 277 278 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req, 279 struct nvme_command *cmnd) 280 { 281 u16 control = 0; 282 u32 dsmgmt = 0; 283 284 if (req->cmd_flags & REQ_FUA) 285 control |= NVME_RW_FUA; 286 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 287 control |= NVME_RW_LR; 288 289 if (req->cmd_flags & REQ_RAHEAD) 290 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 291 292 memset(cmnd, 0, sizeof(*cmnd)); 293 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 294 cmnd->rw.nsid = cpu_to_le32(ns->ns_id); 295 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 296 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 297 298 if (ns->ms) { 299 switch (ns->pi_type) { 300 case NVME_NS_DPS_PI_TYPE3: 301 control |= NVME_RW_PRINFO_PRCHK_GUARD; 302 break; 303 case NVME_NS_DPS_PI_TYPE1: 304 case NVME_NS_DPS_PI_TYPE2: 305 control |= NVME_RW_PRINFO_PRCHK_GUARD | 306 NVME_RW_PRINFO_PRCHK_REF; 307 cmnd->rw.reftag = cpu_to_le32( 308 nvme_block_nr(ns, blk_rq_pos(req))); 309 break; 310 } 311 if (!blk_integrity_rq(req)) 312 control |= NVME_RW_PRINFO_PRACT; 313 } 314 315 cmnd->rw.control = cpu_to_le16(control); 316 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 317 } 318 319 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 320 struct nvme_command *cmd) 321 { 322 int ret = BLK_MQ_RQ_QUEUE_OK; 323 324 switch (req_op(req)) { 325 case REQ_OP_DRV_IN: 326 case REQ_OP_DRV_OUT: 327 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 328 break; 329 case REQ_OP_FLUSH: 330 nvme_setup_flush(ns, cmd); 331 break; 332 case REQ_OP_DISCARD: 333 ret = nvme_setup_discard(ns, req, cmd); 334 break; 335 case REQ_OP_READ: 336 case REQ_OP_WRITE: 337 nvme_setup_rw(ns, req, cmd); 338 break; 339 default: 340 WARN_ON_ONCE(1); 341 return BLK_MQ_RQ_QUEUE_ERROR; 342 } 343 344 cmd->common.command_id = req->tag; 345 return ret; 346 } 347 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 348 349 /* 350 * Returns 0 on success. If the result is negative, it's a Linux error code; 351 * if the result is positive, it's an NVM Express status code 352 */ 353 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 354 union nvme_result *result, void *buffer, unsigned bufflen, 355 unsigned timeout, int qid, int at_head, int flags) 356 { 357 struct request *req; 358 int ret; 359 360 req = nvme_alloc_request(q, cmd, flags, qid); 361 if (IS_ERR(req)) 362 return PTR_ERR(req); 363 364 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 365 366 if (buffer && bufflen) { 367 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 368 if (ret) 369 goto out; 370 } 371 372 blk_execute_rq(req->q, NULL, req, at_head); 373 if (result) 374 *result = nvme_req(req)->result; 375 ret = req->errors; 376 out: 377 blk_mq_free_request(req); 378 return ret; 379 } 380 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 381 382 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 383 void *buffer, unsigned bufflen) 384 { 385 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 386 NVME_QID_ANY, 0, 0); 387 } 388 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 389 390 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, 391 void __user *ubuffer, unsigned bufflen, 392 void __user *meta_buffer, unsigned meta_len, u32 meta_seed, 393 u32 *result, unsigned timeout) 394 { 395 bool write = nvme_is_write(cmd); 396 struct nvme_ns *ns = q->queuedata; 397 struct gendisk *disk = ns ? ns->disk : NULL; 398 struct request *req; 399 struct bio *bio = NULL; 400 void *meta = NULL; 401 int ret; 402 403 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 404 if (IS_ERR(req)) 405 return PTR_ERR(req); 406 407 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 408 409 if (ubuffer && bufflen) { 410 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 411 GFP_KERNEL); 412 if (ret) 413 goto out; 414 bio = req->bio; 415 416 if (!disk) 417 goto submit; 418 bio->bi_bdev = bdget_disk(disk, 0); 419 if (!bio->bi_bdev) { 420 ret = -ENODEV; 421 goto out_unmap; 422 } 423 424 if (meta_buffer && meta_len) { 425 struct bio_integrity_payload *bip; 426 427 meta = kmalloc(meta_len, GFP_KERNEL); 428 if (!meta) { 429 ret = -ENOMEM; 430 goto out_unmap; 431 } 432 433 if (write) { 434 if (copy_from_user(meta, meta_buffer, 435 meta_len)) { 436 ret = -EFAULT; 437 goto out_free_meta; 438 } 439 } 440 441 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 442 if (IS_ERR(bip)) { 443 ret = PTR_ERR(bip); 444 goto out_free_meta; 445 } 446 447 bip->bip_iter.bi_size = meta_len; 448 bip->bip_iter.bi_sector = meta_seed; 449 450 ret = bio_integrity_add_page(bio, virt_to_page(meta), 451 meta_len, offset_in_page(meta)); 452 if (ret != meta_len) { 453 ret = -ENOMEM; 454 goto out_free_meta; 455 } 456 } 457 } 458 submit: 459 blk_execute_rq(req->q, disk, req, 0); 460 ret = req->errors; 461 if (result) 462 *result = le32_to_cpu(nvme_req(req)->result.u32); 463 if (meta && !ret && !write) { 464 if (copy_to_user(meta_buffer, meta, meta_len)) 465 ret = -EFAULT; 466 } 467 out_free_meta: 468 kfree(meta); 469 out_unmap: 470 if (bio) { 471 if (disk && bio->bi_bdev) 472 bdput(bio->bi_bdev); 473 blk_rq_unmap_user(bio); 474 } 475 out: 476 blk_mq_free_request(req); 477 return ret; 478 } 479 480 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, 481 void __user *ubuffer, unsigned bufflen, u32 *result, 482 unsigned timeout) 483 { 484 return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0, 485 result, timeout); 486 } 487 488 static void nvme_keep_alive_end_io(struct request *rq, int error) 489 { 490 struct nvme_ctrl *ctrl = rq->end_io_data; 491 492 blk_mq_free_request(rq); 493 494 if (error) { 495 dev_err(ctrl->device, 496 "failed nvme_keep_alive_end_io error=%d\n", error); 497 return; 498 } 499 500 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 501 } 502 503 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 504 { 505 struct nvme_command c; 506 struct request *rq; 507 508 memset(&c, 0, sizeof(c)); 509 c.common.opcode = nvme_admin_keep_alive; 510 511 rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED, 512 NVME_QID_ANY); 513 if (IS_ERR(rq)) 514 return PTR_ERR(rq); 515 516 rq->timeout = ctrl->kato * HZ; 517 rq->end_io_data = ctrl; 518 519 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 520 521 return 0; 522 } 523 524 static void nvme_keep_alive_work(struct work_struct *work) 525 { 526 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 527 struct nvme_ctrl, ka_work); 528 529 if (nvme_keep_alive(ctrl)) { 530 /* allocation failure, reset the controller */ 531 dev_err(ctrl->device, "keep-alive failed\n"); 532 ctrl->ops->reset_ctrl(ctrl); 533 return; 534 } 535 } 536 537 void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 538 { 539 if (unlikely(ctrl->kato == 0)) 540 return; 541 542 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 543 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 544 } 545 EXPORT_SYMBOL_GPL(nvme_start_keep_alive); 546 547 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 548 { 549 if (unlikely(ctrl->kato == 0)) 550 return; 551 552 cancel_delayed_work_sync(&ctrl->ka_work); 553 } 554 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 555 556 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 557 { 558 struct nvme_command c = { }; 559 int error; 560 561 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 562 c.identify.opcode = nvme_admin_identify; 563 c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL); 564 565 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 566 if (!*id) 567 return -ENOMEM; 568 569 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 570 sizeof(struct nvme_id_ctrl)); 571 if (error) 572 kfree(*id); 573 return error; 574 } 575 576 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 577 { 578 struct nvme_command c = { }; 579 580 c.identify.opcode = nvme_admin_identify; 581 c.identify.cns = cpu_to_le32(NVME_ID_CNS_NS_ACTIVE_LIST); 582 c.identify.nsid = cpu_to_le32(nsid); 583 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); 584 } 585 586 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid, 587 struct nvme_id_ns **id) 588 { 589 struct nvme_command c = { }; 590 int error; 591 592 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 593 c.identify.opcode = nvme_admin_identify, 594 c.identify.nsid = cpu_to_le32(nsid), 595 596 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL); 597 if (!*id) 598 return -ENOMEM; 599 600 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 601 sizeof(struct nvme_id_ns)); 602 if (error) 603 kfree(*id); 604 return error; 605 } 606 607 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid, 608 void *buffer, size_t buflen, u32 *result) 609 { 610 struct nvme_command c; 611 union nvme_result res; 612 int ret; 613 614 memset(&c, 0, sizeof(c)); 615 c.features.opcode = nvme_admin_get_features; 616 c.features.nsid = cpu_to_le32(nsid); 617 c.features.fid = cpu_to_le32(fid); 618 619 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0, 620 NVME_QID_ANY, 0, 0); 621 if (ret >= 0 && result) 622 *result = le32_to_cpu(res.u32); 623 return ret; 624 } 625 626 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, 627 void *buffer, size_t buflen, u32 *result) 628 { 629 struct nvme_command c; 630 union nvme_result res; 631 int ret; 632 633 memset(&c, 0, sizeof(c)); 634 c.features.opcode = nvme_admin_set_features; 635 c.features.fid = cpu_to_le32(fid); 636 c.features.dword11 = cpu_to_le32(dword11); 637 638 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 639 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 640 if (ret >= 0 && result) 641 *result = le32_to_cpu(res.u32); 642 return ret; 643 } 644 645 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log) 646 { 647 struct nvme_command c = { }; 648 int error; 649 650 c.common.opcode = nvme_admin_get_log_page, 651 c.common.nsid = cpu_to_le32(0xFFFFFFFF), 652 c.common.cdw10[0] = cpu_to_le32( 653 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) | 654 NVME_LOG_SMART), 655 656 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL); 657 if (!*log) 658 return -ENOMEM; 659 660 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log, 661 sizeof(struct nvme_smart_log)); 662 if (error) 663 kfree(*log); 664 return error; 665 } 666 667 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 668 { 669 u32 q_count = (*count - 1) | ((*count - 1) << 16); 670 u32 result; 671 int status, nr_io_queues; 672 673 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 674 &result); 675 if (status < 0) 676 return status; 677 678 /* 679 * Degraded controllers might return an error when setting the queue 680 * count. We still want to be able to bring them online and offer 681 * access to the admin queue, as that might be only way to fix them up. 682 */ 683 if (status > 0) { 684 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status); 685 *count = 0; 686 } else { 687 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 688 *count = min(*count, nr_io_queues); 689 } 690 691 return 0; 692 } 693 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 694 695 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 696 { 697 struct nvme_user_io io; 698 struct nvme_command c; 699 unsigned length, meta_len; 700 void __user *metadata; 701 702 if (copy_from_user(&io, uio, sizeof(io))) 703 return -EFAULT; 704 if (io.flags) 705 return -EINVAL; 706 707 switch (io.opcode) { 708 case nvme_cmd_write: 709 case nvme_cmd_read: 710 case nvme_cmd_compare: 711 break; 712 default: 713 return -EINVAL; 714 } 715 716 length = (io.nblocks + 1) << ns->lba_shift; 717 meta_len = (io.nblocks + 1) * ns->ms; 718 metadata = (void __user *)(uintptr_t)io.metadata; 719 720 if (ns->ext) { 721 length += meta_len; 722 meta_len = 0; 723 } else if (meta_len) { 724 if ((io.metadata & 3) || !io.metadata) 725 return -EINVAL; 726 } 727 728 memset(&c, 0, sizeof(c)); 729 c.rw.opcode = io.opcode; 730 c.rw.flags = io.flags; 731 c.rw.nsid = cpu_to_le32(ns->ns_id); 732 c.rw.slba = cpu_to_le64(io.slba); 733 c.rw.length = cpu_to_le16(io.nblocks); 734 c.rw.control = cpu_to_le16(io.control); 735 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 736 c.rw.reftag = cpu_to_le32(io.reftag); 737 c.rw.apptag = cpu_to_le16(io.apptag); 738 c.rw.appmask = cpu_to_le16(io.appmask); 739 740 return __nvme_submit_user_cmd(ns->queue, &c, 741 (void __user *)(uintptr_t)io.addr, length, 742 metadata, meta_len, io.slba, NULL, 0); 743 } 744 745 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 746 struct nvme_passthru_cmd __user *ucmd) 747 { 748 struct nvme_passthru_cmd cmd; 749 struct nvme_command c; 750 unsigned timeout = 0; 751 int status; 752 753 if (!capable(CAP_SYS_ADMIN)) 754 return -EACCES; 755 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 756 return -EFAULT; 757 if (cmd.flags) 758 return -EINVAL; 759 760 memset(&c, 0, sizeof(c)); 761 c.common.opcode = cmd.opcode; 762 c.common.flags = cmd.flags; 763 c.common.nsid = cpu_to_le32(cmd.nsid); 764 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 765 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 766 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); 767 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); 768 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); 769 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); 770 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); 771 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); 772 773 if (cmd.timeout_ms) 774 timeout = msecs_to_jiffies(cmd.timeout_ms); 775 776 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 777 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 778 &cmd.result, timeout); 779 if (status >= 0) { 780 if (put_user(cmd.result, &ucmd->result)) 781 return -EFAULT; 782 } 783 784 return status; 785 } 786 787 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 788 unsigned int cmd, unsigned long arg) 789 { 790 struct nvme_ns *ns = bdev->bd_disk->private_data; 791 792 switch (cmd) { 793 case NVME_IOCTL_ID: 794 force_successful_syscall_return(); 795 return ns->ns_id; 796 case NVME_IOCTL_ADMIN_CMD: 797 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); 798 case NVME_IOCTL_IO_CMD: 799 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); 800 case NVME_IOCTL_SUBMIT_IO: 801 return nvme_submit_io(ns, (void __user *)arg); 802 #ifdef CONFIG_BLK_DEV_NVME_SCSI 803 case SG_GET_VERSION_NUM: 804 return nvme_sg_get_version_num((void __user *)arg); 805 case SG_IO: 806 return nvme_sg_io(ns, (void __user *)arg); 807 #endif 808 default: 809 #ifdef CONFIG_NVM 810 if (ns->ndev) 811 return nvme_nvm_ioctl(ns, cmd, arg); 812 #endif 813 if (is_sed_ioctl(cmd)) 814 return sed_ioctl(ns->ctrl->opal_dev, cmd, 815 (void __user *) arg); 816 return -ENOTTY; 817 } 818 } 819 820 #ifdef CONFIG_COMPAT 821 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 822 unsigned int cmd, unsigned long arg) 823 { 824 switch (cmd) { 825 case SG_IO: 826 return -ENOIOCTLCMD; 827 } 828 return nvme_ioctl(bdev, mode, cmd, arg); 829 } 830 #else 831 #define nvme_compat_ioctl NULL 832 #endif 833 834 static int nvme_open(struct block_device *bdev, fmode_t mode) 835 { 836 return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO; 837 } 838 839 static void nvme_release(struct gendisk *disk, fmode_t mode) 840 { 841 struct nvme_ns *ns = disk->private_data; 842 843 module_put(ns->ctrl->ops->module); 844 nvme_put_ns(ns); 845 } 846 847 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 848 { 849 /* some standard values */ 850 geo->heads = 1 << 6; 851 geo->sectors = 1 << 5; 852 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 853 return 0; 854 } 855 856 #ifdef CONFIG_BLK_DEV_INTEGRITY 857 static void nvme_init_integrity(struct nvme_ns *ns) 858 { 859 struct blk_integrity integrity; 860 861 memset(&integrity, 0, sizeof(integrity)); 862 switch (ns->pi_type) { 863 case NVME_NS_DPS_PI_TYPE3: 864 integrity.profile = &t10_pi_type3_crc; 865 integrity.tag_size = sizeof(u16) + sizeof(u32); 866 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 867 break; 868 case NVME_NS_DPS_PI_TYPE1: 869 case NVME_NS_DPS_PI_TYPE2: 870 integrity.profile = &t10_pi_type1_crc; 871 integrity.tag_size = sizeof(u16); 872 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 873 break; 874 default: 875 integrity.profile = NULL; 876 break; 877 } 878 integrity.tuple_size = ns->ms; 879 blk_integrity_register(ns->disk, &integrity); 880 blk_queue_max_integrity_segments(ns->queue, 1); 881 } 882 #else 883 static void nvme_init_integrity(struct nvme_ns *ns) 884 { 885 } 886 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 887 888 static void nvme_config_discard(struct nvme_ns *ns) 889 { 890 struct nvme_ctrl *ctrl = ns->ctrl; 891 u32 logical_block_size = queue_logical_block_size(ns->queue); 892 893 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 894 NVME_DSM_MAX_RANGES); 895 896 if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES) 897 ns->queue->limits.discard_zeroes_data = 1; 898 else 899 ns->queue->limits.discard_zeroes_data = 0; 900 901 ns->queue->limits.discard_alignment = logical_block_size; 902 ns->queue->limits.discard_granularity = logical_block_size; 903 blk_queue_max_discard_sectors(ns->queue, UINT_MAX); 904 blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES); 905 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); 906 } 907 908 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id) 909 { 910 if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) { 911 dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__); 912 return -ENODEV; 913 } 914 915 if ((*id)->ncap == 0) { 916 kfree(*id); 917 return -ENODEV; 918 } 919 920 if (ns->ctrl->vs >= NVME_VS(1, 1, 0)) 921 memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui)); 922 if (ns->ctrl->vs >= NVME_VS(1, 2, 0)) 923 memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid)); 924 925 return 0; 926 } 927 928 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 929 { 930 struct nvme_ns *ns = disk->private_data; 931 u8 lbaf, pi_type; 932 u16 old_ms; 933 unsigned short bs; 934 935 old_ms = ns->ms; 936 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 937 ns->lba_shift = id->lbaf[lbaf].ds; 938 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 939 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 940 941 /* 942 * If identify namespace failed, use default 512 byte block size so 943 * block layer can use before failing read/write for 0 capacity. 944 */ 945 if (ns->lba_shift == 0) 946 ns->lba_shift = 9; 947 bs = 1 << ns->lba_shift; 948 /* XXX: PI implementation requires metadata equal t10 pi tuple size */ 949 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ? 950 id->dps & NVME_NS_DPS_PI_MASK : 0; 951 952 blk_mq_freeze_queue(disk->queue); 953 if (blk_get_integrity(disk) && (ns->pi_type != pi_type || 954 ns->ms != old_ms || 955 bs != queue_logical_block_size(disk->queue) || 956 (ns->ms && ns->ext))) 957 blk_integrity_unregister(disk); 958 959 ns->pi_type = pi_type; 960 blk_queue_logical_block_size(ns->queue, bs); 961 962 if (ns->ms && !blk_get_integrity(disk) && !ns->ext) 963 nvme_init_integrity(ns); 964 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) 965 set_capacity(disk, 0); 966 else 967 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); 968 969 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) 970 nvme_config_discard(ns); 971 blk_mq_unfreeze_queue(disk->queue); 972 } 973 974 static int nvme_revalidate_disk(struct gendisk *disk) 975 { 976 struct nvme_ns *ns = disk->private_data; 977 struct nvme_id_ns *id = NULL; 978 int ret; 979 980 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 981 set_capacity(disk, 0); 982 return -ENODEV; 983 } 984 985 ret = nvme_revalidate_ns(ns, &id); 986 if (ret) 987 return ret; 988 989 __nvme_revalidate_disk(disk, id); 990 kfree(id); 991 992 return 0; 993 } 994 995 static char nvme_pr_type(enum pr_type type) 996 { 997 switch (type) { 998 case PR_WRITE_EXCLUSIVE: 999 return 1; 1000 case PR_EXCLUSIVE_ACCESS: 1001 return 2; 1002 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1003 return 3; 1004 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1005 return 4; 1006 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1007 return 5; 1008 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1009 return 6; 1010 default: 1011 return 0; 1012 } 1013 }; 1014 1015 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1016 u64 key, u64 sa_key, u8 op) 1017 { 1018 struct nvme_ns *ns = bdev->bd_disk->private_data; 1019 struct nvme_command c; 1020 u8 data[16] = { 0, }; 1021 1022 put_unaligned_le64(key, &data[0]); 1023 put_unaligned_le64(sa_key, &data[8]); 1024 1025 memset(&c, 0, sizeof(c)); 1026 c.common.opcode = op; 1027 c.common.nsid = cpu_to_le32(ns->ns_id); 1028 c.common.cdw10[0] = cpu_to_le32(cdw10); 1029 1030 return nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1031 } 1032 1033 static int nvme_pr_register(struct block_device *bdev, u64 old, 1034 u64 new, unsigned flags) 1035 { 1036 u32 cdw10; 1037 1038 if (flags & ~PR_FL_IGNORE_KEY) 1039 return -EOPNOTSUPP; 1040 1041 cdw10 = old ? 2 : 0; 1042 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1043 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1044 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1045 } 1046 1047 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1048 enum pr_type type, unsigned flags) 1049 { 1050 u32 cdw10; 1051 1052 if (flags & ~PR_FL_IGNORE_KEY) 1053 return -EOPNOTSUPP; 1054 1055 cdw10 = nvme_pr_type(type) << 8; 1056 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1057 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1058 } 1059 1060 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1061 enum pr_type type, bool abort) 1062 { 1063 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; 1064 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1065 } 1066 1067 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1068 { 1069 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1070 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1071 } 1072 1073 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1074 { 1075 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; 1076 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1077 } 1078 1079 static const struct pr_ops nvme_pr_ops = { 1080 .pr_register = nvme_pr_register, 1081 .pr_reserve = nvme_pr_reserve, 1082 .pr_release = nvme_pr_release, 1083 .pr_preempt = nvme_pr_preempt, 1084 .pr_clear = nvme_pr_clear, 1085 }; 1086 1087 #ifdef CONFIG_BLK_SED_OPAL 1088 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1089 bool send) 1090 { 1091 struct nvme_ctrl *ctrl = data; 1092 struct nvme_command cmd; 1093 1094 memset(&cmd, 0, sizeof(cmd)); 1095 if (send) 1096 cmd.common.opcode = nvme_admin_security_send; 1097 else 1098 cmd.common.opcode = nvme_admin_security_recv; 1099 cmd.common.nsid = 0; 1100 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1101 cmd.common.cdw10[1] = cpu_to_le32(len); 1102 1103 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1104 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); 1105 } 1106 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1107 #endif /* CONFIG_BLK_SED_OPAL */ 1108 1109 static const struct block_device_operations nvme_fops = { 1110 .owner = THIS_MODULE, 1111 .ioctl = nvme_ioctl, 1112 .compat_ioctl = nvme_compat_ioctl, 1113 .open = nvme_open, 1114 .release = nvme_release, 1115 .getgeo = nvme_getgeo, 1116 .revalidate_disk= nvme_revalidate_disk, 1117 .pr_ops = &nvme_pr_ops, 1118 }; 1119 1120 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1121 { 1122 unsigned long timeout = 1123 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1124 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1125 int ret; 1126 1127 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1128 if (csts == ~0) 1129 return -ENODEV; 1130 if ((csts & NVME_CSTS_RDY) == bit) 1131 break; 1132 1133 msleep(100); 1134 if (fatal_signal_pending(current)) 1135 return -EINTR; 1136 if (time_after(jiffies, timeout)) { 1137 dev_err(ctrl->device, 1138 "Device not ready; aborting %s\n", enabled ? 1139 "initialisation" : "reset"); 1140 return -ENODEV; 1141 } 1142 } 1143 1144 return ret; 1145 } 1146 1147 /* 1148 * If the device has been passed off to us in an enabled state, just clear 1149 * the enabled bit. The spec says we should set the 'shutdown notification 1150 * bits', but doing so may cause the device to complete commands to the 1151 * admin queue ... and we don't know what memory that might be pointing at! 1152 */ 1153 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1154 { 1155 int ret; 1156 1157 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1158 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1159 1160 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1161 if (ret) 1162 return ret; 1163 1164 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1165 msleep(NVME_QUIRK_DELAY_AMOUNT); 1166 1167 return nvme_wait_ready(ctrl, cap, false); 1168 } 1169 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1170 1171 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1172 { 1173 /* 1174 * Default to a 4K page size, with the intention to update this 1175 * path in the future to accomodate architectures with differing 1176 * kernel and IO page sizes. 1177 */ 1178 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1179 int ret; 1180 1181 if (page_shift < dev_page_min) { 1182 dev_err(ctrl->device, 1183 "Minimum device page size %u too large for host (%u)\n", 1184 1 << dev_page_min, 1 << page_shift); 1185 return -ENODEV; 1186 } 1187 1188 ctrl->page_size = 1 << page_shift; 1189 1190 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1191 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1192 ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; 1193 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1194 ctrl->ctrl_config |= NVME_CC_ENABLE; 1195 1196 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1197 if (ret) 1198 return ret; 1199 return nvme_wait_ready(ctrl, cap, true); 1200 } 1201 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 1202 1203 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 1204 { 1205 unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies; 1206 u32 csts; 1207 int ret; 1208 1209 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1210 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 1211 1212 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1213 if (ret) 1214 return ret; 1215 1216 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1217 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 1218 break; 1219 1220 msleep(100); 1221 if (fatal_signal_pending(current)) 1222 return -EINTR; 1223 if (time_after(jiffies, timeout)) { 1224 dev_err(ctrl->device, 1225 "Device shutdown incomplete; abort shutdown\n"); 1226 return -ENODEV; 1227 } 1228 } 1229 1230 return ret; 1231 } 1232 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 1233 1234 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1235 struct request_queue *q) 1236 { 1237 bool vwc = false; 1238 1239 if (ctrl->max_hw_sectors) { 1240 u32 max_segments = 1241 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 1242 1243 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1244 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1245 } 1246 if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) 1247 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 1248 blk_queue_virt_boundary(q, ctrl->page_size - 1); 1249 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 1250 vwc = true; 1251 blk_queue_write_cache(q, vwc, vwc); 1252 } 1253 1254 /* 1255 * Initialize the cached copies of the Identify data and various controller 1256 * register in our nvme_ctrl structure. This should be called as soon as 1257 * the admin queue is fully up and running. 1258 */ 1259 int nvme_init_identify(struct nvme_ctrl *ctrl) 1260 { 1261 struct nvme_id_ctrl *id; 1262 u64 cap; 1263 int ret, page_shift; 1264 u32 max_hw_sectors; 1265 1266 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 1267 if (ret) { 1268 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 1269 return ret; 1270 } 1271 1272 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 1273 if (ret) { 1274 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 1275 return ret; 1276 } 1277 page_shift = NVME_CAP_MPSMIN(cap) + 12; 1278 1279 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1280 ctrl->subsystem = NVME_CAP_NSSRC(cap); 1281 1282 ret = nvme_identify_ctrl(ctrl, &id); 1283 if (ret) { 1284 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 1285 return -EIO; 1286 } 1287 1288 ctrl->oacs = le16_to_cpu(id->oacs); 1289 ctrl->vid = le16_to_cpu(id->vid); 1290 ctrl->oncs = le16_to_cpup(&id->oncs); 1291 atomic_set(&ctrl->abort_limit, id->acl + 1); 1292 ctrl->vwc = id->vwc; 1293 ctrl->cntlid = le16_to_cpup(&id->cntlid); 1294 memcpy(ctrl->serial, id->sn, sizeof(id->sn)); 1295 memcpy(ctrl->model, id->mn, sizeof(id->mn)); 1296 memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr)); 1297 if (id->mdts) 1298 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 1299 else 1300 max_hw_sectors = UINT_MAX; 1301 ctrl->max_hw_sectors = 1302 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 1303 1304 nvme_set_queue_limits(ctrl, ctrl->admin_q); 1305 ctrl->sgls = le32_to_cpu(id->sgls); 1306 ctrl->kas = le16_to_cpu(id->kas); 1307 1308 if (ctrl->ops->is_fabrics) { 1309 ctrl->icdoff = le16_to_cpu(id->icdoff); 1310 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 1311 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 1312 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 1313 1314 /* 1315 * In fabrics we need to verify the cntlid matches the 1316 * admin connect 1317 */ 1318 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) 1319 ret = -EINVAL; 1320 1321 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 1322 dev_err(ctrl->dev, 1323 "keep-alive support is mandatory for fabrics\n"); 1324 ret = -EINVAL; 1325 } 1326 } else { 1327 ctrl->cntlid = le16_to_cpu(id->cntlid); 1328 } 1329 1330 kfree(id); 1331 return ret; 1332 } 1333 EXPORT_SYMBOL_GPL(nvme_init_identify); 1334 1335 static int nvme_dev_open(struct inode *inode, struct file *file) 1336 { 1337 struct nvme_ctrl *ctrl; 1338 int instance = iminor(inode); 1339 int ret = -ENODEV; 1340 1341 spin_lock(&dev_list_lock); 1342 list_for_each_entry(ctrl, &nvme_ctrl_list, node) { 1343 if (ctrl->instance != instance) 1344 continue; 1345 1346 if (!ctrl->admin_q) { 1347 ret = -EWOULDBLOCK; 1348 break; 1349 } 1350 if (!kref_get_unless_zero(&ctrl->kref)) 1351 break; 1352 file->private_data = ctrl; 1353 ret = 0; 1354 break; 1355 } 1356 spin_unlock(&dev_list_lock); 1357 1358 return ret; 1359 } 1360 1361 static int nvme_dev_release(struct inode *inode, struct file *file) 1362 { 1363 nvme_put_ctrl(file->private_data); 1364 return 0; 1365 } 1366 1367 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 1368 { 1369 struct nvme_ns *ns; 1370 int ret; 1371 1372 mutex_lock(&ctrl->namespaces_mutex); 1373 if (list_empty(&ctrl->namespaces)) { 1374 ret = -ENOTTY; 1375 goto out_unlock; 1376 } 1377 1378 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 1379 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 1380 dev_warn(ctrl->device, 1381 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 1382 ret = -EINVAL; 1383 goto out_unlock; 1384 } 1385 1386 dev_warn(ctrl->device, 1387 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 1388 kref_get(&ns->kref); 1389 mutex_unlock(&ctrl->namespaces_mutex); 1390 1391 ret = nvme_user_cmd(ctrl, ns, argp); 1392 nvme_put_ns(ns); 1393 return ret; 1394 1395 out_unlock: 1396 mutex_unlock(&ctrl->namespaces_mutex); 1397 return ret; 1398 } 1399 1400 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 1401 unsigned long arg) 1402 { 1403 struct nvme_ctrl *ctrl = file->private_data; 1404 void __user *argp = (void __user *)arg; 1405 1406 switch (cmd) { 1407 case NVME_IOCTL_ADMIN_CMD: 1408 return nvme_user_cmd(ctrl, NULL, argp); 1409 case NVME_IOCTL_IO_CMD: 1410 return nvme_dev_user_cmd(ctrl, argp); 1411 case NVME_IOCTL_RESET: 1412 dev_warn(ctrl->device, "resetting controller\n"); 1413 return ctrl->ops->reset_ctrl(ctrl); 1414 case NVME_IOCTL_SUBSYS_RESET: 1415 return nvme_reset_subsystem(ctrl); 1416 case NVME_IOCTL_RESCAN: 1417 nvme_queue_scan(ctrl); 1418 return 0; 1419 default: 1420 return -ENOTTY; 1421 } 1422 } 1423 1424 static const struct file_operations nvme_dev_fops = { 1425 .owner = THIS_MODULE, 1426 .open = nvme_dev_open, 1427 .release = nvme_dev_release, 1428 .unlocked_ioctl = nvme_dev_ioctl, 1429 .compat_ioctl = nvme_dev_ioctl, 1430 }; 1431 1432 static ssize_t nvme_sysfs_reset(struct device *dev, 1433 struct device_attribute *attr, const char *buf, 1434 size_t count) 1435 { 1436 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1437 int ret; 1438 1439 ret = ctrl->ops->reset_ctrl(ctrl); 1440 if (ret < 0) 1441 return ret; 1442 return count; 1443 } 1444 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 1445 1446 static ssize_t nvme_sysfs_rescan(struct device *dev, 1447 struct device_attribute *attr, const char *buf, 1448 size_t count) 1449 { 1450 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1451 1452 nvme_queue_scan(ctrl); 1453 return count; 1454 } 1455 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 1456 1457 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 1458 char *buf) 1459 { 1460 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1461 struct nvme_ctrl *ctrl = ns->ctrl; 1462 int serial_len = sizeof(ctrl->serial); 1463 int model_len = sizeof(ctrl->model); 1464 1465 if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) 1466 return sprintf(buf, "eui.%16phN\n", ns->uuid); 1467 1468 if (memchr_inv(ns->eui, 0, sizeof(ns->eui))) 1469 return sprintf(buf, "eui.%8phN\n", ns->eui); 1470 1471 while (ctrl->serial[serial_len - 1] == ' ') 1472 serial_len--; 1473 while (ctrl->model[model_len - 1] == ' ') 1474 model_len--; 1475 1476 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid, 1477 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id); 1478 } 1479 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL); 1480 1481 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 1482 char *buf) 1483 { 1484 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1485 return sprintf(buf, "%pU\n", ns->uuid); 1486 } 1487 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL); 1488 1489 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 1490 char *buf) 1491 { 1492 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1493 return sprintf(buf, "%8phd\n", ns->eui); 1494 } 1495 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL); 1496 1497 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 1498 char *buf) 1499 { 1500 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1501 return sprintf(buf, "%d\n", ns->ns_id); 1502 } 1503 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL); 1504 1505 static struct attribute *nvme_ns_attrs[] = { 1506 &dev_attr_wwid.attr, 1507 &dev_attr_uuid.attr, 1508 &dev_attr_eui.attr, 1509 &dev_attr_nsid.attr, 1510 NULL, 1511 }; 1512 1513 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj, 1514 struct attribute *a, int n) 1515 { 1516 struct device *dev = container_of(kobj, struct device, kobj); 1517 struct nvme_ns *ns = nvme_get_ns_from_dev(dev); 1518 1519 if (a == &dev_attr_uuid.attr) { 1520 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid))) 1521 return 0; 1522 } 1523 if (a == &dev_attr_eui.attr) { 1524 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui))) 1525 return 0; 1526 } 1527 return a->mode; 1528 } 1529 1530 static const struct attribute_group nvme_ns_attr_group = { 1531 .attrs = nvme_ns_attrs, 1532 .is_visible = nvme_ns_attrs_are_visible, 1533 }; 1534 1535 #define nvme_show_str_function(field) \ 1536 static ssize_t field##_show(struct device *dev, \ 1537 struct device_attribute *attr, char *buf) \ 1538 { \ 1539 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 1540 return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \ 1541 } \ 1542 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 1543 1544 #define nvme_show_int_function(field) \ 1545 static ssize_t field##_show(struct device *dev, \ 1546 struct device_attribute *attr, char *buf) \ 1547 { \ 1548 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 1549 return sprintf(buf, "%d\n", ctrl->field); \ 1550 } \ 1551 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 1552 1553 nvme_show_str_function(model); 1554 nvme_show_str_function(serial); 1555 nvme_show_str_function(firmware_rev); 1556 nvme_show_int_function(cntlid); 1557 1558 static ssize_t nvme_sysfs_delete(struct device *dev, 1559 struct device_attribute *attr, const char *buf, 1560 size_t count) 1561 { 1562 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1563 1564 if (device_remove_file_self(dev, attr)) 1565 ctrl->ops->delete_ctrl(ctrl); 1566 return count; 1567 } 1568 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 1569 1570 static ssize_t nvme_sysfs_show_transport(struct device *dev, 1571 struct device_attribute *attr, 1572 char *buf) 1573 { 1574 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1575 1576 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 1577 } 1578 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 1579 1580 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 1581 struct device_attribute *attr, 1582 char *buf) 1583 { 1584 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1585 1586 return snprintf(buf, PAGE_SIZE, "%s\n", 1587 ctrl->ops->get_subsysnqn(ctrl)); 1588 } 1589 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 1590 1591 static ssize_t nvme_sysfs_show_address(struct device *dev, 1592 struct device_attribute *attr, 1593 char *buf) 1594 { 1595 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1596 1597 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 1598 } 1599 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 1600 1601 static struct attribute *nvme_dev_attrs[] = { 1602 &dev_attr_reset_controller.attr, 1603 &dev_attr_rescan_controller.attr, 1604 &dev_attr_model.attr, 1605 &dev_attr_serial.attr, 1606 &dev_attr_firmware_rev.attr, 1607 &dev_attr_cntlid.attr, 1608 &dev_attr_delete_controller.attr, 1609 &dev_attr_transport.attr, 1610 &dev_attr_subsysnqn.attr, 1611 &dev_attr_address.attr, 1612 NULL 1613 }; 1614 1615 #define CHECK_ATTR(ctrl, a, name) \ 1616 if ((a) == &dev_attr_##name.attr && \ 1617 !(ctrl)->ops->get_##name) \ 1618 return 0 1619 1620 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 1621 struct attribute *a, int n) 1622 { 1623 struct device *dev = container_of(kobj, struct device, kobj); 1624 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 1625 1626 if (a == &dev_attr_delete_controller.attr) { 1627 if (!ctrl->ops->delete_ctrl) 1628 return 0; 1629 } 1630 1631 CHECK_ATTR(ctrl, a, subsysnqn); 1632 CHECK_ATTR(ctrl, a, address); 1633 1634 return a->mode; 1635 } 1636 1637 static struct attribute_group nvme_dev_attrs_group = { 1638 .attrs = nvme_dev_attrs, 1639 .is_visible = nvme_dev_attrs_are_visible, 1640 }; 1641 1642 static const struct attribute_group *nvme_dev_attr_groups[] = { 1643 &nvme_dev_attrs_group, 1644 NULL, 1645 }; 1646 1647 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 1648 { 1649 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 1650 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 1651 1652 return nsa->ns_id - nsb->ns_id; 1653 } 1654 1655 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 1656 { 1657 struct nvme_ns *ns, *ret = NULL; 1658 1659 mutex_lock(&ctrl->namespaces_mutex); 1660 list_for_each_entry(ns, &ctrl->namespaces, list) { 1661 if (ns->ns_id == nsid) { 1662 kref_get(&ns->kref); 1663 ret = ns; 1664 break; 1665 } 1666 if (ns->ns_id > nsid) 1667 break; 1668 } 1669 mutex_unlock(&ctrl->namespaces_mutex); 1670 return ret; 1671 } 1672 1673 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 1674 { 1675 struct nvme_ns *ns; 1676 struct gendisk *disk; 1677 struct nvme_id_ns *id; 1678 char disk_name[DISK_NAME_LEN]; 1679 int node = dev_to_node(ctrl->dev); 1680 1681 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 1682 if (!ns) 1683 return; 1684 1685 ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL); 1686 if (ns->instance < 0) 1687 goto out_free_ns; 1688 1689 ns->queue = blk_mq_init_queue(ctrl->tagset); 1690 if (IS_ERR(ns->queue)) 1691 goto out_release_instance; 1692 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); 1693 ns->queue->queuedata = ns; 1694 ns->ctrl = ctrl; 1695 1696 kref_init(&ns->kref); 1697 ns->ns_id = nsid; 1698 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 1699 1700 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 1701 nvme_set_queue_limits(ctrl, ns->queue); 1702 1703 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance); 1704 1705 if (nvme_revalidate_ns(ns, &id)) 1706 goto out_free_queue; 1707 1708 if (nvme_nvm_ns_supported(ns, id) && 1709 nvme_nvm_register(ns, disk_name, node)) { 1710 dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__); 1711 goto out_free_id; 1712 } 1713 1714 disk = alloc_disk_node(0, node); 1715 if (!disk) 1716 goto out_free_id; 1717 1718 disk->fops = &nvme_fops; 1719 disk->private_data = ns; 1720 disk->queue = ns->queue; 1721 disk->flags = GENHD_FL_EXT_DEVT; 1722 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 1723 ns->disk = disk; 1724 1725 __nvme_revalidate_disk(disk, id); 1726 1727 mutex_lock(&ctrl->namespaces_mutex); 1728 list_add_tail(&ns->list, &ctrl->namespaces); 1729 mutex_unlock(&ctrl->namespaces_mutex); 1730 1731 kref_get(&ctrl->kref); 1732 1733 kfree(id); 1734 1735 device_add_disk(ctrl->device, ns->disk); 1736 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, 1737 &nvme_ns_attr_group)) 1738 pr_warn("%s: failed to create sysfs group for identification\n", 1739 ns->disk->disk_name); 1740 if (ns->ndev && nvme_nvm_register_sysfs(ns)) 1741 pr_warn("%s: failed to register lightnvm sysfs group for identification\n", 1742 ns->disk->disk_name); 1743 return; 1744 out_free_id: 1745 kfree(id); 1746 out_free_queue: 1747 blk_cleanup_queue(ns->queue); 1748 out_release_instance: 1749 ida_simple_remove(&ctrl->ns_ida, ns->instance); 1750 out_free_ns: 1751 kfree(ns); 1752 } 1753 1754 static void nvme_ns_remove(struct nvme_ns *ns) 1755 { 1756 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 1757 return; 1758 1759 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 1760 if (blk_get_integrity(ns->disk)) 1761 blk_integrity_unregister(ns->disk); 1762 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, 1763 &nvme_ns_attr_group); 1764 if (ns->ndev) 1765 nvme_nvm_unregister_sysfs(ns); 1766 del_gendisk(ns->disk); 1767 blk_mq_abort_requeue_list(ns->queue); 1768 blk_cleanup_queue(ns->queue); 1769 } 1770 1771 mutex_lock(&ns->ctrl->namespaces_mutex); 1772 list_del_init(&ns->list); 1773 mutex_unlock(&ns->ctrl->namespaces_mutex); 1774 1775 nvme_put_ns(ns); 1776 } 1777 1778 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 1779 { 1780 struct nvme_ns *ns; 1781 1782 ns = nvme_find_get_ns(ctrl, nsid); 1783 if (ns) { 1784 if (ns->disk && revalidate_disk(ns->disk)) 1785 nvme_ns_remove(ns); 1786 nvme_put_ns(ns); 1787 } else 1788 nvme_alloc_ns(ctrl, nsid); 1789 } 1790 1791 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 1792 unsigned nsid) 1793 { 1794 struct nvme_ns *ns, *next; 1795 1796 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 1797 if (ns->ns_id > nsid) 1798 nvme_ns_remove(ns); 1799 } 1800 } 1801 1802 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 1803 { 1804 struct nvme_ns *ns; 1805 __le32 *ns_list; 1806 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); 1807 int ret = 0; 1808 1809 ns_list = kzalloc(0x1000, GFP_KERNEL); 1810 if (!ns_list) 1811 return -ENOMEM; 1812 1813 for (i = 0; i < num_lists; i++) { 1814 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 1815 if (ret) 1816 goto free; 1817 1818 for (j = 0; j < min(nn, 1024U); j++) { 1819 nsid = le32_to_cpu(ns_list[j]); 1820 if (!nsid) 1821 goto out; 1822 1823 nvme_validate_ns(ctrl, nsid); 1824 1825 while (++prev < nsid) { 1826 ns = nvme_find_get_ns(ctrl, prev); 1827 if (ns) { 1828 nvme_ns_remove(ns); 1829 nvme_put_ns(ns); 1830 } 1831 } 1832 } 1833 nn -= j; 1834 } 1835 out: 1836 nvme_remove_invalid_namespaces(ctrl, prev); 1837 free: 1838 kfree(ns_list); 1839 return ret; 1840 } 1841 1842 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 1843 { 1844 unsigned i; 1845 1846 for (i = 1; i <= nn; i++) 1847 nvme_validate_ns(ctrl, i); 1848 1849 nvme_remove_invalid_namespaces(ctrl, nn); 1850 } 1851 1852 static void nvme_scan_work(struct work_struct *work) 1853 { 1854 struct nvme_ctrl *ctrl = 1855 container_of(work, struct nvme_ctrl, scan_work); 1856 struct nvme_id_ctrl *id; 1857 unsigned nn; 1858 1859 if (ctrl->state != NVME_CTRL_LIVE) 1860 return; 1861 1862 if (nvme_identify_ctrl(ctrl, &id)) 1863 return; 1864 1865 nn = le32_to_cpu(id->nn); 1866 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1867 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 1868 if (!nvme_scan_ns_list(ctrl, nn)) 1869 goto done; 1870 } 1871 nvme_scan_ns_sequential(ctrl, nn); 1872 done: 1873 mutex_lock(&ctrl->namespaces_mutex); 1874 list_sort(NULL, &ctrl->namespaces, ns_cmp); 1875 mutex_unlock(&ctrl->namespaces_mutex); 1876 kfree(id); 1877 } 1878 1879 void nvme_queue_scan(struct nvme_ctrl *ctrl) 1880 { 1881 /* 1882 * Do not queue new scan work when a controller is reset during 1883 * removal. 1884 */ 1885 if (ctrl->state == NVME_CTRL_LIVE) 1886 schedule_work(&ctrl->scan_work); 1887 } 1888 EXPORT_SYMBOL_GPL(nvme_queue_scan); 1889 1890 /* 1891 * This function iterates the namespace list unlocked to allow recovery from 1892 * controller failure. It is up to the caller to ensure the namespace list is 1893 * not modified by scan work while this function is executing. 1894 */ 1895 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 1896 { 1897 struct nvme_ns *ns, *next; 1898 1899 /* 1900 * The dead states indicates the controller was not gracefully 1901 * disconnected. In that case, we won't be able to flush any data while 1902 * removing the namespaces' disks; fail all the queues now to avoid 1903 * potentially having to clean up the failed sync later. 1904 */ 1905 if (ctrl->state == NVME_CTRL_DEAD) 1906 nvme_kill_queues(ctrl); 1907 1908 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) 1909 nvme_ns_remove(ns); 1910 } 1911 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 1912 1913 static void nvme_async_event_work(struct work_struct *work) 1914 { 1915 struct nvme_ctrl *ctrl = 1916 container_of(work, struct nvme_ctrl, async_event_work); 1917 1918 spin_lock_irq(&ctrl->lock); 1919 while (ctrl->event_limit > 0) { 1920 int aer_idx = --ctrl->event_limit; 1921 1922 spin_unlock_irq(&ctrl->lock); 1923 ctrl->ops->submit_async_event(ctrl, aer_idx); 1924 spin_lock_irq(&ctrl->lock); 1925 } 1926 spin_unlock_irq(&ctrl->lock); 1927 } 1928 1929 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 1930 union nvme_result *res) 1931 { 1932 u32 result = le32_to_cpu(res->u32); 1933 bool done = true; 1934 1935 switch (le16_to_cpu(status) >> 1) { 1936 case NVME_SC_SUCCESS: 1937 done = false; 1938 /*FALLTHRU*/ 1939 case NVME_SC_ABORT_REQ: 1940 ++ctrl->event_limit; 1941 schedule_work(&ctrl->async_event_work); 1942 break; 1943 default: 1944 break; 1945 } 1946 1947 if (done) 1948 return; 1949 1950 switch (result & 0xff07) { 1951 case NVME_AER_NOTICE_NS_CHANGED: 1952 dev_info(ctrl->device, "rescanning\n"); 1953 nvme_queue_scan(ctrl); 1954 break; 1955 default: 1956 dev_warn(ctrl->device, "async event result %08x\n", result); 1957 } 1958 } 1959 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 1960 1961 void nvme_queue_async_events(struct nvme_ctrl *ctrl) 1962 { 1963 ctrl->event_limit = NVME_NR_AERS; 1964 schedule_work(&ctrl->async_event_work); 1965 } 1966 EXPORT_SYMBOL_GPL(nvme_queue_async_events); 1967 1968 static DEFINE_IDA(nvme_instance_ida); 1969 1970 static int nvme_set_instance(struct nvme_ctrl *ctrl) 1971 { 1972 int instance, error; 1973 1974 do { 1975 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) 1976 return -ENODEV; 1977 1978 spin_lock(&dev_list_lock); 1979 error = ida_get_new(&nvme_instance_ida, &instance); 1980 spin_unlock(&dev_list_lock); 1981 } while (error == -EAGAIN); 1982 1983 if (error) 1984 return -ENODEV; 1985 1986 ctrl->instance = instance; 1987 return 0; 1988 } 1989 1990 static void nvme_release_instance(struct nvme_ctrl *ctrl) 1991 { 1992 spin_lock(&dev_list_lock); 1993 ida_remove(&nvme_instance_ida, ctrl->instance); 1994 spin_unlock(&dev_list_lock); 1995 } 1996 1997 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 1998 { 1999 flush_work(&ctrl->async_event_work); 2000 flush_work(&ctrl->scan_work); 2001 nvme_remove_namespaces(ctrl); 2002 2003 device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); 2004 2005 spin_lock(&dev_list_lock); 2006 list_del(&ctrl->node); 2007 spin_unlock(&dev_list_lock); 2008 } 2009 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 2010 2011 static void nvme_free_ctrl(struct kref *kref) 2012 { 2013 struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref); 2014 2015 put_device(ctrl->device); 2016 nvme_release_instance(ctrl); 2017 ida_destroy(&ctrl->ns_ida); 2018 2019 ctrl->ops->free_ctrl(ctrl); 2020 } 2021 2022 void nvme_put_ctrl(struct nvme_ctrl *ctrl) 2023 { 2024 kref_put(&ctrl->kref, nvme_free_ctrl); 2025 } 2026 EXPORT_SYMBOL_GPL(nvme_put_ctrl); 2027 2028 /* 2029 * Initialize a NVMe controller structures. This needs to be called during 2030 * earliest initialization so that we have the initialized structured around 2031 * during probing. 2032 */ 2033 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 2034 const struct nvme_ctrl_ops *ops, unsigned long quirks) 2035 { 2036 int ret; 2037 2038 ctrl->state = NVME_CTRL_NEW; 2039 spin_lock_init(&ctrl->lock); 2040 INIT_LIST_HEAD(&ctrl->namespaces); 2041 mutex_init(&ctrl->namespaces_mutex); 2042 kref_init(&ctrl->kref); 2043 ctrl->dev = dev; 2044 ctrl->ops = ops; 2045 ctrl->quirks = quirks; 2046 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 2047 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 2048 2049 ret = nvme_set_instance(ctrl); 2050 if (ret) 2051 goto out; 2052 2053 ctrl->device = device_create_with_groups(nvme_class, ctrl->dev, 2054 MKDEV(nvme_char_major, ctrl->instance), 2055 ctrl, nvme_dev_attr_groups, 2056 "nvme%d", ctrl->instance); 2057 if (IS_ERR(ctrl->device)) { 2058 ret = PTR_ERR(ctrl->device); 2059 goto out_release_instance; 2060 } 2061 get_device(ctrl->device); 2062 ida_init(&ctrl->ns_ida); 2063 2064 spin_lock(&dev_list_lock); 2065 list_add_tail(&ctrl->node, &nvme_ctrl_list); 2066 spin_unlock(&dev_list_lock); 2067 2068 return 0; 2069 out_release_instance: 2070 nvme_release_instance(ctrl); 2071 out: 2072 return ret; 2073 } 2074 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 2075 2076 /** 2077 * nvme_kill_queues(): Ends all namespace queues 2078 * @ctrl: the dead controller that needs to end 2079 * 2080 * Call this function when the driver determines it is unable to get the 2081 * controller in a state capable of servicing IO. 2082 */ 2083 void nvme_kill_queues(struct nvme_ctrl *ctrl) 2084 { 2085 struct nvme_ns *ns; 2086 2087 mutex_lock(&ctrl->namespaces_mutex); 2088 list_for_each_entry(ns, &ctrl->namespaces, list) { 2089 /* 2090 * Revalidating a dead namespace sets capacity to 0. This will 2091 * end buffered writers dirtying pages that can't be synced. 2092 */ 2093 if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 2094 revalidate_disk(ns->disk); 2095 2096 blk_set_queue_dying(ns->queue); 2097 blk_mq_abort_requeue_list(ns->queue); 2098 blk_mq_start_stopped_hw_queues(ns->queue, true); 2099 } 2100 mutex_unlock(&ctrl->namespaces_mutex); 2101 } 2102 EXPORT_SYMBOL_GPL(nvme_kill_queues); 2103 2104 void nvme_stop_queues(struct nvme_ctrl *ctrl) 2105 { 2106 struct nvme_ns *ns; 2107 2108 mutex_lock(&ctrl->namespaces_mutex); 2109 list_for_each_entry(ns, &ctrl->namespaces, list) 2110 blk_mq_quiesce_queue(ns->queue); 2111 mutex_unlock(&ctrl->namespaces_mutex); 2112 } 2113 EXPORT_SYMBOL_GPL(nvme_stop_queues); 2114 2115 void nvme_start_queues(struct nvme_ctrl *ctrl) 2116 { 2117 struct nvme_ns *ns; 2118 2119 mutex_lock(&ctrl->namespaces_mutex); 2120 list_for_each_entry(ns, &ctrl->namespaces, list) { 2121 blk_mq_start_stopped_hw_queues(ns->queue, true); 2122 blk_mq_kick_requeue_list(ns->queue); 2123 } 2124 mutex_unlock(&ctrl->namespaces_mutex); 2125 } 2126 EXPORT_SYMBOL_GPL(nvme_start_queues); 2127 2128 int __init nvme_core_init(void) 2129 { 2130 int result; 2131 2132 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", 2133 &nvme_dev_fops); 2134 if (result < 0) 2135 return result; 2136 else if (result > 0) 2137 nvme_char_major = result; 2138 2139 nvme_class = class_create(THIS_MODULE, "nvme"); 2140 if (IS_ERR(nvme_class)) { 2141 result = PTR_ERR(nvme_class); 2142 goto unregister_chrdev; 2143 } 2144 2145 return 0; 2146 2147 unregister_chrdev: 2148 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2149 return result; 2150 } 2151 2152 void nvme_core_exit(void) 2153 { 2154 class_destroy(nvme_class); 2155 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); 2156 } 2157 2158 MODULE_LICENSE("GPL"); 2159 MODULE_VERSION("1.0"); 2160 module_init(nvme_core_init); 2161 module_exit(nvme_core_exit); 2162