xref: /linux/drivers/nvme/host/core.c (revision a4cc96d1f0170b779c32c6b2cc58764f5d2cdef0)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31 
32 #include "nvme.h"
33 #include "fabrics.h"
34 
35 #define NVME_MINORS		(1U << MINORBITS)
36 
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41 
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46 
47 unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50 
51 unsigned int nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, uint, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 EXPORT_SYMBOL_GPL(nvme_max_retries);
55 
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58 
59 static LIST_HEAD(nvme_ctrl_list);
60 static DEFINE_SPINLOCK(dev_list_lock);
61 
62 static struct class *nvme_class;
63 
64 void nvme_cancel_request(struct request *req, void *data, bool reserved)
65 {
66 	int status;
67 
68 	if (!blk_mq_request_started(req))
69 		return;
70 
71 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
72 				"Cancelling I/O %d", req->tag);
73 
74 	status = NVME_SC_ABORT_REQ;
75 	if (blk_queue_dying(req->q))
76 		status |= NVME_SC_DNR;
77 	blk_mq_complete_request(req, status);
78 }
79 EXPORT_SYMBOL_GPL(nvme_cancel_request);
80 
81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
82 		enum nvme_ctrl_state new_state)
83 {
84 	enum nvme_ctrl_state old_state;
85 	bool changed = false;
86 
87 	spin_lock_irq(&ctrl->lock);
88 
89 	old_state = ctrl->state;
90 	switch (new_state) {
91 	case NVME_CTRL_LIVE:
92 		switch (old_state) {
93 		case NVME_CTRL_NEW:
94 		case NVME_CTRL_RESETTING:
95 		case NVME_CTRL_RECONNECTING:
96 			changed = true;
97 			/* FALLTHRU */
98 		default:
99 			break;
100 		}
101 		break;
102 	case NVME_CTRL_RESETTING:
103 		switch (old_state) {
104 		case NVME_CTRL_NEW:
105 		case NVME_CTRL_LIVE:
106 		case NVME_CTRL_RECONNECTING:
107 			changed = true;
108 			/* FALLTHRU */
109 		default:
110 			break;
111 		}
112 		break;
113 	case NVME_CTRL_RECONNECTING:
114 		switch (old_state) {
115 		case NVME_CTRL_LIVE:
116 			changed = true;
117 			/* FALLTHRU */
118 		default:
119 			break;
120 		}
121 		break;
122 	case NVME_CTRL_DELETING:
123 		switch (old_state) {
124 		case NVME_CTRL_LIVE:
125 		case NVME_CTRL_RESETTING:
126 		case NVME_CTRL_RECONNECTING:
127 			changed = true;
128 			/* FALLTHRU */
129 		default:
130 			break;
131 		}
132 		break;
133 	case NVME_CTRL_DEAD:
134 		switch (old_state) {
135 		case NVME_CTRL_DELETING:
136 			changed = true;
137 			/* FALLTHRU */
138 		default:
139 			break;
140 		}
141 		break;
142 	default:
143 		break;
144 	}
145 
146 	if (changed)
147 		ctrl->state = new_state;
148 
149 	spin_unlock_irq(&ctrl->lock);
150 
151 	return changed;
152 }
153 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
154 
155 static void nvme_free_ns(struct kref *kref)
156 {
157 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
158 
159 	if (ns->type == NVME_NS_LIGHTNVM)
160 		nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
161 
162 	spin_lock(&dev_list_lock);
163 	ns->disk->private_data = NULL;
164 	spin_unlock(&dev_list_lock);
165 
166 	put_disk(ns->disk);
167 	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
168 	nvme_put_ctrl(ns->ctrl);
169 	kfree(ns);
170 }
171 
172 static void nvme_put_ns(struct nvme_ns *ns)
173 {
174 	kref_put(&ns->kref, nvme_free_ns);
175 }
176 
177 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
178 {
179 	struct nvme_ns *ns;
180 
181 	spin_lock(&dev_list_lock);
182 	ns = disk->private_data;
183 	if (ns) {
184 		if (!kref_get_unless_zero(&ns->kref))
185 			goto fail;
186 		if (!try_module_get(ns->ctrl->ops->module))
187 			goto fail_put_ns;
188 	}
189 	spin_unlock(&dev_list_lock);
190 
191 	return ns;
192 
193 fail_put_ns:
194 	kref_put(&ns->kref, nvme_free_ns);
195 fail:
196 	spin_unlock(&dev_list_lock);
197 	return NULL;
198 }
199 
200 void nvme_requeue_req(struct request *req)
201 {
202 	unsigned long flags;
203 
204 	blk_mq_requeue_request(req);
205 	spin_lock_irqsave(req->q->queue_lock, flags);
206 	if (!blk_queue_stopped(req->q))
207 		blk_mq_kick_requeue_list(req->q);
208 	spin_unlock_irqrestore(req->q->queue_lock, flags);
209 }
210 EXPORT_SYMBOL_GPL(nvme_requeue_req);
211 
212 struct request *nvme_alloc_request(struct request_queue *q,
213 		struct nvme_command *cmd, unsigned int flags, int qid)
214 {
215 	struct request *req;
216 
217 	if (qid == NVME_QID_ANY) {
218 		req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
219 	} else {
220 		req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
221 				qid ? qid - 1 : 0);
222 	}
223 	if (IS_ERR(req))
224 		return req;
225 
226 	req->cmd_type = REQ_TYPE_DRV_PRIV;
227 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
228 	req->cmd = (unsigned char *)cmd;
229 	req->cmd_len = sizeof(struct nvme_command);
230 
231 	return req;
232 }
233 EXPORT_SYMBOL_GPL(nvme_alloc_request);
234 
235 static inline void nvme_setup_flush(struct nvme_ns *ns,
236 		struct nvme_command *cmnd)
237 {
238 	memset(cmnd, 0, sizeof(*cmnd));
239 	cmnd->common.opcode = nvme_cmd_flush;
240 	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
241 }
242 
243 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
244 		struct nvme_command *cmnd)
245 {
246 	struct nvme_dsm_range *range;
247 	struct page *page;
248 	int offset;
249 	unsigned int nr_bytes = blk_rq_bytes(req);
250 
251 	range = kmalloc(sizeof(*range), GFP_ATOMIC);
252 	if (!range)
253 		return BLK_MQ_RQ_QUEUE_BUSY;
254 
255 	range->cattr = cpu_to_le32(0);
256 	range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
257 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
258 
259 	memset(cmnd, 0, sizeof(*cmnd));
260 	cmnd->dsm.opcode = nvme_cmd_dsm;
261 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
262 	cmnd->dsm.nr = 0;
263 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
264 
265 	req->completion_data = range;
266 	page = virt_to_page(range);
267 	offset = offset_in_page(range);
268 	blk_add_request_payload(req, page, offset, sizeof(*range));
269 
270 	/*
271 	 * we set __data_len back to the size of the area to be discarded
272 	 * on disk. This allows us to report completion on the full amount
273 	 * of blocks described by the request.
274 	 */
275 	req->__data_len = nr_bytes;
276 
277 	return 0;
278 }
279 
280 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
281 		struct nvme_command *cmnd)
282 {
283 	u16 control = 0;
284 	u32 dsmgmt = 0;
285 
286 	if (req->cmd_flags & REQ_FUA)
287 		control |= NVME_RW_FUA;
288 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
289 		control |= NVME_RW_LR;
290 
291 	if (req->cmd_flags & REQ_RAHEAD)
292 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
293 
294 	memset(cmnd, 0, sizeof(*cmnd));
295 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
296 	cmnd->rw.command_id = req->tag;
297 	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
298 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
299 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
300 
301 	if (ns->ms) {
302 		switch (ns->pi_type) {
303 		case NVME_NS_DPS_PI_TYPE3:
304 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
305 			break;
306 		case NVME_NS_DPS_PI_TYPE1:
307 		case NVME_NS_DPS_PI_TYPE2:
308 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
309 					NVME_RW_PRINFO_PRCHK_REF;
310 			cmnd->rw.reftag = cpu_to_le32(
311 					nvme_block_nr(ns, blk_rq_pos(req)));
312 			break;
313 		}
314 		if (!blk_integrity_rq(req))
315 			control |= NVME_RW_PRINFO_PRACT;
316 	}
317 
318 	cmnd->rw.control = cpu_to_le16(control);
319 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
320 }
321 
322 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
323 		struct nvme_command *cmd)
324 {
325 	int ret = 0;
326 
327 	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
328 		memcpy(cmd, req->cmd, sizeof(*cmd));
329 	else if (req_op(req) == REQ_OP_FLUSH)
330 		nvme_setup_flush(ns, cmd);
331 	else if (req_op(req) == REQ_OP_DISCARD)
332 		ret = nvme_setup_discard(ns, req, cmd);
333 	else
334 		nvme_setup_rw(ns, req, cmd);
335 
336 	return ret;
337 }
338 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
339 
340 /*
341  * Returns 0 on success.  If the result is negative, it's a Linux error code;
342  * if the result is positive, it's an NVM Express status code
343  */
344 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
345 		struct nvme_completion *cqe, void *buffer, unsigned bufflen,
346 		unsigned timeout, int qid, int at_head, int flags)
347 {
348 	struct request *req;
349 	int ret;
350 
351 	req = nvme_alloc_request(q, cmd, flags, qid);
352 	if (IS_ERR(req))
353 		return PTR_ERR(req);
354 
355 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
356 	req->special = cqe;
357 
358 	if (buffer && bufflen) {
359 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
360 		if (ret)
361 			goto out;
362 	}
363 
364 	blk_execute_rq(req->q, NULL, req, at_head);
365 	ret = req->errors;
366  out:
367 	blk_mq_free_request(req);
368 	return ret;
369 }
370 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
371 
372 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
373 		void *buffer, unsigned bufflen)
374 {
375 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
376 			NVME_QID_ANY, 0, 0);
377 }
378 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
379 
380 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
381 		void __user *ubuffer, unsigned bufflen,
382 		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
383 		u32 *result, unsigned timeout)
384 {
385 	bool write = nvme_is_write(cmd);
386 	struct nvme_completion cqe;
387 	struct nvme_ns *ns = q->queuedata;
388 	struct gendisk *disk = ns ? ns->disk : NULL;
389 	struct request *req;
390 	struct bio *bio = NULL;
391 	void *meta = NULL;
392 	int ret;
393 
394 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
395 	if (IS_ERR(req))
396 		return PTR_ERR(req);
397 
398 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
399 	req->special = &cqe;
400 
401 	if (ubuffer && bufflen) {
402 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
403 				GFP_KERNEL);
404 		if (ret)
405 			goto out;
406 		bio = req->bio;
407 
408 		if (!disk)
409 			goto submit;
410 		bio->bi_bdev = bdget_disk(disk, 0);
411 		if (!bio->bi_bdev) {
412 			ret = -ENODEV;
413 			goto out_unmap;
414 		}
415 
416 		if (meta_buffer && meta_len) {
417 			struct bio_integrity_payload *bip;
418 
419 			meta = kmalloc(meta_len, GFP_KERNEL);
420 			if (!meta) {
421 				ret = -ENOMEM;
422 				goto out_unmap;
423 			}
424 
425 			if (write) {
426 				if (copy_from_user(meta, meta_buffer,
427 						meta_len)) {
428 					ret = -EFAULT;
429 					goto out_free_meta;
430 				}
431 			}
432 
433 			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
434 			if (IS_ERR(bip)) {
435 				ret = PTR_ERR(bip);
436 				goto out_free_meta;
437 			}
438 
439 			bip->bip_iter.bi_size = meta_len;
440 			bip->bip_iter.bi_sector = meta_seed;
441 
442 			ret = bio_integrity_add_page(bio, virt_to_page(meta),
443 					meta_len, offset_in_page(meta));
444 			if (ret != meta_len) {
445 				ret = -ENOMEM;
446 				goto out_free_meta;
447 			}
448 		}
449 	}
450  submit:
451 	blk_execute_rq(req->q, disk, req, 0);
452 	ret = req->errors;
453 	if (result)
454 		*result = le32_to_cpu(cqe.result);
455 	if (meta && !ret && !write) {
456 		if (copy_to_user(meta_buffer, meta, meta_len))
457 			ret = -EFAULT;
458 	}
459  out_free_meta:
460 	kfree(meta);
461  out_unmap:
462 	if (bio) {
463 		if (disk && bio->bi_bdev)
464 			bdput(bio->bi_bdev);
465 		blk_rq_unmap_user(bio);
466 	}
467  out:
468 	blk_mq_free_request(req);
469 	return ret;
470 }
471 
472 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
473 		void __user *ubuffer, unsigned bufflen, u32 *result,
474 		unsigned timeout)
475 {
476 	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
477 			result, timeout);
478 }
479 
480 static void nvme_keep_alive_end_io(struct request *rq, int error)
481 {
482 	struct nvme_ctrl *ctrl = rq->end_io_data;
483 
484 	blk_mq_free_request(rq);
485 
486 	if (error) {
487 		dev_err(ctrl->device,
488 			"failed nvme_keep_alive_end_io error=%d\n", error);
489 		return;
490 	}
491 
492 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
493 }
494 
495 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
496 {
497 	struct nvme_command c;
498 	struct request *rq;
499 
500 	memset(&c, 0, sizeof(c));
501 	c.common.opcode = nvme_admin_keep_alive;
502 
503 	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
504 			NVME_QID_ANY);
505 	if (IS_ERR(rq))
506 		return PTR_ERR(rq);
507 
508 	rq->timeout = ctrl->kato * HZ;
509 	rq->end_io_data = ctrl;
510 
511 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
512 
513 	return 0;
514 }
515 
516 static void nvme_keep_alive_work(struct work_struct *work)
517 {
518 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
519 			struct nvme_ctrl, ka_work);
520 
521 	if (nvme_keep_alive(ctrl)) {
522 		/* allocation failure, reset the controller */
523 		dev_err(ctrl->device, "keep-alive failed\n");
524 		ctrl->ops->reset_ctrl(ctrl);
525 		return;
526 	}
527 }
528 
529 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
530 {
531 	if (unlikely(ctrl->kato == 0))
532 		return;
533 
534 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
535 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
536 }
537 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
538 
539 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
540 {
541 	if (unlikely(ctrl->kato == 0))
542 		return;
543 
544 	cancel_delayed_work_sync(&ctrl->ka_work);
545 }
546 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
547 
548 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
549 {
550 	struct nvme_command c = { };
551 	int error;
552 
553 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
554 	c.identify.opcode = nvme_admin_identify;
555 	c.identify.cns = cpu_to_le32(1);
556 
557 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
558 	if (!*id)
559 		return -ENOMEM;
560 
561 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
562 			sizeof(struct nvme_id_ctrl));
563 	if (error)
564 		kfree(*id);
565 	return error;
566 }
567 
568 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
569 {
570 	struct nvme_command c = { };
571 
572 	c.identify.opcode = nvme_admin_identify;
573 	c.identify.cns = cpu_to_le32(2);
574 	c.identify.nsid = cpu_to_le32(nsid);
575 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
576 }
577 
578 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
579 		struct nvme_id_ns **id)
580 {
581 	struct nvme_command c = { };
582 	int error;
583 
584 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
585 	c.identify.opcode = nvme_admin_identify,
586 	c.identify.nsid = cpu_to_le32(nsid),
587 
588 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
589 	if (!*id)
590 		return -ENOMEM;
591 
592 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
593 			sizeof(struct nvme_id_ns));
594 	if (error)
595 		kfree(*id);
596 	return error;
597 }
598 
599 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
600 					dma_addr_t dma_addr, u32 *result)
601 {
602 	struct nvme_command c;
603 	struct nvme_completion cqe;
604 	int ret;
605 
606 	memset(&c, 0, sizeof(c));
607 	c.features.opcode = nvme_admin_get_features;
608 	c.features.nsid = cpu_to_le32(nsid);
609 	c.features.dptr.prp1 = cpu_to_le64(dma_addr);
610 	c.features.fid = cpu_to_le32(fid);
611 
612 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
613 			NVME_QID_ANY, 0, 0);
614 	if (ret >= 0 && result)
615 		*result = le32_to_cpu(cqe.result);
616 	return ret;
617 }
618 
619 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
620 					dma_addr_t dma_addr, u32 *result)
621 {
622 	struct nvme_command c;
623 	struct nvme_completion cqe;
624 	int ret;
625 
626 	memset(&c, 0, sizeof(c));
627 	c.features.opcode = nvme_admin_set_features;
628 	c.features.dptr.prp1 = cpu_to_le64(dma_addr);
629 	c.features.fid = cpu_to_le32(fid);
630 	c.features.dword11 = cpu_to_le32(dword11);
631 
632 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
633 			NVME_QID_ANY, 0, 0);
634 	if (ret >= 0 && result)
635 		*result = le32_to_cpu(cqe.result);
636 	return ret;
637 }
638 
639 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
640 {
641 	struct nvme_command c = { };
642 	int error;
643 
644 	c.common.opcode = nvme_admin_get_log_page,
645 	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
646 	c.common.cdw10[0] = cpu_to_le32(
647 			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
648 			 NVME_LOG_SMART),
649 
650 	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
651 	if (!*log)
652 		return -ENOMEM;
653 
654 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
655 			sizeof(struct nvme_smart_log));
656 	if (error)
657 		kfree(*log);
658 	return error;
659 }
660 
661 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
662 {
663 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
664 	u32 result;
665 	int status, nr_io_queues;
666 
667 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
668 			&result);
669 	if (status < 0)
670 		return status;
671 
672 	/*
673 	 * Degraded controllers might return an error when setting the queue
674 	 * count.  We still want to be able to bring them online and offer
675 	 * access to the admin queue, as that might be only way to fix them up.
676 	 */
677 	if (status > 0) {
678 		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
679 		*count = 0;
680 	} else {
681 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
682 		*count = min(*count, nr_io_queues);
683 	}
684 
685 	return 0;
686 }
687 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
688 
689 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
690 {
691 	struct nvme_user_io io;
692 	struct nvme_command c;
693 	unsigned length, meta_len;
694 	void __user *metadata;
695 
696 	if (copy_from_user(&io, uio, sizeof(io)))
697 		return -EFAULT;
698 	if (io.flags)
699 		return -EINVAL;
700 
701 	switch (io.opcode) {
702 	case nvme_cmd_write:
703 	case nvme_cmd_read:
704 	case nvme_cmd_compare:
705 		break;
706 	default:
707 		return -EINVAL;
708 	}
709 
710 	length = (io.nblocks + 1) << ns->lba_shift;
711 	meta_len = (io.nblocks + 1) * ns->ms;
712 	metadata = (void __user *)(uintptr_t)io.metadata;
713 
714 	if (ns->ext) {
715 		length += meta_len;
716 		meta_len = 0;
717 	} else if (meta_len) {
718 		if ((io.metadata & 3) || !io.metadata)
719 			return -EINVAL;
720 	}
721 
722 	memset(&c, 0, sizeof(c));
723 	c.rw.opcode = io.opcode;
724 	c.rw.flags = io.flags;
725 	c.rw.nsid = cpu_to_le32(ns->ns_id);
726 	c.rw.slba = cpu_to_le64(io.slba);
727 	c.rw.length = cpu_to_le16(io.nblocks);
728 	c.rw.control = cpu_to_le16(io.control);
729 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
730 	c.rw.reftag = cpu_to_le32(io.reftag);
731 	c.rw.apptag = cpu_to_le16(io.apptag);
732 	c.rw.appmask = cpu_to_le16(io.appmask);
733 
734 	return __nvme_submit_user_cmd(ns->queue, &c,
735 			(void __user *)(uintptr_t)io.addr, length,
736 			metadata, meta_len, io.slba, NULL, 0);
737 }
738 
739 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
740 			struct nvme_passthru_cmd __user *ucmd)
741 {
742 	struct nvme_passthru_cmd cmd;
743 	struct nvme_command c;
744 	unsigned timeout = 0;
745 	int status;
746 
747 	if (!capable(CAP_SYS_ADMIN))
748 		return -EACCES;
749 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
750 		return -EFAULT;
751 	if (cmd.flags)
752 		return -EINVAL;
753 
754 	memset(&c, 0, sizeof(c));
755 	c.common.opcode = cmd.opcode;
756 	c.common.flags = cmd.flags;
757 	c.common.nsid = cpu_to_le32(cmd.nsid);
758 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
759 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
760 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
761 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
762 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
763 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
764 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
765 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
766 
767 	if (cmd.timeout_ms)
768 		timeout = msecs_to_jiffies(cmd.timeout_ms);
769 
770 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
771 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
772 			&cmd.result, timeout);
773 	if (status >= 0) {
774 		if (put_user(cmd.result, &ucmd->result))
775 			return -EFAULT;
776 	}
777 
778 	return status;
779 }
780 
781 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
782 		unsigned int cmd, unsigned long arg)
783 {
784 	struct nvme_ns *ns = bdev->bd_disk->private_data;
785 
786 	switch (cmd) {
787 	case NVME_IOCTL_ID:
788 		force_successful_syscall_return();
789 		return ns->ns_id;
790 	case NVME_IOCTL_ADMIN_CMD:
791 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
792 	case NVME_IOCTL_IO_CMD:
793 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
794 	case NVME_IOCTL_SUBMIT_IO:
795 		return nvme_submit_io(ns, (void __user *)arg);
796 #ifdef CONFIG_BLK_DEV_NVME_SCSI
797 	case SG_GET_VERSION_NUM:
798 		return nvme_sg_get_version_num((void __user *)arg);
799 	case SG_IO:
800 		return nvme_sg_io(ns, (void __user *)arg);
801 #endif
802 	default:
803 		return -ENOTTY;
804 	}
805 }
806 
807 #ifdef CONFIG_COMPAT
808 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
809 			unsigned int cmd, unsigned long arg)
810 {
811 	switch (cmd) {
812 	case SG_IO:
813 		return -ENOIOCTLCMD;
814 	}
815 	return nvme_ioctl(bdev, mode, cmd, arg);
816 }
817 #else
818 #define nvme_compat_ioctl	NULL
819 #endif
820 
821 static int nvme_open(struct block_device *bdev, fmode_t mode)
822 {
823 	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
824 }
825 
826 static void nvme_release(struct gendisk *disk, fmode_t mode)
827 {
828 	struct nvme_ns *ns = disk->private_data;
829 
830 	module_put(ns->ctrl->ops->module);
831 	nvme_put_ns(ns);
832 }
833 
834 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
835 {
836 	/* some standard values */
837 	geo->heads = 1 << 6;
838 	geo->sectors = 1 << 5;
839 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
840 	return 0;
841 }
842 
843 #ifdef CONFIG_BLK_DEV_INTEGRITY
844 static void nvme_init_integrity(struct nvme_ns *ns)
845 {
846 	struct blk_integrity integrity;
847 
848 	memset(&integrity, 0, sizeof(integrity));
849 	switch (ns->pi_type) {
850 	case NVME_NS_DPS_PI_TYPE3:
851 		integrity.profile = &t10_pi_type3_crc;
852 		integrity.tag_size = sizeof(u16) + sizeof(u32);
853 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
854 		break;
855 	case NVME_NS_DPS_PI_TYPE1:
856 	case NVME_NS_DPS_PI_TYPE2:
857 		integrity.profile = &t10_pi_type1_crc;
858 		integrity.tag_size = sizeof(u16);
859 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
860 		break;
861 	default:
862 		integrity.profile = NULL;
863 		break;
864 	}
865 	integrity.tuple_size = ns->ms;
866 	blk_integrity_register(ns->disk, &integrity);
867 	blk_queue_max_integrity_segments(ns->queue, 1);
868 }
869 #else
870 static void nvme_init_integrity(struct nvme_ns *ns)
871 {
872 }
873 #endif /* CONFIG_BLK_DEV_INTEGRITY */
874 
875 static void nvme_config_discard(struct nvme_ns *ns)
876 {
877 	struct nvme_ctrl *ctrl = ns->ctrl;
878 	u32 logical_block_size = queue_logical_block_size(ns->queue);
879 
880 	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
881 		ns->queue->limits.discard_zeroes_data = 1;
882 	else
883 		ns->queue->limits.discard_zeroes_data = 0;
884 
885 	ns->queue->limits.discard_alignment = logical_block_size;
886 	ns->queue->limits.discard_granularity = logical_block_size;
887 	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
888 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
889 }
890 
891 static int nvme_revalidate_disk(struct gendisk *disk)
892 {
893 	struct nvme_ns *ns = disk->private_data;
894 	struct nvme_id_ns *id;
895 	u8 lbaf, pi_type;
896 	u16 old_ms;
897 	unsigned short bs;
898 
899 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
900 		set_capacity(disk, 0);
901 		return -ENODEV;
902 	}
903 	if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
904 		dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
905 				__func__);
906 		return -ENODEV;
907 	}
908 	if (id->ncap == 0) {
909 		kfree(id);
910 		return -ENODEV;
911 	}
912 
913 	if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
914 		if (nvme_nvm_register(ns->queue, disk->disk_name)) {
915 			dev_warn(disk_to_dev(ns->disk),
916 				"%s: LightNVM init failure\n", __func__);
917 			kfree(id);
918 			return -ENODEV;
919 		}
920 		ns->type = NVME_NS_LIGHTNVM;
921 	}
922 
923 	if (ns->ctrl->vs >= NVME_VS(1, 1))
924 		memcpy(ns->eui, id->eui64, sizeof(ns->eui));
925 	if (ns->ctrl->vs >= NVME_VS(1, 2))
926 		memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
927 
928 	old_ms = ns->ms;
929 	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
930 	ns->lba_shift = id->lbaf[lbaf].ds;
931 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
932 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
933 
934 	/*
935 	 * If identify namespace failed, use default 512 byte block size so
936 	 * block layer can use before failing read/write for 0 capacity.
937 	 */
938 	if (ns->lba_shift == 0)
939 		ns->lba_shift = 9;
940 	bs = 1 << ns->lba_shift;
941 	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
942 	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
943 					id->dps & NVME_NS_DPS_PI_MASK : 0;
944 
945 	blk_mq_freeze_queue(disk->queue);
946 	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
947 				ns->ms != old_ms ||
948 				bs != queue_logical_block_size(disk->queue) ||
949 				(ns->ms && ns->ext)))
950 		blk_integrity_unregister(disk);
951 
952 	ns->pi_type = pi_type;
953 	blk_queue_logical_block_size(ns->queue, bs);
954 
955 	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
956 		nvme_init_integrity(ns);
957 	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
958 		set_capacity(disk, 0);
959 	else
960 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
961 
962 	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
963 		nvme_config_discard(ns);
964 	blk_mq_unfreeze_queue(disk->queue);
965 
966 	kfree(id);
967 	return 0;
968 }
969 
970 static char nvme_pr_type(enum pr_type type)
971 {
972 	switch (type) {
973 	case PR_WRITE_EXCLUSIVE:
974 		return 1;
975 	case PR_EXCLUSIVE_ACCESS:
976 		return 2;
977 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
978 		return 3;
979 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
980 		return 4;
981 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
982 		return 5;
983 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
984 		return 6;
985 	default:
986 		return 0;
987 	}
988 };
989 
990 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
991 				u64 key, u64 sa_key, u8 op)
992 {
993 	struct nvme_ns *ns = bdev->bd_disk->private_data;
994 	struct nvme_command c;
995 	u8 data[16] = { 0, };
996 
997 	put_unaligned_le64(key, &data[0]);
998 	put_unaligned_le64(sa_key, &data[8]);
999 
1000 	memset(&c, 0, sizeof(c));
1001 	c.common.opcode = op;
1002 	c.common.nsid = cpu_to_le32(ns->ns_id);
1003 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1004 
1005 	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1006 }
1007 
1008 static int nvme_pr_register(struct block_device *bdev, u64 old,
1009 		u64 new, unsigned flags)
1010 {
1011 	u32 cdw10;
1012 
1013 	if (flags & ~PR_FL_IGNORE_KEY)
1014 		return -EOPNOTSUPP;
1015 
1016 	cdw10 = old ? 2 : 0;
1017 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1018 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1019 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1020 }
1021 
1022 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1023 		enum pr_type type, unsigned flags)
1024 {
1025 	u32 cdw10;
1026 
1027 	if (flags & ~PR_FL_IGNORE_KEY)
1028 		return -EOPNOTSUPP;
1029 
1030 	cdw10 = nvme_pr_type(type) << 8;
1031 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1032 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1033 }
1034 
1035 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1036 		enum pr_type type, bool abort)
1037 {
1038 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1039 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1040 }
1041 
1042 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1043 {
1044 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1045 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1046 }
1047 
1048 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1049 {
1050 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1051 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1052 }
1053 
1054 static const struct pr_ops nvme_pr_ops = {
1055 	.pr_register	= nvme_pr_register,
1056 	.pr_reserve	= nvme_pr_reserve,
1057 	.pr_release	= nvme_pr_release,
1058 	.pr_preempt	= nvme_pr_preempt,
1059 	.pr_clear	= nvme_pr_clear,
1060 };
1061 
1062 static const struct block_device_operations nvme_fops = {
1063 	.owner		= THIS_MODULE,
1064 	.ioctl		= nvme_ioctl,
1065 	.compat_ioctl	= nvme_compat_ioctl,
1066 	.open		= nvme_open,
1067 	.release	= nvme_release,
1068 	.getgeo		= nvme_getgeo,
1069 	.revalidate_disk= nvme_revalidate_disk,
1070 	.pr_ops		= &nvme_pr_ops,
1071 };
1072 
1073 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1074 {
1075 	unsigned long timeout =
1076 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1077 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1078 	int ret;
1079 
1080 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1081 		if ((csts & NVME_CSTS_RDY) == bit)
1082 			break;
1083 
1084 		msleep(100);
1085 		if (fatal_signal_pending(current))
1086 			return -EINTR;
1087 		if (time_after(jiffies, timeout)) {
1088 			dev_err(ctrl->device,
1089 				"Device not ready; aborting %s\n", enabled ?
1090 						"initialisation" : "reset");
1091 			return -ENODEV;
1092 		}
1093 	}
1094 
1095 	return ret;
1096 }
1097 
1098 /*
1099  * If the device has been passed off to us in an enabled state, just clear
1100  * the enabled bit.  The spec says we should set the 'shutdown notification
1101  * bits', but doing so may cause the device to complete commands to the
1102  * admin queue ... and we don't know what memory that might be pointing at!
1103  */
1104 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1105 {
1106 	int ret;
1107 
1108 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1109 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1110 
1111 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1112 	if (ret)
1113 		return ret;
1114 
1115 	/* Checking for ctrl->tagset is a trick to avoid sleeping on module
1116 	 * load, since we only need the quirk on reset_controller. Notice
1117 	 * that the HGST device needs this delay only in firmware activation
1118 	 * procedure; unfortunately we have no (easy) way to verify this.
1119 	 */
1120 	if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset)
1121 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1122 
1123 	return nvme_wait_ready(ctrl, cap, false);
1124 }
1125 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1126 
1127 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1128 {
1129 	/*
1130 	 * Default to a 4K page size, with the intention to update this
1131 	 * path in the future to accomodate architectures with differing
1132 	 * kernel and IO page sizes.
1133 	 */
1134 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1135 	int ret;
1136 
1137 	if (page_shift < dev_page_min) {
1138 		dev_err(ctrl->device,
1139 			"Minimum device page size %u too large for host (%u)\n",
1140 			1 << dev_page_min, 1 << page_shift);
1141 		return -ENODEV;
1142 	}
1143 
1144 	ctrl->page_size = 1 << page_shift;
1145 
1146 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1147 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1148 	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1149 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1150 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1151 
1152 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1153 	if (ret)
1154 		return ret;
1155 	return nvme_wait_ready(ctrl, cap, true);
1156 }
1157 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1158 
1159 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1160 {
1161 	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1162 	u32 csts;
1163 	int ret;
1164 
1165 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1166 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1167 
1168 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1169 	if (ret)
1170 		return ret;
1171 
1172 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1173 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1174 			break;
1175 
1176 		msleep(100);
1177 		if (fatal_signal_pending(current))
1178 			return -EINTR;
1179 		if (time_after(jiffies, timeout)) {
1180 			dev_err(ctrl->device,
1181 				"Device shutdown incomplete; abort shutdown\n");
1182 			return -ENODEV;
1183 		}
1184 	}
1185 
1186 	return ret;
1187 }
1188 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1189 
1190 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1191 		struct request_queue *q)
1192 {
1193 	bool vwc = false;
1194 
1195 	if (ctrl->max_hw_sectors) {
1196 		u32 max_segments =
1197 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1198 
1199 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1200 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1201 	}
1202 	if (ctrl->stripe_size)
1203 		blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1204 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1205 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1206 		vwc = true;
1207 	blk_queue_write_cache(q, vwc, vwc);
1208 }
1209 
1210 /*
1211  * Initialize the cached copies of the Identify data and various controller
1212  * register in our nvme_ctrl structure.  This should be called as soon as
1213  * the admin queue is fully up and running.
1214  */
1215 int nvme_init_identify(struct nvme_ctrl *ctrl)
1216 {
1217 	struct nvme_id_ctrl *id;
1218 	u64 cap;
1219 	int ret, page_shift;
1220 	u32 max_hw_sectors;
1221 
1222 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1223 	if (ret) {
1224 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1225 		return ret;
1226 	}
1227 
1228 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1229 	if (ret) {
1230 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1231 		return ret;
1232 	}
1233 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
1234 
1235 	if (ctrl->vs >= NVME_VS(1, 1))
1236 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
1237 
1238 	ret = nvme_identify_ctrl(ctrl, &id);
1239 	if (ret) {
1240 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1241 		return -EIO;
1242 	}
1243 
1244 	ctrl->vid = le16_to_cpu(id->vid);
1245 	ctrl->oncs = le16_to_cpup(&id->oncs);
1246 	atomic_set(&ctrl->abort_limit, id->acl + 1);
1247 	ctrl->vwc = id->vwc;
1248 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1249 	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1250 	memcpy(ctrl->model, id->mn, sizeof(id->mn));
1251 	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1252 	if (id->mdts)
1253 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1254 	else
1255 		max_hw_sectors = UINT_MAX;
1256 	ctrl->max_hw_sectors =
1257 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1258 
1259 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1260 		unsigned int max_hw_sectors;
1261 
1262 		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1263 		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1264 		if (ctrl->max_hw_sectors) {
1265 			ctrl->max_hw_sectors = min(max_hw_sectors,
1266 							ctrl->max_hw_sectors);
1267 		} else {
1268 			ctrl->max_hw_sectors = max_hw_sectors;
1269 		}
1270 	}
1271 
1272 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1273 	ctrl->sgls = le32_to_cpu(id->sgls);
1274 	ctrl->kas = le16_to_cpu(id->kas);
1275 
1276 	if (ctrl->ops->is_fabrics) {
1277 		ctrl->icdoff = le16_to_cpu(id->icdoff);
1278 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1279 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1280 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1281 
1282 		/*
1283 		 * In fabrics we need to verify the cntlid matches the
1284 		 * admin connect
1285 		 */
1286 		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1287 			ret = -EINVAL;
1288 
1289 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1290 			dev_err(ctrl->dev,
1291 				"keep-alive support is mandatory for fabrics\n");
1292 			ret = -EINVAL;
1293 		}
1294 	} else {
1295 		ctrl->cntlid = le16_to_cpu(id->cntlid);
1296 	}
1297 
1298 	kfree(id);
1299 	return ret;
1300 }
1301 EXPORT_SYMBOL_GPL(nvme_init_identify);
1302 
1303 static int nvme_dev_open(struct inode *inode, struct file *file)
1304 {
1305 	struct nvme_ctrl *ctrl;
1306 	int instance = iminor(inode);
1307 	int ret = -ENODEV;
1308 
1309 	spin_lock(&dev_list_lock);
1310 	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1311 		if (ctrl->instance != instance)
1312 			continue;
1313 
1314 		if (!ctrl->admin_q) {
1315 			ret = -EWOULDBLOCK;
1316 			break;
1317 		}
1318 		if (!kref_get_unless_zero(&ctrl->kref))
1319 			break;
1320 		file->private_data = ctrl;
1321 		ret = 0;
1322 		break;
1323 	}
1324 	spin_unlock(&dev_list_lock);
1325 
1326 	return ret;
1327 }
1328 
1329 static int nvme_dev_release(struct inode *inode, struct file *file)
1330 {
1331 	nvme_put_ctrl(file->private_data);
1332 	return 0;
1333 }
1334 
1335 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1336 {
1337 	struct nvme_ns *ns;
1338 	int ret;
1339 
1340 	mutex_lock(&ctrl->namespaces_mutex);
1341 	if (list_empty(&ctrl->namespaces)) {
1342 		ret = -ENOTTY;
1343 		goto out_unlock;
1344 	}
1345 
1346 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1347 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1348 		dev_warn(ctrl->device,
1349 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1350 		ret = -EINVAL;
1351 		goto out_unlock;
1352 	}
1353 
1354 	dev_warn(ctrl->device,
1355 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1356 	kref_get(&ns->kref);
1357 	mutex_unlock(&ctrl->namespaces_mutex);
1358 
1359 	ret = nvme_user_cmd(ctrl, ns, argp);
1360 	nvme_put_ns(ns);
1361 	return ret;
1362 
1363 out_unlock:
1364 	mutex_unlock(&ctrl->namespaces_mutex);
1365 	return ret;
1366 }
1367 
1368 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1369 		unsigned long arg)
1370 {
1371 	struct nvme_ctrl *ctrl = file->private_data;
1372 	void __user *argp = (void __user *)arg;
1373 
1374 	switch (cmd) {
1375 	case NVME_IOCTL_ADMIN_CMD:
1376 		return nvme_user_cmd(ctrl, NULL, argp);
1377 	case NVME_IOCTL_IO_CMD:
1378 		return nvme_dev_user_cmd(ctrl, argp);
1379 	case NVME_IOCTL_RESET:
1380 		dev_warn(ctrl->device, "resetting controller\n");
1381 		return ctrl->ops->reset_ctrl(ctrl);
1382 	case NVME_IOCTL_SUBSYS_RESET:
1383 		return nvme_reset_subsystem(ctrl);
1384 	case NVME_IOCTL_RESCAN:
1385 		nvme_queue_scan(ctrl);
1386 		return 0;
1387 	default:
1388 		return -ENOTTY;
1389 	}
1390 }
1391 
1392 static const struct file_operations nvme_dev_fops = {
1393 	.owner		= THIS_MODULE,
1394 	.open		= nvme_dev_open,
1395 	.release	= nvme_dev_release,
1396 	.unlocked_ioctl	= nvme_dev_ioctl,
1397 	.compat_ioctl	= nvme_dev_ioctl,
1398 };
1399 
1400 static ssize_t nvme_sysfs_reset(struct device *dev,
1401 				struct device_attribute *attr, const char *buf,
1402 				size_t count)
1403 {
1404 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1405 	int ret;
1406 
1407 	ret = ctrl->ops->reset_ctrl(ctrl);
1408 	if (ret < 0)
1409 		return ret;
1410 	return count;
1411 }
1412 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1413 
1414 static ssize_t nvme_sysfs_rescan(struct device *dev,
1415 				struct device_attribute *attr, const char *buf,
1416 				size_t count)
1417 {
1418 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1419 
1420 	nvme_queue_scan(ctrl);
1421 	return count;
1422 }
1423 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1424 
1425 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1426 								char *buf)
1427 {
1428 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1429 	struct nvme_ctrl *ctrl = ns->ctrl;
1430 	int serial_len = sizeof(ctrl->serial);
1431 	int model_len = sizeof(ctrl->model);
1432 
1433 	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1434 		return sprintf(buf, "eui.%16phN\n", ns->uuid);
1435 
1436 	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1437 		return sprintf(buf, "eui.%8phN\n", ns->eui);
1438 
1439 	while (ctrl->serial[serial_len - 1] == ' ')
1440 		serial_len--;
1441 	while (ctrl->model[model_len - 1] == ' ')
1442 		model_len--;
1443 
1444 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1445 		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1446 }
1447 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1448 
1449 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1450 								char *buf)
1451 {
1452 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1453 	return sprintf(buf, "%pU\n", ns->uuid);
1454 }
1455 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1456 
1457 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1458 								char *buf)
1459 {
1460 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1461 	return sprintf(buf, "%8phd\n", ns->eui);
1462 }
1463 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1464 
1465 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1466 								char *buf)
1467 {
1468 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1469 	return sprintf(buf, "%d\n", ns->ns_id);
1470 }
1471 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1472 
1473 static struct attribute *nvme_ns_attrs[] = {
1474 	&dev_attr_wwid.attr,
1475 	&dev_attr_uuid.attr,
1476 	&dev_attr_eui.attr,
1477 	&dev_attr_nsid.attr,
1478 	NULL,
1479 };
1480 
1481 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1482 		struct attribute *a, int n)
1483 {
1484 	struct device *dev = container_of(kobj, struct device, kobj);
1485 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1486 
1487 	if (a == &dev_attr_uuid.attr) {
1488 		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1489 			return 0;
1490 	}
1491 	if (a == &dev_attr_eui.attr) {
1492 		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1493 			return 0;
1494 	}
1495 	return a->mode;
1496 }
1497 
1498 static const struct attribute_group nvme_ns_attr_group = {
1499 	.attrs		= nvme_ns_attrs,
1500 	.is_visible	= nvme_ns_attrs_are_visible,
1501 };
1502 
1503 #define nvme_show_str_function(field)						\
1504 static ssize_t  field##_show(struct device *dev,				\
1505 			    struct device_attribute *attr, char *buf)		\
1506 {										\
1507         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1508         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
1509 }										\
1510 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1511 
1512 #define nvme_show_int_function(field)						\
1513 static ssize_t  field##_show(struct device *dev,				\
1514 			    struct device_attribute *attr, char *buf)		\
1515 {										\
1516         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1517         return sprintf(buf, "%d\n", ctrl->field);	\
1518 }										\
1519 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1520 
1521 nvme_show_str_function(model);
1522 nvme_show_str_function(serial);
1523 nvme_show_str_function(firmware_rev);
1524 nvme_show_int_function(cntlid);
1525 
1526 static ssize_t nvme_sysfs_delete(struct device *dev,
1527 				struct device_attribute *attr, const char *buf,
1528 				size_t count)
1529 {
1530 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1531 
1532 	if (device_remove_file_self(dev, attr))
1533 		ctrl->ops->delete_ctrl(ctrl);
1534 	return count;
1535 }
1536 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1537 
1538 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1539 					 struct device_attribute *attr,
1540 					 char *buf)
1541 {
1542 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1543 
1544 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1545 }
1546 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1547 
1548 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1549 					 struct device_attribute *attr,
1550 					 char *buf)
1551 {
1552 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1553 
1554 	return snprintf(buf, PAGE_SIZE, "%s\n",
1555 			ctrl->ops->get_subsysnqn(ctrl));
1556 }
1557 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1558 
1559 static ssize_t nvme_sysfs_show_address(struct device *dev,
1560 					 struct device_attribute *attr,
1561 					 char *buf)
1562 {
1563 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1564 
1565 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1566 }
1567 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1568 
1569 static struct attribute *nvme_dev_attrs[] = {
1570 	&dev_attr_reset_controller.attr,
1571 	&dev_attr_rescan_controller.attr,
1572 	&dev_attr_model.attr,
1573 	&dev_attr_serial.attr,
1574 	&dev_attr_firmware_rev.attr,
1575 	&dev_attr_cntlid.attr,
1576 	&dev_attr_delete_controller.attr,
1577 	&dev_attr_transport.attr,
1578 	&dev_attr_subsysnqn.attr,
1579 	&dev_attr_address.attr,
1580 	NULL
1581 };
1582 
1583 #define CHECK_ATTR(ctrl, a, name)		\
1584 	if ((a) == &dev_attr_##name.attr &&	\
1585 	    !(ctrl)->ops->get_##name)		\
1586 		return 0
1587 
1588 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1589 		struct attribute *a, int n)
1590 {
1591 	struct device *dev = container_of(kobj, struct device, kobj);
1592 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1593 
1594 	if (a == &dev_attr_delete_controller.attr) {
1595 		if (!ctrl->ops->delete_ctrl)
1596 			return 0;
1597 	}
1598 
1599 	CHECK_ATTR(ctrl, a, subsysnqn);
1600 	CHECK_ATTR(ctrl, a, address);
1601 
1602 	return a->mode;
1603 }
1604 
1605 static struct attribute_group nvme_dev_attrs_group = {
1606 	.attrs		= nvme_dev_attrs,
1607 	.is_visible	= nvme_dev_attrs_are_visible,
1608 };
1609 
1610 static const struct attribute_group *nvme_dev_attr_groups[] = {
1611 	&nvme_dev_attrs_group,
1612 	NULL,
1613 };
1614 
1615 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1616 {
1617 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1618 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1619 
1620 	return nsa->ns_id - nsb->ns_id;
1621 }
1622 
1623 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1624 {
1625 	struct nvme_ns *ns, *ret = NULL;
1626 
1627 	mutex_lock(&ctrl->namespaces_mutex);
1628 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1629 		if (ns->ns_id == nsid) {
1630 			kref_get(&ns->kref);
1631 			ret = ns;
1632 			break;
1633 		}
1634 		if (ns->ns_id > nsid)
1635 			break;
1636 	}
1637 	mutex_unlock(&ctrl->namespaces_mutex);
1638 	return ret;
1639 }
1640 
1641 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1642 {
1643 	struct nvme_ns *ns;
1644 	struct gendisk *disk;
1645 	int node = dev_to_node(ctrl->dev);
1646 
1647 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1648 	if (!ns)
1649 		return;
1650 
1651 	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1652 	if (ns->instance < 0)
1653 		goto out_free_ns;
1654 
1655 	ns->queue = blk_mq_init_queue(ctrl->tagset);
1656 	if (IS_ERR(ns->queue))
1657 		goto out_release_instance;
1658 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1659 	ns->queue->queuedata = ns;
1660 	ns->ctrl = ctrl;
1661 
1662 	disk = alloc_disk_node(0, node);
1663 	if (!disk)
1664 		goto out_free_queue;
1665 
1666 	kref_init(&ns->kref);
1667 	ns->ns_id = nsid;
1668 	ns->disk = disk;
1669 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1670 
1671 
1672 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1673 	nvme_set_queue_limits(ctrl, ns->queue);
1674 
1675 	disk->fops = &nvme_fops;
1676 	disk->private_data = ns;
1677 	disk->queue = ns->queue;
1678 	disk->flags = GENHD_FL_EXT_DEVT;
1679 	sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1680 
1681 	if (nvme_revalidate_disk(ns->disk))
1682 		goto out_free_disk;
1683 
1684 	mutex_lock(&ctrl->namespaces_mutex);
1685 	list_add_tail(&ns->list, &ctrl->namespaces);
1686 	mutex_unlock(&ctrl->namespaces_mutex);
1687 
1688 	kref_get(&ctrl->kref);
1689 	if (ns->type == NVME_NS_LIGHTNVM)
1690 		return;
1691 
1692 	device_add_disk(ctrl->device, ns->disk);
1693 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1694 					&nvme_ns_attr_group))
1695 		pr_warn("%s: failed to create sysfs group for identification\n",
1696 			ns->disk->disk_name);
1697 	return;
1698  out_free_disk:
1699 	kfree(disk);
1700  out_free_queue:
1701 	blk_cleanup_queue(ns->queue);
1702  out_release_instance:
1703 	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1704  out_free_ns:
1705 	kfree(ns);
1706 }
1707 
1708 static void nvme_ns_remove(struct nvme_ns *ns)
1709 {
1710 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1711 		return;
1712 
1713 	if (ns->disk->flags & GENHD_FL_UP) {
1714 		if (blk_get_integrity(ns->disk))
1715 			blk_integrity_unregister(ns->disk);
1716 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1717 					&nvme_ns_attr_group);
1718 		del_gendisk(ns->disk);
1719 		blk_mq_abort_requeue_list(ns->queue);
1720 		blk_cleanup_queue(ns->queue);
1721 	}
1722 
1723 	mutex_lock(&ns->ctrl->namespaces_mutex);
1724 	list_del_init(&ns->list);
1725 	mutex_unlock(&ns->ctrl->namespaces_mutex);
1726 
1727 	nvme_put_ns(ns);
1728 }
1729 
1730 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1731 {
1732 	struct nvme_ns *ns;
1733 
1734 	ns = nvme_find_get_ns(ctrl, nsid);
1735 	if (ns) {
1736 		if (revalidate_disk(ns->disk))
1737 			nvme_ns_remove(ns);
1738 		nvme_put_ns(ns);
1739 	} else
1740 		nvme_alloc_ns(ctrl, nsid);
1741 }
1742 
1743 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1744 					unsigned nsid)
1745 {
1746 	struct nvme_ns *ns, *next;
1747 
1748 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1749 		if (ns->ns_id > nsid)
1750 			nvme_ns_remove(ns);
1751 	}
1752 }
1753 
1754 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1755 {
1756 	struct nvme_ns *ns;
1757 	__le32 *ns_list;
1758 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1759 	int ret = 0;
1760 
1761 	ns_list = kzalloc(0x1000, GFP_KERNEL);
1762 	if (!ns_list)
1763 		return -ENOMEM;
1764 
1765 	for (i = 0; i < num_lists; i++) {
1766 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1767 		if (ret)
1768 			goto free;
1769 
1770 		for (j = 0; j < min(nn, 1024U); j++) {
1771 			nsid = le32_to_cpu(ns_list[j]);
1772 			if (!nsid)
1773 				goto out;
1774 
1775 			nvme_validate_ns(ctrl, nsid);
1776 
1777 			while (++prev < nsid) {
1778 				ns = nvme_find_get_ns(ctrl, prev);
1779 				if (ns) {
1780 					nvme_ns_remove(ns);
1781 					nvme_put_ns(ns);
1782 				}
1783 			}
1784 		}
1785 		nn -= j;
1786 	}
1787  out:
1788 	nvme_remove_invalid_namespaces(ctrl, prev);
1789  free:
1790 	kfree(ns_list);
1791 	return ret;
1792 }
1793 
1794 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1795 {
1796 	unsigned i;
1797 
1798 	for (i = 1; i <= nn; i++)
1799 		nvme_validate_ns(ctrl, i);
1800 
1801 	nvme_remove_invalid_namespaces(ctrl, nn);
1802 }
1803 
1804 static void nvme_scan_work(struct work_struct *work)
1805 {
1806 	struct nvme_ctrl *ctrl =
1807 		container_of(work, struct nvme_ctrl, scan_work);
1808 	struct nvme_id_ctrl *id;
1809 	unsigned nn;
1810 
1811 	if (ctrl->state != NVME_CTRL_LIVE)
1812 		return;
1813 
1814 	if (nvme_identify_ctrl(ctrl, &id))
1815 		return;
1816 
1817 	nn = le32_to_cpu(id->nn);
1818 	if (ctrl->vs >= NVME_VS(1, 1) &&
1819 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1820 		if (!nvme_scan_ns_list(ctrl, nn))
1821 			goto done;
1822 	}
1823 	nvme_scan_ns_sequential(ctrl, nn);
1824  done:
1825 	mutex_lock(&ctrl->namespaces_mutex);
1826 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1827 	mutex_unlock(&ctrl->namespaces_mutex);
1828 	kfree(id);
1829 
1830 	if (ctrl->ops->post_scan)
1831 		ctrl->ops->post_scan(ctrl);
1832 }
1833 
1834 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1835 {
1836 	/*
1837 	 * Do not queue new scan work when a controller is reset during
1838 	 * removal.
1839 	 */
1840 	if (ctrl->state == NVME_CTRL_LIVE)
1841 		schedule_work(&ctrl->scan_work);
1842 }
1843 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1844 
1845 /*
1846  * This function iterates the namespace list unlocked to allow recovery from
1847  * controller failure. It is up to the caller to ensure the namespace list is
1848  * not modified by scan work while this function is executing.
1849  */
1850 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1851 {
1852 	struct nvme_ns *ns, *next;
1853 
1854 	/*
1855 	 * The dead states indicates the controller was not gracefully
1856 	 * disconnected. In that case, we won't be able to flush any data while
1857 	 * removing the namespaces' disks; fail all the queues now to avoid
1858 	 * potentially having to clean up the failed sync later.
1859 	 */
1860 	if (ctrl->state == NVME_CTRL_DEAD)
1861 		nvme_kill_queues(ctrl);
1862 
1863 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1864 		nvme_ns_remove(ns);
1865 }
1866 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1867 
1868 static void nvme_async_event_work(struct work_struct *work)
1869 {
1870 	struct nvme_ctrl *ctrl =
1871 		container_of(work, struct nvme_ctrl, async_event_work);
1872 
1873 	spin_lock_irq(&ctrl->lock);
1874 	while (ctrl->event_limit > 0) {
1875 		int aer_idx = --ctrl->event_limit;
1876 
1877 		spin_unlock_irq(&ctrl->lock);
1878 		ctrl->ops->submit_async_event(ctrl, aer_idx);
1879 		spin_lock_irq(&ctrl->lock);
1880 	}
1881 	spin_unlock_irq(&ctrl->lock);
1882 }
1883 
1884 void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1885 		struct nvme_completion *cqe)
1886 {
1887 	u16 status = le16_to_cpu(cqe->status) >> 1;
1888 	u32 result = le32_to_cpu(cqe->result);
1889 
1890 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1891 		++ctrl->event_limit;
1892 		schedule_work(&ctrl->async_event_work);
1893 	}
1894 
1895 	if (status != NVME_SC_SUCCESS)
1896 		return;
1897 
1898 	switch (result & 0xff07) {
1899 	case NVME_AER_NOTICE_NS_CHANGED:
1900 		dev_info(ctrl->device, "rescanning\n");
1901 		nvme_queue_scan(ctrl);
1902 		break;
1903 	default:
1904 		dev_warn(ctrl->device, "async event result %08x\n", result);
1905 	}
1906 }
1907 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1908 
1909 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1910 {
1911 	ctrl->event_limit = NVME_NR_AERS;
1912 	schedule_work(&ctrl->async_event_work);
1913 }
1914 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1915 
1916 static DEFINE_IDA(nvme_instance_ida);
1917 
1918 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1919 {
1920 	int instance, error;
1921 
1922 	do {
1923 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1924 			return -ENODEV;
1925 
1926 		spin_lock(&dev_list_lock);
1927 		error = ida_get_new(&nvme_instance_ida, &instance);
1928 		spin_unlock(&dev_list_lock);
1929 	} while (error == -EAGAIN);
1930 
1931 	if (error)
1932 		return -ENODEV;
1933 
1934 	ctrl->instance = instance;
1935 	return 0;
1936 }
1937 
1938 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1939 {
1940 	spin_lock(&dev_list_lock);
1941 	ida_remove(&nvme_instance_ida, ctrl->instance);
1942 	spin_unlock(&dev_list_lock);
1943 }
1944 
1945 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1946 {
1947 	flush_work(&ctrl->async_event_work);
1948 	flush_work(&ctrl->scan_work);
1949 	nvme_remove_namespaces(ctrl);
1950 
1951 	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1952 
1953 	spin_lock(&dev_list_lock);
1954 	list_del(&ctrl->node);
1955 	spin_unlock(&dev_list_lock);
1956 }
1957 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1958 
1959 static void nvme_free_ctrl(struct kref *kref)
1960 {
1961 	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1962 
1963 	put_device(ctrl->device);
1964 	nvme_release_instance(ctrl);
1965 	ida_destroy(&ctrl->ns_ida);
1966 
1967 	ctrl->ops->free_ctrl(ctrl);
1968 }
1969 
1970 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1971 {
1972 	kref_put(&ctrl->kref, nvme_free_ctrl);
1973 }
1974 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1975 
1976 /*
1977  * Initialize a NVMe controller structures.  This needs to be called during
1978  * earliest initialization so that we have the initialized structured around
1979  * during probing.
1980  */
1981 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1982 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
1983 {
1984 	int ret;
1985 
1986 	ctrl->state = NVME_CTRL_NEW;
1987 	spin_lock_init(&ctrl->lock);
1988 	INIT_LIST_HEAD(&ctrl->namespaces);
1989 	mutex_init(&ctrl->namespaces_mutex);
1990 	kref_init(&ctrl->kref);
1991 	ctrl->dev = dev;
1992 	ctrl->ops = ops;
1993 	ctrl->quirks = quirks;
1994 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1995 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1996 
1997 	ret = nvme_set_instance(ctrl);
1998 	if (ret)
1999 		goto out;
2000 
2001 	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2002 				MKDEV(nvme_char_major, ctrl->instance),
2003 				ctrl, nvme_dev_attr_groups,
2004 				"nvme%d", ctrl->instance);
2005 	if (IS_ERR(ctrl->device)) {
2006 		ret = PTR_ERR(ctrl->device);
2007 		goto out_release_instance;
2008 	}
2009 	get_device(ctrl->device);
2010 	ida_init(&ctrl->ns_ida);
2011 
2012 	spin_lock(&dev_list_lock);
2013 	list_add_tail(&ctrl->node, &nvme_ctrl_list);
2014 	spin_unlock(&dev_list_lock);
2015 
2016 	return 0;
2017 out_release_instance:
2018 	nvme_release_instance(ctrl);
2019 out:
2020 	return ret;
2021 }
2022 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2023 
2024 /**
2025  * nvme_kill_queues(): Ends all namespace queues
2026  * @ctrl: the dead controller that needs to end
2027  *
2028  * Call this function when the driver determines it is unable to get the
2029  * controller in a state capable of servicing IO.
2030  */
2031 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2032 {
2033 	struct nvme_ns *ns;
2034 
2035 	mutex_lock(&ctrl->namespaces_mutex);
2036 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2037 		/*
2038 		 * Revalidating a dead namespace sets capacity to 0. This will
2039 		 * end buffered writers dirtying pages that can't be synced.
2040 		 */
2041 		if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2042 			revalidate_disk(ns->disk);
2043 
2044 		blk_set_queue_dying(ns->queue);
2045 		blk_mq_abort_requeue_list(ns->queue);
2046 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2047 	}
2048 	mutex_unlock(&ctrl->namespaces_mutex);
2049 }
2050 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2051 
2052 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2053 {
2054 	struct nvme_ns *ns;
2055 
2056 	mutex_lock(&ctrl->namespaces_mutex);
2057 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2058 		spin_lock_irq(ns->queue->queue_lock);
2059 		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2060 		spin_unlock_irq(ns->queue->queue_lock);
2061 
2062 		blk_mq_cancel_requeue_work(ns->queue);
2063 		blk_mq_stop_hw_queues(ns->queue);
2064 	}
2065 	mutex_unlock(&ctrl->namespaces_mutex);
2066 }
2067 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2068 
2069 void nvme_start_queues(struct nvme_ctrl *ctrl)
2070 {
2071 	struct nvme_ns *ns;
2072 
2073 	mutex_lock(&ctrl->namespaces_mutex);
2074 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2075 		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2076 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2077 		blk_mq_kick_requeue_list(ns->queue);
2078 	}
2079 	mutex_unlock(&ctrl->namespaces_mutex);
2080 }
2081 EXPORT_SYMBOL_GPL(nvme_start_queues);
2082 
2083 int __init nvme_core_init(void)
2084 {
2085 	int result;
2086 
2087 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2088 							&nvme_dev_fops);
2089 	if (result < 0)
2090 		return result;
2091 	else if (result > 0)
2092 		nvme_char_major = result;
2093 
2094 	nvme_class = class_create(THIS_MODULE, "nvme");
2095 	if (IS_ERR(nvme_class)) {
2096 		result = PTR_ERR(nvme_class);
2097 		goto unregister_chrdev;
2098 	}
2099 
2100 	return 0;
2101 
2102  unregister_chrdev:
2103 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2104 	return result;
2105 }
2106 
2107 void nvme_core_exit(void)
2108 {
2109 	class_destroy(nvme_class);
2110 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2111 }
2112 
2113 MODULE_LICENSE("GPL");
2114 MODULE_VERSION("1.0");
2115 module_init(nvme_core_init);
2116 module_exit(nvme_core_exit);
2117