1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/list_sort.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static unsigned long apst_primary_timeout_ms = 100; 61 module_param(apst_primary_timeout_ms, ulong, 0644); 62 MODULE_PARM_DESC(apst_primary_timeout_ms, 63 "primary APST timeout in ms"); 64 65 static unsigned long apst_secondary_timeout_ms = 2000; 66 module_param(apst_secondary_timeout_ms, ulong, 0644); 67 MODULE_PARM_DESC(apst_secondary_timeout_ms, 68 "secondary APST timeout in ms"); 69 70 static unsigned long apst_primary_latency_tol_us = 15000; 71 module_param(apst_primary_latency_tol_us, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_latency_tol_us, 73 "primary APST latency tolerance in us"); 74 75 static unsigned long apst_secondary_latency_tol_us = 100000; 76 module_param(apst_secondary_latency_tol_us, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 78 "secondary APST latency tolerance in us"); 79 80 static bool streams; 81 module_param(streams, bool, 0644); 82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 83 84 /* 85 * nvme_wq - hosts nvme related works that are not reset or delete 86 * nvme_reset_wq - hosts nvme reset works 87 * nvme_delete_wq - hosts nvme delete works 88 * 89 * nvme_wq will host works such as scan, aen handling, fw activation, 90 * keep-alive, periodic reconnects etc. nvme_reset_wq 91 * runs reset works which also flush works hosted on nvme_wq for 92 * serialization purposes. nvme_delete_wq host controller deletion 93 * works which flush reset works for serialization. 94 */ 95 struct workqueue_struct *nvme_wq; 96 EXPORT_SYMBOL_GPL(nvme_wq); 97 98 struct workqueue_struct *nvme_reset_wq; 99 EXPORT_SYMBOL_GPL(nvme_reset_wq); 100 101 struct workqueue_struct *nvme_delete_wq; 102 EXPORT_SYMBOL_GPL(nvme_delete_wq); 103 104 static LIST_HEAD(nvme_subsystems); 105 static DEFINE_MUTEX(nvme_subsystems_lock); 106 107 static DEFINE_IDA(nvme_instance_ida); 108 static dev_t nvme_ctrl_base_chr_devt; 109 static struct class *nvme_class; 110 static struct class *nvme_subsys_class; 111 112 static DEFINE_IDA(nvme_ns_chr_minor_ida); 113 static dev_t nvme_ns_chr_devt; 114 static struct class *nvme_ns_chr_class; 115 116 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 118 unsigned nsid); 119 120 /* 121 * Prepare a queue for teardown. 122 * 123 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 124 * the capacity to 0 after that to avoid blocking dispatchers that may be 125 * holding bd_butex. This will end buffered writers dirtying pages that can't 126 * be synced. 127 */ 128 static void nvme_set_queue_dying(struct nvme_ns *ns) 129 { 130 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 131 return; 132 133 blk_set_queue_dying(ns->queue); 134 blk_mq_unquiesce_queue(ns->queue); 135 136 set_capacity_and_notify(ns->disk, 0); 137 } 138 139 void nvme_queue_scan(struct nvme_ctrl *ctrl) 140 { 141 /* 142 * Only new queue scan work when admin and IO queues are both alive 143 */ 144 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 145 queue_work(nvme_wq, &ctrl->scan_work); 146 } 147 148 /* 149 * Use this function to proceed with scheduling reset_work for a controller 150 * that had previously been set to the resetting state. This is intended for 151 * code paths that can't be interrupted by other reset attempts. A hot removal 152 * may prevent this from succeeding. 153 */ 154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 155 { 156 if (ctrl->state != NVME_CTRL_RESETTING) 157 return -EBUSY; 158 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 159 return -EBUSY; 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 163 164 static void nvme_failfast_work(struct work_struct *work) 165 { 166 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 167 struct nvme_ctrl, failfast_work); 168 169 if (ctrl->state != NVME_CTRL_CONNECTING) 170 return; 171 172 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 173 dev_info(ctrl->device, "failfast expired\n"); 174 nvme_kick_requeue_lists(ctrl); 175 } 176 177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 178 { 179 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 180 return; 181 182 schedule_delayed_work(&ctrl->failfast_work, 183 ctrl->opts->fast_io_fail_tmo * HZ); 184 } 185 186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 187 { 188 if (!ctrl->opts) 189 return; 190 191 cancel_delayed_work_sync(&ctrl->failfast_work); 192 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 193 } 194 195 196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 197 { 198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 199 return -EBUSY; 200 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 201 return -EBUSY; 202 return 0; 203 } 204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 205 206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 207 { 208 int ret; 209 210 ret = nvme_reset_ctrl(ctrl); 211 if (!ret) { 212 flush_work(&ctrl->reset_work); 213 if (ctrl->state != NVME_CTRL_LIVE) 214 ret = -ENETRESET; 215 } 216 217 return ret; 218 } 219 220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 221 { 222 dev_info(ctrl->device, 223 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 224 225 flush_work(&ctrl->reset_work); 226 nvme_stop_ctrl(ctrl); 227 nvme_remove_namespaces(ctrl); 228 ctrl->ops->delete_ctrl(ctrl); 229 nvme_uninit_ctrl(ctrl); 230 } 231 232 static void nvme_delete_ctrl_work(struct work_struct *work) 233 { 234 struct nvme_ctrl *ctrl = 235 container_of(work, struct nvme_ctrl, delete_work); 236 237 nvme_do_delete_ctrl(ctrl); 238 } 239 240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 241 { 242 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 243 return -EBUSY; 244 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 245 return -EBUSY; 246 return 0; 247 } 248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 249 250 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 251 { 252 /* 253 * Keep a reference until nvme_do_delete_ctrl() complete, 254 * since ->delete_ctrl can free the controller. 255 */ 256 nvme_get_ctrl(ctrl); 257 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 258 nvme_do_delete_ctrl(ctrl); 259 nvme_put_ctrl(ctrl); 260 } 261 262 static blk_status_t nvme_error_status(u16 status) 263 { 264 switch (status & 0x7ff) { 265 case NVME_SC_SUCCESS: 266 return BLK_STS_OK; 267 case NVME_SC_CAP_EXCEEDED: 268 return BLK_STS_NOSPC; 269 case NVME_SC_LBA_RANGE: 270 case NVME_SC_CMD_INTERRUPTED: 271 case NVME_SC_NS_NOT_READY: 272 return BLK_STS_TARGET; 273 case NVME_SC_BAD_ATTRIBUTES: 274 case NVME_SC_ONCS_NOT_SUPPORTED: 275 case NVME_SC_INVALID_OPCODE: 276 case NVME_SC_INVALID_FIELD: 277 case NVME_SC_INVALID_NS: 278 return BLK_STS_NOTSUPP; 279 case NVME_SC_WRITE_FAULT: 280 case NVME_SC_READ_ERROR: 281 case NVME_SC_UNWRITTEN_BLOCK: 282 case NVME_SC_ACCESS_DENIED: 283 case NVME_SC_READ_ONLY: 284 case NVME_SC_COMPARE_FAILED: 285 return BLK_STS_MEDIUM; 286 case NVME_SC_GUARD_CHECK: 287 case NVME_SC_APPTAG_CHECK: 288 case NVME_SC_REFTAG_CHECK: 289 case NVME_SC_INVALID_PI: 290 return BLK_STS_PROTECTION; 291 case NVME_SC_RESERVATION_CONFLICT: 292 return BLK_STS_NEXUS; 293 case NVME_SC_HOST_PATH_ERROR: 294 return BLK_STS_TRANSPORT; 295 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 296 return BLK_STS_ZONE_ACTIVE_RESOURCE; 297 case NVME_SC_ZONE_TOO_MANY_OPEN: 298 return BLK_STS_ZONE_OPEN_RESOURCE; 299 default: 300 return BLK_STS_IOERR; 301 } 302 } 303 304 static void nvme_retry_req(struct request *req) 305 { 306 unsigned long delay = 0; 307 u16 crd; 308 309 /* The mask and shift result must be <= 3 */ 310 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 311 if (crd) 312 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 313 314 nvme_req(req)->retries++; 315 blk_mq_requeue_request(req, false); 316 blk_mq_delay_kick_requeue_list(req->q, delay); 317 } 318 319 enum nvme_disposition { 320 COMPLETE, 321 RETRY, 322 FAILOVER, 323 }; 324 325 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 326 { 327 if (likely(nvme_req(req)->status == 0)) 328 return COMPLETE; 329 330 if (blk_noretry_request(req) || 331 (nvme_req(req)->status & NVME_SC_DNR) || 332 nvme_req(req)->retries >= nvme_max_retries) 333 return COMPLETE; 334 335 if (req->cmd_flags & REQ_NVME_MPATH) { 336 if (nvme_is_path_error(nvme_req(req)->status) || 337 blk_queue_dying(req->q)) 338 return FAILOVER; 339 } else { 340 if (blk_queue_dying(req->q)) 341 return COMPLETE; 342 } 343 344 return RETRY; 345 } 346 347 static inline void nvme_end_req(struct request *req) 348 { 349 blk_status_t status = nvme_error_status(nvme_req(req)->status); 350 351 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 352 req_op(req) == REQ_OP_ZONE_APPEND) 353 req->__sector = nvme_lba_to_sect(req->q->queuedata, 354 le64_to_cpu(nvme_req(req)->result.u64)); 355 356 nvme_trace_bio_complete(req); 357 blk_mq_end_request(req, status); 358 } 359 360 void nvme_complete_rq(struct request *req) 361 { 362 trace_nvme_complete_rq(req); 363 nvme_cleanup_cmd(req); 364 365 if (nvme_req(req)->ctrl->kas) 366 nvme_req(req)->ctrl->comp_seen = true; 367 368 switch (nvme_decide_disposition(req)) { 369 case COMPLETE: 370 nvme_end_req(req); 371 return; 372 case RETRY: 373 nvme_retry_req(req); 374 return; 375 case FAILOVER: 376 nvme_failover_req(req); 377 return; 378 } 379 } 380 EXPORT_SYMBOL_GPL(nvme_complete_rq); 381 382 /* 383 * Called to unwind from ->queue_rq on a failed command submission so that the 384 * multipathing code gets called to potentially failover to another path. 385 * The caller needs to unwind all transport specific resource allocations and 386 * must return propagate the return value. 387 */ 388 blk_status_t nvme_host_path_error(struct request *req) 389 { 390 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 391 blk_mq_set_request_complete(req); 392 nvme_complete_rq(req); 393 return BLK_STS_OK; 394 } 395 EXPORT_SYMBOL_GPL(nvme_host_path_error); 396 397 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 398 { 399 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 400 "Cancelling I/O %d", req->tag); 401 402 /* don't abort one completed request */ 403 if (blk_mq_request_completed(req)) 404 return true; 405 406 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 407 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 408 blk_mq_complete_request(req); 409 return true; 410 } 411 EXPORT_SYMBOL_GPL(nvme_cancel_request); 412 413 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 414 { 415 if (ctrl->tagset) { 416 blk_mq_tagset_busy_iter(ctrl->tagset, 417 nvme_cancel_request, ctrl); 418 blk_mq_tagset_wait_completed_request(ctrl->tagset); 419 } 420 } 421 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 422 423 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 424 { 425 if (ctrl->admin_tagset) { 426 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 427 nvme_cancel_request, ctrl); 428 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 429 } 430 } 431 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 432 433 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 434 enum nvme_ctrl_state new_state) 435 { 436 enum nvme_ctrl_state old_state; 437 unsigned long flags; 438 bool changed = false; 439 440 spin_lock_irqsave(&ctrl->lock, flags); 441 442 old_state = ctrl->state; 443 switch (new_state) { 444 case NVME_CTRL_LIVE: 445 switch (old_state) { 446 case NVME_CTRL_NEW: 447 case NVME_CTRL_RESETTING: 448 case NVME_CTRL_CONNECTING: 449 changed = true; 450 fallthrough; 451 default: 452 break; 453 } 454 break; 455 case NVME_CTRL_RESETTING: 456 switch (old_state) { 457 case NVME_CTRL_NEW: 458 case NVME_CTRL_LIVE: 459 changed = true; 460 fallthrough; 461 default: 462 break; 463 } 464 break; 465 case NVME_CTRL_CONNECTING: 466 switch (old_state) { 467 case NVME_CTRL_NEW: 468 case NVME_CTRL_RESETTING: 469 changed = true; 470 fallthrough; 471 default: 472 break; 473 } 474 break; 475 case NVME_CTRL_DELETING: 476 switch (old_state) { 477 case NVME_CTRL_LIVE: 478 case NVME_CTRL_RESETTING: 479 case NVME_CTRL_CONNECTING: 480 changed = true; 481 fallthrough; 482 default: 483 break; 484 } 485 break; 486 case NVME_CTRL_DELETING_NOIO: 487 switch (old_state) { 488 case NVME_CTRL_DELETING: 489 case NVME_CTRL_DEAD: 490 changed = true; 491 fallthrough; 492 default: 493 break; 494 } 495 break; 496 case NVME_CTRL_DEAD: 497 switch (old_state) { 498 case NVME_CTRL_DELETING: 499 changed = true; 500 fallthrough; 501 default: 502 break; 503 } 504 break; 505 default: 506 break; 507 } 508 509 if (changed) { 510 ctrl->state = new_state; 511 wake_up_all(&ctrl->state_wq); 512 } 513 514 spin_unlock_irqrestore(&ctrl->lock, flags); 515 if (!changed) 516 return false; 517 518 if (ctrl->state == NVME_CTRL_LIVE) { 519 if (old_state == NVME_CTRL_CONNECTING) 520 nvme_stop_failfast_work(ctrl); 521 nvme_kick_requeue_lists(ctrl); 522 } else if (ctrl->state == NVME_CTRL_CONNECTING && 523 old_state == NVME_CTRL_RESETTING) { 524 nvme_start_failfast_work(ctrl); 525 } 526 return changed; 527 } 528 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 529 530 /* 531 * Returns true for sink states that can't ever transition back to live. 532 */ 533 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 534 { 535 switch (ctrl->state) { 536 case NVME_CTRL_NEW: 537 case NVME_CTRL_LIVE: 538 case NVME_CTRL_RESETTING: 539 case NVME_CTRL_CONNECTING: 540 return false; 541 case NVME_CTRL_DELETING: 542 case NVME_CTRL_DELETING_NOIO: 543 case NVME_CTRL_DEAD: 544 return true; 545 default: 546 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 547 return true; 548 } 549 } 550 551 /* 552 * Waits for the controller state to be resetting, or returns false if it is 553 * not possible to ever transition to that state. 554 */ 555 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 556 { 557 wait_event(ctrl->state_wq, 558 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 559 nvme_state_terminal(ctrl)); 560 return ctrl->state == NVME_CTRL_RESETTING; 561 } 562 EXPORT_SYMBOL_GPL(nvme_wait_reset); 563 564 static void nvme_free_ns_head(struct kref *ref) 565 { 566 struct nvme_ns_head *head = 567 container_of(ref, struct nvme_ns_head, ref); 568 569 nvme_mpath_remove_disk(head); 570 ida_simple_remove(&head->subsys->ns_ida, head->instance); 571 cleanup_srcu_struct(&head->srcu); 572 nvme_put_subsystem(head->subsys); 573 kfree(head); 574 } 575 576 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 577 { 578 return kref_get_unless_zero(&head->ref); 579 } 580 581 void nvme_put_ns_head(struct nvme_ns_head *head) 582 { 583 kref_put(&head->ref, nvme_free_ns_head); 584 } 585 586 static void nvme_free_ns(struct kref *kref) 587 { 588 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 589 590 if (ns->ndev) 591 nvme_nvm_unregister(ns); 592 593 put_disk(ns->disk); 594 nvme_put_ns_head(ns->head); 595 nvme_put_ctrl(ns->ctrl); 596 kfree(ns); 597 } 598 599 static inline bool nvme_get_ns(struct nvme_ns *ns) 600 { 601 return kref_get_unless_zero(&ns->kref); 602 } 603 604 void nvme_put_ns(struct nvme_ns *ns) 605 { 606 kref_put(&ns->kref, nvme_free_ns); 607 } 608 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 609 610 static inline void nvme_clear_nvme_request(struct request *req) 611 { 612 nvme_req(req)->status = 0; 613 nvme_req(req)->retries = 0; 614 nvme_req(req)->flags = 0; 615 req->rq_flags |= RQF_DONTPREP; 616 } 617 618 static inline unsigned int nvme_req_op(struct nvme_command *cmd) 619 { 620 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 621 } 622 623 static inline void nvme_init_request(struct request *req, 624 struct nvme_command *cmd) 625 { 626 if (req->q->queuedata) 627 req->timeout = NVME_IO_TIMEOUT; 628 else /* no queuedata implies admin queue */ 629 req->timeout = NVME_ADMIN_TIMEOUT; 630 631 /* passthru commands should let the driver set the SGL flags */ 632 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 633 634 req->cmd_flags |= REQ_FAILFAST_DRIVER; 635 if (req->mq_hctx->type == HCTX_TYPE_POLL) 636 req->cmd_flags |= REQ_HIPRI; 637 nvme_clear_nvme_request(req); 638 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 639 } 640 641 struct request *nvme_alloc_request(struct request_queue *q, 642 struct nvme_command *cmd, blk_mq_req_flags_t flags) 643 { 644 struct request *req; 645 646 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 647 if (!IS_ERR(req)) 648 nvme_init_request(req, cmd); 649 return req; 650 } 651 EXPORT_SYMBOL_GPL(nvme_alloc_request); 652 653 static struct request *nvme_alloc_request_qid(struct request_queue *q, 654 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 655 { 656 struct request *req; 657 658 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 659 qid ? qid - 1 : 0); 660 if (!IS_ERR(req)) 661 nvme_init_request(req, cmd); 662 return req; 663 } 664 665 /* 666 * For something we're not in a state to send to the device the default action 667 * is to busy it and retry it after the controller state is recovered. However, 668 * if the controller is deleting or if anything is marked for failfast or 669 * nvme multipath it is immediately failed. 670 * 671 * Note: commands used to initialize the controller will be marked for failfast. 672 * Note: nvme cli/ioctl commands are marked for failfast. 673 */ 674 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 675 struct request *rq) 676 { 677 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 678 ctrl->state != NVME_CTRL_DEAD && 679 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 680 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 681 return BLK_STS_RESOURCE; 682 return nvme_host_path_error(rq); 683 } 684 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 685 686 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 687 bool queue_live) 688 { 689 struct nvme_request *req = nvme_req(rq); 690 691 /* 692 * currently we have a problem sending passthru commands 693 * on the admin_q if the controller is not LIVE because we can't 694 * make sure that they are going out after the admin connect, 695 * controller enable and/or other commands in the initialization 696 * sequence. until the controller will be LIVE, fail with 697 * BLK_STS_RESOURCE so that they will be rescheduled. 698 */ 699 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 700 return false; 701 702 if (ctrl->ops->flags & NVME_F_FABRICS) { 703 /* 704 * Only allow commands on a live queue, except for the connect 705 * command, which is require to set the queue live in the 706 * appropinquate states. 707 */ 708 switch (ctrl->state) { 709 case NVME_CTRL_CONNECTING: 710 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 711 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 712 return true; 713 break; 714 default: 715 break; 716 case NVME_CTRL_DEAD: 717 return false; 718 } 719 } 720 721 return queue_live; 722 } 723 EXPORT_SYMBOL_GPL(__nvme_check_ready); 724 725 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 726 { 727 struct nvme_command c = { }; 728 729 c.directive.opcode = nvme_admin_directive_send; 730 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 731 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 732 c.directive.dtype = NVME_DIR_IDENTIFY; 733 c.directive.tdtype = NVME_DIR_STREAMS; 734 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 735 736 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 737 } 738 739 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 740 { 741 return nvme_toggle_streams(ctrl, false); 742 } 743 744 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 745 { 746 return nvme_toggle_streams(ctrl, true); 747 } 748 749 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 750 struct streams_directive_params *s, u32 nsid) 751 { 752 struct nvme_command c = { }; 753 754 memset(s, 0, sizeof(*s)); 755 756 c.directive.opcode = nvme_admin_directive_recv; 757 c.directive.nsid = cpu_to_le32(nsid); 758 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 759 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 760 c.directive.dtype = NVME_DIR_STREAMS; 761 762 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 763 } 764 765 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 766 { 767 struct streams_directive_params s; 768 int ret; 769 770 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 771 return 0; 772 if (!streams) 773 return 0; 774 775 ret = nvme_enable_streams(ctrl); 776 if (ret) 777 return ret; 778 779 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 780 if (ret) 781 goto out_disable_stream; 782 783 ctrl->nssa = le16_to_cpu(s.nssa); 784 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 785 dev_info(ctrl->device, "too few streams (%u) available\n", 786 ctrl->nssa); 787 goto out_disable_stream; 788 } 789 790 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 791 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 792 return 0; 793 794 out_disable_stream: 795 nvme_disable_streams(ctrl); 796 return ret; 797 } 798 799 /* 800 * Check if 'req' has a write hint associated with it. If it does, assign 801 * a valid namespace stream to the write. 802 */ 803 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 804 struct request *req, u16 *control, 805 u32 *dsmgmt) 806 { 807 enum rw_hint streamid = req->write_hint; 808 809 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 810 streamid = 0; 811 else { 812 streamid--; 813 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 814 return; 815 816 *control |= NVME_RW_DTYPE_STREAMS; 817 *dsmgmt |= streamid << 16; 818 } 819 820 if (streamid < ARRAY_SIZE(req->q->write_hints)) 821 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 822 } 823 824 static inline void nvme_setup_flush(struct nvme_ns *ns, 825 struct nvme_command *cmnd) 826 { 827 cmnd->common.opcode = nvme_cmd_flush; 828 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 829 } 830 831 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 832 struct nvme_command *cmnd) 833 { 834 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 835 struct nvme_dsm_range *range; 836 struct bio *bio; 837 838 /* 839 * Some devices do not consider the DSM 'Number of Ranges' field when 840 * determining how much data to DMA. Always allocate memory for maximum 841 * number of segments to prevent device reading beyond end of buffer. 842 */ 843 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 844 845 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 846 if (!range) { 847 /* 848 * If we fail allocation our range, fallback to the controller 849 * discard page. If that's also busy, it's safe to return 850 * busy, as we know we can make progress once that's freed. 851 */ 852 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 853 return BLK_STS_RESOURCE; 854 855 range = page_address(ns->ctrl->discard_page); 856 } 857 858 __rq_for_each_bio(bio, req) { 859 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 860 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 861 862 if (n < segments) { 863 range[n].cattr = cpu_to_le32(0); 864 range[n].nlb = cpu_to_le32(nlb); 865 range[n].slba = cpu_to_le64(slba); 866 } 867 n++; 868 } 869 870 if (WARN_ON_ONCE(n != segments)) { 871 if (virt_to_page(range) == ns->ctrl->discard_page) 872 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 873 else 874 kfree(range); 875 return BLK_STS_IOERR; 876 } 877 878 cmnd->dsm.opcode = nvme_cmd_dsm; 879 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 880 cmnd->dsm.nr = cpu_to_le32(segments - 1); 881 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 882 883 req->special_vec.bv_page = virt_to_page(range); 884 req->special_vec.bv_offset = offset_in_page(range); 885 req->special_vec.bv_len = alloc_size; 886 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 887 888 return BLK_STS_OK; 889 } 890 891 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 892 struct request *req, struct nvme_command *cmnd) 893 { 894 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 895 return nvme_setup_discard(ns, req, cmnd); 896 897 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 898 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 899 cmnd->write_zeroes.slba = 900 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 901 cmnd->write_zeroes.length = 902 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 903 cmnd->write_zeroes.control = 0; 904 return BLK_STS_OK; 905 } 906 907 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 908 struct request *req, struct nvme_command *cmnd, 909 enum nvme_opcode op) 910 { 911 struct nvme_ctrl *ctrl = ns->ctrl; 912 u16 control = 0; 913 u32 dsmgmt = 0; 914 915 if (req->cmd_flags & REQ_FUA) 916 control |= NVME_RW_FUA; 917 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 918 control |= NVME_RW_LR; 919 920 if (req->cmd_flags & REQ_RAHEAD) 921 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 922 923 cmnd->rw.opcode = op; 924 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 925 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 926 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 927 928 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 929 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 930 931 if (ns->ms) { 932 /* 933 * If formated with metadata, the block layer always provides a 934 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 935 * we enable the PRACT bit for protection information or set the 936 * namespace capacity to zero to prevent any I/O. 937 */ 938 if (!blk_integrity_rq(req)) { 939 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 940 return BLK_STS_NOTSUPP; 941 control |= NVME_RW_PRINFO_PRACT; 942 } 943 944 switch (ns->pi_type) { 945 case NVME_NS_DPS_PI_TYPE3: 946 control |= NVME_RW_PRINFO_PRCHK_GUARD; 947 break; 948 case NVME_NS_DPS_PI_TYPE1: 949 case NVME_NS_DPS_PI_TYPE2: 950 control |= NVME_RW_PRINFO_PRCHK_GUARD | 951 NVME_RW_PRINFO_PRCHK_REF; 952 if (op == nvme_cmd_zone_append) 953 control |= NVME_RW_APPEND_PIREMAP; 954 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 955 break; 956 } 957 } 958 959 cmnd->rw.control = cpu_to_le16(control); 960 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 961 return 0; 962 } 963 964 void nvme_cleanup_cmd(struct request *req) 965 { 966 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 967 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 968 struct page *page = req->special_vec.bv_page; 969 970 if (page == ctrl->discard_page) 971 clear_bit_unlock(0, &ctrl->discard_page_busy); 972 else 973 kfree(page_address(page) + req->special_vec.bv_offset); 974 } 975 } 976 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 977 978 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 979 { 980 struct nvme_command *cmd = nvme_req(req)->cmd; 981 blk_status_t ret = BLK_STS_OK; 982 983 if (!(req->rq_flags & RQF_DONTPREP)) { 984 nvme_clear_nvme_request(req); 985 memset(cmd, 0, sizeof(*cmd)); 986 } 987 988 switch (req_op(req)) { 989 case REQ_OP_DRV_IN: 990 case REQ_OP_DRV_OUT: 991 /* these are setup prior to execution in nvme_init_request() */ 992 break; 993 case REQ_OP_FLUSH: 994 nvme_setup_flush(ns, cmd); 995 break; 996 case REQ_OP_ZONE_RESET_ALL: 997 case REQ_OP_ZONE_RESET: 998 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 999 break; 1000 case REQ_OP_ZONE_OPEN: 1001 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1002 break; 1003 case REQ_OP_ZONE_CLOSE: 1004 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1005 break; 1006 case REQ_OP_ZONE_FINISH: 1007 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1008 break; 1009 case REQ_OP_WRITE_ZEROES: 1010 ret = nvme_setup_write_zeroes(ns, req, cmd); 1011 break; 1012 case REQ_OP_DISCARD: 1013 ret = nvme_setup_discard(ns, req, cmd); 1014 break; 1015 case REQ_OP_READ: 1016 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1017 break; 1018 case REQ_OP_WRITE: 1019 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1020 break; 1021 case REQ_OP_ZONE_APPEND: 1022 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1023 break; 1024 default: 1025 WARN_ON_ONCE(1); 1026 return BLK_STS_IOERR; 1027 } 1028 1029 cmd->common.command_id = req->tag; 1030 trace_nvme_setup_cmd(req, cmd); 1031 return ret; 1032 } 1033 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1034 1035 /* 1036 * Return values: 1037 * 0: success 1038 * >0: nvme controller's cqe status response 1039 * <0: kernel error in lieu of controller response 1040 */ 1041 static int nvme_execute_rq(struct gendisk *disk, struct request *rq, 1042 bool at_head) 1043 { 1044 blk_status_t status; 1045 1046 status = blk_execute_rq(disk, rq, at_head); 1047 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1048 return -EINTR; 1049 if (nvme_req(rq)->status) 1050 return nvme_req(rq)->status; 1051 return blk_status_to_errno(status); 1052 } 1053 1054 /* 1055 * Returns 0 on success. If the result is negative, it's a Linux error code; 1056 * if the result is positive, it's an NVM Express status code 1057 */ 1058 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1059 union nvme_result *result, void *buffer, unsigned bufflen, 1060 unsigned timeout, int qid, int at_head, 1061 blk_mq_req_flags_t flags) 1062 { 1063 struct request *req; 1064 int ret; 1065 1066 if (qid == NVME_QID_ANY) 1067 req = nvme_alloc_request(q, cmd, flags); 1068 else 1069 req = nvme_alloc_request_qid(q, cmd, flags, qid); 1070 if (IS_ERR(req)) 1071 return PTR_ERR(req); 1072 1073 if (timeout) 1074 req->timeout = timeout; 1075 1076 if (buffer && bufflen) { 1077 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1078 if (ret) 1079 goto out; 1080 } 1081 1082 ret = nvme_execute_rq(NULL, req, at_head); 1083 if (result && ret >= 0) 1084 *result = nvme_req(req)->result; 1085 out: 1086 blk_mq_free_request(req); 1087 return ret; 1088 } 1089 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1090 1091 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1092 void *buffer, unsigned bufflen) 1093 { 1094 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1095 NVME_QID_ANY, 0, 0); 1096 } 1097 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1098 1099 static u32 nvme_known_admin_effects(u8 opcode) 1100 { 1101 switch (opcode) { 1102 case nvme_admin_format_nvm: 1103 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1104 NVME_CMD_EFFECTS_CSE_MASK; 1105 case nvme_admin_sanitize_nvm: 1106 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1107 default: 1108 break; 1109 } 1110 return 0; 1111 } 1112 1113 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1114 { 1115 u32 effects = 0; 1116 1117 if (ns) { 1118 if (ns->head->effects) 1119 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1120 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1121 dev_warn_once(ctrl->device, 1122 "IO command:%02x has unhandled effects:%08x\n", 1123 opcode, effects); 1124 return 0; 1125 } 1126 1127 if (ctrl->effects) 1128 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1129 effects |= nvme_known_admin_effects(opcode); 1130 1131 return effects; 1132 } 1133 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1134 1135 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1136 u8 opcode) 1137 { 1138 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1139 1140 /* 1141 * For simplicity, IO to all namespaces is quiesced even if the command 1142 * effects say only one namespace is affected. 1143 */ 1144 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1145 mutex_lock(&ctrl->scan_lock); 1146 mutex_lock(&ctrl->subsys->lock); 1147 nvme_mpath_start_freeze(ctrl->subsys); 1148 nvme_mpath_wait_freeze(ctrl->subsys); 1149 nvme_start_freeze(ctrl); 1150 nvme_wait_freeze(ctrl); 1151 } 1152 return effects; 1153 } 1154 1155 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1156 { 1157 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1158 nvme_unfreeze(ctrl); 1159 nvme_mpath_unfreeze(ctrl->subsys); 1160 mutex_unlock(&ctrl->subsys->lock); 1161 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1162 mutex_unlock(&ctrl->scan_lock); 1163 } 1164 if (effects & NVME_CMD_EFFECTS_CCC) 1165 nvme_init_ctrl_finish(ctrl); 1166 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1167 nvme_queue_scan(ctrl); 1168 flush_work(&ctrl->scan_work); 1169 } 1170 } 1171 1172 int nvme_execute_passthru_rq(struct request *rq) 1173 { 1174 struct nvme_command *cmd = nvme_req(rq)->cmd; 1175 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1176 struct nvme_ns *ns = rq->q->queuedata; 1177 struct gendisk *disk = ns ? ns->disk : NULL; 1178 u32 effects; 1179 int ret; 1180 1181 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1182 ret = nvme_execute_rq(disk, rq, false); 1183 if (effects) /* nothing to be done for zero cmd effects */ 1184 nvme_passthru_end(ctrl, effects); 1185 1186 return ret; 1187 } 1188 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1189 1190 /* 1191 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1192 * 1193 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1194 * accounting for transport roundtrip times [..]. 1195 */ 1196 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1197 { 1198 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1199 } 1200 1201 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1202 { 1203 struct nvme_ctrl *ctrl = rq->end_io_data; 1204 unsigned long flags; 1205 bool startka = false; 1206 1207 blk_mq_free_request(rq); 1208 1209 if (status) { 1210 dev_err(ctrl->device, 1211 "failed nvme_keep_alive_end_io error=%d\n", 1212 status); 1213 return; 1214 } 1215 1216 ctrl->comp_seen = false; 1217 spin_lock_irqsave(&ctrl->lock, flags); 1218 if (ctrl->state == NVME_CTRL_LIVE || 1219 ctrl->state == NVME_CTRL_CONNECTING) 1220 startka = true; 1221 spin_unlock_irqrestore(&ctrl->lock, flags); 1222 if (startka) 1223 nvme_queue_keep_alive_work(ctrl); 1224 } 1225 1226 static void nvme_keep_alive_work(struct work_struct *work) 1227 { 1228 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1229 struct nvme_ctrl, ka_work); 1230 bool comp_seen = ctrl->comp_seen; 1231 struct request *rq; 1232 1233 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1234 dev_dbg(ctrl->device, 1235 "reschedule traffic based keep-alive timer\n"); 1236 ctrl->comp_seen = false; 1237 nvme_queue_keep_alive_work(ctrl); 1238 return; 1239 } 1240 1241 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, 1242 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1243 if (IS_ERR(rq)) { 1244 /* allocation failure, reset the controller */ 1245 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1246 nvme_reset_ctrl(ctrl); 1247 return; 1248 } 1249 1250 rq->timeout = ctrl->kato * HZ; 1251 rq->end_io_data = ctrl; 1252 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io); 1253 } 1254 1255 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1256 { 1257 if (unlikely(ctrl->kato == 0)) 1258 return; 1259 1260 nvme_queue_keep_alive_work(ctrl); 1261 } 1262 1263 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1264 { 1265 if (unlikely(ctrl->kato == 0)) 1266 return; 1267 1268 cancel_delayed_work_sync(&ctrl->ka_work); 1269 } 1270 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1271 1272 /* 1273 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1274 * flag, thus sending any new CNS opcodes has a big chance of not working. 1275 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1276 * (but not for any later version). 1277 */ 1278 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1279 { 1280 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1281 return ctrl->vs < NVME_VS(1, 2, 0); 1282 return ctrl->vs < NVME_VS(1, 1, 0); 1283 } 1284 1285 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1286 { 1287 struct nvme_command c = { }; 1288 int error; 1289 1290 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1291 c.identify.opcode = nvme_admin_identify; 1292 c.identify.cns = NVME_ID_CNS_CTRL; 1293 1294 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1295 if (!*id) 1296 return -ENOMEM; 1297 1298 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1299 sizeof(struct nvme_id_ctrl)); 1300 if (error) 1301 kfree(*id); 1302 return error; 1303 } 1304 1305 static bool nvme_multi_css(struct nvme_ctrl *ctrl) 1306 { 1307 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI; 1308 } 1309 1310 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1311 struct nvme_ns_id_desc *cur, bool *csi_seen) 1312 { 1313 const char *warn_str = "ctrl returned bogus length:"; 1314 void *data = cur; 1315 1316 switch (cur->nidt) { 1317 case NVME_NIDT_EUI64: 1318 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1319 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1320 warn_str, cur->nidl); 1321 return -1; 1322 } 1323 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1324 return NVME_NIDT_EUI64_LEN; 1325 case NVME_NIDT_NGUID: 1326 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1327 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1328 warn_str, cur->nidl); 1329 return -1; 1330 } 1331 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1332 return NVME_NIDT_NGUID_LEN; 1333 case NVME_NIDT_UUID: 1334 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1335 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1336 warn_str, cur->nidl); 1337 return -1; 1338 } 1339 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1340 return NVME_NIDT_UUID_LEN; 1341 case NVME_NIDT_CSI: 1342 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1343 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1344 warn_str, cur->nidl); 1345 return -1; 1346 } 1347 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1348 *csi_seen = true; 1349 return NVME_NIDT_CSI_LEN; 1350 default: 1351 /* Skip unknown types */ 1352 return cur->nidl; 1353 } 1354 } 1355 1356 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1357 struct nvme_ns_ids *ids) 1358 { 1359 struct nvme_command c = { }; 1360 bool csi_seen = false; 1361 int status, pos, len; 1362 void *data; 1363 1364 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1365 return 0; 1366 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1367 return 0; 1368 1369 c.identify.opcode = nvme_admin_identify; 1370 c.identify.nsid = cpu_to_le32(nsid); 1371 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1372 1373 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1374 if (!data) 1375 return -ENOMEM; 1376 1377 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1378 NVME_IDENTIFY_DATA_SIZE); 1379 if (status) { 1380 dev_warn(ctrl->device, 1381 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1382 nsid, status); 1383 goto free_data; 1384 } 1385 1386 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1387 struct nvme_ns_id_desc *cur = data + pos; 1388 1389 if (cur->nidl == 0) 1390 break; 1391 1392 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1393 if (len < 0) 1394 break; 1395 1396 len += sizeof(*cur); 1397 } 1398 1399 if (nvme_multi_css(ctrl) && !csi_seen) { 1400 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1401 nsid); 1402 status = -EINVAL; 1403 } 1404 1405 free_data: 1406 kfree(data); 1407 return status; 1408 } 1409 1410 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1411 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1412 { 1413 struct nvme_command c = { }; 1414 int error; 1415 1416 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1417 c.identify.opcode = nvme_admin_identify; 1418 c.identify.nsid = cpu_to_le32(nsid); 1419 c.identify.cns = NVME_ID_CNS_NS; 1420 1421 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1422 if (!*id) 1423 return -ENOMEM; 1424 1425 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1426 if (error) { 1427 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1428 goto out_free_id; 1429 } 1430 1431 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1432 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1433 goto out_free_id; 1434 1435 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1436 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1437 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1438 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1439 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1440 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1441 1442 return 0; 1443 1444 out_free_id: 1445 kfree(*id); 1446 return error; 1447 } 1448 1449 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1450 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1451 { 1452 union nvme_result res = { 0 }; 1453 struct nvme_command c = { }; 1454 int ret; 1455 1456 c.features.opcode = op; 1457 c.features.fid = cpu_to_le32(fid); 1458 c.features.dword11 = cpu_to_le32(dword11); 1459 1460 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1461 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1462 if (ret >= 0 && result) 1463 *result = le32_to_cpu(res.u32); 1464 return ret; 1465 } 1466 1467 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1468 unsigned int dword11, void *buffer, size_t buflen, 1469 u32 *result) 1470 { 1471 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1472 buflen, result); 1473 } 1474 EXPORT_SYMBOL_GPL(nvme_set_features); 1475 1476 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1477 unsigned int dword11, void *buffer, size_t buflen, 1478 u32 *result) 1479 { 1480 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1481 buflen, result); 1482 } 1483 EXPORT_SYMBOL_GPL(nvme_get_features); 1484 1485 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1486 { 1487 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1488 u32 result; 1489 int status, nr_io_queues; 1490 1491 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1492 &result); 1493 if (status < 0) 1494 return status; 1495 1496 /* 1497 * Degraded controllers might return an error when setting the queue 1498 * count. We still want to be able to bring them online and offer 1499 * access to the admin queue, as that might be only way to fix them up. 1500 */ 1501 if (status > 0) { 1502 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1503 *count = 0; 1504 } else { 1505 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1506 *count = min(*count, nr_io_queues); 1507 } 1508 1509 return 0; 1510 } 1511 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1512 1513 #define NVME_AEN_SUPPORTED \ 1514 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1515 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1516 1517 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1518 { 1519 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1520 int status; 1521 1522 if (!supported_aens) 1523 return; 1524 1525 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1526 NULL, 0, &result); 1527 if (status) 1528 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1529 supported_aens); 1530 1531 queue_work(nvme_wq, &ctrl->async_event_work); 1532 } 1533 1534 static int nvme_ns_open(struct nvme_ns *ns) 1535 { 1536 1537 /* should never be called due to GENHD_FL_HIDDEN */ 1538 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1539 goto fail; 1540 if (!nvme_get_ns(ns)) 1541 goto fail; 1542 if (!try_module_get(ns->ctrl->ops->module)) 1543 goto fail_put_ns; 1544 1545 return 0; 1546 1547 fail_put_ns: 1548 nvme_put_ns(ns); 1549 fail: 1550 return -ENXIO; 1551 } 1552 1553 static void nvme_ns_release(struct nvme_ns *ns) 1554 { 1555 1556 module_put(ns->ctrl->ops->module); 1557 nvme_put_ns(ns); 1558 } 1559 1560 static int nvme_open(struct block_device *bdev, fmode_t mode) 1561 { 1562 return nvme_ns_open(bdev->bd_disk->private_data); 1563 } 1564 1565 static void nvme_release(struct gendisk *disk, fmode_t mode) 1566 { 1567 nvme_ns_release(disk->private_data); 1568 } 1569 1570 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1571 { 1572 /* some standard values */ 1573 geo->heads = 1 << 6; 1574 geo->sectors = 1 << 5; 1575 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1576 return 0; 1577 } 1578 1579 #ifdef CONFIG_BLK_DEV_INTEGRITY 1580 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1581 u32 max_integrity_segments) 1582 { 1583 struct blk_integrity integrity = { }; 1584 1585 switch (pi_type) { 1586 case NVME_NS_DPS_PI_TYPE3: 1587 integrity.profile = &t10_pi_type3_crc; 1588 integrity.tag_size = sizeof(u16) + sizeof(u32); 1589 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1590 break; 1591 case NVME_NS_DPS_PI_TYPE1: 1592 case NVME_NS_DPS_PI_TYPE2: 1593 integrity.profile = &t10_pi_type1_crc; 1594 integrity.tag_size = sizeof(u16); 1595 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1596 break; 1597 default: 1598 integrity.profile = NULL; 1599 break; 1600 } 1601 integrity.tuple_size = ms; 1602 blk_integrity_register(disk, &integrity); 1603 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1604 } 1605 #else 1606 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1607 u32 max_integrity_segments) 1608 { 1609 } 1610 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1611 1612 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1613 { 1614 struct nvme_ctrl *ctrl = ns->ctrl; 1615 struct request_queue *queue = disk->queue; 1616 u32 size = queue_logical_block_size(queue); 1617 1618 if (ctrl->max_discard_sectors == 0) { 1619 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1620 return; 1621 } 1622 1623 if (ctrl->nr_streams && ns->sws && ns->sgs) 1624 size *= ns->sws * ns->sgs; 1625 1626 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1627 NVME_DSM_MAX_RANGES); 1628 1629 queue->limits.discard_alignment = 0; 1630 queue->limits.discard_granularity = size; 1631 1632 /* If discard is already enabled, don't reset queue limits */ 1633 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1634 return; 1635 1636 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1637 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1638 1639 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1640 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1641 } 1642 1643 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1644 { 1645 return !uuid_is_null(&ids->uuid) || 1646 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1647 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1648 } 1649 1650 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1651 { 1652 return uuid_equal(&a->uuid, &b->uuid) && 1653 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1654 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1655 a->csi == b->csi; 1656 } 1657 1658 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1659 u32 *phys_bs, u32 *io_opt) 1660 { 1661 struct streams_directive_params s; 1662 int ret; 1663 1664 if (!ctrl->nr_streams) 1665 return 0; 1666 1667 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1668 if (ret) 1669 return ret; 1670 1671 ns->sws = le32_to_cpu(s.sws); 1672 ns->sgs = le16_to_cpu(s.sgs); 1673 1674 if (ns->sws) { 1675 *phys_bs = ns->sws * (1 << ns->lba_shift); 1676 if (ns->sgs) 1677 *io_opt = *phys_bs * ns->sgs; 1678 } 1679 1680 return 0; 1681 } 1682 1683 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1684 { 1685 struct nvme_ctrl *ctrl = ns->ctrl; 1686 1687 /* 1688 * The PI implementation requires the metadata size to be equal to the 1689 * t10 pi tuple size. 1690 */ 1691 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1692 if (ns->ms == sizeof(struct t10_pi_tuple)) 1693 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1694 else 1695 ns->pi_type = 0; 1696 1697 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1698 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1699 return 0; 1700 if (ctrl->ops->flags & NVME_F_FABRICS) { 1701 /* 1702 * The NVMe over Fabrics specification only supports metadata as 1703 * part of the extended data LBA. We rely on HCA/HBA support to 1704 * remap the separate metadata buffer from the block layer. 1705 */ 1706 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1707 return -EINVAL; 1708 if (ctrl->max_integrity_segments) 1709 ns->features |= 1710 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1711 } else { 1712 /* 1713 * For PCIe controllers, we can't easily remap the separate 1714 * metadata buffer from the block layer and thus require a 1715 * separate metadata buffer for block layer metadata/PI support. 1716 * We allow extended LBAs for the passthrough interface, though. 1717 */ 1718 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1719 ns->features |= NVME_NS_EXT_LBAS; 1720 else 1721 ns->features |= NVME_NS_METADATA_SUPPORTED; 1722 } 1723 1724 return 0; 1725 } 1726 1727 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1728 struct request_queue *q) 1729 { 1730 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1731 1732 if (ctrl->max_hw_sectors) { 1733 u32 max_segments = 1734 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1735 1736 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1737 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1738 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1739 } 1740 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1741 blk_queue_dma_alignment(q, 7); 1742 blk_queue_write_cache(q, vwc, vwc); 1743 } 1744 1745 static void nvme_update_disk_info(struct gendisk *disk, 1746 struct nvme_ns *ns, struct nvme_id_ns *id) 1747 { 1748 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1749 unsigned short bs = 1 << ns->lba_shift; 1750 u32 atomic_bs, phys_bs, io_opt = 0; 1751 1752 /* 1753 * The block layer can't support LBA sizes larger than the page size 1754 * yet, so catch this early and don't allow block I/O. 1755 */ 1756 if (ns->lba_shift > PAGE_SHIFT) { 1757 capacity = 0; 1758 bs = (1 << 9); 1759 } 1760 1761 blk_integrity_unregister(disk); 1762 1763 atomic_bs = phys_bs = bs; 1764 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1765 if (id->nabo == 0) { 1766 /* 1767 * Bit 1 indicates whether NAWUPF is defined for this namespace 1768 * and whether it should be used instead of AWUPF. If NAWUPF == 1769 * 0 then AWUPF must be used instead. 1770 */ 1771 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1772 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1773 else 1774 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1775 } 1776 1777 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1778 /* NPWG = Namespace Preferred Write Granularity */ 1779 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1780 /* NOWS = Namespace Optimal Write Size */ 1781 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1782 } 1783 1784 blk_queue_logical_block_size(disk->queue, bs); 1785 /* 1786 * Linux filesystems assume writing a single physical block is 1787 * an atomic operation. Hence limit the physical block size to the 1788 * value of the Atomic Write Unit Power Fail parameter. 1789 */ 1790 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1791 blk_queue_io_min(disk->queue, phys_bs); 1792 blk_queue_io_opt(disk->queue, io_opt); 1793 1794 /* 1795 * Register a metadata profile for PI, or the plain non-integrity NVMe 1796 * metadata masquerading as Type 0 if supported, otherwise reject block 1797 * I/O to namespaces with metadata except when the namespace supports 1798 * PI, as it can strip/insert in that case. 1799 */ 1800 if (ns->ms) { 1801 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1802 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1803 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1804 ns->ctrl->max_integrity_segments); 1805 else if (!nvme_ns_has_pi(ns)) 1806 capacity = 0; 1807 } 1808 1809 set_capacity_and_notify(disk, capacity); 1810 1811 nvme_config_discard(disk, ns); 1812 blk_queue_max_write_zeroes_sectors(disk->queue, 1813 ns->ctrl->max_zeroes_sectors); 1814 1815 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) || 1816 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1817 } 1818 1819 static inline bool nvme_first_scan(struct gendisk *disk) 1820 { 1821 /* nvme_alloc_ns() scans the disk prior to adding it */ 1822 return !(disk->flags & GENHD_FL_UP); 1823 } 1824 1825 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1826 { 1827 struct nvme_ctrl *ctrl = ns->ctrl; 1828 u32 iob; 1829 1830 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1831 is_power_of_2(ctrl->max_hw_sectors)) 1832 iob = ctrl->max_hw_sectors; 1833 else 1834 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1835 1836 if (!iob) 1837 return; 1838 1839 if (!is_power_of_2(iob)) { 1840 if (nvme_first_scan(ns->disk)) 1841 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1842 ns->disk->disk_name, iob); 1843 return; 1844 } 1845 1846 if (blk_queue_is_zoned(ns->disk->queue)) { 1847 if (nvme_first_scan(ns->disk)) 1848 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1849 ns->disk->disk_name); 1850 return; 1851 } 1852 1853 blk_queue_chunk_sectors(ns->queue, iob); 1854 } 1855 1856 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1857 { 1858 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1859 int ret; 1860 1861 blk_mq_freeze_queue(ns->disk->queue); 1862 ns->lba_shift = id->lbaf[lbaf].ds; 1863 nvme_set_queue_limits(ns->ctrl, ns->queue); 1864 1865 ret = nvme_configure_metadata(ns, id); 1866 if (ret) 1867 goto out_unfreeze; 1868 nvme_set_chunk_sectors(ns, id); 1869 nvme_update_disk_info(ns->disk, ns, id); 1870 1871 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1872 ret = nvme_update_zone_info(ns, lbaf); 1873 if (ret) 1874 goto out_unfreeze; 1875 } 1876 1877 blk_mq_unfreeze_queue(ns->disk->queue); 1878 1879 if (blk_queue_is_zoned(ns->queue)) { 1880 ret = nvme_revalidate_zones(ns); 1881 if (ret && !nvme_first_scan(ns->disk)) 1882 goto out; 1883 } 1884 1885 if (nvme_ns_head_multipath(ns->head)) { 1886 blk_mq_freeze_queue(ns->head->disk->queue); 1887 nvme_update_disk_info(ns->head->disk, ns, id); 1888 blk_stack_limits(&ns->head->disk->queue->limits, 1889 &ns->queue->limits, 0); 1890 blk_queue_update_readahead(ns->head->disk->queue); 1891 blk_mq_unfreeze_queue(ns->head->disk->queue); 1892 } 1893 return 0; 1894 1895 out_unfreeze: 1896 blk_mq_unfreeze_queue(ns->disk->queue); 1897 out: 1898 /* 1899 * If probing fails due an unsupported feature, hide the block device, 1900 * but still allow other access. 1901 */ 1902 if (ret == -ENODEV) { 1903 ns->disk->flags |= GENHD_FL_HIDDEN; 1904 ret = 0; 1905 } 1906 return ret; 1907 } 1908 1909 static char nvme_pr_type(enum pr_type type) 1910 { 1911 switch (type) { 1912 case PR_WRITE_EXCLUSIVE: 1913 return 1; 1914 case PR_EXCLUSIVE_ACCESS: 1915 return 2; 1916 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1917 return 3; 1918 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1919 return 4; 1920 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1921 return 5; 1922 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1923 return 6; 1924 default: 1925 return 0; 1926 } 1927 }; 1928 1929 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1930 struct nvme_command *c, u8 data[16]) 1931 { 1932 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1933 int srcu_idx = srcu_read_lock(&head->srcu); 1934 struct nvme_ns *ns = nvme_find_path(head); 1935 int ret = -EWOULDBLOCK; 1936 1937 if (ns) { 1938 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1939 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 1940 } 1941 srcu_read_unlock(&head->srcu, srcu_idx); 1942 return ret; 1943 } 1944 1945 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 1946 u8 data[16]) 1947 { 1948 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1949 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 1950 } 1951 1952 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1953 u64 key, u64 sa_key, u8 op) 1954 { 1955 struct nvme_command c = { }; 1956 u8 data[16] = { 0, }; 1957 1958 put_unaligned_le64(key, &data[0]); 1959 put_unaligned_le64(sa_key, &data[8]); 1960 1961 c.common.opcode = op; 1962 c.common.cdw10 = cpu_to_le32(cdw10); 1963 1964 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 1965 bdev->bd_disk->fops == &nvme_ns_head_ops) 1966 return nvme_send_ns_head_pr_command(bdev, &c, data); 1967 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 1968 } 1969 1970 static int nvme_pr_register(struct block_device *bdev, u64 old, 1971 u64 new, unsigned flags) 1972 { 1973 u32 cdw10; 1974 1975 if (flags & ~PR_FL_IGNORE_KEY) 1976 return -EOPNOTSUPP; 1977 1978 cdw10 = old ? 2 : 0; 1979 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1980 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1981 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1982 } 1983 1984 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1985 enum pr_type type, unsigned flags) 1986 { 1987 u32 cdw10; 1988 1989 if (flags & ~PR_FL_IGNORE_KEY) 1990 return -EOPNOTSUPP; 1991 1992 cdw10 = nvme_pr_type(type) << 8; 1993 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1994 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1995 } 1996 1997 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1998 enum pr_type type, bool abort) 1999 { 2000 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2001 2002 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2003 } 2004 2005 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2006 { 2007 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2008 2009 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2010 } 2011 2012 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2013 { 2014 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2015 2016 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2017 } 2018 2019 const struct pr_ops nvme_pr_ops = { 2020 .pr_register = nvme_pr_register, 2021 .pr_reserve = nvme_pr_reserve, 2022 .pr_release = nvme_pr_release, 2023 .pr_preempt = nvme_pr_preempt, 2024 .pr_clear = nvme_pr_clear, 2025 }; 2026 2027 #ifdef CONFIG_BLK_SED_OPAL 2028 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2029 bool send) 2030 { 2031 struct nvme_ctrl *ctrl = data; 2032 struct nvme_command cmd = { }; 2033 2034 if (send) 2035 cmd.common.opcode = nvme_admin_security_send; 2036 else 2037 cmd.common.opcode = nvme_admin_security_recv; 2038 cmd.common.nsid = 0; 2039 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2040 cmd.common.cdw11 = cpu_to_le32(len); 2041 2042 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2043 NVME_QID_ANY, 1, 0); 2044 } 2045 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2046 #endif /* CONFIG_BLK_SED_OPAL */ 2047 2048 #ifdef CONFIG_BLK_DEV_ZONED 2049 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2050 unsigned int nr_zones, report_zones_cb cb, void *data) 2051 { 2052 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2053 data); 2054 } 2055 #else 2056 #define nvme_report_zones NULL 2057 #endif /* CONFIG_BLK_DEV_ZONED */ 2058 2059 static const struct block_device_operations nvme_bdev_ops = { 2060 .owner = THIS_MODULE, 2061 .ioctl = nvme_ioctl, 2062 .open = nvme_open, 2063 .release = nvme_release, 2064 .getgeo = nvme_getgeo, 2065 .report_zones = nvme_report_zones, 2066 .pr_ops = &nvme_pr_ops, 2067 }; 2068 2069 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2070 { 2071 unsigned long timeout = 2072 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2073 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2074 int ret; 2075 2076 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2077 if (csts == ~0) 2078 return -ENODEV; 2079 if ((csts & NVME_CSTS_RDY) == bit) 2080 break; 2081 2082 usleep_range(1000, 2000); 2083 if (fatal_signal_pending(current)) 2084 return -EINTR; 2085 if (time_after(jiffies, timeout)) { 2086 dev_err(ctrl->device, 2087 "Device not ready; aborting %s, CSTS=0x%x\n", 2088 enabled ? "initialisation" : "reset", csts); 2089 return -ENODEV; 2090 } 2091 } 2092 2093 return ret; 2094 } 2095 2096 /* 2097 * If the device has been passed off to us in an enabled state, just clear 2098 * the enabled bit. The spec says we should set the 'shutdown notification 2099 * bits', but doing so may cause the device to complete commands to the 2100 * admin queue ... and we don't know what memory that might be pointing at! 2101 */ 2102 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2103 { 2104 int ret; 2105 2106 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2107 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2108 2109 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2110 if (ret) 2111 return ret; 2112 2113 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2114 msleep(NVME_QUIRK_DELAY_AMOUNT); 2115 2116 return nvme_wait_ready(ctrl, ctrl->cap, false); 2117 } 2118 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2119 2120 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2121 { 2122 unsigned dev_page_min; 2123 int ret; 2124 2125 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2126 if (ret) { 2127 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2128 return ret; 2129 } 2130 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2131 2132 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2133 dev_err(ctrl->device, 2134 "Minimum device page size %u too large for host (%u)\n", 2135 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2136 return -ENODEV; 2137 } 2138 2139 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2140 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2141 else 2142 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2143 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2144 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2145 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2146 ctrl->ctrl_config |= NVME_CC_ENABLE; 2147 2148 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2149 if (ret) 2150 return ret; 2151 return nvme_wait_ready(ctrl, ctrl->cap, true); 2152 } 2153 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2154 2155 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2156 { 2157 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2158 u32 csts; 2159 int ret; 2160 2161 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2162 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2163 2164 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2165 if (ret) 2166 return ret; 2167 2168 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2169 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2170 break; 2171 2172 msleep(100); 2173 if (fatal_signal_pending(current)) 2174 return -EINTR; 2175 if (time_after(jiffies, timeout)) { 2176 dev_err(ctrl->device, 2177 "Device shutdown incomplete; abort shutdown\n"); 2178 return -ENODEV; 2179 } 2180 } 2181 2182 return ret; 2183 } 2184 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2185 2186 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2187 { 2188 __le64 ts; 2189 int ret; 2190 2191 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2192 return 0; 2193 2194 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2195 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2196 NULL); 2197 if (ret) 2198 dev_warn_once(ctrl->device, 2199 "could not set timestamp (%d)\n", ret); 2200 return ret; 2201 } 2202 2203 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2204 { 2205 struct nvme_feat_host_behavior *host; 2206 int ret; 2207 2208 /* Don't bother enabling the feature if retry delay is not reported */ 2209 if (!ctrl->crdt[0]) 2210 return 0; 2211 2212 host = kzalloc(sizeof(*host), GFP_KERNEL); 2213 if (!host) 2214 return 0; 2215 2216 host->acre = NVME_ENABLE_ACRE; 2217 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2218 host, sizeof(*host), NULL); 2219 kfree(host); 2220 return ret; 2221 } 2222 2223 /* 2224 * The function checks whether the given total (exlat + enlat) latency of 2225 * a power state allows the latter to be used as an APST transition target. 2226 * It does so by comparing the latency to the primary and secondary latency 2227 * tolerances defined by module params. If there's a match, the corresponding 2228 * timeout value is returned and the matching tolerance index (1 or 2) is 2229 * reported. 2230 */ 2231 static bool nvme_apst_get_transition_time(u64 total_latency, 2232 u64 *transition_time, unsigned *last_index) 2233 { 2234 if (total_latency <= apst_primary_latency_tol_us) { 2235 if (*last_index == 1) 2236 return false; 2237 *last_index = 1; 2238 *transition_time = apst_primary_timeout_ms; 2239 return true; 2240 } 2241 if (apst_secondary_timeout_ms && 2242 total_latency <= apst_secondary_latency_tol_us) { 2243 if (*last_index <= 2) 2244 return false; 2245 *last_index = 2; 2246 *transition_time = apst_secondary_timeout_ms; 2247 return true; 2248 } 2249 return false; 2250 } 2251 2252 /* 2253 * APST (Autonomous Power State Transition) lets us program a table of power 2254 * state transitions that the controller will perform automatically. 2255 * 2256 * Depending on module params, one of the two supported techniques will be used: 2257 * 2258 * - If the parameters provide explicit timeouts and tolerances, they will be 2259 * used to build a table with up to 2 non-operational states to transition to. 2260 * The default parameter values were selected based on the values used by 2261 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2262 * regeneration of the APST table in the event of switching between external 2263 * and battery power, the timeouts and tolerances reflect a compromise 2264 * between values used by Microsoft for AC and battery scenarios. 2265 * - If not, we'll configure the table with a simple heuristic: we are willing 2266 * to spend at most 2% of the time transitioning between power states. 2267 * Therefore, when running in any given state, we will enter the next 2268 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2269 * microseconds, as long as that state's exit latency is under the requested 2270 * maximum latency. 2271 * 2272 * We will not autonomously enter any non-operational state for which the total 2273 * latency exceeds ps_max_latency_us. 2274 * 2275 * Users can set ps_max_latency_us to zero to turn off APST. 2276 */ 2277 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2278 { 2279 struct nvme_feat_auto_pst *table; 2280 unsigned apste = 0; 2281 u64 max_lat_us = 0; 2282 __le64 target = 0; 2283 int max_ps = -1; 2284 int state; 2285 int ret; 2286 unsigned last_lt_index = UINT_MAX; 2287 2288 /* 2289 * If APST isn't supported or if we haven't been initialized yet, 2290 * then don't do anything. 2291 */ 2292 if (!ctrl->apsta) 2293 return 0; 2294 2295 if (ctrl->npss > 31) { 2296 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2297 return 0; 2298 } 2299 2300 table = kzalloc(sizeof(*table), GFP_KERNEL); 2301 if (!table) 2302 return 0; 2303 2304 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2305 /* Turn off APST. */ 2306 dev_dbg(ctrl->device, "APST disabled\n"); 2307 goto done; 2308 } 2309 2310 /* 2311 * Walk through all states from lowest- to highest-power. 2312 * According to the spec, lower-numbered states use more power. NPSS, 2313 * despite the name, is the index of the lowest-power state, not the 2314 * number of states. 2315 */ 2316 for (state = (int)ctrl->npss; state >= 0; state--) { 2317 u64 total_latency_us, exit_latency_us, transition_ms; 2318 2319 if (target) 2320 table->entries[state] = target; 2321 2322 /* 2323 * Don't allow transitions to the deepest state if it's quirked 2324 * off. 2325 */ 2326 if (state == ctrl->npss && 2327 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2328 continue; 2329 2330 /* 2331 * Is this state a useful non-operational state for higher-power 2332 * states to autonomously transition to? 2333 */ 2334 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2335 continue; 2336 2337 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2338 if (exit_latency_us > ctrl->ps_max_latency_us) 2339 continue; 2340 2341 total_latency_us = exit_latency_us + 2342 le32_to_cpu(ctrl->psd[state].entry_lat); 2343 2344 /* 2345 * This state is good. It can be used as the APST idle target 2346 * for higher power states. 2347 */ 2348 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2349 if (!nvme_apst_get_transition_time(total_latency_us, 2350 &transition_ms, &last_lt_index)) 2351 continue; 2352 } else { 2353 transition_ms = total_latency_us + 19; 2354 do_div(transition_ms, 20); 2355 if (transition_ms > (1 << 24) - 1) 2356 transition_ms = (1 << 24) - 1; 2357 } 2358 2359 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2360 if (max_ps == -1) 2361 max_ps = state; 2362 if (total_latency_us > max_lat_us) 2363 max_lat_us = total_latency_us; 2364 } 2365 2366 if (max_ps == -1) 2367 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2368 else 2369 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2370 max_ps, max_lat_us, (int)sizeof(*table), table); 2371 apste = 1; 2372 2373 done: 2374 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2375 table, sizeof(*table), NULL); 2376 if (ret) 2377 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2378 kfree(table); 2379 return ret; 2380 } 2381 2382 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2383 { 2384 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2385 u64 latency; 2386 2387 switch (val) { 2388 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2389 case PM_QOS_LATENCY_ANY: 2390 latency = U64_MAX; 2391 break; 2392 2393 default: 2394 latency = val; 2395 } 2396 2397 if (ctrl->ps_max_latency_us != latency) { 2398 ctrl->ps_max_latency_us = latency; 2399 if (ctrl->state == NVME_CTRL_LIVE) 2400 nvme_configure_apst(ctrl); 2401 } 2402 } 2403 2404 struct nvme_core_quirk_entry { 2405 /* 2406 * NVMe model and firmware strings are padded with spaces. For 2407 * simplicity, strings in the quirk table are padded with NULLs 2408 * instead. 2409 */ 2410 u16 vid; 2411 const char *mn; 2412 const char *fr; 2413 unsigned long quirks; 2414 }; 2415 2416 static const struct nvme_core_quirk_entry core_quirks[] = { 2417 { 2418 /* 2419 * This Toshiba device seems to die using any APST states. See: 2420 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2421 */ 2422 .vid = 0x1179, 2423 .mn = "THNSF5256GPUK TOSHIBA", 2424 .quirks = NVME_QUIRK_NO_APST, 2425 }, 2426 { 2427 /* 2428 * This LiteON CL1-3D*-Q11 firmware version has a race 2429 * condition associated with actions related to suspend to idle 2430 * LiteON has resolved the problem in future firmware 2431 */ 2432 .vid = 0x14a4, 2433 .fr = "22301111", 2434 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2435 } 2436 }; 2437 2438 /* match is null-terminated but idstr is space-padded. */ 2439 static bool string_matches(const char *idstr, const char *match, size_t len) 2440 { 2441 size_t matchlen; 2442 2443 if (!match) 2444 return true; 2445 2446 matchlen = strlen(match); 2447 WARN_ON_ONCE(matchlen > len); 2448 2449 if (memcmp(idstr, match, matchlen)) 2450 return false; 2451 2452 for (; matchlen < len; matchlen++) 2453 if (idstr[matchlen] != ' ') 2454 return false; 2455 2456 return true; 2457 } 2458 2459 static bool quirk_matches(const struct nvme_id_ctrl *id, 2460 const struct nvme_core_quirk_entry *q) 2461 { 2462 return q->vid == le16_to_cpu(id->vid) && 2463 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2464 string_matches(id->fr, q->fr, sizeof(id->fr)); 2465 } 2466 2467 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2468 struct nvme_id_ctrl *id) 2469 { 2470 size_t nqnlen; 2471 int off; 2472 2473 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2474 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2475 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2476 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2477 return; 2478 } 2479 2480 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2481 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2482 } 2483 2484 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2485 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2486 "nqn.2014.08.org.nvmexpress:%04x%04x", 2487 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2488 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2489 off += sizeof(id->sn); 2490 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2491 off += sizeof(id->mn); 2492 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2493 } 2494 2495 static void nvme_release_subsystem(struct device *dev) 2496 { 2497 struct nvme_subsystem *subsys = 2498 container_of(dev, struct nvme_subsystem, dev); 2499 2500 if (subsys->instance >= 0) 2501 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2502 kfree(subsys); 2503 } 2504 2505 static void nvme_destroy_subsystem(struct kref *ref) 2506 { 2507 struct nvme_subsystem *subsys = 2508 container_of(ref, struct nvme_subsystem, ref); 2509 2510 mutex_lock(&nvme_subsystems_lock); 2511 list_del(&subsys->entry); 2512 mutex_unlock(&nvme_subsystems_lock); 2513 2514 ida_destroy(&subsys->ns_ida); 2515 device_del(&subsys->dev); 2516 put_device(&subsys->dev); 2517 } 2518 2519 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2520 { 2521 kref_put(&subsys->ref, nvme_destroy_subsystem); 2522 } 2523 2524 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2525 { 2526 struct nvme_subsystem *subsys; 2527 2528 lockdep_assert_held(&nvme_subsystems_lock); 2529 2530 /* 2531 * Fail matches for discovery subsystems. This results 2532 * in each discovery controller bound to a unique subsystem. 2533 * This avoids issues with validating controller values 2534 * that can only be true when there is a single unique subsystem. 2535 * There may be multiple and completely independent entities 2536 * that provide discovery controllers. 2537 */ 2538 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2539 return NULL; 2540 2541 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2542 if (strcmp(subsys->subnqn, subsysnqn)) 2543 continue; 2544 if (!kref_get_unless_zero(&subsys->ref)) 2545 continue; 2546 return subsys; 2547 } 2548 2549 return NULL; 2550 } 2551 2552 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2553 struct device_attribute subsys_attr_##_name = \ 2554 __ATTR(_name, _mode, _show, NULL) 2555 2556 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2557 struct device_attribute *attr, 2558 char *buf) 2559 { 2560 struct nvme_subsystem *subsys = 2561 container_of(dev, struct nvme_subsystem, dev); 2562 2563 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2564 } 2565 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2566 2567 #define nvme_subsys_show_str_function(field) \ 2568 static ssize_t subsys_##field##_show(struct device *dev, \ 2569 struct device_attribute *attr, char *buf) \ 2570 { \ 2571 struct nvme_subsystem *subsys = \ 2572 container_of(dev, struct nvme_subsystem, dev); \ 2573 return sysfs_emit(buf, "%.*s\n", \ 2574 (int)sizeof(subsys->field), subsys->field); \ 2575 } \ 2576 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2577 2578 nvme_subsys_show_str_function(model); 2579 nvme_subsys_show_str_function(serial); 2580 nvme_subsys_show_str_function(firmware_rev); 2581 2582 static struct attribute *nvme_subsys_attrs[] = { 2583 &subsys_attr_model.attr, 2584 &subsys_attr_serial.attr, 2585 &subsys_attr_firmware_rev.attr, 2586 &subsys_attr_subsysnqn.attr, 2587 #ifdef CONFIG_NVME_MULTIPATH 2588 &subsys_attr_iopolicy.attr, 2589 #endif 2590 NULL, 2591 }; 2592 2593 static const struct attribute_group nvme_subsys_attrs_group = { 2594 .attrs = nvme_subsys_attrs, 2595 }; 2596 2597 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2598 &nvme_subsys_attrs_group, 2599 NULL, 2600 }; 2601 2602 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2603 { 2604 return ctrl->opts && ctrl->opts->discovery_nqn; 2605 } 2606 2607 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2608 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2609 { 2610 struct nvme_ctrl *tmp; 2611 2612 lockdep_assert_held(&nvme_subsystems_lock); 2613 2614 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2615 if (nvme_state_terminal(tmp)) 2616 continue; 2617 2618 if (tmp->cntlid == ctrl->cntlid) { 2619 dev_err(ctrl->device, 2620 "Duplicate cntlid %u with %s, rejecting\n", 2621 ctrl->cntlid, dev_name(tmp->device)); 2622 return false; 2623 } 2624 2625 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2626 nvme_discovery_ctrl(ctrl)) 2627 continue; 2628 2629 dev_err(ctrl->device, 2630 "Subsystem does not support multiple controllers\n"); 2631 return false; 2632 } 2633 2634 return true; 2635 } 2636 2637 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2638 { 2639 struct nvme_subsystem *subsys, *found; 2640 int ret; 2641 2642 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2643 if (!subsys) 2644 return -ENOMEM; 2645 2646 subsys->instance = -1; 2647 mutex_init(&subsys->lock); 2648 kref_init(&subsys->ref); 2649 INIT_LIST_HEAD(&subsys->ctrls); 2650 INIT_LIST_HEAD(&subsys->nsheads); 2651 nvme_init_subnqn(subsys, ctrl, id); 2652 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2653 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2654 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2655 subsys->vendor_id = le16_to_cpu(id->vid); 2656 subsys->cmic = id->cmic; 2657 subsys->awupf = le16_to_cpu(id->awupf); 2658 #ifdef CONFIG_NVME_MULTIPATH 2659 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2660 #endif 2661 2662 subsys->dev.class = nvme_subsys_class; 2663 subsys->dev.release = nvme_release_subsystem; 2664 subsys->dev.groups = nvme_subsys_attrs_groups; 2665 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2666 device_initialize(&subsys->dev); 2667 2668 mutex_lock(&nvme_subsystems_lock); 2669 found = __nvme_find_get_subsystem(subsys->subnqn); 2670 if (found) { 2671 put_device(&subsys->dev); 2672 subsys = found; 2673 2674 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2675 ret = -EINVAL; 2676 goto out_put_subsystem; 2677 } 2678 } else { 2679 ret = device_add(&subsys->dev); 2680 if (ret) { 2681 dev_err(ctrl->device, 2682 "failed to register subsystem device.\n"); 2683 put_device(&subsys->dev); 2684 goto out_unlock; 2685 } 2686 ida_init(&subsys->ns_ida); 2687 list_add_tail(&subsys->entry, &nvme_subsystems); 2688 } 2689 2690 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2691 dev_name(ctrl->device)); 2692 if (ret) { 2693 dev_err(ctrl->device, 2694 "failed to create sysfs link from subsystem.\n"); 2695 goto out_put_subsystem; 2696 } 2697 2698 if (!found) 2699 subsys->instance = ctrl->instance; 2700 ctrl->subsys = subsys; 2701 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2702 mutex_unlock(&nvme_subsystems_lock); 2703 return 0; 2704 2705 out_put_subsystem: 2706 nvme_put_subsystem(subsys); 2707 out_unlock: 2708 mutex_unlock(&nvme_subsystems_lock); 2709 return ret; 2710 } 2711 2712 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2713 void *log, size_t size, u64 offset) 2714 { 2715 struct nvme_command c = { }; 2716 u32 dwlen = nvme_bytes_to_numd(size); 2717 2718 c.get_log_page.opcode = nvme_admin_get_log_page; 2719 c.get_log_page.nsid = cpu_to_le32(nsid); 2720 c.get_log_page.lid = log_page; 2721 c.get_log_page.lsp = lsp; 2722 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2723 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2724 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2725 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2726 c.get_log_page.csi = csi; 2727 2728 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2729 } 2730 2731 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2732 struct nvme_effects_log **log) 2733 { 2734 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2735 int ret; 2736 2737 if (cel) 2738 goto out; 2739 2740 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2741 if (!cel) 2742 return -ENOMEM; 2743 2744 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2745 cel, sizeof(*cel), 0); 2746 if (ret) { 2747 kfree(cel); 2748 return ret; 2749 } 2750 2751 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2752 out: 2753 *log = cel; 2754 return 0; 2755 } 2756 2757 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2758 { 2759 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2760 2761 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2762 return UINT_MAX; 2763 return val; 2764 } 2765 2766 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2767 { 2768 struct nvme_command c = { }; 2769 struct nvme_id_ctrl_nvm *id; 2770 int ret; 2771 2772 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2773 ctrl->max_discard_sectors = UINT_MAX; 2774 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2775 } else { 2776 ctrl->max_discard_sectors = 0; 2777 ctrl->max_discard_segments = 0; 2778 } 2779 2780 /* 2781 * Even though NVMe spec explicitly states that MDTS is not applicable 2782 * to the write-zeroes, we are cautious and limit the size to the 2783 * controllers max_hw_sectors value, which is based on the MDTS field 2784 * and possibly other limiting factors. 2785 */ 2786 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2787 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2788 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2789 else 2790 ctrl->max_zeroes_sectors = 0; 2791 2792 if (nvme_ctrl_limited_cns(ctrl)) 2793 return 0; 2794 2795 id = kzalloc(sizeof(*id), GFP_KERNEL); 2796 if (!id) 2797 return 0; 2798 2799 c.identify.opcode = nvme_admin_identify; 2800 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2801 c.identify.csi = NVME_CSI_NVM; 2802 2803 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2804 if (ret) 2805 goto free_data; 2806 2807 if (id->dmrl) 2808 ctrl->max_discard_segments = id->dmrl; 2809 if (id->dmrsl) 2810 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2811 if (id->wzsl) 2812 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2813 2814 free_data: 2815 kfree(id); 2816 return ret; 2817 } 2818 2819 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2820 { 2821 struct nvme_id_ctrl *id; 2822 u32 max_hw_sectors; 2823 bool prev_apst_enabled; 2824 int ret; 2825 2826 ret = nvme_identify_ctrl(ctrl, &id); 2827 if (ret) { 2828 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2829 return -EIO; 2830 } 2831 2832 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2833 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2834 if (ret < 0) 2835 goto out_free; 2836 } 2837 2838 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2839 ctrl->cntlid = le16_to_cpu(id->cntlid); 2840 2841 if (!ctrl->identified) { 2842 unsigned int i; 2843 2844 ret = nvme_init_subsystem(ctrl, id); 2845 if (ret) 2846 goto out_free; 2847 2848 /* 2849 * Check for quirks. Quirk can depend on firmware version, 2850 * so, in principle, the set of quirks present can change 2851 * across a reset. As a possible future enhancement, we 2852 * could re-scan for quirks every time we reinitialize 2853 * the device, but we'd have to make sure that the driver 2854 * behaves intelligently if the quirks change. 2855 */ 2856 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2857 if (quirk_matches(id, &core_quirks[i])) 2858 ctrl->quirks |= core_quirks[i].quirks; 2859 } 2860 } 2861 2862 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2863 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2864 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2865 } 2866 2867 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2868 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2869 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2870 2871 ctrl->oacs = le16_to_cpu(id->oacs); 2872 ctrl->oncs = le16_to_cpu(id->oncs); 2873 ctrl->mtfa = le16_to_cpu(id->mtfa); 2874 ctrl->oaes = le32_to_cpu(id->oaes); 2875 ctrl->wctemp = le16_to_cpu(id->wctemp); 2876 ctrl->cctemp = le16_to_cpu(id->cctemp); 2877 2878 atomic_set(&ctrl->abort_limit, id->acl + 1); 2879 ctrl->vwc = id->vwc; 2880 if (id->mdts) 2881 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2882 else 2883 max_hw_sectors = UINT_MAX; 2884 ctrl->max_hw_sectors = 2885 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2886 2887 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2888 ctrl->sgls = le32_to_cpu(id->sgls); 2889 ctrl->kas = le16_to_cpu(id->kas); 2890 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2891 ctrl->ctratt = le32_to_cpu(id->ctratt); 2892 2893 if (id->rtd3e) { 2894 /* us -> s */ 2895 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 2896 2897 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2898 shutdown_timeout, 60); 2899 2900 if (ctrl->shutdown_timeout != shutdown_timeout) 2901 dev_info(ctrl->device, 2902 "Shutdown timeout set to %u seconds\n", 2903 ctrl->shutdown_timeout); 2904 } else 2905 ctrl->shutdown_timeout = shutdown_timeout; 2906 2907 ctrl->npss = id->npss; 2908 ctrl->apsta = id->apsta; 2909 prev_apst_enabled = ctrl->apst_enabled; 2910 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2911 if (force_apst && id->apsta) { 2912 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2913 ctrl->apst_enabled = true; 2914 } else { 2915 ctrl->apst_enabled = false; 2916 } 2917 } else { 2918 ctrl->apst_enabled = id->apsta; 2919 } 2920 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2921 2922 if (ctrl->ops->flags & NVME_F_FABRICS) { 2923 ctrl->icdoff = le16_to_cpu(id->icdoff); 2924 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2925 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2926 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2927 2928 /* 2929 * In fabrics we need to verify the cntlid matches the 2930 * admin connect 2931 */ 2932 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2933 dev_err(ctrl->device, 2934 "Mismatching cntlid: Connect %u vs Identify " 2935 "%u, rejecting\n", 2936 ctrl->cntlid, le16_to_cpu(id->cntlid)); 2937 ret = -EINVAL; 2938 goto out_free; 2939 } 2940 2941 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 2942 dev_err(ctrl->device, 2943 "keep-alive support is mandatory for fabrics\n"); 2944 ret = -EINVAL; 2945 goto out_free; 2946 } 2947 } else { 2948 ctrl->hmpre = le32_to_cpu(id->hmpre); 2949 ctrl->hmmin = le32_to_cpu(id->hmmin); 2950 ctrl->hmminds = le32_to_cpu(id->hmminds); 2951 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2952 } 2953 2954 ret = nvme_mpath_init_identify(ctrl, id); 2955 if (ret < 0) 2956 goto out_free; 2957 2958 if (ctrl->apst_enabled && !prev_apst_enabled) 2959 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2960 else if (!ctrl->apst_enabled && prev_apst_enabled) 2961 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2962 2963 out_free: 2964 kfree(id); 2965 return ret; 2966 } 2967 2968 /* 2969 * Initialize the cached copies of the Identify data and various controller 2970 * register in our nvme_ctrl structure. This should be called as soon as 2971 * the admin queue is fully up and running. 2972 */ 2973 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 2974 { 2975 int ret; 2976 2977 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2978 if (ret) { 2979 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2980 return ret; 2981 } 2982 2983 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2984 2985 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2986 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2987 2988 ret = nvme_init_identify(ctrl); 2989 if (ret) 2990 return ret; 2991 2992 ret = nvme_init_non_mdts_limits(ctrl); 2993 if (ret < 0) 2994 return ret; 2995 2996 ret = nvme_configure_apst(ctrl); 2997 if (ret < 0) 2998 return ret; 2999 3000 ret = nvme_configure_timestamp(ctrl); 3001 if (ret < 0) 3002 return ret; 3003 3004 ret = nvme_configure_directives(ctrl); 3005 if (ret < 0) 3006 return ret; 3007 3008 ret = nvme_configure_acre(ctrl); 3009 if (ret < 0) 3010 return ret; 3011 3012 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3013 ret = nvme_hwmon_init(ctrl); 3014 if (ret < 0) 3015 return ret; 3016 } 3017 3018 ctrl->identified = true; 3019 3020 return 0; 3021 } 3022 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3023 3024 static int nvme_dev_open(struct inode *inode, struct file *file) 3025 { 3026 struct nvme_ctrl *ctrl = 3027 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3028 3029 switch (ctrl->state) { 3030 case NVME_CTRL_LIVE: 3031 break; 3032 default: 3033 return -EWOULDBLOCK; 3034 } 3035 3036 nvme_get_ctrl(ctrl); 3037 if (!try_module_get(ctrl->ops->module)) { 3038 nvme_put_ctrl(ctrl); 3039 return -EINVAL; 3040 } 3041 3042 file->private_data = ctrl; 3043 return 0; 3044 } 3045 3046 static int nvme_dev_release(struct inode *inode, struct file *file) 3047 { 3048 struct nvme_ctrl *ctrl = 3049 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3050 3051 module_put(ctrl->ops->module); 3052 nvme_put_ctrl(ctrl); 3053 return 0; 3054 } 3055 3056 static const struct file_operations nvme_dev_fops = { 3057 .owner = THIS_MODULE, 3058 .open = nvme_dev_open, 3059 .release = nvme_dev_release, 3060 .unlocked_ioctl = nvme_dev_ioctl, 3061 .compat_ioctl = compat_ptr_ioctl, 3062 }; 3063 3064 static ssize_t nvme_sysfs_reset(struct device *dev, 3065 struct device_attribute *attr, const char *buf, 3066 size_t count) 3067 { 3068 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3069 int ret; 3070 3071 ret = nvme_reset_ctrl_sync(ctrl); 3072 if (ret < 0) 3073 return ret; 3074 return count; 3075 } 3076 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3077 3078 static ssize_t nvme_sysfs_rescan(struct device *dev, 3079 struct device_attribute *attr, const char *buf, 3080 size_t count) 3081 { 3082 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3083 3084 nvme_queue_scan(ctrl); 3085 return count; 3086 } 3087 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3088 3089 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3090 { 3091 struct gendisk *disk = dev_to_disk(dev); 3092 3093 if (disk->fops == &nvme_bdev_ops) 3094 return nvme_get_ns_from_dev(dev)->head; 3095 else 3096 return disk->private_data; 3097 } 3098 3099 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3100 char *buf) 3101 { 3102 struct nvme_ns_head *head = dev_to_ns_head(dev); 3103 struct nvme_ns_ids *ids = &head->ids; 3104 struct nvme_subsystem *subsys = head->subsys; 3105 int serial_len = sizeof(subsys->serial); 3106 int model_len = sizeof(subsys->model); 3107 3108 if (!uuid_is_null(&ids->uuid)) 3109 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3110 3111 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3112 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3113 3114 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3115 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3116 3117 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3118 subsys->serial[serial_len - 1] == '\0')) 3119 serial_len--; 3120 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3121 subsys->model[model_len - 1] == '\0')) 3122 model_len--; 3123 3124 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3125 serial_len, subsys->serial, model_len, subsys->model, 3126 head->ns_id); 3127 } 3128 static DEVICE_ATTR_RO(wwid); 3129 3130 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3131 char *buf) 3132 { 3133 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3134 } 3135 static DEVICE_ATTR_RO(nguid); 3136 3137 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3138 char *buf) 3139 { 3140 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3141 3142 /* For backward compatibility expose the NGUID to userspace if 3143 * we have no UUID set 3144 */ 3145 if (uuid_is_null(&ids->uuid)) { 3146 printk_ratelimited(KERN_WARNING 3147 "No UUID available providing old NGUID\n"); 3148 return sysfs_emit(buf, "%pU\n", ids->nguid); 3149 } 3150 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3151 } 3152 static DEVICE_ATTR_RO(uuid); 3153 3154 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3155 char *buf) 3156 { 3157 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3158 } 3159 static DEVICE_ATTR_RO(eui); 3160 3161 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3162 char *buf) 3163 { 3164 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3165 } 3166 static DEVICE_ATTR_RO(nsid); 3167 3168 static struct attribute *nvme_ns_id_attrs[] = { 3169 &dev_attr_wwid.attr, 3170 &dev_attr_uuid.attr, 3171 &dev_attr_nguid.attr, 3172 &dev_attr_eui.attr, 3173 &dev_attr_nsid.attr, 3174 #ifdef CONFIG_NVME_MULTIPATH 3175 &dev_attr_ana_grpid.attr, 3176 &dev_attr_ana_state.attr, 3177 #endif 3178 NULL, 3179 }; 3180 3181 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3182 struct attribute *a, int n) 3183 { 3184 struct device *dev = container_of(kobj, struct device, kobj); 3185 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3186 3187 if (a == &dev_attr_uuid.attr) { 3188 if (uuid_is_null(&ids->uuid) && 3189 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3190 return 0; 3191 } 3192 if (a == &dev_attr_nguid.attr) { 3193 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3194 return 0; 3195 } 3196 if (a == &dev_attr_eui.attr) { 3197 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3198 return 0; 3199 } 3200 #ifdef CONFIG_NVME_MULTIPATH 3201 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3202 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3203 return 0; 3204 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3205 return 0; 3206 } 3207 #endif 3208 return a->mode; 3209 } 3210 3211 static const struct attribute_group nvme_ns_id_attr_group = { 3212 .attrs = nvme_ns_id_attrs, 3213 .is_visible = nvme_ns_id_attrs_are_visible, 3214 }; 3215 3216 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3217 &nvme_ns_id_attr_group, 3218 #ifdef CONFIG_NVM 3219 &nvme_nvm_attr_group, 3220 #endif 3221 NULL, 3222 }; 3223 3224 #define nvme_show_str_function(field) \ 3225 static ssize_t field##_show(struct device *dev, \ 3226 struct device_attribute *attr, char *buf) \ 3227 { \ 3228 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3229 return sysfs_emit(buf, "%.*s\n", \ 3230 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3231 } \ 3232 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3233 3234 nvme_show_str_function(model); 3235 nvme_show_str_function(serial); 3236 nvme_show_str_function(firmware_rev); 3237 3238 #define nvme_show_int_function(field) \ 3239 static ssize_t field##_show(struct device *dev, \ 3240 struct device_attribute *attr, char *buf) \ 3241 { \ 3242 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3243 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3244 } \ 3245 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3246 3247 nvme_show_int_function(cntlid); 3248 nvme_show_int_function(numa_node); 3249 nvme_show_int_function(queue_count); 3250 nvme_show_int_function(sqsize); 3251 nvme_show_int_function(kato); 3252 3253 static ssize_t nvme_sysfs_delete(struct device *dev, 3254 struct device_attribute *attr, const char *buf, 3255 size_t count) 3256 { 3257 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3258 3259 if (device_remove_file_self(dev, attr)) 3260 nvme_delete_ctrl_sync(ctrl); 3261 return count; 3262 } 3263 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3264 3265 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3266 struct device_attribute *attr, 3267 char *buf) 3268 { 3269 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3270 3271 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3272 } 3273 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3274 3275 static ssize_t nvme_sysfs_show_state(struct device *dev, 3276 struct device_attribute *attr, 3277 char *buf) 3278 { 3279 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3280 static const char *const state_name[] = { 3281 [NVME_CTRL_NEW] = "new", 3282 [NVME_CTRL_LIVE] = "live", 3283 [NVME_CTRL_RESETTING] = "resetting", 3284 [NVME_CTRL_CONNECTING] = "connecting", 3285 [NVME_CTRL_DELETING] = "deleting", 3286 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3287 [NVME_CTRL_DEAD] = "dead", 3288 }; 3289 3290 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3291 state_name[ctrl->state]) 3292 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3293 3294 return sysfs_emit(buf, "unknown state\n"); 3295 } 3296 3297 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3298 3299 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3300 struct device_attribute *attr, 3301 char *buf) 3302 { 3303 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3304 3305 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3306 } 3307 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3308 3309 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3310 struct device_attribute *attr, 3311 char *buf) 3312 { 3313 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3314 3315 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3316 } 3317 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3318 3319 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3320 struct device_attribute *attr, 3321 char *buf) 3322 { 3323 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3324 3325 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3326 } 3327 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3328 3329 static ssize_t nvme_sysfs_show_address(struct device *dev, 3330 struct device_attribute *attr, 3331 char *buf) 3332 { 3333 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3334 3335 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3336 } 3337 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3338 3339 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3340 struct device_attribute *attr, char *buf) 3341 { 3342 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3343 struct nvmf_ctrl_options *opts = ctrl->opts; 3344 3345 if (ctrl->opts->max_reconnects == -1) 3346 return sysfs_emit(buf, "off\n"); 3347 return sysfs_emit(buf, "%d\n", 3348 opts->max_reconnects * opts->reconnect_delay); 3349 } 3350 3351 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3352 struct device_attribute *attr, const char *buf, size_t count) 3353 { 3354 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3355 struct nvmf_ctrl_options *opts = ctrl->opts; 3356 int ctrl_loss_tmo, err; 3357 3358 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3359 if (err) 3360 return -EINVAL; 3361 3362 if (ctrl_loss_tmo < 0) 3363 opts->max_reconnects = -1; 3364 else 3365 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3366 opts->reconnect_delay); 3367 return count; 3368 } 3369 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3370 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3371 3372 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3373 struct device_attribute *attr, char *buf) 3374 { 3375 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3376 3377 if (ctrl->opts->reconnect_delay == -1) 3378 return sysfs_emit(buf, "off\n"); 3379 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3380 } 3381 3382 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3383 struct device_attribute *attr, const char *buf, size_t count) 3384 { 3385 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3386 unsigned int v; 3387 int err; 3388 3389 err = kstrtou32(buf, 10, &v); 3390 if (err) 3391 return err; 3392 3393 ctrl->opts->reconnect_delay = v; 3394 return count; 3395 } 3396 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3397 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3398 3399 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3400 struct device_attribute *attr, char *buf) 3401 { 3402 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3403 3404 if (ctrl->opts->fast_io_fail_tmo == -1) 3405 return sysfs_emit(buf, "off\n"); 3406 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3407 } 3408 3409 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3410 struct device_attribute *attr, const char *buf, size_t count) 3411 { 3412 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3413 struct nvmf_ctrl_options *opts = ctrl->opts; 3414 int fast_io_fail_tmo, err; 3415 3416 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3417 if (err) 3418 return -EINVAL; 3419 3420 if (fast_io_fail_tmo < 0) 3421 opts->fast_io_fail_tmo = -1; 3422 else 3423 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3424 return count; 3425 } 3426 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3427 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3428 3429 static struct attribute *nvme_dev_attrs[] = { 3430 &dev_attr_reset_controller.attr, 3431 &dev_attr_rescan_controller.attr, 3432 &dev_attr_model.attr, 3433 &dev_attr_serial.attr, 3434 &dev_attr_firmware_rev.attr, 3435 &dev_attr_cntlid.attr, 3436 &dev_attr_delete_controller.attr, 3437 &dev_attr_transport.attr, 3438 &dev_attr_subsysnqn.attr, 3439 &dev_attr_address.attr, 3440 &dev_attr_state.attr, 3441 &dev_attr_numa_node.attr, 3442 &dev_attr_queue_count.attr, 3443 &dev_attr_sqsize.attr, 3444 &dev_attr_hostnqn.attr, 3445 &dev_attr_hostid.attr, 3446 &dev_attr_ctrl_loss_tmo.attr, 3447 &dev_attr_reconnect_delay.attr, 3448 &dev_attr_fast_io_fail_tmo.attr, 3449 &dev_attr_kato.attr, 3450 NULL 3451 }; 3452 3453 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3454 struct attribute *a, int n) 3455 { 3456 struct device *dev = container_of(kobj, struct device, kobj); 3457 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3458 3459 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3460 return 0; 3461 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3462 return 0; 3463 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3464 return 0; 3465 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3466 return 0; 3467 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3468 return 0; 3469 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3470 return 0; 3471 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3472 return 0; 3473 3474 return a->mode; 3475 } 3476 3477 static const struct attribute_group nvme_dev_attrs_group = { 3478 .attrs = nvme_dev_attrs, 3479 .is_visible = nvme_dev_attrs_are_visible, 3480 }; 3481 3482 static const struct attribute_group *nvme_dev_attr_groups[] = { 3483 &nvme_dev_attrs_group, 3484 NULL, 3485 }; 3486 3487 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3488 unsigned nsid) 3489 { 3490 struct nvme_ns_head *h; 3491 3492 lockdep_assert_held(&subsys->lock); 3493 3494 list_for_each_entry(h, &subsys->nsheads, entry) { 3495 if (h->ns_id == nsid && nvme_tryget_ns_head(h)) 3496 return h; 3497 } 3498 3499 return NULL; 3500 } 3501 3502 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3503 struct nvme_ns_head *new) 3504 { 3505 struct nvme_ns_head *h; 3506 3507 lockdep_assert_held(&subsys->lock); 3508 3509 list_for_each_entry(h, &subsys->nsheads, entry) { 3510 if (nvme_ns_ids_valid(&new->ids) && 3511 nvme_ns_ids_equal(&new->ids, &h->ids)) 3512 return -EINVAL; 3513 } 3514 3515 return 0; 3516 } 3517 3518 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3519 { 3520 cdev_device_del(cdev, cdev_device); 3521 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt)); 3522 } 3523 3524 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3525 const struct file_operations *fops, struct module *owner) 3526 { 3527 int minor, ret; 3528 3529 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL); 3530 if (minor < 0) 3531 return minor; 3532 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3533 cdev_device->class = nvme_ns_chr_class; 3534 device_initialize(cdev_device); 3535 cdev_init(cdev, fops); 3536 cdev->owner = owner; 3537 ret = cdev_device_add(cdev, cdev_device); 3538 if (ret) { 3539 put_device(cdev_device); 3540 ida_simple_remove(&nvme_ns_chr_minor_ida, minor); 3541 } 3542 return ret; 3543 } 3544 3545 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3546 { 3547 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3548 } 3549 3550 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3551 { 3552 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3553 return 0; 3554 } 3555 3556 static const struct file_operations nvme_ns_chr_fops = { 3557 .owner = THIS_MODULE, 3558 .open = nvme_ns_chr_open, 3559 .release = nvme_ns_chr_release, 3560 .unlocked_ioctl = nvme_ns_chr_ioctl, 3561 .compat_ioctl = compat_ptr_ioctl, 3562 }; 3563 3564 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3565 { 3566 int ret; 3567 3568 ns->cdev_device.parent = ns->ctrl->device; 3569 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3570 ns->ctrl->instance, ns->head->instance); 3571 if (ret) 3572 return ret; 3573 ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3574 ns->ctrl->ops->module); 3575 if (ret) 3576 kfree_const(ns->cdev_device.kobj.name); 3577 return ret; 3578 } 3579 3580 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3581 unsigned nsid, struct nvme_ns_ids *ids) 3582 { 3583 struct nvme_ns_head *head; 3584 size_t size = sizeof(*head); 3585 int ret = -ENOMEM; 3586 3587 #ifdef CONFIG_NVME_MULTIPATH 3588 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3589 #endif 3590 3591 head = kzalloc(size, GFP_KERNEL); 3592 if (!head) 3593 goto out; 3594 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3595 if (ret < 0) 3596 goto out_free_head; 3597 head->instance = ret; 3598 INIT_LIST_HEAD(&head->list); 3599 ret = init_srcu_struct(&head->srcu); 3600 if (ret) 3601 goto out_ida_remove; 3602 head->subsys = ctrl->subsys; 3603 head->ns_id = nsid; 3604 head->ids = *ids; 3605 kref_init(&head->ref); 3606 3607 ret = __nvme_check_ids(ctrl->subsys, head); 3608 if (ret) { 3609 dev_err(ctrl->device, 3610 "duplicate IDs for nsid %d\n", nsid); 3611 goto out_cleanup_srcu; 3612 } 3613 3614 if (head->ids.csi) { 3615 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3616 if (ret) 3617 goto out_cleanup_srcu; 3618 } else 3619 head->effects = ctrl->effects; 3620 3621 ret = nvme_mpath_alloc_disk(ctrl, head); 3622 if (ret) 3623 goto out_cleanup_srcu; 3624 3625 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3626 3627 kref_get(&ctrl->subsys->ref); 3628 3629 return head; 3630 out_cleanup_srcu: 3631 cleanup_srcu_struct(&head->srcu); 3632 out_ida_remove: 3633 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3634 out_free_head: 3635 kfree(head); 3636 out: 3637 if (ret > 0) 3638 ret = blk_status_to_errno(nvme_error_status(ret)); 3639 return ERR_PTR(ret); 3640 } 3641 3642 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3643 struct nvme_ns_ids *ids, bool is_shared) 3644 { 3645 struct nvme_ctrl *ctrl = ns->ctrl; 3646 struct nvme_ns_head *head = NULL; 3647 int ret = 0; 3648 3649 mutex_lock(&ctrl->subsys->lock); 3650 head = nvme_find_ns_head(ctrl->subsys, nsid); 3651 if (!head) { 3652 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3653 if (IS_ERR(head)) { 3654 ret = PTR_ERR(head); 3655 goto out_unlock; 3656 } 3657 head->shared = is_shared; 3658 } else { 3659 ret = -EINVAL; 3660 if (!is_shared || !head->shared) { 3661 dev_err(ctrl->device, 3662 "Duplicate unshared namespace %d\n", nsid); 3663 goto out_put_ns_head; 3664 } 3665 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3666 dev_err(ctrl->device, 3667 "IDs don't match for shared namespace %d\n", 3668 nsid); 3669 goto out_put_ns_head; 3670 } 3671 } 3672 3673 list_add_tail_rcu(&ns->siblings, &head->list); 3674 ns->head = head; 3675 mutex_unlock(&ctrl->subsys->lock); 3676 return 0; 3677 3678 out_put_ns_head: 3679 nvme_put_ns_head(head); 3680 out_unlock: 3681 mutex_unlock(&ctrl->subsys->lock); 3682 return ret; 3683 } 3684 3685 static int ns_cmp(void *priv, const struct list_head *a, 3686 const struct list_head *b) 3687 { 3688 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3689 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3690 3691 return nsa->head->ns_id - nsb->head->ns_id; 3692 } 3693 3694 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3695 { 3696 struct nvme_ns *ns, *ret = NULL; 3697 3698 down_read(&ctrl->namespaces_rwsem); 3699 list_for_each_entry(ns, &ctrl->namespaces, list) { 3700 if (ns->head->ns_id == nsid) { 3701 if (!nvme_get_ns(ns)) 3702 continue; 3703 ret = ns; 3704 break; 3705 } 3706 if (ns->head->ns_id > nsid) 3707 break; 3708 } 3709 up_read(&ctrl->namespaces_rwsem); 3710 return ret; 3711 } 3712 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3713 3714 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3715 struct nvme_ns_ids *ids) 3716 { 3717 struct nvme_ns *ns; 3718 struct gendisk *disk; 3719 struct nvme_id_ns *id; 3720 int node = ctrl->numa_node; 3721 3722 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3723 return; 3724 3725 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3726 if (!ns) 3727 goto out_free_id; 3728 3729 ns->queue = blk_mq_init_queue(ctrl->tagset); 3730 if (IS_ERR(ns->queue)) 3731 goto out_free_ns; 3732 3733 if (ctrl->opts && ctrl->opts->data_digest) 3734 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3735 3736 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3737 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3738 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3739 3740 ns->queue->queuedata = ns; 3741 ns->ctrl = ctrl; 3742 kref_init(&ns->kref); 3743 3744 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3745 goto out_free_queue; 3746 3747 disk = alloc_disk_node(0, node); 3748 if (!disk) 3749 goto out_unlink_ns; 3750 3751 disk->fops = &nvme_bdev_ops; 3752 disk->private_data = ns; 3753 disk->queue = ns->queue; 3754 /* 3755 * Without the multipath code enabled, multiple controller per 3756 * subsystems are visible as devices and thus we cannot use the 3757 * subsystem instance. 3758 */ 3759 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags)) 3760 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3761 ns->head->instance); 3762 ns->disk = disk; 3763 3764 if (nvme_update_ns_info(ns, id)) 3765 goto out_put_disk; 3766 3767 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3768 if (nvme_nvm_register(ns, disk->disk_name, node)) { 3769 dev_warn(ctrl->device, "LightNVM init failure\n"); 3770 goto out_put_disk; 3771 } 3772 } 3773 3774 down_write(&ctrl->namespaces_rwsem); 3775 list_add_tail(&ns->list, &ctrl->namespaces); 3776 up_write(&ctrl->namespaces_rwsem); 3777 3778 nvme_get_ctrl(ctrl); 3779 3780 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3781 if (!nvme_ns_head_multipath(ns->head)) 3782 nvme_add_ns_cdev(ns); 3783 3784 nvme_mpath_add_disk(ns, id); 3785 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3786 kfree(id); 3787 3788 return; 3789 out_put_disk: 3790 /* prevent double queue cleanup */ 3791 ns->disk->queue = NULL; 3792 put_disk(ns->disk); 3793 out_unlink_ns: 3794 mutex_lock(&ctrl->subsys->lock); 3795 list_del_rcu(&ns->siblings); 3796 if (list_empty(&ns->head->list)) 3797 list_del_init(&ns->head->entry); 3798 mutex_unlock(&ctrl->subsys->lock); 3799 nvme_put_ns_head(ns->head); 3800 out_free_queue: 3801 blk_cleanup_queue(ns->queue); 3802 out_free_ns: 3803 kfree(ns); 3804 out_free_id: 3805 kfree(id); 3806 } 3807 3808 static void nvme_ns_remove(struct nvme_ns *ns) 3809 { 3810 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3811 return; 3812 3813 set_capacity(ns->disk, 0); 3814 nvme_fault_inject_fini(&ns->fault_inject); 3815 3816 mutex_lock(&ns->ctrl->subsys->lock); 3817 list_del_rcu(&ns->siblings); 3818 if (list_empty(&ns->head->list)) 3819 list_del_init(&ns->head->entry); 3820 mutex_unlock(&ns->ctrl->subsys->lock); 3821 3822 synchronize_rcu(); /* guarantee not available in head->list */ 3823 nvme_mpath_clear_current_path(ns); 3824 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3825 3826 if (ns->disk->flags & GENHD_FL_UP) { 3827 if (!nvme_ns_head_multipath(ns->head)) 3828 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3829 del_gendisk(ns->disk); 3830 blk_cleanup_queue(ns->queue); 3831 if (blk_get_integrity(ns->disk)) 3832 blk_integrity_unregister(ns->disk); 3833 } 3834 3835 down_write(&ns->ctrl->namespaces_rwsem); 3836 list_del_init(&ns->list); 3837 up_write(&ns->ctrl->namespaces_rwsem); 3838 3839 nvme_mpath_check_last_path(ns); 3840 nvme_put_ns(ns); 3841 } 3842 3843 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3844 { 3845 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3846 3847 if (ns) { 3848 nvme_ns_remove(ns); 3849 nvme_put_ns(ns); 3850 } 3851 } 3852 3853 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 3854 { 3855 struct nvme_id_ns *id; 3856 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3857 3858 if (test_bit(NVME_NS_DEAD, &ns->flags)) 3859 goto out; 3860 3861 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 3862 if (ret) 3863 goto out; 3864 3865 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3866 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 3867 dev_err(ns->ctrl->device, 3868 "identifiers changed for nsid %d\n", ns->head->ns_id); 3869 goto out_free_id; 3870 } 3871 3872 ret = nvme_update_ns_info(ns, id); 3873 3874 out_free_id: 3875 kfree(id); 3876 out: 3877 /* 3878 * Only remove the namespace if we got a fatal error back from the 3879 * device, otherwise ignore the error and just move on. 3880 * 3881 * TODO: we should probably schedule a delayed retry here. 3882 */ 3883 if (ret > 0 && (ret & NVME_SC_DNR)) 3884 nvme_ns_remove(ns); 3885 } 3886 3887 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3888 { 3889 struct nvme_ns_ids ids = { }; 3890 struct nvme_ns *ns; 3891 3892 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 3893 return; 3894 3895 ns = nvme_find_get_ns(ctrl, nsid); 3896 if (ns) { 3897 nvme_validate_ns(ns, &ids); 3898 nvme_put_ns(ns); 3899 return; 3900 } 3901 3902 switch (ids.csi) { 3903 case NVME_CSI_NVM: 3904 nvme_alloc_ns(ctrl, nsid, &ids); 3905 break; 3906 case NVME_CSI_ZNS: 3907 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 3908 dev_warn(ctrl->device, 3909 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 3910 nsid); 3911 break; 3912 } 3913 if (!nvme_multi_css(ctrl)) { 3914 dev_warn(ctrl->device, 3915 "command set not reported for nsid: %d\n", 3916 nsid); 3917 break; 3918 } 3919 nvme_alloc_ns(ctrl, nsid, &ids); 3920 break; 3921 default: 3922 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 3923 ids.csi, nsid); 3924 break; 3925 } 3926 } 3927 3928 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3929 unsigned nsid) 3930 { 3931 struct nvme_ns *ns, *next; 3932 LIST_HEAD(rm_list); 3933 3934 down_write(&ctrl->namespaces_rwsem); 3935 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3936 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3937 list_move_tail(&ns->list, &rm_list); 3938 } 3939 up_write(&ctrl->namespaces_rwsem); 3940 3941 list_for_each_entry_safe(ns, next, &rm_list, list) 3942 nvme_ns_remove(ns); 3943 3944 } 3945 3946 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3947 { 3948 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3949 __le32 *ns_list; 3950 u32 prev = 0; 3951 int ret = 0, i; 3952 3953 if (nvme_ctrl_limited_cns(ctrl)) 3954 return -EOPNOTSUPP; 3955 3956 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3957 if (!ns_list) 3958 return -ENOMEM; 3959 3960 for (;;) { 3961 struct nvme_command cmd = { 3962 .identify.opcode = nvme_admin_identify, 3963 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 3964 .identify.nsid = cpu_to_le32(prev), 3965 }; 3966 3967 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 3968 NVME_IDENTIFY_DATA_SIZE); 3969 if (ret) { 3970 dev_warn(ctrl->device, 3971 "Identify NS List failed (status=0x%x)\n", ret); 3972 goto free; 3973 } 3974 3975 for (i = 0; i < nr_entries; i++) { 3976 u32 nsid = le32_to_cpu(ns_list[i]); 3977 3978 if (!nsid) /* end of the list? */ 3979 goto out; 3980 nvme_validate_or_alloc_ns(ctrl, nsid); 3981 while (++prev < nsid) 3982 nvme_ns_remove_by_nsid(ctrl, prev); 3983 } 3984 } 3985 out: 3986 nvme_remove_invalid_namespaces(ctrl, prev); 3987 free: 3988 kfree(ns_list); 3989 return ret; 3990 } 3991 3992 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 3993 { 3994 struct nvme_id_ctrl *id; 3995 u32 nn, i; 3996 3997 if (nvme_identify_ctrl(ctrl, &id)) 3998 return; 3999 nn = le32_to_cpu(id->nn); 4000 kfree(id); 4001 4002 for (i = 1; i <= nn; i++) 4003 nvme_validate_or_alloc_ns(ctrl, i); 4004 4005 nvme_remove_invalid_namespaces(ctrl, nn); 4006 } 4007 4008 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4009 { 4010 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4011 __le32 *log; 4012 int error; 4013 4014 log = kzalloc(log_size, GFP_KERNEL); 4015 if (!log) 4016 return; 4017 4018 /* 4019 * We need to read the log to clear the AEN, but we don't want to rely 4020 * on it for the changed namespace information as userspace could have 4021 * raced with us in reading the log page, which could cause us to miss 4022 * updates. 4023 */ 4024 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4025 NVME_CSI_NVM, log, log_size, 0); 4026 if (error) 4027 dev_warn(ctrl->device, 4028 "reading changed ns log failed: %d\n", error); 4029 4030 kfree(log); 4031 } 4032 4033 static void nvme_scan_work(struct work_struct *work) 4034 { 4035 struct nvme_ctrl *ctrl = 4036 container_of(work, struct nvme_ctrl, scan_work); 4037 4038 /* No tagset on a live ctrl means IO queues could not created */ 4039 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4040 return; 4041 4042 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4043 dev_info(ctrl->device, "rescanning namespaces.\n"); 4044 nvme_clear_changed_ns_log(ctrl); 4045 } 4046 4047 mutex_lock(&ctrl->scan_lock); 4048 if (nvme_scan_ns_list(ctrl) != 0) 4049 nvme_scan_ns_sequential(ctrl); 4050 mutex_unlock(&ctrl->scan_lock); 4051 4052 down_write(&ctrl->namespaces_rwsem); 4053 list_sort(NULL, &ctrl->namespaces, ns_cmp); 4054 up_write(&ctrl->namespaces_rwsem); 4055 } 4056 4057 /* 4058 * This function iterates the namespace list unlocked to allow recovery from 4059 * controller failure. It is up to the caller to ensure the namespace list is 4060 * not modified by scan work while this function is executing. 4061 */ 4062 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4063 { 4064 struct nvme_ns *ns, *next; 4065 LIST_HEAD(ns_list); 4066 4067 /* 4068 * make sure to requeue I/O to all namespaces as these 4069 * might result from the scan itself and must complete 4070 * for the scan_work to make progress 4071 */ 4072 nvme_mpath_clear_ctrl_paths(ctrl); 4073 4074 /* prevent racing with ns scanning */ 4075 flush_work(&ctrl->scan_work); 4076 4077 /* 4078 * The dead states indicates the controller was not gracefully 4079 * disconnected. In that case, we won't be able to flush any data while 4080 * removing the namespaces' disks; fail all the queues now to avoid 4081 * potentially having to clean up the failed sync later. 4082 */ 4083 if (ctrl->state == NVME_CTRL_DEAD) 4084 nvme_kill_queues(ctrl); 4085 4086 /* this is a no-op when called from the controller reset handler */ 4087 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4088 4089 down_write(&ctrl->namespaces_rwsem); 4090 list_splice_init(&ctrl->namespaces, &ns_list); 4091 up_write(&ctrl->namespaces_rwsem); 4092 4093 list_for_each_entry_safe(ns, next, &ns_list, list) 4094 nvme_ns_remove(ns); 4095 } 4096 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4097 4098 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4099 { 4100 struct nvme_ctrl *ctrl = 4101 container_of(dev, struct nvme_ctrl, ctrl_device); 4102 struct nvmf_ctrl_options *opts = ctrl->opts; 4103 int ret; 4104 4105 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4106 if (ret) 4107 return ret; 4108 4109 if (opts) { 4110 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4111 if (ret) 4112 return ret; 4113 4114 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4115 opts->trsvcid ?: "none"); 4116 if (ret) 4117 return ret; 4118 4119 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4120 opts->host_traddr ?: "none"); 4121 if (ret) 4122 return ret; 4123 4124 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4125 opts->host_iface ?: "none"); 4126 } 4127 return ret; 4128 } 4129 4130 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4131 { 4132 char *envp[2] = { NULL, NULL }; 4133 u32 aen_result = ctrl->aen_result; 4134 4135 ctrl->aen_result = 0; 4136 if (!aen_result) 4137 return; 4138 4139 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4140 if (!envp[0]) 4141 return; 4142 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4143 kfree(envp[0]); 4144 } 4145 4146 static void nvme_async_event_work(struct work_struct *work) 4147 { 4148 struct nvme_ctrl *ctrl = 4149 container_of(work, struct nvme_ctrl, async_event_work); 4150 4151 nvme_aen_uevent(ctrl); 4152 ctrl->ops->submit_async_event(ctrl); 4153 } 4154 4155 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4156 { 4157 4158 u32 csts; 4159 4160 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4161 return false; 4162 4163 if (csts == ~0) 4164 return false; 4165 4166 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4167 } 4168 4169 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4170 { 4171 struct nvme_fw_slot_info_log *log; 4172 4173 log = kmalloc(sizeof(*log), GFP_KERNEL); 4174 if (!log) 4175 return; 4176 4177 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4178 log, sizeof(*log), 0)) 4179 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4180 kfree(log); 4181 } 4182 4183 static void nvme_fw_act_work(struct work_struct *work) 4184 { 4185 struct nvme_ctrl *ctrl = container_of(work, 4186 struct nvme_ctrl, fw_act_work); 4187 unsigned long fw_act_timeout; 4188 4189 if (ctrl->mtfa) 4190 fw_act_timeout = jiffies + 4191 msecs_to_jiffies(ctrl->mtfa * 100); 4192 else 4193 fw_act_timeout = jiffies + 4194 msecs_to_jiffies(admin_timeout * 1000); 4195 4196 nvme_stop_queues(ctrl); 4197 while (nvme_ctrl_pp_status(ctrl)) { 4198 if (time_after(jiffies, fw_act_timeout)) { 4199 dev_warn(ctrl->device, 4200 "Fw activation timeout, reset controller\n"); 4201 nvme_try_sched_reset(ctrl); 4202 return; 4203 } 4204 msleep(100); 4205 } 4206 4207 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4208 return; 4209 4210 nvme_start_queues(ctrl); 4211 /* read FW slot information to clear the AER */ 4212 nvme_get_fw_slot_info(ctrl); 4213 } 4214 4215 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4216 { 4217 u32 aer_notice_type = (result & 0xff00) >> 8; 4218 4219 trace_nvme_async_event(ctrl, aer_notice_type); 4220 4221 switch (aer_notice_type) { 4222 case NVME_AER_NOTICE_NS_CHANGED: 4223 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4224 nvme_queue_scan(ctrl); 4225 break; 4226 case NVME_AER_NOTICE_FW_ACT_STARTING: 4227 /* 4228 * We are (ab)using the RESETTING state to prevent subsequent 4229 * recovery actions from interfering with the controller's 4230 * firmware activation. 4231 */ 4232 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4233 queue_work(nvme_wq, &ctrl->fw_act_work); 4234 break; 4235 #ifdef CONFIG_NVME_MULTIPATH 4236 case NVME_AER_NOTICE_ANA: 4237 if (!ctrl->ana_log_buf) 4238 break; 4239 queue_work(nvme_wq, &ctrl->ana_work); 4240 break; 4241 #endif 4242 case NVME_AER_NOTICE_DISC_CHANGED: 4243 ctrl->aen_result = result; 4244 break; 4245 default: 4246 dev_warn(ctrl->device, "async event result %08x\n", result); 4247 } 4248 } 4249 4250 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4251 volatile union nvme_result *res) 4252 { 4253 u32 result = le32_to_cpu(res->u32); 4254 u32 aer_type = result & 0x07; 4255 4256 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4257 return; 4258 4259 switch (aer_type) { 4260 case NVME_AER_NOTICE: 4261 nvme_handle_aen_notice(ctrl, result); 4262 break; 4263 case NVME_AER_ERROR: 4264 case NVME_AER_SMART: 4265 case NVME_AER_CSS: 4266 case NVME_AER_VS: 4267 trace_nvme_async_event(ctrl, aer_type); 4268 ctrl->aen_result = result; 4269 break; 4270 default: 4271 break; 4272 } 4273 queue_work(nvme_wq, &ctrl->async_event_work); 4274 } 4275 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4276 4277 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4278 { 4279 nvme_mpath_stop(ctrl); 4280 nvme_stop_keep_alive(ctrl); 4281 nvme_stop_failfast_work(ctrl); 4282 flush_work(&ctrl->async_event_work); 4283 cancel_work_sync(&ctrl->fw_act_work); 4284 } 4285 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4286 4287 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4288 { 4289 nvme_start_keep_alive(ctrl); 4290 4291 nvme_enable_aen(ctrl); 4292 4293 if (ctrl->queue_count > 1) { 4294 nvme_queue_scan(ctrl); 4295 nvme_start_queues(ctrl); 4296 } 4297 } 4298 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4299 4300 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4301 { 4302 nvme_hwmon_exit(ctrl); 4303 nvme_fault_inject_fini(&ctrl->fault_inject); 4304 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4305 cdev_device_del(&ctrl->cdev, ctrl->device); 4306 nvme_put_ctrl(ctrl); 4307 } 4308 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4309 4310 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4311 { 4312 struct nvme_effects_log *cel; 4313 unsigned long i; 4314 4315 xa_for_each(&ctrl->cels, i, cel) { 4316 xa_erase(&ctrl->cels, i); 4317 kfree(cel); 4318 } 4319 4320 xa_destroy(&ctrl->cels); 4321 } 4322 4323 static void nvme_free_ctrl(struct device *dev) 4324 { 4325 struct nvme_ctrl *ctrl = 4326 container_of(dev, struct nvme_ctrl, ctrl_device); 4327 struct nvme_subsystem *subsys = ctrl->subsys; 4328 4329 if (!subsys || ctrl->instance != subsys->instance) 4330 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4331 4332 nvme_free_cels(ctrl); 4333 nvme_mpath_uninit(ctrl); 4334 __free_page(ctrl->discard_page); 4335 4336 if (subsys) { 4337 mutex_lock(&nvme_subsystems_lock); 4338 list_del(&ctrl->subsys_entry); 4339 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4340 mutex_unlock(&nvme_subsystems_lock); 4341 } 4342 4343 ctrl->ops->free_ctrl(ctrl); 4344 4345 if (subsys) 4346 nvme_put_subsystem(subsys); 4347 } 4348 4349 /* 4350 * Initialize a NVMe controller structures. This needs to be called during 4351 * earliest initialization so that we have the initialized structured around 4352 * during probing. 4353 */ 4354 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4355 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4356 { 4357 int ret; 4358 4359 ctrl->state = NVME_CTRL_NEW; 4360 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4361 spin_lock_init(&ctrl->lock); 4362 mutex_init(&ctrl->scan_lock); 4363 INIT_LIST_HEAD(&ctrl->namespaces); 4364 xa_init(&ctrl->cels); 4365 init_rwsem(&ctrl->namespaces_rwsem); 4366 ctrl->dev = dev; 4367 ctrl->ops = ops; 4368 ctrl->quirks = quirks; 4369 ctrl->numa_node = NUMA_NO_NODE; 4370 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4371 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4372 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4373 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4374 init_waitqueue_head(&ctrl->state_wq); 4375 4376 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4377 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4378 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4379 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4380 4381 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4382 PAGE_SIZE); 4383 ctrl->discard_page = alloc_page(GFP_KERNEL); 4384 if (!ctrl->discard_page) { 4385 ret = -ENOMEM; 4386 goto out; 4387 } 4388 4389 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4390 if (ret < 0) 4391 goto out; 4392 ctrl->instance = ret; 4393 4394 device_initialize(&ctrl->ctrl_device); 4395 ctrl->device = &ctrl->ctrl_device; 4396 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4397 ctrl->instance); 4398 ctrl->device->class = nvme_class; 4399 ctrl->device->parent = ctrl->dev; 4400 ctrl->device->groups = nvme_dev_attr_groups; 4401 ctrl->device->release = nvme_free_ctrl; 4402 dev_set_drvdata(ctrl->device, ctrl); 4403 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4404 if (ret) 4405 goto out_release_instance; 4406 4407 nvme_get_ctrl(ctrl); 4408 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4409 ctrl->cdev.owner = ops->module; 4410 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4411 if (ret) 4412 goto out_free_name; 4413 4414 /* 4415 * Initialize latency tolerance controls. The sysfs files won't 4416 * be visible to userspace unless the device actually supports APST. 4417 */ 4418 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4419 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4420 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4421 4422 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4423 nvme_mpath_init_ctrl(ctrl); 4424 4425 return 0; 4426 out_free_name: 4427 nvme_put_ctrl(ctrl); 4428 kfree_const(ctrl->device->kobj.name); 4429 out_release_instance: 4430 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4431 out: 4432 if (ctrl->discard_page) 4433 __free_page(ctrl->discard_page); 4434 return ret; 4435 } 4436 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4437 4438 /** 4439 * nvme_kill_queues(): Ends all namespace queues 4440 * @ctrl: the dead controller that needs to end 4441 * 4442 * Call this function when the driver determines it is unable to get the 4443 * controller in a state capable of servicing IO. 4444 */ 4445 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4446 { 4447 struct nvme_ns *ns; 4448 4449 down_read(&ctrl->namespaces_rwsem); 4450 4451 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4452 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4453 blk_mq_unquiesce_queue(ctrl->admin_q); 4454 4455 list_for_each_entry(ns, &ctrl->namespaces, list) 4456 nvme_set_queue_dying(ns); 4457 4458 up_read(&ctrl->namespaces_rwsem); 4459 } 4460 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4461 4462 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4463 { 4464 struct nvme_ns *ns; 4465 4466 down_read(&ctrl->namespaces_rwsem); 4467 list_for_each_entry(ns, &ctrl->namespaces, list) 4468 blk_mq_unfreeze_queue(ns->queue); 4469 up_read(&ctrl->namespaces_rwsem); 4470 } 4471 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4472 4473 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4474 { 4475 struct nvme_ns *ns; 4476 4477 down_read(&ctrl->namespaces_rwsem); 4478 list_for_each_entry(ns, &ctrl->namespaces, list) { 4479 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4480 if (timeout <= 0) 4481 break; 4482 } 4483 up_read(&ctrl->namespaces_rwsem); 4484 return timeout; 4485 } 4486 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4487 4488 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4489 { 4490 struct nvme_ns *ns; 4491 4492 down_read(&ctrl->namespaces_rwsem); 4493 list_for_each_entry(ns, &ctrl->namespaces, list) 4494 blk_mq_freeze_queue_wait(ns->queue); 4495 up_read(&ctrl->namespaces_rwsem); 4496 } 4497 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4498 4499 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4500 { 4501 struct nvme_ns *ns; 4502 4503 down_read(&ctrl->namespaces_rwsem); 4504 list_for_each_entry(ns, &ctrl->namespaces, list) 4505 blk_freeze_queue_start(ns->queue); 4506 up_read(&ctrl->namespaces_rwsem); 4507 } 4508 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4509 4510 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4511 { 4512 struct nvme_ns *ns; 4513 4514 down_read(&ctrl->namespaces_rwsem); 4515 list_for_each_entry(ns, &ctrl->namespaces, list) 4516 blk_mq_quiesce_queue(ns->queue); 4517 up_read(&ctrl->namespaces_rwsem); 4518 } 4519 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4520 4521 void nvme_start_queues(struct nvme_ctrl *ctrl) 4522 { 4523 struct nvme_ns *ns; 4524 4525 down_read(&ctrl->namespaces_rwsem); 4526 list_for_each_entry(ns, &ctrl->namespaces, list) 4527 blk_mq_unquiesce_queue(ns->queue); 4528 up_read(&ctrl->namespaces_rwsem); 4529 } 4530 EXPORT_SYMBOL_GPL(nvme_start_queues); 4531 4532 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4533 { 4534 struct nvme_ns *ns; 4535 4536 down_read(&ctrl->namespaces_rwsem); 4537 list_for_each_entry(ns, &ctrl->namespaces, list) 4538 blk_sync_queue(ns->queue); 4539 up_read(&ctrl->namespaces_rwsem); 4540 } 4541 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4542 4543 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4544 { 4545 nvme_sync_io_queues(ctrl); 4546 if (ctrl->admin_q) 4547 blk_sync_queue(ctrl->admin_q); 4548 } 4549 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4550 4551 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4552 { 4553 if (file->f_op != &nvme_dev_fops) 4554 return NULL; 4555 return file->private_data; 4556 } 4557 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4558 4559 /* 4560 * Check we didn't inadvertently grow the command structure sizes: 4561 */ 4562 static inline void _nvme_check_size(void) 4563 { 4564 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4565 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4566 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4567 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4568 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4569 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4570 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4571 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4572 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4573 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4574 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4575 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4576 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4577 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4578 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4579 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4580 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4581 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4582 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4583 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4584 } 4585 4586 4587 static int __init nvme_core_init(void) 4588 { 4589 int result = -ENOMEM; 4590 4591 _nvme_check_size(); 4592 4593 nvme_wq = alloc_workqueue("nvme-wq", 4594 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4595 if (!nvme_wq) 4596 goto out; 4597 4598 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4599 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4600 if (!nvme_reset_wq) 4601 goto destroy_wq; 4602 4603 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4604 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4605 if (!nvme_delete_wq) 4606 goto destroy_reset_wq; 4607 4608 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4609 NVME_MINORS, "nvme"); 4610 if (result < 0) 4611 goto destroy_delete_wq; 4612 4613 nvme_class = class_create(THIS_MODULE, "nvme"); 4614 if (IS_ERR(nvme_class)) { 4615 result = PTR_ERR(nvme_class); 4616 goto unregister_chrdev; 4617 } 4618 nvme_class->dev_uevent = nvme_class_uevent; 4619 4620 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4621 if (IS_ERR(nvme_subsys_class)) { 4622 result = PTR_ERR(nvme_subsys_class); 4623 goto destroy_class; 4624 } 4625 4626 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4627 "nvme-generic"); 4628 if (result < 0) 4629 goto destroy_subsys_class; 4630 4631 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4632 if (IS_ERR(nvme_ns_chr_class)) { 4633 result = PTR_ERR(nvme_ns_chr_class); 4634 goto unregister_generic_ns; 4635 } 4636 4637 return 0; 4638 4639 unregister_generic_ns: 4640 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4641 destroy_subsys_class: 4642 class_destroy(nvme_subsys_class); 4643 destroy_class: 4644 class_destroy(nvme_class); 4645 unregister_chrdev: 4646 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4647 destroy_delete_wq: 4648 destroy_workqueue(nvme_delete_wq); 4649 destroy_reset_wq: 4650 destroy_workqueue(nvme_reset_wq); 4651 destroy_wq: 4652 destroy_workqueue(nvme_wq); 4653 out: 4654 return result; 4655 } 4656 4657 static void __exit nvme_core_exit(void) 4658 { 4659 class_destroy(nvme_ns_chr_class); 4660 class_destroy(nvme_subsys_class); 4661 class_destroy(nvme_class); 4662 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4663 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4664 destroy_workqueue(nvme_delete_wq); 4665 destroy_workqueue(nvme_reset_wq); 4666 destroy_workqueue(nvme_wq); 4667 ida_destroy(&nvme_ns_chr_minor_ida); 4668 ida_destroy(&nvme_instance_ida); 4669 } 4670 4671 MODULE_LICENSE("GPL"); 4672 MODULE_VERSION("1.0"); 4673 module_init(nvme_core_init); 4674 module_exit(nvme_core_exit); 4675