xref: /linux/drivers/nvme/host/core.c (revision a3f143c461444c0b56360bbf468615fa814a8372)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	bool is_shared;
42 	bool is_readonly;
43 	bool is_ready;
44 	bool is_removed;
45 	bool is_rotational;
46 	bool no_vwc;
47 };
48 
49 unsigned int admin_timeout = 60;
50 module_param(admin_timeout, uint, 0644);
51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
52 EXPORT_SYMBOL_GPL(admin_timeout);
53 
54 unsigned int nvme_io_timeout = 30;
55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
57 EXPORT_SYMBOL_GPL(nvme_io_timeout);
58 
59 static unsigned char shutdown_timeout = 5;
60 module_param(shutdown_timeout, byte, 0644);
61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
62 
63 static u8 nvme_max_retries = 5;
64 module_param_named(max_retries, nvme_max_retries, byte, 0644);
65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
66 
67 static unsigned long default_ps_max_latency_us = 100000;
68 module_param(default_ps_max_latency_us, ulong, 0644);
69 MODULE_PARM_DESC(default_ps_max_latency_us,
70 		 "max power saving latency for new devices; use PM QOS to change per device");
71 
72 static bool force_apst;
73 module_param(force_apst, bool, 0644);
74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
75 
76 static unsigned long apst_primary_timeout_ms = 100;
77 module_param(apst_primary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_primary_timeout_ms,
79 	"primary APST timeout in ms");
80 
81 static unsigned long apst_secondary_timeout_ms = 2000;
82 module_param(apst_secondary_timeout_ms, ulong, 0644);
83 MODULE_PARM_DESC(apst_secondary_timeout_ms,
84 	"secondary APST timeout in ms");
85 
86 static unsigned long apst_primary_latency_tol_us = 15000;
87 module_param(apst_primary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_primary_latency_tol_us,
89 	"primary APST latency tolerance in us");
90 
91 static unsigned long apst_secondary_latency_tol_us = 100000;
92 module_param(apst_secondary_latency_tol_us, ulong, 0644);
93 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
94 	"secondary APST latency tolerance in us");
95 
96 /*
97  * nvme_wq - hosts nvme related works that are not reset or delete
98  * nvme_reset_wq - hosts nvme reset works
99  * nvme_delete_wq - hosts nvme delete works
100  *
101  * nvme_wq will host works such as scan, aen handling, fw activation,
102  * keep-alive, periodic reconnects etc. nvme_reset_wq
103  * runs reset works which also flush works hosted on nvme_wq for
104  * serialization purposes. nvme_delete_wq host controller deletion
105  * works which flush reset works for serialization.
106  */
107 struct workqueue_struct *nvme_wq;
108 EXPORT_SYMBOL_GPL(nvme_wq);
109 
110 struct workqueue_struct *nvme_reset_wq;
111 EXPORT_SYMBOL_GPL(nvme_reset_wq);
112 
113 struct workqueue_struct *nvme_delete_wq;
114 EXPORT_SYMBOL_GPL(nvme_delete_wq);
115 
116 static LIST_HEAD(nvme_subsystems);
117 DEFINE_MUTEX(nvme_subsystems_lock);
118 
119 static DEFINE_IDA(nvme_instance_ida);
120 static dev_t nvme_ctrl_base_chr_devt;
121 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
122 static const struct class nvme_class = {
123 	.name = "nvme",
124 	.dev_uevent = nvme_class_uevent,
125 };
126 
127 static const struct class nvme_subsys_class = {
128 	.name = "nvme-subsystem",
129 };
130 
131 static DEFINE_IDA(nvme_ns_chr_minor_ida);
132 static dev_t nvme_ns_chr_devt;
133 static const struct class nvme_ns_chr_class = {
134 	.name = "nvme-generic",
135 };
136 
137 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
138 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
139 					   unsigned nsid);
140 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
141 				   struct nvme_command *cmd);
142 
143 void nvme_queue_scan(struct nvme_ctrl *ctrl)
144 {
145 	/*
146 	 * Only new queue scan work when admin and IO queues are both alive
147 	 */
148 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
149 		queue_work(nvme_wq, &ctrl->scan_work);
150 }
151 
152 /*
153  * Use this function to proceed with scheduling reset_work for a controller
154  * that had previously been set to the resetting state. This is intended for
155  * code paths that can't be interrupted by other reset attempts. A hot removal
156  * may prevent this from succeeding.
157  */
158 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
159 {
160 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
161 		return -EBUSY;
162 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
163 		return -EBUSY;
164 	return 0;
165 }
166 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
167 
168 static void nvme_failfast_work(struct work_struct *work)
169 {
170 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
171 			struct nvme_ctrl, failfast_work);
172 
173 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
174 		return;
175 
176 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
177 	dev_info(ctrl->device, "failfast expired\n");
178 	nvme_kick_requeue_lists(ctrl);
179 }
180 
181 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
182 {
183 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
184 		return;
185 
186 	schedule_delayed_work(&ctrl->failfast_work,
187 			      ctrl->opts->fast_io_fail_tmo * HZ);
188 }
189 
190 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
191 {
192 	if (!ctrl->opts)
193 		return;
194 
195 	cancel_delayed_work_sync(&ctrl->failfast_work);
196 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
197 }
198 
199 
200 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
201 {
202 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
203 		return -EBUSY;
204 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
205 		return -EBUSY;
206 	return 0;
207 }
208 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
209 
210 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
211 {
212 	int ret;
213 
214 	ret = nvme_reset_ctrl(ctrl);
215 	if (!ret) {
216 		flush_work(&ctrl->reset_work);
217 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
218 			ret = -ENETRESET;
219 	}
220 
221 	return ret;
222 }
223 
224 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
225 {
226 	dev_info(ctrl->device,
227 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
228 
229 	flush_work(&ctrl->reset_work);
230 	nvme_stop_ctrl(ctrl);
231 	nvme_remove_namespaces(ctrl);
232 	ctrl->ops->delete_ctrl(ctrl);
233 	nvme_uninit_ctrl(ctrl);
234 }
235 
236 static void nvme_delete_ctrl_work(struct work_struct *work)
237 {
238 	struct nvme_ctrl *ctrl =
239 		container_of(work, struct nvme_ctrl, delete_work);
240 
241 	nvme_do_delete_ctrl(ctrl);
242 }
243 
244 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
245 {
246 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
247 		return -EBUSY;
248 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
249 		return -EBUSY;
250 	return 0;
251 }
252 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
253 
254 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
255 {
256 	/*
257 	 * Keep a reference until nvme_do_delete_ctrl() complete,
258 	 * since ->delete_ctrl can free the controller.
259 	 */
260 	nvme_get_ctrl(ctrl);
261 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
262 		nvme_do_delete_ctrl(ctrl);
263 	nvme_put_ctrl(ctrl);
264 }
265 
266 static blk_status_t nvme_error_status(u16 status)
267 {
268 	switch (status & NVME_SCT_SC_MASK) {
269 	case NVME_SC_SUCCESS:
270 		return BLK_STS_OK;
271 	case NVME_SC_CAP_EXCEEDED:
272 		return BLK_STS_NOSPC;
273 	case NVME_SC_LBA_RANGE:
274 	case NVME_SC_CMD_INTERRUPTED:
275 	case NVME_SC_NS_NOT_READY:
276 		return BLK_STS_TARGET;
277 	case NVME_SC_BAD_ATTRIBUTES:
278 	case NVME_SC_ONCS_NOT_SUPPORTED:
279 	case NVME_SC_INVALID_OPCODE:
280 	case NVME_SC_INVALID_FIELD:
281 	case NVME_SC_INVALID_NS:
282 		return BLK_STS_NOTSUPP;
283 	case NVME_SC_WRITE_FAULT:
284 	case NVME_SC_READ_ERROR:
285 	case NVME_SC_UNWRITTEN_BLOCK:
286 	case NVME_SC_ACCESS_DENIED:
287 	case NVME_SC_READ_ONLY:
288 	case NVME_SC_COMPARE_FAILED:
289 		return BLK_STS_MEDIUM;
290 	case NVME_SC_GUARD_CHECK:
291 	case NVME_SC_APPTAG_CHECK:
292 	case NVME_SC_REFTAG_CHECK:
293 	case NVME_SC_INVALID_PI:
294 		return BLK_STS_PROTECTION;
295 	case NVME_SC_RESERVATION_CONFLICT:
296 		return BLK_STS_RESV_CONFLICT;
297 	case NVME_SC_HOST_PATH_ERROR:
298 		return BLK_STS_TRANSPORT;
299 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
300 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
301 	case NVME_SC_ZONE_TOO_MANY_OPEN:
302 		return BLK_STS_ZONE_OPEN_RESOURCE;
303 	default:
304 		return BLK_STS_IOERR;
305 	}
306 }
307 
308 static void nvme_retry_req(struct request *req)
309 {
310 	unsigned long delay = 0;
311 	u16 crd;
312 
313 	/* The mask and shift result must be <= 3 */
314 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
315 	if (crd)
316 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
317 
318 	nvme_req(req)->retries++;
319 	blk_mq_requeue_request(req, false);
320 	blk_mq_delay_kick_requeue_list(req->q, delay);
321 }
322 
323 static void nvme_log_error(struct request *req)
324 {
325 	struct nvme_ns *ns = req->q->queuedata;
326 	struct nvme_request *nr = nvme_req(req);
327 
328 	if (ns) {
329 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
330 		       ns->disk ? ns->disk->disk_name : "?",
331 		       nvme_get_opcode_str(nr->cmd->common.opcode),
332 		       nr->cmd->common.opcode,
333 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
334 		       blk_rq_bytes(req) >> ns->head->lba_shift,
335 		       nvme_get_error_status_str(nr->status),
336 		       NVME_SCT(nr->status),		/* Status Code Type */
337 		       nr->status & NVME_SC_MASK,	/* Status Code */
338 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
339 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
340 		return;
341 	}
342 
343 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
344 			   dev_name(nr->ctrl->device),
345 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
346 			   nr->cmd->common.opcode,
347 			   nvme_get_error_status_str(nr->status),
348 			   NVME_SCT(nr->status),	/* Status Code Type */
349 			   nr->status & NVME_SC_MASK,	/* Status Code */
350 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
351 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
352 }
353 
354 static void nvme_log_err_passthru(struct request *req)
355 {
356 	struct nvme_ns *ns = req->q->queuedata;
357 	struct nvme_request *nr = nvme_req(req);
358 
359 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
360 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
361 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
362 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
363 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
364 		nr->cmd->common.opcode,
365 		nvme_get_error_status_str(nr->status),
366 		NVME_SCT(nr->status),		/* Status Code Type */
367 		nr->status & NVME_SC_MASK,	/* Status Code */
368 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
369 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
370 		nr->cmd->common.cdw10,
371 		nr->cmd->common.cdw11,
372 		nr->cmd->common.cdw12,
373 		nr->cmd->common.cdw13,
374 		nr->cmd->common.cdw14,
375 		nr->cmd->common.cdw14);
376 }
377 
378 enum nvme_disposition {
379 	COMPLETE,
380 	RETRY,
381 	FAILOVER,
382 	AUTHENTICATE,
383 };
384 
385 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
386 {
387 	if (likely(nvme_req(req)->status == 0))
388 		return COMPLETE;
389 
390 	if (blk_noretry_request(req) ||
391 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
392 	    nvme_req(req)->retries >= nvme_max_retries)
393 		return COMPLETE;
394 
395 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
396 		return AUTHENTICATE;
397 
398 	if (req->cmd_flags & REQ_NVME_MPATH) {
399 		if (nvme_is_path_error(nvme_req(req)->status) ||
400 		    blk_queue_dying(req->q))
401 			return FAILOVER;
402 	} else {
403 		if (blk_queue_dying(req->q))
404 			return COMPLETE;
405 	}
406 
407 	return RETRY;
408 }
409 
410 static inline void nvme_end_req_zoned(struct request *req)
411 {
412 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
413 	    req_op(req) == REQ_OP_ZONE_APPEND) {
414 		struct nvme_ns *ns = req->q->queuedata;
415 
416 		req->__sector = nvme_lba_to_sect(ns->head,
417 			le64_to_cpu(nvme_req(req)->result.u64));
418 	}
419 }
420 
421 static inline void __nvme_end_req(struct request *req)
422 {
423 	nvme_end_req_zoned(req);
424 	nvme_trace_bio_complete(req);
425 	if (req->cmd_flags & REQ_NVME_MPATH)
426 		nvme_mpath_end_request(req);
427 }
428 
429 void nvme_end_req(struct request *req)
430 {
431 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
432 
433 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
434 		if (blk_rq_is_passthrough(req))
435 			nvme_log_err_passthru(req);
436 		else
437 			nvme_log_error(req);
438 	}
439 	__nvme_end_req(req);
440 	blk_mq_end_request(req, status);
441 }
442 
443 void nvme_complete_rq(struct request *req)
444 {
445 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
446 
447 	trace_nvme_complete_rq(req);
448 	nvme_cleanup_cmd(req);
449 
450 	/*
451 	 * Completions of long-running commands should not be able to
452 	 * defer sending of periodic keep alives, since the controller
453 	 * may have completed processing such commands a long time ago
454 	 * (arbitrarily close to command submission time).
455 	 * req->deadline - req->timeout is the command submission time
456 	 * in jiffies.
457 	 */
458 	if (ctrl->kas &&
459 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
460 		ctrl->comp_seen = true;
461 
462 	switch (nvme_decide_disposition(req)) {
463 	case COMPLETE:
464 		nvme_end_req(req);
465 		return;
466 	case RETRY:
467 		nvme_retry_req(req);
468 		return;
469 	case FAILOVER:
470 		nvme_failover_req(req);
471 		return;
472 	case AUTHENTICATE:
473 #ifdef CONFIG_NVME_HOST_AUTH
474 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
475 		nvme_retry_req(req);
476 #else
477 		nvme_end_req(req);
478 #endif
479 		return;
480 	}
481 }
482 EXPORT_SYMBOL_GPL(nvme_complete_rq);
483 
484 void nvme_complete_batch_req(struct request *req)
485 {
486 	trace_nvme_complete_rq(req);
487 	nvme_cleanup_cmd(req);
488 	__nvme_end_req(req);
489 }
490 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
491 
492 /*
493  * Called to unwind from ->queue_rq on a failed command submission so that the
494  * multipathing code gets called to potentially failover to another path.
495  * The caller needs to unwind all transport specific resource allocations and
496  * must return propagate the return value.
497  */
498 blk_status_t nvme_host_path_error(struct request *req)
499 {
500 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
501 	blk_mq_set_request_complete(req);
502 	nvme_complete_rq(req);
503 	return BLK_STS_OK;
504 }
505 EXPORT_SYMBOL_GPL(nvme_host_path_error);
506 
507 bool nvme_cancel_request(struct request *req, void *data)
508 {
509 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
510 				"Cancelling I/O %d", req->tag);
511 
512 	/* don't abort one completed or idle request */
513 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
514 		return true;
515 
516 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
517 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
518 	blk_mq_complete_request(req);
519 	return true;
520 }
521 EXPORT_SYMBOL_GPL(nvme_cancel_request);
522 
523 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
524 {
525 	if (ctrl->tagset) {
526 		blk_mq_tagset_busy_iter(ctrl->tagset,
527 				nvme_cancel_request, ctrl);
528 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
529 	}
530 }
531 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
532 
533 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
534 {
535 	if (ctrl->admin_tagset) {
536 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
537 				nvme_cancel_request, ctrl);
538 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
539 	}
540 }
541 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
542 
543 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
544 		enum nvme_ctrl_state new_state)
545 {
546 	enum nvme_ctrl_state old_state;
547 	unsigned long flags;
548 	bool changed = false;
549 
550 	spin_lock_irqsave(&ctrl->lock, flags);
551 
552 	old_state = nvme_ctrl_state(ctrl);
553 	switch (new_state) {
554 	case NVME_CTRL_LIVE:
555 		switch (old_state) {
556 		case NVME_CTRL_NEW:
557 		case NVME_CTRL_RESETTING:
558 		case NVME_CTRL_CONNECTING:
559 			changed = true;
560 			fallthrough;
561 		default:
562 			break;
563 		}
564 		break;
565 	case NVME_CTRL_RESETTING:
566 		switch (old_state) {
567 		case NVME_CTRL_NEW:
568 		case NVME_CTRL_LIVE:
569 			changed = true;
570 			fallthrough;
571 		default:
572 			break;
573 		}
574 		break;
575 	case NVME_CTRL_CONNECTING:
576 		switch (old_state) {
577 		case NVME_CTRL_NEW:
578 		case NVME_CTRL_RESETTING:
579 			changed = true;
580 			fallthrough;
581 		default:
582 			break;
583 		}
584 		break;
585 	case NVME_CTRL_DELETING:
586 		switch (old_state) {
587 		case NVME_CTRL_LIVE:
588 		case NVME_CTRL_RESETTING:
589 		case NVME_CTRL_CONNECTING:
590 			changed = true;
591 			fallthrough;
592 		default:
593 			break;
594 		}
595 		break;
596 	case NVME_CTRL_DELETING_NOIO:
597 		switch (old_state) {
598 		case NVME_CTRL_DELETING:
599 		case NVME_CTRL_DEAD:
600 			changed = true;
601 			fallthrough;
602 		default:
603 			break;
604 		}
605 		break;
606 	case NVME_CTRL_DEAD:
607 		switch (old_state) {
608 		case NVME_CTRL_DELETING:
609 			changed = true;
610 			fallthrough;
611 		default:
612 			break;
613 		}
614 		break;
615 	default:
616 		break;
617 	}
618 
619 	if (changed) {
620 		WRITE_ONCE(ctrl->state, new_state);
621 		wake_up_all(&ctrl->state_wq);
622 	}
623 
624 	spin_unlock_irqrestore(&ctrl->lock, flags);
625 	if (!changed)
626 		return false;
627 
628 	if (new_state == NVME_CTRL_LIVE) {
629 		if (old_state == NVME_CTRL_CONNECTING)
630 			nvme_stop_failfast_work(ctrl);
631 		nvme_kick_requeue_lists(ctrl);
632 	} else if (new_state == NVME_CTRL_CONNECTING &&
633 		old_state == NVME_CTRL_RESETTING) {
634 		nvme_start_failfast_work(ctrl);
635 	}
636 	return changed;
637 }
638 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
639 
640 /*
641  * Waits for the controller state to be resetting, or returns false if it is
642  * not possible to ever transition to that state.
643  */
644 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
645 {
646 	wait_event(ctrl->state_wq,
647 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
648 		   nvme_state_terminal(ctrl));
649 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
650 }
651 EXPORT_SYMBOL_GPL(nvme_wait_reset);
652 
653 static void nvme_free_ns_head(struct kref *ref)
654 {
655 	struct nvme_ns_head *head =
656 		container_of(ref, struct nvme_ns_head, ref);
657 
658 	nvme_mpath_remove_disk(head);
659 	ida_free(&head->subsys->ns_ida, head->instance);
660 	cleanup_srcu_struct(&head->srcu);
661 	nvme_put_subsystem(head->subsys);
662 	kfree(head);
663 }
664 
665 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
666 {
667 	return kref_get_unless_zero(&head->ref);
668 }
669 
670 void nvme_put_ns_head(struct nvme_ns_head *head)
671 {
672 	kref_put(&head->ref, nvme_free_ns_head);
673 }
674 
675 static void nvme_free_ns(struct kref *kref)
676 {
677 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
678 
679 	put_disk(ns->disk);
680 	nvme_put_ns_head(ns->head);
681 	nvme_put_ctrl(ns->ctrl);
682 	kfree(ns);
683 }
684 
685 bool nvme_get_ns(struct nvme_ns *ns)
686 {
687 	return kref_get_unless_zero(&ns->kref);
688 }
689 
690 void nvme_put_ns(struct nvme_ns *ns)
691 {
692 	kref_put(&ns->kref, nvme_free_ns);
693 }
694 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
695 
696 static inline void nvme_clear_nvme_request(struct request *req)
697 {
698 	nvme_req(req)->status = 0;
699 	nvme_req(req)->retries = 0;
700 	nvme_req(req)->flags = 0;
701 	req->rq_flags |= RQF_DONTPREP;
702 }
703 
704 /* initialize a passthrough request */
705 void nvme_init_request(struct request *req, struct nvme_command *cmd)
706 {
707 	struct nvme_request *nr = nvme_req(req);
708 	bool logging_enabled;
709 
710 	if (req->q->queuedata) {
711 		struct nvme_ns *ns = req->q->disk->private_data;
712 
713 		logging_enabled = ns->head->passthru_err_log_enabled;
714 		req->timeout = NVME_IO_TIMEOUT;
715 	} else { /* no queuedata implies admin queue */
716 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
717 		req->timeout = NVME_ADMIN_TIMEOUT;
718 	}
719 
720 	if (!logging_enabled)
721 		req->rq_flags |= RQF_QUIET;
722 
723 	/* passthru commands should let the driver set the SGL flags */
724 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
725 
726 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
727 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
728 		req->cmd_flags |= REQ_POLLED;
729 	nvme_clear_nvme_request(req);
730 	memcpy(nr->cmd, cmd, sizeof(*cmd));
731 }
732 EXPORT_SYMBOL_GPL(nvme_init_request);
733 
734 /*
735  * For something we're not in a state to send to the device the default action
736  * is to busy it and retry it after the controller state is recovered.  However,
737  * if the controller is deleting or if anything is marked for failfast or
738  * nvme multipath it is immediately failed.
739  *
740  * Note: commands used to initialize the controller will be marked for failfast.
741  * Note: nvme cli/ioctl commands are marked for failfast.
742  */
743 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
744 		struct request *rq)
745 {
746 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
747 
748 	if (state != NVME_CTRL_DELETING_NOIO &&
749 	    state != NVME_CTRL_DELETING &&
750 	    state != NVME_CTRL_DEAD &&
751 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
752 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
753 		return BLK_STS_RESOURCE;
754 	return nvme_host_path_error(rq);
755 }
756 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
757 
758 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
759 		bool queue_live, enum nvme_ctrl_state state)
760 {
761 	struct nvme_request *req = nvme_req(rq);
762 
763 	/*
764 	 * currently we have a problem sending passthru commands
765 	 * on the admin_q if the controller is not LIVE because we can't
766 	 * make sure that they are going out after the admin connect,
767 	 * controller enable and/or other commands in the initialization
768 	 * sequence. until the controller will be LIVE, fail with
769 	 * BLK_STS_RESOURCE so that they will be rescheduled.
770 	 */
771 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
772 		return false;
773 
774 	if (ctrl->ops->flags & NVME_F_FABRICS) {
775 		/*
776 		 * Only allow commands on a live queue, except for the connect
777 		 * command, which is require to set the queue live in the
778 		 * appropinquate states.
779 		 */
780 		switch (state) {
781 		case NVME_CTRL_CONNECTING:
782 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
783 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
784 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
785 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
786 				return true;
787 			break;
788 		default:
789 			break;
790 		case NVME_CTRL_DEAD:
791 			return false;
792 		}
793 	}
794 
795 	return queue_live;
796 }
797 EXPORT_SYMBOL_GPL(__nvme_check_ready);
798 
799 static inline void nvme_setup_flush(struct nvme_ns *ns,
800 		struct nvme_command *cmnd)
801 {
802 	memset(cmnd, 0, sizeof(*cmnd));
803 	cmnd->common.opcode = nvme_cmd_flush;
804 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
805 }
806 
807 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
808 		struct nvme_command *cmnd)
809 {
810 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
811 	struct nvme_dsm_range *range;
812 	struct bio *bio;
813 
814 	/*
815 	 * Some devices do not consider the DSM 'Number of Ranges' field when
816 	 * determining how much data to DMA. Always allocate memory for maximum
817 	 * number of segments to prevent device reading beyond end of buffer.
818 	 */
819 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
820 
821 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
822 	if (!range) {
823 		/*
824 		 * If we fail allocation our range, fallback to the controller
825 		 * discard page. If that's also busy, it's safe to return
826 		 * busy, as we know we can make progress once that's freed.
827 		 */
828 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
829 			return BLK_STS_RESOURCE;
830 
831 		range = page_address(ns->ctrl->discard_page);
832 	}
833 
834 	if (queue_max_discard_segments(req->q) == 1) {
835 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
836 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
837 
838 		range[0].cattr = cpu_to_le32(0);
839 		range[0].nlb = cpu_to_le32(nlb);
840 		range[0].slba = cpu_to_le64(slba);
841 		n = 1;
842 	} else {
843 		__rq_for_each_bio(bio, req) {
844 			u64 slba = nvme_sect_to_lba(ns->head,
845 						    bio->bi_iter.bi_sector);
846 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
847 
848 			if (n < segments) {
849 				range[n].cattr = cpu_to_le32(0);
850 				range[n].nlb = cpu_to_le32(nlb);
851 				range[n].slba = cpu_to_le64(slba);
852 			}
853 			n++;
854 		}
855 	}
856 
857 	if (WARN_ON_ONCE(n != segments)) {
858 		if (virt_to_page(range) == ns->ctrl->discard_page)
859 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
860 		else
861 			kfree(range);
862 		return BLK_STS_IOERR;
863 	}
864 
865 	memset(cmnd, 0, sizeof(*cmnd));
866 	cmnd->dsm.opcode = nvme_cmd_dsm;
867 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
868 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
869 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
870 
871 	bvec_set_virt(&req->special_vec, range, alloc_size);
872 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
873 
874 	return BLK_STS_OK;
875 }
876 
877 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
878 			      struct request *req)
879 {
880 	u32 upper, lower;
881 	u64 ref48;
882 
883 	/* both rw and write zeroes share the same reftag format */
884 	switch (ns->head->guard_type) {
885 	case NVME_NVM_NS_16B_GUARD:
886 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
887 		break;
888 	case NVME_NVM_NS_64B_GUARD:
889 		ref48 = ext_pi_ref_tag(req);
890 		lower = lower_32_bits(ref48);
891 		upper = upper_32_bits(ref48);
892 
893 		cmnd->rw.reftag = cpu_to_le32(lower);
894 		cmnd->rw.cdw3 = cpu_to_le32(upper);
895 		break;
896 	default:
897 		break;
898 	}
899 }
900 
901 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
902 		struct request *req, struct nvme_command *cmnd)
903 {
904 	memset(cmnd, 0, sizeof(*cmnd));
905 
906 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
907 		return nvme_setup_discard(ns, req, cmnd);
908 
909 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
910 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
911 	cmnd->write_zeroes.slba =
912 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
913 	cmnd->write_zeroes.length =
914 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
915 
916 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
917 	    (ns->head->features & NVME_NS_DEAC))
918 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
919 
920 	if (nvme_ns_has_pi(ns->head)) {
921 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
922 
923 		switch (ns->head->pi_type) {
924 		case NVME_NS_DPS_PI_TYPE1:
925 		case NVME_NS_DPS_PI_TYPE2:
926 			nvme_set_ref_tag(ns, cmnd, req);
927 			break;
928 		}
929 	}
930 
931 	return BLK_STS_OK;
932 }
933 
934 /*
935  * NVMe does not support a dedicated command to issue an atomic write. A write
936  * which does adhere to the device atomic limits will silently be executed
937  * non-atomically. The request issuer should ensure that the write is within
938  * the queue atomic writes limits, but just validate this in case it is not.
939  */
940 static bool nvme_valid_atomic_write(struct request *req)
941 {
942 	struct request_queue *q = req->q;
943 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
944 
945 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
946 		return false;
947 
948 	if (boundary_bytes) {
949 		u64 mask = boundary_bytes - 1, imask = ~mask;
950 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
951 		u64 end = start + blk_rq_bytes(req) - 1;
952 
953 		/* If greater then must be crossing a boundary */
954 		if (blk_rq_bytes(req) > boundary_bytes)
955 			return false;
956 
957 		if ((start & imask) != (end & imask))
958 			return false;
959 	}
960 
961 	return true;
962 }
963 
964 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
965 		struct request *req, struct nvme_command *cmnd,
966 		enum nvme_opcode op)
967 {
968 	u16 control = 0;
969 	u32 dsmgmt = 0;
970 
971 	if (req->cmd_flags & REQ_FUA)
972 		control |= NVME_RW_FUA;
973 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
974 		control |= NVME_RW_LR;
975 
976 	if (req->cmd_flags & REQ_RAHEAD)
977 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
978 
979 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
980 		return BLK_STS_INVAL;
981 
982 	cmnd->rw.opcode = op;
983 	cmnd->rw.flags = 0;
984 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
985 	cmnd->rw.cdw2 = 0;
986 	cmnd->rw.cdw3 = 0;
987 	cmnd->rw.metadata = 0;
988 	cmnd->rw.slba =
989 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
990 	cmnd->rw.length =
991 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
992 	cmnd->rw.reftag = 0;
993 	cmnd->rw.lbat = 0;
994 	cmnd->rw.lbatm = 0;
995 
996 	if (ns->head->ms) {
997 		/*
998 		 * If formated with metadata, the block layer always provides a
999 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1000 		 * we enable the PRACT bit for protection information or set the
1001 		 * namespace capacity to zero to prevent any I/O.
1002 		 */
1003 		if (!blk_integrity_rq(req)) {
1004 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1005 				return BLK_STS_NOTSUPP;
1006 			control |= NVME_RW_PRINFO_PRACT;
1007 		}
1008 
1009 		switch (ns->head->pi_type) {
1010 		case NVME_NS_DPS_PI_TYPE3:
1011 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1012 			break;
1013 		case NVME_NS_DPS_PI_TYPE1:
1014 		case NVME_NS_DPS_PI_TYPE2:
1015 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
1016 					NVME_RW_PRINFO_PRCHK_REF;
1017 			if (op == nvme_cmd_zone_append)
1018 				control |= NVME_RW_APPEND_PIREMAP;
1019 			nvme_set_ref_tag(ns, cmnd, req);
1020 			break;
1021 		}
1022 	}
1023 
1024 	cmnd->rw.control = cpu_to_le16(control);
1025 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1026 	return 0;
1027 }
1028 
1029 void nvme_cleanup_cmd(struct request *req)
1030 {
1031 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1032 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1033 
1034 		if (req->special_vec.bv_page == ctrl->discard_page)
1035 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1036 		else
1037 			kfree(bvec_virt(&req->special_vec));
1038 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1039 	}
1040 }
1041 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1042 
1043 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1044 {
1045 	struct nvme_command *cmd = nvme_req(req)->cmd;
1046 	blk_status_t ret = BLK_STS_OK;
1047 
1048 	if (!(req->rq_flags & RQF_DONTPREP))
1049 		nvme_clear_nvme_request(req);
1050 
1051 	switch (req_op(req)) {
1052 	case REQ_OP_DRV_IN:
1053 	case REQ_OP_DRV_OUT:
1054 		/* these are setup prior to execution in nvme_init_request() */
1055 		break;
1056 	case REQ_OP_FLUSH:
1057 		nvme_setup_flush(ns, cmd);
1058 		break;
1059 	case REQ_OP_ZONE_RESET_ALL:
1060 	case REQ_OP_ZONE_RESET:
1061 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1062 		break;
1063 	case REQ_OP_ZONE_OPEN:
1064 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1065 		break;
1066 	case REQ_OP_ZONE_CLOSE:
1067 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1068 		break;
1069 	case REQ_OP_ZONE_FINISH:
1070 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1071 		break;
1072 	case REQ_OP_WRITE_ZEROES:
1073 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1074 		break;
1075 	case REQ_OP_DISCARD:
1076 		ret = nvme_setup_discard(ns, req, cmd);
1077 		break;
1078 	case REQ_OP_READ:
1079 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1080 		break;
1081 	case REQ_OP_WRITE:
1082 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1083 		break;
1084 	case REQ_OP_ZONE_APPEND:
1085 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1086 		break;
1087 	default:
1088 		WARN_ON_ONCE(1);
1089 		return BLK_STS_IOERR;
1090 	}
1091 
1092 	cmd->common.command_id = nvme_cid(req);
1093 	trace_nvme_setup_cmd(req, cmd);
1094 	return ret;
1095 }
1096 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1097 
1098 /*
1099  * Return values:
1100  * 0:  success
1101  * >0: nvme controller's cqe status response
1102  * <0: kernel error in lieu of controller response
1103  */
1104 int nvme_execute_rq(struct request *rq, bool at_head)
1105 {
1106 	blk_status_t status;
1107 
1108 	status = blk_execute_rq(rq, at_head);
1109 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1110 		return -EINTR;
1111 	if (nvme_req(rq)->status)
1112 		return nvme_req(rq)->status;
1113 	return blk_status_to_errno(status);
1114 }
1115 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1116 
1117 /*
1118  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1119  * if the result is positive, it's an NVM Express status code
1120  */
1121 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1122 		union nvme_result *result, void *buffer, unsigned bufflen,
1123 		int qid, nvme_submit_flags_t flags)
1124 {
1125 	struct request *req;
1126 	int ret;
1127 	blk_mq_req_flags_t blk_flags = 0;
1128 
1129 	if (flags & NVME_SUBMIT_NOWAIT)
1130 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1131 	if (flags & NVME_SUBMIT_RESERVED)
1132 		blk_flags |= BLK_MQ_REQ_RESERVED;
1133 	if (qid == NVME_QID_ANY)
1134 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1135 	else
1136 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1137 						qid - 1);
1138 
1139 	if (IS_ERR(req))
1140 		return PTR_ERR(req);
1141 	nvme_init_request(req, cmd);
1142 	if (flags & NVME_SUBMIT_RETRY)
1143 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1144 
1145 	if (buffer && bufflen) {
1146 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1147 		if (ret)
1148 			goto out;
1149 	}
1150 
1151 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1152 	if (result && ret >= 0)
1153 		*result = nvme_req(req)->result;
1154  out:
1155 	blk_mq_free_request(req);
1156 	return ret;
1157 }
1158 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1159 
1160 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1161 		void *buffer, unsigned bufflen)
1162 {
1163 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1164 			NVME_QID_ANY, 0);
1165 }
1166 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1167 
1168 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1169 {
1170 	u32 effects = 0;
1171 
1172 	if (ns) {
1173 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1174 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1175 			dev_warn_once(ctrl->device,
1176 				"IO command:%02x has unusual effects:%08x\n",
1177 				opcode, effects);
1178 
1179 		/*
1180 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1181 		 * which would deadlock when done on an I/O command.  Note that
1182 		 * We already warn about an unusual effect above.
1183 		 */
1184 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1185 	} else {
1186 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1187 
1188 		/* Ignore execution restrictions if any relaxation bits are set */
1189 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1190 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1191 	}
1192 
1193 	return effects;
1194 }
1195 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1196 
1197 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1198 {
1199 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1200 
1201 	/*
1202 	 * For simplicity, IO to all namespaces is quiesced even if the command
1203 	 * effects say only one namespace is affected.
1204 	 */
1205 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1206 		mutex_lock(&ctrl->scan_lock);
1207 		mutex_lock(&ctrl->subsys->lock);
1208 		nvme_mpath_start_freeze(ctrl->subsys);
1209 		nvme_mpath_wait_freeze(ctrl->subsys);
1210 		nvme_start_freeze(ctrl);
1211 		nvme_wait_freeze(ctrl);
1212 	}
1213 	return effects;
1214 }
1215 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1216 
1217 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1218 		       struct nvme_command *cmd, int status)
1219 {
1220 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1221 		nvme_unfreeze(ctrl);
1222 		nvme_mpath_unfreeze(ctrl->subsys);
1223 		mutex_unlock(&ctrl->subsys->lock);
1224 		mutex_unlock(&ctrl->scan_lock);
1225 	}
1226 	if (effects & NVME_CMD_EFFECTS_CCC) {
1227 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1228 				      &ctrl->flags)) {
1229 			dev_info(ctrl->device,
1230 "controller capabilities changed, reset may be required to take effect.\n");
1231 		}
1232 	}
1233 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1234 		nvme_queue_scan(ctrl);
1235 		flush_work(&ctrl->scan_work);
1236 	}
1237 	if (ns)
1238 		return;
1239 
1240 	switch (cmd->common.opcode) {
1241 	case nvme_admin_set_features:
1242 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1243 		case NVME_FEAT_KATO:
1244 			/*
1245 			 * Keep alive commands interval on the host should be
1246 			 * updated when KATO is modified by Set Features
1247 			 * commands.
1248 			 */
1249 			if (!status)
1250 				nvme_update_keep_alive(ctrl, cmd);
1251 			break;
1252 		default:
1253 			break;
1254 		}
1255 		break;
1256 	default:
1257 		break;
1258 	}
1259 }
1260 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1261 
1262 /*
1263  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1264  *
1265  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1266  *   accounting for transport roundtrip times [..].
1267  */
1268 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1269 {
1270 	unsigned long delay = ctrl->kato * HZ / 2;
1271 
1272 	/*
1273 	 * When using Traffic Based Keep Alive, we need to run
1274 	 * nvme_keep_alive_work at twice the normal frequency, as one
1275 	 * command completion can postpone sending a keep alive command
1276 	 * by up to twice the delay between runs.
1277 	 */
1278 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1279 		delay /= 2;
1280 	return delay;
1281 }
1282 
1283 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1284 {
1285 	unsigned long now = jiffies;
1286 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1287 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1288 
1289 	if (time_after(now, ka_next_check_tm))
1290 		delay = 0;
1291 	else
1292 		delay = ka_next_check_tm - now;
1293 
1294 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1295 }
1296 
1297 static void nvme_keep_alive_finish(struct request *rq,
1298 		blk_status_t status, struct nvme_ctrl *ctrl)
1299 {
1300 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1301 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1302 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1303 
1304 	/*
1305 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1306 	 * at the desired frequency.
1307 	 */
1308 	if (rtt <= delay) {
1309 		delay -= rtt;
1310 	} else {
1311 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1312 			 jiffies_to_msecs(rtt));
1313 		delay = 0;
1314 	}
1315 
1316 	if (status) {
1317 		dev_err(ctrl->device,
1318 			"failed nvme_keep_alive_end_io error=%d\n",
1319 				status);
1320 		return;
1321 	}
1322 
1323 	ctrl->ka_last_check_time = jiffies;
1324 	ctrl->comp_seen = false;
1325 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1326 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1327 }
1328 
1329 static void nvme_keep_alive_work(struct work_struct *work)
1330 {
1331 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1332 			struct nvme_ctrl, ka_work);
1333 	bool comp_seen = ctrl->comp_seen;
1334 	struct request *rq;
1335 	blk_status_t status;
1336 
1337 	ctrl->ka_last_check_time = jiffies;
1338 
1339 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1340 		dev_dbg(ctrl->device,
1341 			"reschedule traffic based keep-alive timer\n");
1342 		ctrl->comp_seen = false;
1343 		nvme_queue_keep_alive_work(ctrl);
1344 		return;
1345 	}
1346 
1347 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1348 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1349 	if (IS_ERR(rq)) {
1350 		/* allocation failure, reset the controller */
1351 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1352 		nvme_reset_ctrl(ctrl);
1353 		return;
1354 	}
1355 	nvme_init_request(rq, &ctrl->ka_cmd);
1356 
1357 	rq->timeout = ctrl->kato * HZ;
1358 	status = blk_execute_rq(rq, false);
1359 	nvme_keep_alive_finish(rq, status, ctrl);
1360 	blk_mq_free_request(rq);
1361 }
1362 
1363 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1364 {
1365 	if (unlikely(ctrl->kato == 0))
1366 		return;
1367 
1368 	nvme_queue_keep_alive_work(ctrl);
1369 }
1370 
1371 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1372 {
1373 	if (unlikely(ctrl->kato == 0))
1374 		return;
1375 
1376 	cancel_delayed_work_sync(&ctrl->ka_work);
1377 }
1378 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1379 
1380 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1381 				   struct nvme_command *cmd)
1382 {
1383 	unsigned int new_kato =
1384 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1385 
1386 	dev_info(ctrl->device,
1387 		 "keep alive interval updated from %u ms to %u ms\n",
1388 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1389 
1390 	nvme_stop_keep_alive(ctrl);
1391 	ctrl->kato = new_kato;
1392 	nvme_start_keep_alive(ctrl);
1393 }
1394 
1395 /*
1396  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1397  * flag, thus sending any new CNS opcodes has a big chance of not working.
1398  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1399  * (but not for any later version).
1400  */
1401 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1402 {
1403 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1404 		return ctrl->vs < NVME_VS(1, 2, 0);
1405 	return ctrl->vs < NVME_VS(1, 1, 0);
1406 }
1407 
1408 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1409 {
1410 	struct nvme_command c = { };
1411 	int error;
1412 
1413 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1414 	c.identify.opcode = nvme_admin_identify;
1415 	c.identify.cns = NVME_ID_CNS_CTRL;
1416 
1417 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1418 	if (!*id)
1419 		return -ENOMEM;
1420 
1421 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1422 			sizeof(struct nvme_id_ctrl));
1423 	if (error) {
1424 		kfree(*id);
1425 		*id = NULL;
1426 	}
1427 	return error;
1428 }
1429 
1430 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1431 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1432 {
1433 	const char *warn_str = "ctrl returned bogus length:";
1434 	void *data = cur;
1435 
1436 	switch (cur->nidt) {
1437 	case NVME_NIDT_EUI64:
1438 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1439 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1440 				 warn_str, cur->nidl);
1441 			return -1;
1442 		}
1443 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1444 			return NVME_NIDT_EUI64_LEN;
1445 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1446 		return NVME_NIDT_EUI64_LEN;
1447 	case NVME_NIDT_NGUID:
1448 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1449 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1450 				 warn_str, cur->nidl);
1451 			return -1;
1452 		}
1453 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1454 			return NVME_NIDT_NGUID_LEN;
1455 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1456 		return NVME_NIDT_NGUID_LEN;
1457 	case NVME_NIDT_UUID:
1458 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1459 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1460 				 warn_str, cur->nidl);
1461 			return -1;
1462 		}
1463 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1464 			return NVME_NIDT_UUID_LEN;
1465 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1466 		return NVME_NIDT_UUID_LEN;
1467 	case NVME_NIDT_CSI:
1468 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1469 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1470 				 warn_str, cur->nidl);
1471 			return -1;
1472 		}
1473 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1474 		*csi_seen = true;
1475 		return NVME_NIDT_CSI_LEN;
1476 	default:
1477 		/* Skip unknown types */
1478 		return cur->nidl;
1479 	}
1480 }
1481 
1482 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1483 		struct nvme_ns_info *info)
1484 {
1485 	struct nvme_command c = { };
1486 	bool csi_seen = false;
1487 	int status, pos, len;
1488 	void *data;
1489 
1490 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1491 		return 0;
1492 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1493 		return 0;
1494 
1495 	c.identify.opcode = nvme_admin_identify;
1496 	c.identify.nsid = cpu_to_le32(info->nsid);
1497 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1498 
1499 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1500 	if (!data)
1501 		return -ENOMEM;
1502 
1503 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1504 				      NVME_IDENTIFY_DATA_SIZE);
1505 	if (status) {
1506 		dev_warn(ctrl->device,
1507 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1508 			info->nsid, status);
1509 		goto free_data;
1510 	}
1511 
1512 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1513 		struct nvme_ns_id_desc *cur = data + pos;
1514 
1515 		if (cur->nidl == 0)
1516 			break;
1517 
1518 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1519 		if (len < 0)
1520 			break;
1521 
1522 		len += sizeof(*cur);
1523 	}
1524 
1525 	if (nvme_multi_css(ctrl) && !csi_seen) {
1526 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1527 			 info->nsid);
1528 		status = -EINVAL;
1529 	}
1530 
1531 free_data:
1532 	kfree(data);
1533 	return status;
1534 }
1535 
1536 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1537 			struct nvme_id_ns **id)
1538 {
1539 	struct nvme_command c = { };
1540 	int error;
1541 
1542 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1543 	c.identify.opcode = nvme_admin_identify;
1544 	c.identify.nsid = cpu_to_le32(nsid);
1545 	c.identify.cns = NVME_ID_CNS_NS;
1546 
1547 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1548 	if (!*id)
1549 		return -ENOMEM;
1550 
1551 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1552 	if (error) {
1553 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1554 		kfree(*id);
1555 		*id = NULL;
1556 	}
1557 	return error;
1558 }
1559 
1560 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1561 		struct nvme_ns_info *info)
1562 {
1563 	struct nvme_ns_ids *ids = &info->ids;
1564 	struct nvme_id_ns *id;
1565 	int ret;
1566 
1567 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1568 	if (ret)
1569 		return ret;
1570 
1571 	if (id->ncap == 0) {
1572 		/* namespace not allocated or attached */
1573 		info->is_removed = true;
1574 		ret = -ENODEV;
1575 		goto error;
1576 	}
1577 
1578 	info->anagrpid = id->anagrpid;
1579 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1580 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1581 	info->is_ready = true;
1582 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1583 		dev_info(ctrl->device,
1584 			 "Ignoring bogus Namespace Identifiers\n");
1585 	} else {
1586 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1587 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1588 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1589 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1590 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1591 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1592 	}
1593 
1594 error:
1595 	kfree(id);
1596 	return ret;
1597 }
1598 
1599 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1600 		struct nvme_ns_info *info)
1601 {
1602 	struct nvme_id_ns_cs_indep *id;
1603 	struct nvme_command c = {
1604 		.identify.opcode	= nvme_admin_identify,
1605 		.identify.nsid		= cpu_to_le32(info->nsid),
1606 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1607 	};
1608 	int ret;
1609 
1610 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1611 	if (!id)
1612 		return -ENOMEM;
1613 
1614 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1615 	if (!ret) {
1616 		info->anagrpid = id->anagrpid;
1617 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1618 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1619 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1620 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1621 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1622 	}
1623 	kfree(id);
1624 	return ret;
1625 }
1626 
1627 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1628 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1629 {
1630 	union nvme_result res = { 0 };
1631 	struct nvme_command c = { };
1632 	int ret;
1633 
1634 	c.features.opcode = op;
1635 	c.features.fid = cpu_to_le32(fid);
1636 	c.features.dword11 = cpu_to_le32(dword11);
1637 
1638 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1639 			buffer, buflen, NVME_QID_ANY, 0);
1640 	if (ret >= 0 && result)
1641 		*result = le32_to_cpu(res.u32);
1642 	return ret;
1643 }
1644 
1645 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1646 		      unsigned int dword11, void *buffer, size_t buflen,
1647 		      u32 *result)
1648 {
1649 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1650 			     buflen, result);
1651 }
1652 EXPORT_SYMBOL_GPL(nvme_set_features);
1653 
1654 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1655 		      unsigned int dword11, void *buffer, size_t buflen,
1656 		      u32 *result)
1657 {
1658 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1659 			     buflen, result);
1660 }
1661 EXPORT_SYMBOL_GPL(nvme_get_features);
1662 
1663 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1664 {
1665 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1666 	u32 result;
1667 	int status, nr_io_queues;
1668 
1669 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1670 			&result);
1671 	if (status < 0)
1672 		return status;
1673 
1674 	/*
1675 	 * Degraded controllers might return an error when setting the queue
1676 	 * count.  We still want to be able to bring them online and offer
1677 	 * access to the admin queue, as that might be only way to fix them up.
1678 	 */
1679 	if (status > 0) {
1680 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1681 		*count = 0;
1682 	} else {
1683 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1684 		*count = min(*count, nr_io_queues);
1685 	}
1686 
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1690 
1691 #define NVME_AEN_SUPPORTED \
1692 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1693 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1694 
1695 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1696 {
1697 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1698 	int status;
1699 
1700 	if (!supported_aens)
1701 		return;
1702 
1703 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1704 			NULL, 0, &result);
1705 	if (status)
1706 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1707 			 supported_aens);
1708 
1709 	queue_work(nvme_wq, &ctrl->async_event_work);
1710 }
1711 
1712 static int nvme_ns_open(struct nvme_ns *ns)
1713 {
1714 
1715 	/* should never be called due to GENHD_FL_HIDDEN */
1716 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1717 		goto fail;
1718 	if (!nvme_get_ns(ns))
1719 		goto fail;
1720 	if (!try_module_get(ns->ctrl->ops->module))
1721 		goto fail_put_ns;
1722 
1723 	return 0;
1724 
1725 fail_put_ns:
1726 	nvme_put_ns(ns);
1727 fail:
1728 	return -ENXIO;
1729 }
1730 
1731 static void nvme_ns_release(struct nvme_ns *ns)
1732 {
1733 
1734 	module_put(ns->ctrl->ops->module);
1735 	nvme_put_ns(ns);
1736 }
1737 
1738 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1739 {
1740 	return nvme_ns_open(disk->private_data);
1741 }
1742 
1743 static void nvme_release(struct gendisk *disk)
1744 {
1745 	nvme_ns_release(disk->private_data);
1746 }
1747 
1748 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1749 {
1750 	/* some standard values */
1751 	geo->heads = 1 << 6;
1752 	geo->sectors = 1 << 5;
1753 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1754 	return 0;
1755 }
1756 
1757 static bool nvme_init_integrity(struct nvme_ns_head *head,
1758 		struct queue_limits *lim, struct nvme_ns_info *info)
1759 {
1760 	struct blk_integrity *bi = &lim->integrity;
1761 
1762 	memset(bi, 0, sizeof(*bi));
1763 
1764 	if (!head->ms)
1765 		return true;
1766 
1767 	/*
1768 	 * PI can always be supported as we can ask the controller to simply
1769 	 * insert/strip it, which is not possible for other kinds of metadata.
1770 	 */
1771 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1772 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1773 		return nvme_ns_has_pi(head);
1774 
1775 	switch (head->pi_type) {
1776 	case NVME_NS_DPS_PI_TYPE3:
1777 		switch (head->guard_type) {
1778 		case NVME_NVM_NS_16B_GUARD:
1779 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1780 			bi->tag_size = sizeof(u16) + sizeof(u32);
1781 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1782 			break;
1783 		case NVME_NVM_NS_64B_GUARD:
1784 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1785 			bi->tag_size = sizeof(u16) + 6;
1786 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1787 			break;
1788 		default:
1789 			break;
1790 		}
1791 		break;
1792 	case NVME_NS_DPS_PI_TYPE1:
1793 	case NVME_NS_DPS_PI_TYPE2:
1794 		switch (head->guard_type) {
1795 		case NVME_NVM_NS_16B_GUARD:
1796 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1797 			bi->tag_size = sizeof(u16);
1798 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1799 				     BLK_INTEGRITY_REF_TAG;
1800 			break;
1801 		case NVME_NVM_NS_64B_GUARD:
1802 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1803 			bi->tag_size = sizeof(u16);
1804 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1805 				     BLK_INTEGRITY_REF_TAG;
1806 			break;
1807 		default:
1808 			break;
1809 		}
1810 		break;
1811 	default:
1812 		break;
1813 	}
1814 
1815 	bi->tuple_size = head->ms;
1816 	bi->pi_offset = info->pi_offset;
1817 	return true;
1818 }
1819 
1820 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1821 {
1822 	struct nvme_ctrl *ctrl = ns->ctrl;
1823 
1824 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1825 		lim->max_hw_discard_sectors =
1826 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1827 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1828 		lim->max_hw_discard_sectors = UINT_MAX;
1829 	else
1830 		lim->max_hw_discard_sectors = 0;
1831 
1832 	lim->discard_granularity = lim->logical_block_size;
1833 
1834 	if (ctrl->dmrl)
1835 		lim->max_discard_segments = ctrl->dmrl;
1836 	else
1837 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1838 }
1839 
1840 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1841 {
1842 	return uuid_equal(&a->uuid, &b->uuid) &&
1843 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1844 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1845 		a->csi == b->csi;
1846 }
1847 
1848 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1849 		struct nvme_id_ns_nvm **nvmp)
1850 {
1851 	struct nvme_command c = {
1852 		.identify.opcode	= nvme_admin_identify,
1853 		.identify.nsid		= cpu_to_le32(nsid),
1854 		.identify.cns		= NVME_ID_CNS_CS_NS,
1855 		.identify.csi		= NVME_CSI_NVM,
1856 	};
1857 	struct nvme_id_ns_nvm *nvm;
1858 	int ret;
1859 
1860 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1861 	if (!nvm)
1862 		return -ENOMEM;
1863 
1864 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1865 	if (ret)
1866 		kfree(nvm);
1867 	else
1868 		*nvmp = nvm;
1869 	return ret;
1870 }
1871 
1872 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1873 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1874 {
1875 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1876 	u8 guard_type;
1877 
1878 	/* no support for storage tag formats right now */
1879 	if (nvme_elbaf_sts(elbaf))
1880 		return;
1881 
1882 	guard_type = nvme_elbaf_guard_type(elbaf);
1883 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1884 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1885 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1886 
1887 	head->guard_type = guard_type;
1888 	switch (head->guard_type) {
1889 	case NVME_NVM_NS_64B_GUARD:
1890 		head->pi_size = sizeof(struct crc64_pi_tuple);
1891 		break;
1892 	case NVME_NVM_NS_16B_GUARD:
1893 		head->pi_size = sizeof(struct t10_pi_tuple);
1894 		break;
1895 	default:
1896 		break;
1897 	}
1898 }
1899 
1900 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1901 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1902 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1903 {
1904 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1905 	head->pi_type = 0;
1906 	head->pi_size = 0;
1907 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1908 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1909 		return;
1910 
1911 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1912 		nvme_configure_pi_elbas(head, id, nvm);
1913 	} else {
1914 		head->pi_size = sizeof(struct t10_pi_tuple);
1915 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1916 	}
1917 
1918 	if (head->pi_size && head->ms >= head->pi_size)
1919 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1920 	if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1921 		info->pi_offset = head->ms - head->pi_size;
1922 
1923 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1924 		/*
1925 		 * The NVMe over Fabrics specification only supports metadata as
1926 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1927 		 * remap the separate metadata buffer from the block layer.
1928 		 */
1929 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1930 			return;
1931 
1932 		head->features |= NVME_NS_EXT_LBAS;
1933 
1934 		/*
1935 		 * The current fabrics transport drivers support namespace
1936 		 * metadata formats only if nvme_ns_has_pi() returns true.
1937 		 * Suppress support for all other formats so the namespace will
1938 		 * have a 0 capacity and not be usable through the block stack.
1939 		 *
1940 		 * Note, this check will need to be modified if any drivers
1941 		 * gain the ability to use other metadata formats.
1942 		 */
1943 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1944 			head->features |= NVME_NS_METADATA_SUPPORTED;
1945 	} else {
1946 		/*
1947 		 * For PCIe controllers, we can't easily remap the separate
1948 		 * metadata buffer from the block layer and thus require a
1949 		 * separate metadata buffer for block layer metadata/PI support.
1950 		 * We allow extended LBAs for the passthrough interface, though.
1951 		 */
1952 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1953 			head->features |= NVME_NS_EXT_LBAS;
1954 		else
1955 			head->features |= NVME_NS_METADATA_SUPPORTED;
1956 	}
1957 }
1958 
1959 
1960 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1961 			struct nvme_id_ns *id, struct queue_limits *lim,
1962 			u32 bs, u32 atomic_bs)
1963 {
1964 	unsigned int boundary = 0;
1965 
1966 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1967 		if (le16_to_cpu(id->nabspf))
1968 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
1969 	}
1970 	lim->atomic_write_hw_max = atomic_bs;
1971 	lim->atomic_write_hw_boundary = boundary;
1972 	lim->atomic_write_hw_unit_min = bs;
1973 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
1974 }
1975 
1976 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1977 {
1978 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1979 }
1980 
1981 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1982 		struct queue_limits *lim)
1983 {
1984 	lim->max_hw_sectors = ctrl->max_hw_sectors;
1985 	lim->max_segments = min_t(u32, USHRT_MAX,
1986 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1987 	lim->max_integrity_segments = ctrl->max_integrity_segments;
1988 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1989 	lim->max_segment_size = UINT_MAX;
1990 	lim->dma_alignment = 3;
1991 }
1992 
1993 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1994 		struct queue_limits *lim)
1995 {
1996 	struct nvme_ns_head *head = ns->head;
1997 	u32 bs = 1U << head->lba_shift;
1998 	u32 atomic_bs, phys_bs, io_opt = 0;
1999 	bool valid = true;
2000 
2001 	/*
2002 	 * The block layer can't support LBA sizes larger than the page size
2003 	 * or smaller than a sector size yet, so catch this early and don't
2004 	 * allow block I/O.
2005 	 */
2006 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
2007 		bs = (1 << 9);
2008 		valid = false;
2009 	}
2010 
2011 	atomic_bs = phys_bs = bs;
2012 	if (id->nabo == 0) {
2013 		/*
2014 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2015 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2016 		 * 0 then AWUPF must be used instead.
2017 		 */
2018 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2019 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2020 		else
2021 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2022 
2023 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2024 	}
2025 
2026 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2027 		/* NPWG = Namespace Preferred Write Granularity */
2028 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2029 		/* NOWS = Namespace Optimal Write Size */
2030 		if (id->nows)
2031 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2032 	}
2033 
2034 	/*
2035 	 * Linux filesystems assume writing a single physical block is
2036 	 * an atomic operation. Hence limit the physical block size to the
2037 	 * value of the Atomic Write Unit Power Fail parameter.
2038 	 */
2039 	lim->logical_block_size = bs;
2040 	lim->physical_block_size = min(phys_bs, atomic_bs);
2041 	lim->io_min = phys_bs;
2042 	lim->io_opt = io_opt;
2043 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2044 		lim->max_write_zeroes_sectors = UINT_MAX;
2045 	else
2046 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2047 	return valid;
2048 }
2049 
2050 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2051 {
2052 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2053 }
2054 
2055 static inline bool nvme_first_scan(struct gendisk *disk)
2056 {
2057 	/* nvme_alloc_ns() scans the disk prior to adding it */
2058 	return !disk_live(disk);
2059 }
2060 
2061 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2062 		struct queue_limits *lim)
2063 {
2064 	struct nvme_ctrl *ctrl = ns->ctrl;
2065 	u32 iob;
2066 
2067 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2068 	    is_power_of_2(ctrl->max_hw_sectors))
2069 		iob = ctrl->max_hw_sectors;
2070 	else
2071 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2072 
2073 	if (!iob)
2074 		return;
2075 
2076 	if (!is_power_of_2(iob)) {
2077 		if (nvme_first_scan(ns->disk))
2078 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2079 				ns->disk->disk_name, iob);
2080 		return;
2081 	}
2082 
2083 	if (blk_queue_is_zoned(ns->disk->queue)) {
2084 		if (nvme_first_scan(ns->disk))
2085 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2086 				ns->disk->disk_name);
2087 		return;
2088 	}
2089 
2090 	lim->chunk_sectors = iob;
2091 }
2092 
2093 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2094 		struct nvme_ns_info *info)
2095 {
2096 	struct queue_limits lim;
2097 	int ret;
2098 
2099 	blk_mq_freeze_queue(ns->disk->queue);
2100 	lim = queue_limits_start_update(ns->disk->queue);
2101 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2102 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2103 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2104 	blk_mq_unfreeze_queue(ns->disk->queue);
2105 
2106 	/* Hide the block-interface for these devices */
2107 	if (!ret)
2108 		ret = -ENODEV;
2109 	return ret;
2110 }
2111 
2112 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2113 		struct nvme_ns_info *info)
2114 {
2115 	struct queue_limits lim;
2116 	struct nvme_id_ns_nvm *nvm = NULL;
2117 	struct nvme_zone_info zi = {};
2118 	struct nvme_id_ns *id;
2119 	sector_t capacity;
2120 	unsigned lbaf;
2121 	int ret;
2122 
2123 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2124 	if (ret)
2125 		return ret;
2126 
2127 	if (id->ncap == 0) {
2128 		/* namespace not allocated or attached */
2129 		info->is_removed = true;
2130 		ret = -ENXIO;
2131 		goto out;
2132 	}
2133 	lbaf = nvme_lbaf_index(id->flbas);
2134 
2135 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2136 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2137 		if (ret < 0)
2138 			goto out;
2139 	}
2140 
2141 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2142 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2143 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2144 		if (ret < 0)
2145 			goto out;
2146 	}
2147 
2148 	blk_mq_freeze_queue(ns->disk->queue);
2149 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2150 	ns->head->nuse = le64_to_cpu(id->nuse);
2151 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2152 
2153 	lim = queue_limits_start_update(ns->disk->queue);
2154 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2155 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2156 	nvme_set_chunk_sectors(ns, id, &lim);
2157 	if (!nvme_update_disk_info(ns, id, &lim))
2158 		capacity = 0;
2159 	nvme_config_discard(ns, &lim);
2160 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2161 	    ns->head->ids.csi == NVME_CSI_ZNS)
2162 		nvme_update_zone_info(ns, &lim, &zi);
2163 
2164 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2165 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2166 	else
2167 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2168 
2169 	if (info->is_rotational)
2170 		lim.features |= BLK_FEAT_ROTATIONAL;
2171 
2172 	/*
2173 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2174 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2175 	 * I/O to namespaces with metadata except when the namespace supports
2176 	 * PI, as it can strip/insert in that case.
2177 	 */
2178 	if (!nvme_init_integrity(ns->head, &lim, info))
2179 		capacity = 0;
2180 
2181 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2182 	if (ret) {
2183 		blk_mq_unfreeze_queue(ns->disk->queue);
2184 		goto out;
2185 	}
2186 
2187 	set_capacity_and_notify(ns->disk, capacity);
2188 
2189 	/*
2190 	 * Only set the DEAC bit if the device guarantees that reads from
2191 	 * deallocated data return zeroes.  While the DEAC bit does not
2192 	 * require that, it must be a no-op if reads from deallocated data
2193 	 * do not return zeroes.
2194 	 */
2195 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2196 		ns->head->features |= NVME_NS_DEAC;
2197 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2198 	set_bit(NVME_NS_READY, &ns->flags);
2199 	blk_mq_unfreeze_queue(ns->disk->queue);
2200 
2201 	if (blk_queue_is_zoned(ns->queue)) {
2202 		ret = blk_revalidate_disk_zones(ns->disk);
2203 		if (ret && !nvme_first_scan(ns->disk))
2204 			goto out;
2205 	}
2206 
2207 	ret = 0;
2208 out:
2209 	kfree(nvm);
2210 	kfree(id);
2211 	return ret;
2212 }
2213 
2214 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2215 {
2216 	bool unsupported = false;
2217 	int ret;
2218 
2219 	switch (info->ids.csi) {
2220 	case NVME_CSI_ZNS:
2221 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2222 			dev_info(ns->ctrl->device,
2223 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2224 				info->nsid);
2225 			ret = nvme_update_ns_info_generic(ns, info);
2226 			break;
2227 		}
2228 		ret = nvme_update_ns_info_block(ns, info);
2229 		break;
2230 	case NVME_CSI_NVM:
2231 		ret = nvme_update_ns_info_block(ns, info);
2232 		break;
2233 	default:
2234 		dev_info(ns->ctrl->device,
2235 			"block device for nsid %u not supported (csi %u)\n",
2236 			info->nsid, info->ids.csi);
2237 		ret = nvme_update_ns_info_generic(ns, info);
2238 		break;
2239 	}
2240 
2241 	/*
2242 	 * If probing fails due an unsupported feature, hide the block device,
2243 	 * but still allow other access.
2244 	 */
2245 	if (ret == -ENODEV) {
2246 		ns->disk->flags |= GENHD_FL_HIDDEN;
2247 		set_bit(NVME_NS_READY, &ns->flags);
2248 		unsupported = true;
2249 		ret = 0;
2250 	}
2251 
2252 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2253 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2254 		struct queue_limits lim;
2255 
2256 		blk_mq_freeze_queue(ns->head->disk->queue);
2257 		/*
2258 		 * queue_limits mixes values that are the hardware limitations
2259 		 * for bio splitting with what is the device configuration.
2260 		 *
2261 		 * For NVMe the device configuration can change after e.g. a
2262 		 * Format command, and we really want to pick up the new format
2263 		 * value here.  But we must still stack the queue limits to the
2264 		 * least common denominator for multipathing to split the bios
2265 		 * properly.
2266 		 *
2267 		 * To work around this, we explicitly set the device
2268 		 * configuration to those that we just queried, but only stack
2269 		 * the splitting limits in to make sure we still obey possibly
2270 		 * lower limitations of other controllers.
2271 		 */
2272 		lim = queue_limits_start_update(ns->head->disk->queue);
2273 		lim.logical_block_size = ns_lim->logical_block_size;
2274 		lim.physical_block_size = ns_lim->physical_block_size;
2275 		lim.io_min = ns_lim->io_min;
2276 		lim.io_opt = ns_lim->io_opt;
2277 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2278 					ns->head->disk->disk_name);
2279 		if (unsupported)
2280 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2281 		else
2282 			nvme_init_integrity(ns->head, &lim, info);
2283 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2284 
2285 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2286 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2287 		nvme_mpath_revalidate_paths(ns);
2288 
2289 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2290 	}
2291 
2292 	return ret;
2293 }
2294 
2295 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2296 		enum blk_unique_id type)
2297 {
2298 	struct nvme_ns_ids *ids = &ns->head->ids;
2299 
2300 	if (type != BLK_UID_EUI64)
2301 		return -EINVAL;
2302 
2303 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2304 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2305 		return sizeof(ids->nguid);
2306 	}
2307 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2308 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2309 		return sizeof(ids->eui64);
2310 	}
2311 
2312 	return -EINVAL;
2313 }
2314 
2315 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2316 		enum blk_unique_id type)
2317 {
2318 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2319 }
2320 
2321 #ifdef CONFIG_BLK_SED_OPAL
2322 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2323 		bool send)
2324 {
2325 	struct nvme_ctrl *ctrl = data;
2326 	struct nvme_command cmd = { };
2327 
2328 	if (send)
2329 		cmd.common.opcode = nvme_admin_security_send;
2330 	else
2331 		cmd.common.opcode = nvme_admin_security_recv;
2332 	cmd.common.nsid = 0;
2333 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2334 	cmd.common.cdw11 = cpu_to_le32(len);
2335 
2336 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2337 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2338 }
2339 
2340 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2341 {
2342 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2343 		if (!ctrl->opal_dev)
2344 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2345 		else if (was_suspended)
2346 			opal_unlock_from_suspend(ctrl->opal_dev);
2347 	} else {
2348 		free_opal_dev(ctrl->opal_dev);
2349 		ctrl->opal_dev = NULL;
2350 	}
2351 }
2352 #else
2353 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2354 {
2355 }
2356 #endif /* CONFIG_BLK_SED_OPAL */
2357 
2358 #ifdef CONFIG_BLK_DEV_ZONED
2359 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2360 		unsigned int nr_zones, report_zones_cb cb, void *data)
2361 {
2362 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2363 			data);
2364 }
2365 #else
2366 #define nvme_report_zones	NULL
2367 #endif /* CONFIG_BLK_DEV_ZONED */
2368 
2369 const struct block_device_operations nvme_bdev_ops = {
2370 	.owner		= THIS_MODULE,
2371 	.ioctl		= nvme_ioctl,
2372 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2373 	.open		= nvme_open,
2374 	.release	= nvme_release,
2375 	.getgeo		= nvme_getgeo,
2376 	.get_unique_id	= nvme_get_unique_id,
2377 	.report_zones	= nvme_report_zones,
2378 	.pr_ops		= &nvme_pr_ops,
2379 };
2380 
2381 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2382 		u32 timeout, const char *op)
2383 {
2384 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2385 	u32 csts;
2386 	int ret;
2387 
2388 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2389 		if (csts == ~0)
2390 			return -ENODEV;
2391 		if ((csts & mask) == val)
2392 			break;
2393 
2394 		usleep_range(1000, 2000);
2395 		if (fatal_signal_pending(current))
2396 			return -EINTR;
2397 		if (time_after(jiffies, timeout_jiffies)) {
2398 			dev_err(ctrl->device,
2399 				"Device not ready; aborting %s, CSTS=0x%x\n",
2400 				op, csts);
2401 			return -ENODEV;
2402 		}
2403 	}
2404 
2405 	return ret;
2406 }
2407 
2408 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2409 {
2410 	int ret;
2411 
2412 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2413 	if (shutdown)
2414 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2415 	else
2416 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2417 
2418 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2419 	if (ret)
2420 		return ret;
2421 
2422 	if (shutdown) {
2423 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2424 				       NVME_CSTS_SHST_CMPLT,
2425 				       ctrl->shutdown_timeout, "shutdown");
2426 	}
2427 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2428 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2429 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2430 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2431 }
2432 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2433 
2434 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2435 {
2436 	unsigned dev_page_min;
2437 	u32 timeout;
2438 	int ret;
2439 
2440 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2441 	if (ret) {
2442 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2443 		return ret;
2444 	}
2445 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2446 
2447 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2448 		dev_err(ctrl->device,
2449 			"Minimum device page size %u too large for host (%u)\n",
2450 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2451 		return -ENODEV;
2452 	}
2453 
2454 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2455 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2456 	else
2457 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2458 
2459 	/*
2460 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2461 	 * makes it possible for media related commands to return the error
2462 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2463 	 * restructured to handle retries, disable CC.CRIME.
2464 	 */
2465 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2466 
2467 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2468 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2469 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2470 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2471 	if (ret)
2472 		return ret;
2473 
2474 	/* CAP value may change after initial CC write */
2475 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2476 	if (ret)
2477 		return ret;
2478 
2479 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2480 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2481 		u32 crto, ready_timeout;
2482 
2483 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2484 		if (ret) {
2485 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2486 				ret);
2487 			return ret;
2488 		}
2489 
2490 		/*
2491 		 * CRTO should always be greater or equal to CAP.TO, but some
2492 		 * devices are known to get this wrong. Use the larger of the
2493 		 * two values.
2494 		 */
2495 		ready_timeout = NVME_CRTO_CRWMT(crto);
2496 
2497 		if (ready_timeout < timeout)
2498 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2499 				      crto, ctrl->cap);
2500 		else
2501 			timeout = ready_timeout;
2502 	}
2503 
2504 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2505 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2506 	if (ret)
2507 		return ret;
2508 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2509 			       (timeout + 1) / 2, "initialisation");
2510 }
2511 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2512 
2513 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2514 {
2515 	__le64 ts;
2516 	int ret;
2517 
2518 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2519 		return 0;
2520 
2521 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2522 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2523 			NULL);
2524 	if (ret)
2525 		dev_warn_once(ctrl->device,
2526 			"could not set timestamp (%d)\n", ret);
2527 	return ret;
2528 }
2529 
2530 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2531 {
2532 	struct nvme_feat_host_behavior *host;
2533 	u8 acre = 0, lbafee = 0;
2534 	int ret;
2535 
2536 	/* Don't bother enabling the feature if retry delay is not reported */
2537 	if (ctrl->crdt[0])
2538 		acre = NVME_ENABLE_ACRE;
2539 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2540 		lbafee = NVME_ENABLE_LBAFEE;
2541 
2542 	if (!acre && !lbafee)
2543 		return 0;
2544 
2545 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2546 	if (!host)
2547 		return 0;
2548 
2549 	host->acre = acre;
2550 	host->lbafee = lbafee;
2551 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2552 				host, sizeof(*host), NULL);
2553 	kfree(host);
2554 	return ret;
2555 }
2556 
2557 /*
2558  * The function checks whether the given total (exlat + enlat) latency of
2559  * a power state allows the latter to be used as an APST transition target.
2560  * It does so by comparing the latency to the primary and secondary latency
2561  * tolerances defined by module params. If there's a match, the corresponding
2562  * timeout value is returned and the matching tolerance index (1 or 2) is
2563  * reported.
2564  */
2565 static bool nvme_apst_get_transition_time(u64 total_latency,
2566 		u64 *transition_time, unsigned *last_index)
2567 {
2568 	if (total_latency <= apst_primary_latency_tol_us) {
2569 		if (*last_index == 1)
2570 			return false;
2571 		*last_index = 1;
2572 		*transition_time = apst_primary_timeout_ms;
2573 		return true;
2574 	}
2575 	if (apst_secondary_timeout_ms &&
2576 		total_latency <= apst_secondary_latency_tol_us) {
2577 		if (*last_index <= 2)
2578 			return false;
2579 		*last_index = 2;
2580 		*transition_time = apst_secondary_timeout_ms;
2581 		return true;
2582 	}
2583 	return false;
2584 }
2585 
2586 /*
2587  * APST (Autonomous Power State Transition) lets us program a table of power
2588  * state transitions that the controller will perform automatically.
2589  *
2590  * Depending on module params, one of the two supported techniques will be used:
2591  *
2592  * - If the parameters provide explicit timeouts and tolerances, they will be
2593  *   used to build a table with up to 2 non-operational states to transition to.
2594  *   The default parameter values were selected based on the values used by
2595  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2596  *   regeneration of the APST table in the event of switching between external
2597  *   and battery power, the timeouts and tolerances reflect a compromise
2598  *   between values used by Microsoft for AC and battery scenarios.
2599  * - If not, we'll configure the table with a simple heuristic: we are willing
2600  *   to spend at most 2% of the time transitioning between power states.
2601  *   Therefore, when running in any given state, we will enter the next
2602  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2603  *   microseconds, as long as that state's exit latency is under the requested
2604  *   maximum latency.
2605  *
2606  * We will not autonomously enter any non-operational state for which the total
2607  * latency exceeds ps_max_latency_us.
2608  *
2609  * Users can set ps_max_latency_us to zero to turn off APST.
2610  */
2611 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2612 {
2613 	struct nvme_feat_auto_pst *table;
2614 	unsigned apste = 0;
2615 	u64 max_lat_us = 0;
2616 	__le64 target = 0;
2617 	int max_ps = -1;
2618 	int state;
2619 	int ret;
2620 	unsigned last_lt_index = UINT_MAX;
2621 
2622 	/*
2623 	 * If APST isn't supported or if we haven't been initialized yet,
2624 	 * then don't do anything.
2625 	 */
2626 	if (!ctrl->apsta)
2627 		return 0;
2628 
2629 	if (ctrl->npss > 31) {
2630 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2631 		return 0;
2632 	}
2633 
2634 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2635 	if (!table)
2636 		return 0;
2637 
2638 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2639 		/* Turn off APST. */
2640 		dev_dbg(ctrl->device, "APST disabled\n");
2641 		goto done;
2642 	}
2643 
2644 	/*
2645 	 * Walk through all states from lowest- to highest-power.
2646 	 * According to the spec, lower-numbered states use more power.  NPSS,
2647 	 * despite the name, is the index of the lowest-power state, not the
2648 	 * number of states.
2649 	 */
2650 	for (state = (int)ctrl->npss; state >= 0; state--) {
2651 		u64 total_latency_us, exit_latency_us, transition_ms;
2652 
2653 		if (target)
2654 			table->entries[state] = target;
2655 
2656 		/*
2657 		 * Don't allow transitions to the deepest state if it's quirked
2658 		 * off.
2659 		 */
2660 		if (state == ctrl->npss &&
2661 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2662 			continue;
2663 
2664 		/*
2665 		 * Is this state a useful non-operational state for higher-power
2666 		 * states to autonomously transition to?
2667 		 */
2668 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2669 			continue;
2670 
2671 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2672 		if (exit_latency_us > ctrl->ps_max_latency_us)
2673 			continue;
2674 
2675 		total_latency_us = exit_latency_us +
2676 			le32_to_cpu(ctrl->psd[state].entry_lat);
2677 
2678 		/*
2679 		 * This state is good. It can be used as the APST idle target
2680 		 * for higher power states.
2681 		 */
2682 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2683 			if (!nvme_apst_get_transition_time(total_latency_us,
2684 					&transition_ms, &last_lt_index))
2685 				continue;
2686 		} else {
2687 			transition_ms = total_latency_us + 19;
2688 			do_div(transition_ms, 20);
2689 			if (transition_ms > (1 << 24) - 1)
2690 				transition_ms = (1 << 24) - 1;
2691 		}
2692 
2693 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2694 		if (max_ps == -1)
2695 			max_ps = state;
2696 		if (total_latency_us > max_lat_us)
2697 			max_lat_us = total_latency_us;
2698 	}
2699 
2700 	if (max_ps == -1)
2701 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2702 	else
2703 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2704 			max_ps, max_lat_us, (int)sizeof(*table), table);
2705 	apste = 1;
2706 
2707 done:
2708 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2709 				table, sizeof(*table), NULL);
2710 	if (ret)
2711 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2712 	kfree(table);
2713 	return ret;
2714 }
2715 
2716 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2717 {
2718 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2719 	u64 latency;
2720 
2721 	switch (val) {
2722 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2723 	case PM_QOS_LATENCY_ANY:
2724 		latency = U64_MAX;
2725 		break;
2726 
2727 	default:
2728 		latency = val;
2729 	}
2730 
2731 	if (ctrl->ps_max_latency_us != latency) {
2732 		ctrl->ps_max_latency_us = latency;
2733 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2734 			nvme_configure_apst(ctrl);
2735 	}
2736 }
2737 
2738 struct nvme_core_quirk_entry {
2739 	/*
2740 	 * NVMe model and firmware strings are padded with spaces.  For
2741 	 * simplicity, strings in the quirk table are padded with NULLs
2742 	 * instead.
2743 	 */
2744 	u16 vid;
2745 	const char *mn;
2746 	const char *fr;
2747 	unsigned long quirks;
2748 };
2749 
2750 static const struct nvme_core_quirk_entry core_quirks[] = {
2751 	{
2752 		/*
2753 		 * This Toshiba device seems to die using any APST states.  See:
2754 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2755 		 */
2756 		.vid = 0x1179,
2757 		.mn = "THNSF5256GPUK TOSHIBA",
2758 		.quirks = NVME_QUIRK_NO_APST,
2759 	},
2760 	{
2761 		/*
2762 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2763 		 * condition associated with actions related to suspend to idle
2764 		 * LiteON has resolved the problem in future firmware
2765 		 */
2766 		.vid = 0x14a4,
2767 		.fr = "22301111",
2768 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2769 	},
2770 	{
2771 		/*
2772 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2773 		 * aborts I/O during any load, but more easily reproducible
2774 		 * with discards (fstrim).
2775 		 *
2776 		 * The device is left in a state where it is also not possible
2777 		 * to use "nvme set-feature" to disable APST, but booting with
2778 		 * nvme_core.default_ps_max_latency=0 works.
2779 		 */
2780 		.vid = 0x1e0f,
2781 		.mn = "KCD6XVUL6T40",
2782 		.quirks = NVME_QUIRK_NO_APST,
2783 	},
2784 	{
2785 		/*
2786 		 * The external Samsung X5 SSD fails initialization without a
2787 		 * delay before checking if it is ready and has a whole set of
2788 		 * other problems.  To make this even more interesting, it
2789 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2790 		 * does not need or want these quirks.
2791 		 */
2792 		.vid = 0x144d,
2793 		.mn = "Samsung Portable SSD X5",
2794 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2795 			  NVME_QUIRK_NO_DEEPEST_PS |
2796 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2797 	}
2798 };
2799 
2800 /* match is null-terminated but idstr is space-padded. */
2801 static bool string_matches(const char *idstr, const char *match, size_t len)
2802 {
2803 	size_t matchlen;
2804 
2805 	if (!match)
2806 		return true;
2807 
2808 	matchlen = strlen(match);
2809 	WARN_ON_ONCE(matchlen > len);
2810 
2811 	if (memcmp(idstr, match, matchlen))
2812 		return false;
2813 
2814 	for (; matchlen < len; matchlen++)
2815 		if (idstr[matchlen] != ' ')
2816 			return false;
2817 
2818 	return true;
2819 }
2820 
2821 static bool quirk_matches(const struct nvme_id_ctrl *id,
2822 			  const struct nvme_core_quirk_entry *q)
2823 {
2824 	return q->vid == le16_to_cpu(id->vid) &&
2825 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2826 		string_matches(id->fr, q->fr, sizeof(id->fr));
2827 }
2828 
2829 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2830 		struct nvme_id_ctrl *id)
2831 {
2832 	size_t nqnlen;
2833 	int off;
2834 
2835 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2836 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2837 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2838 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2839 			return;
2840 		}
2841 
2842 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2843 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2844 	}
2845 
2846 	/*
2847 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2848 	 * Base Specification 2.0.  It is slightly different from the format
2849 	 * specified there due to historic reasons, and we can't change it now.
2850 	 */
2851 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2852 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2853 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2854 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2855 	off += sizeof(id->sn);
2856 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2857 	off += sizeof(id->mn);
2858 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2859 }
2860 
2861 static void nvme_release_subsystem(struct device *dev)
2862 {
2863 	struct nvme_subsystem *subsys =
2864 		container_of(dev, struct nvme_subsystem, dev);
2865 
2866 	if (subsys->instance >= 0)
2867 		ida_free(&nvme_instance_ida, subsys->instance);
2868 	kfree(subsys);
2869 }
2870 
2871 static void nvme_destroy_subsystem(struct kref *ref)
2872 {
2873 	struct nvme_subsystem *subsys =
2874 			container_of(ref, struct nvme_subsystem, ref);
2875 
2876 	mutex_lock(&nvme_subsystems_lock);
2877 	list_del(&subsys->entry);
2878 	mutex_unlock(&nvme_subsystems_lock);
2879 
2880 	ida_destroy(&subsys->ns_ida);
2881 	device_del(&subsys->dev);
2882 	put_device(&subsys->dev);
2883 }
2884 
2885 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2886 {
2887 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2888 }
2889 
2890 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2891 {
2892 	struct nvme_subsystem *subsys;
2893 
2894 	lockdep_assert_held(&nvme_subsystems_lock);
2895 
2896 	/*
2897 	 * Fail matches for discovery subsystems. This results
2898 	 * in each discovery controller bound to a unique subsystem.
2899 	 * This avoids issues with validating controller values
2900 	 * that can only be true when there is a single unique subsystem.
2901 	 * There may be multiple and completely independent entities
2902 	 * that provide discovery controllers.
2903 	 */
2904 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2905 		return NULL;
2906 
2907 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2908 		if (strcmp(subsys->subnqn, subsysnqn))
2909 			continue;
2910 		if (!kref_get_unless_zero(&subsys->ref))
2911 			continue;
2912 		return subsys;
2913 	}
2914 
2915 	return NULL;
2916 }
2917 
2918 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2919 {
2920 	return ctrl->opts && ctrl->opts->discovery_nqn;
2921 }
2922 
2923 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2924 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2925 {
2926 	struct nvme_ctrl *tmp;
2927 
2928 	lockdep_assert_held(&nvme_subsystems_lock);
2929 
2930 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2931 		if (nvme_state_terminal(tmp))
2932 			continue;
2933 
2934 		if (tmp->cntlid == ctrl->cntlid) {
2935 			dev_err(ctrl->device,
2936 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2937 				ctrl->cntlid, dev_name(tmp->device),
2938 				subsys->subnqn);
2939 			return false;
2940 		}
2941 
2942 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2943 		    nvme_discovery_ctrl(ctrl))
2944 			continue;
2945 
2946 		dev_err(ctrl->device,
2947 			"Subsystem does not support multiple controllers\n");
2948 		return false;
2949 	}
2950 
2951 	return true;
2952 }
2953 
2954 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2955 {
2956 	struct nvme_subsystem *subsys, *found;
2957 	int ret;
2958 
2959 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2960 	if (!subsys)
2961 		return -ENOMEM;
2962 
2963 	subsys->instance = -1;
2964 	mutex_init(&subsys->lock);
2965 	kref_init(&subsys->ref);
2966 	INIT_LIST_HEAD(&subsys->ctrls);
2967 	INIT_LIST_HEAD(&subsys->nsheads);
2968 	nvme_init_subnqn(subsys, ctrl, id);
2969 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2970 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2971 	subsys->vendor_id = le16_to_cpu(id->vid);
2972 	subsys->cmic = id->cmic;
2973 
2974 	/* Versions prior to 1.4 don't necessarily report a valid type */
2975 	if (id->cntrltype == NVME_CTRL_DISC ||
2976 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2977 		subsys->subtype = NVME_NQN_DISC;
2978 	else
2979 		subsys->subtype = NVME_NQN_NVME;
2980 
2981 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2982 		dev_err(ctrl->device,
2983 			"Subsystem %s is not a discovery controller",
2984 			subsys->subnqn);
2985 		kfree(subsys);
2986 		return -EINVAL;
2987 	}
2988 	subsys->awupf = le16_to_cpu(id->awupf);
2989 	nvme_mpath_default_iopolicy(subsys);
2990 
2991 	subsys->dev.class = &nvme_subsys_class;
2992 	subsys->dev.release = nvme_release_subsystem;
2993 	subsys->dev.groups = nvme_subsys_attrs_groups;
2994 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2995 	device_initialize(&subsys->dev);
2996 
2997 	mutex_lock(&nvme_subsystems_lock);
2998 	found = __nvme_find_get_subsystem(subsys->subnqn);
2999 	if (found) {
3000 		put_device(&subsys->dev);
3001 		subsys = found;
3002 
3003 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3004 			ret = -EINVAL;
3005 			goto out_put_subsystem;
3006 		}
3007 	} else {
3008 		ret = device_add(&subsys->dev);
3009 		if (ret) {
3010 			dev_err(ctrl->device,
3011 				"failed to register subsystem device.\n");
3012 			put_device(&subsys->dev);
3013 			goto out_unlock;
3014 		}
3015 		ida_init(&subsys->ns_ida);
3016 		list_add_tail(&subsys->entry, &nvme_subsystems);
3017 	}
3018 
3019 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3020 				dev_name(ctrl->device));
3021 	if (ret) {
3022 		dev_err(ctrl->device,
3023 			"failed to create sysfs link from subsystem.\n");
3024 		goto out_put_subsystem;
3025 	}
3026 
3027 	if (!found)
3028 		subsys->instance = ctrl->instance;
3029 	ctrl->subsys = subsys;
3030 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3031 	mutex_unlock(&nvme_subsystems_lock);
3032 	return 0;
3033 
3034 out_put_subsystem:
3035 	nvme_put_subsystem(subsys);
3036 out_unlock:
3037 	mutex_unlock(&nvme_subsystems_lock);
3038 	return ret;
3039 }
3040 
3041 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3042 		void *log, size_t size, u64 offset)
3043 {
3044 	struct nvme_command c = { };
3045 	u32 dwlen = nvme_bytes_to_numd(size);
3046 
3047 	c.get_log_page.opcode = nvme_admin_get_log_page;
3048 	c.get_log_page.nsid = cpu_to_le32(nsid);
3049 	c.get_log_page.lid = log_page;
3050 	c.get_log_page.lsp = lsp;
3051 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3052 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3053 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3054 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3055 	c.get_log_page.csi = csi;
3056 
3057 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3058 }
3059 
3060 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3061 				struct nvme_effects_log **log)
3062 {
3063 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3064 	int ret;
3065 
3066 	if (cel)
3067 		goto out;
3068 
3069 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3070 	if (!cel)
3071 		return -ENOMEM;
3072 
3073 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3074 			cel, sizeof(*cel), 0);
3075 	if (ret) {
3076 		kfree(cel);
3077 		return ret;
3078 	}
3079 
3080 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3081 out:
3082 	*log = cel;
3083 	return 0;
3084 }
3085 
3086 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3087 {
3088 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3089 
3090 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3091 		return UINT_MAX;
3092 	return val;
3093 }
3094 
3095 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3096 {
3097 	struct nvme_command c = { };
3098 	struct nvme_id_ctrl_nvm *id;
3099 	int ret;
3100 
3101 	/*
3102 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3103 	 * to the write-zeroes, we are cautious and limit the size to the
3104 	 * controllers max_hw_sectors value, which is based on the MDTS field
3105 	 * and possibly other limiting factors.
3106 	 */
3107 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3108 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3109 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3110 	else
3111 		ctrl->max_zeroes_sectors = 0;
3112 
3113 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3114 	    nvme_ctrl_limited_cns(ctrl) ||
3115 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3116 		return 0;
3117 
3118 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3119 	if (!id)
3120 		return -ENOMEM;
3121 
3122 	c.identify.opcode = nvme_admin_identify;
3123 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3124 	c.identify.csi = NVME_CSI_NVM;
3125 
3126 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3127 	if (ret)
3128 		goto free_data;
3129 
3130 	ctrl->dmrl = id->dmrl;
3131 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3132 	if (id->wzsl)
3133 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3134 
3135 free_data:
3136 	if (ret > 0)
3137 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3138 	kfree(id);
3139 	return ret;
3140 }
3141 
3142 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3143 {
3144 	struct nvme_effects_log	*log = ctrl->effects;
3145 
3146 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3147 						NVME_CMD_EFFECTS_NCC |
3148 						NVME_CMD_EFFECTS_CSE_MASK);
3149 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3150 						NVME_CMD_EFFECTS_CSE_MASK);
3151 
3152 	/*
3153 	 * The spec says the result of a security receive command depends on
3154 	 * the previous security send command. As such, many vendors log this
3155 	 * command as one to submitted only when no other commands to the same
3156 	 * namespace are outstanding. The intention is to tell the host to
3157 	 * prevent mixing security send and receive.
3158 	 *
3159 	 * This driver can only enforce such exclusive access against IO
3160 	 * queues, though. We are not readily able to enforce such a rule for
3161 	 * two commands to the admin queue, which is the only queue that
3162 	 * matters for this command.
3163 	 *
3164 	 * Rather than blindly freezing the IO queues for this effect that
3165 	 * doesn't even apply to IO, mask it off.
3166 	 */
3167 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3168 
3169 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3170 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3171 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3172 }
3173 
3174 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3175 {
3176 	int ret = 0;
3177 
3178 	if (ctrl->effects)
3179 		return 0;
3180 
3181 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3182 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3183 		if (ret < 0)
3184 			return ret;
3185 	}
3186 
3187 	if (!ctrl->effects) {
3188 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3189 		if (!ctrl->effects)
3190 			return -ENOMEM;
3191 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3192 	}
3193 
3194 	nvme_init_known_nvm_effects(ctrl);
3195 	return 0;
3196 }
3197 
3198 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3199 {
3200 	/*
3201 	 * In fabrics we need to verify the cntlid matches the
3202 	 * admin connect
3203 	 */
3204 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3205 		dev_err(ctrl->device,
3206 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3207 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3208 		return -EINVAL;
3209 	}
3210 
3211 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3212 		dev_err(ctrl->device,
3213 			"keep-alive support is mandatory for fabrics\n");
3214 		return -EINVAL;
3215 	}
3216 
3217 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3218 		dev_err(ctrl->device,
3219 			"I/O queue command capsule supported size %d < 4\n",
3220 			ctrl->ioccsz);
3221 		return -EINVAL;
3222 	}
3223 
3224 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3225 		dev_err(ctrl->device,
3226 			"I/O queue response capsule supported size %d < 1\n",
3227 			ctrl->iorcsz);
3228 		return -EINVAL;
3229 	}
3230 
3231 	if (!ctrl->maxcmd) {
3232 		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3233 		return -EINVAL;
3234 	}
3235 
3236 	return 0;
3237 }
3238 
3239 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3240 {
3241 	struct queue_limits lim;
3242 	struct nvme_id_ctrl *id;
3243 	u32 max_hw_sectors;
3244 	bool prev_apst_enabled;
3245 	int ret;
3246 
3247 	ret = nvme_identify_ctrl(ctrl, &id);
3248 	if (ret) {
3249 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3250 		return -EIO;
3251 	}
3252 
3253 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3254 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3255 
3256 	if (!ctrl->identified) {
3257 		unsigned int i;
3258 
3259 		/*
3260 		 * Check for quirks.  Quirk can depend on firmware version,
3261 		 * so, in principle, the set of quirks present can change
3262 		 * across a reset.  As a possible future enhancement, we
3263 		 * could re-scan for quirks every time we reinitialize
3264 		 * the device, but we'd have to make sure that the driver
3265 		 * behaves intelligently if the quirks change.
3266 		 */
3267 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3268 			if (quirk_matches(id, &core_quirks[i]))
3269 				ctrl->quirks |= core_quirks[i].quirks;
3270 		}
3271 
3272 		ret = nvme_init_subsystem(ctrl, id);
3273 		if (ret)
3274 			goto out_free;
3275 
3276 		ret = nvme_init_effects(ctrl, id);
3277 		if (ret)
3278 			goto out_free;
3279 	}
3280 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3281 	       sizeof(ctrl->subsys->firmware_rev));
3282 
3283 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3284 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3285 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3286 	}
3287 
3288 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3289 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3290 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3291 
3292 	ctrl->oacs = le16_to_cpu(id->oacs);
3293 	ctrl->oncs = le16_to_cpu(id->oncs);
3294 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3295 	ctrl->oaes = le32_to_cpu(id->oaes);
3296 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3297 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3298 
3299 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3300 	ctrl->vwc = id->vwc;
3301 	if (id->mdts)
3302 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3303 	else
3304 		max_hw_sectors = UINT_MAX;
3305 	ctrl->max_hw_sectors =
3306 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3307 
3308 	lim = queue_limits_start_update(ctrl->admin_q);
3309 	nvme_set_ctrl_limits(ctrl, &lim);
3310 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3311 	if (ret)
3312 		goto out_free;
3313 
3314 	ctrl->sgls = le32_to_cpu(id->sgls);
3315 	ctrl->kas = le16_to_cpu(id->kas);
3316 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3317 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3318 
3319 	ctrl->cntrltype = id->cntrltype;
3320 	ctrl->dctype = id->dctype;
3321 
3322 	if (id->rtd3e) {
3323 		/* us -> s */
3324 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3325 
3326 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3327 						 shutdown_timeout, 60);
3328 
3329 		if (ctrl->shutdown_timeout != shutdown_timeout)
3330 			dev_info(ctrl->device,
3331 				 "D3 entry latency set to %u seconds\n",
3332 				 ctrl->shutdown_timeout);
3333 	} else
3334 		ctrl->shutdown_timeout = shutdown_timeout;
3335 
3336 	ctrl->npss = id->npss;
3337 	ctrl->apsta = id->apsta;
3338 	prev_apst_enabled = ctrl->apst_enabled;
3339 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3340 		if (force_apst && id->apsta) {
3341 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3342 			ctrl->apst_enabled = true;
3343 		} else {
3344 			ctrl->apst_enabled = false;
3345 		}
3346 	} else {
3347 		ctrl->apst_enabled = id->apsta;
3348 	}
3349 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3350 
3351 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3352 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3353 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3354 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3355 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3356 
3357 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3358 		if (ret)
3359 			goto out_free;
3360 	} else {
3361 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3362 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3363 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3364 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3365 	}
3366 
3367 	ret = nvme_mpath_init_identify(ctrl, id);
3368 	if (ret < 0)
3369 		goto out_free;
3370 
3371 	if (ctrl->apst_enabled && !prev_apst_enabled)
3372 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3373 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3374 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3375 
3376 out_free:
3377 	kfree(id);
3378 	return ret;
3379 }
3380 
3381 /*
3382  * Initialize the cached copies of the Identify data and various controller
3383  * register in our nvme_ctrl structure.  This should be called as soon as
3384  * the admin queue is fully up and running.
3385  */
3386 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3387 {
3388 	int ret;
3389 
3390 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3391 	if (ret) {
3392 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3393 		return ret;
3394 	}
3395 
3396 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3397 
3398 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3399 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3400 
3401 	ret = nvme_init_identify(ctrl);
3402 	if (ret)
3403 		return ret;
3404 
3405 	ret = nvme_configure_apst(ctrl);
3406 	if (ret < 0)
3407 		return ret;
3408 
3409 	ret = nvme_configure_timestamp(ctrl);
3410 	if (ret < 0)
3411 		return ret;
3412 
3413 	ret = nvme_configure_host_options(ctrl);
3414 	if (ret < 0)
3415 		return ret;
3416 
3417 	nvme_configure_opal(ctrl, was_suspended);
3418 
3419 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3420 		/*
3421 		 * Do not return errors unless we are in a controller reset,
3422 		 * the controller works perfectly fine without hwmon.
3423 		 */
3424 		ret = nvme_hwmon_init(ctrl);
3425 		if (ret == -EINTR)
3426 			return ret;
3427 	}
3428 
3429 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3430 	ctrl->identified = true;
3431 
3432 	nvme_start_keep_alive(ctrl);
3433 
3434 	return 0;
3435 }
3436 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3437 
3438 static int nvme_dev_open(struct inode *inode, struct file *file)
3439 {
3440 	struct nvme_ctrl *ctrl =
3441 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3442 
3443 	switch (nvme_ctrl_state(ctrl)) {
3444 	case NVME_CTRL_LIVE:
3445 		break;
3446 	default:
3447 		return -EWOULDBLOCK;
3448 	}
3449 
3450 	nvme_get_ctrl(ctrl);
3451 	if (!try_module_get(ctrl->ops->module)) {
3452 		nvme_put_ctrl(ctrl);
3453 		return -EINVAL;
3454 	}
3455 
3456 	file->private_data = ctrl;
3457 	return 0;
3458 }
3459 
3460 static int nvme_dev_release(struct inode *inode, struct file *file)
3461 {
3462 	struct nvme_ctrl *ctrl =
3463 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3464 
3465 	module_put(ctrl->ops->module);
3466 	nvme_put_ctrl(ctrl);
3467 	return 0;
3468 }
3469 
3470 static const struct file_operations nvme_dev_fops = {
3471 	.owner		= THIS_MODULE,
3472 	.open		= nvme_dev_open,
3473 	.release	= nvme_dev_release,
3474 	.unlocked_ioctl	= nvme_dev_ioctl,
3475 	.compat_ioctl	= compat_ptr_ioctl,
3476 	.uring_cmd	= nvme_dev_uring_cmd,
3477 };
3478 
3479 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3480 		unsigned nsid)
3481 {
3482 	struct nvme_ns_head *h;
3483 
3484 	lockdep_assert_held(&ctrl->subsys->lock);
3485 
3486 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3487 		/*
3488 		 * Private namespaces can share NSIDs under some conditions.
3489 		 * In that case we can't use the same ns_head for namespaces
3490 		 * with the same NSID.
3491 		 */
3492 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3493 			continue;
3494 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3495 			return h;
3496 	}
3497 
3498 	return NULL;
3499 }
3500 
3501 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3502 		struct nvme_ns_ids *ids)
3503 {
3504 	bool has_uuid = !uuid_is_null(&ids->uuid);
3505 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3506 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3507 	struct nvme_ns_head *h;
3508 
3509 	lockdep_assert_held(&subsys->lock);
3510 
3511 	list_for_each_entry(h, &subsys->nsheads, entry) {
3512 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3513 			return -EINVAL;
3514 		if (has_nguid &&
3515 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3516 			return -EINVAL;
3517 		if (has_eui64 &&
3518 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3519 			return -EINVAL;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 static void nvme_cdev_rel(struct device *dev)
3526 {
3527 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3528 }
3529 
3530 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3531 {
3532 	cdev_device_del(cdev, cdev_device);
3533 	put_device(cdev_device);
3534 }
3535 
3536 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3537 		const struct file_operations *fops, struct module *owner)
3538 {
3539 	int minor, ret;
3540 
3541 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3542 	if (minor < 0)
3543 		return minor;
3544 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3545 	cdev_device->class = &nvme_ns_chr_class;
3546 	cdev_device->release = nvme_cdev_rel;
3547 	device_initialize(cdev_device);
3548 	cdev_init(cdev, fops);
3549 	cdev->owner = owner;
3550 	ret = cdev_device_add(cdev, cdev_device);
3551 	if (ret)
3552 		put_device(cdev_device);
3553 
3554 	return ret;
3555 }
3556 
3557 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3558 {
3559 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3560 }
3561 
3562 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3563 {
3564 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3565 	return 0;
3566 }
3567 
3568 static const struct file_operations nvme_ns_chr_fops = {
3569 	.owner		= THIS_MODULE,
3570 	.open		= nvme_ns_chr_open,
3571 	.release	= nvme_ns_chr_release,
3572 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3573 	.compat_ioctl	= compat_ptr_ioctl,
3574 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3575 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3576 };
3577 
3578 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3579 {
3580 	int ret;
3581 
3582 	ns->cdev_device.parent = ns->ctrl->device;
3583 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3584 			   ns->ctrl->instance, ns->head->instance);
3585 	if (ret)
3586 		return ret;
3587 
3588 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3589 			     ns->ctrl->ops->module);
3590 }
3591 
3592 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3593 		struct nvme_ns_info *info)
3594 {
3595 	struct nvme_ns_head *head;
3596 	size_t size = sizeof(*head);
3597 	int ret = -ENOMEM;
3598 
3599 #ifdef CONFIG_NVME_MULTIPATH
3600 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3601 #endif
3602 
3603 	head = kzalloc(size, GFP_KERNEL);
3604 	if (!head)
3605 		goto out;
3606 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3607 	if (ret < 0)
3608 		goto out_free_head;
3609 	head->instance = ret;
3610 	INIT_LIST_HEAD(&head->list);
3611 	ret = init_srcu_struct(&head->srcu);
3612 	if (ret)
3613 		goto out_ida_remove;
3614 	head->subsys = ctrl->subsys;
3615 	head->ns_id = info->nsid;
3616 	head->ids = info->ids;
3617 	head->shared = info->is_shared;
3618 	head->rotational = info->is_rotational;
3619 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3620 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3621 	kref_init(&head->ref);
3622 
3623 	if (head->ids.csi) {
3624 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3625 		if (ret)
3626 			goto out_cleanup_srcu;
3627 	} else
3628 		head->effects = ctrl->effects;
3629 
3630 	ret = nvme_mpath_alloc_disk(ctrl, head);
3631 	if (ret)
3632 		goto out_cleanup_srcu;
3633 
3634 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3635 
3636 	kref_get(&ctrl->subsys->ref);
3637 
3638 	return head;
3639 out_cleanup_srcu:
3640 	cleanup_srcu_struct(&head->srcu);
3641 out_ida_remove:
3642 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3643 out_free_head:
3644 	kfree(head);
3645 out:
3646 	if (ret > 0)
3647 		ret = blk_status_to_errno(nvme_error_status(ret));
3648 	return ERR_PTR(ret);
3649 }
3650 
3651 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3652 		struct nvme_ns_ids *ids)
3653 {
3654 	struct nvme_subsystem *s;
3655 	int ret = 0;
3656 
3657 	/*
3658 	 * Note that this check is racy as we try to avoid holding the global
3659 	 * lock over the whole ns_head creation.  But it is only intended as
3660 	 * a sanity check anyway.
3661 	 */
3662 	mutex_lock(&nvme_subsystems_lock);
3663 	list_for_each_entry(s, &nvme_subsystems, entry) {
3664 		if (s == this)
3665 			continue;
3666 		mutex_lock(&s->lock);
3667 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3668 		mutex_unlock(&s->lock);
3669 		if (ret)
3670 			break;
3671 	}
3672 	mutex_unlock(&nvme_subsystems_lock);
3673 
3674 	return ret;
3675 }
3676 
3677 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3678 {
3679 	struct nvme_ctrl *ctrl = ns->ctrl;
3680 	struct nvme_ns_head *head = NULL;
3681 	int ret;
3682 
3683 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3684 	if (ret) {
3685 		/*
3686 		 * We've found two different namespaces on two different
3687 		 * subsystems that report the same ID.  This is pretty nasty
3688 		 * for anything that actually requires unique device
3689 		 * identification.  In the kernel we need this for multipathing,
3690 		 * and in user space the /dev/disk/by-id/ links rely on it.
3691 		 *
3692 		 * If the device also claims to be multi-path capable back off
3693 		 * here now and refuse the probe the second device as this is a
3694 		 * recipe for data corruption.  If not this is probably a
3695 		 * cheap consumer device if on the PCIe bus, so let the user
3696 		 * proceed and use the shiny toy, but warn that with changing
3697 		 * probing order (which due to our async probing could just be
3698 		 * device taking longer to startup) the other device could show
3699 		 * up at any time.
3700 		 */
3701 		nvme_print_device_info(ctrl);
3702 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3703 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3704 		     info->is_shared)) {
3705 			dev_err(ctrl->device,
3706 				"ignoring nsid %d because of duplicate IDs\n",
3707 				info->nsid);
3708 			return ret;
3709 		}
3710 
3711 		dev_err(ctrl->device,
3712 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3713 		dev_err(ctrl->device,
3714 			"use of /dev/disk/by-id/ may cause data corruption\n");
3715 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3716 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3717 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3718 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3719 	}
3720 
3721 	mutex_lock(&ctrl->subsys->lock);
3722 	head = nvme_find_ns_head(ctrl, info->nsid);
3723 	if (!head) {
3724 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3725 		if (ret) {
3726 			dev_err(ctrl->device,
3727 				"duplicate IDs in subsystem for nsid %d\n",
3728 				info->nsid);
3729 			goto out_unlock;
3730 		}
3731 		head = nvme_alloc_ns_head(ctrl, info);
3732 		if (IS_ERR(head)) {
3733 			ret = PTR_ERR(head);
3734 			goto out_unlock;
3735 		}
3736 	} else {
3737 		ret = -EINVAL;
3738 		if (!info->is_shared || !head->shared) {
3739 			dev_err(ctrl->device,
3740 				"Duplicate unshared namespace %d\n",
3741 				info->nsid);
3742 			goto out_put_ns_head;
3743 		}
3744 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3745 			dev_err(ctrl->device,
3746 				"IDs don't match for shared namespace %d\n",
3747 					info->nsid);
3748 			goto out_put_ns_head;
3749 		}
3750 
3751 		if (!multipath) {
3752 			dev_warn(ctrl->device,
3753 				"Found shared namespace %d, but multipathing not supported.\n",
3754 				info->nsid);
3755 			dev_warn_once(ctrl->device,
3756 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3757 		}
3758 	}
3759 
3760 	list_add_tail_rcu(&ns->siblings, &head->list);
3761 	ns->head = head;
3762 	mutex_unlock(&ctrl->subsys->lock);
3763 	return 0;
3764 
3765 out_put_ns_head:
3766 	nvme_put_ns_head(head);
3767 out_unlock:
3768 	mutex_unlock(&ctrl->subsys->lock);
3769 	return ret;
3770 }
3771 
3772 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3773 {
3774 	struct nvme_ns *ns, *ret = NULL;
3775 	int srcu_idx;
3776 
3777 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3778 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
3779 		if (ns->head->ns_id == nsid) {
3780 			if (!nvme_get_ns(ns))
3781 				continue;
3782 			ret = ns;
3783 			break;
3784 		}
3785 		if (ns->head->ns_id > nsid)
3786 			break;
3787 	}
3788 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3789 	return ret;
3790 }
3791 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3792 
3793 /*
3794  * Add the namespace to the controller list while keeping the list ordered.
3795  */
3796 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3797 {
3798 	struct nvme_ns *tmp;
3799 
3800 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3801 		if (tmp->head->ns_id < ns->head->ns_id) {
3802 			list_add_rcu(&ns->list, &tmp->list);
3803 			return;
3804 		}
3805 	}
3806 	list_add(&ns->list, &ns->ctrl->namespaces);
3807 }
3808 
3809 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3810 {
3811 	struct queue_limits lim = { };
3812 	struct nvme_ns *ns;
3813 	struct gendisk *disk;
3814 	int node = ctrl->numa_node;
3815 
3816 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3817 	if (!ns)
3818 		return;
3819 
3820 	if (ctrl->opts && ctrl->opts->data_digest)
3821 		lim.features |= BLK_FEAT_STABLE_WRITES;
3822 	if (ctrl->ops->supports_pci_p2pdma &&
3823 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3824 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3825 
3826 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3827 	if (IS_ERR(disk))
3828 		goto out_free_ns;
3829 	disk->fops = &nvme_bdev_ops;
3830 	disk->private_data = ns;
3831 
3832 	ns->disk = disk;
3833 	ns->queue = disk->queue;
3834 	ns->ctrl = ctrl;
3835 	kref_init(&ns->kref);
3836 
3837 	if (nvme_init_ns_head(ns, info))
3838 		goto out_cleanup_disk;
3839 
3840 	/*
3841 	 * If multipathing is enabled, the device name for all disks and not
3842 	 * just those that represent shared namespaces needs to be based on the
3843 	 * subsystem instance.  Using the controller instance for private
3844 	 * namespaces could lead to naming collisions between shared and private
3845 	 * namespaces if they don't use a common numbering scheme.
3846 	 *
3847 	 * If multipathing is not enabled, disk names must use the controller
3848 	 * instance as shared namespaces will show up as multiple block
3849 	 * devices.
3850 	 */
3851 	if (nvme_ns_head_multipath(ns->head)) {
3852 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3853 			ctrl->instance, ns->head->instance);
3854 		disk->flags |= GENHD_FL_HIDDEN;
3855 	} else if (multipath) {
3856 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3857 			ns->head->instance);
3858 	} else {
3859 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3860 			ns->head->instance);
3861 	}
3862 
3863 	if (nvme_update_ns_info(ns, info))
3864 		goto out_unlink_ns;
3865 
3866 	mutex_lock(&ctrl->namespaces_lock);
3867 	/*
3868 	 * Ensure that no namespaces are added to the ctrl list after the queues
3869 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3870 	 */
3871 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3872 		mutex_unlock(&ctrl->namespaces_lock);
3873 		goto out_unlink_ns;
3874 	}
3875 	nvme_ns_add_to_ctrl_list(ns);
3876 	mutex_unlock(&ctrl->namespaces_lock);
3877 	synchronize_srcu(&ctrl->srcu);
3878 	nvme_get_ctrl(ctrl);
3879 
3880 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3881 		goto out_cleanup_ns_from_list;
3882 
3883 	if (!nvme_ns_head_multipath(ns->head))
3884 		nvme_add_ns_cdev(ns);
3885 
3886 	nvme_mpath_add_disk(ns, info->anagrpid);
3887 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3888 
3889 	/*
3890 	 * Set ns->disk->device->driver_data to ns so we can access
3891 	 * ns->head->passthru_err_log_enabled in
3892 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3893 	 */
3894 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3895 
3896 	return;
3897 
3898  out_cleanup_ns_from_list:
3899 	nvme_put_ctrl(ctrl);
3900 	mutex_lock(&ctrl->namespaces_lock);
3901 	list_del_rcu(&ns->list);
3902 	mutex_unlock(&ctrl->namespaces_lock);
3903 	synchronize_srcu(&ctrl->srcu);
3904  out_unlink_ns:
3905 	mutex_lock(&ctrl->subsys->lock);
3906 	list_del_rcu(&ns->siblings);
3907 	if (list_empty(&ns->head->list))
3908 		list_del_init(&ns->head->entry);
3909 	mutex_unlock(&ctrl->subsys->lock);
3910 	nvme_put_ns_head(ns->head);
3911  out_cleanup_disk:
3912 	put_disk(disk);
3913  out_free_ns:
3914 	kfree(ns);
3915 }
3916 
3917 static void nvme_ns_remove(struct nvme_ns *ns)
3918 {
3919 	bool last_path = false;
3920 
3921 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3922 		return;
3923 
3924 	clear_bit(NVME_NS_READY, &ns->flags);
3925 	set_capacity(ns->disk, 0);
3926 	nvme_fault_inject_fini(&ns->fault_inject);
3927 
3928 	/*
3929 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3930 	 * this ns going back into current_path.
3931 	 */
3932 	synchronize_srcu(&ns->head->srcu);
3933 
3934 	/* wait for concurrent submissions */
3935 	if (nvme_mpath_clear_current_path(ns))
3936 		synchronize_srcu(&ns->head->srcu);
3937 
3938 	mutex_lock(&ns->ctrl->subsys->lock);
3939 	list_del_rcu(&ns->siblings);
3940 	if (list_empty(&ns->head->list)) {
3941 		list_del_init(&ns->head->entry);
3942 		last_path = true;
3943 	}
3944 	mutex_unlock(&ns->ctrl->subsys->lock);
3945 
3946 	/* guarantee not available in head->list */
3947 	synchronize_srcu(&ns->head->srcu);
3948 
3949 	if (!nvme_ns_head_multipath(ns->head))
3950 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3951 	del_gendisk(ns->disk);
3952 
3953 	mutex_lock(&ns->ctrl->namespaces_lock);
3954 	list_del_rcu(&ns->list);
3955 	mutex_unlock(&ns->ctrl->namespaces_lock);
3956 	synchronize_srcu(&ns->ctrl->srcu);
3957 
3958 	if (last_path)
3959 		nvme_mpath_shutdown_disk(ns->head);
3960 	nvme_put_ns(ns);
3961 }
3962 
3963 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3964 {
3965 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3966 
3967 	if (ns) {
3968 		nvme_ns_remove(ns);
3969 		nvme_put_ns(ns);
3970 	}
3971 }
3972 
3973 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3974 {
3975 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
3976 
3977 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3978 		dev_err(ns->ctrl->device,
3979 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3980 		goto out;
3981 	}
3982 
3983 	ret = nvme_update_ns_info(ns, info);
3984 out:
3985 	/*
3986 	 * Only remove the namespace if we got a fatal error back from the
3987 	 * device, otherwise ignore the error and just move on.
3988 	 *
3989 	 * TODO: we should probably schedule a delayed retry here.
3990 	 */
3991 	if (ret > 0 && (ret & NVME_STATUS_DNR))
3992 		nvme_ns_remove(ns);
3993 }
3994 
3995 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3996 {
3997 	struct nvme_ns_info info = { .nsid = nsid };
3998 	struct nvme_ns *ns;
3999 	int ret = 1;
4000 
4001 	if (nvme_identify_ns_descs(ctrl, &info))
4002 		return;
4003 
4004 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4005 		dev_warn(ctrl->device,
4006 			"command set not reported for nsid: %d\n", nsid);
4007 		return;
4008 	}
4009 
4010 	/*
4011 	 * If available try to use the Command Set Idependent Identify Namespace
4012 	 * data structure to find all the generic information that is needed to
4013 	 * set up a namespace.  If not fall back to the legacy version.
4014 	 */
4015 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4016 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4017 	    ctrl->vs >= NVME_VS(2, 0, 0))
4018 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4019 	if (ret > 0)
4020 		ret = nvme_ns_info_from_identify(ctrl, &info);
4021 
4022 	if (info.is_removed)
4023 		nvme_ns_remove_by_nsid(ctrl, nsid);
4024 
4025 	/*
4026 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4027 	 * becomes ready and restart the scan.
4028 	 */
4029 	if (ret || !info.is_ready)
4030 		return;
4031 
4032 	ns = nvme_find_get_ns(ctrl, nsid);
4033 	if (ns) {
4034 		nvme_validate_ns(ns, &info);
4035 		nvme_put_ns(ns);
4036 	} else {
4037 		nvme_alloc_ns(ctrl, &info);
4038 	}
4039 }
4040 
4041 /**
4042  * struct async_scan_info - keeps track of controller & NSIDs to scan
4043  * @ctrl:	Controller on which namespaces are being scanned
4044  * @next_nsid:	Index of next NSID to scan in ns_list
4045  * @ns_list:	Pointer to list of NSIDs to scan
4046  *
4047  * Note: There is a single async_scan_info structure shared by all instances
4048  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4049  * operations on next_nsid are critical to ensure each instance scans a unique
4050  * NSID.
4051  */
4052 struct async_scan_info {
4053 	struct nvme_ctrl *ctrl;
4054 	atomic_t next_nsid;
4055 	__le32 *ns_list;
4056 };
4057 
4058 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4059 {
4060 	struct async_scan_info *scan_info = data;
4061 	int idx;
4062 	u32 nsid;
4063 
4064 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4065 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4066 
4067 	nvme_scan_ns(scan_info->ctrl, nsid);
4068 }
4069 
4070 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4071 					unsigned nsid)
4072 {
4073 	struct nvme_ns *ns, *next;
4074 	LIST_HEAD(rm_list);
4075 
4076 	mutex_lock(&ctrl->namespaces_lock);
4077 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4078 		if (ns->head->ns_id > nsid) {
4079 			list_del_rcu(&ns->list);
4080 			synchronize_srcu(&ctrl->srcu);
4081 			list_add_tail_rcu(&ns->list, &rm_list);
4082 		}
4083 	}
4084 	mutex_unlock(&ctrl->namespaces_lock);
4085 
4086 	list_for_each_entry_safe(ns, next, &rm_list, list)
4087 		nvme_ns_remove(ns);
4088 }
4089 
4090 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4091 {
4092 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4093 	__le32 *ns_list;
4094 	u32 prev = 0;
4095 	int ret = 0, i;
4096 	ASYNC_DOMAIN(domain);
4097 	struct async_scan_info scan_info;
4098 
4099 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4100 	if (!ns_list)
4101 		return -ENOMEM;
4102 
4103 	scan_info.ctrl = ctrl;
4104 	scan_info.ns_list = ns_list;
4105 	for (;;) {
4106 		struct nvme_command cmd = {
4107 			.identify.opcode	= nvme_admin_identify,
4108 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4109 			.identify.nsid		= cpu_to_le32(prev),
4110 		};
4111 
4112 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4113 					    NVME_IDENTIFY_DATA_SIZE);
4114 		if (ret) {
4115 			dev_warn(ctrl->device,
4116 				"Identify NS List failed (status=0x%x)\n", ret);
4117 			goto free;
4118 		}
4119 
4120 		atomic_set(&scan_info.next_nsid, 0);
4121 		for (i = 0; i < nr_entries; i++) {
4122 			u32 nsid = le32_to_cpu(ns_list[i]);
4123 
4124 			if (!nsid)	/* end of the list? */
4125 				goto out;
4126 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4127 						&domain);
4128 			while (++prev < nsid)
4129 				nvme_ns_remove_by_nsid(ctrl, prev);
4130 		}
4131 		async_synchronize_full_domain(&domain);
4132 	}
4133  out:
4134 	nvme_remove_invalid_namespaces(ctrl, prev);
4135  free:
4136 	async_synchronize_full_domain(&domain);
4137 	kfree(ns_list);
4138 	return ret;
4139 }
4140 
4141 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4142 {
4143 	struct nvme_id_ctrl *id;
4144 	u32 nn, i;
4145 
4146 	if (nvme_identify_ctrl(ctrl, &id))
4147 		return;
4148 	nn = le32_to_cpu(id->nn);
4149 	kfree(id);
4150 
4151 	for (i = 1; i <= nn; i++)
4152 		nvme_scan_ns(ctrl, i);
4153 
4154 	nvme_remove_invalid_namespaces(ctrl, nn);
4155 }
4156 
4157 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4158 {
4159 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4160 	__le32 *log;
4161 	int error;
4162 
4163 	log = kzalloc(log_size, GFP_KERNEL);
4164 	if (!log)
4165 		return;
4166 
4167 	/*
4168 	 * We need to read the log to clear the AEN, but we don't want to rely
4169 	 * on it for the changed namespace information as userspace could have
4170 	 * raced with us in reading the log page, which could cause us to miss
4171 	 * updates.
4172 	 */
4173 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4174 			NVME_CSI_NVM, log, log_size, 0);
4175 	if (error)
4176 		dev_warn(ctrl->device,
4177 			"reading changed ns log failed: %d\n", error);
4178 
4179 	kfree(log);
4180 }
4181 
4182 static void nvme_scan_work(struct work_struct *work)
4183 {
4184 	struct nvme_ctrl *ctrl =
4185 		container_of(work, struct nvme_ctrl, scan_work);
4186 	int ret;
4187 
4188 	/* No tagset on a live ctrl means IO queues could not created */
4189 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4190 		return;
4191 
4192 	/*
4193 	 * Identify controller limits can change at controller reset due to
4194 	 * new firmware download, even though it is not common we cannot ignore
4195 	 * such scenario. Controller's non-mdts limits are reported in the unit
4196 	 * of logical blocks that is dependent on the format of attached
4197 	 * namespace. Hence re-read the limits at the time of ns allocation.
4198 	 */
4199 	ret = nvme_init_non_mdts_limits(ctrl);
4200 	if (ret < 0) {
4201 		dev_warn(ctrl->device,
4202 			"reading non-mdts-limits failed: %d\n", ret);
4203 		return;
4204 	}
4205 
4206 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4207 		dev_info(ctrl->device, "rescanning namespaces.\n");
4208 		nvme_clear_changed_ns_log(ctrl);
4209 	}
4210 
4211 	mutex_lock(&ctrl->scan_lock);
4212 	if (nvme_ctrl_limited_cns(ctrl)) {
4213 		nvme_scan_ns_sequential(ctrl);
4214 	} else {
4215 		/*
4216 		 * Fall back to sequential scan if DNR is set to handle broken
4217 		 * devices which should support Identify NS List (as per the VS
4218 		 * they report) but don't actually support it.
4219 		 */
4220 		ret = nvme_scan_ns_list(ctrl);
4221 		if (ret > 0 && ret & NVME_STATUS_DNR)
4222 			nvme_scan_ns_sequential(ctrl);
4223 	}
4224 	mutex_unlock(&ctrl->scan_lock);
4225 }
4226 
4227 /*
4228  * This function iterates the namespace list unlocked to allow recovery from
4229  * controller failure. It is up to the caller to ensure the namespace list is
4230  * not modified by scan work while this function is executing.
4231  */
4232 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4233 {
4234 	struct nvme_ns *ns, *next;
4235 	LIST_HEAD(ns_list);
4236 
4237 	/*
4238 	 * make sure to requeue I/O to all namespaces as these
4239 	 * might result from the scan itself and must complete
4240 	 * for the scan_work to make progress
4241 	 */
4242 	nvme_mpath_clear_ctrl_paths(ctrl);
4243 
4244 	/*
4245 	 * Unquiesce io queues so any pending IO won't hang, especially
4246 	 * those submitted from scan work
4247 	 */
4248 	nvme_unquiesce_io_queues(ctrl);
4249 
4250 	/* prevent racing with ns scanning */
4251 	flush_work(&ctrl->scan_work);
4252 
4253 	/*
4254 	 * The dead states indicates the controller was not gracefully
4255 	 * disconnected. In that case, we won't be able to flush any data while
4256 	 * removing the namespaces' disks; fail all the queues now to avoid
4257 	 * potentially having to clean up the failed sync later.
4258 	 */
4259 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4260 		nvme_mark_namespaces_dead(ctrl);
4261 
4262 	/* this is a no-op when called from the controller reset handler */
4263 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4264 
4265 	mutex_lock(&ctrl->namespaces_lock);
4266 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4267 	mutex_unlock(&ctrl->namespaces_lock);
4268 	synchronize_srcu(&ctrl->srcu);
4269 
4270 	list_for_each_entry_safe(ns, next, &ns_list, list)
4271 		nvme_ns_remove(ns);
4272 }
4273 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4274 
4275 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4276 {
4277 	const struct nvme_ctrl *ctrl =
4278 		container_of(dev, struct nvme_ctrl, ctrl_device);
4279 	struct nvmf_ctrl_options *opts = ctrl->opts;
4280 	int ret;
4281 
4282 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4283 	if (ret)
4284 		return ret;
4285 
4286 	if (opts) {
4287 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4288 		if (ret)
4289 			return ret;
4290 
4291 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4292 				opts->trsvcid ?: "none");
4293 		if (ret)
4294 			return ret;
4295 
4296 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4297 				opts->host_traddr ?: "none");
4298 		if (ret)
4299 			return ret;
4300 
4301 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4302 				opts->host_iface ?: "none");
4303 	}
4304 	return ret;
4305 }
4306 
4307 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4308 {
4309 	char *envp[2] = { envdata, NULL };
4310 
4311 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4312 }
4313 
4314 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4315 {
4316 	char *envp[2] = { NULL, NULL };
4317 	u32 aen_result = ctrl->aen_result;
4318 
4319 	ctrl->aen_result = 0;
4320 	if (!aen_result)
4321 		return;
4322 
4323 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4324 	if (!envp[0])
4325 		return;
4326 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4327 	kfree(envp[0]);
4328 }
4329 
4330 static void nvme_async_event_work(struct work_struct *work)
4331 {
4332 	struct nvme_ctrl *ctrl =
4333 		container_of(work, struct nvme_ctrl, async_event_work);
4334 
4335 	nvme_aen_uevent(ctrl);
4336 
4337 	/*
4338 	 * The transport drivers must guarantee AER submission here is safe by
4339 	 * flushing ctrl async_event_work after changing the controller state
4340 	 * from LIVE and before freeing the admin queue.
4341 	*/
4342 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4343 		ctrl->ops->submit_async_event(ctrl);
4344 }
4345 
4346 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4347 {
4348 
4349 	u32 csts;
4350 
4351 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4352 		return false;
4353 
4354 	if (csts == ~0)
4355 		return false;
4356 
4357 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4358 }
4359 
4360 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4361 {
4362 	struct nvme_fw_slot_info_log *log;
4363 	u8 next_fw_slot, cur_fw_slot;
4364 
4365 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4366 	if (!log)
4367 		return;
4368 
4369 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4370 			 log, sizeof(*log), 0)) {
4371 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4372 		goto out_free_log;
4373 	}
4374 
4375 	cur_fw_slot = log->afi & 0x7;
4376 	next_fw_slot = (log->afi & 0x70) >> 4;
4377 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4378 		dev_info(ctrl->device,
4379 			 "Firmware is activated after next Controller Level Reset\n");
4380 		goto out_free_log;
4381 	}
4382 
4383 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4384 		sizeof(ctrl->subsys->firmware_rev));
4385 
4386 out_free_log:
4387 	kfree(log);
4388 }
4389 
4390 static void nvme_fw_act_work(struct work_struct *work)
4391 {
4392 	struct nvme_ctrl *ctrl = container_of(work,
4393 				struct nvme_ctrl, fw_act_work);
4394 	unsigned long fw_act_timeout;
4395 
4396 	nvme_auth_stop(ctrl);
4397 
4398 	if (ctrl->mtfa)
4399 		fw_act_timeout = jiffies +
4400 				msecs_to_jiffies(ctrl->mtfa * 100);
4401 	else
4402 		fw_act_timeout = jiffies +
4403 				msecs_to_jiffies(admin_timeout * 1000);
4404 
4405 	nvme_quiesce_io_queues(ctrl);
4406 	while (nvme_ctrl_pp_status(ctrl)) {
4407 		if (time_after(jiffies, fw_act_timeout)) {
4408 			dev_warn(ctrl->device,
4409 				"Fw activation timeout, reset controller\n");
4410 			nvme_try_sched_reset(ctrl);
4411 			return;
4412 		}
4413 		msleep(100);
4414 	}
4415 
4416 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4417 		return;
4418 
4419 	nvme_unquiesce_io_queues(ctrl);
4420 	/* read FW slot information to clear the AER */
4421 	nvme_get_fw_slot_info(ctrl);
4422 
4423 	queue_work(nvme_wq, &ctrl->async_event_work);
4424 }
4425 
4426 static u32 nvme_aer_type(u32 result)
4427 {
4428 	return result & 0x7;
4429 }
4430 
4431 static u32 nvme_aer_subtype(u32 result)
4432 {
4433 	return (result & 0xff00) >> 8;
4434 }
4435 
4436 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4437 {
4438 	u32 aer_notice_type = nvme_aer_subtype(result);
4439 	bool requeue = true;
4440 
4441 	switch (aer_notice_type) {
4442 	case NVME_AER_NOTICE_NS_CHANGED:
4443 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4444 		nvme_queue_scan(ctrl);
4445 		break;
4446 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4447 		/*
4448 		 * We are (ab)using the RESETTING state to prevent subsequent
4449 		 * recovery actions from interfering with the controller's
4450 		 * firmware activation.
4451 		 */
4452 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4453 			requeue = false;
4454 			queue_work(nvme_wq, &ctrl->fw_act_work);
4455 		}
4456 		break;
4457 #ifdef CONFIG_NVME_MULTIPATH
4458 	case NVME_AER_NOTICE_ANA:
4459 		if (!ctrl->ana_log_buf)
4460 			break;
4461 		queue_work(nvme_wq, &ctrl->ana_work);
4462 		break;
4463 #endif
4464 	case NVME_AER_NOTICE_DISC_CHANGED:
4465 		ctrl->aen_result = result;
4466 		break;
4467 	default:
4468 		dev_warn(ctrl->device, "async event result %08x\n", result);
4469 	}
4470 	return requeue;
4471 }
4472 
4473 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4474 {
4475 	dev_warn(ctrl->device,
4476 		"resetting controller due to persistent internal error\n");
4477 	nvme_reset_ctrl(ctrl);
4478 }
4479 
4480 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4481 		volatile union nvme_result *res)
4482 {
4483 	u32 result = le32_to_cpu(res->u32);
4484 	u32 aer_type = nvme_aer_type(result);
4485 	u32 aer_subtype = nvme_aer_subtype(result);
4486 	bool requeue = true;
4487 
4488 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4489 		return;
4490 
4491 	trace_nvme_async_event(ctrl, result);
4492 	switch (aer_type) {
4493 	case NVME_AER_NOTICE:
4494 		requeue = nvme_handle_aen_notice(ctrl, result);
4495 		break;
4496 	case NVME_AER_ERROR:
4497 		/*
4498 		 * For a persistent internal error, don't run async_event_work
4499 		 * to submit a new AER. The controller reset will do it.
4500 		 */
4501 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4502 			nvme_handle_aer_persistent_error(ctrl);
4503 			return;
4504 		}
4505 		fallthrough;
4506 	case NVME_AER_SMART:
4507 	case NVME_AER_CSS:
4508 	case NVME_AER_VS:
4509 		ctrl->aen_result = result;
4510 		break;
4511 	default:
4512 		break;
4513 	}
4514 
4515 	if (requeue)
4516 		queue_work(nvme_wq, &ctrl->async_event_work);
4517 }
4518 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4519 
4520 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4521 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4522 {
4523 	struct queue_limits lim = {};
4524 	int ret;
4525 
4526 	memset(set, 0, sizeof(*set));
4527 	set->ops = ops;
4528 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4529 	if (ctrl->ops->flags & NVME_F_FABRICS)
4530 		/* Reserved for fabric connect and keep alive */
4531 		set->reserved_tags = 2;
4532 	set->numa_node = ctrl->numa_node;
4533 	set->flags = BLK_MQ_F_NO_SCHED;
4534 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4535 		set->flags |= BLK_MQ_F_BLOCKING;
4536 	set->cmd_size = cmd_size;
4537 	set->driver_data = ctrl;
4538 	set->nr_hw_queues = 1;
4539 	set->timeout = NVME_ADMIN_TIMEOUT;
4540 	ret = blk_mq_alloc_tag_set(set);
4541 	if (ret)
4542 		return ret;
4543 
4544 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4545 	if (IS_ERR(ctrl->admin_q)) {
4546 		ret = PTR_ERR(ctrl->admin_q);
4547 		goto out_free_tagset;
4548 	}
4549 
4550 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4551 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4552 		if (IS_ERR(ctrl->fabrics_q)) {
4553 			ret = PTR_ERR(ctrl->fabrics_q);
4554 			goto out_cleanup_admin_q;
4555 		}
4556 	}
4557 
4558 	ctrl->admin_tagset = set;
4559 	return 0;
4560 
4561 out_cleanup_admin_q:
4562 	blk_mq_destroy_queue(ctrl->admin_q);
4563 	blk_put_queue(ctrl->admin_q);
4564 out_free_tagset:
4565 	blk_mq_free_tag_set(set);
4566 	ctrl->admin_q = NULL;
4567 	ctrl->fabrics_q = NULL;
4568 	return ret;
4569 }
4570 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4571 
4572 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4573 {
4574 	blk_mq_destroy_queue(ctrl->admin_q);
4575 	blk_put_queue(ctrl->admin_q);
4576 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4577 		blk_mq_destroy_queue(ctrl->fabrics_q);
4578 		blk_put_queue(ctrl->fabrics_q);
4579 	}
4580 	blk_mq_free_tag_set(ctrl->admin_tagset);
4581 }
4582 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4583 
4584 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4585 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4586 		unsigned int cmd_size)
4587 {
4588 	int ret;
4589 
4590 	memset(set, 0, sizeof(*set));
4591 	set->ops = ops;
4592 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4593 	/*
4594 	 * Some Apple controllers requires tags to be unique across admin and
4595 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4596 	 */
4597 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4598 		set->reserved_tags = NVME_AQ_DEPTH;
4599 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4600 		/* Reserved for fabric connect */
4601 		set->reserved_tags = 1;
4602 	set->numa_node = ctrl->numa_node;
4603 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4604 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4605 		set->flags |= BLK_MQ_F_BLOCKING;
4606 	set->cmd_size = cmd_size;
4607 	set->driver_data = ctrl;
4608 	set->nr_hw_queues = ctrl->queue_count - 1;
4609 	set->timeout = NVME_IO_TIMEOUT;
4610 	set->nr_maps = nr_maps;
4611 	ret = blk_mq_alloc_tag_set(set);
4612 	if (ret)
4613 		return ret;
4614 
4615 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4616 		struct queue_limits lim = {
4617 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4618 		};
4619 
4620 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4621         	if (IS_ERR(ctrl->connect_q)) {
4622 			ret = PTR_ERR(ctrl->connect_q);
4623 			goto out_free_tag_set;
4624 		}
4625 	}
4626 
4627 	ctrl->tagset = set;
4628 	return 0;
4629 
4630 out_free_tag_set:
4631 	blk_mq_free_tag_set(set);
4632 	ctrl->connect_q = NULL;
4633 	return ret;
4634 }
4635 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4636 
4637 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4638 {
4639 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4640 		blk_mq_destroy_queue(ctrl->connect_q);
4641 		blk_put_queue(ctrl->connect_q);
4642 	}
4643 	blk_mq_free_tag_set(ctrl->tagset);
4644 }
4645 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4646 
4647 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4648 {
4649 	nvme_mpath_stop(ctrl);
4650 	nvme_auth_stop(ctrl);
4651 	nvme_stop_failfast_work(ctrl);
4652 	flush_work(&ctrl->async_event_work);
4653 	cancel_work_sync(&ctrl->fw_act_work);
4654 	if (ctrl->ops->stop_ctrl)
4655 		ctrl->ops->stop_ctrl(ctrl);
4656 }
4657 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4658 
4659 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4660 {
4661 	nvme_enable_aen(ctrl);
4662 
4663 	/*
4664 	 * persistent discovery controllers need to send indication to userspace
4665 	 * to re-read the discovery log page to learn about possible changes
4666 	 * that were missed. We identify persistent discovery controllers by
4667 	 * checking that they started once before, hence are reconnecting back.
4668 	 */
4669 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4670 	    nvme_discovery_ctrl(ctrl))
4671 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4672 
4673 	if (ctrl->queue_count > 1) {
4674 		nvme_queue_scan(ctrl);
4675 		nvme_unquiesce_io_queues(ctrl);
4676 		nvme_mpath_update(ctrl);
4677 	}
4678 
4679 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4680 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4681 }
4682 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4683 
4684 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4685 {
4686 	nvme_stop_keep_alive(ctrl);
4687 	nvme_hwmon_exit(ctrl);
4688 	nvme_fault_inject_fini(&ctrl->fault_inject);
4689 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4690 	cdev_device_del(&ctrl->cdev, ctrl->device);
4691 	nvme_put_ctrl(ctrl);
4692 }
4693 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4694 
4695 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4696 {
4697 	struct nvme_effects_log	*cel;
4698 	unsigned long i;
4699 
4700 	xa_for_each(&ctrl->cels, i, cel) {
4701 		xa_erase(&ctrl->cels, i);
4702 		kfree(cel);
4703 	}
4704 
4705 	xa_destroy(&ctrl->cels);
4706 }
4707 
4708 static void nvme_free_ctrl(struct device *dev)
4709 {
4710 	struct nvme_ctrl *ctrl =
4711 		container_of(dev, struct nvme_ctrl, ctrl_device);
4712 	struct nvme_subsystem *subsys = ctrl->subsys;
4713 
4714 	if (!subsys || ctrl->instance != subsys->instance)
4715 		ida_free(&nvme_instance_ida, ctrl->instance);
4716 	nvme_free_cels(ctrl);
4717 	nvme_mpath_uninit(ctrl);
4718 	cleanup_srcu_struct(&ctrl->srcu);
4719 	nvme_auth_stop(ctrl);
4720 	nvme_auth_free(ctrl);
4721 	__free_page(ctrl->discard_page);
4722 	free_opal_dev(ctrl->opal_dev);
4723 
4724 	if (subsys) {
4725 		mutex_lock(&nvme_subsystems_lock);
4726 		list_del(&ctrl->subsys_entry);
4727 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4728 		mutex_unlock(&nvme_subsystems_lock);
4729 	}
4730 
4731 	ctrl->ops->free_ctrl(ctrl);
4732 
4733 	if (subsys)
4734 		nvme_put_subsystem(subsys);
4735 }
4736 
4737 /*
4738  * Initialize a NVMe controller structures.  This needs to be called during
4739  * earliest initialization so that we have the initialized structured around
4740  * during probing.
4741  *
4742  * On success, the caller must use the nvme_put_ctrl() to release this when
4743  * needed, which also invokes the ops->free_ctrl() callback.
4744  */
4745 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4746 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4747 {
4748 	int ret;
4749 
4750 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4751 	ctrl->passthru_err_log_enabled = false;
4752 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4753 	spin_lock_init(&ctrl->lock);
4754 	mutex_init(&ctrl->namespaces_lock);
4755 
4756 	ret = init_srcu_struct(&ctrl->srcu);
4757 	if (ret)
4758 		return ret;
4759 
4760 	mutex_init(&ctrl->scan_lock);
4761 	INIT_LIST_HEAD(&ctrl->namespaces);
4762 	xa_init(&ctrl->cels);
4763 	ctrl->dev = dev;
4764 	ctrl->ops = ops;
4765 	ctrl->quirks = quirks;
4766 	ctrl->numa_node = NUMA_NO_NODE;
4767 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4768 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4769 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4770 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4771 	init_waitqueue_head(&ctrl->state_wq);
4772 
4773 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4774 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4775 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4776 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4777 	ctrl->ka_last_check_time = jiffies;
4778 
4779 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4780 			PAGE_SIZE);
4781 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4782 	if (!ctrl->discard_page) {
4783 		ret = -ENOMEM;
4784 		goto out;
4785 	}
4786 
4787 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4788 	if (ret < 0)
4789 		goto out;
4790 	ctrl->instance = ret;
4791 
4792 	ret = nvme_auth_init_ctrl(ctrl);
4793 	if (ret)
4794 		goto out_release_instance;
4795 
4796 	nvme_mpath_init_ctrl(ctrl);
4797 
4798 	device_initialize(&ctrl->ctrl_device);
4799 	ctrl->device = &ctrl->ctrl_device;
4800 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4801 			ctrl->instance);
4802 	ctrl->device->class = &nvme_class;
4803 	ctrl->device->parent = ctrl->dev;
4804 	if (ops->dev_attr_groups)
4805 		ctrl->device->groups = ops->dev_attr_groups;
4806 	else
4807 		ctrl->device->groups = nvme_dev_attr_groups;
4808 	ctrl->device->release = nvme_free_ctrl;
4809 	dev_set_drvdata(ctrl->device, ctrl);
4810 
4811 	return ret;
4812 
4813 out_release_instance:
4814 	ida_free(&nvme_instance_ida, ctrl->instance);
4815 out:
4816 	if (ctrl->discard_page)
4817 		__free_page(ctrl->discard_page);
4818 	cleanup_srcu_struct(&ctrl->srcu);
4819 	return ret;
4820 }
4821 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4822 
4823 /*
4824  * On success, returns with an elevated controller reference and caller must
4825  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4826  */
4827 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4828 {
4829 	int ret;
4830 
4831 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4832 	if (ret)
4833 		return ret;
4834 
4835 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4836 	ctrl->cdev.owner = ctrl->ops->module;
4837 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4838 	if (ret)
4839 		return ret;
4840 
4841 	/*
4842 	 * Initialize latency tolerance controls.  The sysfs files won't
4843 	 * be visible to userspace unless the device actually supports APST.
4844 	 */
4845 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4846 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4847 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4848 
4849 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4850 	nvme_get_ctrl(ctrl);
4851 
4852 	return 0;
4853 }
4854 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4855 
4856 /* let I/O to all namespaces fail in preparation for surprise removal */
4857 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4858 {
4859 	struct nvme_ns *ns;
4860 	int srcu_idx;
4861 
4862 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4863 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4864 		blk_mark_disk_dead(ns->disk);
4865 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4866 }
4867 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4868 
4869 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4870 {
4871 	struct nvme_ns *ns;
4872 	int srcu_idx;
4873 
4874 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4875 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4876 		blk_mq_unfreeze_queue_non_owner(ns->queue);
4877 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4878 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4879 }
4880 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4881 
4882 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4883 {
4884 	struct nvme_ns *ns;
4885 	int srcu_idx;
4886 
4887 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4888 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
4889 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4890 		if (timeout <= 0)
4891 			break;
4892 	}
4893 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4894 	return timeout;
4895 }
4896 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4897 
4898 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4899 {
4900 	struct nvme_ns *ns;
4901 	int srcu_idx;
4902 
4903 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4904 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4905 		blk_mq_freeze_queue_wait(ns->queue);
4906 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4907 }
4908 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4909 
4910 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4911 {
4912 	struct nvme_ns *ns;
4913 	int srcu_idx;
4914 
4915 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4916 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4917 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4918 		/*
4919 		 * Typical non_owner use case is from pci driver, in which
4920 		 * start_freeze is called from timeout work function, but
4921 		 * unfreeze is done in reset work context
4922 		 */
4923 		blk_freeze_queue_start_non_owner(ns->queue);
4924 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4925 }
4926 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4927 
4928 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4929 {
4930 	if (!ctrl->tagset)
4931 		return;
4932 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4933 		blk_mq_quiesce_tagset(ctrl->tagset);
4934 	else
4935 		blk_mq_wait_quiesce_done(ctrl->tagset);
4936 }
4937 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4938 
4939 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4940 {
4941 	if (!ctrl->tagset)
4942 		return;
4943 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4944 		blk_mq_unquiesce_tagset(ctrl->tagset);
4945 }
4946 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4947 
4948 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4949 {
4950 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4951 		blk_mq_quiesce_queue(ctrl->admin_q);
4952 	else
4953 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4954 }
4955 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4956 
4957 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4958 {
4959 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4960 		blk_mq_unquiesce_queue(ctrl->admin_q);
4961 }
4962 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4963 
4964 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4965 {
4966 	struct nvme_ns *ns;
4967 	int srcu_idx;
4968 
4969 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4970 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4971 		blk_sync_queue(ns->queue);
4972 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4973 }
4974 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4975 
4976 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4977 {
4978 	nvme_sync_io_queues(ctrl);
4979 	if (ctrl->admin_q)
4980 		blk_sync_queue(ctrl->admin_q);
4981 }
4982 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4983 
4984 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4985 {
4986 	if (file->f_op != &nvme_dev_fops)
4987 		return NULL;
4988 	return file->private_data;
4989 }
4990 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4991 
4992 /*
4993  * Check we didn't inadvertently grow the command structure sizes:
4994  */
4995 static inline void _nvme_check_size(void)
4996 {
4997 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4998 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4999 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5000 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5001 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5002 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5003 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5004 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5005 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5006 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5007 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5008 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5009 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5010 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5011 			NVME_IDENTIFY_DATA_SIZE);
5012 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5013 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5014 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5015 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5016 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5017 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5018 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5019 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5020 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5021 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5022 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5023 }
5024 
5025 
5026 static int __init nvme_core_init(void)
5027 {
5028 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5029 	int result = -ENOMEM;
5030 
5031 	_nvme_check_size();
5032 
5033 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5034 	if (!nvme_wq)
5035 		goto out;
5036 
5037 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5038 	if (!nvme_reset_wq)
5039 		goto destroy_wq;
5040 
5041 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5042 	if (!nvme_delete_wq)
5043 		goto destroy_reset_wq;
5044 
5045 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5046 			NVME_MINORS, "nvme");
5047 	if (result < 0)
5048 		goto destroy_delete_wq;
5049 
5050 	result = class_register(&nvme_class);
5051 	if (result)
5052 		goto unregister_chrdev;
5053 
5054 	result = class_register(&nvme_subsys_class);
5055 	if (result)
5056 		goto destroy_class;
5057 
5058 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5059 				     "nvme-generic");
5060 	if (result < 0)
5061 		goto destroy_subsys_class;
5062 
5063 	result = class_register(&nvme_ns_chr_class);
5064 	if (result)
5065 		goto unregister_generic_ns;
5066 
5067 	result = nvme_init_auth();
5068 	if (result)
5069 		goto destroy_ns_chr;
5070 	return 0;
5071 
5072 destroy_ns_chr:
5073 	class_unregister(&nvme_ns_chr_class);
5074 unregister_generic_ns:
5075 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5076 destroy_subsys_class:
5077 	class_unregister(&nvme_subsys_class);
5078 destroy_class:
5079 	class_unregister(&nvme_class);
5080 unregister_chrdev:
5081 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5082 destroy_delete_wq:
5083 	destroy_workqueue(nvme_delete_wq);
5084 destroy_reset_wq:
5085 	destroy_workqueue(nvme_reset_wq);
5086 destroy_wq:
5087 	destroy_workqueue(nvme_wq);
5088 out:
5089 	return result;
5090 }
5091 
5092 static void __exit nvme_core_exit(void)
5093 {
5094 	nvme_exit_auth();
5095 	class_unregister(&nvme_ns_chr_class);
5096 	class_unregister(&nvme_subsys_class);
5097 	class_unregister(&nvme_class);
5098 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5099 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5100 	destroy_workqueue(nvme_delete_wq);
5101 	destroy_workqueue(nvme_reset_wq);
5102 	destroy_workqueue(nvme_wq);
5103 	ida_destroy(&nvme_ns_chr_minor_ida);
5104 	ida_destroy(&nvme_instance_ida);
5105 }
5106 
5107 MODULE_LICENSE("GPL");
5108 MODULE_VERSION("1.0");
5109 MODULE_DESCRIPTION("NVMe host core framework");
5110 module_init(nvme_core_init);
5111 module_exit(nvme_core_exit);
5112