xref: /linux/drivers/nvme/host/core.c (revision add07519ea6b6c2ba2b7842225eb87e0f08f2b0f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	u16 endgid;
42 	u64 runs;
43 	bool is_shared;
44 	bool is_readonly;
45 	bool is_ready;
46 	bool is_removed;
47 	bool is_rotational;
48 	bool no_vwc;
49 };
50 
51 unsigned int admin_timeout = 60;
52 module_param(admin_timeout, uint, 0644);
53 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
54 EXPORT_SYMBOL_GPL(admin_timeout);
55 
56 unsigned int nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59 EXPORT_SYMBOL_GPL(nvme_io_timeout);
60 
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64 
65 static u8 nvme_max_retries = 5;
66 module_param_named(max_retries, nvme_max_retries, byte, 0644);
67 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
68 
69 static unsigned long default_ps_max_latency_us = 100000;
70 module_param(default_ps_max_latency_us, ulong, 0644);
71 MODULE_PARM_DESC(default_ps_max_latency_us,
72 		 "max power saving latency for new devices; use PM QOS to change per device");
73 
74 static bool force_apst;
75 module_param(force_apst, bool, 0644);
76 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
77 
78 static unsigned long apst_primary_timeout_ms = 100;
79 module_param(apst_primary_timeout_ms, ulong, 0644);
80 MODULE_PARM_DESC(apst_primary_timeout_ms,
81 	"primary APST timeout in ms");
82 
83 static unsigned long apst_secondary_timeout_ms = 2000;
84 module_param(apst_secondary_timeout_ms, ulong, 0644);
85 MODULE_PARM_DESC(apst_secondary_timeout_ms,
86 	"secondary APST timeout in ms");
87 
88 static unsigned long apst_primary_latency_tol_us = 15000;
89 module_param(apst_primary_latency_tol_us, ulong, 0644);
90 MODULE_PARM_DESC(apst_primary_latency_tol_us,
91 	"primary APST latency tolerance in us");
92 
93 static unsigned long apst_secondary_latency_tol_us = 100000;
94 module_param(apst_secondary_latency_tol_us, ulong, 0644);
95 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
96 	"secondary APST latency tolerance in us");
97 
98 /*
99  * Older kernels didn't enable protection information if it was at an offset.
100  * Newer kernels do, so it breaks reads on the upgrade if such formats were
101  * used in prior kernels since the metadata written did not contain a valid
102  * checksum.
103  */
104 static bool disable_pi_offsets = false;
105 module_param(disable_pi_offsets, bool, 0444);
106 MODULE_PARM_DESC(disable_pi_offsets,
107 	"disable protection information if it has an offset");
108 
109 /*
110  * nvme_wq - hosts nvme related works that are not reset or delete
111  * nvme_reset_wq - hosts nvme reset works
112  * nvme_delete_wq - hosts nvme delete works
113  *
114  * nvme_wq will host works such as scan, aen handling, fw activation,
115  * keep-alive, periodic reconnects etc. nvme_reset_wq
116  * runs reset works which also flush works hosted on nvme_wq for
117  * serialization purposes. nvme_delete_wq host controller deletion
118  * works which flush reset works for serialization.
119  */
120 struct workqueue_struct *nvme_wq;
121 EXPORT_SYMBOL_GPL(nvme_wq);
122 
123 struct workqueue_struct *nvme_reset_wq;
124 EXPORT_SYMBOL_GPL(nvme_reset_wq);
125 
126 struct workqueue_struct *nvme_delete_wq;
127 EXPORT_SYMBOL_GPL(nvme_delete_wq);
128 
129 static LIST_HEAD(nvme_subsystems);
130 DEFINE_MUTEX(nvme_subsystems_lock);
131 
132 static DEFINE_IDA(nvme_instance_ida);
133 static dev_t nvme_ctrl_base_chr_devt;
134 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
135 static const struct class nvme_class = {
136 	.name = "nvme",
137 	.dev_uevent = nvme_class_uevent,
138 };
139 
140 static const struct class nvme_subsys_class = {
141 	.name = "nvme-subsystem",
142 };
143 
144 static DEFINE_IDA(nvme_ns_chr_minor_ida);
145 static dev_t nvme_ns_chr_devt;
146 static const struct class nvme_ns_chr_class = {
147 	.name = "nvme-generic",
148 };
149 
150 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
151 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
152 					   unsigned nsid);
153 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
154 				   struct nvme_command *cmd);
155 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
156 		u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi);
157 
158 void nvme_queue_scan(struct nvme_ctrl *ctrl)
159 {
160 	/*
161 	 * Only new queue scan work when admin and IO queues are both alive
162 	 */
163 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
164 		queue_work(nvme_wq, &ctrl->scan_work);
165 }
166 
167 /*
168  * Use this function to proceed with scheduling reset_work for a controller
169  * that had previously been set to the resetting state. This is intended for
170  * code paths that can't be interrupted by other reset attempts. A hot removal
171  * may prevent this from succeeding.
172  */
173 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
174 {
175 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
176 		return -EBUSY;
177 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
178 		return -EBUSY;
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
182 
183 static void nvme_failfast_work(struct work_struct *work)
184 {
185 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
186 			struct nvme_ctrl, failfast_work);
187 
188 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
189 		return;
190 
191 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
192 	dev_info(ctrl->device, "failfast expired\n");
193 	nvme_kick_requeue_lists(ctrl);
194 }
195 
196 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
197 {
198 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
199 		return;
200 
201 	schedule_delayed_work(&ctrl->failfast_work,
202 			      ctrl->opts->fast_io_fail_tmo * HZ);
203 }
204 
205 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
206 {
207 	if (!ctrl->opts)
208 		return;
209 
210 	cancel_delayed_work_sync(&ctrl->failfast_work);
211 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
212 }
213 
214 
215 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
216 {
217 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
218 		return -EBUSY;
219 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
220 		return -EBUSY;
221 	return 0;
222 }
223 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
224 
225 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
226 {
227 	int ret;
228 
229 	ret = nvme_reset_ctrl(ctrl);
230 	if (!ret) {
231 		flush_work(&ctrl->reset_work);
232 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
233 			ret = -ENETRESET;
234 	}
235 
236 	return ret;
237 }
238 
239 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
240 {
241 	dev_info(ctrl->device,
242 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
243 
244 	flush_work(&ctrl->reset_work);
245 	nvme_stop_ctrl(ctrl);
246 	nvme_remove_namespaces(ctrl);
247 	ctrl->ops->delete_ctrl(ctrl);
248 	nvme_uninit_ctrl(ctrl);
249 }
250 
251 static void nvme_delete_ctrl_work(struct work_struct *work)
252 {
253 	struct nvme_ctrl *ctrl =
254 		container_of(work, struct nvme_ctrl, delete_work);
255 
256 	nvme_do_delete_ctrl(ctrl);
257 }
258 
259 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
260 {
261 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
262 		return -EBUSY;
263 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
264 		return -EBUSY;
265 	return 0;
266 }
267 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
268 
269 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
270 {
271 	/*
272 	 * Keep a reference until nvme_do_delete_ctrl() complete,
273 	 * since ->delete_ctrl can free the controller.
274 	 */
275 	nvme_get_ctrl(ctrl);
276 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
277 		nvme_do_delete_ctrl(ctrl);
278 	nvme_put_ctrl(ctrl);
279 }
280 
281 static blk_status_t nvme_error_status(u16 status)
282 {
283 	switch (status & NVME_SCT_SC_MASK) {
284 	case NVME_SC_SUCCESS:
285 		return BLK_STS_OK;
286 	case NVME_SC_CAP_EXCEEDED:
287 		return BLK_STS_NOSPC;
288 	case NVME_SC_LBA_RANGE:
289 	case NVME_SC_CMD_INTERRUPTED:
290 	case NVME_SC_NS_NOT_READY:
291 		return BLK_STS_TARGET;
292 	case NVME_SC_BAD_ATTRIBUTES:
293 	case NVME_SC_INVALID_OPCODE:
294 	case NVME_SC_INVALID_FIELD:
295 	case NVME_SC_INVALID_NS:
296 		return BLK_STS_NOTSUPP;
297 	case NVME_SC_WRITE_FAULT:
298 	case NVME_SC_READ_ERROR:
299 	case NVME_SC_UNWRITTEN_BLOCK:
300 	case NVME_SC_ACCESS_DENIED:
301 	case NVME_SC_READ_ONLY:
302 	case NVME_SC_COMPARE_FAILED:
303 		return BLK_STS_MEDIUM;
304 	case NVME_SC_GUARD_CHECK:
305 	case NVME_SC_APPTAG_CHECK:
306 	case NVME_SC_REFTAG_CHECK:
307 	case NVME_SC_INVALID_PI:
308 		return BLK_STS_PROTECTION;
309 	case NVME_SC_RESERVATION_CONFLICT:
310 		return BLK_STS_RESV_CONFLICT;
311 	case NVME_SC_HOST_PATH_ERROR:
312 		return BLK_STS_TRANSPORT;
313 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
314 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
315 	case NVME_SC_ZONE_TOO_MANY_OPEN:
316 		return BLK_STS_ZONE_OPEN_RESOURCE;
317 	default:
318 		return BLK_STS_IOERR;
319 	}
320 }
321 
322 static void nvme_retry_req(struct request *req)
323 {
324 	unsigned long delay = 0;
325 	u16 crd;
326 
327 	/* The mask and shift result must be <= 3 */
328 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
329 	if (crd)
330 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
331 
332 	nvme_req(req)->retries++;
333 	blk_mq_requeue_request(req, false);
334 	blk_mq_delay_kick_requeue_list(req->q, delay);
335 }
336 
337 static void nvme_log_error(struct request *req)
338 {
339 	struct nvme_ns *ns = req->q->queuedata;
340 	struct nvme_request *nr = nvme_req(req);
341 
342 	if (ns) {
343 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
344 		       ns->disk ? ns->disk->disk_name : "?",
345 		       nvme_get_opcode_str(nr->cmd->common.opcode),
346 		       nr->cmd->common.opcode,
347 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
348 		       blk_rq_bytes(req) >> ns->head->lba_shift,
349 		       nvme_get_error_status_str(nr->status),
350 		       NVME_SCT(nr->status),		/* Status Code Type */
351 		       nr->status & NVME_SC_MASK,	/* Status Code */
352 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
353 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
354 		return;
355 	}
356 
357 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
358 			   dev_name(nr->ctrl->device),
359 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 			   nr->cmd->common.opcode,
361 			   nvme_get_error_status_str(nr->status),
362 			   NVME_SCT(nr->status),	/* Status Code Type */
363 			   nr->status & NVME_SC_MASK,	/* Status Code */
364 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
365 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
366 }
367 
368 static void nvme_log_err_passthru(struct request *req)
369 {
370 	struct nvme_ns *ns = req->q->queuedata;
371 	struct nvme_request *nr = nvme_req(req);
372 
373 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
374 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
375 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
376 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
377 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
378 		nr->cmd->common.opcode,
379 		nvme_get_error_status_str(nr->status),
380 		NVME_SCT(nr->status),		/* Status Code Type */
381 		nr->status & NVME_SC_MASK,	/* Status Code */
382 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
383 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
384 		le32_to_cpu(nr->cmd->common.cdw10),
385 		le32_to_cpu(nr->cmd->common.cdw11),
386 		le32_to_cpu(nr->cmd->common.cdw12),
387 		le32_to_cpu(nr->cmd->common.cdw13),
388 		le32_to_cpu(nr->cmd->common.cdw14),
389 		le32_to_cpu(nr->cmd->common.cdw15));
390 }
391 
392 enum nvme_disposition {
393 	COMPLETE,
394 	RETRY,
395 	FAILOVER,
396 	AUTHENTICATE,
397 };
398 
399 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
400 {
401 	if (likely(nvme_req(req)->status == 0))
402 		return COMPLETE;
403 
404 	if (blk_noretry_request(req) ||
405 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
406 	    nvme_req(req)->retries >= nvme_max_retries)
407 		return COMPLETE;
408 
409 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
410 		return AUTHENTICATE;
411 
412 	if (req->cmd_flags & REQ_NVME_MPATH) {
413 		if (nvme_is_path_error(nvme_req(req)->status) ||
414 		    blk_queue_dying(req->q))
415 			return FAILOVER;
416 	} else {
417 		if (blk_queue_dying(req->q))
418 			return COMPLETE;
419 	}
420 
421 	return RETRY;
422 }
423 
424 static inline void nvme_end_req_zoned(struct request *req)
425 {
426 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
427 	    req_op(req) == REQ_OP_ZONE_APPEND) {
428 		struct nvme_ns *ns = req->q->queuedata;
429 
430 		req->__sector = nvme_lba_to_sect(ns->head,
431 			le64_to_cpu(nvme_req(req)->result.u64));
432 	}
433 }
434 
435 static inline void __nvme_end_req(struct request *req)
436 {
437 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
438 		if (blk_rq_is_passthrough(req))
439 			nvme_log_err_passthru(req);
440 		else
441 			nvme_log_error(req);
442 	}
443 	nvme_end_req_zoned(req);
444 	nvme_trace_bio_complete(req);
445 	if (req->cmd_flags & REQ_NVME_MPATH)
446 		nvme_mpath_end_request(req);
447 }
448 
449 void nvme_end_req(struct request *req)
450 {
451 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
452 
453 	__nvme_end_req(req);
454 	blk_mq_end_request(req, status);
455 }
456 
457 void nvme_complete_rq(struct request *req)
458 {
459 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
460 
461 	trace_nvme_complete_rq(req);
462 	nvme_cleanup_cmd(req);
463 
464 	/*
465 	 * Completions of long-running commands should not be able to
466 	 * defer sending of periodic keep alives, since the controller
467 	 * may have completed processing such commands a long time ago
468 	 * (arbitrarily close to command submission time).
469 	 * req->deadline - req->timeout is the command submission time
470 	 * in jiffies.
471 	 */
472 	if (ctrl->kas &&
473 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
474 		ctrl->comp_seen = true;
475 
476 	switch (nvme_decide_disposition(req)) {
477 	case COMPLETE:
478 		nvme_end_req(req);
479 		return;
480 	case RETRY:
481 		nvme_retry_req(req);
482 		return;
483 	case FAILOVER:
484 		nvme_failover_req(req);
485 		return;
486 	case AUTHENTICATE:
487 #ifdef CONFIG_NVME_HOST_AUTH
488 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
489 		nvme_retry_req(req);
490 #else
491 		nvme_end_req(req);
492 #endif
493 		return;
494 	}
495 }
496 EXPORT_SYMBOL_GPL(nvme_complete_rq);
497 
498 void nvme_complete_batch_req(struct request *req)
499 {
500 	trace_nvme_complete_rq(req);
501 	nvme_cleanup_cmd(req);
502 	__nvme_end_req(req);
503 }
504 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
505 
506 /*
507  * Called to unwind from ->queue_rq on a failed command submission so that the
508  * multipathing code gets called to potentially failover to another path.
509  * The caller needs to unwind all transport specific resource allocations and
510  * must return propagate the return value.
511  */
512 blk_status_t nvme_host_path_error(struct request *req)
513 {
514 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
515 	blk_mq_set_request_complete(req);
516 	nvme_complete_rq(req);
517 	return BLK_STS_OK;
518 }
519 EXPORT_SYMBOL_GPL(nvme_host_path_error);
520 
521 bool nvme_cancel_request(struct request *req, void *data)
522 {
523 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
524 				"Cancelling I/O %d", req->tag);
525 
526 	/* don't abort one completed or idle request */
527 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
528 		return true;
529 
530 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
531 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
532 	blk_mq_complete_request(req);
533 	return true;
534 }
535 EXPORT_SYMBOL_GPL(nvme_cancel_request);
536 
537 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
538 {
539 	if (ctrl->tagset) {
540 		blk_mq_tagset_busy_iter(ctrl->tagset,
541 				nvme_cancel_request, ctrl);
542 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
543 	}
544 }
545 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
546 
547 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
548 {
549 	if (ctrl->admin_tagset) {
550 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
551 				nvme_cancel_request, ctrl);
552 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
553 	}
554 }
555 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
556 
557 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
558 		enum nvme_ctrl_state new_state)
559 {
560 	enum nvme_ctrl_state old_state;
561 	unsigned long flags;
562 	bool changed = false;
563 
564 	spin_lock_irqsave(&ctrl->lock, flags);
565 
566 	old_state = nvme_ctrl_state(ctrl);
567 	switch (new_state) {
568 	case NVME_CTRL_LIVE:
569 		switch (old_state) {
570 		case NVME_CTRL_CONNECTING:
571 			changed = true;
572 			fallthrough;
573 		default:
574 			break;
575 		}
576 		break;
577 	case NVME_CTRL_RESETTING:
578 		switch (old_state) {
579 		case NVME_CTRL_NEW:
580 		case NVME_CTRL_LIVE:
581 			changed = true;
582 			fallthrough;
583 		default:
584 			break;
585 		}
586 		break;
587 	case NVME_CTRL_CONNECTING:
588 		switch (old_state) {
589 		case NVME_CTRL_NEW:
590 		case NVME_CTRL_RESETTING:
591 			changed = true;
592 			fallthrough;
593 		default:
594 			break;
595 		}
596 		break;
597 	case NVME_CTRL_DELETING:
598 		switch (old_state) {
599 		case NVME_CTRL_LIVE:
600 		case NVME_CTRL_RESETTING:
601 		case NVME_CTRL_CONNECTING:
602 			changed = true;
603 			fallthrough;
604 		default:
605 			break;
606 		}
607 		break;
608 	case NVME_CTRL_DELETING_NOIO:
609 		switch (old_state) {
610 		case NVME_CTRL_DELETING:
611 		case NVME_CTRL_DEAD:
612 			changed = true;
613 			fallthrough;
614 		default:
615 			break;
616 		}
617 		break;
618 	case NVME_CTRL_DEAD:
619 		switch (old_state) {
620 		case NVME_CTRL_DELETING:
621 			changed = true;
622 			fallthrough;
623 		default:
624 			break;
625 		}
626 		break;
627 	default:
628 		break;
629 	}
630 
631 	if (changed) {
632 		WRITE_ONCE(ctrl->state, new_state);
633 		wake_up_all(&ctrl->state_wq);
634 	}
635 
636 	spin_unlock_irqrestore(&ctrl->lock, flags);
637 	if (!changed)
638 		return false;
639 
640 	if (new_state == NVME_CTRL_LIVE) {
641 		if (old_state == NVME_CTRL_CONNECTING)
642 			nvme_stop_failfast_work(ctrl);
643 		nvme_kick_requeue_lists(ctrl);
644 	} else if (new_state == NVME_CTRL_CONNECTING &&
645 		old_state == NVME_CTRL_RESETTING) {
646 		nvme_start_failfast_work(ctrl);
647 	}
648 	return changed;
649 }
650 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
651 
652 /*
653  * Waits for the controller state to be resetting, or returns false if it is
654  * not possible to ever transition to that state.
655  */
656 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657 {
658 	wait_event(ctrl->state_wq,
659 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660 		   nvme_state_terminal(ctrl));
661 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
662 }
663 EXPORT_SYMBOL_GPL(nvme_wait_reset);
664 
665 static void nvme_free_ns_head(struct kref *ref)
666 {
667 	struct nvme_ns_head *head =
668 		container_of(ref, struct nvme_ns_head, ref);
669 
670 	nvme_mpath_put_disk(head);
671 	ida_free(&head->subsys->ns_ida, head->instance);
672 	cleanup_srcu_struct(&head->srcu);
673 	nvme_put_subsystem(head->subsys);
674 	kfree(head->plids);
675 	kfree(head);
676 }
677 
678 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
679 {
680 	return kref_get_unless_zero(&head->ref);
681 }
682 
683 void nvme_put_ns_head(struct nvme_ns_head *head)
684 {
685 	kref_put(&head->ref, nvme_free_ns_head);
686 }
687 
688 static void nvme_free_ns(struct kref *kref)
689 {
690 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
691 
692 	put_disk(ns->disk);
693 	nvme_put_ns_head(ns->head);
694 	nvme_put_ctrl(ns->ctrl);
695 	kfree(ns);
696 }
697 
698 bool nvme_get_ns(struct nvme_ns *ns)
699 {
700 	return kref_get_unless_zero(&ns->kref);
701 }
702 
703 void nvme_put_ns(struct nvme_ns *ns)
704 {
705 	kref_put(&ns->kref, nvme_free_ns);
706 }
707 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
708 
709 static inline void nvme_clear_nvme_request(struct request *req)
710 {
711 	nvme_req(req)->status = 0;
712 	nvme_req(req)->retries = 0;
713 	nvme_req(req)->flags = 0;
714 	req->rq_flags |= RQF_DONTPREP;
715 }
716 
717 /* initialize a passthrough request */
718 void nvme_init_request(struct request *req, struct nvme_command *cmd)
719 {
720 	struct nvme_request *nr = nvme_req(req);
721 	bool logging_enabled;
722 
723 	if (req->q->queuedata) {
724 		struct nvme_ns *ns = req->q->disk->private_data;
725 
726 		logging_enabled = ns->head->passthru_err_log_enabled;
727 		req->timeout = NVME_IO_TIMEOUT;
728 	} else { /* no queuedata implies admin queue */
729 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
730 		req->timeout = NVME_ADMIN_TIMEOUT;
731 	}
732 
733 	if (!logging_enabled)
734 		req->rq_flags |= RQF_QUIET;
735 
736 	/* passthru commands should let the driver set the SGL flags */
737 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
738 
739 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
740 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
741 		req->cmd_flags |= REQ_POLLED;
742 	nvme_clear_nvme_request(req);
743 	memcpy(nr->cmd, cmd, sizeof(*cmd));
744 }
745 EXPORT_SYMBOL_GPL(nvme_init_request);
746 
747 /*
748  * For something we're not in a state to send to the device the default action
749  * is to busy it and retry it after the controller state is recovered.  However,
750  * if the controller is deleting or if anything is marked for failfast or
751  * nvme multipath it is immediately failed.
752  *
753  * Note: commands used to initialize the controller will be marked for failfast.
754  * Note: nvme cli/ioctl commands are marked for failfast.
755  */
756 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
757 		struct request *rq)
758 {
759 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
760 
761 	if (state != NVME_CTRL_DELETING_NOIO &&
762 	    state != NVME_CTRL_DELETING &&
763 	    state != NVME_CTRL_DEAD &&
764 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
765 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
766 		return BLK_STS_RESOURCE;
767 
768 	if (!(rq->rq_flags & RQF_DONTPREP))
769 		nvme_clear_nvme_request(rq);
770 
771 	return nvme_host_path_error(rq);
772 }
773 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
774 
775 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
776 		bool queue_live, enum nvme_ctrl_state state)
777 {
778 	struct nvme_request *req = nvme_req(rq);
779 
780 	/*
781 	 * currently we have a problem sending passthru commands
782 	 * on the admin_q if the controller is not LIVE because we can't
783 	 * make sure that they are going out after the admin connect,
784 	 * controller enable and/or other commands in the initialization
785 	 * sequence. until the controller will be LIVE, fail with
786 	 * BLK_STS_RESOURCE so that they will be rescheduled.
787 	 */
788 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
789 		return false;
790 
791 	if (ctrl->ops->flags & NVME_F_FABRICS) {
792 		/*
793 		 * Only allow commands on a live queue, except for the connect
794 		 * command, which is require to set the queue live in the
795 		 * appropinquate states.
796 		 */
797 		switch (state) {
798 		case NVME_CTRL_CONNECTING:
799 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
800 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
801 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
802 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
803 				return true;
804 			break;
805 		default:
806 			break;
807 		case NVME_CTRL_DEAD:
808 			return false;
809 		}
810 	}
811 
812 	return queue_live;
813 }
814 EXPORT_SYMBOL_GPL(__nvme_check_ready);
815 
816 static inline void nvme_setup_flush(struct nvme_ns *ns,
817 		struct nvme_command *cmnd)
818 {
819 	memset(cmnd, 0, sizeof(*cmnd));
820 	cmnd->common.opcode = nvme_cmd_flush;
821 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822 }
823 
824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
825 		struct nvme_command *cmnd)
826 {
827 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
828 	struct nvme_dsm_range *range;
829 	struct bio *bio;
830 
831 	/*
832 	 * Some devices do not consider the DSM 'Number of Ranges' field when
833 	 * determining how much data to DMA. Always allocate memory for maximum
834 	 * number of segments to prevent device reading beyond end of buffer.
835 	 */
836 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
837 
838 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839 	if (!range) {
840 		/*
841 		 * If we fail allocation our range, fallback to the controller
842 		 * discard page. If that's also busy, it's safe to return
843 		 * busy, as we know we can make progress once that's freed.
844 		 */
845 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
846 			return BLK_STS_RESOURCE;
847 
848 		range = page_address(ns->ctrl->discard_page);
849 	}
850 
851 	if (queue_max_discard_segments(req->q) == 1) {
852 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
853 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
854 
855 		range[0].cattr = cpu_to_le32(0);
856 		range[0].nlb = cpu_to_le32(nlb);
857 		range[0].slba = cpu_to_le64(slba);
858 		n = 1;
859 	} else {
860 		__rq_for_each_bio(bio, req) {
861 			u64 slba = nvme_sect_to_lba(ns->head,
862 						    bio->bi_iter.bi_sector);
863 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
864 
865 			if (n < segments) {
866 				range[n].cattr = cpu_to_le32(0);
867 				range[n].nlb = cpu_to_le32(nlb);
868 				range[n].slba = cpu_to_le64(slba);
869 			}
870 			n++;
871 		}
872 	}
873 
874 	if (WARN_ON_ONCE(n != segments)) {
875 		if (virt_to_page(range) == ns->ctrl->discard_page)
876 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
877 		else
878 			kfree(range);
879 		return BLK_STS_IOERR;
880 	}
881 
882 	memset(cmnd, 0, sizeof(*cmnd));
883 	cmnd->dsm.opcode = nvme_cmd_dsm;
884 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
885 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
886 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
887 
888 	bvec_set_virt(&req->special_vec, range, alloc_size);
889 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
890 
891 	return BLK_STS_OK;
892 }
893 
894 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
895 {
896 	cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
897 	cmnd->rw.lbatm = cpu_to_le16(0xffff);
898 }
899 
900 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
901 			      struct request *req)
902 {
903 	u32 upper, lower;
904 	u64 ref48;
905 
906 	/* both rw and write zeroes share the same reftag format */
907 	switch (ns->head->guard_type) {
908 	case NVME_NVM_NS_16B_GUARD:
909 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
910 		break;
911 	case NVME_NVM_NS_64B_GUARD:
912 		ref48 = ext_pi_ref_tag(req);
913 		lower = lower_32_bits(ref48);
914 		upper = upper_32_bits(ref48);
915 
916 		cmnd->rw.reftag = cpu_to_le32(lower);
917 		cmnd->rw.cdw3 = cpu_to_le32(upper);
918 		break;
919 	default:
920 		break;
921 	}
922 }
923 
924 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
925 		struct request *req, struct nvme_command *cmnd)
926 {
927 	memset(cmnd, 0, sizeof(*cmnd));
928 
929 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
930 		return nvme_setup_discard(ns, req, cmnd);
931 
932 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
933 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
934 	cmnd->write_zeroes.slba =
935 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
936 	cmnd->write_zeroes.length =
937 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
938 
939 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
940 	    (ns->head->features & NVME_NS_DEAC))
941 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
942 
943 	if (nvme_ns_has_pi(ns->head)) {
944 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
945 
946 		switch (ns->head->pi_type) {
947 		case NVME_NS_DPS_PI_TYPE1:
948 		case NVME_NS_DPS_PI_TYPE2:
949 			nvme_set_ref_tag(ns, cmnd, req);
950 			break;
951 		}
952 	}
953 
954 	return BLK_STS_OK;
955 }
956 
957 /*
958  * NVMe does not support a dedicated command to issue an atomic write. A write
959  * which does adhere to the device atomic limits will silently be executed
960  * non-atomically. The request issuer should ensure that the write is within
961  * the queue atomic writes limits, but just validate this in case it is not.
962  */
963 static bool nvme_valid_atomic_write(struct request *req)
964 {
965 	struct request_queue *q = req->q;
966 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
967 
968 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
969 		return false;
970 
971 	if (boundary_bytes) {
972 		u64 mask = boundary_bytes - 1, imask = ~mask;
973 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
974 		u64 end = start + blk_rq_bytes(req) - 1;
975 
976 		/* If greater then must be crossing a boundary */
977 		if (blk_rq_bytes(req) > boundary_bytes)
978 			return false;
979 
980 		if ((start & imask) != (end & imask))
981 			return false;
982 	}
983 
984 	return true;
985 }
986 
987 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
988 		struct request *req, struct nvme_command *cmnd,
989 		enum nvme_opcode op)
990 {
991 	u16 control = 0;
992 	u32 dsmgmt = 0;
993 
994 	if (req->cmd_flags & REQ_FUA)
995 		control |= NVME_RW_FUA;
996 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
997 		control |= NVME_RW_LR;
998 
999 	if (req->cmd_flags & REQ_RAHEAD)
1000 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
1001 
1002 	if (op == nvme_cmd_write && ns->head->nr_plids) {
1003 		u16 write_stream = req->bio->bi_write_stream;
1004 
1005 		if (WARN_ON_ONCE(write_stream > ns->head->nr_plids))
1006 			return BLK_STS_INVAL;
1007 
1008 		if (write_stream) {
1009 			dsmgmt |= ns->head->plids[write_stream - 1] << 16;
1010 			control |= NVME_RW_DTYPE_DPLCMT;
1011 		}
1012 	}
1013 
1014 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
1015 		return BLK_STS_INVAL;
1016 
1017 	cmnd->rw.opcode = op;
1018 	cmnd->rw.flags = 0;
1019 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1020 	cmnd->rw.cdw2 = 0;
1021 	cmnd->rw.cdw3 = 0;
1022 	cmnd->rw.metadata = 0;
1023 	cmnd->rw.slba =
1024 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1025 	cmnd->rw.length =
1026 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1027 	cmnd->rw.reftag = 0;
1028 	cmnd->rw.lbat = 0;
1029 	cmnd->rw.lbatm = 0;
1030 
1031 	if (ns->head->ms) {
1032 		/*
1033 		 * If formatted with metadata, the block layer always provides a
1034 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1035 		 * we enable the PRACT bit for protection information or set the
1036 		 * namespace capacity to zero to prevent any I/O.
1037 		 */
1038 		if (!blk_integrity_rq(req)) {
1039 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1040 				return BLK_STS_NOTSUPP;
1041 			control |= NVME_RW_PRINFO_PRACT;
1042 		}
1043 
1044 		if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD))
1045 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1046 		if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) {
1047 			control |= NVME_RW_PRINFO_PRCHK_REF;
1048 			if (op == nvme_cmd_zone_append)
1049 				control |= NVME_RW_APPEND_PIREMAP;
1050 			nvme_set_ref_tag(ns, cmnd, req);
1051 		}
1052 		if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) {
1053 			control |= NVME_RW_PRINFO_PRCHK_APP;
1054 			nvme_set_app_tag(req, cmnd);
1055 		}
1056 	}
1057 
1058 	cmnd->rw.control = cpu_to_le16(control);
1059 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1060 	return 0;
1061 }
1062 
1063 void nvme_cleanup_cmd(struct request *req)
1064 {
1065 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1066 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1067 
1068 		if (req->special_vec.bv_page == ctrl->discard_page)
1069 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1070 		else
1071 			kfree(bvec_virt(&req->special_vec));
1072 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1073 	}
1074 }
1075 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1076 
1077 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1078 {
1079 	struct nvme_command *cmd = nvme_req(req)->cmd;
1080 	blk_status_t ret = BLK_STS_OK;
1081 
1082 	if (!(req->rq_flags & RQF_DONTPREP))
1083 		nvme_clear_nvme_request(req);
1084 
1085 	switch (req_op(req)) {
1086 	case REQ_OP_DRV_IN:
1087 	case REQ_OP_DRV_OUT:
1088 		/* these are setup prior to execution in nvme_init_request() */
1089 		break;
1090 	case REQ_OP_FLUSH:
1091 		nvme_setup_flush(ns, cmd);
1092 		break;
1093 	case REQ_OP_ZONE_RESET_ALL:
1094 	case REQ_OP_ZONE_RESET:
1095 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1096 		break;
1097 	case REQ_OP_ZONE_OPEN:
1098 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1099 		break;
1100 	case REQ_OP_ZONE_CLOSE:
1101 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1102 		break;
1103 	case REQ_OP_ZONE_FINISH:
1104 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1105 		break;
1106 	case REQ_OP_WRITE_ZEROES:
1107 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1108 		break;
1109 	case REQ_OP_DISCARD:
1110 		ret = nvme_setup_discard(ns, req, cmd);
1111 		break;
1112 	case REQ_OP_READ:
1113 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1114 		break;
1115 	case REQ_OP_WRITE:
1116 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1117 		break;
1118 	case REQ_OP_ZONE_APPEND:
1119 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1120 		break;
1121 	default:
1122 		WARN_ON_ONCE(1);
1123 		return BLK_STS_IOERR;
1124 	}
1125 
1126 	cmd->common.command_id = nvme_cid(req);
1127 	trace_nvme_setup_cmd(req, cmd);
1128 	return ret;
1129 }
1130 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1131 
1132 /*
1133  * Return values:
1134  * 0:  success
1135  * >0: nvme controller's cqe status response
1136  * <0: kernel error in lieu of controller response
1137  */
1138 int nvme_execute_rq(struct request *rq, bool at_head)
1139 {
1140 	blk_status_t status;
1141 
1142 	status = blk_execute_rq(rq, at_head);
1143 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1144 		return -EINTR;
1145 	if (nvme_req(rq)->status)
1146 		return nvme_req(rq)->status;
1147 	return blk_status_to_errno(status);
1148 }
1149 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1150 
1151 /*
1152  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1153  * if the result is positive, it's an NVM Express status code
1154  */
1155 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1156 		union nvme_result *result, void *buffer, unsigned bufflen,
1157 		int qid, nvme_submit_flags_t flags)
1158 {
1159 	struct request *req;
1160 	int ret;
1161 	blk_mq_req_flags_t blk_flags = 0;
1162 
1163 	if (flags & NVME_SUBMIT_NOWAIT)
1164 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1165 	if (flags & NVME_SUBMIT_RESERVED)
1166 		blk_flags |= BLK_MQ_REQ_RESERVED;
1167 	if (qid == NVME_QID_ANY)
1168 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1169 	else
1170 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1171 						qid - 1);
1172 
1173 	if (IS_ERR(req))
1174 		return PTR_ERR(req);
1175 	nvme_init_request(req, cmd);
1176 	if (flags & NVME_SUBMIT_RETRY)
1177 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1178 
1179 	if (buffer && bufflen) {
1180 		ret = blk_rq_map_kern(req, buffer, bufflen, GFP_KERNEL);
1181 		if (ret)
1182 			goto out;
1183 	}
1184 
1185 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1186 	if (result && ret >= 0)
1187 		*result = nvme_req(req)->result;
1188  out:
1189 	blk_mq_free_request(req);
1190 	return ret;
1191 }
1192 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1193 
1194 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1195 		void *buffer, unsigned bufflen)
1196 {
1197 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1198 			NVME_QID_ANY, 0);
1199 }
1200 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1201 
1202 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1203 {
1204 	u32 effects = 0;
1205 
1206 	if (ns) {
1207 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1208 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1209 			dev_warn_once(ctrl->device,
1210 				"IO command:%02x has unusual effects:%08x\n",
1211 				opcode, effects);
1212 
1213 		/*
1214 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1215 		 * which would deadlock when done on an I/O command.  Note that
1216 		 * We already warn about an unusual effect above.
1217 		 */
1218 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1219 	} else {
1220 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1221 
1222 		/* Ignore execution restrictions if any relaxation bits are set */
1223 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1224 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1225 	}
1226 
1227 	return effects;
1228 }
1229 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1230 
1231 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1232 {
1233 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1234 
1235 	/*
1236 	 * For simplicity, IO to all namespaces is quiesced even if the command
1237 	 * effects say only one namespace is affected.
1238 	 */
1239 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1240 		mutex_lock(&ctrl->scan_lock);
1241 		mutex_lock(&ctrl->subsys->lock);
1242 		nvme_mpath_start_freeze(ctrl->subsys);
1243 		nvme_mpath_wait_freeze(ctrl->subsys);
1244 		nvme_start_freeze(ctrl);
1245 		nvme_wait_freeze(ctrl);
1246 	}
1247 	return effects;
1248 }
1249 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1250 
1251 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1252 		       struct nvme_command *cmd, int status)
1253 {
1254 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1255 		nvme_unfreeze(ctrl);
1256 		nvme_mpath_unfreeze(ctrl->subsys);
1257 		mutex_unlock(&ctrl->subsys->lock);
1258 		mutex_unlock(&ctrl->scan_lock);
1259 	}
1260 	if (effects & NVME_CMD_EFFECTS_CCC) {
1261 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1262 				      &ctrl->flags)) {
1263 			dev_info(ctrl->device,
1264 "controller capabilities changed, reset may be required to take effect.\n");
1265 		}
1266 	}
1267 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1268 		nvme_queue_scan(ctrl);
1269 		flush_work(&ctrl->scan_work);
1270 	}
1271 	if (ns)
1272 		return;
1273 
1274 	switch (cmd->common.opcode) {
1275 	case nvme_admin_set_features:
1276 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1277 		case NVME_FEAT_KATO:
1278 			/*
1279 			 * Keep alive commands interval on the host should be
1280 			 * updated when KATO is modified by Set Features
1281 			 * commands.
1282 			 */
1283 			if (!status)
1284 				nvme_update_keep_alive(ctrl, cmd);
1285 			break;
1286 		default:
1287 			break;
1288 		}
1289 		break;
1290 	default:
1291 		break;
1292 	}
1293 }
1294 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1295 
1296 /*
1297  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1298  *
1299  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1300  *   accounting for transport roundtrip times [..].
1301  */
1302 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1303 {
1304 	unsigned long delay = ctrl->kato * HZ / 2;
1305 
1306 	/*
1307 	 * When using Traffic Based Keep Alive, we need to run
1308 	 * nvme_keep_alive_work at twice the normal frequency, as one
1309 	 * command completion can postpone sending a keep alive command
1310 	 * by up to twice the delay between runs.
1311 	 */
1312 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1313 		delay /= 2;
1314 	return delay;
1315 }
1316 
1317 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1318 {
1319 	unsigned long now = jiffies;
1320 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1321 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1322 
1323 	if (time_after(now, ka_next_check_tm))
1324 		delay = 0;
1325 	else
1326 		delay = ka_next_check_tm - now;
1327 
1328 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1329 }
1330 
1331 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1332 						 blk_status_t status)
1333 {
1334 	struct nvme_ctrl *ctrl = rq->end_io_data;
1335 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1336 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1337 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1338 
1339 	/*
1340 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1341 	 * at the desired frequency.
1342 	 */
1343 	if (rtt <= delay) {
1344 		delay -= rtt;
1345 	} else {
1346 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1347 			 jiffies_to_msecs(rtt));
1348 		delay = 0;
1349 	}
1350 
1351 	blk_mq_free_request(rq);
1352 
1353 	if (status) {
1354 		dev_err(ctrl->device,
1355 			"failed nvme_keep_alive_end_io error=%d\n",
1356 				status);
1357 		return RQ_END_IO_NONE;
1358 	}
1359 
1360 	ctrl->ka_last_check_time = jiffies;
1361 	ctrl->comp_seen = false;
1362 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1363 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1364 	return RQ_END_IO_NONE;
1365 }
1366 
1367 static void nvme_keep_alive_work(struct work_struct *work)
1368 {
1369 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1370 			struct nvme_ctrl, ka_work);
1371 	bool comp_seen = ctrl->comp_seen;
1372 	struct request *rq;
1373 
1374 	ctrl->ka_last_check_time = jiffies;
1375 
1376 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1377 		dev_dbg(ctrl->device,
1378 			"reschedule traffic based keep-alive timer\n");
1379 		ctrl->comp_seen = false;
1380 		nvme_queue_keep_alive_work(ctrl);
1381 		return;
1382 	}
1383 
1384 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1385 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1386 	if (IS_ERR(rq)) {
1387 		/* allocation failure, reset the controller */
1388 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1389 		nvme_reset_ctrl(ctrl);
1390 		return;
1391 	}
1392 	nvme_init_request(rq, &ctrl->ka_cmd);
1393 
1394 	rq->timeout = ctrl->kato * HZ;
1395 	rq->end_io = nvme_keep_alive_end_io;
1396 	rq->end_io_data = ctrl;
1397 	blk_execute_rq_nowait(rq, false);
1398 }
1399 
1400 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1401 {
1402 	if (unlikely(ctrl->kato == 0))
1403 		return;
1404 
1405 	nvme_queue_keep_alive_work(ctrl);
1406 }
1407 
1408 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1409 {
1410 	if (unlikely(ctrl->kato == 0))
1411 		return;
1412 
1413 	cancel_delayed_work_sync(&ctrl->ka_work);
1414 }
1415 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1416 
1417 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1418 				   struct nvme_command *cmd)
1419 {
1420 	unsigned int new_kato =
1421 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1422 
1423 	dev_info(ctrl->device,
1424 		 "keep alive interval updated from %u ms to %u ms\n",
1425 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1426 
1427 	nvme_stop_keep_alive(ctrl);
1428 	ctrl->kato = new_kato;
1429 	nvme_start_keep_alive(ctrl);
1430 }
1431 
1432 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1433 {
1434 	/*
1435 	 * The CNS field occupies a full byte starting with NVMe 1.2
1436 	 */
1437 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1438 		return true;
1439 
1440 	/*
1441 	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1442 	 * larger than that could get truncated and treated as an incorrect
1443 	 * value.
1444 	 *
1445 	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1446 	 * compliance, so they need to be quirked here.
1447 	 */
1448 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1449 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1450 		return cns <= 3;
1451 
1452 	/*
1453 	 * NVMe 1.0 used a single bit for the CNS value.
1454 	 */
1455 	return cns <= 1;
1456 }
1457 
1458 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1459 {
1460 	struct nvme_command c = { };
1461 	int error;
1462 
1463 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1464 	c.identify.opcode = nvme_admin_identify;
1465 	c.identify.cns = NVME_ID_CNS_CTRL;
1466 
1467 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1468 	if (!*id)
1469 		return -ENOMEM;
1470 
1471 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1472 			sizeof(struct nvme_id_ctrl));
1473 	if (error) {
1474 		kfree(*id);
1475 		*id = NULL;
1476 	}
1477 	return error;
1478 }
1479 
1480 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1481 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1482 {
1483 	const char *warn_str = "ctrl returned bogus length:";
1484 	void *data = cur;
1485 
1486 	switch (cur->nidt) {
1487 	case NVME_NIDT_EUI64:
1488 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1489 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1490 				 warn_str, cur->nidl);
1491 			return -1;
1492 		}
1493 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1494 			return NVME_NIDT_EUI64_LEN;
1495 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1496 		return NVME_NIDT_EUI64_LEN;
1497 	case NVME_NIDT_NGUID:
1498 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1499 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1500 				 warn_str, cur->nidl);
1501 			return -1;
1502 		}
1503 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1504 			return NVME_NIDT_NGUID_LEN;
1505 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1506 		return NVME_NIDT_NGUID_LEN;
1507 	case NVME_NIDT_UUID:
1508 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1509 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1510 				 warn_str, cur->nidl);
1511 			return -1;
1512 		}
1513 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1514 			return NVME_NIDT_UUID_LEN;
1515 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1516 		return NVME_NIDT_UUID_LEN;
1517 	case NVME_NIDT_CSI:
1518 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1519 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1520 				 warn_str, cur->nidl);
1521 			return -1;
1522 		}
1523 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1524 		*csi_seen = true;
1525 		return NVME_NIDT_CSI_LEN;
1526 	default:
1527 		/* Skip unknown types */
1528 		return cur->nidl;
1529 	}
1530 }
1531 
1532 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1533 		struct nvme_ns_info *info)
1534 {
1535 	struct nvme_command c = { };
1536 	bool csi_seen = false;
1537 	int status, pos, len;
1538 	void *data;
1539 
1540 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1541 		return 0;
1542 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1543 		return 0;
1544 
1545 	c.identify.opcode = nvme_admin_identify;
1546 	c.identify.nsid = cpu_to_le32(info->nsid);
1547 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1548 
1549 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1550 	if (!data)
1551 		return -ENOMEM;
1552 
1553 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1554 				      NVME_IDENTIFY_DATA_SIZE);
1555 	if (status) {
1556 		dev_warn(ctrl->device,
1557 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1558 			info->nsid, status);
1559 		goto free_data;
1560 	}
1561 
1562 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1563 		struct nvme_ns_id_desc *cur = data + pos;
1564 
1565 		if (cur->nidl == 0)
1566 			break;
1567 
1568 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1569 		if (len < 0)
1570 			break;
1571 
1572 		len += sizeof(*cur);
1573 	}
1574 
1575 	if (nvme_multi_css(ctrl) && !csi_seen) {
1576 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1577 			 info->nsid);
1578 		status = -EINVAL;
1579 	}
1580 
1581 free_data:
1582 	kfree(data);
1583 	return status;
1584 }
1585 
1586 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1587 			struct nvme_id_ns **id)
1588 {
1589 	struct nvme_command c = { };
1590 	int error;
1591 
1592 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1593 	c.identify.opcode = nvme_admin_identify;
1594 	c.identify.nsid = cpu_to_le32(nsid);
1595 	c.identify.cns = NVME_ID_CNS_NS;
1596 
1597 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1598 	if (!*id)
1599 		return -ENOMEM;
1600 
1601 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1602 	if (error) {
1603 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1604 		kfree(*id);
1605 		*id = NULL;
1606 	}
1607 	return error;
1608 }
1609 
1610 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1611 		struct nvme_ns_info *info)
1612 {
1613 	struct nvme_ns_ids *ids = &info->ids;
1614 	struct nvme_id_ns *id;
1615 	int ret;
1616 
1617 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1618 	if (ret)
1619 		return ret;
1620 
1621 	if (id->ncap == 0) {
1622 		/* namespace not allocated or attached */
1623 		info->is_removed = true;
1624 		ret = -ENODEV;
1625 		goto error;
1626 	}
1627 
1628 	info->anagrpid = id->anagrpid;
1629 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1630 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1631 	info->is_ready = true;
1632 	info->endgid = le16_to_cpu(id->endgid);
1633 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1634 		dev_info(ctrl->device,
1635 			 "Ignoring bogus Namespace Identifiers\n");
1636 	} else {
1637 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1638 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1639 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1640 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1641 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1642 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1643 	}
1644 
1645 error:
1646 	kfree(id);
1647 	return ret;
1648 }
1649 
1650 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1651 		struct nvme_ns_info *info)
1652 {
1653 	struct nvme_id_ns_cs_indep *id;
1654 	struct nvme_command c = {
1655 		.identify.opcode	= nvme_admin_identify,
1656 		.identify.nsid		= cpu_to_le32(info->nsid),
1657 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1658 	};
1659 	int ret;
1660 
1661 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1662 	if (!id)
1663 		return -ENOMEM;
1664 
1665 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1666 	if (!ret) {
1667 		info->anagrpid = id->anagrpid;
1668 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1669 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1670 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1671 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1672 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1673 		info->endgid = le16_to_cpu(id->endgid);
1674 	}
1675 	kfree(id);
1676 	return ret;
1677 }
1678 
1679 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1680 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1681 {
1682 	union nvme_result res = { 0 };
1683 	struct nvme_command c = { };
1684 	int ret;
1685 
1686 	c.features.opcode = op;
1687 	c.features.fid = cpu_to_le32(fid);
1688 	c.features.dword11 = cpu_to_le32(dword11);
1689 
1690 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1691 			buffer, buflen, NVME_QID_ANY, 0);
1692 	if (ret >= 0 && result)
1693 		*result = le32_to_cpu(res.u32);
1694 	return ret;
1695 }
1696 
1697 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1698 		      unsigned int dword11, void *buffer, size_t buflen,
1699 		      void *result)
1700 {
1701 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1702 			     buflen, result);
1703 }
1704 EXPORT_SYMBOL_GPL(nvme_set_features);
1705 
1706 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1707 		      unsigned int dword11, void *buffer, size_t buflen,
1708 		      void *result)
1709 {
1710 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1711 			     buflen, result);
1712 }
1713 EXPORT_SYMBOL_GPL(nvme_get_features);
1714 
1715 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1716 {
1717 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1718 	u32 result;
1719 	int status, nr_io_queues;
1720 
1721 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1722 			&result);
1723 
1724 	/*
1725 	 * It's either a kernel error or the host observed a connection
1726 	 * lost. In either case it's not possible communicate with the
1727 	 * controller and thus enter the error code path.
1728 	 */
1729 	if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1730 		return status;
1731 
1732 	/*
1733 	 * Degraded controllers might return an error when setting the queue
1734 	 * count.  We still want to be able to bring them online and offer
1735 	 * access to the admin queue, as that might be only way to fix them up.
1736 	 */
1737 	if (status > 0) {
1738 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1739 		*count = 0;
1740 	} else {
1741 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1742 		*count = min(*count, nr_io_queues);
1743 	}
1744 
1745 	return 0;
1746 }
1747 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1748 
1749 #define NVME_AEN_SUPPORTED \
1750 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1751 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1752 
1753 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1754 {
1755 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1756 	int status;
1757 
1758 	if (!supported_aens)
1759 		return;
1760 
1761 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1762 			NULL, 0, &result);
1763 	if (status)
1764 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1765 			 supported_aens);
1766 
1767 	queue_work(nvme_wq, &ctrl->async_event_work);
1768 }
1769 
1770 static int nvme_ns_open(struct nvme_ns *ns)
1771 {
1772 
1773 	/* should never be called due to GENHD_FL_HIDDEN */
1774 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1775 		goto fail;
1776 	if (!nvme_get_ns(ns))
1777 		goto fail;
1778 	if (!try_module_get(ns->ctrl->ops->module))
1779 		goto fail_put_ns;
1780 
1781 	return 0;
1782 
1783 fail_put_ns:
1784 	nvme_put_ns(ns);
1785 fail:
1786 	return -ENXIO;
1787 }
1788 
1789 static void nvme_ns_release(struct nvme_ns *ns)
1790 {
1791 
1792 	module_put(ns->ctrl->ops->module);
1793 	nvme_put_ns(ns);
1794 }
1795 
1796 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1797 {
1798 	return nvme_ns_open(disk->private_data);
1799 }
1800 
1801 static void nvme_release(struct gendisk *disk)
1802 {
1803 	nvme_ns_release(disk->private_data);
1804 }
1805 
1806 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1807 {
1808 	/* some standard values */
1809 	geo->heads = 1 << 6;
1810 	geo->sectors = 1 << 5;
1811 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1812 	return 0;
1813 }
1814 
1815 static bool nvme_init_integrity(struct nvme_ns_head *head,
1816 		struct queue_limits *lim, struct nvme_ns_info *info)
1817 {
1818 	struct blk_integrity *bi = &lim->integrity;
1819 
1820 	memset(bi, 0, sizeof(*bi));
1821 
1822 	if (!head->ms)
1823 		return true;
1824 
1825 	/*
1826 	 * PI can always be supported as we can ask the controller to simply
1827 	 * insert/strip it, which is not possible for other kinds of metadata.
1828 	 */
1829 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1830 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1831 		return nvme_ns_has_pi(head);
1832 
1833 	switch (head->pi_type) {
1834 	case NVME_NS_DPS_PI_TYPE3:
1835 		switch (head->guard_type) {
1836 		case NVME_NVM_NS_16B_GUARD:
1837 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1838 			bi->tag_size = sizeof(u16) + sizeof(u32);
1839 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1840 			break;
1841 		case NVME_NVM_NS_64B_GUARD:
1842 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1843 			bi->tag_size = sizeof(u16) + 6;
1844 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1845 			break;
1846 		default:
1847 			break;
1848 		}
1849 		break;
1850 	case NVME_NS_DPS_PI_TYPE1:
1851 	case NVME_NS_DPS_PI_TYPE2:
1852 		switch (head->guard_type) {
1853 		case NVME_NVM_NS_16B_GUARD:
1854 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1855 			bi->tag_size = sizeof(u16);
1856 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1857 				     BLK_INTEGRITY_REF_TAG;
1858 			break;
1859 		case NVME_NVM_NS_64B_GUARD:
1860 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1861 			bi->tag_size = sizeof(u16);
1862 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1863 				     BLK_INTEGRITY_REF_TAG;
1864 			break;
1865 		default:
1866 			break;
1867 		}
1868 		break;
1869 	default:
1870 		break;
1871 	}
1872 
1873 	bi->tuple_size = head->ms;
1874 	bi->pi_offset = info->pi_offset;
1875 	return true;
1876 }
1877 
1878 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1879 {
1880 	struct nvme_ctrl *ctrl = ns->ctrl;
1881 
1882 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1883 		lim->max_hw_discard_sectors =
1884 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1885 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1886 		lim->max_hw_discard_sectors = UINT_MAX;
1887 	else
1888 		lim->max_hw_discard_sectors = 0;
1889 
1890 	lim->discard_granularity = lim->logical_block_size;
1891 
1892 	if (ctrl->dmrl)
1893 		lim->max_discard_segments = ctrl->dmrl;
1894 	else
1895 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1896 }
1897 
1898 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1899 {
1900 	return uuid_equal(&a->uuid, &b->uuid) &&
1901 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1902 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1903 		a->csi == b->csi;
1904 }
1905 
1906 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1907 		struct nvme_id_ns_nvm **nvmp)
1908 {
1909 	struct nvme_command c = {
1910 		.identify.opcode	= nvme_admin_identify,
1911 		.identify.nsid		= cpu_to_le32(nsid),
1912 		.identify.cns		= NVME_ID_CNS_CS_NS,
1913 		.identify.csi		= NVME_CSI_NVM,
1914 	};
1915 	struct nvme_id_ns_nvm *nvm;
1916 	int ret;
1917 
1918 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1919 	if (!nvm)
1920 		return -ENOMEM;
1921 
1922 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1923 	if (ret)
1924 		kfree(nvm);
1925 	else
1926 		*nvmp = nvm;
1927 	return ret;
1928 }
1929 
1930 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1931 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1932 {
1933 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1934 	u8 guard_type;
1935 
1936 	/* no support for storage tag formats right now */
1937 	if (nvme_elbaf_sts(elbaf))
1938 		return;
1939 
1940 	guard_type = nvme_elbaf_guard_type(elbaf);
1941 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1942 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1943 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1944 
1945 	head->guard_type = guard_type;
1946 	switch (head->guard_type) {
1947 	case NVME_NVM_NS_64B_GUARD:
1948 		head->pi_size = sizeof(struct crc64_pi_tuple);
1949 		break;
1950 	case NVME_NVM_NS_16B_GUARD:
1951 		head->pi_size = sizeof(struct t10_pi_tuple);
1952 		break;
1953 	default:
1954 		break;
1955 	}
1956 }
1957 
1958 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1959 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1960 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1961 {
1962 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1963 	head->pi_type = 0;
1964 	head->pi_size = 0;
1965 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1966 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1967 		return;
1968 
1969 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1970 		nvme_configure_pi_elbas(head, id, nvm);
1971 	} else {
1972 		head->pi_size = sizeof(struct t10_pi_tuple);
1973 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1974 	}
1975 
1976 	if (head->pi_size && head->ms >= head->pi_size)
1977 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1978 	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1979 		if (disable_pi_offsets)
1980 			head->pi_type = 0;
1981 		else
1982 			info->pi_offset = head->ms - head->pi_size;
1983 	}
1984 
1985 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1986 		/*
1987 		 * The NVMe over Fabrics specification only supports metadata as
1988 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1989 		 * remap the separate metadata buffer from the block layer.
1990 		 */
1991 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1992 			return;
1993 
1994 		head->features |= NVME_NS_EXT_LBAS;
1995 
1996 		/*
1997 		 * The current fabrics transport drivers support namespace
1998 		 * metadata formats only if nvme_ns_has_pi() returns true.
1999 		 * Suppress support for all other formats so the namespace will
2000 		 * have a 0 capacity and not be usable through the block stack.
2001 		 *
2002 		 * Note, this check will need to be modified if any drivers
2003 		 * gain the ability to use other metadata formats.
2004 		 */
2005 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
2006 			head->features |= NVME_NS_METADATA_SUPPORTED;
2007 	} else {
2008 		/*
2009 		 * For PCIe controllers, we can't easily remap the separate
2010 		 * metadata buffer from the block layer and thus require a
2011 		 * separate metadata buffer for block layer metadata/PI support.
2012 		 * We allow extended LBAs for the passthrough interface, though.
2013 		 */
2014 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
2015 			head->features |= NVME_NS_EXT_LBAS;
2016 		else
2017 			head->features |= NVME_NS_METADATA_SUPPORTED;
2018 	}
2019 }
2020 
2021 
2022 static u32 nvme_configure_atomic_write(struct nvme_ns *ns,
2023 		struct nvme_id_ns *id, struct queue_limits *lim, u32 bs)
2024 {
2025 	u32 atomic_bs, boundary = 0;
2026 
2027 	/*
2028 	 * We do not support an offset for the atomic boundaries.
2029 	 */
2030 	if (id->nabo)
2031 		return bs;
2032 
2033 	if ((id->nsfeat & NVME_NS_FEAT_ATOMICS) && id->nawupf) {
2034 		/*
2035 		 * Use the per-namespace atomic write unit when available.
2036 		 */
2037 		atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2038 		if (id->nabspf)
2039 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2040 	} else {
2041 		/*
2042 		 * Use the controller wide atomic write unit.  This sucks
2043 		 * because the limit is defined in terms of logical blocks while
2044 		 * namespaces can have different formats, and because there is
2045 		 * no clear language in the specification prohibiting different
2046 		 * values for different controllers in the subsystem.
2047 		 */
2048 		atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2049 	}
2050 
2051 	lim->atomic_write_hw_max = atomic_bs;
2052 	lim->atomic_write_hw_boundary = boundary;
2053 	lim->atomic_write_hw_unit_min = bs;
2054 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2055 	lim->features |= BLK_FEAT_ATOMIC_WRITES;
2056 	return atomic_bs;
2057 }
2058 
2059 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2060 {
2061 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2062 }
2063 
2064 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2065 		struct queue_limits *lim)
2066 {
2067 	lim->max_hw_sectors = ctrl->max_hw_sectors;
2068 	lim->max_segments = min_t(u32, USHRT_MAX,
2069 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2070 	lim->max_integrity_segments = ctrl->max_integrity_segments;
2071 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2072 	lim->max_segment_size = UINT_MAX;
2073 	lim->dma_alignment = 3;
2074 }
2075 
2076 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2077 		struct queue_limits *lim)
2078 {
2079 	struct nvme_ns_head *head = ns->head;
2080 	u32 bs = 1U << head->lba_shift;
2081 	u32 atomic_bs, phys_bs, io_opt = 0;
2082 	bool valid = true;
2083 
2084 	/*
2085 	 * The block layer can't support LBA sizes larger than the page size
2086 	 * or smaller than a sector size yet, so catch this early and don't
2087 	 * allow block I/O.
2088 	 */
2089 	if (blk_validate_block_size(bs)) {
2090 		bs = (1 << 9);
2091 		valid = false;
2092 	}
2093 
2094 	phys_bs = bs;
2095 	atomic_bs = nvme_configure_atomic_write(ns, id, lim, bs);
2096 
2097 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2098 		/* NPWG = Namespace Preferred Write Granularity */
2099 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2100 		/* NOWS = Namespace Optimal Write Size */
2101 		if (id->nows)
2102 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2103 	}
2104 
2105 	/*
2106 	 * Linux filesystems assume writing a single physical block is
2107 	 * an atomic operation. Hence limit the physical block size to the
2108 	 * value of the Atomic Write Unit Power Fail parameter.
2109 	 */
2110 	lim->logical_block_size = bs;
2111 	lim->physical_block_size = min(phys_bs, atomic_bs);
2112 	lim->io_min = phys_bs;
2113 	lim->io_opt = io_opt;
2114 	if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2115 	    (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2116 		lim->max_write_zeroes_sectors = UINT_MAX;
2117 	else
2118 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2119 	return valid;
2120 }
2121 
2122 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2123 {
2124 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2125 }
2126 
2127 static inline bool nvme_first_scan(struct gendisk *disk)
2128 {
2129 	/* nvme_alloc_ns() scans the disk prior to adding it */
2130 	return !disk_live(disk);
2131 }
2132 
2133 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2134 		struct queue_limits *lim)
2135 {
2136 	struct nvme_ctrl *ctrl = ns->ctrl;
2137 	u32 iob;
2138 
2139 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2140 	    is_power_of_2(ctrl->max_hw_sectors))
2141 		iob = ctrl->max_hw_sectors;
2142 	else
2143 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2144 
2145 	if (!iob)
2146 		return;
2147 
2148 	if (!is_power_of_2(iob)) {
2149 		if (nvme_first_scan(ns->disk))
2150 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2151 				ns->disk->disk_name, iob);
2152 		return;
2153 	}
2154 
2155 	if (blk_queue_is_zoned(ns->disk->queue)) {
2156 		if (nvme_first_scan(ns->disk))
2157 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2158 				ns->disk->disk_name);
2159 		return;
2160 	}
2161 
2162 	lim->chunk_sectors = iob;
2163 }
2164 
2165 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2166 		struct nvme_ns_info *info)
2167 {
2168 	struct queue_limits lim;
2169 	unsigned int memflags;
2170 	int ret;
2171 
2172 	lim = queue_limits_start_update(ns->disk->queue);
2173 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2174 
2175 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2176 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2177 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2178 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2179 
2180 	/* Hide the block-interface for these devices */
2181 	if (!ret)
2182 		ret = -ENODEV;
2183 	return ret;
2184 }
2185 
2186 static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl,
2187 				      struct nvme_ns_info *info, u8 fdp_idx)
2188 {
2189 	struct nvme_fdp_config_log hdr, *h;
2190 	struct nvme_fdp_config_desc *desc;
2191 	size_t size = sizeof(hdr);
2192 	void *log, *end;
2193 	int i, n, ret;
2194 
2195 	ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2196 			       NVME_CSI_NVM, &hdr, size, 0, info->endgid);
2197 	if (ret) {
2198 		dev_warn(ctrl->device,
2199 			 "FDP configs log header status:0x%x endgid:%d\n", ret,
2200 			 info->endgid);
2201 		return ret;
2202 	}
2203 
2204 	size = le32_to_cpu(hdr.sze);
2205 	if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) {
2206 		dev_warn(ctrl->device, "FDP config size too large:%zu\n",
2207 			 size);
2208 		return 0;
2209 	}
2210 
2211 	h = kvmalloc(size, GFP_KERNEL);
2212 	if (!h)
2213 		return -ENOMEM;
2214 
2215 	ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2216 			       NVME_CSI_NVM, h, size, 0, info->endgid);
2217 	if (ret) {
2218 		dev_warn(ctrl->device,
2219 			 "FDP configs log status:0x%x endgid:%d\n", ret,
2220 			 info->endgid);
2221 		goto out;
2222 	}
2223 
2224 	n = le16_to_cpu(h->numfdpc) + 1;
2225 	if (fdp_idx > n) {
2226 		dev_warn(ctrl->device, "FDP index:%d out of range:%d\n",
2227 			 fdp_idx, n);
2228 		/* Proceed without registering FDP streams */
2229 		ret = 0;
2230 		goto out;
2231 	}
2232 
2233 	log = h + 1;
2234 	desc = log;
2235 	end = log + size - sizeof(*h);
2236 	for (i = 0; i < fdp_idx; i++) {
2237 		log += le16_to_cpu(desc->dsze);
2238 		desc = log;
2239 		if (log >= end) {
2240 			dev_warn(ctrl->device,
2241 				 "FDP invalid config descriptor list\n");
2242 			ret = 0;
2243 			goto out;
2244 		}
2245 	}
2246 
2247 	if (le32_to_cpu(desc->nrg) > 1) {
2248 		dev_warn(ctrl->device, "FDP NRG > 1 not supported\n");
2249 		ret = 0;
2250 		goto out;
2251 	}
2252 
2253 	info->runs = le64_to_cpu(desc->runs);
2254 out:
2255 	kvfree(h);
2256 	return ret;
2257 }
2258 
2259 static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2260 {
2261 	struct nvme_ns_head *head = ns->head;
2262 	struct nvme_ctrl *ctrl = ns->ctrl;
2263 	struct nvme_fdp_ruh_status *ruhs;
2264 	struct nvme_fdp_config fdp;
2265 	struct nvme_command c = {};
2266 	size_t size;
2267 	int i, ret;
2268 
2269 	/*
2270 	 * The FDP configuration is static for the lifetime of the namespace,
2271 	 * so return immediately if we've already registered this namespace's
2272 	 * streams.
2273 	 */
2274 	if (head->nr_plids)
2275 		return 0;
2276 
2277 	ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0,
2278 				&fdp);
2279 	if (ret) {
2280 		dev_warn(ctrl->device, "FDP get feature status:0x%x\n", ret);
2281 		return ret;
2282 	}
2283 
2284 	if (!(fdp.flags & FDPCFG_FDPE))
2285 		return 0;
2286 
2287 	ret = nvme_query_fdp_granularity(ctrl, info, fdp.fdpcidx);
2288 	if (!info->runs)
2289 		return ret;
2290 
2291 	size = struct_size(ruhs, ruhsd, S8_MAX - 1);
2292 	ruhs = kzalloc(size, GFP_KERNEL);
2293 	if (!ruhs)
2294 		return -ENOMEM;
2295 
2296 	c.imr.opcode = nvme_cmd_io_mgmt_recv;
2297 	c.imr.nsid = cpu_to_le32(head->ns_id);
2298 	c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS;
2299 	c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size));
2300 	ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size);
2301 	if (ret) {
2302 		dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n", ret);
2303 		goto free;
2304 	}
2305 
2306 	head->nr_plids = le16_to_cpu(ruhs->nruhsd);
2307 	if (!head->nr_plids)
2308 		goto free;
2309 
2310 	head->plids = kcalloc(head->nr_plids, sizeof(*head->plids),
2311 			      GFP_KERNEL);
2312 	if (!head->plids) {
2313 		dev_warn(ctrl->device,
2314 			 "failed to allocate %u FDP placement IDs\n",
2315 			 head->nr_plids);
2316 		head->nr_plids = 0;
2317 		ret = -ENOMEM;
2318 		goto free;
2319 	}
2320 
2321 	for (i = 0; i < head->nr_plids; i++)
2322 		head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid);
2323 free:
2324 	kfree(ruhs);
2325 	return ret;
2326 }
2327 
2328 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2329 		struct nvme_ns_info *info)
2330 {
2331 	struct queue_limits lim;
2332 	struct nvme_id_ns_nvm *nvm = NULL;
2333 	struct nvme_zone_info zi = {};
2334 	struct nvme_id_ns *id;
2335 	unsigned int memflags;
2336 	sector_t capacity;
2337 	unsigned lbaf;
2338 	int ret;
2339 
2340 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2341 	if (ret)
2342 		return ret;
2343 
2344 	if (id->ncap == 0) {
2345 		/* namespace not allocated or attached */
2346 		info->is_removed = true;
2347 		ret = -ENXIO;
2348 		goto out;
2349 	}
2350 	lbaf = nvme_lbaf_index(id->flbas);
2351 
2352 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2353 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2354 		if (ret < 0)
2355 			goto out;
2356 	}
2357 
2358 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2359 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2360 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2361 		if (ret < 0)
2362 			goto out;
2363 	}
2364 
2365 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) {
2366 		ret = nvme_query_fdp_info(ns, info);
2367 		if (ret < 0)
2368 			goto out;
2369 	}
2370 
2371 	lim = queue_limits_start_update(ns->disk->queue);
2372 
2373 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2374 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2375 	ns->head->nuse = le64_to_cpu(id->nuse);
2376 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2377 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2378 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2379 	nvme_set_chunk_sectors(ns, id, &lim);
2380 	if (!nvme_update_disk_info(ns, id, &lim))
2381 		capacity = 0;
2382 
2383 	nvme_config_discard(ns, &lim);
2384 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2385 	    ns->head->ids.csi == NVME_CSI_ZNS)
2386 		nvme_update_zone_info(ns, &lim, &zi);
2387 
2388 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2389 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2390 	else
2391 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2392 
2393 	if (info->is_rotational)
2394 		lim.features |= BLK_FEAT_ROTATIONAL;
2395 
2396 	/*
2397 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2398 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2399 	 * I/O to namespaces with metadata except when the namespace supports
2400 	 * PI, as it can strip/insert in that case.
2401 	 */
2402 	if (!nvme_init_integrity(ns->head, &lim, info))
2403 		capacity = 0;
2404 
2405 	lim.max_write_streams = ns->head->nr_plids;
2406 	if (lim.max_write_streams)
2407 		lim.write_stream_granularity = min(info->runs, U32_MAX);
2408 	else
2409 		lim.write_stream_granularity = 0;
2410 
2411 	/*
2412 	 * Only set the DEAC bit if the device guarantees that reads from
2413 	 * deallocated data return zeroes.  While the DEAC bit does not
2414 	 * require that, it must be a no-op if reads from deallocated data
2415 	 * do not return zeroes.
2416 	 */
2417 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) {
2418 		ns->head->features |= NVME_NS_DEAC;
2419 		lim.max_hw_wzeroes_unmap_sectors = lim.max_write_zeroes_sectors;
2420 	}
2421 
2422 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2423 	if (ret) {
2424 		blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2425 		goto out;
2426 	}
2427 
2428 	set_capacity_and_notify(ns->disk, capacity);
2429 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2430 	set_bit(NVME_NS_READY, &ns->flags);
2431 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2432 
2433 	if (blk_queue_is_zoned(ns->queue)) {
2434 		ret = blk_revalidate_disk_zones(ns->disk);
2435 		if (ret && !nvme_first_scan(ns->disk))
2436 			goto out;
2437 	}
2438 
2439 	ret = 0;
2440 out:
2441 	kfree(nvm);
2442 	kfree(id);
2443 	return ret;
2444 }
2445 
2446 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2447 {
2448 	bool unsupported = false;
2449 	int ret;
2450 
2451 	switch (info->ids.csi) {
2452 	case NVME_CSI_ZNS:
2453 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2454 			dev_info(ns->ctrl->device,
2455 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2456 				info->nsid);
2457 			ret = nvme_update_ns_info_generic(ns, info);
2458 			break;
2459 		}
2460 		ret = nvme_update_ns_info_block(ns, info);
2461 		break;
2462 	case NVME_CSI_NVM:
2463 		ret = nvme_update_ns_info_block(ns, info);
2464 		break;
2465 	default:
2466 		dev_info(ns->ctrl->device,
2467 			"block device for nsid %u not supported (csi %u)\n",
2468 			info->nsid, info->ids.csi);
2469 		ret = nvme_update_ns_info_generic(ns, info);
2470 		break;
2471 	}
2472 
2473 	/*
2474 	 * If probing fails due an unsupported feature, hide the block device,
2475 	 * but still allow other access.
2476 	 */
2477 	if (ret == -ENODEV) {
2478 		ns->disk->flags |= GENHD_FL_HIDDEN;
2479 		set_bit(NVME_NS_READY, &ns->flags);
2480 		unsupported = true;
2481 		ret = 0;
2482 	}
2483 
2484 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2485 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2486 		struct queue_limits lim;
2487 		unsigned int memflags;
2488 
2489 		lim = queue_limits_start_update(ns->head->disk->queue);
2490 		memflags = blk_mq_freeze_queue(ns->head->disk->queue);
2491 		/*
2492 		 * queue_limits mixes values that are the hardware limitations
2493 		 * for bio splitting with what is the device configuration.
2494 		 *
2495 		 * For NVMe the device configuration can change after e.g. a
2496 		 * Format command, and we really want to pick up the new format
2497 		 * value here.  But we must still stack the queue limits to the
2498 		 * least common denominator for multipathing to split the bios
2499 		 * properly.
2500 		 *
2501 		 * To work around this, we explicitly set the device
2502 		 * configuration to those that we just queried, but only stack
2503 		 * the splitting limits in to make sure we still obey possibly
2504 		 * lower limitations of other controllers.
2505 		 */
2506 		lim.logical_block_size = ns_lim->logical_block_size;
2507 		lim.physical_block_size = ns_lim->physical_block_size;
2508 		lim.io_min = ns_lim->io_min;
2509 		lim.io_opt = ns_lim->io_opt;
2510 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2511 					ns->head->disk->disk_name);
2512 		if (unsupported)
2513 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2514 		else
2515 			nvme_init_integrity(ns->head, &lim, info);
2516 		lim.max_write_streams = ns_lim->max_write_streams;
2517 		lim.write_stream_granularity = ns_lim->write_stream_granularity;
2518 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2519 
2520 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2521 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2522 		nvme_mpath_revalidate_paths(ns);
2523 
2524 		blk_mq_unfreeze_queue(ns->head->disk->queue, memflags);
2525 	}
2526 
2527 	return ret;
2528 }
2529 
2530 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2531 		enum blk_unique_id type)
2532 {
2533 	struct nvme_ns_ids *ids = &ns->head->ids;
2534 
2535 	if (type != BLK_UID_EUI64)
2536 		return -EINVAL;
2537 
2538 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2539 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2540 		return sizeof(ids->nguid);
2541 	}
2542 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2543 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2544 		return sizeof(ids->eui64);
2545 	}
2546 
2547 	return -EINVAL;
2548 }
2549 
2550 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2551 		enum blk_unique_id type)
2552 {
2553 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2554 }
2555 
2556 #ifdef CONFIG_BLK_SED_OPAL
2557 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2558 		bool send)
2559 {
2560 	struct nvme_ctrl *ctrl = data;
2561 	struct nvme_command cmd = { };
2562 
2563 	if (send)
2564 		cmd.common.opcode = nvme_admin_security_send;
2565 	else
2566 		cmd.common.opcode = nvme_admin_security_recv;
2567 	cmd.common.nsid = 0;
2568 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2569 	cmd.common.cdw11 = cpu_to_le32(len);
2570 
2571 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2572 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2573 }
2574 
2575 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2576 {
2577 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2578 		if (!ctrl->opal_dev)
2579 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2580 		else if (was_suspended)
2581 			opal_unlock_from_suspend(ctrl->opal_dev);
2582 	} else {
2583 		free_opal_dev(ctrl->opal_dev);
2584 		ctrl->opal_dev = NULL;
2585 	}
2586 }
2587 #else
2588 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2589 {
2590 }
2591 #endif /* CONFIG_BLK_SED_OPAL */
2592 
2593 #ifdef CONFIG_BLK_DEV_ZONED
2594 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2595 		unsigned int nr_zones, report_zones_cb cb, void *data)
2596 {
2597 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2598 			data);
2599 }
2600 #else
2601 #define nvme_report_zones	NULL
2602 #endif /* CONFIG_BLK_DEV_ZONED */
2603 
2604 const struct block_device_operations nvme_bdev_ops = {
2605 	.owner		= THIS_MODULE,
2606 	.ioctl		= nvme_ioctl,
2607 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2608 	.open		= nvme_open,
2609 	.release	= nvme_release,
2610 	.getgeo		= nvme_getgeo,
2611 	.get_unique_id	= nvme_get_unique_id,
2612 	.report_zones	= nvme_report_zones,
2613 	.pr_ops		= &nvme_pr_ops,
2614 };
2615 
2616 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2617 		u32 timeout, const char *op)
2618 {
2619 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2620 	u32 csts;
2621 	int ret;
2622 
2623 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2624 		if (csts == ~0)
2625 			return -ENODEV;
2626 		if ((csts & mask) == val)
2627 			break;
2628 
2629 		usleep_range(1000, 2000);
2630 		if (fatal_signal_pending(current))
2631 			return -EINTR;
2632 		if (time_after(jiffies, timeout_jiffies)) {
2633 			dev_err(ctrl->device,
2634 				"Device not ready; aborting %s, CSTS=0x%x\n",
2635 				op, csts);
2636 			return -ENODEV;
2637 		}
2638 	}
2639 
2640 	return ret;
2641 }
2642 
2643 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2644 {
2645 	int ret;
2646 
2647 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2648 	if (shutdown)
2649 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2650 	else
2651 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2652 
2653 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2654 	if (ret)
2655 		return ret;
2656 
2657 	if (shutdown) {
2658 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2659 				       NVME_CSTS_SHST_CMPLT,
2660 				       ctrl->shutdown_timeout, "shutdown");
2661 	}
2662 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2663 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2664 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2665 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2666 }
2667 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2668 
2669 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2670 {
2671 	unsigned dev_page_min;
2672 	u32 timeout;
2673 	int ret;
2674 
2675 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2676 	if (ret) {
2677 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2678 		return ret;
2679 	}
2680 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2681 
2682 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2683 		dev_err(ctrl->device,
2684 			"Minimum device page size %u too large for host (%u)\n",
2685 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2686 		return -ENODEV;
2687 	}
2688 
2689 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2690 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2691 	else
2692 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2693 
2694 	/*
2695 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2696 	 * makes it possible for media related commands to return the error
2697 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2698 	 * restructured to handle retries, disable CC.CRIME.
2699 	 */
2700 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2701 
2702 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2703 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2704 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2705 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2706 	if (ret)
2707 		return ret;
2708 
2709 	/* CAP value may change after initial CC write */
2710 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2711 	if (ret)
2712 		return ret;
2713 
2714 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2715 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2716 		u32 crto, ready_timeout;
2717 
2718 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2719 		if (ret) {
2720 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2721 				ret);
2722 			return ret;
2723 		}
2724 
2725 		/*
2726 		 * CRTO should always be greater or equal to CAP.TO, but some
2727 		 * devices are known to get this wrong. Use the larger of the
2728 		 * two values.
2729 		 */
2730 		ready_timeout = NVME_CRTO_CRWMT(crto);
2731 
2732 		if (ready_timeout < timeout)
2733 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2734 				      crto, ctrl->cap);
2735 		else
2736 			timeout = ready_timeout;
2737 	}
2738 
2739 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2740 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2741 	if (ret)
2742 		return ret;
2743 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2744 			       (timeout + 1) / 2, "initialisation");
2745 }
2746 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2747 
2748 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2749 {
2750 	__le64 ts;
2751 	int ret;
2752 
2753 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2754 		return 0;
2755 
2756 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2757 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2758 			NULL);
2759 	if (ret)
2760 		dev_warn_once(ctrl->device,
2761 			"could not set timestamp (%d)\n", ret);
2762 	return ret;
2763 }
2764 
2765 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2766 {
2767 	struct nvme_feat_host_behavior *host;
2768 	u8 acre = 0, lbafee = 0;
2769 	int ret;
2770 
2771 	/* Don't bother enabling the feature if retry delay is not reported */
2772 	if (ctrl->crdt[0])
2773 		acre = NVME_ENABLE_ACRE;
2774 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2775 		lbafee = NVME_ENABLE_LBAFEE;
2776 
2777 	if (!acre && !lbafee)
2778 		return 0;
2779 
2780 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2781 	if (!host)
2782 		return 0;
2783 
2784 	host->acre = acre;
2785 	host->lbafee = lbafee;
2786 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2787 				host, sizeof(*host), NULL);
2788 	kfree(host);
2789 	return ret;
2790 }
2791 
2792 /*
2793  * The function checks whether the given total (exlat + enlat) latency of
2794  * a power state allows the latter to be used as an APST transition target.
2795  * It does so by comparing the latency to the primary and secondary latency
2796  * tolerances defined by module params. If there's a match, the corresponding
2797  * timeout value is returned and the matching tolerance index (1 or 2) is
2798  * reported.
2799  */
2800 static bool nvme_apst_get_transition_time(u64 total_latency,
2801 		u64 *transition_time, unsigned *last_index)
2802 {
2803 	if (total_latency <= apst_primary_latency_tol_us) {
2804 		if (*last_index == 1)
2805 			return false;
2806 		*last_index = 1;
2807 		*transition_time = apst_primary_timeout_ms;
2808 		return true;
2809 	}
2810 	if (apst_secondary_timeout_ms &&
2811 		total_latency <= apst_secondary_latency_tol_us) {
2812 		if (*last_index <= 2)
2813 			return false;
2814 		*last_index = 2;
2815 		*transition_time = apst_secondary_timeout_ms;
2816 		return true;
2817 	}
2818 	return false;
2819 }
2820 
2821 /*
2822  * APST (Autonomous Power State Transition) lets us program a table of power
2823  * state transitions that the controller will perform automatically.
2824  *
2825  * Depending on module params, one of the two supported techniques will be used:
2826  *
2827  * - If the parameters provide explicit timeouts and tolerances, they will be
2828  *   used to build a table with up to 2 non-operational states to transition to.
2829  *   The default parameter values were selected based on the values used by
2830  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2831  *   regeneration of the APST table in the event of switching between external
2832  *   and battery power, the timeouts and tolerances reflect a compromise
2833  *   between values used by Microsoft for AC and battery scenarios.
2834  * - If not, we'll configure the table with a simple heuristic: we are willing
2835  *   to spend at most 2% of the time transitioning between power states.
2836  *   Therefore, when running in any given state, we will enter the next
2837  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2838  *   microseconds, as long as that state's exit latency is under the requested
2839  *   maximum latency.
2840  *
2841  * We will not autonomously enter any non-operational state for which the total
2842  * latency exceeds ps_max_latency_us.
2843  *
2844  * Users can set ps_max_latency_us to zero to turn off APST.
2845  */
2846 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2847 {
2848 	struct nvme_feat_auto_pst *table;
2849 	unsigned apste = 0;
2850 	u64 max_lat_us = 0;
2851 	__le64 target = 0;
2852 	int max_ps = -1;
2853 	int state;
2854 	int ret;
2855 	unsigned last_lt_index = UINT_MAX;
2856 
2857 	/*
2858 	 * If APST isn't supported or if we haven't been initialized yet,
2859 	 * then don't do anything.
2860 	 */
2861 	if (!ctrl->apsta)
2862 		return 0;
2863 
2864 	if (ctrl->npss > 31) {
2865 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2866 		return 0;
2867 	}
2868 
2869 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2870 	if (!table)
2871 		return 0;
2872 
2873 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2874 		/* Turn off APST. */
2875 		dev_dbg(ctrl->device, "APST disabled\n");
2876 		goto done;
2877 	}
2878 
2879 	/*
2880 	 * Walk through all states from lowest- to highest-power.
2881 	 * According to the spec, lower-numbered states use more power.  NPSS,
2882 	 * despite the name, is the index of the lowest-power state, not the
2883 	 * number of states.
2884 	 */
2885 	for (state = (int)ctrl->npss; state >= 0; state--) {
2886 		u64 total_latency_us, exit_latency_us, transition_ms;
2887 
2888 		if (target)
2889 			table->entries[state] = target;
2890 
2891 		/*
2892 		 * Don't allow transitions to the deepest state if it's quirked
2893 		 * off.
2894 		 */
2895 		if (state == ctrl->npss &&
2896 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2897 			continue;
2898 
2899 		/*
2900 		 * Is this state a useful non-operational state for higher-power
2901 		 * states to autonomously transition to?
2902 		 */
2903 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2904 			continue;
2905 
2906 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2907 		if (exit_latency_us > ctrl->ps_max_latency_us)
2908 			continue;
2909 
2910 		total_latency_us = exit_latency_us +
2911 			le32_to_cpu(ctrl->psd[state].entry_lat);
2912 
2913 		/*
2914 		 * This state is good. It can be used as the APST idle target
2915 		 * for higher power states.
2916 		 */
2917 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2918 			if (!nvme_apst_get_transition_time(total_latency_us,
2919 					&transition_ms, &last_lt_index))
2920 				continue;
2921 		} else {
2922 			transition_ms = total_latency_us + 19;
2923 			do_div(transition_ms, 20);
2924 			if (transition_ms > (1 << 24) - 1)
2925 				transition_ms = (1 << 24) - 1;
2926 		}
2927 
2928 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2929 		if (max_ps == -1)
2930 			max_ps = state;
2931 		if (total_latency_us > max_lat_us)
2932 			max_lat_us = total_latency_us;
2933 	}
2934 
2935 	if (max_ps == -1)
2936 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2937 	else
2938 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2939 			max_ps, max_lat_us, (int)sizeof(*table), table);
2940 	apste = 1;
2941 
2942 done:
2943 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2944 				table, sizeof(*table), NULL);
2945 	if (ret)
2946 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2947 	kfree(table);
2948 	return ret;
2949 }
2950 
2951 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2952 {
2953 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2954 	u64 latency;
2955 
2956 	switch (val) {
2957 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2958 	case PM_QOS_LATENCY_ANY:
2959 		latency = U64_MAX;
2960 		break;
2961 
2962 	default:
2963 		latency = val;
2964 	}
2965 
2966 	if (ctrl->ps_max_latency_us != latency) {
2967 		ctrl->ps_max_latency_us = latency;
2968 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2969 			nvme_configure_apst(ctrl);
2970 	}
2971 }
2972 
2973 struct nvme_core_quirk_entry {
2974 	/*
2975 	 * NVMe model and firmware strings are padded with spaces.  For
2976 	 * simplicity, strings in the quirk table are padded with NULLs
2977 	 * instead.
2978 	 */
2979 	u16 vid;
2980 	const char *mn;
2981 	const char *fr;
2982 	unsigned long quirks;
2983 };
2984 
2985 static const struct nvme_core_quirk_entry core_quirks[] = {
2986 	{
2987 		/*
2988 		 * This Toshiba device seems to die using any APST states.  See:
2989 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2990 		 */
2991 		.vid = 0x1179,
2992 		.mn = "THNSF5256GPUK TOSHIBA",
2993 		.quirks = NVME_QUIRK_NO_APST,
2994 	},
2995 	{
2996 		/*
2997 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2998 		 * condition associated with actions related to suspend to idle
2999 		 * LiteON has resolved the problem in future firmware
3000 		 */
3001 		.vid = 0x14a4,
3002 		.fr = "22301111",
3003 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
3004 	},
3005 	{
3006 		/*
3007 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
3008 		 * aborts I/O during any load, but more easily reproducible
3009 		 * with discards (fstrim).
3010 		 *
3011 		 * The device is left in a state where it is also not possible
3012 		 * to use "nvme set-feature" to disable APST, but booting with
3013 		 * nvme_core.default_ps_max_latency=0 works.
3014 		 */
3015 		.vid = 0x1e0f,
3016 		.mn = "KCD6XVUL6T40",
3017 		.quirks = NVME_QUIRK_NO_APST,
3018 	},
3019 	{
3020 		/*
3021 		 * The external Samsung X5 SSD fails initialization without a
3022 		 * delay before checking if it is ready and has a whole set of
3023 		 * other problems.  To make this even more interesting, it
3024 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
3025 		 * does not need or want these quirks.
3026 		 */
3027 		.vid = 0x144d,
3028 		.mn = "Samsung Portable SSD X5",
3029 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3030 			  NVME_QUIRK_NO_DEEPEST_PS |
3031 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
3032 	}
3033 };
3034 
3035 /* match is null-terminated but idstr is space-padded. */
3036 static bool string_matches(const char *idstr, const char *match, size_t len)
3037 {
3038 	size_t matchlen;
3039 
3040 	if (!match)
3041 		return true;
3042 
3043 	matchlen = strlen(match);
3044 	WARN_ON_ONCE(matchlen > len);
3045 
3046 	if (memcmp(idstr, match, matchlen))
3047 		return false;
3048 
3049 	for (; matchlen < len; matchlen++)
3050 		if (idstr[matchlen] != ' ')
3051 			return false;
3052 
3053 	return true;
3054 }
3055 
3056 static bool quirk_matches(const struct nvme_id_ctrl *id,
3057 			  const struct nvme_core_quirk_entry *q)
3058 {
3059 	return q->vid == le16_to_cpu(id->vid) &&
3060 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
3061 		string_matches(id->fr, q->fr, sizeof(id->fr));
3062 }
3063 
3064 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
3065 		struct nvme_id_ctrl *id)
3066 {
3067 	size_t nqnlen;
3068 	int off;
3069 
3070 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
3071 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
3072 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
3073 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
3074 			return;
3075 		}
3076 
3077 		if (ctrl->vs >= NVME_VS(1, 2, 1))
3078 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
3079 	}
3080 
3081 	/*
3082 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
3083 	 * Base Specification 2.0.  It is slightly different from the format
3084 	 * specified there due to historic reasons, and we can't change it now.
3085 	 */
3086 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
3087 			"nqn.2014.08.org.nvmexpress:%04x%04x",
3088 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
3089 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
3090 	off += sizeof(id->sn);
3091 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
3092 	off += sizeof(id->mn);
3093 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
3094 }
3095 
3096 static void nvme_release_subsystem(struct device *dev)
3097 {
3098 	struct nvme_subsystem *subsys =
3099 		container_of(dev, struct nvme_subsystem, dev);
3100 
3101 	if (subsys->instance >= 0)
3102 		ida_free(&nvme_instance_ida, subsys->instance);
3103 	kfree(subsys);
3104 }
3105 
3106 static void nvme_destroy_subsystem(struct kref *ref)
3107 {
3108 	struct nvme_subsystem *subsys =
3109 			container_of(ref, struct nvme_subsystem, ref);
3110 
3111 	mutex_lock(&nvme_subsystems_lock);
3112 	list_del(&subsys->entry);
3113 	mutex_unlock(&nvme_subsystems_lock);
3114 
3115 	ida_destroy(&subsys->ns_ida);
3116 	device_del(&subsys->dev);
3117 	put_device(&subsys->dev);
3118 }
3119 
3120 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
3121 {
3122 	kref_put(&subsys->ref, nvme_destroy_subsystem);
3123 }
3124 
3125 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
3126 {
3127 	struct nvme_subsystem *subsys;
3128 
3129 	lockdep_assert_held(&nvme_subsystems_lock);
3130 
3131 	/*
3132 	 * Fail matches for discovery subsystems. This results
3133 	 * in each discovery controller bound to a unique subsystem.
3134 	 * This avoids issues with validating controller values
3135 	 * that can only be true when there is a single unique subsystem.
3136 	 * There may be multiple and completely independent entities
3137 	 * that provide discovery controllers.
3138 	 */
3139 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
3140 		return NULL;
3141 
3142 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
3143 		if (strcmp(subsys->subnqn, subsysnqn))
3144 			continue;
3145 		if (!kref_get_unless_zero(&subsys->ref))
3146 			continue;
3147 		return subsys;
3148 	}
3149 
3150 	return NULL;
3151 }
3152 
3153 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
3154 {
3155 	return ctrl->opts && ctrl->opts->discovery_nqn;
3156 }
3157 
3158 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
3159 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3160 {
3161 	struct nvme_ctrl *tmp;
3162 
3163 	lockdep_assert_held(&nvme_subsystems_lock);
3164 
3165 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
3166 		if (nvme_state_terminal(tmp))
3167 			continue;
3168 
3169 		if (tmp->cntlid == ctrl->cntlid) {
3170 			dev_err(ctrl->device,
3171 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
3172 				ctrl->cntlid, dev_name(tmp->device),
3173 				subsys->subnqn);
3174 			return false;
3175 		}
3176 
3177 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
3178 		    nvme_discovery_ctrl(ctrl))
3179 			continue;
3180 
3181 		dev_err(ctrl->device,
3182 			"Subsystem does not support multiple controllers\n");
3183 		return false;
3184 	}
3185 
3186 	return true;
3187 }
3188 
3189 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3190 {
3191 	struct nvme_subsystem *subsys, *found;
3192 	int ret;
3193 
3194 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3195 	if (!subsys)
3196 		return -ENOMEM;
3197 
3198 	subsys->instance = -1;
3199 	mutex_init(&subsys->lock);
3200 	kref_init(&subsys->ref);
3201 	INIT_LIST_HEAD(&subsys->ctrls);
3202 	INIT_LIST_HEAD(&subsys->nsheads);
3203 	nvme_init_subnqn(subsys, ctrl, id);
3204 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3205 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
3206 	subsys->vendor_id = le16_to_cpu(id->vid);
3207 	subsys->cmic = id->cmic;
3208 	subsys->awupf = le16_to_cpu(id->awupf);
3209 
3210 	/* Versions prior to 1.4 don't necessarily report a valid type */
3211 	if (id->cntrltype == NVME_CTRL_DISC ||
3212 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3213 		subsys->subtype = NVME_NQN_DISC;
3214 	else
3215 		subsys->subtype = NVME_NQN_NVME;
3216 
3217 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3218 		dev_err(ctrl->device,
3219 			"Subsystem %s is not a discovery controller",
3220 			subsys->subnqn);
3221 		kfree(subsys);
3222 		return -EINVAL;
3223 	}
3224 	nvme_mpath_default_iopolicy(subsys);
3225 
3226 	subsys->dev.class = &nvme_subsys_class;
3227 	subsys->dev.release = nvme_release_subsystem;
3228 	subsys->dev.groups = nvme_subsys_attrs_groups;
3229 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3230 	device_initialize(&subsys->dev);
3231 
3232 	mutex_lock(&nvme_subsystems_lock);
3233 	found = __nvme_find_get_subsystem(subsys->subnqn);
3234 	if (found) {
3235 		put_device(&subsys->dev);
3236 		subsys = found;
3237 
3238 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3239 			ret = -EINVAL;
3240 			goto out_put_subsystem;
3241 		}
3242 	} else {
3243 		ret = device_add(&subsys->dev);
3244 		if (ret) {
3245 			dev_err(ctrl->device,
3246 				"failed to register subsystem device.\n");
3247 			put_device(&subsys->dev);
3248 			goto out_unlock;
3249 		}
3250 		ida_init(&subsys->ns_ida);
3251 		list_add_tail(&subsys->entry, &nvme_subsystems);
3252 	}
3253 
3254 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3255 				dev_name(ctrl->device));
3256 	if (ret) {
3257 		dev_err(ctrl->device,
3258 			"failed to create sysfs link from subsystem.\n");
3259 		goto out_put_subsystem;
3260 	}
3261 
3262 	if (!found)
3263 		subsys->instance = ctrl->instance;
3264 	ctrl->subsys = subsys;
3265 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3266 	mutex_unlock(&nvme_subsystems_lock);
3267 	return 0;
3268 
3269 out_put_subsystem:
3270 	nvme_put_subsystem(subsys);
3271 out_unlock:
3272 	mutex_unlock(&nvme_subsystems_lock);
3273 	return ret;
3274 }
3275 
3276 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
3277 		u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi)
3278 {
3279 	struct nvme_command c = { };
3280 	u32 dwlen = nvme_bytes_to_numd(size);
3281 
3282 	c.get_log_page.opcode = nvme_admin_get_log_page;
3283 	c.get_log_page.nsid = cpu_to_le32(nsid);
3284 	c.get_log_page.lid = log_page;
3285 	c.get_log_page.lsp = lsp;
3286 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3287 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3288 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3289 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3290 	c.get_log_page.csi = csi;
3291 	c.get_log_page.lsi = cpu_to_le16(lsi);
3292 
3293 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3294 }
3295 
3296 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3297 		void *log, size_t size, u64 offset)
3298 {
3299 	return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size,
3300 			offset, 0);
3301 }
3302 
3303 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3304 				struct nvme_effects_log **log)
3305 {
3306 	struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3307 	int ret;
3308 
3309 	if (cel)
3310 		goto out;
3311 
3312 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3313 	if (!cel)
3314 		return -ENOMEM;
3315 
3316 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3317 			cel, sizeof(*cel), 0);
3318 	if (ret) {
3319 		kfree(cel);
3320 		return ret;
3321 	}
3322 
3323 	old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3324 	if (xa_is_err(old)) {
3325 		kfree(cel);
3326 		return xa_err(old);
3327 	}
3328 out:
3329 	*log = cel;
3330 	return 0;
3331 }
3332 
3333 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3334 {
3335 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3336 
3337 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3338 		return UINT_MAX;
3339 	return val;
3340 }
3341 
3342 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3343 {
3344 	struct nvme_command c = { };
3345 	struct nvme_id_ctrl_nvm *id;
3346 	int ret;
3347 
3348 	/*
3349 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3350 	 * to the write-zeroes, we are cautious and limit the size to the
3351 	 * controllers max_hw_sectors value, which is based on the MDTS field
3352 	 * and possibly other limiting factors.
3353 	 */
3354 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3355 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3356 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3357 	else
3358 		ctrl->max_zeroes_sectors = 0;
3359 
3360 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3361 	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3362 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3363 		return 0;
3364 
3365 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3366 	if (!id)
3367 		return -ENOMEM;
3368 
3369 	c.identify.opcode = nvme_admin_identify;
3370 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3371 	c.identify.csi = NVME_CSI_NVM;
3372 
3373 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3374 	if (ret)
3375 		goto free_data;
3376 
3377 	ctrl->dmrl = id->dmrl;
3378 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3379 	if (id->wzsl)
3380 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3381 
3382 free_data:
3383 	if (ret > 0)
3384 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3385 	kfree(id);
3386 	return ret;
3387 }
3388 
3389 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3390 		u8 csi, struct nvme_effects_log **log)
3391 {
3392 	struct nvme_effects_log *effects, *old;
3393 
3394 	effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3395 	if (!effects)
3396 		return -ENOMEM;
3397 
3398 	old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3399 	if (xa_is_err(old)) {
3400 		kfree(effects);
3401 		return xa_err(old);
3402 	}
3403 
3404 	*log = effects;
3405 	return 0;
3406 }
3407 
3408 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3409 {
3410 	struct nvme_effects_log	*log = ctrl->effects;
3411 
3412 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3413 						NVME_CMD_EFFECTS_NCC |
3414 						NVME_CMD_EFFECTS_CSE_MASK);
3415 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3416 						NVME_CMD_EFFECTS_CSE_MASK);
3417 
3418 	/*
3419 	 * The spec says the result of a security receive command depends on
3420 	 * the previous security send command. As such, many vendors log this
3421 	 * command as one to submitted only when no other commands to the same
3422 	 * namespace are outstanding. The intention is to tell the host to
3423 	 * prevent mixing security send and receive.
3424 	 *
3425 	 * This driver can only enforce such exclusive access against IO
3426 	 * queues, though. We are not readily able to enforce such a rule for
3427 	 * two commands to the admin queue, which is the only queue that
3428 	 * matters for this command.
3429 	 *
3430 	 * Rather than blindly freezing the IO queues for this effect that
3431 	 * doesn't even apply to IO, mask it off.
3432 	 */
3433 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3434 
3435 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3436 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3437 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3438 }
3439 
3440 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3441 {
3442 	int ret = 0;
3443 
3444 	if (ctrl->effects)
3445 		return 0;
3446 
3447 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3448 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3449 		if (ret < 0)
3450 			return ret;
3451 	}
3452 
3453 	if (!ctrl->effects) {
3454 		ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3455 		if (ret < 0)
3456 			return ret;
3457 	}
3458 
3459 	nvme_init_known_nvm_effects(ctrl);
3460 	return 0;
3461 }
3462 
3463 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3464 {
3465 	/*
3466 	 * In fabrics we need to verify the cntlid matches the
3467 	 * admin connect
3468 	 */
3469 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3470 		dev_err(ctrl->device,
3471 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3472 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3473 		return -EINVAL;
3474 	}
3475 
3476 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3477 		dev_err(ctrl->device,
3478 			"keep-alive support is mandatory for fabrics\n");
3479 		return -EINVAL;
3480 	}
3481 
3482 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3483 		dev_err(ctrl->device,
3484 			"I/O queue command capsule supported size %d < 4\n",
3485 			ctrl->ioccsz);
3486 		return -EINVAL;
3487 	}
3488 
3489 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3490 		dev_err(ctrl->device,
3491 			"I/O queue response capsule supported size %d < 1\n",
3492 			ctrl->iorcsz);
3493 		return -EINVAL;
3494 	}
3495 
3496 	if (!ctrl->maxcmd) {
3497 		dev_warn(ctrl->device,
3498 			"Firmware bug: maximum outstanding commands is 0\n");
3499 		ctrl->maxcmd = ctrl->sqsize + 1;
3500 	}
3501 
3502 	return 0;
3503 }
3504 
3505 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3506 {
3507 	struct queue_limits lim;
3508 	struct nvme_id_ctrl *id;
3509 	u32 max_hw_sectors;
3510 	bool prev_apst_enabled;
3511 	int ret;
3512 
3513 	ret = nvme_identify_ctrl(ctrl, &id);
3514 	if (ret) {
3515 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3516 		return -EIO;
3517 	}
3518 
3519 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3520 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3521 
3522 	if (!ctrl->identified) {
3523 		unsigned int i;
3524 
3525 		/*
3526 		 * Check for quirks.  Quirk can depend on firmware version,
3527 		 * so, in principle, the set of quirks present can change
3528 		 * across a reset.  As a possible future enhancement, we
3529 		 * could re-scan for quirks every time we reinitialize
3530 		 * the device, but we'd have to make sure that the driver
3531 		 * behaves intelligently if the quirks change.
3532 		 */
3533 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3534 			if (quirk_matches(id, &core_quirks[i]))
3535 				ctrl->quirks |= core_quirks[i].quirks;
3536 		}
3537 
3538 		ret = nvme_init_subsystem(ctrl, id);
3539 		if (ret)
3540 			goto out_free;
3541 
3542 		ret = nvme_init_effects(ctrl, id);
3543 		if (ret)
3544 			goto out_free;
3545 	}
3546 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3547 	       sizeof(ctrl->subsys->firmware_rev));
3548 
3549 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3550 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3551 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3552 	}
3553 
3554 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3555 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3556 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3557 
3558 	ctrl->oacs = le16_to_cpu(id->oacs);
3559 	ctrl->oncs = le16_to_cpu(id->oncs);
3560 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3561 	ctrl->oaes = le32_to_cpu(id->oaes);
3562 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3563 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3564 
3565 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3566 	ctrl->vwc = id->vwc;
3567 	if (id->mdts)
3568 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3569 	else
3570 		max_hw_sectors = UINT_MAX;
3571 	ctrl->max_hw_sectors =
3572 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3573 
3574 	lim = queue_limits_start_update(ctrl->admin_q);
3575 	nvme_set_ctrl_limits(ctrl, &lim);
3576 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3577 	if (ret)
3578 		goto out_free;
3579 
3580 	ctrl->sgls = le32_to_cpu(id->sgls);
3581 	ctrl->kas = le16_to_cpu(id->kas);
3582 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3583 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3584 
3585 	ctrl->cntrltype = id->cntrltype;
3586 	ctrl->dctype = id->dctype;
3587 
3588 	if (id->rtd3e) {
3589 		/* us -> s */
3590 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3591 
3592 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3593 						 shutdown_timeout, 60);
3594 
3595 		if (ctrl->shutdown_timeout != shutdown_timeout)
3596 			dev_info(ctrl->device,
3597 				 "D3 entry latency set to %u seconds\n",
3598 				 ctrl->shutdown_timeout);
3599 	} else
3600 		ctrl->shutdown_timeout = shutdown_timeout;
3601 
3602 	ctrl->npss = id->npss;
3603 	ctrl->apsta = id->apsta;
3604 	prev_apst_enabled = ctrl->apst_enabled;
3605 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3606 		if (force_apst && id->apsta) {
3607 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3608 			ctrl->apst_enabled = true;
3609 		} else {
3610 			ctrl->apst_enabled = false;
3611 		}
3612 	} else {
3613 		ctrl->apst_enabled = id->apsta;
3614 	}
3615 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3616 
3617 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3618 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3619 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3620 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3621 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3622 
3623 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3624 		if (ret)
3625 			goto out_free;
3626 	} else {
3627 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3628 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3629 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3630 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3631 	}
3632 
3633 	ret = nvme_mpath_init_identify(ctrl, id);
3634 	if (ret < 0)
3635 		goto out_free;
3636 
3637 	if (ctrl->apst_enabled && !prev_apst_enabled)
3638 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3639 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3640 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3641 out_free:
3642 	kfree(id);
3643 	return ret;
3644 }
3645 
3646 /*
3647  * Initialize the cached copies of the Identify data and various controller
3648  * register in our nvme_ctrl structure.  This should be called as soon as
3649  * the admin queue is fully up and running.
3650  */
3651 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3652 {
3653 	int ret;
3654 
3655 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3656 	if (ret) {
3657 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3658 		return ret;
3659 	}
3660 
3661 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3662 
3663 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3664 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3665 
3666 	ret = nvme_init_identify(ctrl);
3667 	if (ret)
3668 		return ret;
3669 
3670 	ret = nvme_configure_apst(ctrl);
3671 	if (ret < 0)
3672 		return ret;
3673 
3674 	ret = nvme_configure_timestamp(ctrl);
3675 	if (ret < 0)
3676 		return ret;
3677 
3678 	ret = nvme_configure_host_options(ctrl);
3679 	if (ret < 0)
3680 		return ret;
3681 
3682 	nvme_configure_opal(ctrl, was_suspended);
3683 
3684 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3685 		/*
3686 		 * Do not return errors unless we are in a controller reset,
3687 		 * the controller works perfectly fine without hwmon.
3688 		 */
3689 		ret = nvme_hwmon_init(ctrl);
3690 		if (ret == -EINTR)
3691 			return ret;
3692 	}
3693 
3694 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3695 	ctrl->identified = true;
3696 
3697 	nvme_start_keep_alive(ctrl);
3698 
3699 	return 0;
3700 }
3701 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3702 
3703 static int nvme_dev_open(struct inode *inode, struct file *file)
3704 {
3705 	struct nvme_ctrl *ctrl =
3706 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3707 
3708 	switch (nvme_ctrl_state(ctrl)) {
3709 	case NVME_CTRL_LIVE:
3710 		break;
3711 	default:
3712 		return -EWOULDBLOCK;
3713 	}
3714 
3715 	nvme_get_ctrl(ctrl);
3716 	if (!try_module_get(ctrl->ops->module)) {
3717 		nvme_put_ctrl(ctrl);
3718 		return -EINVAL;
3719 	}
3720 
3721 	file->private_data = ctrl;
3722 	return 0;
3723 }
3724 
3725 static int nvme_dev_release(struct inode *inode, struct file *file)
3726 {
3727 	struct nvme_ctrl *ctrl =
3728 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3729 
3730 	module_put(ctrl->ops->module);
3731 	nvme_put_ctrl(ctrl);
3732 	return 0;
3733 }
3734 
3735 static const struct file_operations nvme_dev_fops = {
3736 	.owner		= THIS_MODULE,
3737 	.open		= nvme_dev_open,
3738 	.release	= nvme_dev_release,
3739 	.unlocked_ioctl	= nvme_dev_ioctl,
3740 	.compat_ioctl	= compat_ptr_ioctl,
3741 	.uring_cmd	= nvme_dev_uring_cmd,
3742 };
3743 
3744 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3745 		unsigned nsid)
3746 {
3747 	struct nvme_ns_head *h;
3748 
3749 	lockdep_assert_held(&ctrl->subsys->lock);
3750 
3751 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3752 		/*
3753 		 * Private namespaces can share NSIDs under some conditions.
3754 		 * In that case we can't use the same ns_head for namespaces
3755 		 * with the same NSID.
3756 		 */
3757 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3758 			continue;
3759 		if (nvme_tryget_ns_head(h))
3760 			return h;
3761 	}
3762 
3763 	return NULL;
3764 }
3765 
3766 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3767 		struct nvme_ns_ids *ids)
3768 {
3769 	bool has_uuid = !uuid_is_null(&ids->uuid);
3770 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3771 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3772 	struct nvme_ns_head *h;
3773 
3774 	lockdep_assert_held(&subsys->lock);
3775 
3776 	list_for_each_entry(h, &subsys->nsheads, entry) {
3777 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3778 			return -EINVAL;
3779 		if (has_nguid &&
3780 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3781 			return -EINVAL;
3782 		if (has_eui64 &&
3783 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3784 			return -EINVAL;
3785 	}
3786 
3787 	return 0;
3788 }
3789 
3790 static void nvme_cdev_rel(struct device *dev)
3791 {
3792 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3793 }
3794 
3795 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3796 {
3797 	cdev_device_del(cdev, cdev_device);
3798 	put_device(cdev_device);
3799 }
3800 
3801 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3802 		const struct file_operations *fops, struct module *owner)
3803 {
3804 	int minor, ret;
3805 
3806 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3807 	if (minor < 0)
3808 		return minor;
3809 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3810 	cdev_device->class = &nvme_ns_chr_class;
3811 	cdev_device->release = nvme_cdev_rel;
3812 	device_initialize(cdev_device);
3813 	cdev_init(cdev, fops);
3814 	cdev->owner = owner;
3815 	ret = cdev_device_add(cdev, cdev_device);
3816 	if (ret)
3817 		put_device(cdev_device);
3818 
3819 	return ret;
3820 }
3821 
3822 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3823 {
3824 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3825 }
3826 
3827 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3828 {
3829 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3830 	return 0;
3831 }
3832 
3833 static const struct file_operations nvme_ns_chr_fops = {
3834 	.owner		= THIS_MODULE,
3835 	.open		= nvme_ns_chr_open,
3836 	.release	= nvme_ns_chr_release,
3837 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3838 	.compat_ioctl	= compat_ptr_ioctl,
3839 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3840 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3841 };
3842 
3843 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3844 {
3845 	int ret;
3846 
3847 	ns->cdev_device.parent = ns->ctrl->device;
3848 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3849 			   ns->ctrl->instance, ns->head->instance);
3850 	if (ret)
3851 		return ret;
3852 
3853 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3854 			     ns->ctrl->ops->module);
3855 }
3856 
3857 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3858 		struct nvme_ns_info *info)
3859 {
3860 	struct nvme_ns_head *head;
3861 	size_t size = sizeof(*head);
3862 	int ret = -ENOMEM;
3863 
3864 #ifdef CONFIG_NVME_MULTIPATH
3865 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3866 #endif
3867 
3868 	head = kzalloc(size, GFP_KERNEL);
3869 	if (!head)
3870 		goto out;
3871 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3872 	if (ret < 0)
3873 		goto out_free_head;
3874 	head->instance = ret;
3875 	INIT_LIST_HEAD(&head->list);
3876 	ret = init_srcu_struct(&head->srcu);
3877 	if (ret)
3878 		goto out_ida_remove;
3879 	head->subsys = ctrl->subsys;
3880 	head->ns_id = info->nsid;
3881 	head->ids = info->ids;
3882 	head->shared = info->is_shared;
3883 	head->rotational = info->is_rotational;
3884 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3885 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3886 	kref_init(&head->ref);
3887 
3888 	if (head->ids.csi) {
3889 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3890 		if (ret)
3891 			goto out_cleanup_srcu;
3892 	} else
3893 		head->effects = ctrl->effects;
3894 
3895 	ret = nvme_mpath_alloc_disk(ctrl, head);
3896 	if (ret)
3897 		goto out_cleanup_srcu;
3898 
3899 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3900 
3901 	kref_get(&ctrl->subsys->ref);
3902 
3903 	return head;
3904 out_cleanup_srcu:
3905 	cleanup_srcu_struct(&head->srcu);
3906 out_ida_remove:
3907 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3908 out_free_head:
3909 	kfree(head);
3910 out:
3911 	if (ret > 0)
3912 		ret = blk_status_to_errno(nvme_error_status(ret));
3913 	return ERR_PTR(ret);
3914 }
3915 
3916 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3917 		struct nvme_ns_ids *ids)
3918 {
3919 	struct nvme_subsystem *s;
3920 	int ret = 0;
3921 
3922 	/*
3923 	 * Note that this check is racy as we try to avoid holding the global
3924 	 * lock over the whole ns_head creation.  But it is only intended as
3925 	 * a sanity check anyway.
3926 	 */
3927 	mutex_lock(&nvme_subsystems_lock);
3928 	list_for_each_entry(s, &nvme_subsystems, entry) {
3929 		if (s == this)
3930 			continue;
3931 		mutex_lock(&s->lock);
3932 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3933 		mutex_unlock(&s->lock);
3934 		if (ret)
3935 			break;
3936 	}
3937 	mutex_unlock(&nvme_subsystems_lock);
3938 
3939 	return ret;
3940 }
3941 
3942 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3943 {
3944 	struct nvme_ctrl *ctrl = ns->ctrl;
3945 	struct nvme_ns_head *head = NULL;
3946 	int ret;
3947 
3948 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3949 	if (ret) {
3950 		/*
3951 		 * We've found two different namespaces on two different
3952 		 * subsystems that report the same ID.  This is pretty nasty
3953 		 * for anything that actually requires unique device
3954 		 * identification.  In the kernel we need this for multipathing,
3955 		 * and in user space the /dev/disk/by-id/ links rely on it.
3956 		 *
3957 		 * If the device also claims to be multi-path capable back off
3958 		 * here now and refuse the probe the second device as this is a
3959 		 * recipe for data corruption.  If not this is probably a
3960 		 * cheap consumer device if on the PCIe bus, so let the user
3961 		 * proceed and use the shiny toy, but warn that with changing
3962 		 * probing order (which due to our async probing could just be
3963 		 * device taking longer to startup) the other device could show
3964 		 * up at any time.
3965 		 */
3966 		nvme_print_device_info(ctrl);
3967 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3968 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3969 		     info->is_shared)) {
3970 			dev_err(ctrl->device,
3971 				"ignoring nsid %d because of duplicate IDs\n",
3972 				info->nsid);
3973 			return ret;
3974 		}
3975 
3976 		dev_err(ctrl->device,
3977 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3978 		dev_err(ctrl->device,
3979 			"use of /dev/disk/by-id/ may cause data corruption\n");
3980 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3981 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3982 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3983 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3984 	}
3985 
3986 	mutex_lock(&ctrl->subsys->lock);
3987 	head = nvme_find_ns_head(ctrl, info->nsid);
3988 	if (!head) {
3989 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3990 		if (ret) {
3991 			dev_err(ctrl->device,
3992 				"duplicate IDs in subsystem for nsid %d\n",
3993 				info->nsid);
3994 			goto out_unlock;
3995 		}
3996 		head = nvme_alloc_ns_head(ctrl, info);
3997 		if (IS_ERR(head)) {
3998 			ret = PTR_ERR(head);
3999 			goto out_unlock;
4000 		}
4001 	} else {
4002 		ret = -EINVAL;
4003 		if ((!info->is_shared || !head->shared) &&
4004 		    !list_empty(&head->list)) {
4005 			dev_err(ctrl->device,
4006 				"Duplicate unshared namespace %d\n",
4007 				info->nsid);
4008 			goto out_put_ns_head;
4009 		}
4010 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4011 			dev_err(ctrl->device,
4012 				"IDs don't match for shared namespace %d\n",
4013 					info->nsid);
4014 			goto out_put_ns_head;
4015 		}
4016 
4017 		if (!multipath) {
4018 			dev_warn(ctrl->device,
4019 				"Found shared namespace %d, but multipathing not supported.\n",
4020 				info->nsid);
4021 			dev_warn_once(ctrl->device,
4022 				"Shared namespace support requires core_nvme.multipath=Y.\n");
4023 		}
4024 	}
4025 
4026 	list_add_tail_rcu(&ns->siblings, &head->list);
4027 	ns->head = head;
4028 	mutex_unlock(&ctrl->subsys->lock);
4029 
4030 #ifdef CONFIG_NVME_MULTIPATH
4031 	cancel_delayed_work(&head->remove_work);
4032 #endif
4033 	return 0;
4034 
4035 out_put_ns_head:
4036 	nvme_put_ns_head(head);
4037 out_unlock:
4038 	mutex_unlock(&ctrl->subsys->lock);
4039 	return ret;
4040 }
4041 
4042 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4043 {
4044 	struct nvme_ns *ns, *ret = NULL;
4045 	int srcu_idx;
4046 
4047 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4048 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4049 				 srcu_read_lock_held(&ctrl->srcu)) {
4050 		if (ns->head->ns_id == nsid) {
4051 			if (!nvme_get_ns(ns))
4052 				continue;
4053 			ret = ns;
4054 			break;
4055 		}
4056 		if (ns->head->ns_id > nsid)
4057 			break;
4058 	}
4059 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4060 	return ret;
4061 }
4062 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
4063 
4064 /*
4065  * Add the namespace to the controller list while keeping the list ordered.
4066  */
4067 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4068 {
4069 	struct nvme_ns *tmp;
4070 
4071 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4072 		if (tmp->head->ns_id < ns->head->ns_id) {
4073 			list_add_rcu(&ns->list, &tmp->list);
4074 			return;
4075 		}
4076 	}
4077 	list_add_rcu(&ns->list, &ns->ctrl->namespaces);
4078 }
4079 
4080 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4081 {
4082 	struct queue_limits lim = { };
4083 	struct nvme_ns *ns;
4084 	struct gendisk *disk;
4085 	int node = ctrl->numa_node;
4086 	bool last_path = false;
4087 
4088 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4089 	if (!ns)
4090 		return;
4091 
4092 	if (ctrl->opts && ctrl->opts->data_digest)
4093 		lim.features |= BLK_FEAT_STABLE_WRITES;
4094 	if (ctrl->ops->supports_pci_p2pdma &&
4095 	    ctrl->ops->supports_pci_p2pdma(ctrl))
4096 		lim.features |= BLK_FEAT_PCI_P2PDMA;
4097 
4098 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
4099 	if (IS_ERR(disk))
4100 		goto out_free_ns;
4101 	disk->fops = &nvme_bdev_ops;
4102 	disk->private_data = ns;
4103 
4104 	ns->disk = disk;
4105 	ns->queue = disk->queue;
4106 	ns->ctrl = ctrl;
4107 	kref_init(&ns->kref);
4108 
4109 	if (nvme_init_ns_head(ns, info))
4110 		goto out_cleanup_disk;
4111 
4112 	/*
4113 	 * If multipathing is enabled, the device name for all disks and not
4114 	 * just those that represent shared namespaces needs to be based on the
4115 	 * subsystem instance.  Using the controller instance for private
4116 	 * namespaces could lead to naming collisions between shared and private
4117 	 * namespaces if they don't use a common numbering scheme.
4118 	 *
4119 	 * If multipathing is not enabled, disk names must use the controller
4120 	 * instance as shared namespaces will show up as multiple block
4121 	 * devices.
4122 	 */
4123 	if (nvme_ns_head_multipath(ns->head)) {
4124 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4125 			ctrl->instance, ns->head->instance);
4126 		disk->flags |= GENHD_FL_HIDDEN;
4127 	} else if (multipath) {
4128 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4129 			ns->head->instance);
4130 	} else {
4131 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4132 			ns->head->instance);
4133 	}
4134 
4135 	if (nvme_update_ns_info(ns, info))
4136 		goto out_unlink_ns;
4137 
4138 	mutex_lock(&ctrl->namespaces_lock);
4139 	/*
4140 	 * Ensure that no namespaces are added to the ctrl list after the queues
4141 	 * are frozen, thereby avoiding a deadlock between scan and reset.
4142 	 */
4143 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
4144 		mutex_unlock(&ctrl->namespaces_lock);
4145 		goto out_unlink_ns;
4146 	}
4147 	nvme_ns_add_to_ctrl_list(ns);
4148 	mutex_unlock(&ctrl->namespaces_lock);
4149 	synchronize_srcu(&ctrl->srcu);
4150 	nvme_get_ctrl(ctrl);
4151 
4152 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
4153 		goto out_cleanup_ns_from_list;
4154 
4155 	if (!nvme_ns_head_multipath(ns->head))
4156 		nvme_add_ns_cdev(ns);
4157 
4158 	nvme_mpath_add_disk(ns, info->anagrpid);
4159 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4160 
4161 	/*
4162 	 * Set ns->disk->device->driver_data to ns so we can access
4163 	 * ns->head->passthru_err_log_enabled in
4164 	 * nvme_io_passthru_err_log_enabled_[store | show]().
4165 	 */
4166 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
4167 
4168 	return;
4169 
4170  out_cleanup_ns_from_list:
4171 	nvme_put_ctrl(ctrl);
4172 	mutex_lock(&ctrl->namespaces_lock);
4173 	list_del_rcu(&ns->list);
4174 	mutex_unlock(&ctrl->namespaces_lock);
4175 	synchronize_srcu(&ctrl->srcu);
4176  out_unlink_ns:
4177 	mutex_lock(&ctrl->subsys->lock);
4178 	list_del_rcu(&ns->siblings);
4179 	if (list_empty(&ns->head->list)) {
4180 		list_del_init(&ns->head->entry);
4181 		/*
4182 		 * If multipath is not configured, we still create a namespace
4183 		 * head (nshead), but head->disk is not initialized in that
4184 		 * case.  As a result, only a single reference to nshead is held
4185 		 * (via kref_init()) when it is created. Therefore, ensure that
4186 		 * we do not release the reference to nshead twice if head->disk
4187 		 * is not present.
4188 		 */
4189 		if (ns->head->disk)
4190 			last_path = true;
4191 	}
4192 	mutex_unlock(&ctrl->subsys->lock);
4193 	if (last_path)
4194 		nvme_put_ns_head(ns->head);
4195 	nvme_put_ns_head(ns->head);
4196  out_cleanup_disk:
4197 	put_disk(disk);
4198  out_free_ns:
4199 	kfree(ns);
4200 }
4201 
4202 static void nvme_ns_remove(struct nvme_ns *ns)
4203 {
4204 	bool last_path = false;
4205 
4206 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4207 		return;
4208 
4209 	clear_bit(NVME_NS_READY, &ns->flags);
4210 	set_capacity(ns->disk, 0);
4211 	nvme_fault_inject_fini(&ns->fault_inject);
4212 
4213 	/*
4214 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4215 	 * this ns going back into current_path.
4216 	 */
4217 	synchronize_srcu(&ns->head->srcu);
4218 
4219 	/* wait for concurrent submissions */
4220 	if (nvme_mpath_clear_current_path(ns))
4221 		synchronize_srcu(&ns->head->srcu);
4222 
4223 	mutex_lock(&ns->ctrl->subsys->lock);
4224 	list_del_rcu(&ns->siblings);
4225 	if (list_empty(&ns->head->list)) {
4226 		if (!nvme_mpath_queue_if_no_path(ns->head))
4227 			list_del_init(&ns->head->entry);
4228 		last_path = true;
4229 	}
4230 	mutex_unlock(&ns->ctrl->subsys->lock);
4231 
4232 	/* guarantee not available in head->list */
4233 	synchronize_srcu(&ns->head->srcu);
4234 
4235 	if (!nvme_ns_head_multipath(ns->head))
4236 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4237 
4238 	nvme_mpath_remove_sysfs_link(ns);
4239 
4240 	del_gendisk(ns->disk);
4241 
4242 	mutex_lock(&ns->ctrl->namespaces_lock);
4243 	list_del_rcu(&ns->list);
4244 	mutex_unlock(&ns->ctrl->namespaces_lock);
4245 	synchronize_srcu(&ns->ctrl->srcu);
4246 
4247 	if (last_path)
4248 		nvme_mpath_remove_disk(ns->head);
4249 	nvme_put_ns(ns);
4250 }
4251 
4252 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4253 {
4254 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4255 
4256 	if (ns) {
4257 		nvme_ns_remove(ns);
4258 		nvme_put_ns(ns);
4259 	}
4260 }
4261 
4262 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4263 {
4264 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4265 
4266 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4267 		dev_err(ns->ctrl->device,
4268 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4269 		goto out;
4270 	}
4271 
4272 	ret = nvme_update_ns_info(ns, info);
4273 out:
4274 	/*
4275 	 * Only remove the namespace if we got a fatal error back from the
4276 	 * device, otherwise ignore the error and just move on.
4277 	 *
4278 	 * TODO: we should probably schedule a delayed retry here.
4279 	 */
4280 	if (ret > 0 && (ret & NVME_STATUS_DNR))
4281 		nvme_ns_remove(ns);
4282 }
4283 
4284 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4285 {
4286 	struct nvme_ns_info info = { .nsid = nsid };
4287 	struct nvme_ns *ns;
4288 	int ret = 1;
4289 
4290 	if (nvme_identify_ns_descs(ctrl, &info))
4291 		return;
4292 
4293 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4294 		dev_warn(ctrl->device,
4295 			"command set not reported for nsid: %d\n", nsid);
4296 		return;
4297 	}
4298 
4299 	/*
4300 	 * If available try to use the Command Set Idependent Identify Namespace
4301 	 * data structure to find all the generic information that is needed to
4302 	 * set up a namespace.  If not fall back to the legacy version.
4303 	 */
4304 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4305 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4306 	    ctrl->vs >= NVME_VS(2, 0, 0))
4307 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4308 	if (ret > 0)
4309 		ret = nvme_ns_info_from_identify(ctrl, &info);
4310 
4311 	if (info.is_removed)
4312 		nvme_ns_remove_by_nsid(ctrl, nsid);
4313 
4314 	/*
4315 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4316 	 * becomes ready and restart the scan.
4317 	 */
4318 	if (ret || !info.is_ready)
4319 		return;
4320 
4321 	ns = nvme_find_get_ns(ctrl, nsid);
4322 	if (ns) {
4323 		nvme_validate_ns(ns, &info);
4324 		nvme_put_ns(ns);
4325 	} else {
4326 		nvme_alloc_ns(ctrl, &info);
4327 	}
4328 }
4329 
4330 /**
4331  * struct async_scan_info - keeps track of controller & NSIDs to scan
4332  * @ctrl:	Controller on which namespaces are being scanned
4333  * @next_nsid:	Index of next NSID to scan in ns_list
4334  * @ns_list:	Pointer to list of NSIDs to scan
4335  *
4336  * Note: There is a single async_scan_info structure shared by all instances
4337  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4338  * operations on next_nsid are critical to ensure each instance scans a unique
4339  * NSID.
4340  */
4341 struct async_scan_info {
4342 	struct nvme_ctrl *ctrl;
4343 	atomic_t next_nsid;
4344 	__le32 *ns_list;
4345 };
4346 
4347 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4348 {
4349 	struct async_scan_info *scan_info = data;
4350 	int idx;
4351 	u32 nsid;
4352 
4353 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4354 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4355 
4356 	nvme_scan_ns(scan_info->ctrl, nsid);
4357 }
4358 
4359 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4360 					unsigned nsid)
4361 {
4362 	struct nvme_ns *ns, *next;
4363 	LIST_HEAD(rm_list);
4364 
4365 	mutex_lock(&ctrl->namespaces_lock);
4366 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4367 		if (ns->head->ns_id > nsid) {
4368 			list_del_rcu(&ns->list);
4369 			synchronize_srcu(&ctrl->srcu);
4370 			list_add_tail_rcu(&ns->list, &rm_list);
4371 		}
4372 	}
4373 	mutex_unlock(&ctrl->namespaces_lock);
4374 
4375 	list_for_each_entry_safe(ns, next, &rm_list, list)
4376 		nvme_ns_remove(ns);
4377 }
4378 
4379 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4380 {
4381 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4382 	__le32 *ns_list;
4383 	u32 prev = 0;
4384 	int ret = 0, i;
4385 	ASYNC_DOMAIN(domain);
4386 	struct async_scan_info scan_info;
4387 
4388 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4389 	if (!ns_list)
4390 		return -ENOMEM;
4391 
4392 	scan_info.ctrl = ctrl;
4393 	scan_info.ns_list = ns_list;
4394 	for (;;) {
4395 		struct nvme_command cmd = {
4396 			.identify.opcode	= nvme_admin_identify,
4397 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4398 			.identify.nsid		= cpu_to_le32(prev),
4399 		};
4400 
4401 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4402 					    NVME_IDENTIFY_DATA_SIZE);
4403 		if (ret) {
4404 			dev_warn(ctrl->device,
4405 				"Identify NS List failed (status=0x%x)\n", ret);
4406 			goto free;
4407 		}
4408 
4409 		atomic_set(&scan_info.next_nsid, 0);
4410 		for (i = 0; i < nr_entries; i++) {
4411 			u32 nsid = le32_to_cpu(ns_list[i]);
4412 
4413 			if (!nsid)	/* end of the list? */
4414 				goto out;
4415 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4416 						&domain);
4417 			while (++prev < nsid)
4418 				nvme_ns_remove_by_nsid(ctrl, prev);
4419 		}
4420 		async_synchronize_full_domain(&domain);
4421 	}
4422  out:
4423 	nvme_remove_invalid_namespaces(ctrl, prev);
4424  free:
4425 	async_synchronize_full_domain(&domain);
4426 	kfree(ns_list);
4427 	return ret;
4428 }
4429 
4430 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4431 {
4432 	struct nvme_id_ctrl *id;
4433 	u32 nn, i;
4434 
4435 	if (nvme_identify_ctrl(ctrl, &id))
4436 		return;
4437 	nn = le32_to_cpu(id->nn);
4438 	kfree(id);
4439 
4440 	for (i = 1; i <= nn; i++)
4441 		nvme_scan_ns(ctrl, i);
4442 
4443 	nvme_remove_invalid_namespaces(ctrl, nn);
4444 }
4445 
4446 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4447 {
4448 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4449 	__le32 *log;
4450 	int error;
4451 
4452 	log = kzalloc(log_size, GFP_KERNEL);
4453 	if (!log)
4454 		return;
4455 
4456 	/*
4457 	 * We need to read the log to clear the AEN, but we don't want to rely
4458 	 * on it for the changed namespace information as userspace could have
4459 	 * raced with us in reading the log page, which could cause us to miss
4460 	 * updates.
4461 	 */
4462 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4463 			NVME_CSI_NVM, log, log_size, 0);
4464 	if (error)
4465 		dev_warn(ctrl->device,
4466 			"reading changed ns log failed: %d\n", error);
4467 
4468 	kfree(log);
4469 }
4470 
4471 static void nvme_scan_work(struct work_struct *work)
4472 {
4473 	struct nvme_ctrl *ctrl =
4474 		container_of(work, struct nvme_ctrl, scan_work);
4475 	int ret;
4476 
4477 	/* No tagset on a live ctrl means IO queues could not created */
4478 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4479 		return;
4480 
4481 	/*
4482 	 * Identify controller limits can change at controller reset due to
4483 	 * new firmware download, even though it is not common we cannot ignore
4484 	 * such scenario. Controller's non-mdts limits are reported in the unit
4485 	 * of logical blocks that is dependent on the format of attached
4486 	 * namespace. Hence re-read the limits at the time of ns allocation.
4487 	 */
4488 	ret = nvme_init_non_mdts_limits(ctrl);
4489 	if (ret < 0) {
4490 		dev_warn(ctrl->device,
4491 			"reading non-mdts-limits failed: %d\n", ret);
4492 		return;
4493 	}
4494 
4495 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4496 		dev_info(ctrl->device, "rescanning namespaces.\n");
4497 		nvme_clear_changed_ns_log(ctrl);
4498 	}
4499 
4500 	mutex_lock(&ctrl->scan_lock);
4501 	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4502 		nvme_scan_ns_sequential(ctrl);
4503 	} else {
4504 		/*
4505 		 * Fall back to sequential scan if DNR is set to handle broken
4506 		 * devices which should support Identify NS List (as per the VS
4507 		 * they report) but don't actually support it.
4508 		 */
4509 		ret = nvme_scan_ns_list(ctrl);
4510 		if (ret > 0 && ret & NVME_STATUS_DNR)
4511 			nvme_scan_ns_sequential(ctrl);
4512 	}
4513 	mutex_unlock(&ctrl->scan_lock);
4514 
4515 	/* Requeue if we have missed AENs */
4516 	if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events))
4517 		nvme_queue_scan(ctrl);
4518 #ifdef CONFIG_NVME_MULTIPATH
4519 	else if (ctrl->ana_log_buf)
4520 		/* Re-read the ANA log page to not miss updates */
4521 		queue_work(nvme_wq, &ctrl->ana_work);
4522 #endif
4523 }
4524 
4525 /*
4526  * This function iterates the namespace list unlocked to allow recovery from
4527  * controller failure. It is up to the caller to ensure the namespace list is
4528  * not modified by scan work while this function is executing.
4529  */
4530 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4531 {
4532 	struct nvme_ns *ns, *next;
4533 	LIST_HEAD(ns_list);
4534 
4535 	/*
4536 	 * make sure to requeue I/O to all namespaces as these
4537 	 * might result from the scan itself and must complete
4538 	 * for the scan_work to make progress
4539 	 */
4540 	nvme_mpath_clear_ctrl_paths(ctrl);
4541 
4542 	/*
4543 	 * Unquiesce io queues so any pending IO won't hang, especially
4544 	 * those submitted from scan work
4545 	 */
4546 	nvme_unquiesce_io_queues(ctrl);
4547 
4548 	/* prevent racing with ns scanning */
4549 	flush_work(&ctrl->scan_work);
4550 
4551 	/*
4552 	 * The dead states indicates the controller was not gracefully
4553 	 * disconnected. In that case, we won't be able to flush any data while
4554 	 * removing the namespaces' disks; fail all the queues now to avoid
4555 	 * potentially having to clean up the failed sync later.
4556 	 */
4557 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4558 		nvme_mark_namespaces_dead(ctrl);
4559 
4560 	/* this is a no-op when called from the controller reset handler */
4561 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4562 
4563 	mutex_lock(&ctrl->namespaces_lock);
4564 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4565 	mutex_unlock(&ctrl->namespaces_lock);
4566 	synchronize_srcu(&ctrl->srcu);
4567 
4568 	list_for_each_entry_safe(ns, next, &ns_list, list)
4569 		nvme_ns_remove(ns);
4570 }
4571 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4572 
4573 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4574 {
4575 	const struct nvme_ctrl *ctrl =
4576 		container_of(dev, struct nvme_ctrl, ctrl_device);
4577 	struct nvmf_ctrl_options *opts = ctrl->opts;
4578 	int ret;
4579 
4580 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4581 	if (ret)
4582 		return ret;
4583 
4584 	if (opts) {
4585 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4586 		if (ret)
4587 			return ret;
4588 
4589 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4590 				opts->trsvcid ?: "none");
4591 		if (ret)
4592 			return ret;
4593 
4594 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4595 				opts->host_traddr ?: "none");
4596 		if (ret)
4597 			return ret;
4598 
4599 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4600 				opts->host_iface ?: "none");
4601 	}
4602 	return ret;
4603 }
4604 
4605 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4606 {
4607 	char *envp[2] = { envdata, NULL };
4608 
4609 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4610 }
4611 
4612 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4613 {
4614 	char *envp[2] = { NULL, NULL };
4615 	u32 aen_result = ctrl->aen_result;
4616 
4617 	ctrl->aen_result = 0;
4618 	if (!aen_result)
4619 		return;
4620 
4621 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4622 	if (!envp[0])
4623 		return;
4624 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4625 	kfree(envp[0]);
4626 }
4627 
4628 static void nvme_async_event_work(struct work_struct *work)
4629 {
4630 	struct nvme_ctrl *ctrl =
4631 		container_of(work, struct nvme_ctrl, async_event_work);
4632 
4633 	nvme_aen_uevent(ctrl);
4634 
4635 	/*
4636 	 * The transport drivers must guarantee AER submission here is safe by
4637 	 * flushing ctrl async_event_work after changing the controller state
4638 	 * from LIVE and before freeing the admin queue.
4639 	*/
4640 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4641 		ctrl->ops->submit_async_event(ctrl);
4642 }
4643 
4644 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4645 {
4646 
4647 	u32 csts;
4648 
4649 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4650 		return false;
4651 
4652 	if (csts == ~0)
4653 		return false;
4654 
4655 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4656 }
4657 
4658 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4659 {
4660 	struct nvme_fw_slot_info_log *log;
4661 	u8 next_fw_slot, cur_fw_slot;
4662 
4663 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4664 	if (!log)
4665 		return;
4666 
4667 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4668 			 log, sizeof(*log), 0)) {
4669 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4670 		goto out_free_log;
4671 	}
4672 
4673 	cur_fw_slot = log->afi & 0x7;
4674 	next_fw_slot = (log->afi & 0x70) >> 4;
4675 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4676 		dev_info(ctrl->device,
4677 			 "Firmware is activated after next Controller Level Reset\n");
4678 		goto out_free_log;
4679 	}
4680 
4681 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4682 		sizeof(ctrl->subsys->firmware_rev));
4683 
4684 out_free_log:
4685 	kfree(log);
4686 }
4687 
4688 static void nvme_fw_act_work(struct work_struct *work)
4689 {
4690 	struct nvme_ctrl *ctrl = container_of(work,
4691 				struct nvme_ctrl, fw_act_work);
4692 	unsigned long fw_act_timeout;
4693 
4694 	nvme_auth_stop(ctrl);
4695 
4696 	if (ctrl->mtfa)
4697 		fw_act_timeout = jiffies + msecs_to_jiffies(ctrl->mtfa * 100);
4698 	else
4699 		fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout);
4700 
4701 	nvme_quiesce_io_queues(ctrl);
4702 	while (nvme_ctrl_pp_status(ctrl)) {
4703 		if (time_after(jiffies, fw_act_timeout)) {
4704 			dev_warn(ctrl->device,
4705 				"Fw activation timeout, reset controller\n");
4706 			nvme_try_sched_reset(ctrl);
4707 			return;
4708 		}
4709 		msleep(100);
4710 	}
4711 
4712 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
4713 	    !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4714 		return;
4715 
4716 	nvme_unquiesce_io_queues(ctrl);
4717 	/* read FW slot information to clear the AER */
4718 	nvme_get_fw_slot_info(ctrl);
4719 
4720 	queue_work(nvme_wq, &ctrl->async_event_work);
4721 }
4722 
4723 static u32 nvme_aer_type(u32 result)
4724 {
4725 	return result & 0x7;
4726 }
4727 
4728 static u32 nvme_aer_subtype(u32 result)
4729 {
4730 	return (result & 0xff00) >> 8;
4731 }
4732 
4733 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4734 {
4735 	u32 aer_notice_type = nvme_aer_subtype(result);
4736 	bool requeue = true;
4737 
4738 	switch (aer_notice_type) {
4739 	case NVME_AER_NOTICE_NS_CHANGED:
4740 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4741 		nvme_queue_scan(ctrl);
4742 		break;
4743 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4744 		/*
4745 		 * We are (ab)using the RESETTING state to prevent subsequent
4746 		 * recovery actions from interfering with the controller's
4747 		 * firmware activation.
4748 		 */
4749 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4750 			requeue = false;
4751 			queue_work(nvme_wq, &ctrl->fw_act_work);
4752 		}
4753 		break;
4754 #ifdef CONFIG_NVME_MULTIPATH
4755 	case NVME_AER_NOTICE_ANA:
4756 		if (!ctrl->ana_log_buf)
4757 			break;
4758 		queue_work(nvme_wq, &ctrl->ana_work);
4759 		break;
4760 #endif
4761 	case NVME_AER_NOTICE_DISC_CHANGED:
4762 		ctrl->aen_result = result;
4763 		break;
4764 	default:
4765 		dev_warn(ctrl->device, "async event result %08x\n", result);
4766 	}
4767 	return requeue;
4768 }
4769 
4770 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4771 {
4772 	dev_warn(ctrl->device,
4773 		"resetting controller due to persistent internal error\n");
4774 	nvme_reset_ctrl(ctrl);
4775 }
4776 
4777 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4778 		volatile union nvme_result *res)
4779 {
4780 	u32 result = le32_to_cpu(res->u32);
4781 	u32 aer_type = nvme_aer_type(result);
4782 	u32 aer_subtype = nvme_aer_subtype(result);
4783 	bool requeue = true;
4784 
4785 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4786 		return;
4787 
4788 	trace_nvme_async_event(ctrl, result);
4789 	switch (aer_type) {
4790 	case NVME_AER_NOTICE:
4791 		requeue = nvme_handle_aen_notice(ctrl, result);
4792 		break;
4793 	case NVME_AER_ERROR:
4794 		/*
4795 		 * For a persistent internal error, don't run async_event_work
4796 		 * to submit a new AER. The controller reset will do it.
4797 		 */
4798 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4799 			nvme_handle_aer_persistent_error(ctrl);
4800 			return;
4801 		}
4802 		fallthrough;
4803 	case NVME_AER_SMART:
4804 	case NVME_AER_CSS:
4805 	case NVME_AER_VS:
4806 		ctrl->aen_result = result;
4807 		break;
4808 	default:
4809 		break;
4810 	}
4811 
4812 	if (requeue)
4813 		queue_work(nvme_wq, &ctrl->async_event_work);
4814 }
4815 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4816 
4817 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4818 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4819 {
4820 	struct queue_limits lim = {};
4821 	int ret;
4822 
4823 	memset(set, 0, sizeof(*set));
4824 	set->ops = ops;
4825 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4826 	if (ctrl->ops->flags & NVME_F_FABRICS)
4827 		/* Reserved for fabric connect and keep alive */
4828 		set->reserved_tags = 2;
4829 	set->numa_node = ctrl->numa_node;
4830 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4831 		set->flags |= BLK_MQ_F_BLOCKING;
4832 	set->cmd_size = cmd_size;
4833 	set->driver_data = ctrl;
4834 	set->nr_hw_queues = 1;
4835 	set->timeout = NVME_ADMIN_TIMEOUT;
4836 	ret = blk_mq_alloc_tag_set(set);
4837 	if (ret)
4838 		return ret;
4839 
4840 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4841 	if (IS_ERR(ctrl->admin_q)) {
4842 		ret = PTR_ERR(ctrl->admin_q);
4843 		goto out_free_tagset;
4844 	}
4845 
4846 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4847 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4848 		if (IS_ERR(ctrl->fabrics_q)) {
4849 			ret = PTR_ERR(ctrl->fabrics_q);
4850 			goto out_cleanup_admin_q;
4851 		}
4852 	}
4853 
4854 	ctrl->admin_tagset = set;
4855 	return 0;
4856 
4857 out_cleanup_admin_q:
4858 	blk_mq_destroy_queue(ctrl->admin_q);
4859 	blk_put_queue(ctrl->admin_q);
4860 out_free_tagset:
4861 	blk_mq_free_tag_set(set);
4862 	ctrl->admin_q = NULL;
4863 	ctrl->fabrics_q = NULL;
4864 	return ret;
4865 }
4866 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4867 
4868 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4869 {
4870 	/*
4871 	 * As we're about to destroy the queue and free tagset
4872 	 * we can not have keep-alive work running.
4873 	 */
4874 	nvme_stop_keep_alive(ctrl);
4875 	blk_mq_destroy_queue(ctrl->admin_q);
4876 	blk_put_queue(ctrl->admin_q);
4877 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4878 		blk_mq_destroy_queue(ctrl->fabrics_q);
4879 		blk_put_queue(ctrl->fabrics_q);
4880 	}
4881 	blk_mq_free_tag_set(ctrl->admin_tagset);
4882 }
4883 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4884 
4885 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4886 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4887 		unsigned int cmd_size)
4888 {
4889 	int ret;
4890 
4891 	memset(set, 0, sizeof(*set));
4892 	set->ops = ops;
4893 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4894 	/*
4895 	 * Some Apple controllers requires tags to be unique across admin and
4896 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4897 	 */
4898 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4899 		set->reserved_tags = NVME_AQ_DEPTH;
4900 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4901 		/* Reserved for fabric connect */
4902 		set->reserved_tags = 1;
4903 	set->numa_node = ctrl->numa_node;
4904 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4905 		set->flags |= BLK_MQ_F_BLOCKING;
4906 	set->cmd_size = cmd_size;
4907 	set->driver_data = ctrl;
4908 	set->nr_hw_queues = ctrl->queue_count - 1;
4909 	set->timeout = NVME_IO_TIMEOUT;
4910 	set->nr_maps = nr_maps;
4911 	ret = blk_mq_alloc_tag_set(set);
4912 	if (ret)
4913 		return ret;
4914 
4915 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4916 		struct queue_limits lim = {
4917 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4918 		};
4919 
4920 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4921         	if (IS_ERR(ctrl->connect_q)) {
4922 			ret = PTR_ERR(ctrl->connect_q);
4923 			goto out_free_tag_set;
4924 		}
4925 	}
4926 
4927 	ctrl->tagset = set;
4928 	return 0;
4929 
4930 out_free_tag_set:
4931 	blk_mq_free_tag_set(set);
4932 	ctrl->connect_q = NULL;
4933 	return ret;
4934 }
4935 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4936 
4937 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4938 {
4939 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4940 		blk_mq_destroy_queue(ctrl->connect_q);
4941 		blk_put_queue(ctrl->connect_q);
4942 	}
4943 	blk_mq_free_tag_set(ctrl->tagset);
4944 }
4945 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4946 
4947 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4948 {
4949 	nvme_mpath_stop(ctrl);
4950 	nvme_auth_stop(ctrl);
4951 	nvme_stop_failfast_work(ctrl);
4952 	flush_work(&ctrl->async_event_work);
4953 	cancel_work_sync(&ctrl->fw_act_work);
4954 	if (ctrl->ops->stop_ctrl)
4955 		ctrl->ops->stop_ctrl(ctrl);
4956 }
4957 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4958 
4959 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4960 {
4961 	nvme_enable_aen(ctrl);
4962 
4963 	/*
4964 	 * persistent discovery controllers need to send indication to userspace
4965 	 * to re-read the discovery log page to learn about possible changes
4966 	 * that were missed. We identify persistent discovery controllers by
4967 	 * checking that they started once before, hence are reconnecting back.
4968 	 */
4969 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4970 	    nvme_discovery_ctrl(ctrl))
4971 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4972 
4973 	if (ctrl->queue_count > 1) {
4974 		nvme_queue_scan(ctrl);
4975 		nvme_unquiesce_io_queues(ctrl);
4976 		nvme_mpath_update(ctrl);
4977 	}
4978 
4979 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4980 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4981 }
4982 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4983 
4984 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4985 {
4986 	nvme_stop_keep_alive(ctrl);
4987 	nvme_hwmon_exit(ctrl);
4988 	nvme_fault_inject_fini(&ctrl->fault_inject);
4989 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4990 	cdev_device_del(&ctrl->cdev, ctrl->device);
4991 	nvme_put_ctrl(ctrl);
4992 }
4993 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4994 
4995 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4996 {
4997 	struct nvme_effects_log	*cel;
4998 	unsigned long i;
4999 
5000 	xa_for_each(&ctrl->cels, i, cel) {
5001 		xa_erase(&ctrl->cels, i);
5002 		kfree(cel);
5003 	}
5004 
5005 	xa_destroy(&ctrl->cels);
5006 }
5007 
5008 static void nvme_free_ctrl(struct device *dev)
5009 {
5010 	struct nvme_ctrl *ctrl =
5011 		container_of(dev, struct nvme_ctrl, ctrl_device);
5012 	struct nvme_subsystem *subsys = ctrl->subsys;
5013 
5014 	if (!subsys || ctrl->instance != subsys->instance)
5015 		ida_free(&nvme_instance_ida, ctrl->instance);
5016 	nvme_free_cels(ctrl);
5017 	nvme_mpath_uninit(ctrl);
5018 	cleanup_srcu_struct(&ctrl->srcu);
5019 	nvme_auth_stop(ctrl);
5020 	nvme_auth_free(ctrl);
5021 	__free_page(ctrl->discard_page);
5022 	free_opal_dev(ctrl->opal_dev);
5023 
5024 	if (subsys) {
5025 		mutex_lock(&nvme_subsystems_lock);
5026 		list_del(&ctrl->subsys_entry);
5027 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5028 		mutex_unlock(&nvme_subsystems_lock);
5029 	}
5030 
5031 	ctrl->ops->free_ctrl(ctrl);
5032 
5033 	if (subsys)
5034 		nvme_put_subsystem(subsys);
5035 }
5036 
5037 /*
5038  * Initialize a NVMe controller structures.  This needs to be called during
5039  * earliest initialization so that we have the initialized structured around
5040  * during probing.
5041  *
5042  * On success, the caller must use the nvme_put_ctrl() to release this when
5043  * needed, which also invokes the ops->free_ctrl() callback.
5044  */
5045 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5046 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
5047 {
5048 	int ret;
5049 
5050 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
5051 	ctrl->passthru_err_log_enabled = false;
5052 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5053 	spin_lock_init(&ctrl->lock);
5054 	mutex_init(&ctrl->namespaces_lock);
5055 
5056 	ret = init_srcu_struct(&ctrl->srcu);
5057 	if (ret)
5058 		return ret;
5059 
5060 	mutex_init(&ctrl->scan_lock);
5061 	INIT_LIST_HEAD(&ctrl->namespaces);
5062 	xa_init(&ctrl->cels);
5063 	ctrl->dev = dev;
5064 	ctrl->ops = ops;
5065 	ctrl->quirks = quirks;
5066 	ctrl->numa_node = NUMA_NO_NODE;
5067 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5068 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5069 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5070 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5071 	init_waitqueue_head(&ctrl->state_wq);
5072 
5073 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5074 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5075 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5076 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5077 	ctrl->ka_last_check_time = jiffies;
5078 
5079 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5080 			PAGE_SIZE);
5081 	ctrl->discard_page = alloc_page(GFP_KERNEL);
5082 	if (!ctrl->discard_page) {
5083 		ret = -ENOMEM;
5084 		goto out;
5085 	}
5086 
5087 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5088 	if (ret < 0)
5089 		goto out;
5090 	ctrl->instance = ret;
5091 
5092 	ret = nvme_auth_init_ctrl(ctrl);
5093 	if (ret)
5094 		goto out_release_instance;
5095 
5096 	nvme_mpath_init_ctrl(ctrl);
5097 
5098 	device_initialize(&ctrl->ctrl_device);
5099 	ctrl->device = &ctrl->ctrl_device;
5100 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5101 			ctrl->instance);
5102 	ctrl->device->class = &nvme_class;
5103 	ctrl->device->parent = ctrl->dev;
5104 	if (ops->dev_attr_groups)
5105 		ctrl->device->groups = ops->dev_attr_groups;
5106 	else
5107 		ctrl->device->groups = nvme_dev_attr_groups;
5108 	ctrl->device->release = nvme_free_ctrl;
5109 	dev_set_drvdata(ctrl->device, ctrl);
5110 
5111 	return ret;
5112 
5113 out_release_instance:
5114 	ida_free(&nvme_instance_ida, ctrl->instance);
5115 out:
5116 	if (ctrl->discard_page)
5117 		__free_page(ctrl->discard_page);
5118 	cleanup_srcu_struct(&ctrl->srcu);
5119 	return ret;
5120 }
5121 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5122 
5123 /*
5124  * On success, returns with an elevated controller reference and caller must
5125  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
5126  */
5127 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
5128 {
5129 	int ret;
5130 
5131 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5132 	if (ret)
5133 		return ret;
5134 
5135 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
5136 	ctrl->cdev.owner = ctrl->ops->module;
5137 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5138 	if (ret)
5139 		return ret;
5140 
5141 	/*
5142 	 * Initialize latency tolerance controls.  The sysfs files won't
5143 	 * be visible to userspace unless the device actually supports APST.
5144 	 */
5145 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5146 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5147 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5148 
5149 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5150 	nvme_get_ctrl(ctrl);
5151 
5152 	return 0;
5153 }
5154 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
5155 
5156 /* let I/O to all namespaces fail in preparation for surprise removal */
5157 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5158 {
5159 	struct nvme_ns *ns;
5160 	int srcu_idx;
5161 
5162 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5163 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5164 				 srcu_read_lock_held(&ctrl->srcu))
5165 		blk_mark_disk_dead(ns->disk);
5166 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5167 }
5168 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5169 
5170 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5171 {
5172 	struct nvme_ns *ns;
5173 	int srcu_idx;
5174 
5175 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5176 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5177 				 srcu_read_lock_held(&ctrl->srcu))
5178 		blk_mq_unfreeze_queue_non_owner(ns->queue);
5179 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5180 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5181 }
5182 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5183 
5184 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5185 {
5186 	struct nvme_ns *ns;
5187 	int srcu_idx;
5188 
5189 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5190 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5191 				 srcu_read_lock_held(&ctrl->srcu)) {
5192 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5193 		if (timeout <= 0)
5194 			break;
5195 	}
5196 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5197 	return timeout;
5198 }
5199 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5200 
5201 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5202 {
5203 	struct nvme_ns *ns;
5204 	int srcu_idx;
5205 
5206 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5207 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5208 				 srcu_read_lock_held(&ctrl->srcu))
5209 		blk_mq_freeze_queue_wait(ns->queue);
5210 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5211 }
5212 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5213 
5214 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5215 {
5216 	struct nvme_ns *ns;
5217 	int srcu_idx;
5218 
5219 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5220 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5221 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5222 				 srcu_read_lock_held(&ctrl->srcu))
5223 		/*
5224 		 * Typical non_owner use case is from pci driver, in which
5225 		 * start_freeze is called from timeout work function, but
5226 		 * unfreeze is done in reset work context
5227 		 */
5228 		blk_freeze_queue_start_non_owner(ns->queue);
5229 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5230 }
5231 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5232 
5233 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5234 {
5235 	if (!ctrl->tagset)
5236 		return;
5237 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5238 		blk_mq_quiesce_tagset(ctrl->tagset);
5239 	else
5240 		blk_mq_wait_quiesce_done(ctrl->tagset);
5241 }
5242 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5243 
5244 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5245 {
5246 	if (!ctrl->tagset)
5247 		return;
5248 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5249 		blk_mq_unquiesce_tagset(ctrl->tagset);
5250 }
5251 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5252 
5253 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5254 {
5255 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5256 		blk_mq_quiesce_queue(ctrl->admin_q);
5257 	else
5258 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5259 }
5260 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5261 
5262 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5263 {
5264 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5265 		blk_mq_unquiesce_queue(ctrl->admin_q);
5266 }
5267 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5268 
5269 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5270 {
5271 	struct nvme_ns *ns;
5272 	int srcu_idx;
5273 
5274 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5275 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5276 				 srcu_read_lock_held(&ctrl->srcu))
5277 		blk_sync_queue(ns->queue);
5278 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5279 }
5280 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5281 
5282 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5283 {
5284 	nvme_sync_io_queues(ctrl);
5285 	if (ctrl->admin_q)
5286 		blk_sync_queue(ctrl->admin_q);
5287 }
5288 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5289 
5290 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5291 {
5292 	if (file->f_op != &nvme_dev_fops)
5293 		return NULL;
5294 	return file->private_data;
5295 }
5296 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5297 
5298 /*
5299  * Check we didn't inadvertently grow the command structure sizes:
5300  */
5301 static inline void _nvme_check_size(void)
5302 {
5303 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5304 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5305 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5306 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5307 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5308 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5309 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5310 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5311 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5312 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5313 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5314 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5315 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5316 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5317 			NVME_IDENTIFY_DATA_SIZE);
5318 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5319 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5320 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5321 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5322 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5323 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5324 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5325 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5326 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5327 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5328 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5329 }
5330 
5331 
5332 static int __init nvme_core_init(void)
5333 {
5334 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5335 	int result = -ENOMEM;
5336 
5337 	_nvme_check_size();
5338 
5339 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5340 	if (!nvme_wq)
5341 		goto out;
5342 
5343 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5344 	if (!nvme_reset_wq)
5345 		goto destroy_wq;
5346 
5347 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5348 	if (!nvme_delete_wq)
5349 		goto destroy_reset_wq;
5350 
5351 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5352 			NVME_MINORS, "nvme");
5353 	if (result < 0)
5354 		goto destroy_delete_wq;
5355 
5356 	result = class_register(&nvme_class);
5357 	if (result)
5358 		goto unregister_chrdev;
5359 
5360 	result = class_register(&nvme_subsys_class);
5361 	if (result)
5362 		goto destroy_class;
5363 
5364 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5365 				     "nvme-generic");
5366 	if (result < 0)
5367 		goto destroy_subsys_class;
5368 
5369 	result = class_register(&nvme_ns_chr_class);
5370 	if (result)
5371 		goto unregister_generic_ns;
5372 
5373 	result = nvme_init_auth();
5374 	if (result)
5375 		goto destroy_ns_chr;
5376 	return 0;
5377 
5378 destroy_ns_chr:
5379 	class_unregister(&nvme_ns_chr_class);
5380 unregister_generic_ns:
5381 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5382 destroy_subsys_class:
5383 	class_unregister(&nvme_subsys_class);
5384 destroy_class:
5385 	class_unregister(&nvme_class);
5386 unregister_chrdev:
5387 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5388 destroy_delete_wq:
5389 	destroy_workqueue(nvme_delete_wq);
5390 destroy_reset_wq:
5391 	destroy_workqueue(nvme_reset_wq);
5392 destroy_wq:
5393 	destroy_workqueue(nvme_wq);
5394 out:
5395 	return result;
5396 }
5397 
5398 static void __exit nvme_core_exit(void)
5399 {
5400 	nvme_exit_auth();
5401 	class_unregister(&nvme_ns_chr_class);
5402 	class_unregister(&nvme_subsys_class);
5403 	class_unregister(&nvme_class);
5404 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5405 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5406 	destroy_workqueue(nvme_delete_wq);
5407 	destroy_workqueue(nvme_reset_wq);
5408 	destroy_workqueue(nvme_wq);
5409 	ida_destroy(&nvme_ns_chr_minor_ida);
5410 	ida_destroy(&nvme_instance_ida);
5411 }
5412 
5413 MODULE_LICENSE("GPL");
5414 MODULE_VERSION("1.0");
5415 MODULE_DESCRIPTION("NVMe host core framework");
5416 module_init(nvme_core_init);
5417 module_exit(nvme_core_exit);
5418