1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include "nvme.h" 27 #include "fabrics.h" 28 #include <linux/nvme-auth.h> 29 30 #define CREATE_TRACE_POINTS 31 #include "trace.h" 32 33 #define NVME_MINORS (1U << MINORBITS) 34 35 struct nvme_ns_info { 36 struct nvme_ns_ids ids; 37 u32 nsid; 38 __le32 anagrpid; 39 u8 pi_offset; 40 bool is_shared; 41 bool is_readonly; 42 bool is_ready; 43 bool is_removed; 44 }; 45 46 unsigned int admin_timeout = 60; 47 module_param(admin_timeout, uint, 0644); 48 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 49 EXPORT_SYMBOL_GPL(admin_timeout); 50 51 unsigned int nvme_io_timeout = 30; 52 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 53 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 54 EXPORT_SYMBOL_GPL(nvme_io_timeout); 55 56 static unsigned char shutdown_timeout = 5; 57 module_param(shutdown_timeout, byte, 0644); 58 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 59 60 static u8 nvme_max_retries = 5; 61 module_param_named(max_retries, nvme_max_retries, byte, 0644); 62 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 63 64 static unsigned long default_ps_max_latency_us = 100000; 65 module_param(default_ps_max_latency_us, ulong, 0644); 66 MODULE_PARM_DESC(default_ps_max_latency_us, 67 "max power saving latency for new devices; use PM QOS to change per device"); 68 69 static bool force_apst; 70 module_param(force_apst, bool, 0644); 71 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 72 73 static unsigned long apst_primary_timeout_ms = 100; 74 module_param(apst_primary_timeout_ms, ulong, 0644); 75 MODULE_PARM_DESC(apst_primary_timeout_ms, 76 "primary APST timeout in ms"); 77 78 static unsigned long apst_secondary_timeout_ms = 2000; 79 module_param(apst_secondary_timeout_ms, ulong, 0644); 80 MODULE_PARM_DESC(apst_secondary_timeout_ms, 81 "secondary APST timeout in ms"); 82 83 static unsigned long apst_primary_latency_tol_us = 15000; 84 module_param(apst_primary_latency_tol_us, ulong, 0644); 85 MODULE_PARM_DESC(apst_primary_latency_tol_us, 86 "primary APST latency tolerance in us"); 87 88 static unsigned long apst_secondary_latency_tol_us = 100000; 89 module_param(apst_secondary_latency_tol_us, ulong, 0644); 90 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 91 "secondary APST latency tolerance in us"); 92 93 /* 94 * nvme_wq - hosts nvme related works that are not reset or delete 95 * nvme_reset_wq - hosts nvme reset works 96 * nvme_delete_wq - hosts nvme delete works 97 * 98 * nvme_wq will host works such as scan, aen handling, fw activation, 99 * keep-alive, periodic reconnects etc. nvme_reset_wq 100 * runs reset works which also flush works hosted on nvme_wq for 101 * serialization purposes. nvme_delete_wq host controller deletion 102 * works which flush reset works for serialization. 103 */ 104 struct workqueue_struct *nvme_wq; 105 EXPORT_SYMBOL_GPL(nvme_wq); 106 107 struct workqueue_struct *nvme_reset_wq; 108 EXPORT_SYMBOL_GPL(nvme_reset_wq); 109 110 struct workqueue_struct *nvme_delete_wq; 111 EXPORT_SYMBOL_GPL(nvme_delete_wq); 112 113 static LIST_HEAD(nvme_subsystems); 114 DEFINE_MUTEX(nvme_subsystems_lock); 115 116 static DEFINE_IDA(nvme_instance_ida); 117 static dev_t nvme_ctrl_base_chr_devt; 118 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 119 static const struct class nvme_class = { 120 .name = "nvme", 121 .dev_uevent = nvme_class_uevent, 122 }; 123 124 static const struct class nvme_subsys_class = { 125 .name = "nvme-subsystem", 126 }; 127 128 static DEFINE_IDA(nvme_ns_chr_minor_ida); 129 static dev_t nvme_ns_chr_devt; 130 static const struct class nvme_ns_chr_class = { 131 .name = "nvme-generic", 132 }; 133 134 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 135 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 136 unsigned nsid); 137 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 138 struct nvme_command *cmd); 139 140 void nvme_queue_scan(struct nvme_ctrl *ctrl) 141 { 142 /* 143 * Only new queue scan work when admin and IO queues are both alive 144 */ 145 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 146 queue_work(nvme_wq, &ctrl->scan_work); 147 } 148 149 /* 150 * Use this function to proceed with scheduling reset_work for a controller 151 * that had previously been set to the resetting state. This is intended for 152 * code paths that can't be interrupted by other reset attempts. A hot removal 153 * may prevent this from succeeding. 154 */ 155 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 156 { 157 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 158 return -EBUSY; 159 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 160 return -EBUSY; 161 return 0; 162 } 163 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 164 165 static void nvme_failfast_work(struct work_struct *work) 166 { 167 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 168 struct nvme_ctrl, failfast_work); 169 170 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 171 return; 172 173 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 174 dev_info(ctrl->device, "failfast expired\n"); 175 nvme_kick_requeue_lists(ctrl); 176 } 177 178 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 179 { 180 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 181 return; 182 183 schedule_delayed_work(&ctrl->failfast_work, 184 ctrl->opts->fast_io_fail_tmo * HZ); 185 } 186 187 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 188 { 189 if (!ctrl->opts) 190 return; 191 192 cancel_delayed_work_sync(&ctrl->failfast_work); 193 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 194 } 195 196 197 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 198 { 199 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 200 return -EBUSY; 201 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 202 return -EBUSY; 203 return 0; 204 } 205 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 206 207 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 208 { 209 int ret; 210 211 ret = nvme_reset_ctrl(ctrl); 212 if (!ret) { 213 flush_work(&ctrl->reset_work); 214 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 215 ret = -ENETRESET; 216 } 217 218 return ret; 219 } 220 221 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 222 { 223 dev_info(ctrl->device, 224 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 225 226 flush_work(&ctrl->reset_work); 227 nvme_stop_ctrl(ctrl); 228 nvme_remove_namespaces(ctrl); 229 ctrl->ops->delete_ctrl(ctrl); 230 nvme_uninit_ctrl(ctrl); 231 } 232 233 static void nvme_delete_ctrl_work(struct work_struct *work) 234 { 235 struct nvme_ctrl *ctrl = 236 container_of(work, struct nvme_ctrl, delete_work); 237 238 nvme_do_delete_ctrl(ctrl); 239 } 240 241 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 242 { 243 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 244 return -EBUSY; 245 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 246 return -EBUSY; 247 return 0; 248 } 249 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 250 251 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 252 { 253 /* 254 * Keep a reference until nvme_do_delete_ctrl() complete, 255 * since ->delete_ctrl can free the controller. 256 */ 257 nvme_get_ctrl(ctrl); 258 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 259 nvme_do_delete_ctrl(ctrl); 260 nvme_put_ctrl(ctrl); 261 } 262 263 static blk_status_t nvme_error_status(u16 status) 264 { 265 switch (status & NVME_SCT_SC_MASK) { 266 case NVME_SC_SUCCESS: 267 return BLK_STS_OK; 268 case NVME_SC_CAP_EXCEEDED: 269 return BLK_STS_NOSPC; 270 case NVME_SC_LBA_RANGE: 271 case NVME_SC_CMD_INTERRUPTED: 272 case NVME_SC_NS_NOT_READY: 273 return BLK_STS_TARGET; 274 case NVME_SC_BAD_ATTRIBUTES: 275 case NVME_SC_ONCS_NOT_SUPPORTED: 276 case NVME_SC_INVALID_OPCODE: 277 case NVME_SC_INVALID_FIELD: 278 case NVME_SC_INVALID_NS: 279 return BLK_STS_NOTSUPP; 280 case NVME_SC_WRITE_FAULT: 281 case NVME_SC_READ_ERROR: 282 case NVME_SC_UNWRITTEN_BLOCK: 283 case NVME_SC_ACCESS_DENIED: 284 case NVME_SC_READ_ONLY: 285 case NVME_SC_COMPARE_FAILED: 286 return BLK_STS_MEDIUM; 287 case NVME_SC_GUARD_CHECK: 288 case NVME_SC_APPTAG_CHECK: 289 case NVME_SC_REFTAG_CHECK: 290 case NVME_SC_INVALID_PI: 291 return BLK_STS_PROTECTION; 292 case NVME_SC_RESERVATION_CONFLICT: 293 return BLK_STS_RESV_CONFLICT; 294 case NVME_SC_HOST_PATH_ERROR: 295 return BLK_STS_TRANSPORT; 296 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 297 return BLK_STS_ZONE_ACTIVE_RESOURCE; 298 case NVME_SC_ZONE_TOO_MANY_OPEN: 299 return BLK_STS_ZONE_OPEN_RESOURCE; 300 default: 301 return BLK_STS_IOERR; 302 } 303 } 304 305 static void nvme_retry_req(struct request *req) 306 { 307 unsigned long delay = 0; 308 u16 crd; 309 310 /* The mask and shift result must be <= 3 */ 311 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; 312 if (crd) 313 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 314 315 nvme_req(req)->retries++; 316 blk_mq_requeue_request(req, false); 317 blk_mq_delay_kick_requeue_list(req->q, delay); 318 } 319 320 static void nvme_log_error(struct request *req) 321 { 322 struct nvme_ns *ns = req->q->queuedata; 323 struct nvme_request *nr = nvme_req(req); 324 325 if (ns) { 326 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 327 ns->disk ? ns->disk->disk_name : "?", 328 nvme_get_opcode_str(nr->cmd->common.opcode), 329 nr->cmd->common.opcode, 330 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 331 blk_rq_bytes(req) >> ns->head->lba_shift, 332 nvme_get_error_status_str(nr->status), 333 NVME_SCT(nr->status), /* Status Code Type */ 334 nr->status & NVME_SC_MASK, /* Status Code */ 335 nr->status & NVME_STATUS_MORE ? "MORE " : "", 336 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 337 return; 338 } 339 340 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 341 dev_name(nr->ctrl->device), 342 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 343 nr->cmd->common.opcode, 344 nvme_get_error_status_str(nr->status), 345 NVME_SCT(nr->status), /* Status Code Type */ 346 nr->status & NVME_SC_MASK, /* Status Code */ 347 nr->status & NVME_STATUS_MORE ? "MORE " : "", 348 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 349 } 350 351 static void nvme_log_err_passthru(struct request *req) 352 { 353 struct nvme_ns *ns = req->q->queuedata; 354 struct nvme_request *nr = nvme_req(req); 355 356 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 357 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 358 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 359 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 360 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 361 nr->cmd->common.opcode, 362 nvme_get_error_status_str(nr->status), 363 NVME_SCT(nr->status), /* Status Code Type */ 364 nr->status & NVME_SC_MASK, /* Status Code */ 365 nr->status & NVME_STATUS_MORE ? "MORE " : "", 366 nr->status & NVME_STATUS_DNR ? "DNR " : "", 367 nr->cmd->common.cdw10, 368 nr->cmd->common.cdw11, 369 nr->cmd->common.cdw12, 370 nr->cmd->common.cdw13, 371 nr->cmd->common.cdw14, 372 nr->cmd->common.cdw14); 373 } 374 375 enum nvme_disposition { 376 COMPLETE, 377 RETRY, 378 FAILOVER, 379 AUTHENTICATE, 380 }; 381 382 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 383 { 384 if (likely(nvme_req(req)->status == 0)) 385 return COMPLETE; 386 387 if (blk_noretry_request(req) || 388 (nvme_req(req)->status & NVME_STATUS_DNR) || 389 nvme_req(req)->retries >= nvme_max_retries) 390 return COMPLETE; 391 392 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) 393 return AUTHENTICATE; 394 395 if (req->cmd_flags & REQ_NVME_MPATH) { 396 if (nvme_is_path_error(nvme_req(req)->status) || 397 blk_queue_dying(req->q)) 398 return FAILOVER; 399 } else { 400 if (blk_queue_dying(req->q)) 401 return COMPLETE; 402 } 403 404 return RETRY; 405 } 406 407 static inline void nvme_end_req_zoned(struct request *req) 408 { 409 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 410 req_op(req) == REQ_OP_ZONE_APPEND) { 411 struct nvme_ns *ns = req->q->queuedata; 412 413 req->__sector = nvme_lba_to_sect(ns->head, 414 le64_to_cpu(nvme_req(req)->result.u64)); 415 } 416 } 417 418 static inline void __nvme_end_req(struct request *req) 419 { 420 nvme_end_req_zoned(req); 421 nvme_trace_bio_complete(req); 422 if (req->cmd_flags & REQ_NVME_MPATH) 423 nvme_mpath_end_request(req); 424 } 425 426 void nvme_end_req(struct request *req) 427 { 428 blk_status_t status = nvme_error_status(nvme_req(req)->status); 429 430 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 431 if (blk_rq_is_passthrough(req)) 432 nvme_log_err_passthru(req); 433 else 434 nvme_log_error(req); 435 } 436 __nvme_end_req(req); 437 blk_mq_end_request(req, status); 438 } 439 440 void nvme_complete_rq(struct request *req) 441 { 442 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 443 444 trace_nvme_complete_rq(req); 445 nvme_cleanup_cmd(req); 446 447 /* 448 * Completions of long-running commands should not be able to 449 * defer sending of periodic keep alives, since the controller 450 * may have completed processing such commands a long time ago 451 * (arbitrarily close to command submission time). 452 * req->deadline - req->timeout is the command submission time 453 * in jiffies. 454 */ 455 if (ctrl->kas && 456 req->deadline - req->timeout >= ctrl->ka_last_check_time) 457 ctrl->comp_seen = true; 458 459 switch (nvme_decide_disposition(req)) { 460 case COMPLETE: 461 nvme_end_req(req); 462 return; 463 case RETRY: 464 nvme_retry_req(req); 465 return; 466 case FAILOVER: 467 nvme_failover_req(req); 468 return; 469 case AUTHENTICATE: 470 #ifdef CONFIG_NVME_HOST_AUTH 471 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 472 nvme_retry_req(req); 473 #else 474 nvme_end_req(req); 475 #endif 476 return; 477 } 478 } 479 EXPORT_SYMBOL_GPL(nvme_complete_rq); 480 481 void nvme_complete_batch_req(struct request *req) 482 { 483 trace_nvme_complete_rq(req); 484 nvme_cleanup_cmd(req); 485 __nvme_end_req(req); 486 } 487 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 488 489 /* 490 * Called to unwind from ->queue_rq on a failed command submission so that the 491 * multipathing code gets called to potentially failover to another path. 492 * The caller needs to unwind all transport specific resource allocations and 493 * must return propagate the return value. 494 */ 495 blk_status_t nvme_host_path_error(struct request *req) 496 { 497 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 498 blk_mq_set_request_complete(req); 499 nvme_complete_rq(req); 500 return BLK_STS_OK; 501 } 502 EXPORT_SYMBOL_GPL(nvme_host_path_error); 503 504 bool nvme_cancel_request(struct request *req, void *data) 505 { 506 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 507 "Cancelling I/O %d", req->tag); 508 509 /* don't abort one completed or idle request */ 510 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 511 return true; 512 513 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 514 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 515 blk_mq_complete_request(req); 516 return true; 517 } 518 EXPORT_SYMBOL_GPL(nvme_cancel_request); 519 520 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 521 { 522 if (ctrl->tagset) { 523 blk_mq_tagset_busy_iter(ctrl->tagset, 524 nvme_cancel_request, ctrl); 525 blk_mq_tagset_wait_completed_request(ctrl->tagset); 526 } 527 } 528 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 529 530 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 531 { 532 if (ctrl->admin_tagset) { 533 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 534 nvme_cancel_request, ctrl); 535 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 536 } 537 } 538 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 539 540 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 541 enum nvme_ctrl_state new_state) 542 { 543 enum nvme_ctrl_state old_state; 544 unsigned long flags; 545 bool changed = false; 546 547 spin_lock_irqsave(&ctrl->lock, flags); 548 549 old_state = nvme_ctrl_state(ctrl); 550 switch (new_state) { 551 case NVME_CTRL_LIVE: 552 switch (old_state) { 553 case NVME_CTRL_NEW: 554 case NVME_CTRL_RESETTING: 555 case NVME_CTRL_CONNECTING: 556 changed = true; 557 fallthrough; 558 default: 559 break; 560 } 561 break; 562 case NVME_CTRL_RESETTING: 563 switch (old_state) { 564 case NVME_CTRL_NEW: 565 case NVME_CTRL_LIVE: 566 changed = true; 567 fallthrough; 568 default: 569 break; 570 } 571 break; 572 case NVME_CTRL_CONNECTING: 573 switch (old_state) { 574 case NVME_CTRL_NEW: 575 case NVME_CTRL_RESETTING: 576 changed = true; 577 fallthrough; 578 default: 579 break; 580 } 581 break; 582 case NVME_CTRL_DELETING: 583 switch (old_state) { 584 case NVME_CTRL_LIVE: 585 case NVME_CTRL_RESETTING: 586 case NVME_CTRL_CONNECTING: 587 changed = true; 588 fallthrough; 589 default: 590 break; 591 } 592 break; 593 case NVME_CTRL_DELETING_NOIO: 594 switch (old_state) { 595 case NVME_CTRL_DELETING: 596 case NVME_CTRL_DEAD: 597 changed = true; 598 fallthrough; 599 default: 600 break; 601 } 602 break; 603 case NVME_CTRL_DEAD: 604 switch (old_state) { 605 case NVME_CTRL_DELETING: 606 changed = true; 607 fallthrough; 608 default: 609 break; 610 } 611 break; 612 default: 613 break; 614 } 615 616 if (changed) { 617 WRITE_ONCE(ctrl->state, new_state); 618 wake_up_all(&ctrl->state_wq); 619 } 620 621 spin_unlock_irqrestore(&ctrl->lock, flags); 622 if (!changed) 623 return false; 624 625 if (new_state == NVME_CTRL_LIVE) { 626 if (old_state == NVME_CTRL_CONNECTING) 627 nvme_stop_failfast_work(ctrl); 628 nvme_kick_requeue_lists(ctrl); 629 } else if (new_state == NVME_CTRL_CONNECTING && 630 old_state == NVME_CTRL_RESETTING) { 631 nvme_start_failfast_work(ctrl); 632 } 633 return changed; 634 } 635 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 636 637 /* 638 * Waits for the controller state to be resetting, or returns false if it is 639 * not possible to ever transition to that state. 640 */ 641 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 642 { 643 wait_event(ctrl->state_wq, 644 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 645 nvme_state_terminal(ctrl)); 646 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 647 } 648 EXPORT_SYMBOL_GPL(nvme_wait_reset); 649 650 static void nvme_free_ns_head(struct kref *ref) 651 { 652 struct nvme_ns_head *head = 653 container_of(ref, struct nvme_ns_head, ref); 654 655 nvme_mpath_remove_disk(head); 656 ida_free(&head->subsys->ns_ida, head->instance); 657 cleanup_srcu_struct(&head->srcu); 658 nvme_put_subsystem(head->subsys); 659 kfree(head); 660 } 661 662 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 663 { 664 return kref_get_unless_zero(&head->ref); 665 } 666 667 void nvme_put_ns_head(struct nvme_ns_head *head) 668 { 669 kref_put(&head->ref, nvme_free_ns_head); 670 } 671 672 static void nvme_free_ns(struct kref *kref) 673 { 674 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 675 676 put_disk(ns->disk); 677 nvme_put_ns_head(ns->head); 678 nvme_put_ctrl(ns->ctrl); 679 kfree(ns); 680 } 681 682 bool nvme_get_ns(struct nvme_ns *ns) 683 { 684 return kref_get_unless_zero(&ns->kref); 685 } 686 687 void nvme_put_ns(struct nvme_ns *ns) 688 { 689 kref_put(&ns->kref, nvme_free_ns); 690 } 691 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 692 693 static inline void nvme_clear_nvme_request(struct request *req) 694 { 695 nvme_req(req)->status = 0; 696 nvme_req(req)->retries = 0; 697 nvme_req(req)->flags = 0; 698 req->rq_flags |= RQF_DONTPREP; 699 } 700 701 /* initialize a passthrough request */ 702 void nvme_init_request(struct request *req, struct nvme_command *cmd) 703 { 704 struct nvme_request *nr = nvme_req(req); 705 bool logging_enabled; 706 707 if (req->q->queuedata) { 708 struct nvme_ns *ns = req->q->disk->private_data; 709 710 logging_enabled = ns->head->passthru_err_log_enabled; 711 req->timeout = NVME_IO_TIMEOUT; 712 } else { /* no queuedata implies admin queue */ 713 logging_enabled = nr->ctrl->passthru_err_log_enabled; 714 req->timeout = NVME_ADMIN_TIMEOUT; 715 } 716 717 if (!logging_enabled) 718 req->rq_flags |= RQF_QUIET; 719 720 /* passthru commands should let the driver set the SGL flags */ 721 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 722 723 req->cmd_flags |= REQ_FAILFAST_DRIVER; 724 if (req->mq_hctx->type == HCTX_TYPE_POLL) 725 req->cmd_flags |= REQ_POLLED; 726 nvme_clear_nvme_request(req); 727 memcpy(nr->cmd, cmd, sizeof(*cmd)); 728 } 729 EXPORT_SYMBOL_GPL(nvme_init_request); 730 731 /* 732 * For something we're not in a state to send to the device the default action 733 * is to busy it and retry it after the controller state is recovered. However, 734 * if the controller is deleting or if anything is marked for failfast or 735 * nvme multipath it is immediately failed. 736 * 737 * Note: commands used to initialize the controller will be marked for failfast. 738 * Note: nvme cli/ioctl commands are marked for failfast. 739 */ 740 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 741 struct request *rq) 742 { 743 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 744 745 if (state != NVME_CTRL_DELETING_NOIO && 746 state != NVME_CTRL_DELETING && 747 state != NVME_CTRL_DEAD && 748 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 749 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 750 return BLK_STS_RESOURCE; 751 return nvme_host_path_error(rq); 752 } 753 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 754 755 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 756 bool queue_live, enum nvme_ctrl_state state) 757 { 758 struct nvme_request *req = nvme_req(rq); 759 760 /* 761 * currently we have a problem sending passthru commands 762 * on the admin_q if the controller is not LIVE because we can't 763 * make sure that they are going out after the admin connect, 764 * controller enable and/or other commands in the initialization 765 * sequence. until the controller will be LIVE, fail with 766 * BLK_STS_RESOURCE so that they will be rescheduled. 767 */ 768 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 769 return false; 770 771 if (ctrl->ops->flags & NVME_F_FABRICS) { 772 /* 773 * Only allow commands on a live queue, except for the connect 774 * command, which is require to set the queue live in the 775 * appropinquate states. 776 */ 777 switch (state) { 778 case NVME_CTRL_CONNECTING: 779 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 780 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 781 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 782 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 783 return true; 784 break; 785 default: 786 break; 787 case NVME_CTRL_DEAD: 788 return false; 789 } 790 } 791 792 return queue_live; 793 } 794 EXPORT_SYMBOL_GPL(__nvme_check_ready); 795 796 static inline void nvme_setup_flush(struct nvme_ns *ns, 797 struct nvme_command *cmnd) 798 { 799 memset(cmnd, 0, sizeof(*cmnd)); 800 cmnd->common.opcode = nvme_cmd_flush; 801 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 802 } 803 804 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 805 struct nvme_command *cmnd) 806 { 807 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 808 struct nvme_dsm_range *range; 809 struct bio *bio; 810 811 /* 812 * Some devices do not consider the DSM 'Number of Ranges' field when 813 * determining how much data to DMA. Always allocate memory for maximum 814 * number of segments to prevent device reading beyond end of buffer. 815 */ 816 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 817 818 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 819 if (!range) { 820 /* 821 * If we fail allocation our range, fallback to the controller 822 * discard page. If that's also busy, it's safe to return 823 * busy, as we know we can make progress once that's freed. 824 */ 825 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 826 return BLK_STS_RESOURCE; 827 828 range = page_address(ns->ctrl->discard_page); 829 } 830 831 if (queue_max_discard_segments(req->q) == 1) { 832 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 833 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 834 835 range[0].cattr = cpu_to_le32(0); 836 range[0].nlb = cpu_to_le32(nlb); 837 range[0].slba = cpu_to_le64(slba); 838 n = 1; 839 } else { 840 __rq_for_each_bio(bio, req) { 841 u64 slba = nvme_sect_to_lba(ns->head, 842 bio->bi_iter.bi_sector); 843 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 844 845 if (n < segments) { 846 range[n].cattr = cpu_to_le32(0); 847 range[n].nlb = cpu_to_le32(nlb); 848 range[n].slba = cpu_to_le64(slba); 849 } 850 n++; 851 } 852 } 853 854 if (WARN_ON_ONCE(n != segments)) { 855 if (virt_to_page(range) == ns->ctrl->discard_page) 856 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 857 else 858 kfree(range); 859 return BLK_STS_IOERR; 860 } 861 862 memset(cmnd, 0, sizeof(*cmnd)); 863 cmnd->dsm.opcode = nvme_cmd_dsm; 864 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 865 cmnd->dsm.nr = cpu_to_le32(segments - 1); 866 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 867 868 bvec_set_virt(&req->special_vec, range, alloc_size); 869 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 870 871 return BLK_STS_OK; 872 } 873 874 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 875 struct request *req) 876 { 877 u32 upper, lower; 878 u64 ref48; 879 880 /* both rw and write zeroes share the same reftag format */ 881 switch (ns->head->guard_type) { 882 case NVME_NVM_NS_16B_GUARD: 883 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 884 break; 885 case NVME_NVM_NS_64B_GUARD: 886 ref48 = ext_pi_ref_tag(req); 887 lower = lower_32_bits(ref48); 888 upper = upper_32_bits(ref48); 889 890 cmnd->rw.reftag = cpu_to_le32(lower); 891 cmnd->rw.cdw3 = cpu_to_le32(upper); 892 break; 893 default: 894 break; 895 } 896 } 897 898 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 899 struct request *req, struct nvme_command *cmnd) 900 { 901 memset(cmnd, 0, sizeof(*cmnd)); 902 903 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 904 return nvme_setup_discard(ns, req, cmnd); 905 906 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 907 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 908 cmnd->write_zeroes.slba = 909 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 910 cmnd->write_zeroes.length = 911 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 912 913 if (!(req->cmd_flags & REQ_NOUNMAP) && 914 (ns->head->features & NVME_NS_DEAC)) 915 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 916 917 if (nvme_ns_has_pi(ns->head)) { 918 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 919 920 switch (ns->head->pi_type) { 921 case NVME_NS_DPS_PI_TYPE1: 922 case NVME_NS_DPS_PI_TYPE2: 923 nvme_set_ref_tag(ns, cmnd, req); 924 break; 925 } 926 } 927 928 return BLK_STS_OK; 929 } 930 931 /* 932 * NVMe does not support a dedicated command to issue an atomic write. A write 933 * which does adhere to the device atomic limits will silently be executed 934 * non-atomically. The request issuer should ensure that the write is within 935 * the queue atomic writes limits, but just validate this in case it is not. 936 */ 937 static bool nvme_valid_atomic_write(struct request *req) 938 { 939 struct request_queue *q = req->q; 940 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); 941 942 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) 943 return false; 944 945 if (boundary_bytes) { 946 u64 mask = boundary_bytes - 1, imask = ~mask; 947 u64 start = blk_rq_pos(req) << SECTOR_SHIFT; 948 u64 end = start + blk_rq_bytes(req) - 1; 949 950 /* If greater then must be crossing a boundary */ 951 if (blk_rq_bytes(req) > boundary_bytes) 952 return false; 953 954 if ((start & imask) != (end & imask)) 955 return false; 956 } 957 958 return true; 959 } 960 961 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 962 struct request *req, struct nvme_command *cmnd, 963 enum nvme_opcode op) 964 { 965 u16 control = 0; 966 u32 dsmgmt = 0; 967 968 if (req->cmd_flags & REQ_FUA) 969 control |= NVME_RW_FUA; 970 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 971 control |= NVME_RW_LR; 972 973 if (req->cmd_flags & REQ_RAHEAD) 974 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 975 976 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) 977 return BLK_STS_INVAL; 978 979 cmnd->rw.opcode = op; 980 cmnd->rw.flags = 0; 981 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 982 cmnd->rw.cdw2 = 0; 983 cmnd->rw.cdw3 = 0; 984 cmnd->rw.metadata = 0; 985 cmnd->rw.slba = 986 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 987 cmnd->rw.length = 988 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 989 cmnd->rw.reftag = 0; 990 cmnd->rw.apptag = 0; 991 cmnd->rw.appmask = 0; 992 993 if (ns->head->ms) { 994 /* 995 * If formated with metadata, the block layer always provides a 996 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 997 * we enable the PRACT bit for protection information or set the 998 * namespace capacity to zero to prevent any I/O. 999 */ 1000 if (!blk_integrity_rq(req)) { 1001 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 1002 return BLK_STS_NOTSUPP; 1003 control |= NVME_RW_PRINFO_PRACT; 1004 } 1005 1006 switch (ns->head->pi_type) { 1007 case NVME_NS_DPS_PI_TYPE3: 1008 control |= NVME_RW_PRINFO_PRCHK_GUARD; 1009 break; 1010 case NVME_NS_DPS_PI_TYPE1: 1011 case NVME_NS_DPS_PI_TYPE2: 1012 control |= NVME_RW_PRINFO_PRCHK_GUARD | 1013 NVME_RW_PRINFO_PRCHK_REF; 1014 if (op == nvme_cmd_zone_append) 1015 control |= NVME_RW_APPEND_PIREMAP; 1016 nvme_set_ref_tag(ns, cmnd, req); 1017 break; 1018 } 1019 } 1020 1021 cmnd->rw.control = cpu_to_le16(control); 1022 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 1023 return 0; 1024 } 1025 1026 void nvme_cleanup_cmd(struct request *req) 1027 { 1028 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 1029 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 1030 1031 if (req->special_vec.bv_page == ctrl->discard_page) 1032 clear_bit_unlock(0, &ctrl->discard_page_busy); 1033 else 1034 kfree(bvec_virt(&req->special_vec)); 1035 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; 1036 } 1037 } 1038 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1039 1040 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1041 { 1042 struct nvme_command *cmd = nvme_req(req)->cmd; 1043 blk_status_t ret = BLK_STS_OK; 1044 1045 if (!(req->rq_flags & RQF_DONTPREP)) 1046 nvme_clear_nvme_request(req); 1047 1048 switch (req_op(req)) { 1049 case REQ_OP_DRV_IN: 1050 case REQ_OP_DRV_OUT: 1051 /* these are setup prior to execution in nvme_init_request() */ 1052 break; 1053 case REQ_OP_FLUSH: 1054 nvme_setup_flush(ns, cmd); 1055 break; 1056 case REQ_OP_ZONE_RESET_ALL: 1057 case REQ_OP_ZONE_RESET: 1058 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1059 break; 1060 case REQ_OP_ZONE_OPEN: 1061 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1062 break; 1063 case REQ_OP_ZONE_CLOSE: 1064 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1065 break; 1066 case REQ_OP_ZONE_FINISH: 1067 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1068 break; 1069 case REQ_OP_WRITE_ZEROES: 1070 ret = nvme_setup_write_zeroes(ns, req, cmd); 1071 break; 1072 case REQ_OP_DISCARD: 1073 ret = nvme_setup_discard(ns, req, cmd); 1074 break; 1075 case REQ_OP_READ: 1076 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1077 break; 1078 case REQ_OP_WRITE: 1079 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1080 break; 1081 case REQ_OP_ZONE_APPEND: 1082 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1083 break; 1084 default: 1085 WARN_ON_ONCE(1); 1086 return BLK_STS_IOERR; 1087 } 1088 1089 cmd->common.command_id = nvme_cid(req); 1090 trace_nvme_setup_cmd(req, cmd); 1091 return ret; 1092 } 1093 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1094 1095 /* 1096 * Return values: 1097 * 0: success 1098 * >0: nvme controller's cqe status response 1099 * <0: kernel error in lieu of controller response 1100 */ 1101 int nvme_execute_rq(struct request *rq, bool at_head) 1102 { 1103 blk_status_t status; 1104 1105 status = blk_execute_rq(rq, at_head); 1106 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1107 return -EINTR; 1108 if (nvme_req(rq)->status) 1109 return nvme_req(rq)->status; 1110 return blk_status_to_errno(status); 1111 } 1112 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1113 1114 /* 1115 * Returns 0 on success. If the result is negative, it's a Linux error code; 1116 * if the result is positive, it's an NVM Express status code 1117 */ 1118 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1119 union nvme_result *result, void *buffer, unsigned bufflen, 1120 int qid, nvme_submit_flags_t flags) 1121 { 1122 struct request *req; 1123 int ret; 1124 blk_mq_req_flags_t blk_flags = 0; 1125 1126 if (flags & NVME_SUBMIT_NOWAIT) 1127 blk_flags |= BLK_MQ_REQ_NOWAIT; 1128 if (flags & NVME_SUBMIT_RESERVED) 1129 blk_flags |= BLK_MQ_REQ_RESERVED; 1130 if (qid == NVME_QID_ANY) 1131 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1132 else 1133 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1134 qid - 1); 1135 1136 if (IS_ERR(req)) 1137 return PTR_ERR(req); 1138 nvme_init_request(req, cmd); 1139 if (flags & NVME_SUBMIT_RETRY) 1140 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1141 1142 if (buffer && bufflen) { 1143 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1144 if (ret) 1145 goto out; 1146 } 1147 1148 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1149 if (result && ret >= 0) 1150 *result = nvme_req(req)->result; 1151 out: 1152 blk_mq_free_request(req); 1153 return ret; 1154 } 1155 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1156 1157 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1158 void *buffer, unsigned bufflen) 1159 { 1160 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1161 NVME_QID_ANY, 0); 1162 } 1163 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1164 1165 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1166 { 1167 u32 effects = 0; 1168 1169 if (ns) { 1170 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1171 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1172 dev_warn_once(ctrl->device, 1173 "IO command:%02x has unusual effects:%08x\n", 1174 opcode, effects); 1175 1176 /* 1177 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1178 * which would deadlock when done on an I/O command. Note that 1179 * We already warn about an unusual effect above. 1180 */ 1181 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1182 } else { 1183 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1184 1185 /* Ignore execution restrictions if any relaxation bits are set */ 1186 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1187 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1188 } 1189 1190 return effects; 1191 } 1192 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1193 1194 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1195 { 1196 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1197 1198 /* 1199 * For simplicity, IO to all namespaces is quiesced even if the command 1200 * effects say only one namespace is affected. 1201 */ 1202 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1203 mutex_lock(&ctrl->scan_lock); 1204 mutex_lock(&ctrl->subsys->lock); 1205 nvme_mpath_start_freeze(ctrl->subsys); 1206 nvme_mpath_wait_freeze(ctrl->subsys); 1207 nvme_start_freeze(ctrl); 1208 nvme_wait_freeze(ctrl); 1209 } 1210 return effects; 1211 } 1212 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1213 1214 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1215 struct nvme_command *cmd, int status) 1216 { 1217 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1218 nvme_unfreeze(ctrl); 1219 nvme_mpath_unfreeze(ctrl->subsys); 1220 mutex_unlock(&ctrl->subsys->lock); 1221 mutex_unlock(&ctrl->scan_lock); 1222 } 1223 if (effects & NVME_CMD_EFFECTS_CCC) { 1224 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1225 &ctrl->flags)) { 1226 dev_info(ctrl->device, 1227 "controller capabilities changed, reset may be required to take effect.\n"); 1228 } 1229 } 1230 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1231 nvme_queue_scan(ctrl); 1232 flush_work(&ctrl->scan_work); 1233 } 1234 if (ns) 1235 return; 1236 1237 switch (cmd->common.opcode) { 1238 case nvme_admin_set_features: 1239 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1240 case NVME_FEAT_KATO: 1241 /* 1242 * Keep alive commands interval on the host should be 1243 * updated when KATO is modified by Set Features 1244 * commands. 1245 */ 1246 if (!status) 1247 nvme_update_keep_alive(ctrl, cmd); 1248 break; 1249 default: 1250 break; 1251 } 1252 break; 1253 default: 1254 break; 1255 } 1256 } 1257 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1258 1259 /* 1260 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1261 * 1262 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1263 * accounting for transport roundtrip times [..]. 1264 */ 1265 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1266 { 1267 unsigned long delay = ctrl->kato * HZ / 2; 1268 1269 /* 1270 * When using Traffic Based Keep Alive, we need to run 1271 * nvme_keep_alive_work at twice the normal frequency, as one 1272 * command completion can postpone sending a keep alive command 1273 * by up to twice the delay between runs. 1274 */ 1275 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1276 delay /= 2; 1277 return delay; 1278 } 1279 1280 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1281 { 1282 unsigned long now = jiffies; 1283 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1284 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1285 1286 if (time_after(now, ka_next_check_tm)) 1287 delay = 0; 1288 else 1289 delay = ka_next_check_tm - now; 1290 1291 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1292 } 1293 1294 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1295 blk_status_t status) 1296 { 1297 struct nvme_ctrl *ctrl = rq->end_io_data; 1298 unsigned long flags; 1299 bool startka = false; 1300 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1301 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1302 1303 /* 1304 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1305 * at the desired frequency. 1306 */ 1307 if (rtt <= delay) { 1308 delay -= rtt; 1309 } else { 1310 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1311 jiffies_to_msecs(rtt)); 1312 delay = 0; 1313 } 1314 1315 blk_mq_free_request(rq); 1316 1317 if (status) { 1318 dev_err(ctrl->device, 1319 "failed nvme_keep_alive_end_io error=%d\n", 1320 status); 1321 return RQ_END_IO_NONE; 1322 } 1323 1324 ctrl->ka_last_check_time = jiffies; 1325 ctrl->comp_seen = false; 1326 spin_lock_irqsave(&ctrl->lock, flags); 1327 if (ctrl->state == NVME_CTRL_LIVE || 1328 ctrl->state == NVME_CTRL_CONNECTING) 1329 startka = true; 1330 spin_unlock_irqrestore(&ctrl->lock, flags); 1331 if (startka) 1332 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1333 return RQ_END_IO_NONE; 1334 } 1335 1336 static void nvme_keep_alive_work(struct work_struct *work) 1337 { 1338 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1339 struct nvme_ctrl, ka_work); 1340 bool comp_seen = ctrl->comp_seen; 1341 struct request *rq; 1342 1343 ctrl->ka_last_check_time = jiffies; 1344 1345 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1346 dev_dbg(ctrl->device, 1347 "reschedule traffic based keep-alive timer\n"); 1348 ctrl->comp_seen = false; 1349 nvme_queue_keep_alive_work(ctrl); 1350 return; 1351 } 1352 1353 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1354 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1355 if (IS_ERR(rq)) { 1356 /* allocation failure, reset the controller */ 1357 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1358 nvme_reset_ctrl(ctrl); 1359 return; 1360 } 1361 nvme_init_request(rq, &ctrl->ka_cmd); 1362 1363 rq->timeout = ctrl->kato * HZ; 1364 rq->end_io = nvme_keep_alive_end_io; 1365 rq->end_io_data = ctrl; 1366 blk_execute_rq_nowait(rq, false); 1367 } 1368 1369 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1370 { 1371 if (unlikely(ctrl->kato == 0)) 1372 return; 1373 1374 nvme_queue_keep_alive_work(ctrl); 1375 } 1376 1377 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1378 { 1379 if (unlikely(ctrl->kato == 0)) 1380 return; 1381 1382 cancel_delayed_work_sync(&ctrl->ka_work); 1383 } 1384 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1385 1386 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1387 struct nvme_command *cmd) 1388 { 1389 unsigned int new_kato = 1390 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1391 1392 dev_info(ctrl->device, 1393 "keep alive interval updated from %u ms to %u ms\n", 1394 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1395 1396 nvme_stop_keep_alive(ctrl); 1397 ctrl->kato = new_kato; 1398 nvme_start_keep_alive(ctrl); 1399 } 1400 1401 /* 1402 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1403 * flag, thus sending any new CNS opcodes has a big chance of not working. 1404 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1405 * (but not for any later version). 1406 */ 1407 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1408 { 1409 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1410 return ctrl->vs < NVME_VS(1, 2, 0); 1411 return ctrl->vs < NVME_VS(1, 1, 0); 1412 } 1413 1414 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1415 { 1416 struct nvme_command c = { }; 1417 int error; 1418 1419 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1420 c.identify.opcode = nvme_admin_identify; 1421 c.identify.cns = NVME_ID_CNS_CTRL; 1422 1423 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1424 if (!*id) 1425 return -ENOMEM; 1426 1427 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1428 sizeof(struct nvme_id_ctrl)); 1429 if (error) { 1430 kfree(*id); 1431 *id = NULL; 1432 } 1433 return error; 1434 } 1435 1436 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1437 struct nvme_ns_id_desc *cur, bool *csi_seen) 1438 { 1439 const char *warn_str = "ctrl returned bogus length:"; 1440 void *data = cur; 1441 1442 switch (cur->nidt) { 1443 case NVME_NIDT_EUI64: 1444 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1445 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1446 warn_str, cur->nidl); 1447 return -1; 1448 } 1449 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1450 return NVME_NIDT_EUI64_LEN; 1451 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1452 return NVME_NIDT_EUI64_LEN; 1453 case NVME_NIDT_NGUID: 1454 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1455 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1456 warn_str, cur->nidl); 1457 return -1; 1458 } 1459 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1460 return NVME_NIDT_NGUID_LEN; 1461 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1462 return NVME_NIDT_NGUID_LEN; 1463 case NVME_NIDT_UUID: 1464 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1465 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1466 warn_str, cur->nidl); 1467 return -1; 1468 } 1469 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1470 return NVME_NIDT_UUID_LEN; 1471 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1472 return NVME_NIDT_UUID_LEN; 1473 case NVME_NIDT_CSI: 1474 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1475 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1476 warn_str, cur->nidl); 1477 return -1; 1478 } 1479 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1480 *csi_seen = true; 1481 return NVME_NIDT_CSI_LEN; 1482 default: 1483 /* Skip unknown types */ 1484 return cur->nidl; 1485 } 1486 } 1487 1488 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1489 struct nvme_ns_info *info) 1490 { 1491 struct nvme_command c = { }; 1492 bool csi_seen = false; 1493 int status, pos, len; 1494 void *data; 1495 1496 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1497 return 0; 1498 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1499 return 0; 1500 1501 c.identify.opcode = nvme_admin_identify; 1502 c.identify.nsid = cpu_to_le32(info->nsid); 1503 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1504 1505 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1506 if (!data) 1507 return -ENOMEM; 1508 1509 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1510 NVME_IDENTIFY_DATA_SIZE); 1511 if (status) { 1512 dev_warn(ctrl->device, 1513 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1514 info->nsid, status); 1515 goto free_data; 1516 } 1517 1518 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1519 struct nvme_ns_id_desc *cur = data + pos; 1520 1521 if (cur->nidl == 0) 1522 break; 1523 1524 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1525 if (len < 0) 1526 break; 1527 1528 len += sizeof(*cur); 1529 } 1530 1531 if (nvme_multi_css(ctrl) && !csi_seen) { 1532 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1533 info->nsid); 1534 status = -EINVAL; 1535 } 1536 1537 free_data: 1538 kfree(data); 1539 return status; 1540 } 1541 1542 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1543 struct nvme_id_ns **id) 1544 { 1545 struct nvme_command c = { }; 1546 int error; 1547 1548 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1549 c.identify.opcode = nvme_admin_identify; 1550 c.identify.nsid = cpu_to_le32(nsid); 1551 c.identify.cns = NVME_ID_CNS_NS; 1552 1553 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1554 if (!*id) 1555 return -ENOMEM; 1556 1557 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1558 if (error) { 1559 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1560 kfree(*id); 1561 *id = NULL; 1562 } 1563 return error; 1564 } 1565 1566 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1567 struct nvme_ns_info *info) 1568 { 1569 struct nvme_ns_ids *ids = &info->ids; 1570 struct nvme_id_ns *id; 1571 int ret; 1572 1573 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1574 if (ret) 1575 return ret; 1576 1577 if (id->ncap == 0) { 1578 /* namespace not allocated or attached */ 1579 info->is_removed = true; 1580 ret = -ENODEV; 1581 goto error; 1582 } 1583 1584 info->anagrpid = id->anagrpid; 1585 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1586 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1587 info->is_ready = true; 1588 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1589 dev_info(ctrl->device, 1590 "Ignoring bogus Namespace Identifiers\n"); 1591 } else { 1592 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1593 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1594 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1595 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1596 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1597 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1598 } 1599 1600 error: 1601 kfree(id); 1602 return ret; 1603 } 1604 1605 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1606 struct nvme_ns_info *info) 1607 { 1608 struct nvme_id_ns_cs_indep *id; 1609 struct nvme_command c = { 1610 .identify.opcode = nvme_admin_identify, 1611 .identify.nsid = cpu_to_le32(info->nsid), 1612 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1613 }; 1614 int ret; 1615 1616 id = kmalloc(sizeof(*id), GFP_KERNEL); 1617 if (!id) 1618 return -ENOMEM; 1619 1620 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1621 if (!ret) { 1622 info->anagrpid = id->anagrpid; 1623 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1624 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1625 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1626 } 1627 kfree(id); 1628 return ret; 1629 } 1630 1631 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1632 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1633 { 1634 union nvme_result res = { 0 }; 1635 struct nvme_command c = { }; 1636 int ret; 1637 1638 c.features.opcode = op; 1639 c.features.fid = cpu_to_le32(fid); 1640 c.features.dword11 = cpu_to_le32(dword11); 1641 1642 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1643 buffer, buflen, NVME_QID_ANY, 0); 1644 if (ret >= 0 && result) 1645 *result = le32_to_cpu(res.u32); 1646 return ret; 1647 } 1648 1649 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1650 unsigned int dword11, void *buffer, size_t buflen, 1651 u32 *result) 1652 { 1653 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1654 buflen, result); 1655 } 1656 EXPORT_SYMBOL_GPL(nvme_set_features); 1657 1658 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1659 unsigned int dword11, void *buffer, size_t buflen, 1660 u32 *result) 1661 { 1662 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1663 buflen, result); 1664 } 1665 EXPORT_SYMBOL_GPL(nvme_get_features); 1666 1667 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1668 { 1669 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1670 u32 result; 1671 int status, nr_io_queues; 1672 1673 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1674 &result); 1675 if (status < 0) 1676 return status; 1677 1678 /* 1679 * Degraded controllers might return an error when setting the queue 1680 * count. We still want to be able to bring them online and offer 1681 * access to the admin queue, as that might be only way to fix them up. 1682 */ 1683 if (status > 0) { 1684 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1685 *count = 0; 1686 } else { 1687 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1688 *count = min(*count, nr_io_queues); 1689 } 1690 1691 return 0; 1692 } 1693 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1694 1695 #define NVME_AEN_SUPPORTED \ 1696 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1697 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1698 1699 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1700 { 1701 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1702 int status; 1703 1704 if (!supported_aens) 1705 return; 1706 1707 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1708 NULL, 0, &result); 1709 if (status) 1710 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1711 supported_aens); 1712 1713 queue_work(nvme_wq, &ctrl->async_event_work); 1714 } 1715 1716 static int nvme_ns_open(struct nvme_ns *ns) 1717 { 1718 1719 /* should never be called due to GENHD_FL_HIDDEN */ 1720 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1721 goto fail; 1722 if (!nvme_get_ns(ns)) 1723 goto fail; 1724 if (!try_module_get(ns->ctrl->ops->module)) 1725 goto fail_put_ns; 1726 1727 return 0; 1728 1729 fail_put_ns: 1730 nvme_put_ns(ns); 1731 fail: 1732 return -ENXIO; 1733 } 1734 1735 static void nvme_ns_release(struct nvme_ns *ns) 1736 { 1737 1738 module_put(ns->ctrl->ops->module); 1739 nvme_put_ns(ns); 1740 } 1741 1742 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1743 { 1744 return nvme_ns_open(disk->private_data); 1745 } 1746 1747 static void nvme_release(struct gendisk *disk) 1748 { 1749 nvme_ns_release(disk->private_data); 1750 } 1751 1752 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1753 { 1754 /* some standard values */ 1755 geo->heads = 1 << 6; 1756 geo->sectors = 1 << 5; 1757 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1758 return 0; 1759 } 1760 1761 static bool nvme_init_integrity(struct nvme_ns_head *head, 1762 struct queue_limits *lim, struct nvme_ns_info *info) 1763 { 1764 struct blk_integrity *bi = &lim->integrity; 1765 1766 memset(bi, 0, sizeof(*bi)); 1767 1768 if (!head->ms) 1769 return true; 1770 1771 /* 1772 * PI can always be supported as we can ask the controller to simply 1773 * insert/strip it, which is not possible for other kinds of metadata. 1774 */ 1775 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1776 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1777 return nvme_ns_has_pi(head); 1778 1779 switch (head->pi_type) { 1780 case NVME_NS_DPS_PI_TYPE3: 1781 switch (head->guard_type) { 1782 case NVME_NVM_NS_16B_GUARD: 1783 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1784 bi->tag_size = sizeof(u16) + sizeof(u32); 1785 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1786 break; 1787 case NVME_NVM_NS_64B_GUARD: 1788 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1789 bi->tag_size = sizeof(u16) + 6; 1790 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1791 break; 1792 default: 1793 break; 1794 } 1795 break; 1796 case NVME_NS_DPS_PI_TYPE1: 1797 case NVME_NS_DPS_PI_TYPE2: 1798 switch (head->guard_type) { 1799 case NVME_NVM_NS_16B_GUARD: 1800 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1801 bi->tag_size = sizeof(u16); 1802 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1803 BLK_INTEGRITY_REF_TAG; 1804 break; 1805 case NVME_NVM_NS_64B_GUARD: 1806 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1807 bi->tag_size = sizeof(u16); 1808 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1809 BLK_INTEGRITY_REF_TAG; 1810 break; 1811 default: 1812 break; 1813 } 1814 break; 1815 default: 1816 break; 1817 } 1818 1819 bi->tuple_size = head->ms; 1820 bi->pi_offset = info->pi_offset; 1821 return true; 1822 } 1823 1824 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1825 { 1826 struct nvme_ctrl *ctrl = ns->ctrl; 1827 1828 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1829 lim->max_hw_discard_sectors = 1830 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1831 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1832 lim->max_hw_discard_sectors = UINT_MAX; 1833 else 1834 lim->max_hw_discard_sectors = 0; 1835 1836 lim->discard_granularity = lim->logical_block_size; 1837 1838 if (ctrl->dmrl) 1839 lim->max_discard_segments = ctrl->dmrl; 1840 else 1841 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1842 } 1843 1844 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1845 { 1846 return uuid_equal(&a->uuid, &b->uuid) && 1847 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1848 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1849 a->csi == b->csi; 1850 } 1851 1852 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1853 struct nvme_id_ns_nvm **nvmp) 1854 { 1855 struct nvme_command c = { 1856 .identify.opcode = nvme_admin_identify, 1857 .identify.nsid = cpu_to_le32(nsid), 1858 .identify.cns = NVME_ID_CNS_CS_NS, 1859 .identify.csi = NVME_CSI_NVM, 1860 }; 1861 struct nvme_id_ns_nvm *nvm; 1862 int ret; 1863 1864 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1865 if (!nvm) 1866 return -ENOMEM; 1867 1868 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1869 if (ret) 1870 kfree(nvm); 1871 else 1872 *nvmp = nvm; 1873 return ret; 1874 } 1875 1876 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1877 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1878 { 1879 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1880 u8 guard_type; 1881 1882 /* no support for storage tag formats right now */ 1883 if (nvme_elbaf_sts(elbaf)) 1884 return; 1885 1886 guard_type = nvme_elbaf_guard_type(elbaf); 1887 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && 1888 guard_type == NVME_NVM_NS_QTYPE_GUARD) 1889 guard_type = nvme_elbaf_qualified_guard_type(elbaf); 1890 1891 head->guard_type = guard_type; 1892 switch (head->guard_type) { 1893 case NVME_NVM_NS_64B_GUARD: 1894 head->pi_size = sizeof(struct crc64_pi_tuple); 1895 break; 1896 case NVME_NVM_NS_16B_GUARD: 1897 head->pi_size = sizeof(struct t10_pi_tuple); 1898 break; 1899 default: 1900 break; 1901 } 1902 } 1903 1904 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1905 struct nvme_ns_head *head, struct nvme_id_ns *id, 1906 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) 1907 { 1908 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1909 head->pi_type = 0; 1910 head->pi_size = 0; 1911 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1912 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1913 return; 1914 1915 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1916 nvme_configure_pi_elbas(head, id, nvm); 1917 } else { 1918 head->pi_size = sizeof(struct t10_pi_tuple); 1919 head->guard_type = NVME_NVM_NS_16B_GUARD; 1920 } 1921 1922 if (head->pi_size && head->ms >= head->pi_size) 1923 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1924 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) 1925 info->pi_offset = head->ms - head->pi_size; 1926 1927 if (ctrl->ops->flags & NVME_F_FABRICS) { 1928 /* 1929 * The NVMe over Fabrics specification only supports metadata as 1930 * part of the extended data LBA. We rely on HCA/HBA support to 1931 * remap the separate metadata buffer from the block layer. 1932 */ 1933 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1934 return; 1935 1936 head->features |= NVME_NS_EXT_LBAS; 1937 1938 /* 1939 * The current fabrics transport drivers support namespace 1940 * metadata formats only if nvme_ns_has_pi() returns true. 1941 * Suppress support for all other formats so the namespace will 1942 * have a 0 capacity and not be usable through the block stack. 1943 * 1944 * Note, this check will need to be modified if any drivers 1945 * gain the ability to use other metadata formats. 1946 */ 1947 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1948 head->features |= NVME_NS_METADATA_SUPPORTED; 1949 } else { 1950 /* 1951 * For PCIe controllers, we can't easily remap the separate 1952 * metadata buffer from the block layer and thus require a 1953 * separate metadata buffer for block layer metadata/PI support. 1954 * We allow extended LBAs for the passthrough interface, though. 1955 */ 1956 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1957 head->features |= NVME_NS_EXT_LBAS; 1958 else 1959 head->features |= NVME_NS_METADATA_SUPPORTED; 1960 } 1961 } 1962 1963 1964 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, 1965 struct nvme_id_ns *id, struct queue_limits *lim, 1966 u32 bs, u32 atomic_bs) 1967 { 1968 unsigned int boundary = 0; 1969 1970 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { 1971 if (le16_to_cpu(id->nabspf)) 1972 boundary = (le16_to_cpu(id->nabspf) + 1) * bs; 1973 } 1974 lim->atomic_write_hw_max = atomic_bs; 1975 lim->atomic_write_hw_boundary = boundary; 1976 lim->atomic_write_hw_unit_min = bs; 1977 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); 1978 } 1979 1980 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 1981 { 1982 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 1983 } 1984 1985 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 1986 struct queue_limits *lim) 1987 { 1988 lim->max_hw_sectors = ctrl->max_hw_sectors; 1989 lim->max_segments = min_t(u32, USHRT_MAX, 1990 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 1991 lim->max_integrity_segments = ctrl->max_integrity_segments; 1992 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 1993 lim->max_segment_size = UINT_MAX; 1994 lim->dma_alignment = 3; 1995 } 1996 1997 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 1998 struct queue_limits *lim) 1999 { 2000 struct nvme_ns_head *head = ns->head; 2001 u32 bs = 1U << head->lba_shift; 2002 u32 atomic_bs, phys_bs, io_opt = 0; 2003 bool valid = true; 2004 2005 /* 2006 * The block layer can't support LBA sizes larger than the page size 2007 * or smaller than a sector size yet, so catch this early and don't 2008 * allow block I/O. 2009 */ 2010 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { 2011 bs = (1 << 9); 2012 valid = false; 2013 } 2014 2015 atomic_bs = phys_bs = bs; 2016 if (id->nabo == 0) { 2017 /* 2018 * Bit 1 indicates whether NAWUPF is defined for this namespace 2019 * and whether it should be used instead of AWUPF. If NAWUPF == 2020 * 0 then AWUPF must be used instead. 2021 */ 2022 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 2023 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2024 else 2025 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2026 2027 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); 2028 } 2029 2030 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2031 /* NPWG = Namespace Preferred Write Granularity */ 2032 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2033 /* NOWS = Namespace Optimal Write Size */ 2034 if (id->nows) 2035 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2036 } 2037 2038 /* 2039 * Linux filesystems assume writing a single physical block is 2040 * an atomic operation. Hence limit the physical block size to the 2041 * value of the Atomic Write Unit Power Fail parameter. 2042 */ 2043 lim->logical_block_size = bs; 2044 lim->physical_block_size = min(phys_bs, atomic_bs); 2045 lim->io_min = phys_bs; 2046 lim->io_opt = io_opt; 2047 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 2048 lim->max_write_zeroes_sectors = UINT_MAX; 2049 else 2050 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 2051 return valid; 2052 } 2053 2054 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 2055 { 2056 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 2057 } 2058 2059 static inline bool nvme_first_scan(struct gendisk *disk) 2060 { 2061 /* nvme_alloc_ns() scans the disk prior to adding it */ 2062 return !disk_live(disk); 2063 } 2064 2065 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2066 struct queue_limits *lim) 2067 { 2068 struct nvme_ctrl *ctrl = ns->ctrl; 2069 u32 iob; 2070 2071 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2072 is_power_of_2(ctrl->max_hw_sectors)) 2073 iob = ctrl->max_hw_sectors; 2074 else 2075 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2076 2077 if (!iob) 2078 return; 2079 2080 if (!is_power_of_2(iob)) { 2081 if (nvme_first_scan(ns->disk)) 2082 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2083 ns->disk->disk_name, iob); 2084 return; 2085 } 2086 2087 if (blk_queue_is_zoned(ns->disk->queue)) { 2088 if (nvme_first_scan(ns->disk)) 2089 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2090 ns->disk->disk_name); 2091 return; 2092 } 2093 2094 lim->chunk_sectors = iob; 2095 } 2096 2097 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2098 struct nvme_ns_info *info) 2099 { 2100 struct queue_limits lim; 2101 int ret; 2102 2103 blk_mq_freeze_queue(ns->disk->queue); 2104 lim = queue_limits_start_update(ns->disk->queue); 2105 nvme_set_ctrl_limits(ns->ctrl, &lim); 2106 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2107 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2108 blk_mq_unfreeze_queue(ns->disk->queue); 2109 2110 /* Hide the block-interface for these devices */ 2111 if (!ret) 2112 ret = -ENODEV; 2113 return ret; 2114 } 2115 2116 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2117 struct nvme_ns_info *info) 2118 { 2119 struct queue_limits lim; 2120 struct nvme_id_ns_nvm *nvm = NULL; 2121 struct nvme_zone_info zi = {}; 2122 struct nvme_id_ns *id; 2123 sector_t capacity; 2124 unsigned lbaf; 2125 int ret; 2126 2127 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2128 if (ret) 2129 return ret; 2130 2131 if (id->ncap == 0) { 2132 /* namespace not allocated or attached */ 2133 info->is_removed = true; 2134 ret = -ENXIO; 2135 goto out; 2136 } 2137 lbaf = nvme_lbaf_index(id->flbas); 2138 2139 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2140 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2141 if (ret < 0) 2142 goto out; 2143 } 2144 2145 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2146 ns->head->ids.csi == NVME_CSI_ZNS) { 2147 ret = nvme_query_zone_info(ns, lbaf, &zi); 2148 if (ret < 0) 2149 goto out; 2150 } 2151 2152 blk_mq_freeze_queue(ns->disk->queue); 2153 ns->head->lba_shift = id->lbaf[lbaf].ds; 2154 ns->head->nuse = le64_to_cpu(id->nuse); 2155 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2156 2157 lim = queue_limits_start_update(ns->disk->queue); 2158 nvme_set_ctrl_limits(ns->ctrl, &lim); 2159 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info); 2160 nvme_set_chunk_sectors(ns, id, &lim); 2161 if (!nvme_update_disk_info(ns, id, &lim)) 2162 capacity = 0; 2163 nvme_config_discard(ns, &lim); 2164 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2165 ns->head->ids.csi == NVME_CSI_ZNS) 2166 nvme_update_zone_info(ns, &lim, &zi); 2167 2168 if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2169 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2170 else 2171 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2172 2173 /* 2174 * Register a metadata profile for PI, or the plain non-integrity NVMe 2175 * metadata masquerading as Type 0 if supported, otherwise reject block 2176 * I/O to namespaces with metadata except when the namespace supports 2177 * PI, as it can strip/insert in that case. 2178 */ 2179 if (!nvme_init_integrity(ns->head, &lim, info)) 2180 capacity = 0; 2181 2182 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2183 if (ret) { 2184 blk_mq_unfreeze_queue(ns->disk->queue); 2185 goto out; 2186 } 2187 2188 set_capacity_and_notify(ns->disk, capacity); 2189 2190 /* 2191 * Only set the DEAC bit if the device guarantees that reads from 2192 * deallocated data return zeroes. While the DEAC bit does not 2193 * require that, it must be a no-op if reads from deallocated data 2194 * do not return zeroes. 2195 */ 2196 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2197 ns->head->features |= NVME_NS_DEAC; 2198 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2199 set_bit(NVME_NS_READY, &ns->flags); 2200 blk_mq_unfreeze_queue(ns->disk->queue); 2201 2202 if (blk_queue_is_zoned(ns->queue)) { 2203 ret = blk_revalidate_disk_zones(ns->disk); 2204 if (ret && !nvme_first_scan(ns->disk)) 2205 goto out; 2206 } 2207 2208 ret = 0; 2209 out: 2210 kfree(nvm); 2211 kfree(id); 2212 return ret; 2213 } 2214 2215 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2216 { 2217 bool unsupported = false; 2218 int ret; 2219 2220 switch (info->ids.csi) { 2221 case NVME_CSI_ZNS: 2222 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2223 dev_info(ns->ctrl->device, 2224 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2225 info->nsid); 2226 ret = nvme_update_ns_info_generic(ns, info); 2227 break; 2228 } 2229 ret = nvme_update_ns_info_block(ns, info); 2230 break; 2231 case NVME_CSI_NVM: 2232 ret = nvme_update_ns_info_block(ns, info); 2233 break; 2234 default: 2235 dev_info(ns->ctrl->device, 2236 "block device for nsid %u not supported (csi %u)\n", 2237 info->nsid, info->ids.csi); 2238 ret = nvme_update_ns_info_generic(ns, info); 2239 break; 2240 } 2241 2242 /* 2243 * If probing fails due an unsupported feature, hide the block device, 2244 * but still allow other access. 2245 */ 2246 if (ret == -ENODEV) { 2247 ns->disk->flags |= GENHD_FL_HIDDEN; 2248 set_bit(NVME_NS_READY, &ns->flags); 2249 unsupported = true; 2250 ret = 0; 2251 } 2252 2253 if (!ret && nvme_ns_head_multipath(ns->head)) { 2254 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2255 struct queue_limits lim; 2256 2257 blk_mq_freeze_queue(ns->head->disk->queue); 2258 /* 2259 * queue_limits mixes values that are the hardware limitations 2260 * for bio splitting with what is the device configuration. 2261 * 2262 * For NVMe the device configuration can change after e.g. a 2263 * Format command, and we really want to pick up the new format 2264 * value here. But we must still stack the queue limits to the 2265 * least common denominator for multipathing to split the bios 2266 * properly. 2267 * 2268 * To work around this, we explicitly set the device 2269 * configuration to those that we just queried, but only stack 2270 * the splitting limits in to make sure we still obey possibly 2271 * lower limitations of other controllers. 2272 */ 2273 lim = queue_limits_start_update(ns->head->disk->queue); 2274 lim.logical_block_size = ns_lim->logical_block_size; 2275 lim.physical_block_size = ns_lim->physical_block_size; 2276 lim.io_min = ns_lim->io_min; 2277 lim.io_opt = ns_lim->io_opt; 2278 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2279 ns->head->disk->disk_name); 2280 if (unsupported) 2281 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2282 else 2283 nvme_init_integrity(ns->head, &lim, info); 2284 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2285 2286 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2287 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2288 nvme_mpath_revalidate_paths(ns); 2289 2290 blk_mq_unfreeze_queue(ns->head->disk->queue); 2291 } 2292 2293 return ret; 2294 } 2295 2296 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], 2297 enum blk_unique_id type) 2298 { 2299 struct nvme_ns_ids *ids = &ns->head->ids; 2300 2301 if (type != BLK_UID_EUI64) 2302 return -EINVAL; 2303 2304 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { 2305 memcpy(id, &ids->nguid, sizeof(ids->nguid)); 2306 return sizeof(ids->nguid); 2307 } 2308 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { 2309 memcpy(id, &ids->eui64, sizeof(ids->eui64)); 2310 return sizeof(ids->eui64); 2311 } 2312 2313 return -EINVAL; 2314 } 2315 2316 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], 2317 enum blk_unique_id type) 2318 { 2319 return nvme_ns_get_unique_id(disk->private_data, id, type); 2320 } 2321 2322 #ifdef CONFIG_BLK_SED_OPAL 2323 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2324 bool send) 2325 { 2326 struct nvme_ctrl *ctrl = data; 2327 struct nvme_command cmd = { }; 2328 2329 if (send) 2330 cmd.common.opcode = nvme_admin_security_send; 2331 else 2332 cmd.common.opcode = nvme_admin_security_recv; 2333 cmd.common.nsid = 0; 2334 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2335 cmd.common.cdw11 = cpu_to_le32(len); 2336 2337 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2338 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2339 } 2340 2341 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2342 { 2343 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2344 if (!ctrl->opal_dev) 2345 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2346 else if (was_suspended) 2347 opal_unlock_from_suspend(ctrl->opal_dev); 2348 } else { 2349 free_opal_dev(ctrl->opal_dev); 2350 ctrl->opal_dev = NULL; 2351 } 2352 } 2353 #else 2354 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2355 { 2356 } 2357 #endif /* CONFIG_BLK_SED_OPAL */ 2358 2359 #ifdef CONFIG_BLK_DEV_ZONED 2360 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2361 unsigned int nr_zones, report_zones_cb cb, void *data) 2362 { 2363 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2364 data); 2365 } 2366 #else 2367 #define nvme_report_zones NULL 2368 #endif /* CONFIG_BLK_DEV_ZONED */ 2369 2370 const struct block_device_operations nvme_bdev_ops = { 2371 .owner = THIS_MODULE, 2372 .ioctl = nvme_ioctl, 2373 .compat_ioctl = blkdev_compat_ptr_ioctl, 2374 .open = nvme_open, 2375 .release = nvme_release, 2376 .getgeo = nvme_getgeo, 2377 .get_unique_id = nvme_get_unique_id, 2378 .report_zones = nvme_report_zones, 2379 .pr_ops = &nvme_pr_ops, 2380 }; 2381 2382 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2383 u32 timeout, const char *op) 2384 { 2385 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2386 u32 csts; 2387 int ret; 2388 2389 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2390 if (csts == ~0) 2391 return -ENODEV; 2392 if ((csts & mask) == val) 2393 break; 2394 2395 usleep_range(1000, 2000); 2396 if (fatal_signal_pending(current)) 2397 return -EINTR; 2398 if (time_after(jiffies, timeout_jiffies)) { 2399 dev_err(ctrl->device, 2400 "Device not ready; aborting %s, CSTS=0x%x\n", 2401 op, csts); 2402 return -ENODEV; 2403 } 2404 } 2405 2406 return ret; 2407 } 2408 2409 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2410 { 2411 int ret; 2412 2413 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2414 if (shutdown) 2415 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2416 else 2417 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2418 2419 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2420 if (ret) 2421 return ret; 2422 2423 if (shutdown) { 2424 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2425 NVME_CSTS_SHST_CMPLT, 2426 ctrl->shutdown_timeout, "shutdown"); 2427 } 2428 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2429 msleep(NVME_QUIRK_DELAY_AMOUNT); 2430 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2431 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2432 } 2433 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2434 2435 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2436 { 2437 unsigned dev_page_min; 2438 u32 timeout; 2439 int ret; 2440 2441 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2442 if (ret) { 2443 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2444 return ret; 2445 } 2446 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2447 2448 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2449 dev_err(ctrl->device, 2450 "Minimum device page size %u too large for host (%u)\n", 2451 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2452 return -ENODEV; 2453 } 2454 2455 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2456 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2457 else 2458 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2459 2460 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) 2461 ctrl->ctrl_config |= NVME_CC_CRIME; 2462 2463 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2464 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2465 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2466 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2467 if (ret) 2468 return ret; 2469 2470 /* Flush write to device (required if transport is PCI) */ 2471 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2472 if (ret) 2473 return ret; 2474 2475 /* CAP value may change after initial CC write */ 2476 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2477 if (ret) 2478 return ret; 2479 2480 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2481 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2482 u32 crto, ready_timeout; 2483 2484 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2485 if (ret) { 2486 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2487 ret); 2488 return ret; 2489 } 2490 2491 /* 2492 * CRTO should always be greater or equal to CAP.TO, but some 2493 * devices are known to get this wrong. Use the larger of the 2494 * two values. 2495 */ 2496 if (ctrl->ctrl_config & NVME_CC_CRIME) 2497 ready_timeout = NVME_CRTO_CRIMT(crto); 2498 else 2499 ready_timeout = NVME_CRTO_CRWMT(crto); 2500 2501 if (ready_timeout < timeout) 2502 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2503 crto, ctrl->cap); 2504 else 2505 timeout = ready_timeout; 2506 } 2507 2508 ctrl->ctrl_config |= NVME_CC_ENABLE; 2509 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2510 if (ret) 2511 return ret; 2512 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2513 (timeout + 1) / 2, "initialisation"); 2514 } 2515 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2516 2517 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2518 { 2519 __le64 ts; 2520 int ret; 2521 2522 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2523 return 0; 2524 2525 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2526 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2527 NULL); 2528 if (ret) 2529 dev_warn_once(ctrl->device, 2530 "could not set timestamp (%d)\n", ret); 2531 return ret; 2532 } 2533 2534 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2535 { 2536 struct nvme_feat_host_behavior *host; 2537 u8 acre = 0, lbafee = 0; 2538 int ret; 2539 2540 /* Don't bother enabling the feature if retry delay is not reported */ 2541 if (ctrl->crdt[0]) 2542 acre = NVME_ENABLE_ACRE; 2543 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2544 lbafee = NVME_ENABLE_LBAFEE; 2545 2546 if (!acre && !lbafee) 2547 return 0; 2548 2549 host = kzalloc(sizeof(*host), GFP_KERNEL); 2550 if (!host) 2551 return 0; 2552 2553 host->acre = acre; 2554 host->lbafee = lbafee; 2555 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2556 host, sizeof(*host), NULL); 2557 kfree(host); 2558 return ret; 2559 } 2560 2561 /* 2562 * The function checks whether the given total (exlat + enlat) latency of 2563 * a power state allows the latter to be used as an APST transition target. 2564 * It does so by comparing the latency to the primary and secondary latency 2565 * tolerances defined by module params. If there's a match, the corresponding 2566 * timeout value is returned and the matching tolerance index (1 or 2) is 2567 * reported. 2568 */ 2569 static bool nvme_apst_get_transition_time(u64 total_latency, 2570 u64 *transition_time, unsigned *last_index) 2571 { 2572 if (total_latency <= apst_primary_latency_tol_us) { 2573 if (*last_index == 1) 2574 return false; 2575 *last_index = 1; 2576 *transition_time = apst_primary_timeout_ms; 2577 return true; 2578 } 2579 if (apst_secondary_timeout_ms && 2580 total_latency <= apst_secondary_latency_tol_us) { 2581 if (*last_index <= 2) 2582 return false; 2583 *last_index = 2; 2584 *transition_time = apst_secondary_timeout_ms; 2585 return true; 2586 } 2587 return false; 2588 } 2589 2590 /* 2591 * APST (Autonomous Power State Transition) lets us program a table of power 2592 * state transitions that the controller will perform automatically. 2593 * 2594 * Depending on module params, one of the two supported techniques will be used: 2595 * 2596 * - If the parameters provide explicit timeouts and tolerances, they will be 2597 * used to build a table with up to 2 non-operational states to transition to. 2598 * The default parameter values were selected based on the values used by 2599 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2600 * regeneration of the APST table in the event of switching between external 2601 * and battery power, the timeouts and tolerances reflect a compromise 2602 * between values used by Microsoft for AC and battery scenarios. 2603 * - If not, we'll configure the table with a simple heuristic: we are willing 2604 * to spend at most 2% of the time transitioning between power states. 2605 * Therefore, when running in any given state, we will enter the next 2606 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2607 * microseconds, as long as that state's exit latency is under the requested 2608 * maximum latency. 2609 * 2610 * We will not autonomously enter any non-operational state for which the total 2611 * latency exceeds ps_max_latency_us. 2612 * 2613 * Users can set ps_max_latency_us to zero to turn off APST. 2614 */ 2615 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2616 { 2617 struct nvme_feat_auto_pst *table; 2618 unsigned apste = 0; 2619 u64 max_lat_us = 0; 2620 __le64 target = 0; 2621 int max_ps = -1; 2622 int state; 2623 int ret; 2624 unsigned last_lt_index = UINT_MAX; 2625 2626 /* 2627 * If APST isn't supported or if we haven't been initialized yet, 2628 * then don't do anything. 2629 */ 2630 if (!ctrl->apsta) 2631 return 0; 2632 2633 if (ctrl->npss > 31) { 2634 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2635 return 0; 2636 } 2637 2638 table = kzalloc(sizeof(*table), GFP_KERNEL); 2639 if (!table) 2640 return 0; 2641 2642 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2643 /* Turn off APST. */ 2644 dev_dbg(ctrl->device, "APST disabled\n"); 2645 goto done; 2646 } 2647 2648 /* 2649 * Walk through all states from lowest- to highest-power. 2650 * According to the spec, lower-numbered states use more power. NPSS, 2651 * despite the name, is the index of the lowest-power state, not the 2652 * number of states. 2653 */ 2654 for (state = (int)ctrl->npss; state >= 0; state--) { 2655 u64 total_latency_us, exit_latency_us, transition_ms; 2656 2657 if (target) 2658 table->entries[state] = target; 2659 2660 /* 2661 * Don't allow transitions to the deepest state if it's quirked 2662 * off. 2663 */ 2664 if (state == ctrl->npss && 2665 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2666 continue; 2667 2668 /* 2669 * Is this state a useful non-operational state for higher-power 2670 * states to autonomously transition to? 2671 */ 2672 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2673 continue; 2674 2675 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2676 if (exit_latency_us > ctrl->ps_max_latency_us) 2677 continue; 2678 2679 total_latency_us = exit_latency_us + 2680 le32_to_cpu(ctrl->psd[state].entry_lat); 2681 2682 /* 2683 * This state is good. It can be used as the APST idle target 2684 * for higher power states. 2685 */ 2686 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2687 if (!nvme_apst_get_transition_time(total_latency_us, 2688 &transition_ms, &last_lt_index)) 2689 continue; 2690 } else { 2691 transition_ms = total_latency_us + 19; 2692 do_div(transition_ms, 20); 2693 if (transition_ms > (1 << 24) - 1) 2694 transition_ms = (1 << 24) - 1; 2695 } 2696 2697 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2698 if (max_ps == -1) 2699 max_ps = state; 2700 if (total_latency_us > max_lat_us) 2701 max_lat_us = total_latency_us; 2702 } 2703 2704 if (max_ps == -1) 2705 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2706 else 2707 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2708 max_ps, max_lat_us, (int)sizeof(*table), table); 2709 apste = 1; 2710 2711 done: 2712 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2713 table, sizeof(*table), NULL); 2714 if (ret) 2715 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2716 kfree(table); 2717 return ret; 2718 } 2719 2720 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2721 { 2722 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2723 u64 latency; 2724 2725 switch (val) { 2726 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2727 case PM_QOS_LATENCY_ANY: 2728 latency = U64_MAX; 2729 break; 2730 2731 default: 2732 latency = val; 2733 } 2734 2735 if (ctrl->ps_max_latency_us != latency) { 2736 ctrl->ps_max_latency_us = latency; 2737 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2738 nvme_configure_apst(ctrl); 2739 } 2740 } 2741 2742 struct nvme_core_quirk_entry { 2743 /* 2744 * NVMe model and firmware strings are padded with spaces. For 2745 * simplicity, strings in the quirk table are padded with NULLs 2746 * instead. 2747 */ 2748 u16 vid; 2749 const char *mn; 2750 const char *fr; 2751 unsigned long quirks; 2752 }; 2753 2754 static const struct nvme_core_quirk_entry core_quirks[] = { 2755 { 2756 /* 2757 * This Toshiba device seems to die using any APST states. See: 2758 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2759 */ 2760 .vid = 0x1179, 2761 .mn = "THNSF5256GPUK TOSHIBA", 2762 .quirks = NVME_QUIRK_NO_APST, 2763 }, 2764 { 2765 /* 2766 * This LiteON CL1-3D*-Q11 firmware version has a race 2767 * condition associated with actions related to suspend to idle 2768 * LiteON has resolved the problem in future firmware 2769 */ 2770 .vid = 0x14a4, 2771 .fr = "22301111", 2772 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2773 }, 2774 { 2775 /* 2776 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2777 * aborts I/O during any load, but more easily reproducible 2778 * with discards (fstrim). 2779 * 2780 * The device is left in a state where it is also not possible 2781 * to use "nvme set-feature" to disable APST, but booting with 2782 * nvme_core.default_ps_max_latency=0 works. 2783 */ 2784 .vid = 0x1e0f, 2785 .mn = "KCD6XVUL6T40", 2786 .quirks = NVME_QUIRK_NO_APST, 2787 }, 2788 { 2789 /* 2790 * The external Samsung X5 SSD fails initialization without a 2791 * delay before checking if it is ready and has a whole set of 2792 * other problems. To make this even more interesting, it 2793 * shares the PCI ID with internal Samsung 970 Evo Plus that 2794 * does not need or want these quirks. 2795 */ 2796 .vid = 0x144d, 2797 .mn = "Samsung Portable SSD X5", 2798 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2799 NVME_QUIRK_NO_DEEPEST_PS | 2800 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2801 } 2802 }; 2803 2804 /* match is null-terminated but idstr is space-padded. */ 2805 static bool string_matches(const char *idstr, const char *match, size_t len) 2806 { 2807 size_t matchlen; 2808 2809 if (!match) 2810 return true; 2811 2812 matchlen = strlen(match); 2813 WARN_ON_ONCE(matchlen > len); 2814 2815 if (memcmp(idstr, match, matchlen)) 2816 return false; 2817 2818 for (; matchlen < len; matchlen++) 2819 if (idstr[matchlen] != ' ') 2820 return false; 2821 2822 return true; 2823 } 2824 2825 static bool quirk_matches(const struct nvme_id_ctrl *id, 2826 const struct nvme_core_quirk_entry *q) 2827 { 2828 return q->vid == le16_to_cpu(id->vid) && 2829 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2830 string_matches(id->fr, q->fr, sizeof(id->fr)); 2831 } 2832 2833 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2834 struct nvme_id_ctrl *id) 2835 { 2836 size_t nqnlen; 2837 int off; 2838 2839 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2840 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2841 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2842 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2843 return; 2844 } 2845 2846 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2847 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2848 } 2849 2850 /* 2851 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2852 * Base Specification 2.0. It is slightly different from the format 2853 * specified there due to historic reasons, and we can't change it now. 2854 */ 2855 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2856 "nqn.2014.08.org.nvmexpress:%04x%04x", 2857 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2858 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2859 off += sizeof(id->sn); 2860 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2861 off += sizeof(id->mn); 2862 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2863 } 2864 2865 static void nvme_release_subsystem(struct device *dev) 2866 { 2867 struct nvme_subsystem *subsys = 2868 container_of(dev, struct nvme_subsystem, dev); 2869 2870 if (subsys->instance >= 0) 2871 ida_free(&nvme_instance_ida, subsys->instance); 2872 kfree(subsys); 2873 } 2874 2875 static void nvme_destroy_subsystem(struct kref *ref) 2876 { 2877 struct nvme_subsystem *subsys = 2878 container_of(ref, struct nvme_subsystem, ref); 2879 2880 mutex_lock(&nvme_subsystems_lock); 2881 list_del(&subsys->entry); 2882 mutex_unlock(&nvme_subsystems_lock); 2883 2884 ida_destroy(&subsys->ns_ida); 2885 device_del(&subsys->dev); 2886 put_device(&subsys->dev); 2887 } 2888 2889 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2890 { 2891 kref_put(&subsys->ref, nvme_destroy_subsystem); 2892 } 2893 2894 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2895 { 2896 struct nvme_subsystem *subsys; 2897 2898 lockdep_assert_held(&nvme_subsystems_lock); 2899 2900 /* 2901 * Fail matches for discovery subsystems. This results 2902 * in each discovery controller bound to a unique subsystem. 2903 * This avoids issues with validating controller values 2904 * that can only be true when there is a single unique subsystem. 2905 * There may be multiple and completely independent entities 2906 * that provide discovery controllers. 2907 */ 2908 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2909 return NULL; 2910 2911 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2912 if (strcmp(subsys->subnqn, subsysnqn)) 2913 continue; 2914 if (!kref_get_unless_zero(&subsys->ref)) 2915 continue; 2916 return subsys; 2917 } 2918 2919 return NULL; 2920 } 2921 2922 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2923 { 2924 return ctrl->opts && ctrl->opts->discovery_nqn; 2925 } 2926 2927 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2928 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2929 { 2930 struct nvme_ctrl *tmp; 2931 2932 lockdep_assert_held(&nvme_subsystems_lock); 2933 2934 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2935 if (nvme_state_terminal(tmp)) 2936 continue; 2937 2938 if (tmp->cntlid == ctrl->cntlid) { 2939 dev_err(ctrl->device, 2940 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2941 ctrl->cntlid, dev_name(tmp->device), 2942 subsys->subnqn); 2943 return false; 2944 } 2945 2946 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2947 nvme_discovery_ctrl(ctrl)) 2948 continue; 2949 2950 dev_err(ctrl->device, 2951 "Subsystem does not support multiple controllers\n"); 2952 return false; 2953 } 2954 2955 return true; 2956 } 2957 2958 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2959 { 2960 struct nvme_subsystem *subsys, *found; 2961 int ret; 2962 2963 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2964 if (!subsys) 2965 return -ENOMEM; 2966 2967 subsys->instance = -1; 2968 mutex_init(&subsys->lock); 2969 kref_init(&subsys->ref); 2970 INIT_LIST_HEAD(&subsys->ctrls); 2971 INIT_LIST_HEAD(&subsys->nsheads); 2972 nvme_init_subnqn(subsys, ctrl, id); 2973 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2974 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2975 subsys->vendor_id = le16_to_cpu(id->vid); 2976 subsys->cmic = id->cmic; 2977 2978 /* Versions prior to 1.4 don't necessarily report a valid type */ 2979 if (id->cntrltype == NVME_CTRL_DISC || 2980 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2981 subsys->subtype = NVME_NQN_DISC; 2982 else 2983 subsys->subtype = NVME_NQN_NVME; 2984 2985 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2986 dev_err(ctrl->device, 2987 "Subsystem %s is not a discovery controller", 2988 subsys->subnqn); 2989 kfree(subsys); 2990 return -EINVAL; 2991 } 2992 subsys->awupf = le16_to_cpu(id->awupf); 2993 nvme_mpath_default_iopolicy(subsys); 2994 2995 subsys->dev.class = &nvme_subsys_class; 2996 subsys->dev.release = nvme_release_subsystem; 2997 subsys->dev.groups = nvme_subsys_attrs_groups; 2998 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2999 device_initialize(&subsys->dev); 3000 3001 mutex_lock(&nvme_subsystems_lock); 3002 found = __nvme_find_get_subsystem(subsys->subnqn); 3003 if (found) { 3004 put_device(&subsys->dev); 3005 subsys = found; 3006 3007 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 3008 ret = -EINVAL; 3009 goto out_put_subsystem; 3010 } 3011 } else { 3012 ret = device_add(&subsys->dev); 3013 if (ret) { 3014 dev_err(ctrl->device, 3015 "failed to register subsystem device.\n"); 3016 put_device(&subsys->dev); 3017 goto out_unlock; 3018 } 3019 ida_init(&subsys->ns_ida); 3020 list_add_tail(&subsys->entry, &nvme_subsystems); 3021 } 3022 3023 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 3024 dev_name(ctrl->device)); 3025 if (ret) { 3026 dev_err(ctrl->device, 3027 "failed to create sysfs link from subsystem.\n"); 3028 goto out_put_subsystem; 3029 } 3030 3031 if (!found) 3032 subsys->instance = ctrl->instance; 3033 ctrl->subsys = subsys; 3034 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3035 mutex_unlock(&nvme_subsystems_lock); 3036 return 0; 3037 3038 out_put_subsystem: 3039 nvme_put_subsystem(subsys); 3040 out_unlock: 3041 mutex_unlock(&nvme_subsystems_lock); 3042 return ret; 3043 } 3044 3045 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3046 void *log, size_t size, u64 offset) 3047 { 3048 struct nvme_command c = { }; 3049 u32 dwlen = nvme_bytes_to_numd(size); 3050 3051 c.get_log_page.opcode = nvme_admin_get_log_page; 3052 c.get_log_page.nsid = cpu_to_le32(nsid); 3053 c.get_log_page.lid = log_page; 3054 c.get_log_page.lsp = lsp; 3055 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3056 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3057 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3058 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3059 c.get_log_page.csi = csi; 3060 3061 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3062 } 3063 3064 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3065 struct nvme_effects_log **log) 3066 { 3067 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 3068 int ret; 3069 3070 if (cel) 3071 goto out; 3072 3073 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3074 if (!cel) 3075 return -ENOMEM; 3076 3077 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3078 cel, sizeof(*cel), 0); 3079 if (ret) { 3080 kfree(cel); 3081 return ret; 3082 } 3083 3084 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3085 out: 3086 *log = cel; 3087 return 0; 3088 } 3089 3090 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3091 { 3092 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3093 3094 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3095 return UINT_MAX; 3096 return val; 3097 } 3098 3099 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3100 { 3101 struct nvme_command c = { }; 3102 struct nvme_id_ctrl_nvm *id; 3103 int ret; 3104 3105 /* 3106 * Even though NVMe spec explicitly states that MDTS is not applicable 3107 * to the write-zeroes, we are cautious and limit the size to the 3108 * controllers max_hw_sectors value, which is based on the MDTS field 3109 * and possibly other limiting factors. 3110 */ 3111 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3112 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3113 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3114 else 3115 ctrl->max_zeroes_sectors = 0; 3116 3117 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3118 nvme_ctrl_limited_cns(ctrl) || 3119 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3120 return 0; 3121 3122 id = kzalloc(sizeof(*id), GFP_KERNEL); 3123 if (!id) 3124 return -ENOMEM; 3125 3126 c.identify.opcode = nvme_admin_identify; 3127 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3128 c.identify.csi = NVME_CSI_NVM; 3129 3130 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3131 if (ret) 3132 goto free_data; 3133 3134 ctrl->dmrl = id->dmrl; 3135 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3136 if (id->wzsl) 3137 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3138 3139 free_data: 3140 if (ret > 0) 3141 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3142 kfree(id); 3143 return ret; 3144 } 3145 3146 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3147 { 3148 struct nvme_effects_log *log = ctrl->effects; 3149 3150 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3151 NVME_CMD_EFFECTS_NCC | 3152 NVME_CMD_EFFECTS_CSE_MASK); 3153 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3154 NVME_CMD_EFFECTS_CSE_MASK); 3155 3156 /* 3157 * The spec says the result of a security receive command depends on 3158 * the previous security send command. As such, many vendors log this 3159 * command as one to submitted only when no other commands to the same 3160 * namespace are outstanding. The intention is to tell the host to 3161 * prevent mixing security send and receive. 3162 * 3163 * This driver can only enforce such exclusive access against IO 3164 * queues, though. We are not readily able to enforce such a rule for 3165 * two commands to the admin queue, which is the only queue that 3166 * matters for this command. 3167 * 3168 * Rather than blindly freezing the IO queues for this effect that 3169 * doesn't even apply to IO, mask it off. 3170 */ 3171 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3172 3173 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3174 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3175 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3176 } 3177 3178 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3179 { 3180 int ret = 0; 3181 3182 if (ctrl->effects) 3183 return 0; 3184 3185 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3186 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3187 if (ret < 0) 3188 return ret; 3189 } 3190 3191 if (!ctrl->effects) { 3192 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3193 if (!ctrl->effects) 3194 return -ENOMEM; 3195 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3196 } 3197 3198 nvme_init_known_nvm_effects(ctrl); 3199 return 0; 3200 } 3201 3202 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3203 { 3204 /* 3205 * In fabrics we need to verify the cntlid matches the 3206 * admin connect 3207 */ 3208 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3209 dev_err(ctrl->device, 3210 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3211 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3212 return -EINVAL; 3213 } 3214 3215 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3216 dev_err(ctrl->device, 3217 "keep-alive support is mandatory for fabrics\n"); 3218 return -EINVAL; 3219 } 3220 3221 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3222 dev_err(ctrl->device, 3223 "I/O queue command capsule supported size %d < 4\n", 3224 ctrl->ioccsz); 3225 return -EINVAL; 3226 } 3227 3228 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3229 dev_err(ctrl->device, 3230 "I/O queue response capsule supported size %d < 1\n", 3231 ctrl->iorcsz); 3232 return -EINVAL; 3233 } 3234 3235 if (!ctrl->maxcmd) { 3236 dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); 3237 return -EINVAL; 3238 } 3239 3240 return 0; 3241 } 3242 3243 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3244 { 3245 struct queue_limits lim; 3246 struct nvme_id_ctrl *id; 3247 u32 max_hw_sectors; 3248 bool prev_apst_enabled; 3249 int ret; 3250 3251 ret = nvme_identify_ctrl(ctrl, &id); 3252 if (ret) { 3253 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3254 return -EIO; 3255 } 3256 3257 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3258 ctrl->cntlid = le16_to_cpu(id->cntlid); 3259 3260 if (!ctrl->identified) { 3261 unsigned int i; 3262 3263 /* 3264 * Check for quirks. Quirk can depend on firmware version, 3265 * so, in principle, the set of quirks present can change 3266 * across a reset. As a possible future enhancement, we 3267 * could re-scan for quirks every time we reinitialize 3268 * the device, but we'd have to make sure that the driver 3269 * behaves intelligently if the quirks change. 3270 */ 3271 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3272 if (quirk_matches(id, &core_quirks[i])) 3273 ctrl->quirks |= core_quirks[i].quirks; 3274 } 3275 3276 ret = nvme_init_subsystem(ctrl, id); 3277 if (ret) 3278 goto out_free; 3279 3280 ret = nvme_init_effects(ctrl, id); 3281 if (ret) 3282 goto out_free; 3283 } 3284 memcpy(ctrl->subsys->firmware_rev, id->fr, 3285 sizeof(ctrl->subsys->firmware_rev)); 3286 3287 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3288 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3289 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3290 } 3291 3292 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3293 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3294 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3295 3296 ctrl->oacs = le16_to_cpu(id->oacs); 3297 ctrl->oncs = le16_to_cpu(id->oncs); 3298 ctrl->mtfa = le16_to_cpu(id->mtfa); 3299 ctrl->oaes = le32_to_cpu(id->oaes); 3300 ctrl->wctemp = le16_to_cpu(id->wctemp); 3301 ctrl->cctemp = le16_to_cpu(id->cctemp); 3302 3303 atomic_set(&ctrl->abort_limit, id->acl + 1); 3304 ctrl->vwc = id->vwc; 3305 if (id->mdts) 3306 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3307 else 3308 max_hw_sectors = UINT_MAX; 3309 ctrl->max_hw_sectors = 3310 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3311 3312 lim = queue_limits_start_update(ctrl->admin_q); 3313 nvme_set_ctrl_limits(ctrl, &lim); 3314 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3315 if (ret) 3316 goto out_free; 3317 3318 ctrl->sgls = le32_to_cpu(id->sgls); 3319 ctrl->kas = le16_to_cpu(id->kas); 3320 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3321 ctrl->ctratt = le32_to_cpu(id->ctratt); 3322 3323 ctrl->cntrltype = id->cntrltype; 3324 ctrl->dctype = id->dctype; 3325 3326 if (id->rtd3e) { 3327 /* us -> s */ 3328 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3329 3330 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3331 shutdown_timeout, 60); 3332 3333 if (ctrl->shutdown_timeout != shutdown_timeout) 3334 dev_info(ctrl->device, 3335 "D3 entry latency set to %u seconds\n", 3336 ctrl->shutdown_timeout); 3337 } else 3338 ctrl->shutdown_timeout = shutdown_timeout; 3339 3340 ctrl->npss = id->npss; 3341 ctrl->apsta = id->apsta; 3342 prev_apst_enabled = ctrl->apst_enabled; 3343 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3344 if (force_apst && id->apsta) { 3345 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3346 ctrl->apst_enabled = true; 3347 } else { 3348 ctrl->apst_enabled = false; 3349 } 3350 } else { 3351 ctrl->apst_enabled = id->apsta; 3352 } 3353 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3354 3355 if (ctrl->ops->flags & NVME_F_FABRICS) { 3356 ctrl->icdoff = le16_to_cpu(id->icdoff); 3357 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3358 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3359 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3360 3361 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3362 if (ret) 3363 goto out_free; 3364 } else { 3365 ctrl->hmpre = le32_to_cpu(id->hmpre); 3366 ctrl->hmmin = le32_to_cpu(id->hmmin); 3367 ctrl->hmminds = le32_to_cpu(id->hmminds); 3368 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3369 } 3370 3371 ret = nvme_mpath_init_identify(ctrl, id); 3372 if (ret < 0) 3373 goto out_free; 3374 3375 if (ctrl->apst_enabled && !prev_apst_enabled) 3376 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3377 else if (!ctrl->apst_enabled && prev_apst_enabled) 3378 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3379 3380 out_free: 3381 kfree(id); 3382 return ret; 3383 } 3384 3385 /* 3386 * Initialize the cached copies of the Identify data and various controller 3387 * register in our nvme_ctrl structure. This should be called as soon as 3388 * the admin queue is fully up and running. 3389 */ 3390 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3391 { 3392 int ret; 3393 3394 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3395 if (ret) { 3396 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3397 return ret; 3398 } 3399 3400 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3401 3402 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3403 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3404 3405 ret = nvme_init_identify(ctrl); 3406 if (ret) 3407 return ret; 3408 3409 ret = nvme_configure_apst(ctrl); 3410 if (ret < 0) 3411 return ret; 3412 3413 ret = nvme_configure_timestamp(ctrl); 3414 if (ret < 0) 3415 return ret; 3416 3417 ret = nvme_configure_host_options(ctrl); 3418 if (ret < 0) 3419 return ret; 3420 3421 nvme_configure_opal(ctrl, was_suspended); 3422 3423 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3424 /* 3425 * Do not return errors unless we are in a controller reset, 3426 * the controller works perfectly fine without hwmon. 3427 */ 3428 ret = nvme_hwmon_init(ctrl); 3429 if (ret == -EINTR) 3430 return ret; 3431 } 3432 3433 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3434 ctrl->identified = true; 3435 3436 nvme_start_keep_alive(ctrl); 3437 3438 return 0; 3439 } 3440 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3441 3442 static int nvme_dev_open(struct inode *inode, struct file *file) 3443 { 3444 struct nvme_ctrl *ctrl = 3445 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3446 3447 switch (nvme_ctrl_state(ctrl)) { 3448 case NVME_CTRL_LIVE: 3449 break; 3450 default: 3451 return -EWOULDBLOCK; 3452 } 3453 3454 nvme_get_ctrl(ctrl); 3455 if (!try_module_get(ctrl->ops->module)) { 3456 nvme_put_ctrl(ctrl); 3457 return -EINVAL; 3458 } 3459 3460 file->private_data = ctrl; 3461 return 0; 3462 } 3463 3464 static int nvme_dev_release(struct inode *inode, struct file *file) 3465 { 3466 struct nvme_ctrl *ctrl = 3467 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3468 3469 module_put(ctrl->ops->module); 3470 nvme_put_ctrl(ctrl); 3471 return 0; 3472 } 3473 3474 static const struct file_operations nvme_dev_fops = { 3475 .owner = THIS_MODULE, 3476 .open = nvme_dev_open, 3477 .release = nvme_dev_release, 3478 .unlocked_ioctl = nvme_dev_ioctl, 3479 .compat_ioctl = compat_ptr_ioctl, 3480 .uring_cmd = nvme_dev_uring_cmd, 3481 }; 3482 3483 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3484 unsigned nsid) 3485 { 3486 struct nvme_ns_head *h; 3487 3488 lockdep_assert_held(&ctrl->subsys->lock); 3489 3490 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3491 /* 3492 * Private namespaces can share NSIDs under some conditions. 3493 * In that case we can't use the same ns_head for namespaces 3494 * with the same NSID. 3495 */ 3496 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3497 continue; 3498 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3499 return h; 3500 } 3501 3502 return NULL; 3503 } 3504 3505 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3506 struct nvme_ns_ids *ids) 3507 { 3508 bool has_uuid = !uuid_is_null(&ids->uuid); 3509 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3510 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3511 struct nvme_ns_head *h; 3512 3513 lockdep_assert_held(&subsys->lock); 3514 3515 list_for_each_entry(h, &subsys->nsheads, entry) { 3516 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3517 return -EINVAL; 3518 if (has_nguid && 3519 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3520 return -EINVAL; 3521 if (has_eui64 && 3522 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3523 return -EINVAL; 3524 } 3525 3526 return 0; 3527 } 3528 3529 static void nvme_cdev_rel(struct device *dev) 3530 { 3531 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3532 } 3533 3534 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3535 { 3536 cdev_device_del(cdev, cdev_device); 3537 put_device(cdev_device); 3538 } 3539 3540 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3541 const struct file_operations *fops, struct module *owner) 3542 { 3543 int minor, ret; 3544 3545 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3546 if (minor < 0) 3547 return minor; 3548 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3549 cdev_device->class = &nvme_ns_chr_class; 3550 cdev_device->release = nvme_cdev_rel; 3551 device_initialize(cdev_device); 3552 cdev_init(cdev, fops); 3553 cdev->owner = owner; 3554 ret = cdev_device_add(cdev, cdev_device); 3555 if (ret) 3556 put_device(cdev_device); 3557 3558 return ret; 3559 } 3560 3561 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3562 { 3563 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3564 } 3565 3566 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3567 { 3568 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3569 return 0; 3570 } 3571 3572 static const struct file_operations nvme_ns_chr_fops = { 3573 .owner = THIS_MODULE, 3574 .open = nvme_ns_chr_open, 3575 .release = nvme_ns_chr_release, 3576 .unlocked_ioctl = nvme_ns_chr_ioctl, 3577 .compat_ioctl = compat_ptr_ioctl, 3578 .uring_cmd = nvme_ns_chr_uring_cmd, 3579 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3580 }; 3581 3582 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3583 { 3584 int ret; 3585 3586 ns->cdev_device.parent = ns->ctrl->device; 3587 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3588 ns->ctrl->instance, ns->head->instance); 3589 if (ret) 3590 return ret; 3591 3592 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3593 ns->ctrl->ops->module); 3594 } 3595 3596 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3597 struct nvme_ns_info *info) 3598 { 3599 struct nvme_ns_head *head; 3600 size_t size = sizeof(*head); 3601 int ret = -ENOMEM; 3602 3603 #ifdef CONFIG_NVME_MULTIPATH 3604 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3605 #endif 3606 3607 head = kzalloc(size, GFP_KERNEL); 3608 if (!head) 3609 goto out; 3610 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3611 if (ret < 0) 3612 goto out_free_head; 3613 head->instance = ret; 3614 INIT_LIST_HEAD(&head->list); 3615 ret = init_srcu_struct(&head->srcu); 3616 if (ret) 3617 goto out_ida_remove; 3618 head->subsys = ctrl->subsys; 3619 head->ns_id = info->nsid; 3620 head->ids = info->ids; 3621 head->shared = info->is_shared; 3622 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3623 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3624 kref_init(&head->ref); 3625 3626 if (head->ids.csi) { 3627 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3628 if (ret) 3629 goto out_cleanup_srcu; 3630 } else 3631 head->effects = ctrl->effects; 3632 3633 ret = nvme_mpath_alloc_disk(ctrl, head); 3634 if (ret) 3635 goto out_cleanup_srcu; 3636 3637 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3638 3639 kref_get(&ctrl->subsys->ref); 3640 3641 return head; 3642 out_cleanup_srcu: 3643 cleanup_srcu_struct(&head->srcu); 3644 out_ida_remove: 3645 ida_free(&ctrl->subsys->ns_ida, head->instance); 3646 out_free_head: 3647 kfree(head); 3648 out: 3649 if (ret > 0) 3650 ret = blk_status_to_errno(nvme_error_status(ret)); 3651 return ERR_PTR(ret); 3652 } 3653 3654 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3655 struct nvme_ns_ids *ids) 3656 { 3657 struct nvme_subsystem *s; 3658 int ret = 0; 3659 3660 /* 3661 * Note that this check is racy as we try to avoid holding the global 3662 * lock over the whole ns_head creation. But it is only intended as 3663 * a sanity check anyway. 3664 */ 3665 mutex_lock(&nvme_subsystems_lock); 3666 list_for_each_entry(s, &nvme_subsystems, entry) { 3667 if (s == this) 3668 continue; 3669 mutex_lock(&s->lock); 3670 ret = nvme_subsys_check_duplicate_ids(s, ids); 3671 mutex_unlock(&s->lock); 3672 if (ret) 3673 break; 3674 } 3675 mutex_unlock(&nvme_subsystems_lock); 3676 3677 return ret; 3678 } 3679 3680 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3681 { 3682 struct nvme_ctrl *ctrl = ns->ctrl; 3683 struct nvme_ns_head *head = NULL; 3684 int ret; 3685 3686 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3687 if (ret) { 3688 /* 3689 * We've found two different namespaces on two different 3690 * subsystems that report the same ID. This is pretty nasty 3691 * for anything that actually requires unique device 3692 * identification. In the kernel we need this for multipathing, 3693 * and in user space the /dev/disk/by-id/ links rely on it. 3694 * 3695 * If the device also claims to be multi-path capable back off 3696 * here now and refuse the probe the second device as this is a 3697 * recipe for data corruption. If not this is probably a 3698 * cheap consumer device if on the PCIe bus, so let the user 3699 * proceed and use the shiny toy, but warn that with changing 3700 * probing order (which due to our async probing could just be 3701 * device taking longer to startup) the other device could show 3702 * up at any time. 3703 */ 3704 nvme_print_device_info(ctrl); 3705 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3706 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3707 info->is_shared)) { 3708 dev_err(ctrl->device, 3709 "ignoring nsid %d because of duplicate IDs\n", 3710 info->nsid); 3711 return ret; 3712 } 3713 3714 dev_err(ctrl->device, 3715 "clearing duplicate IDs for nsid %d\n", info->nsid); 3716 dev_err(ctrl->device, 3717 "use of /dev/disk/by-id/ may cause data corruption\n"); 3718 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3719 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3720 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3721 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3722 } 3723 3724 mutex_lock(&ctrl->subsys->lock); 3725 head = nvme_find_ns_head(ctrl, info->nsid); 3726 if (!head) { 3727 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3728 if (ret) { 3729 dev_err(ctrl->device, 3730 "duplicate IDs in subsystem for nsid %d\n", 3731 info->nsid); 3732 goto out_unlock; 3733 } 3734 head = nvme_alloc_ns_head(ctrl, info); 3735 if (IS_ERR(head)) { 3736 ret = PTR_ERR(head); 3737 goto out_unlock; 3738 } 3739 } else { 3740 ret = -EINVAL; 3741 if (!info->is_shared || !head->shared) { 3742 dev_err(ctrl->device, 3743 "Duplicate unshared namespace %d\n", 3744 info->nsid); 3745 goto out_put_ns_head; 3746 } 3747 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3748 dev_err(ctrl->device, 3749 "IDs don't match for shared namespace %d\n", 3750 info->nsid); 3751 goto out_put_ns_head; 3752 } 3753 3754 if (!multipath) { 3755 dev_warn(ctrl->device, 3756 "Found shared namespace %d, but multipathing not supported.\n", 3757 info->nsid); 3758 dev_warn_once(ctrl->device, 3759 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3760 } 3761 } 3762 3763 list_add_tail_rcu(&ns->siblings, &head->list); 3764 ns->head = head; 3765 mutex_unlock(&ctrl->subsys->lock); 3766 return 0; 3767 3768 out_put_ns_head: 3769 nvme_put_ns_head(head); 3770 out_unlock: 3771 mutex_unlock(&ctrl->subsys->lock); 3772 return ret; 3773 } 3774 3775 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3776 { 3777 struct nvme_ns *ns, *ret = NULL; 3778 int srcu_idx; 3779 3780 srcu_idx = srcu_read_lock(&ctrl->srcu); 3781 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 3782 if (ns->head->ns_id == nsid) { 3783 if (!nvme_get_ns(ns)) 3784 continue; 3785 ret = ns; 3786 break; 3787 } 3788 if (ns->head->ns_id > nsid) 3789 break; 3790 } 3791 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3792 return ret; 3793 } 3794 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3795 3796 /* 3797 * Add the namespace to the controller list while keeping the list ordered. 3798 */ 3799 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3800 { 3801 struct nvme_ns *tmp; 3802 3803 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3804 if (tmp->head->ns_id < ns->head->ns_id) { 3805 list_add_rcu(&ns->list, &tmp->list); 3806 return; 3807 } 3808 } 3809 list_add(&ns->list, &ns->ctrl->namespaces); 3810 } 3811 3812 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3813 { 3814 struct queue_limits lim = { }; 3815 struct nvme_ns *ns; 3816 struct gendisk *disk; 3817 int node = ctrl->numa_node; 3818 3819 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3820 if (!ns) 3821 return; 3822 3823 if (ctrl->opts && ctrl->opts->data_digest) 3824 lim.features |= BLK_FEAT_STABLE_WRITES; 3825 if (ctrl->ops->supports_pci_p2pdma && 3826 ctrl->ops->supports_pci_p2pdma(ctrl)) 3827 lim.features |= BLK_FEAT_PCI_P2PDMA; 3828 3829 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); 3830 if (IS_ERR(disk)) 3831 goto out_free_ns; 3832 disk->fops = &nvme_bdev_ops; 3833 disk->private_data = ns; 3834 3835 ns->disk = disk; 3836 ns->queue = disk->queue; 3837 ns->ctrl = ctrl; 3838 kref_init(&ns->kref); 3839 3840 if (nvme_init_ns_head(ns, info)) 3841 goto out_cleanup_disk; 3842 3843 /* 3844 * If multipathing is enabled, the device name for all disks and not 3845 * just those that represent shared namespaces needs to be based on the 3846 * subsystem instance. Using the controller instance for private 3847 * namespaces could lead to naming collisions between shared and private 3848 * namespaces if they don't use a common numbering scheme. 3849 * 3850 * If multipathing is not enabled, disk names must use the controller 3851 * instance as shared namespaces will show up as multiple block 3852 * devices. 3853 */ 3854 if (nvme_ns_head_multipath(ns->head)) { 3855 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3856 ctrl->instance, ns->head->instance); 3857 disk->flags |= GENHD_FL_HIDDEN; 3858 } else if (multipath) { 3859 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3860 ns->head->instance); 3861 } else { 3862 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3863 ns->head->instance); 3864 } 3865 3866 if (nvme_update_ns_info(ns, info)) 3867 goto out_unlink_ns; 3868 3869 mutex_lock(&ctrl->namespaces_lock); 3870 /* 3871 * Ensure that no namespaces are added to the ctrl list after the queues 3872 * are frozen, thereby avoiding a deadlock between scan and reset. 3873 */ 3874 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3875 mutex_unlock(&ctrl->namespaces_lock); 3876 goto out_unlink_ns; 3877 } 3878 nvme_ns_add_to_ctrl_list(ns); 3879 mutex_unlock(&ctrl->namespaces_lock); 3880 synchronize_srcu(&ctrl->srcu); 3881 nvme_get_ctrl(ctrl); 3882 3883 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3884 goto out_cleanup_ns_from_list; 3885 3886 if (!nvme_ns_head_multipath(ns->head)) 3887 nvme_add_ns_cdev(ns); 3888 3889 nvme_mpath_add_disk(ns, info->anagrpid); 3890 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3891 3892 /* 3893 * Set ns->disk->device->driver_data to ns so we can access 3894 * ns->head->passthru_err_log_enabled in 3895 * nvme_io_passthru_err_log_enabled_[store | show](). 3896 */ 3897 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3898 3899 return; 3900 3901 out_cleanup_ns_from_list: 3902 nvme_put_ctrl(ctrl); 3903 mutex_lock(&ctrl->namespaces_lock); 3904 list_del_rcu(&ns->list); 3905 mutex_unlock(&ctrl->namespaces_lock); 3906 synchronize_srcu(&ctrl->srcu); 3907 out_unlink_ns: 3908 mutex_lock(&ctrl->subsys->lock); 3909 list_del_rcu(&ns->siblings); 3910 if (list_empty(&ns->head->list)) 3911 list_del_init(&ns->head->entry); 3912 mutex_unlock(&ctrl->subsys->lock); 3913 nvme_put_ns_head(ns->head); 3914 out_cleanup_disk: 3915 put_disk(disk); 3916 out_free_ns: 3917 kfree(ns); 3918 } 3919 3920 static void nvme_ns_remove(struct nvme_ns *ns) 3921 { 3922 bool last_path = false; 3923 3924 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3925 return; 3926 3927 clear_bit(NVME_NS_READY, &ns->flags); 3928 set_capacity(ns->disk, 0); 3929 nvme_fault_inject_fini(&ns->fault_inject); 3930 3931 /* 3932 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3933 * this ns going back into current_path. 3934 */ 3935 synchronize_srcu(&ns->head->srcu); 3936 3937 /* wait for concurrent submissions */ 3938 if (nvme_mpath_clear_current_path(ns)) 3939 synchronize_srcu(&ns->head->srcu); 3940 3941 mutex_lock(&ns->ctrl->subsys->lock); 3942 list_del_rcu(&ns->siblings); 3943 if (list_empty(&ns->head->list)) { 3944 list_del_init(&ns->head->entry); 3945 last_path = true; 3946 } 3947 mutex_unlock(&ns->ctrl->subsys->lock); 3948 3949 /* guarantee not available in head->list */ 3950 synchronize_srcu(&ns->head->srcu); 3951 3952 if (!nvme_ns_head_multipath(ns->head)) 3953 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3954 del_gendisk(ns->disk); 3955 3956 mutex_lock(&ns->ctrl->namespaces_lock); 3957 list_del_rcu(&ns->list); 3958 mutex_unlock(&ns->ctrl->namespaces_lock); 3959 synchronize_srcu(&ns->ctrl->srcu); 3960 3961 if (last_path) 3962 nvme_mpath_shutdown_disk(ns->head); 3963 nvme_put_ns(ns); 3964 } 3965 3966 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3967 { 3968 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3969 3970 if (ns) { 3971 nvme_ns_remove(ns); 3972 nvme_put_ns(ns); 3973 } 3974 } 3975 3976 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3977 { 3978 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; 3979 3980 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3981 dev_err(ns->ctrl->device, 3982 "identifiers changed for nsid %d\n", ns->head->ns_id); 3983 goto out; 3984 } 3985 3986 ret = nvme_update_ns_info(ns, info); 3987 out: 3988 /* 3989 * Only remove the namespace if we got a fatal error back from the 3990 * device, otherwise ignore the error and just move on. 3991 * 3992 * TODO: we should probably schedule a delayed retry here. 3993 */ 3994 if (ret > 0 && (ret & NVME_STATUS_DNR)) 3995 nvme_ns_remove(ns); 3996 } 3997 3998 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3999 { 4000 struct nvme_ns_info info = { .nsid = nsid }; 4001 struct nvme_ns *ns; 4002 int ret; 4003 4004 if (nvme_identify_ns_descs(ctrl, &info)) 4005 return; 4006 4007 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4008 dev_warn(ctrl->device, 4009 "command set not reported for nsid: %d\n", nsid); 4010 return; 4011 } 4012 4013 /* 4014 * If available try to use the Command Set Idependent Identify Namespace 4015 * data structure to find all the generic information that is needed to 4016 * set up a namespace. If not fall back to the legacy version. 4017 */ 4018 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4019 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 4020 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 4021 else 4022 ret = nvme_ns_info_from_identify(ctrl, &info); 4023 4024 if (info.is_removed) 4025 nvme_ns_remove_by_nsid(ctrl, nsid); 4026 4027 /* 4028 * Ignore the namespace if it is not ready. We will get an AEN once it 4029 * becomes ready and restart the scan. 4030 */ 4031 if (ret || !info.is_ready) 4032 return; 4033 4034 ns = nvme_find_get_ns(ctrl, nsid); 4035 if (ns) { 4036 nvme_validate_ns(ns, &info); 4037 nvme_put_ns(ns); 4038 } else { 4039 nvme_alloc_ns(ctrl, &info); 4040 } 4041 } 4042 4043 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4044 unsigned nsid) 4045 { 4046 struct nvme_ns *ns, *next; 4047 LIST_HEAD(rm_list); 4048 4049 mutex_lock(&ctrl->namespaces_lock); 4050 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4051 if (ns->head->ns_id > nsid) { 4052 list_del_rcu(&ns->list); 4053 synchronize_srcu(&ctrl->srcu); 4054 list_add_tail_rcu(&ns->list, &rm_list); 4055 } 4056 } 4057 mutex_unlock(&ctrl->namespaces_lock); 4058 4059 list_for_each_entry_safe(ns, next, &rm_list, list) 4060 nvme_ns_remove(ns); 4061 } 4062 4063 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4064 { 4065 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4066 __le32 *ns_list; 4067 u32 prev = 0; 4068 int ret = 0, i; 4069 4070 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4071 if (!ns_list) 4072 return -ENOMEM; 4073 4074 for (;;) { 4075 struct nvme_command cmd = { 4076 .identify.opcode = nvme_admin_identify, 4077 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4078 .identify.nsid = cpu_to_le32(prev), 4079 }; 4080 4081 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4082 NVME_IDENTIFY_DATA_SIZE); 4083 if (ret) { 4084 dev_warn(ctrl->device, 4085 "Identify NS List failed (status=0x%x)\n", ret); 4086 goto free; 4087 } 4088 4089 for (i = 0; i < nr_entries; i++) { 4090 u32 nsid = le32_to_cpu(ns_list[i]); 4091 4092 if (!nsid) /* end of the list? */ 4093 goto out; 4094 nvme_scan_ns(ctrl, nsid); 4095 while (++prev < nsid) 4096 nvme_ns_remove_by_nsid(ctrl, prev); 4097 } 4098 } 4099 out: 4100 nvme_remove_invalid_namespaces(ctrl, prev); 4101 free: 4102 kfree(ns_list); 4103 return ret; 4104 } 4105 4106 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4107 { 4108 struct nvme_id_ctrl *id; 4109 u32 nn, i; 4110 4111 if (nvme_identify_ctrl(ctrl, &id)) 4112 return; 4113 nn = le32_to_cpu(id->nn); 4114 kfree(id); 4115 4116 for (i = 1; i <= nn; i++) 4117 nvme_scan_ns(ctrl, i); 4118 4119 nvme_remove_invalid_namespaces(ctrl, nn); 4120 } 4121 4122 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4123 { 4124 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4125 __le32 *log; 4126 int error; 4127 4128 log = kzalloc(log_size, GFP_KERNEL); 4129 if (!log) 4130 return; 4131 4132 /* 4133 * We need to read the log to clear the AEN, but we don't want to rely 4134 * on it for the changed namespace information as userspace could have 4135 * raced with us in reading the log page, which could cause us to miss 4136 * updates. 4137 */ 4138 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4139 NVME_CSI_NVM, log, log_size, 0); 4140 if (error) 4141 dev_warn(ctrl->device, 4142 "reading changed ns log failed: %d\n", error); 4143 4144 kfree(log); 4145 } 4146 4147 static void nvme_scan_work(struct work_struct *work) 4148 { 4149 struct nvme_ctrl *ctrl = 4150 container_of(work, struct nvme_ctrl, scan_work); 4151 int ret; 4152 4153 /* No tagset on a live ctrl means IO queues could not created */ 4154 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4155 return; 4156 4157 /* 4158 * Identify controller limits can change at controller reset due to 4159 * new firmware download, even though it is not common we cannot ignore 4160 * such scenario. Controller's non-mdts limits are reported in the unit 4161 * of logical blocks that is dependent on the format of attached 4162 * namespace. Hence re-read the limits at the time of ns allocation. 4163 */ 4164 ret = nvme_init_non_mdts_limits(ctrl); 4165 if (ret < 0) { 4166 dev_warn(ctrl->device, 4167 "reading non-mdts-limits failed: %d\n", ret); 4168 return; 4169 } 4170 4171 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4172 dev_info(ctrl->device, "rescanning namespaces.\n"); 4173 nvme_clear_changed_ns_log(ctrl); 4174 } 4175 4176 mutex_lock(&ctrl->scan_lock); 4177 if (nvme_ctrl_limited_cns(ctrl)) { 4178 nvme_scan_ns_sequential(ctrl); 4179 } else { 4180 /* 4181 * Fall back to sequential scan if DNR is set to handle broken 4182 * devices which should support Identify NS List (as per the VS 4183 * they report) but don't actually support it. 4184 */ 4185 ret = nvme_scan_ns_list(ctrl); 4186 if (ret > 0 && ret & NVME_STATUS_DNR) 4187 nvme_scan_ns_sequential(ctrl); 4188 } 4189 mutex_unlock(&ctrl->scan_lock); 4190 } 4191 4192 /* 4193 * This function iterates the namespace list unlocked to allow recovery from 4194 * controller failure. It is up to the caller to ensure the namespace list is 4195 * not modified by scan work while this function is executing. 4196 */ 4197 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4198 { 4199 struct nvme_ns *ns, *next; 4200 LIST_HEAD(ns_list); 4201 4202 /* 4203 * make sure to requeue I/O to all namespaces as these 4204 * might result from the scan itself and must complete 4205 * for the scan_work to make progress 4206 */ 4207 nvme_mpath_clear_ctrl_paths(ctrl); 4208 4209 /* 4210 * Unquiesce io queues so any pending IO won't hang, especially 4211 * those submitted from scan work 4212 */ 4213 nvme_unquiesce_io_queues(ctrl); 4214 4215 /* prevent racing with ns scanning */ 4216 flush_work(&ctrl->scan_work); 4217 4218 /* 4219 * The dead states indicates the controller was not gracefully 4220 * disconnected. In that case, we won't be able to flush any data while 4221 * removing the namespaces' disks; fail all the queues now to avoid 4222 * potentially having to clean up the failed sync later. 4223 */ 4224 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4225 nvme_mark_namespaces_dead(ctrl); 4226 4227 /* this is a no-op when called from the controller reset handler */ 4228 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4229 4230 mutex_lock(&ctrl->namespaces_lock); 4231 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4232 mutex_unlock(&ctrl->namespaces_lock); 4233 synchronize_srcu(&ctrl->srcu); 4234 4235 list_for_each_entry_safe(ns, next, &ns_list, list) 4236 nvme_ns_remove(ns); 4237 } 4238 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4239 4240 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4241 { 4242 const struct nvme_ctrl *ctrl = 4243 container_of(dev, struct nvme_ctrl, ctrl_device); 4244 struct nvmf_ctrl_options *opts = ctrl->opts; 4245 int ret; 4246 4247 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4248 if (ret) 4249 return ret; 4250 4251 if (opts) { 4252 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4253 if (ret) 4254 return ret; 4255 4256 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4257 opts->trsvcid ?: "none"); 4258 if (ret) 4259 return ret; 4260 4261 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4262 opts->host_traddr ?: "none"); 4263 if (ret) 4264 return ret; 4265 4266 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4267 opts->host_iface ?: "none"); 4268 } 4269 return ret; 4270 } 4271 4272 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4273 { 4274 char *envp[2] = { envdata, NULL }; 4275 4276 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4277 } 4278 4279 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4280 { 4281 char *envp[2] = { NULL, NULL }; 4282 u32 aen_result = ctrl->aen_result; 4283 4284 ctrl->aen_result = 0; 4285 if (!aen_result) 4286 return; 4287 4288 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4289 if (!envp[0]) 4290 return; 4291 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4292 kfree(envp[0]); 4293 } 4294 4295 static void nvme_async_event_work(struct work_struct *work) 4296 { 4297 struct nvme_ctrl *ctrl = 4298 container_of(work, struct nvme_ctrl, async_event_work); 4299 4300 nvme_aen_uevent(ctrl); 4301 4302 /* 4303 * The transport drivers must guarantee AER submission here is safe by 4304 * flushing ctrl async_event_work after changing the controller state 4305 * from LIVE and before freeing the admin queue. 4306 */ 4307 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4308 ctrl->ops->submit_async_event(ctrl); 4309 } 4310 4311 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4312 { 4313 4314 u32 csts; 4315 4316 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4317 return false; 4318 4319 if (csts == ~0) 4320 return false; 4321 4322 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4323 } 4324 4325 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4326 { 4327 struct nvme_fw_slot_info_log *log; 4328 u8 next_fw_slot, cur_fw_slot; 4329 4330 log = kmalloc(sizeof(*log), GFP_KERNEL); 4331 if (!log) 4332 return; 4333 4334 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4335 log, sizeof(*log), 0)) { 4336 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4337 goto out_free_log; 4338 } 4339 4340 cur_fw_slot = log->afi & 0x7; 4341 next_fw_slot = (log->afi & 0x70) >> 4; 4342 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4343 dev_info(ctrl->device, 4344 "Firmware is activated after next Controller Level Reset\n"); 4345 goto out_free_log; 4346 } 4347 4348 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4349 sizeof(ctrl->subsys->firmware_rev)); 4350 4351 out_free_log: 4352 kfree(log); 4353 } 4354 4355 static void nvme_fw_act_work(struct work_struct *work) 4356 { 4357 struct nvme_ctrl *ctrl = container_of(work, 4358 struct nvme_ctrl, fw_act_work); 4359 unsigned long fw_act_timeout; 4360 4361 nvme_auth_stop(ctrl); 4362 4363 if (ctrl->mtfa) 4364 fw_act_timeout = jiffies + 4365 msecs_to_jiffies(ctrl->mtfa * 100); 4366 else 4367 fw_act_timeout = jiffies + 4368 msecs_to_jiffies(admin_timeout * 1000); 4369 4370 nvme_quiesce_io_queues(ctrl); 4371 while (nvme_ctrl_pp_status(ctrl)) { 4372 if (time_after(jiffies, fw_act_timeout)) { 4373 dev_warn(ctrl->device, 4374 "Fw activation timeout, reset controller\n"); 4375 nvme_try_sched_reset(ctrl); 4376 return; 4377 } 4378 msleep(100); 4379 } 4380 4381 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4382 return; 4383 4384 nvme_unquiesce_io_queues(ctrl); 4385 /* read FW slot information to clear the AER */ 4386 nvme_get_fw_slot_info(ctrl); 4387 4388 queue_work(nvme_wq, &ctrl->async_event_work); 4389 } 4390 4391 static u32 nvme_aer_type(u32 result) 4392 { 4393 return result & 0x7; 4394 } 4395 4396 static u32 nvme_aer_subtype(u32 result) 4397 { 4398 return (result & 0xff00) >> 8; 4399 } 4400 4401 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4402 { 4403 u32 aer_notice_type = nvme_aer_subtype(result); 4404 bool requeue = true; 4405 4406 switch (aer_notice_type) { 4407 case NVME_AER_NOTICE_NS_CHANGED: 4408 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4409 nvme_queue_scan(ctrl); 4410 break; 4411 case NVME_AER_NOTICE_FW_ACT_STARTING: 4412 /* 4413 * We are (ab)using the RESETTING state to prevent subsequent 4414 * recovery actions from interfering with the controller's 4415 * firmware activation. 4416 */ 4417 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4418 requeue = false; 4419 queue_work(nvme_wq, &ctrl->fw_act_work); 4420 } 4421 break; 4422 #ifdef CONFIG_NVME_MULTIPATH 4423 case NVME_AER_NOTICE_ANA: 4424 if (!ctrl->ana_log_buf) 4425 break; 4426 queue_work(nvme_wq, &ctrl->ana_work); 4427 break; 4428 #endif 4429 case NVME_AER_NOTICE_DISC_CHANGED: 4430 ctrl->aen_result = result; 4431 break; 4432 default: 4433 dev_warn(ctrl->device, "async event result %08x\n", result); 4434 } 4435 return requeue; 4436 } 4437 4438 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4439 { 4440 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4441 nvme_reset_ctrl(ctrl); 4442 } 4443 4444 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4445 volatile union nvme_result *res) 4446 { 4447 u32 result = le32_to_cpu(res->u32); 4448 u32 aer_type = nvme_aer_type(result); 4449 u32 aer_subtype = nvme_aer_subtype(result); 4450 bool requeue = true; 4451 4452 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4453 return; 4454 4455 trace_nvme_async_event(ctrl, result); 4456 switch (aer_type) { 4457 case NVME_AER_NOTICE: 4458 requeue = nvme_handle_aen_notice(ctrl, result); 4459 break; 4460 case NVME_AER_ERROR: 4461 /* 4462 * For a persistent internal error, don't run async_event_work 4463 * to submit a new AER. The controller reset will do it. 4464 */ 4465 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4466 nvme_handle_aer_persistent_error(ctrl); 4467 return; 4468 } 4469 fallthrough; 4470 case NVME_AER_SMART: 4471 case NVME_AER_CSS: 4472 case NVME_AER_VS: 4473 ctrl->aen_result = result; 4474 break; 4475 default: 4476 break; 4477 } 4478 4479 if (requeue) 4480 queue_work(nvme_wq, &ctrl->async_event_work); 4481 } 4482 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4483 4484 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4485 const struct blk_mq_ops *ops, unsigned int cmd_size) 4486 { 4487 struct queue_limits lim = {}; 4488 int ret; 4489 4490 memset(set, 0, sizeof(*set)); 4491 set->ops = ops; 4492 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4493 if (ctrl->ops->flags & NVME_F_FABRICS) 4494 /* Reserved for fabric connect and keep alive */ 4495 set->reserved_tags = 2; 4496 set->numa_node = ctrl->numa_node; 4497 set->flags = BLK_MQ_F_NO_SCHED; 4498 if (ctrl->ops->flags & NVME_F_BLOCKING) 4499 set->flags |= BLK_MQ_F_BLOCKING; 4500 set->cmd_size = cmd_size; 4501 set->driver_data = ctrl; 4502 set->nr_hw_queues = 1; 4503 set->timeout = NVME_ADMIN_TIMEOUT; 4504 ret = blk_mq_alloc_tag_set(set); 4505 if (ret) 4506 return ret; 4507 4508 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4509 if (IS_ERR(ctrl->admin_q)) { 4510 ret = PTR_ERR(ctrl->admin_q); 4511 goto out_free_tagset; 4512 } 4513 4514 if (ctrl->ops->flags & NVME_F_FABRICS) { 4515 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4516 if (IS_ERR(ctrl->fabrics_q)) { 4517 ret = PTR_ERR(ctrl->fabrics_q); 4518 goto out_cleanup_admin_q; 4519 } 4520 } 4521 4522 ctrl->admin_tagset = set; 4523 return 0; 4524 4525 out_cleanup_admin_q: 4526 blk_mq_destroy_queue(ctrl->admin_q); 4527 blk_put_queue(ctrl->admin_q); 4528 out_free_tagset: 4529 blk_mq_free_tag_set(set); 4530 ctrl->admin_q = NULL; 4531 ctrl->fabrics_q = NULL; 4532 return ret; 4533 } 4534 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4535 4536 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4537 { 4538 blk_mq_destroy_queue(ctrl->admin_q); 4539 blk_put_queue(ctrl->admin_q); 4540 if (ctrl->ops->flags & NVME_F_FABRICS) { 4541 blk_mq_destroy_queue(ctrl->fabrics_q); 4542 blk_put_queue(ctrl->fabrics_q); 4543 } 4544 blk_mq_free_tag_set(ctrl->admin_tagset); 4545 } 4546 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4547 4548 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4549 const struct blk_mq_ops *ops, unsigned int nr_maps, 4550 unsigned int cmd_size) 4551 { 4552 int ret; 4553 4554 memset(set, 0, sizeof(*set)); 4555 set->ops = ops; 4556 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4557 /* 4558 * Some Apple controllers requires tags to be unique across admin and 4559 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4560 */ 4561 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4562 set->reserved_tags = NVME_AQ_DEPTH; 4563 else if (ctrl->ops->flags & NVME_F_FABRICS) 4564 /* Reserved for fabric connect */ 4565 set->reserved_tags = 1; 4566 set->numa_node = ctrl->numa_node; 4567 set->flags = BLK_MQ_F_SHOULD_MERGE; 4568 if (ctrl->ops->flags & NVME_F_BLOCKING) 4569 set->flags |= BLK_MQ_F_BLOCKING; 4570 set->cmd_size = cmd_size, 4571 set->driver_data = ctrl; 4572 set->nr_hw_queues = ctrl->queue_count - 1; 4573 set->timeout = NVME_IO_TIMEOUT; 4574 set->nr_maps = nr_maps; 4575 ret = blk_mq_alloc_tag_set(set); 4576 if (ret) 4577 return ret; 4578 4579 if (ctrl->ops->flags & NVME_F_FABRICS) { 4580 struct queue_limits lim = { 4581 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, 4582 }; 4583 4584 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); 4585 if (IS_ERR(ctrl->connect_q)) { 4586 ret = PTR_ERR(ctrl->connect_q); 4587 goto out_free_tag_set; 4588 } 4589 } 4590 4591 ctrl->tagset = set; 4592 return 0; 4593 4594 out_free_tag_set: 4595 blk_mq_free_tag_set(set); 4596 ctrl->connect_q = NULL; 4597 return ret; 4598 } 4599 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4600 4601 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4602 { 4603 if (ctrl->ops->flags & NVME_F_FABRICS) { 4604 blk_mq_destroy_queue(ctrl->connect_q); 4605 blk_put_queue(ctrl->connect_q); 4606 } 4607 blk_mq_free_tag_set(ctrl->tagset); 4608 } 4609 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4610 4611 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4612 { 4613 nvme_mpath_stop(ctrl); 4614 nvme_auth_stop(ctrl); 4615 nvme_stop_keep_alive(ctrl); 4616 nvme_stop_failfast_work(ctrl); 4617 flush_work(&ctrl->async_event_work); 4618 cancel_work_sync(&ctrl->fw_act_work); 4619 if (ctrl->ops->stop_ctrl) 4620 ctrl->ops->stop_ctrl(ctrl); 4621 } 4622 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4623 4624 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4625 { 4626 nvme_enable_aen(ctrl); 4627 4628 /* 4629 * persistent discovery controllers need to send indication to userspace 4630 * to re-read the discovery log page to learn about possible changes 4631 * that were missed. We identify persistent discovery controllers by 4632 * checking that they started once before, hence are reconnecting back. 4633 */ 4634 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4635 nvme_discovery_ctrl(ctrl)) 4636 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4637 4638 if (ctrl->queue_count > 1) { 4639 nvme_queue_scan(ctrl); 4640 nvme_unquiesce_io_queues(ctrl); 4641 nvme_mpath_update(ctrl); 4642 } 4643 4644 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4645 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4646 } 4647 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4648 4649 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4650 { 4651 nvme_hwmon_exit(ctrl); 4652 nvme_fault_inject_fini(&ctrl->fault_inject); 4653 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4654 cdev_device_del(&ctrl->cdev, ctrl->device); 4655 nvme_put_ctrl(ctrl); 4656 } 4657 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4658 4659 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4660 { 4661 struct nvme_effects_log *cel; 4662 unsigned long i; 4663 4664 xa_for_each(&ctrl->cels, i, cel) { 4665 xa_erase(&ctrl->cels, i); 4666 kfree(cel); 4667 } 4668 4669 xa_destroy(&ctrl->cels); 4670 } 4671 4672 static void nvme_free_ctrl(struct device *dev) 4673 { 4674 struct nvme_ctrl *ctrl = 4675 container_of(dev, struct nvme_ctrl, ctrl_device); 4676 struct nvme_subsystem *subsys = ctrl->subsys; 4677 4678 if (!subsys || ctrl->instance != subsys->instance) 4679 ida_free(&nvme_instance_ida, ctrl->instance); 4680 key_put(ctrl->tls_key); 4681 nvme_free_cels(ctrl); 4682 nvme_mpath_uninit(ctrl); 4683 cleanup_srcu_struct(&ctrl->srcu); 4684 nvme_auth_stop(ctrl); 4685 nvme_auth_free(ctrl); 4686 __free_page(ctrl->discard_page); 4687 free_opal_dev(ctrl->opal_dev); 4688 4689 if (subsys) { 4690 mutex_lock(&nvme_subsystems_lock); 4691 list_del(&ctrl->subsys_entry); 4692 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4693 mutex_unlock(&nvme_subsystems_lock); 4694 } 4695 4696 ctrl->ops->free_ctrl(ctrl); 4697 4698 if (subsys) 4699 nvme_put_subsystem(subsys); 4700 } 4701 4702 /* 4703 * Initialize a NVMe controller structures. This needs to be called during 4704 * earliest initialization so that we have the initialized structured around 4705 * during probing. 4706 * 4707 * On success, the caller must use the nvme_put_ctrl() to release this when 4708 * needed, which also invokes the ops->free_ctrl() callback. 4709 */ 4710 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4711 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4712 { 4713 int ret; 4714 4715 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4716 ctrl->passthru_err_log_enabled = false; 4717 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4718 spin_lock_init(&ctrl->lock); 4719 mutex_init(&ctrl->namespaces_lock); 4720 4721 ret = init_srcu_struct(&ctrl->srcu); 4722 if (ret) 4723 return ret; 4724 4725 mutex_init(&ctrl->scan_lock); 4726 INIT_LIST_HEAD(&ctrl->namespaces); 4727 xa_init(&ctrl->cels); 4728 ctrl->dev = dev; 4729 ctrl->ops = ops; 4730 ctrl->quirks = quirks; 4731 ctrl->numa_node = NUMA_NO_NODE; 4732 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4733 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4734 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4735 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4736 init_waitqueue_head(&ctrl->state_wq); 4737 4738 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4739 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4740 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4741 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4742 ctrl->ka_last_check_time = jiffies; 4743 4744 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4745 PAGE_SIZE); 4746 ctrl->discard_page = alloc_page(GFP_KERNEL); 4747 if (!ctrl->discard_page) { 4748 ret = -ENOMEM; 4749 goto out; 4750 } 4751 4752 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4753 if (ret < 0) 4754 goto out; 4755 ctrl->instance = ret; 4756 4757 ret = nvme_auth_init_ctrl(ctrl); 4758 if (ret) 4759 goto out_release_instance; 4760 4761 nvme_mpath_init_ctrl(ctrl); 4762 4763 device_initialize(&ctrl->ctrl_device); 4764 ctrl->device = &ctrl->ctrl_device; 4765 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4766 ctrl->instance); 4767 ctrl->device->class = &nvme_class; 4768 ctrl->device->parent = ctrl->dev; 4769 if (ops->dev_attr_groups) 4770 ctrl->device->groups = ops->dev_attr_groups; 4771 else 4772 ctrl->device->groups = nvme_dev_attr_groups; 4773 ctrl->device->release = nvme_free_ctrl; 4774 dev_set_drvdata(ctrl->device, ctrl); 4775 4776 return ret; 4777 4778 out_release_instance: 4779 ida_free(&nvme_instance_ida, ctrl->instance); 4780 out: 4781 if (ctrl->discard_page) 4782 __free_page(ctrl->discard_page); 4783 cleanup_srcu_struct(&ctrl->srcu); 4784 return ret; 4785 } 4786 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4787 4788 /* 4789 * On success, returns with an elevated controller reference and caller must 4790 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. 4791 */ 4792 int nvme_add_ctrl(struct nvme_ctrl *ctrl) 4793 { 4794 int ret; 4795 4796 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4797 if (ret) 4798 return ret; 4799 4800 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4801 ctrl->cdev.owner = ctrl->ops->module; 4802 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4803 if (ret) 4804 return ret; 4805 4806 /* 4807 * Initialize latency tolerance controls. The sysfs files won't 4808 * be visible to userspace unless the device actually supports APST. 4809 */ 4810 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4811 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4812 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4813 4814 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4815 nvme_get_ctrl(ctrl); 4816 4817 return 0; 4818 } 4819 EXPORT_SYMBOL_GPL(nvme_add_ctrl); 4820 4821 /* let I/O to all namespaces fail in preparation for surprise removal */ 4822 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4823 { 4824 struct nvme_ns *ns; 4825 int srcu_idx; 4826 4827 srcu_idx = srcu_read_lock(&ctrl->srcu); 4828 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4829 blk_mark_disk_dead(ns->disk); 4830 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4831 } 4832 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4833 4834 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4835 { 4836 struct nvme_ns *ns; 4837 int srcu_idx; 4838 4839 srcu_idx = srcu_read_lock(&ctrl->srcu); 4840 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4841 blk_mq_unfreeze_queue(ns->queue); 4842 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4843 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4844 } 4845 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4846 4847 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4848 { 4849 struct nvme_ns *ns; 4850 int srcu_idx; 4851 4852 srcu_idx = srcu_read_lock(&ctrl->srcu); 4853 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 4854 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4855 if (timeout <= 0) 4856 break; 4857 } 4858 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4859 return timeout; 4860 } 4861 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4862 4863 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4864 { 4865 struct nvme_ns *ns; 4866 int srcu_idx; 4867 4868 srcu_idx = srcu_read_lock(&ctrl->srcu); 4869 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4870 blk_mq_freeze_queue_wait(ns->queue); 4871 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4872 } 4873 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4874 4875 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4876 { 4877 struct nvme_ns *ns; 4878 int srcu_idx; 4879 4880 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4881 srcu_idx = srcu_read_lock(&ctrl->srcu); 4882 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4883 blk_freeze_queue_start(ns->queue); 4884 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4885 } 4886 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4887 4888 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4889 { 4890 if (!ctrl->tagset) 4891 return; 4892 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4893 blk_mq_quiesce_tagset(ctrl->tagset); 4894 else 4895 blk_mq_wait_quiesce_done(ctrl->tagset); 4896 } 4897 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4898 4899 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4900 { 4901 if (!ctrl->tagset) 4902 return; 4903 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4904 blk_mq_unquiesce_tagset(ctrl->tagset); 4905 } 4906 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4907 4908 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4909 { 4910 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4911 blk_mq_quiesce_queue(ctrl->admin_q); 4912 else 4913 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4914 } 4915 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4916 4917 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4918 { 4919 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4920 blk_mq_unquiesce_queue(ctrl->admin_q); 4921 } 4922 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4923 4924 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4925 { 4926 struct nvme_ns *ns; 4927 int srcu_idx; 4928 4929 srcu_idx = srcu_read_lock(&ctrl->srcu); 4930 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4931 blk_sync_queue(ns->queue); 4932 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4933 } 4934 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4935 4936 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4937 { 4938 nvme_sync_io_queues(ctrl); 4939 if (ctrl->admin_q) 4940 blk_sync_queue(ctrl->admin_q); 4941 } 4942 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4943 4944 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4945 { 4946 if (file->f_op != &nvme_dev_fops) 4947 return NULL; 4948 return file->private_data; 4949 } 4950 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4951 4952 /* 4953 * Check we didn't inadvertently grow the command structure sizes: 4954 */ 4955 static inline void _nvme_check_size(void) 4956 { 4957 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4958 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4959 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4960 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4961 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4962 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4963 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4964 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4965 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4966 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4967 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4968 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4969 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4970 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4971 NVME_IDENTIFY_DATA_SIZE); 4972 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4973 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4974 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4975 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4976 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4977 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4978 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4979 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4980 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4981 } 4982 4983 4984 static int __init nvme_core_init(void) 4985 { 4986 int result = -ENOMEM; 4987 4988 _nvme_check_size(); 4989 4990 nvme_wq = alloc_workqueue("nvme-wq", 4991 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4992 if (!nvme_wq) 4993 goto out; 4994 4995 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4996 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4997 if (!nvme_reset_wq) 4998 goto destroy_wq; 4999 5000 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 5001 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5002 if (!nvme_delete_wq) 5003 goto destroy_reset_wq; 5004 5005 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5006 NVME_MINORS, "nvme"); 5007 if (result < 0) 5008 goto destroy_delete_wq; 5009 5010 result = class_register(&nvme_class); 5011 if (result) 5012 goto unregister_chrdev; 5013 5014 result = class_register(&nvme_subsys_class); 5015 if (result) 5016 goto destroy_class; 5017 5018 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5019 "nvme-generic"); 5020 if (result < 0) 5021 goto destroy_subsys_class; 5022 5023 result = class_register(&nvme_ns_chr_class); 5024 if (result) 5025 goto unregister_generic_ns; 5026 5027 result = nvme_init_auth(); 5028 if (result) 5029 goto destroy_ns_chr; 5030 return 0; 5031 5032 destroy_ns_chr: 5033 class_unregister(&nvme_ns_chr_class); 5034 unregister_generic_ns: 5035 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5036 destroy_subsys_class: 5037 class_unregister(&nvme_subsys_class); 5038 destroy_class: 5039 class_unregister(&nvme_class); 5040 unregister_chrdev: 5041 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5042 destroy_delete_wq: 5043 destroy_workqueue(nvme_delete_wq); 5044 destroy_reset_wq: 5045 destroy_workqueue(nvme_reset_wq); 5046 destroy_wq: 5047 destroy_workqueue(nvme_wq); 5048 out: 5049 return result; 5050 } 5051 5052 static void __exit nvme_core_exit(void) 5053 { 5054 nvme_exit_auth(); 5055 class_unregister(&nvme_ns_chr_class); 5056 class_unregister(&nvme_subsys_class); 5057 class_unregister(&nvme_class); 5058 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5059 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5060 destroy_workqueue(nvme_delete_wq); 5061 destroy_workqueue(nvme_reset_wq); 5062 destroy_workqueue(nvme_wq); 5063 ida_destroy(&nvme_ns_chr_minor_ida); 5064 ida_destroy(&nvme_instance_ida); 5065 } 5066 5067 MODULE_LICENSE("GPL"); 5068 MODULE_VERSION("1.0"); 5069 MODULE_DESCRIPTION("NVMe host core framework"); 5070 module_init(nvme_core_init); 5071 module_exit(nvme_core_exit); 5072