1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/async.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-mq.h> 10 #include <linux/blk-integrity.h> 11 #include <linux/compat.h> 12 #include <linux/delay.h> 13 #include <linux/errno.h> 14 #include <linux/hdreg.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/pr.h> 21 #include <linux/ptrace.h> 22 #include <linux/nvme_ioctl.h> 23 #include <linux/pm_qos.h> 24 #include <linux/ratelimit.h> 25 #include <linux/unaligned.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 #include <linux/nvme-auth.h> 30 31 #define CREATE_TRACE_POINTS 32 #include "trace.h" 33 34 #define NVME_MINORS (1U << MINORBITS) 35 36 struct nvme_ns_info { 37 struct nvme_ns_ids ids; 38 u32 nsid; 39 __le32 anagrpid; 40 u8 pi_offset; 41 bool is_shared; 42 bool is_readonly; 43 bool is_ready; 44 bool is_removed; 45 bool is_rotational; 46 bool no_vwc; 47 }; 48 49 unsigned int admin_timeout = 60; 50 module_param(admin_timeout, uint, 0644); 51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 52 EXPORT_SYMBOL_GPL(admin_timeout); 53 54 unsigned int nvme_io_timeout = 30; 55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 57 EXPORT_SYMBOL_GPL(nvme_io_timeout); 58 59 static unsigned char shutdown_timeout = 5; 60 module_param(shutdown_timeout, byte, 0644); 61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 62 63 static u8 nvme_max_retries = 5; 64 module_param_named(max_retries, nvme_max_retries, byte, 0644); 65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 66 67 static unsigned long default_ps_max_latency_us = 100000; 68 module_param(default_ps_max_latency_us, ulong, 0644); 69 MODULE_PARM_DESC(default_ps_max_latency_us, 70 "max power saving latency for new devices; use PM QOS to change per device"); 71 72 static bool force_apst; 73 module_param(force_apst, bool, 0644); 74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 75 76 static unsigned long apst_primary_timeout_ms = 100; 77 module_param(apst_primary_timeout_ms, ulong, 0644); 78 MODULE_PARM_DESC(apst_primary_timeout_ms, 79 "primary APST timeout in ms"); 80 81 static unsigned long apst_secondary_timeout_ms = 2000; 82 module_param(apst_secondary_timeout_ms, ulong, 0644); 83 MODULE_PARM_DESC(apst_secondary_timeout_ms, 84 "secondary APST timeout in ms"); 85 86 static unsigned long apst_primary_latency_tol_us = 15000; 87 module_param(apst_primary_latency_tol_us, ulong, 0644); 88 MODULE_PARM_DESC(apst_primary_latency_tol_us, 89 "primary APST latency tolerance in us"); 90 91 static unsigned long apst_secondary_latency_tol_us = 100000; 92 module_param(apst_secondary_latency_tol_us, ulong, 0644); 93 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 94 "secondary APST latency tolerance in us"); 95 96 /* 97 * nvme_wq - hosts nvme related works that are not reset or delete 98 * nvme_reset_wq - hosts nvme reset works 99 * nvme_delete_wq - hosts nvme delete works 100 * 101 * nvme_wq will host works such as scan, aen handling, fw activation, 102 * keep-alive, periodic reconnects etc. nvme_reset_wq 103 * runs reset works which also flush works hosted on nvme_wq for 104 * serialization purposes. nvme_delete_wq host controller deletion 105 * works which flush reset works for serialization. 106 */ 107 struct workqueue_struct *nvme_wq; 108 EXPORT_SYMBOL_GPL(nvme_wq); 109 110 struct workqueue_struct *nvme_reset_wq; 111 EXPORT_SYMBOL_GPL(nvme_reset_wq); 112 113 struct workqueue_struct *nvme_delete_wq; 114 EXPORT_SYMBOL_GPL(nvme_delete_wq); 115 116 static LIST_HEAD(nvme_subsystems); 117 DEFINE_MUTEX(nvme_subsystems_lock); 118 119 static DEFINE_IDA(nvme_instance_ida); 120 static dev_t nvme_ctrl_base_chr_devt; 121 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 122 static const struct class nvme_class = { 123 .name = "nvme", 124 .dev_uevent = nvme_class_uevent, 125 }; 126 127 static const struct class nvme_subsys_class = { 128 .name = "nvme-subsystem", 129 }; 130 131 static DEFINE_IDA(nvme_ns_chr_minor_ida); 132 static dev_t nvme_ns_chr_devt; 133 static const struct class nvme_ns_chr_class = { 134 .name = "nvme-generic", 135 }; 136 137 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 138 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 139 unsigned nsid); 140 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 141 struct nvme_command *cmd); 142 143 void nvme_queue_scan(struct nvme_ctrl *ctrl) 144 { 145 /* 146 * Only new queue scan work when admin and IO queues are both alive 147 */ 148 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 149 queue_work(nvme_wq, &ctrl->scan_work); 150 } 151 152 /* 153 * Use this function to proceed with scheduling reset_work for a controller 154 * that had previously been set to the resetting state. This is intended for 155 * code paths that can't be interrupted by other reset attempts. A hot removal 156 * may prevent this from succeeding. 157 */ 158 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 159 { 160 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 161 return -EBUSY; 162 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 163 return -EBUSY; 164 return 0; 165 } 166 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 167 168 static void nvme_failfast_work(struct work_struct *work) 169 { 170 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 171 struct nvme_ctrl, failfast_work); 172 173 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 174 return; 175 176 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 177 dev_info(ctrl->device, "failfast expired\n"); 178 nvme_kick_requeue_lists(ctrl); 179 } 180 181 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 182 { 183 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 184 return; 185 186 schedule_delayed_work(&ctrl->failfast_work, 187 ctrl->opts->fast_io_fail_tmo * HZ); 188 } 189 190 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 191 { 192 if (!ctrl->opts) 193 return; 194 195 cancel_delayed_work_sync(&ctrl->failfast_work); 196 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 197 } 198 199 200 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 201 { 202 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 203 return -EBUSY; 204 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 205 return -EBUSY; 206 return 0; 207 } 208 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 209 210 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 211 { 212 int ret; 213 214 ret = nvme_reset_ctrl(ctrl); 215 if (!ret) { 216 flush_work(&ctrl->reset_work); 217 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 218 ret = -ENETRESET; 219 } 220 221 return ret; 222 } 223 224 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 225 { 226 dev_info(ctrl->device, 227 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 228 229 flush_work(&ctrl->reset_work); 230 nvme_stop_ctrl(ctrl); 231 nvme_remove_namespaces(ctrl); 232 ctrl->ops->delete_ctrl(ctrl); 233 nvme_uninit_ctrl(ctrl); 234 } 235 236 static void nvme_delete_ctrl_work(struct work_struct *work) 237 { 238 struct nvme_ctrl *ctrl = 239 container_of(work, struct nvme_ctrl, delete_work); 240 241 nvme_do_delete_ctrl(ctrl); 242 } 243 244 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 245 { 246 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 247 return -EBUSY; 248 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 249 return -EBUSY; 250 return 0; 251 } 252 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 253 254 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 255 { 256 /* 257 * Keep a reference until nvme_do_delete_ctrl() complete, 258 * since ->delete_ctrl can free the controller. 259 */ 260 nvme_get_ctrl(ctrl); 261 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 262 nvme_do_delete_ctrl(ctrl); 263 nvme_put_ctrl(ctrl); 264 } 265 266 static blk_status_t nvme_error_status(u16 status) 267 { 268 switch (status & NVME_SCT_SC_MASK) { 269 case NVME_SC_SUCCESS: 270 return BLK_STS_OK; 271 case NVME_SC_CAP_EXCEEDED: 272 return BLK_STS_NOSPC; 273 case NVME_SC_LBA_RANGE: 274 case NVME_SC_CMD_INTERRUPTED: 275 case NVME_SC_NS_NOT_READY: 276 return BLK_STS_TARGET; 277 case NVME_SC_BAD_ATTRIBUTES: 278 case NVME_SC_ONCS_NOT_SUPPORTED: 279 case NVME_SC_INVALID_OPCODE: 280 case NVME_SC_INVALID_FIELD: 281 case NVME_SC_INVALID_NS: 282 return BLK_STS_NOTSUPP; 283 case NVME_SC_WRITE_FAULT: 284 case NVME_SC_READ_ERROR: 285 case NVME_SC_UNWRITTEN_BLOCK: 286 case NVME_SC_ACCESS_DENIED: 287 case NVME_SC_READ_ONLY: 288 case NVME_SC_COMPARE_FAILED: 289 return BLK_STS_MEDIUM; 290 case NVME_SC_GUARD_CHECK: 291 case NVME_SC_APPTAG_CHECK: 292 case NVME_SC_REFTAG_CHECK: 293 case NVME_SC_INVALID_PI: 294 return BLK_STS_PROTECTION; 295 case NVME_SC_RESERVATION_CONFLICT: 296 return BLK_STS_RESV_CONFLICT; 297 case NVME_SC_HOST_PATH_ERROR: 298 return BLK_STS_TRANSPORT; 299 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 300 return BLK_STS_ZONE_ACTIVE_RESOURCE; 301 case NVME_SC_ZONE_TOO_MANY_OPEN: 302 return BLK_STS_ZONE_OPEN_RESOURCE; 303 default: 304 return BLK_STS_IOERR; 305 } 306 } 307 308 static void nvme_retry_req(struct request *req) 309 { 310 unsigned long delay = 0; 311 u16 crd; 312 313 /* The mask and shift result must be <= 3 */ 314 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; 315 if (crd) 316 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 317 318 nvme_req(req)->retries++; 319 blk_mq_requeue_request(req, false); 320 blk_mq_delay_kick_requeue_list(req->q, delay); 321 } 322 323 static void nvme_log_error(struct request *req) 324 { 325 struct nvme_ns *ns = req->q->queuedata; 326 struct nvme_request *nr = nvme_req(req); 327 328 if (ns) { 329 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 330 ns->disk ? ns->disk->disk_name : "?", 331 nvme_get_opcode_str(nr->cmd->common.opcode), 332 nr->cmd->common.opcode, 333 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 334 blk_rq_bytes(req) >> ns->head->lba_shift, 335 nvme_get_error_status_str(nr->status), 336 NVME_SCT(nr->status), /* Status Code Type */ 337 nr->status & NVME_SC_MASK, /* Status Code */ 338 nr->status & NVME_STATUS_MORE ? "MORE " : "", 339 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 340 return; 341 } 342 343 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 344 dev_name(nr->ctrl->device), 345 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 346 nr->cmd->common.opcode, 347 nvme_get_error_status_str(nr->status), 348 NVME_SCT(nr->status), /* Status Code Type */ 349 nr->status & NVME_SC_MASK, /* Status Code */ 350 nr->status & NVME_STATUS_MORE ? "MORE " : "", 351 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 352 } 353 354 static void nvme_log_err_passthru(struct request *req) 355 { 356 struct nvme_ns *ns = req->q->queuedata; 357 struct nvme_request *nr = nvme_req(req); 358 359 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 360 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 361 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 362 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 363 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 364 nr->cmd->common.opcode, 365 nvme_get_error_status_str(nr->status), 366 NVME_SCT(nr->status), /* Status Code Type */ 367 nr->status & NVME_SC_MASK, /* Status Code */ 368 nr->status & NVME_STATUS_MORE ? "MORE " : "", 369 nr->status & NVME_STATUS_DNR ? "DNR " : "", 370 nr->cmd->common.cdw10, 371 nr->cmd->common.cdw11, 372 nr->cmd->common.cdw12, 373 nr->cmd->common.cdw13, 374 nr->cmd->common.cdw14, 375 nr->cmd->common.cdw14); 376 } 377 378 enum nvme_disposition { 379 COMPLETE, 380 RETRY, 381 FAILOVER, 382 AUTHENTICATE, 383 }; 384 385 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 386 { 387 if (likely(nvme_req(req)->status == 0)) 388 return COMPLETE; 389 390 if (blk_noretry_request(req) || 391 (nvme_req(req)->status & NVME_STATUS_DNR) || 392 nvme_req(req)->retries >= nvme_max_retries) 393 return COMPLETE; 394 395 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) 396 return AUTHENTICATE; 397 398 if (req->cmd_flags & REQ_NVME_MPATH) { 399 if (nvme_is_path_error(nvme_req(req)->status) || 400 blk_queue_dying(req->q)) 401 return FAILOVER; 402 } else { 403 if (blk_queue_dying(req->q)) 404 return COMPLETE; 405 } 406 407 return RETRY; 408 } 409 410 static inline void nvme_end_req_zoned(struct request *req) 411 { 412 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 413 req_op(req) == REQ_OP_ZONE_APPEND) { 414 struct nvme_ns *ns = req->q->queuedata; 415 416 req->__sector = nvme_lba_to_sect(ns->head, 417 le64_to_cpu(nvme_req(req)->result.u64)); 418 } 419 } 420 421 static inline void __nvme_end_req(struct request *req) 422 { 423 nvme_end_req_zoned(req); 424 nvme_trace_bio_complete(req); 425 if (req->cmd_flags & REQ_NVME_MPATH) 426 nvme_mpath_end_request(req); 427 } 428 429 void nvme_end_req(struct request *req) 430 { 431 blk_status_t status = nvme_error_status(nvme_req(req)->status); 432 433 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 434 if (blk_rq_is_passthrough(req)) 435 nvme_log_err_passthru(req); 436 else 437 nvme_log_error(req); 438 } 439 __nvme_end_req(req); 440 blk_mq_end_request(req, status); 441 } 442 443 void nvme_complete_rq(struct request *req) 444 { 445 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 446 447 trace_nvme_complete_rq(req); 448 nvme_cleanup_cmd(req); 449 450 /* 451 * Completions of long-running commands should not be able to 452 * defer sending of periodic keep alives, since the controller 453 * may have completed processing such commands a long time ago 454 * (arbitrarily close to command submission time). 455 * req->deadline - req->timeout is the command submission time 456 * in jiffies. 457 */ 458 if (ctrl->kas && 459 req->deadline - req->timeout >= ctrl->ka_last_check_time) 460 ctrl->comp_seen = true; 461 462 switch (nvme_decide_disposition(req)) { 463 case COMPLETE: 464 nvme_end_req(req); 465 return; 466 case RETRY: 467 nvme_retry_req(req); 468 return; 469 case FAILOVER: 470 nvme_failover_req(req); 471 return; 472 case AUTHENTICATE: 473 #ifdef CONFIG_NVME_HOST_AUTH 474 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 475 nvme_retry_req(req); 476 #else 477 nvme_end_req(req); 478 #endif 479 return; 480 } 481 } 482 EXPORT_SYMBOL_GPL(nvme_complete_rq); 483 484 void nvme_complete_batch_req(struct request *req) 485 { 486 trace_nvme_complete_rq(req); 487 nvme_cleanup_cmd(req); 488 __nvme_end_req(req); 489 } 490 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 491 492 /* 493 * Called to unwind from ->queue_rq on a failed command submission so that the 494 * multipathing code gets called to potentially failover to another path. 495 * The caller needs to unwind all transport specific resource allocations and 496 * must return propagate the return value. 497 */ 498 blk_status_t nvme_host_path_error(struct request *req) 499 { 500 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 501 blk_mq_set_request_complete(req); 502 nvme_complete_rq(req); 503 return BLK_STS_OK; 504 } 505 EXPORT_SYMBOL_GPL(nvme_host_path_error); 506 507 bool nvme_cancel_request(struct request *req, void *data) 508 { 509 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 510 "Cancelling I/O %d", req->tag); 511 512 /* don't abort one completed or idle request */ 513 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 514 return true; 515 516 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 517 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 518 blk_mq_complete_request(req); 519 return true; 520 } 521 EXPORT_SYMBOL_GPL(nvme_cancel_request); 522 523 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 524 { 525 if (ctrl->tagset) { 526 blk_mq_tagset_busy_iter(ctrl->tagset, 527 nvme_cancel_request, ctrl); 528 blk_mq_tagset_wait_completed_request(ctrl->tagset); 529 } 530 } 531 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 532 533 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 534 { 535 if (ctrl->admin_tagset) { 536 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 537 nvme_cancel_request, ctrl); 538 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 539 } 540 } 541 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 542 543 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 544 enum nvme_ctrl_state new_state) 545 { 546 enum nvme_ctrl_state old_state; 547 unsigned long flags; 548 bool changed = false; 549 550 spin_lock_irqsave(&ctrl->lock, flags); 551 552 old_state = nvme_ctrl_state(ctrl); 553 switch (new_state) { 554 case NVME_CTRL_LIVE: 555 switch (old_state) { 556 case NVME_CTRL_NEW: 557 case NVME_CTRL_RESETTING: 558 case NVME_CTRL_CONNECTING: 559 changed = true; 560 fallthrough; 561 default: 562 break; 563 } 564 break; 565 case NVME_CTRL_RESETTING: 566 switch (old_state) { 567 case NVME_CTRL_NEW: 568 case NVME_CTRL_LIVE: 569 changed = true; 570 fallthrough; 571 default: 572 break; 573 } 574 break; 575 case NVME_CTRL_CONNECTING: 576 switch (old_state) { 577 case NVME_CTRL_NEW: 578 case NVME_CTRL_RESETTING: 579 changed = true; 580 fallthrough; 581 default: 582 break; 583 } 584 break; 585 case NVME_CTRL_DELETING: 586 switch (old_state) { 587 case NVME_CTRL_LIVE: 588 case NVME_CTRL_RESETTING: 589 case NVME_CTRL_CONNECTING: 590 changed = true; 591 fallthrough; 592 default: 593 break; 594 } 595 break; 596 case NVME_CTRL_DELETING_NOIO: 597 switch (old_state) { 598 case NVME_CTRL_DELETING: 599 case NVME_CTRL_DEAD: 600 changed = true; 601 fallthrough; 602 default: 603 break; 604 } 605 break; 606 case NVME_CTRL_DEAD: 607 switch (old_state) { 608 case NVME_CTRL_DELETING: 609 changed = true; 610 fallthrough; 611 default: 612 break; 613 } 614 break; 615 default: 616 break; 617 } 618 619 if (changed) { 620 WRITE_ONCE(ctrl->state, new_state); 621 wake_up_all(&ctrl->state_wq); 622 } 623 624 spin_unlock_irqrestore(&ctrl->lock, flags); 625 if (!changed) 626 return false; 627 628 if (new_state == NVME_CTRL_LIVE) { 629 if (old_state == NVME_CTRL_CONNECTING) 630 nvme_stop_failfast_work(ctrl); 631 nvme_kick_requeue_lists(ctrl); 632 } else if (new_state == NVME_CTRL_CONNECTING && 633 old_state == NVME_CTRL_RESETTING) { 634 nvme_start_failfast_work(ctrl); 635 } 636 return changed; 637 } 638 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 639 640 /* 641 * Waits for the controller state to be resetting, or returns false if it is 642 * not possible to ever transition to that state. 643 */ 644 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 645 { 646 wait_event(ctrl->state_wq, 647 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 648 nvme_state_terminal(ctrl)); 649 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 650 } 651 EXPORT_SYMBOL_GPL(nvme_wait_reset); 652 653 static void nvme_free_ns_head(struct kref *ref) 654 { 655 struct nvme_ns_head *head = 656 container_of(ref, struct nvme_ns_head, ref); 657 658 nvme_mpath_remove_disk(head); 659 ida_free(&head->subsys->ns_ida, head->instance); 660 cleanup_srcu_struct(&head->srcu); 661 nvme_put_subsystem(head->subsys); 662 kfree(head); 663 } 664 665 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 666 { 667 return kref_get_unless_zero(&head->ref); 668 } 669 670 void nvme_put_ns_head(struct nvme_ns_head *head) 671 { 672 kref_put(&head->ref, nvme_free_ns_head); 673 } 674 675 static void nvme_free_ns(struct kref *kref) 676 { 677 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 678 679 put_disk(ns->disk); 680 nvme_put_ns_head(ns->head); 681 nvme_put_ctrl(ns->ctrl); 682 kfree(ns); 683 } 684 685 bool nvme_get_ns(struct nvme_ns *ns) 686 { 687 return kref_get_unless_zero(&ns->kref); 688 } 689 690 void nvme_put_ns(struct nvme_ns *ns) 691 { 692 kref_put(&ns->kref, nvme_free_ns); 693 } 694 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 695 696 static inline void nvme_clear_nvme_request(struct request *req) 697 { 698 nvme_req(req)->status = 0; 699 nvme_req(req)->retries = 0; 700 nvme_req(req)->flags = 0; 701 req->rq_flags |= RQF_DONTPREP; 702 } 703 704 /* initialize a passthrough request */ 705 void nvme_init_request(struct request *req, struct nvme_command *cmd) 706 { 707 struct nvme_request *nr = nvme_req(req); 708 bool logging_enabled; 709 710 if (req->q->queuedata) { 711 struct nvme_ns *ns = req->q->disk->private_data; 712 713 logging_enabled = ns->head->passthru_err_log_enabled; 714 req->timeout = NVME_IO_TIMEOUT; 715 } else { /* no queuedata implies admin queue */ 716 logging_enabled = nr->ctrl->passthru_err_log_enabled; 717 req->timeout = NVME_ADMIN_TIMEOUT; 718 } 719 720 if (!logging_enabled) 721 req->rq_flags |= RQF_QUIET; 722 723 /* passthru commands should let the driver set the SGL flags */ 724 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 725 726 req->cmd_flags |= REQ_FAILFAST_DRIVER; 727 if (req->mq_hctx->type == HCTX_TYPE_POLL) 728 req->cmd_flags |= REQ_POLLED; 729 nvme_clear_nvme_request(req); 730 memcpy(nr->cmd, cmd, sizeof(*cmd)); 731 } 732 EXPORT_SYMBOL_GPL(nvme_init_request); 733 734 /* 735 * For something we're not in a state to send to the device the default action 736 * is to busy it and retry it after the controller state is recovered. However, 737 * if the controller is deleting or if anything is marked for failfast or 738 * nvme multipath it is immediately failed. 739 * 740 * Note: commands used to initialize the controller will be marked for failfast. 741 * Note: nvme cli/ioctl commands are marked for failfast. 742 */ 743 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 744 struct request *rq) 745 { 746 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 747 748 if (state != NVME_CTRL_DELETING_NOIO && 749 state != NVME_CTRL_DELETING && 750 state != NVME_CTRL_DEAD && 751 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 752 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 753 return BLK_STS_RESOURCE; 754 return nvme_host_path_error(rq); 755 } 756 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 757 758 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 759 bool queue_live, enum nvme_ctrl_state state) 760 { 761 struct nvme_request *req = nvme_req(rq); 762 763 /* 764 * currently we have a problem sending passthru commands 765 * on the admin_q if the controller is not LIVE because we can't 766 * make sure that they are going out after the admin connect, 767 * controller enable and/or other commands in the initialization 768 * sequence. until the controller will be LIVE, fail with 769 * BLK_STS_RESOURCE so that they will be rescheduled. 770 */ 771 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 772 return false; 773 774 if (ctrl->ops->flags & NVME_F_FABRICS) { 775 /* 776 * Only allow commands on a live queue, except for the connect 777 * command, which is require to set the queue live in the 778 * appropinquate states. 779 */ 780 switch (state) { 781 case NVME_CTRL_CONNECTING: 782 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 783 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 784 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 785 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 786 return true; 787 break; 788 default: 789 break; 790 case NVME_CTRL_DEAD: 791 return false; 792 } 793 } 794 795 return queue_live; 796 } 797 EXPORT_SYMBOL_GPL(__nvme_check_ready); 798 799 static inline void nvme_setup_flush(struct nvme_ns *ns, 800 struct nvme_command *cmnd) 801 { 802 memset(cmnd, 0, sizeof(*cmnd)); 803 cmnd->common.opcode = nvme_cmd_flush; 804 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 805 } 806 807 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 808 struct nvme_command *cmnd) 809 { 810 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 811 struct nvme_dsm_range *range; 812 struct bio *bio; 813 814 /* 815 * Some devices do not consider the DSM 'Number of Ranges' field when 816 * determining how much data to DMA. Always allocate memory for maximum 817 * number of segments to prevent device reading beyond end of buffer. 818 */ 819 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 820 821 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 822 if (!range) { 823 /* 824 * If we fail allocation our range, fallback to the controller 825 * discard page. If that's also busy, it's safe to return 826 * busy, as we know we can make progress once that's freed. 827 */ 828 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 829 return BLK_STS_RESOURCE; 830 831 range = page_address(ns->ctrl->discard_page); 832 } 833 834 if (queue_max_discard_segments(req->q) == 1) { 835 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 836 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 837 838 range[0].cattr = cpu_to_le32(0); 839 range[0].nlb = cpu_to_le32(nlb); 840 range[0].slba = cpu_to_le64(slba); 841 n = 1; 842 } else { 843 __rq_for_each_bio(bio, req) { 844 u64 slba = nvme_sect_to_lba(ns->head, 845 bio->bi_iter.bi_sector); 846 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 847 848 if (n < segments) { 849 range[n].cattr = cpu_to_le32(0); 850 range[n].nlb = cpu_to_le32(nlb); 851 range[n].slba = cpu_to_le64(slba); 852 } 853 n++; 854 } 855 } 856 857 if (WARN_ON_ONCE(n != segments)) { 858 if (virt_to_page(range) == ns->ctrl->discard_page) 859 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 860 else 861 kfree(range); 862 return BLK_STS_IOERR; 863 } 864 865 memset(cmnd, 0, sizeof(*cmnd)); 866 cmnd->dsm.opcode = nvme_cmd_dsm; 867 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 868 cmnd->dsm.nr = cpu_to_le32(segments - 1); 869 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 870 871 bvec_set_virt(&req->special_vec, range, alloc_size); 872 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 873 874 return BLK_STS_OK; 875 } 876 877 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 878 struct request *req) 879 { 880 u32 upper, lower; 881 u64 ref48; 882 883 /* both rw and write zeroes share the same reftag format */ 884 switch (ns->head->guard_type) { 885 case NVME_NVM_NS_16B_GUARD: 886 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 887 break; 888 case NVME_NVM_NS_64B_GUARD: 889 ref48 = ext_pi_ref_tag(req); 890 lower = lower_32_bits(ref48); 891 upper = upper_32_bits(ref48); 892 893 cmnd->rw.reftag = cpu_to_le32(lower); 894 cmnd->rw.cdw3 = cpu_to_le32(upper); 895 break; 896 default: 897 break; 898 } 899 } 900 901 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 902 struct request *req, struct nvme_command *cmnd) 903 { 904 memset(cmnd, 0, sizeof(*cmnd)); 905 906 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 907 return nvme_setup_discard(ns, req, cmnd); 908 909 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 910 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 911 cmnd->write_zeroes.slba = 912 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 913 cmnd->write_zeroes.length = 914 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 915 916 if (!(req->cmd_flags & REQ_NOUNMAP) && 917 (ns->head->features & NVME_NS_DEAC)) 918 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 919 920 if (nvme_ns_has_pi(ns->head)) { 921 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 922 923 switch (ns->head->pi_type) { 924 case NVME_NS_DPS_PI_TYPE1: 925 case NVME_NS_DPS_PI_TYPE2: 926 nvme_set_ref_tag(ns, cmnd, req); 927 break; 928 } 929 } 930 931 return BLK_STS_OK; 932 } 933 934 /* 935 * NVMe does not support a dedicated command to issue an atomic write. A write 936 * which does adhere to the device atomic limits will silently be executed 937 * non-atomically. The request issuer should ensure that the write is within 938 * the queue atomic writes limits, but just validate this in case it is not. 939 */ 940 static bool nvme_valid_atomic_write(struct request *req) 941 { 942 struct request_queue *q = req->q; 943 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); 944 945 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) 946 return false; 947 948 if (boundary_bytes) { 949 u64 mask = boundary_bytes - 1, imask = ~mask; 950 u64 start = blk_rq_pos(req) << SECTOR_SHIFT; 951 u64 end = start + blk_rq_bytes(req) - 1; 952 953 /* If greater then must be crossing a boundary */ 954 if (blk_rq_bytes(req) > boundary_bytes) 955 return false; 956 957 if ((start & imask) != (end & imask)) 958 return false; 959 } 960 961 return true; 962 } 963 964 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 965 struct request *req, struct nvme_command *cmnd, 966 enum nvme_opcode op) 967 { 968 u16 control = 0; 969 u32 dsmgmt = 0; 970 971 if (req->cmd_flags & REQ_FUA) 972 control |= NVME_RW_FUA; 973 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 974 control |= NVME_RW_LR; 975 976 if (req->cmd_flags & REQ_RAHEAD) 977 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 978 979 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) 980 return BLK_STS_INVAL; 981 982 cmnd->rw.opcode = op; 983 cmnd->rw.flags = 0; 984 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 985 cmnd->rw.cdw2 = 0; 986 cmnd->rw.cdw3 = 0; 987 cmnd->rw.metadata = 0; 988 cmnd->rw.slba = 989 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 990 cmnd->rw.length = 991 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 992 cmnd->rw.reftag = 0; 993 cmnd->rw.lbat = 0; 994 cmnd->rw.lbatm = 0; 995 996 if (ns->head->ms) { 997 /* 998 * If formated with metadata, the block layer always provides a 999 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 1000 * we enable the PRACT bit for protection information or set the 1001 * namespace capacity to zero to prevent any I/O. 1002 */ 1003 if (!blk_integrity_rq(req)) { 1004 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 1005 return BLK_STS_NOTSUPP; 1006 control |= NVME_RW_PRINFO_PRACT; 1007 } 1008 1009 switch (ns->head->pi_type) { 1010 case NVME_NS_DPS_PI_TYPE3: 1011 control |= NVME_RW_PRINFO_PRCHK_GUARD; 1012 break; 1013 case NVME_NS_DPS_PI_TYPE1: 1014 case NVME_NS_DPS_PI_TYPE2: 1015 control |= NVME_RW_PRINFO_PRCHK_GUARD | 1016 NVME_RW_PRINFO_PRCHK_REF; 1017 if (op == nvme_cmd_zone_append) 1018 control |= NVME_RW_APPEND_PIREMAP; 1019 nvme_set_ref_tag(ns, cmnd, req); 1020 break; 1021 } 1022 } 1023 1024 cmnd->rw.control = cpu_to_le16(control); 1025 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 1026 return 0; 1027 } 1028 1029 void nvme_cleanup_cmd(struct request *req) 1030 { 1031 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 1032 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 1033 1034 if (req->special_vec.bv_page == ctrl->discard_page) 1035 clear_bit_unlock(0, &ctrl->discard_page_busy); 1036 else 1037 kfree(bvec_virt(&req->special_vec)); 1038 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; 1039 } 1040 } 1041 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1042 1043 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1044 { 1045 struct nvme_command *cmd = nvme_req(req)->cmd; 1046 blk_status_t ret = BLK_STS_OK; 1047 1048 if (!(req->rq_flags & RQF_DONTPREP)) 1049 nvme_clear_nvme_request(req); 1050 1051 switch (req_op(req)) { 1052 case REQ_OP_DRV_IN: 1053 case REQ_OP_DRV_OUT: 1054 /* these are setup prior to execution in nvme_init_request() */ 1055 break; 1056 case REQ_OP_FLUSH: 1057 nvme_setup_flush(ns, cmd); 1058 break; 1059 case REQ_OP_ZONE_RESET_ALL: 1060 case REQ_OP_ZONE_RESET: 1061 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1062 break; 1063 case REQ_OP_ZONE_OPEN: 1064 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1065 break; 1066 case REQ_OP_ZONE_CLOSE: 1067 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1068 break; 1069 case REQ_OP_ZONE_FINISH: 1070 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1071 break; 1072 case REQ_OP_WRITE_ZEROES: 1073 ret = nvme_setup_write_zeroes(ns, req, cmd); 1074 break; 1075 case REQ_OP_DISCARD: 1076 ret = nvme_setup_discard(ns, req, cmd); 1077 break; 1078 case REQ_OP_READ: 1079 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1080 break; 1081 case REQ_OP_WRITE: 1082 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1083 break; 1084 case REQ_OP_ZONE_APPEND: 1085 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1086 break; 1087 default: 1088 WARN_ON_ONCE(1); 1089 return BLK_STS_IOERR; 1090 } 1091 1092 cmd->common.command_id = nvme_cid(req); 1093 trace_nvme_setup_cmd(req, cmd); 1094 return ret; 1095 } 1096 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1097 1098 /* 1099 * Return values: 1100 * 0: success 1101 * >0: nvme controller's cqe status response 1102 * <0: kernel error in lieu of controller response 1103 */ 1104 int nvme_execute_rq(struct request *rq, bool at_head) 1105 { 1106 blk_status_t status; 1107 1108 status = blk_execute_rq(rq, at_head); 1109 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1110 return -EINTR; 1111 if (nvme_req(rq)->status) 1112 return nvme_req(rq)->status; 1113 return blk_status_to_errno(status); 1114 } 1115 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1116 1117 /* 1118 * Returns 0 on success. If the result is negative, it's a Linux error code; 1119 * if the result is positive, it's an NVM Express status code 1120 */ 1121 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1122 union nvme_result *result, void *buffer, unsigned bufflen, 1123 int qid, nvme_submit_flags_t flags) 1124 { 1125 struct request *req; 1126 int ret; 1127 blk_mq_req_flags_t blk_flags = 0; 1128 1129 if (flags & NVME_SUBMIT_NOWAIT) 1130 blk_flags |= BLK_MQ_REQ_NOWAIT; 1131 if (flags & NVME_SUBMIT_RESERVED) 1132 blk_flags |= BLK_MQ_REQ_RESERVED; 1133 if (qid == NVME_QID_ANY) 1134 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1135 else 1136 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1137 qid - 1); 1138 1139 if (IS_ERR(req)) 1140 return PTR_ERR(req); 1141 nvme_init_request(req, cmd); 1142 if (flags & NVME_SUBMIT_RETRY) 1143 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1144 1145 if (buffer && bufflen) { 1146 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1147 if (ret) 1148 goto out; 1149 } 1150 1151 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1152 if (result && ret >= 0) 1153 *result = nvme_req(req)->result; 1154 out: 1155 blk_mq_free_request(req); 1156 return ret; 1157 } 1158 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1159 1160 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1161 void *buffer, unsigned bufflen) 1162 { 1163 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1164 NVME_QID_ANY, 0); 1165 } 1166 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1167 1168 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1169 { 1170 u32 effects = 0; 1171 1172 if (ns) { 1173 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1174 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1175 dev_warn_once(ctrl->device, 1176 "IO command:%02x has unusual effects:%08x\n", 1177 opcode, effects); 1178 1179 /* 1180 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1181 * which would deadlock when done on an I/O command. Note that 1182 * We already warn about an unusual effect above. 1183 */ 1184 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1185 } else { 1186 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1187 1188 /* Ignore execution restrictions if any relaxation bits are set */ 1189 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1190 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1191 } 1192 1193 return effects; 1194 } 1195 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1196 1197 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1198 { 1199 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1200 1201 /* 1202 * For simplicity, IO to all namespaces is quiesced even if the command 1203 * effects say only one namespace is affected. 1204 */ 1205 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1206 mutex_lock(&ctrl->scan_lock); 1207 mutex_lock(&ctrl->subsys->lock); 1208 nvme_mpath_start_freeze(ctrl->subsys); 1209 nvme_mpath_wait_freeze(ctrl->subsys); 1210 nvme_start_freeze(ctrl); 1211 nvme_wait_freeze(ctrl); 1212 } 1213 return effects; 1214 } 1215 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1216 1217 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1218 struct nvme_command *cmd, int status) 1219 { 1220 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1221 nvme_unfreeze(ctrl); 1222 nvme_mpath_unfreeze(ctrl->subsys); 1223 mutex_unlock(&ctrl->subsys->lock); 1224 mutex_unlock(&ctrl->scan_lock); 1225 } 1226 if (effects & NVME_CMD_EFFECTS_CCC) { 1227 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1228 &ctrl->flags)) { 1229 dev_info(ctrl->device, 1230 "controller capabilities changed, reset may be required to take effect.\n"); 1231 } 1232 } 1233 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1234 nvme_queue_scan(ctrl); 1235 flush_work(&ctrl->scan_work); 1236 } 1237 if (ns) 1238 return; 1239 1240 switch (cmd->common.opcode) { 1241 case nvme_admin_set_features: 1242 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1243 case NVME_FEAT_KATO: 1244 /* 1245 * Keep alive commands interval on the host should be 1246 * updated when KATO is modified by Set Features 1247 * commands. 1248 */ 1249 if (!status) 1250 nvme_update_keep_alive(ctrl, cmd); 1251 break; 1252 default: 1253 break; 1254 } 1255 break; 1256 default: 1257 break; 1258 } 1259 } 1260 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1261 1262 /* 1263 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1264 * 1265 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1266 * accounting for transport roundtrip times [..]. 1267 */ 1268 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1269 { 1270 unsigned long delay = ctrl->kato * HZ / 2; 1271 1272 /* 1273 * When using Traffic Based Keep Alive, we need to run 1274 * nvme_keep_alive_work at twice the normal frequency, as one 1275 * command completion can postpone sending a keep alive command 1276 * by up to twice the delay between runs. 1277 */ 1278 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1279 delay /= 2; 1280 return delay; 1281 } 1282 1283 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1284 { 1285 unsigned long now = jiffies; 1286 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1287 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1288 1289 if (time_after(now, ka_next_check_tm)) 1290 delay = 0; 1291 else 1292 delay = ka_next_check_tm - now; 1293 1294 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1295 } 1296 1297 static void nvme_keep_alive_finish(struct request *rq, 1298 blk_status_t status, struct nvme_ctrl *ctrl) 1299 { 1300 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1301 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1302 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 1303 1304 /* 1305 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1306 * at the desired frequency. 1307 */ 1308 if (rtt <= delay) { 1309 delay -= rtt; 1310 } else { 1311 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1312 jiffies_to_msecs(rtt)); 1313 delay = 0; 1314 } 1315 1316 if (status) { 1317 dev_err(ctrl->device, 1318 "failed nvme_keep_alive_end_io error=%d\n", 1319 status); 1320 return; 1321 } 1322 1323 ctrl->ka_last_check_time = jiffies; 1324 ctrl->comp_seen = false; 1325 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING) 1326 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1327 } 1328 1329 static void nvme_keep_alive_work(struct work_struct *work) 1330 { 1331 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1332 struct nvme_ctrl, ka_work); 1333 bool comp_seen = ctrl->comp_seen; 1334 struct request *rq; 1335 blk_status_t status; 1336 1337 ctrl->ka_last_check_time = jiffies; 1338 1339 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1340 dev_dbg(ctrl->device, 1341 "reschedule traffic based keep-alive timer\n"); 1342 ctrl->comp_seen = false; 1343 nvme_queue_keep_alive_work(ctrl); 1344 return; 1345 } 1346 1347 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1348 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1349 if (IS_ERR(rq)) { 1350 /* allocation failure, reset the controller */ 1351 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1352 nvme_reset_ctrl(ctrl); 1353 return; 1354 } 1355 nvme_init_request(rq, &ctrl->ka_cmd); 1356 1357 rq->timeout = ctrl->kato * HZ; 1358 status = blk_execute_rq(rq, false); 1359 nvme_keep_alive_finish(rq, status, ctrl); 1360 blk_mq_free_request(rq); 1361 } 1362 1363 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1364 { 1365 if (unlikely(ctrl->kato == 0)) 1366 return; 1367 1368 nvme_queue_keep_alive_work(ctrl); 1369 } 1370 1371 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1372 { 1373 if (unlikely(ctrl->kato == 0)) 1374 return; 1375 1376 cancel_delayed_work_sync(&ctrl->ka_work); 1377 } 1378 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1379 1380 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1381 struct nvme_command *cmd) 1382 { 1383 unsigned int new_kato = 1384 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1385 1386 dev_info(ctrl->device, 1387 "keep alive interval updated from %u ms to %u ms\n", 1388 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1389 1390 nvme_stop_keep_alive(ctrl); 1391 ctrl->kato = new_kato; 1392 nvme_start_keep_alive(ctrl); 1393 } 1394 1395 /* 1396 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1397 * flag, thus sending any new CNS opcodes has a big chance of not working. 1398 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1399 * (but not for any later version). 1400 */ 1401 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1402 { 1403 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1404 return ctrl->vs < NVME_VS(1, 2, 0); 1405 return ctrl->vs < NVME_VS(1, 1, 0); 1406 } 1407 1408 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1409 { 1410 struct nvme_command c = { }; 1411 int error; 1412 1413 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1414 c.identify.opcode = nvme_admin_identify; 1415 c.identify.cns = NVME_ID_CNS_CTRL; 1416 1417 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1418 if (!*id) 1419 return -ENOMEM; 1420 1421 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1422 sizeof(struct nvme_id_ctrl)); 1423 if (error) { 1424 kfree(*id); 1425 *id = NULL; 1426 } 1427 return error; 1428 } 1429 1430 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1431 struct nvme_ns_id_desc *cur, bool *csi_seen) 1432 { 1433 const char *warn_str = "ctrl returned bogus length:"; 1434 void *data = cur; 1435 1436 switch (cur->nidt) { 1437 case NVME_NIDT_EUI64: 1438 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1439 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1440 warn_str, cur->nidl); 1441 return -1; 1442 } 1443 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1444 return NVME_NIDT_EUI64_LEN; 1445 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1446 return NVME_NIDT_EUI64_LEN; 1447 case NVME_NIDT_NGUID: 1448 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1449 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1450 warn_str, cur->nidl); 1451 return -1; 1452 } 1453 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1454 return NVME_NIDT_NGUID_LEN; 1455 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1456 return NVME_NIDT_NGUID_LEN; 1457 case NVME_NIDT_UUID: 1458 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1459 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1460 warn_str, cur->nidl); 1461 return -1; 1462 } 1463 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1464 return NVME_NIDT_UUID_LEN; 1465 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1466 return NVME_NIDT_UUID_LEN; 1467 case NVME_NIDT_CSI: 1468 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1469 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1470 warn_str, cur->nidl); 1471 return -1; 1472 } 1473 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1474 *csi_seen = true; 1475 return NVME_NIDT_CSI_LEN; 1476 default: 1477 /* Skip unknown types */ 1478 return cur->nidl; 1479 } 1480 } 1481 1482 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1483 struct nvme_ns_info *info) 1484 { 1485 struct nvme_command c = { }; 1486 bool csi_seen = false; 1487 int status, pos, len; 1488 void *data; 1489 1490 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1491 return 0; 1492 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1493 return 0; 1494 1495 c.identify.opcode = nvme_admin_identify; 1496 c.identify.nsid = cpu_to_le32(info->nsid); 1497 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1498 1499 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1500 if (!data) 1501 return -ENOMEM; 1502 1503 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1504 NVME_IDENTIFY_DATA_SIZE); 1505 if (status) { 1506 dev_warn(ctrl->device, 1507 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1508 info->nsid, status); 1509 goto free_data; 1510 } 1511 1512 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1513 struct nvme_ns_id_desc *cur = data + pos; 1514 1515 if (cur->nidl == 0) 1516 break; 1517 1518 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1519 if (len < 0) 1520 break; 1521 1522 len += sizeof(*cur); 1523 } 1524 1525 if (nvme_multi_css(ctrl) && !csi_seen) { 1526 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1527 info->nsid); 1528 status = -EINVAL; 1529 } 1530 1531 free_data: 1532 kfree(data); 1533 return status; 1534 } 1535 1536 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1537 struct nvme_id_ns **id) 1538 { 1539 struct nvme_command c = { }; 1540 int error; 1541 1542 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1543 c.identify.opcode = nvme_admin_identify; 1544 c.identify.nsid = cpu_to_le32(nsid); 1545 c.identify.cns = NVME_ID_CNS_NS; 1546 1547 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1548 if (!*id) 1549 return -ENOMEM; 1550 1551 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1552 if (error) { 1553 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1554 kfree(*id); 1555 *id = NULL; 1556 } 1557 return error; 1558 } 1559 1560 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1561 struct nvme_ns_info *info) 1562 { 1563 struct nvme_ns_ids *ids = &info->ids; 1564 struct nvme_id_ns *id; 1565 int ret; 1566 1567 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1568 if (ret) 1569 return ret; 1570 1571 if (id->ncap == 0) { 1572 /* namespace not allocated or attached */ 1573 info->is_removed = true; 1574 ret = -ENODEV; 1575 goto error; 1576 } 1577 1578 info->anagrpid = id->anagrpid; 1579 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1580 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1581 info->is_ready = true; 1582 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1583 dev_info(ctrl->device, 1584 "Ignoring bogus Namespace Identifiers\n"); 1585 } else { 1586 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1587 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1588 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1589 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1590 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1591 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1592 } 1593 1594 error: 1595 kfree(id); 1596 return ret; 1597 } 1598 1599 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1600 struct nvme_ns_info *info) 1601 { 1602 struct nvme_id_ns_cs_indep *id; 1603 struct nvme_command c = { 1604 .identify.opcode = nvme_admin_identify, 1605 .identify.nsid = cpu_to_le32(info->nsid), 1606 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1607 }; 1608 int ret; 1609 1610 id = kmalloc(sizeof(*id), GFP_KERNEL); 1611 if (!id) 1612 return -ENOMEM; 1613 1614 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1615 if (!ret) { 1616 info->anagrpid = id->anagrpid; 1617 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1618 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1619 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1620 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL; 1621 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT; 1622 } 1623 kfree(id); 1624 return ret; 1625 } 1626 1627 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1628 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1629 { 1630 union nvme_result res = { 0 }; 1631 struct nvme_command c = { }; 1632 int ret; 1633 1634 c.features.opcode = op; 1635 c.features.fid = cpu_to_le32(fid); 1636 c.features.dword11 = cpu_to_le32(dword11); 1637 1638 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1639 buffer, buflen, NVME_QID_ANY, 0); 1640 if (ret >= 0 && result) 1641 *result = le32_to_cpu(res.u32); 1642 return ret; 1643 } 1644 1645 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1646 unsigned int dword11, void *buffer, size_t buflen, 1647 u32 *result) 1648 { 1649 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1650 buflen, result); 1651 } 1652 EXPORT_SYMBOL_GPL(nvme_set_features); 1653 1654 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1655 unsigned int dword11, void *buffer, size_t buflen, 1656 u32 *result) 1657 { 1658 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1659 buflen, result); 1660 } 1661 EXPORT_SYMBOL_GPL(nvme_get_features); 1662 1663 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1664 { 1665 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1666 u32 result; 1667 int status, nr_io_queues; 1668 1669 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1670 &result); 1671 if (status < 0) 1672 return status; 1673 1674 /* 1675 * Degraded controllers might return an error when setting the queue 1676 * count. We still want to be able to bring them online and offer 1677 * access to the admin queue, as that might be only way to fix them up. 1678 */ 1679 if (status > 0) { 1680 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1681 *count = 0; 1682 } else { 1683 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1684 *count = min(*count, nr_io_queues); 1685 } 1686 1687 return 0; 1688 } 1689 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1690 1691 #define NVME_AEN_SUPPORTED \ 1692 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1693 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1694 1695 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1696 { 1697 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1698 int status; 1699 1700 if (!supported_aens) 1701 return; 1702 1703 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1704 NULL, 0, &result); 1705 if (status) 1706 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1707 supported_aens); 1708 1709 queue_work(nvme_wq, &ctrl->async_event_work); 1710 } 1711 1712 static int nvme_ns_open(struct nvme_ns *ns) 1713 { 1714 1715 /* should never be called due to GENHD_FL_HIDDEN */ 1716 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1717 goto fail; 1718 if (!nvme_get_ns(ns)) 1719 goto fail; 1720 if (!try_module_get(ns->ctrl->ops->module)) 1721 goto fail_put_ns; 1722 1723 return 0; 1724 1725 fail_put_ns: 1726 nvme_put_ns(ns); 1727 fail: 1728 return -ENXIO; 1729 } 1730 1731 static void nvme_ns_release(struct nvme_ns *ns) 1732 { 1733 1734 module_put(ns->ctrl->ops->module); 1735 nvme_put_ns(ns); 1736 } 1737 1738 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1739 { 1740 return nvme_ns_open(disk->private_data); 1741 } 1742 1743 static void nvme_release(struct gendisk *disk) 1744 { 1745 nvme_ns_release(disk->private_data); 1746 } 1747 1748 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1749 { 1750 /* some standard values */ 1751 geo->heads = 1 << 6; 1752 geo->sectors = 1 << 5; 1753 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1754 return 0; 1755 } 1756 1757 static bool nvme_init_integrity(struct nvme_ns_head *head, 1758 struct queue_limits *lim, struct nvme_ns_info *info) 1759 { 1760 struct blk_integrity *bi = &lim->integrity; 1761 1762 memset(bi, 0, sizeof(*bi)); 1763 1764 if (!head->ms) 1765 return true; 1766 1767 /* 1768 * PI can always be supported as we can ask the controller to simply 1769 * insert/strip it, which is not possible for other kinds of metadata. 1770 */ 1771 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1772 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1773 return nvme_ns_has_pi(head); 1774 1775 switch (head->pi_type) { 1776 case NVME_NS_DPS_PI_TYPE3: 1777 switch (head->guard_type) { 1778 case NVME_NVM_NS_16B_GUARD: 1779 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1780 bi->tag_size = sizeof(u16) + sizeof(u32); 1781 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1782 break; 1783 case NVME_NVM_NS_64B_GUARD: 1784 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1785 bi->tag_size = sizeof(u16) + 6; 1786 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1787 break; 1788 default: 1789 break; 1790 } 1791 break; 1792 case NVME_NS_DPS_PI_TYPE1: 1793 case NVME_NS_DPS_PI_TYPE2: 1794 switch (head->guard_type) { 1795 case NVME_NVM_NS_16B_GUARD: 1796 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1797 bi->tag_size = sizeof(u16); 1798 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1799 BLK_INTEGRITY_REF_TAG; 1800 break; 1801 case NVME_NVM_NS_64B_GUARD: 1802 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1803 bi->tag_size = sizeof(u16); 1804 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1805 BLK_INTEGRITY_REF_TAG; 1806 break; 1807 default: 1808 break; 1809 } 1810 break; 1811 default: 1812 break; 1813 } 1814 1815 bi->tuple_size = head->ms; 1816 bi->pi_offset = info->pi_offset; 1817 return true; 1818 } 1819 1820 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1821 { 1822 struct nvme_ctrl *ctrl = ns->ctrl; 1823 1824 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1825 lim->max_hw_discard_sectors = 1826 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1827 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1828 lim->max_hw_discard_sectors = UINT_MAX; 1829 else 1830 lim->max_hw_discard_sectors = 0; 1831 1832 lim->discard_granularity = lim->logical_block_size; 1833 1834 if (ctrl->dmrl) 1835 lim->max_discard_segments = ctrl->dmrl; 1836 else 1837 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1838 } 1839 1840 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1841 { 1842 return uuid_equal(&a->uuid, &b->uuid) && 1843 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1844 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1845 a->csi == b->csi; 1846 } 1847 1848 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1849 struct nvme_id_ns_nvm **nvmp) 1850 { 1851 struct nvme_command c = { 1852 .identify.opcode = nvme_admin_identify, 1853 .identify.nsid = cpu_to_le32(nsid), 1854 .identify.cns = NVME_ID_CNS_CS_NS, 1855 .identify.csi = NVME_CSI_NVM, 1856 }; 1857 struct nvme_id_ns_nvm *nvm; 1858 int ret; 1859 1860 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1861 if (!nvm) 1862 return -ENOMEM; 1863 1864 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1865 if (ret) 1866 kfree(nvm); 1867 else 1868 *nvmp = nvm; 1869 return ret; 1870 } 1871 1872 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1873 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1874 { 1875 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1876 u8 guard_type; 1877 1878 /* no support for storage tag formats right now */ 1879 if (nvme_elbaf_sts(elbaf)) 1880 return; 1881 1882 guard_type = nvme_elbaf_guard_type(elbaf); 1883 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && 1884 guard_type == NVME_NVM_NS_QTYPE_GUARD) 1885 guard_type = nvme_elbaf_qualified_guard_type(elbaf); 1886 1887 head->guard_type = guard_type; 1888 switch (head->guard_type) { 1889 case NVME_NVM_NS_64B_GUARD: 1890 head->pi_size = sizeof(struct crc64_pi_tuple); 1891 break; 1892 case NVME_NVM_NS_16B_GUARD: 1893 head->pi_size = sizeof(struct t10_pi_tuple); 1894 break; 1895 default: 1896 break; 1897 } 1898 } 1899 1900 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1901 struct nvme_ns_head *head, struct nvme_id_ns *id, 1902 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) 1903 { 1904 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1905 head->pi_type = 0; 1906 head->pi_size = 0; 1907 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1908 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1909 return; 1910 1911 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1912 nvme_configure_pi_elbas(head, id, nvm); 1913 } else { 1914 head->pi_size = sizeof(struct t10_pi_tuple); 1915 head->guard_type = NVME_NVM_NS_16B_GUARD; 1916 } 1917 1918 if (head->pi_size && head->ms >= head->pi_size) 1919 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1920 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) 1921 info->pi_offset = head->ms - head->pi_size; 1922 1923 if (ctrl->ops->flags & NVME_F_FABRICS) { 1924 /* 1925 * The NVMe over Fabrics specification only supports metadata as 1926 * part of the extended data LBA. We rely on HCA/HBA support to 1927 * remap the separate metadata buffer from the block layer. 1928 */ 1929 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1930 return; 1931 1932 head->features |= NVME_NS_EXT_LBAS; 1933 1934 /* 1935 * The current fabrics transport drivers support namespace 1936 * metadata formats only if nvme_ns_has_pi() returns true. 1937 * Suppress support for all other formats so the namespace will 1938 * have a 0 capacity and not be usable through the block stack. 1939 * 1940 * Note, this check will need to be modified if any drivers 1941 * gain the ability to use other metadata formats. 1942 */ 1943 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1944 head->features |= NVME_NS_METADATA_SUPPORTED; 1945 } else { 1946 /* 1947 * For PCIe controllers, we can't easily remap the separate 1948 * metadata buffer from the block layer and thus require a 1949 * separate metadata buffer for block layer metadata/PI support. 1950 * We allow extended LBAs for the passthrough interface, though. 1951 */ 1952 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1953 head->features |= NVME_NS_EXT_LBAS; 1954 else 1955 head->features |= NVME_NS_METADATA_SUPPORTED; 1956 } 1957 } 1958 1959 1960 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, 1961 struct nvme_id_ns *id, struct queue_limits *lim, 1962 u32 bs, u32 atomic_bs) 1963 { 1964 unsigned int boundary = 0; 1965 1966 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { 1967 if (le16_to_cpu(id->nabspf)) 1968 boundary = (le16_to_cpu(id->nabspf) + 1) * bs; 1969 } 1970 lim->atomic_write_hw_max = atomic_bs; 1971 lim->atomic_write_hw_boundary = boundary; 1972 lim->atomic_write_hw_unit_min = bs; 1973 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); 1974 } 1975 1976 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 1977 { 1978 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 1979 } 1980 1981 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 1982 struct queue_limits *lim) 1983 { 1984 lim->max_hw_sectors = ctrl->max_hw_sectors; 1985 lim->max_segments = min_t(u32, USHRT_MAX, 1986 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 1987 lim->max_integrity_segments = ctrl->max_integrity_segments; 1988 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 1989 lim->max_segment_size = UINT_MAX; 1990 lim->dma_alignment = 3; 1991 } 1992 1993 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 1994 struct queue_limits *lim) 1995 { 1996 struct nvme_ns_head *head = ns->head; 1997 u32 bs = 1U << head->lba_shift; 1998 u32 atomic_bs, phys_bs, io_opt = 0; 1999 bool valid = true; 2000 2001 /* 2002 * The block layer can't support LBA sizes larger than the page size 2003 * or smaller than a sector size yet, so catch this early and don't 2004 * allow block I/O. 2005 */ 2006 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { 2007 bs = (1 << 9); 2008 valid = false; 2009 } 2010 2011 atomic_bs = phys_bs = bs; 2012 if (id->nabo == 0) { 2013 /* 2014 * Bit 1 indicates whether NAWUPF is defined for this namespace 2015 * and whether it should be used instead of AWUPF. If NAWUPF == 2016 * 0 then AWUPF must be used instead. 2017 */ 2018 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 2019 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2020 else 2021 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2022 2023 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); 2024 } 2025 2026 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2027 /* NPWG = Namespace Preferred Write Granularity */ 2028 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2029 /* NOWS = Namespace Optimal Write Size */ 2030 if (id->nows) 2031 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2032 } 2033 2034 /* 2035 * Linux filesystems assume writing a single physical block is 2036 * an atomic operation. Hence limit the physical block size to the 2037 * value of the Atomic Write Unit Power Fail parameter. 2038 */ 2039 lim->logical_block_size = bs; 2040 lim->physical_block_size = min(phys_bs, atomic_bs); 2041 lim->io_min = phys_bs; 2042 lim->io_opt = io_opt; 2043 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 2044 lim->max_write_zeroes_sectors = UINT_MAX; 2045 else 2046 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 2047 return valid; 2048 } 2049 2050 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 2051 { 2052 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 2053 } 2054 2055 static inline bool nvme_first_scan(struct gendisk *disk) 2056 { 2057 /* nvme_alloc_ns() scans the disk prior to adding it */ 2058 return !disk_live(disk); 2059 } 2060 2061 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2062 struct queue_limits *lim) 2063 { 2064 struct nvme_ctrl *ctrl = ns->ctrl; 2065 u32 iob; 2066 2067 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2068 is_power_of_2(ctrl->max_hw_sectors)) 2069 iob = ctrl->max_hw_sectors; 2070 else 2071 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2072 2073 if (!iob) 2074 return; 2075 2076 if (!is_power_of_2(iob)) { 2077 if (nvme_first_scan(ns->disk)) 2078 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2079 ns->disk->disk_name, iob); 2080 return; 2081 } 2082 2083 if (blk_queue_is_zoned(ns->disk->queue)) { 2084 if (nvme_first_scan(ns->disk)) 2085 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2086 ns->disk->disk_name); 2087 return; 2088 } 2089 2090 lim->chunk_sectors = iob; 2091 } 2092 2093 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2094 struct nvme_ns_info *info) 2095 { 2096 struct queue_limits lim; 2097 int ret; 2098 2099 blk_mq_freeze_queue(ns->disk->queue); 2100 lim = queue_limits_start_update(ns->disk->queue); 2101 nvme_set_ctrl_limits(ns->ctrl, &lim); 2102 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2103 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2104 blk_mq_unfreeze_queue(ns->disk->queue); 2105 2106 /* Hide the block-interface for these devices */ 2107 if (!ret) 2108 ret = -ENODEV; 2109 return ret; 2110 } 2111 2112 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2113 struct nvme_ns_info *info) 2114 { 2115 struct queue_limits lim; 2116 struct nvme_id_ns_nvm *nvm = NULL; 2117 struct nvme_zone_info zi = {}; 2118 struct nvme_id_ns *id; 2119 sector_t capacity; 2120 unsigned lbaf; 2121 int ret; 2122 2123 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2124 if (ret) 2125 return ret; 2126 2127 if (id->ncap == 0) { 2128 /* namespace not allocated or attached */ 2129 info->is_removed = true; 2130 ret = -ENXIO; 2131 goto out; 2132 } 2133 lbaf = nvme_lbaf_index(id->flbas); 2134 2135 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2136 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2137 if (ret < 0) 2138 goto out; 2139 } 2140 2141 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2142 ns->head->ids.csi == NVME_CSI_ZNS) { 2143 ret = nvme_query_zone_info(ns, lbaf, &zi); 2144 if (ret < 0) 2145 goto out; 2146 } 2147 2148 blk_mq_freeze_queue(ns->disk->queue); 2149 ns->head->lba_shift = id->lbaf[lbaf].ds; 2150 ns->head->nuse = le64_to_cpu(id->nuse); 2151 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2152 2153 lim = queue_limits_start_update(ns->disk->queue); 2154 nvme_set_ctrl_limits(ns->ctrl, &lim); 2155 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info); 2156 nvme_set_chunk_sectors(ns, id, &lim); 2157 if (!nvme_update_disk_info(ns, id, &lim)) 2158 capacity = 0; 2159 nvme_config_discard(ns, &lim); 2160 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2161 ns->head->ids.csi == NVME_CSI_ZNS) 2162 nvme_update_zone_info(ns, &lim, &zi); 2163 2164 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc) 2165 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2166 else 2167 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2168 2169 if (info->is_rotational) 2170 lim.features |= BLK_FEAT_ROTATIONAL; 2171 2172 /* 2173 * Register a metadata profile for PI, or the plain non-integrity NVMe 2174 * metadata masquerading as Type 0 if supported, otherwise reject block 2175 * I/O to namespaces with metadata except when the namespace supports 2176 * PI, as it can strip/insert in that case. 2177 */ 2178 if (!nvme_init_integrity(ns->head, &lim, info)) 2179 capacity = 0; 2180 2181 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2182 if (ret) { 2183 blk_mq_unfreeze_queue(ns->disk->queue); 2184 goto out; 2185 } 2186 2187 set_capacity_and_notify(ns->disk, capacity); 2188 2189 /* 2190 * Only set the DEAC bit if the device guarantees that reads from 2191 * deallocated data return zeroes. While the DEAC bit does not 2192 * require that, it must be a no-op if reads from deallocated data 2193 * do not return zeroes. 2194 */ 2195 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2196 ns->head->features |= NVME_NS_DEAC; 2197 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2198 set_bit(NVME_NS_READY, &ns->flags); 2199 blk_mq_unfreeze_queue(ns->disk->queue); 2200 2201 if (blk_queue_is_zoned(ns->queue)) { 2202 ret = blk_revalidate_disk_zones(ns->disk); 2203 if (ret && !nvme_first_scan(ns->disk)) 2204 goto out; 2205 } 2206 2207 ret = 0; 2208 out: 2209 kfree(nvm); 2210 kfree(id); 2211 return ret; 2212 } 2213 2214 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2215 { 2216 bool unsupported = false; 2217 int ret; 2218 2219 switch (info->ids.csi) { 2220 case NVME_CSI_ZNS: 2221 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2222 dev_info(ns->ctrl->device, 2223 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2224 info->nsid); 2225 ret = nvme_update_ns_info_generic(ns, info); 2226 break; 2227 } 2228 ret = nvme_update_ns_info_block(ns, info); 2229 break; 2230 case NVME_CSI_NVM: 2231 ret = nvme_update_ns_info_block(ns, info); 2232 break; 2233 default: 2234 dev_info(ns->ctrl->device, 2235 "block device for nsid %u not supported (csi %u)\n", 2236 info->nsid, info->ids.csi); 2237 ret = nvme_update_ns_info_generic(ns, info); 2238 break; 2239 } 2240 2241 /* 2242 * If probing fails due an unsupported feature, hide the block device, 2243 * but still allow other access. 2244 */ 2245 if (ret == -ENODEV) { 2246 ns->disk->flags |= GENHD_FL_HIDDEN; 2247 set_bit(NVME_NS_READY, &ns->flags); 2248 unsupported = true; 2249 ret = 0; 2250 } 2251 2252 if (!ret && nvme_ns_head_multipath(ns->head)) { 2253 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2254 struct queue_limits lim; 2255 2256 blk_mq_freeze_queue(ns->head->disk->queue); 2257 /* 2258 * queue_limits mixes values that are the hardware limitations 2259 * for bio splitting with what is the device configuration. 2260 * 2261 * For NVMe the device configuration can change after e.g. a 2262 * Format command, and we really want to pick up the new format 2263 * value here. But we must still stack the queue limits to the 2264 * least common denominator for multipathing to split the bios 2265 * properly. 2266 * 2267 * To work around this, we explicitly set the device 2268 * configuration to those that we just queried, but only stack 2269 * the splitting limits in to make sure we still obey possibly 2270 * lower limitations of other controllers. 2271 */ 2272 lim = queue_limits_start_update(ns->head->disk->queue); 2273 lim.logical_block_size = ns_lim->logical_block_size; 2274 lim.physical_block_size = ns_lim->physical_block_size; 2275 lim.io_min = ns_lim->io_min; 2276 lim.io_opt = ns_lim->io_opt; 2277 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2278 ns->head->disk->disk_name); 2279 if (unsupported) 2280 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2281 else 2282 nvme_init_integrity(ns->head, &lim, info); 2283 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2284 2285 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2286 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2287 nvme_mpath_revalidate_paths(ns); 2288 2289 blk_mq_unfreeze_queue(ns->head->disk->queue); 2290 } 2291 2292 return ret; 2293 } 2294 2295 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], 2296 enum blk_unique_id type) 2297 { 2298 struct nvme_ns_ids *ids = &ns->head->ids; 2299 2300 if (type != BLK_UID_EUI64) 2301 return -EINVAL; 2302 2303 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { 2304 memcpy(id, &ids->nguid, sizeof(ids->nguid)); 2305 return sizeof(ids->nguid); 2306 } 2307 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { 2308 memcpy(id, &ids->eui64, sizeof(ids->eui64)); 2309 return sizeof(ids->eui64); 2310 } 2311 2312 return -EINVAL; 2313 } 2314 2315 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], 2316 enum blk_unique_id type) 2317 { 2318 return nvme_ns_get_unique_id(disk->private_data, id, type); 2319 } 2320 2321 #ifdef CONFIG_BLK_SED_OPAL 2322 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2323 bool send) 2324 { 2325 struct nvme_ctrl *ctrl = data; 2326 struct nvme_command cmd = { }; 2327 2328 if (send) 2329 cmd.common.opcode = nvme_admin_security_send; 2330 else 2331 cmd.common.opcode = nvme_admin_security_recv; 2332 cmd.common.nsid = 0; 2333 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2334 cmd.common.cdw11 = cpu_to_le32(len); 2335 2336 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2337 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2338 } 2339 2340 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2341 { 2342 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2343 if (!ctrl->opal_dev) 2344 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2345 else if (was_suspended) 2346 opal_unlock_from_suspend(ctrl->opal_dev); 2347 } else { 2348 free_opal_dev(ctrl->opal_dev); 2349 ctrl->opal_dev = NULL; 2350 } 2351 } 2352 #else 2353 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2354 { 2355 } 2356 #endif /* CONFIG_BLK_SED_OPAL */ 2357 2358 #ifdef CONFIG_BLK_DEV_ZONED 2359 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2360 unsigned int nr_zones, report_zones_cb cb, void *data) 2361 { 2362 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2363 data); 2364 } 2365 #else 2366 #define nvme_report_zones NULL 2367 #endif /* CONFIG_BLK_DEV_ZONED */ 2368 2369 const struct block_device_operations nvme_bdev_ops = { 2370 .owner = THIS_MODULE, 2371 .ioctl = nvme_ioctl, 2372 .compat_ioctl = blkdev_compat_ptr_ioctl, 2373 .open = nvme_open, 2374 .release = nvme_release, 2375 .getgeo = nvme_getgeo, 2376 .get_unique_id = nvme_get_unique_id, 2377 .report_zones = nvme_report_zones, 2378 .pr_ops = &nvme_pr_ops, 2379 }; 2380 2381 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2382 u32 timeout, const char *op) 2383 { 2384 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2385 u32 csts; 2386 int ret; 2387 2388 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2389 if (csts == ~0) 2390 return -ENODEV; 2391 if ((csts & mask) == val) 2392 break; 2393 2394 usleep_range(1000, 2000); 2395 if (fatal_signal_pending(current)) 2396 return -EINTR; 2397 if (time_after(jiffies, timeout_jiffies)) { 2398 dev_err(ctrl->device, 2399 "Device not ready; aborting %s, CSTS=0x%x\n", 2400 op, csts); 2401 return -ENODEV; 2402 } 2403 } 2404 2405 return ret; 2406 } 2407 2408 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2409 { 2410 int ret; 2411 2412 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2413 if (shutdown) 2414 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2415 else 2416 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2417 2418 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2419 if (ret) 2420 return ret; 2421 2422 if (shutdown) { 2423 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2424 NVME_CSTS_SHST_CMPLT, 2425 ctrl->shutdown_timeout, "shutdown"); 2426 } 2427 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2428 msleep(NVME_QUIRK_DELAY_AMOUNT); 2429 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2430 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2431 } 2432 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2433 2434 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2435 { 2436 unsigned dev_page_min; 2437 u32 timeout; 2438 int ret; 2439 2440 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2441 if (ret) { 2442 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2443 return ret; 2444 } 2445 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2446 2447 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2448 dev_err(ctrl->device, 2449 "Minimum device page size %u too large for host (%u)\n", 2450 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2451 return -ENODEV; 2452 } 2453 2454 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2455 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2456 else 2457 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2458 2459 /* 2460 * Setting CRIME results in CSTS.RDY before the media is ready. This 2461 * makes it possible for media related commands to return the error 2462 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is 2463 * restructured to handle retries, disable CC.CRIME. 2464 */ 2465 ctrl->ctrl_config &= ~NVME_CC_CRIME; 2466 2467 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2468 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2469 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2470 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2471 if (ret) 2472 return ret; 2473 2474 /* CAP value may change after initial CC write */ 2475 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2476 if (ret) 2477 return ret; 2478 2479 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2480 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2481 u32 crto, ready_timeout; 2482 2483 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2484 if (ret) { 2485 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2486 ret); 2487 return ret; 2488 } 2489 2490 /* 2491 * CRTO should always be greater or equal to CAP.TO, but some 2492 * devices are known to get this wrong. Use the larger of the 2493 * two values. 2494 */ 2495 ready_timeout = NVME_CRTO_CRWMT(crto); 2496 2497 if (ready_timeout < timeout) 2498 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2499 crto, ctrl->cap); 2500 else 2501 timeout = ready_timeout; 2502 } 2503 2504 ctrl->ctrl_config |= NVME_CC_ENABLE; 2505 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2506 if (ret) 2507 return ret; 2508 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2509 (timeout + 1) / 2, "initialisation"); 2510 } 2511 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2512 2513 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2514 { 2515 __le64 ts; 2516 int ret; 2517 2518 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2519 return 0; 2520 2521 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2522 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2523 NULL); 2524 if (ret) 2525 dev_warn_once(ctrl->device, 2526 "could not set timestamp (%d)\n", ret); 2527 return ret; 2528 } 2529 2530 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2531 { 2532 struct nvme_feat_host_behavior *host; 2533 u8 acre = 0, lbafee = 0; 2534 int ret; 2535 2536 /* Don't bother enabling the feature if retry delay is not reported */ 2537 if (ctrl->crdt[0]) 2538 acre = NVME_ENABLE_ACRE; 2539 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2540 lbafee = NVME_ENABLE_LBAFEE; 2541 2542 if (!acre && !lbafee) 2543 return 0; 2544 2545 host = kzalloc(sizeof(*host), GFP_KERNEL); 2546 if (!host) 2547 return 0; 2548 2549 host->acre = acre; 2550 host->lbafee = lbafee; 2551 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2552 host, sizeof(*host), NULL); 2553 kfree(host); 2554 return ret; 2555 } 2556 2557 /* 2558 * The function checks whether the given total (exlat + enlat) latency of 2559 * a power state allows the latter to be used as an APST transition target. 2560 * It does so by comparing the latency to the primary and secondary latency 2561 * tolerances defined by module params. If there's a match, the corresponding 2562 * timeout value is returned and the matching tolerance index (1 or 2) is 2563 * reported. 2564 */ 2565 static bool nvme_apst_get_transition_time(u64 total_latency, 2566 u64 *transition_time, unsigned *last_index) 2567 { 2568 if (total_latency <= apst_primary_latency_tol_us) { 2569 if (*last_index == 1) 2570 return false; 2571 *last_index = 1; 2572 *transition_time = apst_primary_timeout_ms; 2573 return true; 2574 } 2575 if (apst_secondary_timeout_ms && 2576 total_latency <= apst_secondary_latency_tol_us) { 2577 if (*last_index <= 2) 2578 return false; 2579 *last_index = 2; 2580 *transition_time = apst_secondary_timeout_ms; 2581 return true; 2582 } 2583 return false; 2584 } 2585 2586 /* 2587 * APST (Autonomous Power State Transition) lets us program a table of power 2588 * state transitions that the controller will perform automatically. 2589 * 2590 * Depending on module params, one of the two supported techniques will be used: 2591 * 2592 * - If the parameters provide explicit timeouts and tolerances, they will be 2593 * used to build a table with up to 2 non-operational states to transition to. 2594 * The default parameter values were selected based on the values used by 2595 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2596 * regeneration of the APST table in the event of switching between external 2597 * and battery power, the timeouts and tolerances reflect a compromise 2598 * between values used by Microsoft for AC and battery scenarios. 2599 * - If not, we'll configure the table with a simple heuristic: we are willing 2600 * to spend at most 2% of the time transitioning between power states. 2601 * Therefore, when running in any given state, we will enter the next 2602 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2603 * microseconds, as long as that state's exit latency is under the requested 2604 * maximum latency. 2605 * 2606 * We will not autonomously enter any non-operational state for which the total 2607 * latency exceeds ps_max_latency_us. 2608 * 2609 * Users can set ps_max_latency_us to zero to turn off APST. 2610 */ 2611 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2612 { 2613 struct nvme_feat_auto_pst *table; 2614 unsigned apste = 0; 2615 u64 max_lat_us = 0; 2616 __le64 target = 0; 2617 int max_ps = -1; 2618 int state; 2619 int ret; 2620 unsigned last_lt_index = UINT_MAX; 2621 2622 /* 2623 * If APST isn't supported or if we haven't been initialized yet, 2624 * then don't do anything. 2625 */ 2626 if (!ctrl->apsta) 2627 return 0; 2628 2629 if (ctrl->npss > 31) { 2630 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2631 return 0; 2632 } 2633 2634 table = kzalloc(sizeof(*table), GFP_KERNEL); 2635 if (!table) 2636 return 0; 2637 2638 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2639 /* Turn off APST. */ 2640 dev_dbg(ctrl->device, "APST disabled\n"); 2641 goto done; 2642 } 2643 2644 /* 2645 * Walk through all states from lowest- to highest-power. 2646 * According to the spec, lower-numbered states use more power. NPSS, 2647 * despite the name, is the index of the lowest-power state, not the 2648 * number of states. 2649 */ 2650 for (state = (int)ctrl->npss; state >= 0; state--) { 2651 u64 total_latency_us, exit_latency_us, transition_ms; 2652 2653 if (target) 2654 table->entries[state] = target; 2655 2656 /* 2657 * Don't allow transitions to the deepest state if it's quirked 2658 * off. 2659 */ 2660 if (state == ctrl->npss && 2661 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2662 continue; 2663 2664 /* 2665 * Is this state a useful non-operational state for higher-power 2666 * states to autonomously transition to? 2667 */ 2668 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2669 continue; 2670 2671 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2672 if (exit_latency_us > ctrl->ps_max_latency_us) 2673 continue; 2674 2675 total_latency_us = exit_latency_us + 2676 le32_to_cpu(ctrl->psd[state].entry_lat); 2677 2678 /* 2679 * This state is good. It can be used as the APST idle target 2680 * for higher power states. 2681 */ 2682 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2683 if (!nvme_apst_get_transition_time(total_latency_us, 2684 &transition_ms, &last_lt_index)) 2685 continue; 2686 } else { 2687 transition_ms = total_latency_us + 19; 2688 do_div(transition_ms, 20); 2689 if (transition_ms > (1 << 24) - 1) 2690 transition_ms = (1 << 24) - 1; 2691 } 2692 2693 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2694 if (max_ps == -1) 2695 max_ps = state; 2696 if (total_latency_us > max_lat_us) 2697 max_lat_us = total_latency_us; 2698 } 2699 2700 if (max_ps == -1) 2701 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2702 else 2703 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2704 max_ps, max_lat_us, (int)sizeof(*table), table); 2705 apste = 1; 2706 2707 done: 2708 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2709 table, sizeof(*table), NULL); 2710 if (ret) 2711 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2712 kfree(table); 2713 return ret; 2714 } 2715 2716 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2717 { 2718 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2719 u64 latency; 2720 2721 switch (val) { 2722 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2723 case PM_QOS_LATENCY_ANY: 2724 latency = U64_MAX; 2725 break; 2726 2727 default: 2728 latency = val; 2729 } 2730 2731 if (ctrl->ps_max_latency_us != latency) { 2732 ctrl->ps_max_latency_us = latency; 2733 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2734 nvme_configure_apst(ctrl); 2735 } 2736 } 2737 2738 struct nvme_core_quirk_entry { 2739 /* 2740 * NVMe model and firmware strings are padded with spaces. For 2741 * simplicity, strings in the quirk table are padded with NULLs 2742 * instead. 2743 */ 2744 u16 vid; 2745 const char *mn; 2746 const char *fr; 2747 unsigned long quirks; 2748 }; 2749 2750 static const struct nvme_core_quirk_entry core_quirks[] = { 2751 { 2752 /* 2753 * This Toshiba device seems to die using any APST states. See: 2754 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2755 */ 2756 .vid = 0x1179, 2757 .mn = "THNSF5256GPUK TOSHIBA", 2758 .quirks = NVME_QUIRK_NO_APST, 2759 }, 2760 { 2761 /* 2762 * This LiteON CL1-3D*-Q11 firmware version has a race 2763 * condition associated with actions related to suspend to idle 2764 * LiteON has resolved the problem in future firmware 2765 */ 2766 .vid = 0x14a4, 2767 .fr = "22301111", 2768 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2769 }, 2770 { 2771 /* 2772 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2773 * aborts I/O during any load, but more easily reproducible 2774 * with discards (fstrim). 2775 * 2776 * The device is left in a state where it is also not possible 2777 * to use "nvme set-feature" to disable APST, but booting with 2778 * nvme_core.default_ps_max_latency=0 works. 2779 */ 2780 .vid = 0x1e0f, 2781 .mn = "KCD6XVUL6T40", 2782 .quirks = NVME_QUIRK_NO_APST, 2783 }, 2784 { 2785 /* 2786 * The external Samsung X5 SSD fails initialization without a 2787 * delay before checking if it is ready and has a whole set of 2788 * other problems. To make this even more interesting, it 2789 * shares the PCI ID with internal Samsung 970 Evo Plus that 2790 * does not need or want these quirks. 2791 */ 2792 .vid = 0x144d, 2793 .mn = "Samsung Portable SSD X5", 2794 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2795 NVME_QUIRK_NO_DEEPEST_PS | 2796 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2797 } 2798 }; 2799 2800 /* match is null-terminated but idstr is space-padded. */ 2801 static bool string_matches(const char *idstr, const char *match, size_t len) 2802 { 2803 size_t matchlen; 2804 2805 if (!match) 2806 return true; 2807 2808 matchlen = strlen(match); 2809 WARN_ON_ONCE(matchlen > len); 2810 2811 if (memcmp(idstr, match, matchlen)) 2812 return false; 2813 2814 for (; matchlen < len; matchlen++) 2815 if (idstr[matchlen] != ' ') 2816 return false; 2817 2818 return true; 2819 } 2820 2821 static bool quirk_matches(const struct nvme_id_ctrl *id, 2822 const struct nvme_core_quirk_entry *q) 2823 { 2824 return q->vid == le16_to_cpu(id->vid) && 2825 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2826 string_matches(id->fr, q->fr, sizeof(id->fr)); 2827 } 2828 2829 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2830 struct nvme_id_ctrl *id) 2831 { 2832 size_t nqnlen; 2833 int off; 2834 2835 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2836 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2837 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2838 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2839 return; 2840 } 2841 2842 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2843 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2844 } 2845 2846 /* 2847 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2848 * Base Specification 2.0. It is slightly different from the format 2849 * specified there due to historic reasons, and we can't change it now. 2850 */ 2851 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2852 "nqn.2014.08.org.nvmexpress:%04x%04x", 2853 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2854 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2855 off += sizeof(id->sn); 2856 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2857 off += sizeof(id->mn); 2858 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2859 } 2860 2861 static void nvme_release_subsystem(struct device *dev) 2862 { 2863 struct nvme_subsystem *subsys = 2864 container_of(dev, struct nvme_subsystem, dev); 2865 2866 if (subsys->instance >= 0) 2867 ida_free(&nvme_instance_ida, subsys->instance); 2868 kfree(subsys); 2869 } 2870 2871 static void nvme_destroy_subsystem(struct kref *ref) 2872 { 2873 struct nvme_subsystem *subsys = 2874 container_of(ref, struct nvme_subsystem, ref); 2875 2876 mutex_lock(&nvme_subsystems_lock); 2877 list_del(&subsys->entry); 2878 mutex_unlock(&nvme_subsystems_lock); 2879 2880 ida_destroy(&subsys->ns_ida); 2881 device_del(&subsys->dev); 2882 put_device(&subsys->dev); 2883 } 2884 2885 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2886 { 2887 kref_put(&subsys->ref, nvme_destroy_subsystem); 2888 } 2889 2890 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2891 { 2892 struct nvme_subsystem *subsys; 2893 2894 lockdep_assert_held(&nvme_subsystems_lock); 2895 2896 /* 2897 * Fail matches for discovery subsystems. This results 2898 * in each discovery controller bound to a unique subsystem. 2899 * This avoids issues with validating controller values 2900 * that can only be true when there is a single unique subsystem. 2901 * There may be multiple and completely independent entities 2902 * that provide discovery controllers. 2903 */ 2904 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2905 return NULL; 2906 2907 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2908 if (strcmp(subsys->subnqn, subsysnqn)) 2909 continue; 2910 if (!kref_get_unless_zero(&subsys->ref)) 2911 continue; 2912 return subsys; 2913 } 2914 2915 return NULL; 2916 } 2917 2918 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2919 { 2920 return ctrl->opts && ctrl->opts->discovery_nqn; 2921 } 2922 2923 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2924 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2925 { 2926 struct nvme_ctrl *tmp; 2927 2928 lockdep_assert_held(&nvme_subsystems_lock); 2929 2930 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2931 if (nvme_state_terminal(tmp)) 2932 continue; 2933 2934 if (tmp->cntlid == ctrl->cntlid) { 2935 dev_err(ctrl->device, 2936 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2937 ctrl->cntlid, dev_name(tmp->device), 2938 subsys->subnqn); 2939 return false; 2940 } 2941 2942 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2943 nvme_discovery_ctrl(ctrl)) 2944 continue; 2945 2946 dev_err(ctrl->device, 2947 "Subsystem does not support multiple controllers\n"); 2948 return false; 2949 } 2950 2951 return true; 2952 } 2953 2954 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2955 { 2956 struct nvme_subsystem *subsys, *found; 2957 int ret; 2958 2959 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2960 if (!subsys) 2961 return -ENOMEM; 2962 2963 subsys->instance = -1; 2964 mutex_init(&subsys->lock); 2965 kref_init(&subsys->ref); 2966 INIT_LIST_HEAD(&subsys->ctrls); 2967 INIT_LIST_HEAD(&subsys->nsheads); 2968 nvme_init_subnqn(subsys, ctrl, id); 2969 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2970 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2971 subsys->vendor_id = le16_to_cpu(id->vid); 2972 subsys->cmic = id->cmic; 2973 2974 /* Versions prior to 1.4 don't necessarily report a valid type */ 2975 if (id->cntrltype == NVME_CTRL_DISC || 2976 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2977 subsys->subtype = NVME_NQN_DISC; 2978 else 2979 subsys->subtype = NVME_NQN_NVME; 2980 2981 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2982 dev_err(ctrl->device, 2983 "Subsystem %s is not a discovery controller", 2984 subsys->subnqn); 2985 kfree(subsys); 2986 return -EINVAL; 2987 } 2988 subsys->awupf = le16_to_cpu(id->awupf); 2989 nvme_mpath_default_iopolicy(subsys); 2990 2991 subsys->dev.class = &nvme_subsys_class; 2992 subsys->dev.release = nvme_release_subsystem; 2993 subsys->dev.groups = nvme_subsys_attrs_groups; 2994 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2995 device_initialize(&subsys->dev); 2996 2997 mutex_lock(&nvme_subsystems_lock); 2998 found = __nvme_find_get_subsystem(subsys->subnqn); 2999 if (found) { 3000 put_device(&subsys->dev); 3001 subsys = found; 3002 3003 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 3004 ret = -EINVAL; 3005 goto out_put_subsystem; 3006 } 3007 } else { 3008 ret = device_add(&subsys->dev); 3009 if (ret) { 3010 dev_err(ctrl->device, 3011 "failed to register subsystem device.\n"); 3012 put_device(&subsys->dev); 3013 goto out_unlock; 3014 } 3015 ida_init(&subsys->ns_ida); 3016 list_add_tail(&subsys->entry, &nvme_subsystems); 3017 } 3018 3019 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 3020 dev_name(ctrl->device)); 3021 if (ret) { 3022 dev_err(ctrl->device, 3023 "failed to create sysfs link from subsystem.\n"); 3024 goto out_put_subsystem; 3025 } 3026 3027 if (!found) 3028 subsys->instance = ctrl->instance; 3029 ctrl->subsys = subsys; 3030 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3031 mutex_unlock(&nvme_subsystems_lock); 3032 return 0; 3033 3034 out_put_subsystem: 3035 nvme_put_subsystem(subsys); 3036 out_unlock: 3037 mutex_unlock(&nvme_subsystems_lock); 3038 return ret; 3039 } 3040 3041 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3042 void *log, size_t size, u64 offset) 3043 { 3044 struct nvme_command c = { }; 3045 u32 dwlen = nvme_bytes_to_numd(size); 3046 3047 c.get_log_page.opcode = nvme_admin_get_log_page; 3048 c.get_log_page.nsid = cpu_to_le32(nsid); 3049 c.get_log_page.lid = log_page; 3050 c.get_log_page.lsp = lsp; 3051 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3052 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3053 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3054 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3055 c.get_log_page.csi = csi; 3056 3057 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3058 } 3059 3060 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3061 struct nvme_effects_log **log) 3062 { 3063 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 3064 int ret; 3065 3066 if (cel) 3067 goto out; 3068 3069 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3070 if (!cel) 3071 return -ENOMEM; 3072 3073 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3074 cel, sizeof(*cel), 0); 3075 if (ret) { 3076 kfree(cel); 3077 return ret; 3078 } 3079 3080 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3081 out: 3082 *log = cel; 3083 return 0; 3084 } 3085 3086 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3087 { 3088 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3089 3090 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3091 return UINT_MAX; 3092 return val; 3093 } 3094 3095 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3096 { 3097 struct nvme_command c = { }; 3098 struct nvme_id_ctrl_nvm *id; 3099 int ret; 3100 3101 /* 3102 * Even though NVMe spec explicitly states that MDTS is not applicable 3103 * to the write-zeroes, we are cautious and limit the size to the 3104 * controllers max_hw_sectors value, which is based on the MDTS field 3105 * and possibly other limiting factors. 3106 */ 3107 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3108 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3109 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3110 else 3111 ctrl->max_zeroes_sectors = 0; 3112 3113 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3114 nvme_ctrl_limited_cns(ctrl) || 3115 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3116 return 0; 3117 3118 id = kzalloc(sizeof(*id), GFP_KERNEL); 3119 if (!id) 3120 return -ENOMEM; 3121 3122 c.identify.opcode = nvme_admin_identify; 3123 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3124 c.identify.csi = NVME_CSI_NVM; 3125 3126 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3127 if (ret) 3128 goto free_data; 3129 3130 ctrl->dmrl = id->dmrl; 3131 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3132 if (id->wzsl) 3133 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3134 3135 free_data: 3136 if (ret > 0) 3137 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3138 kfree(id); 3139 return ret; 3140 } 3141 3142 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3143 { 3144 struct nvme_effects_log *log = ctrl->effects; 3145 3146 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3147 NVME_CMD_EFFECTS_NCC | 3148 NVME_CMD_EFFECTS_CSE_MASK); 3149 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3150 NVME_CMD_EFFECTS_CSE_MASK); 3151 3152 /* 3153 * The spec says the result of a security receive command depends on 3154 * the previous security send command. As such, many vendors log this 3155 * command as one to submitted only when no other commands to the same 3156 * namespace are outstanding. The intention is to tell the host to 3157 * prevent mixing security send and receive. 3158 * 3159 * This driver can only enforce such exclusive access against IO 3160 * queues, though. We are not readily able to enforce such a rule for 3161 * two commands to the admin queue, which is the only queue that 3162 * matters for this command. 3163 * 3164 * Rather than blindly freezing the IO queues for this effect that 3165 * doesn't even apply to IO, mask it off. 3166 */ 3167 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3168 3169 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3170 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3171 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3172 } 3173 3174 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3175 { 3176 int ret = 0; 3177 3178 if (ctrl->effects) 3179 return 0; 3180 3181 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3182 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3183 if (ret < 0) 3184 return ret; 3185 } 3186 3187 if (!ctrl->effects) { 3188 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3189 if (!ctrl->effects) 3190 return -ENOMEM; 3191 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3192 } 3193 3194 nvme_init_known_nvm_effects(ctrl); 3195 return 0; 3196 } 3197 3198 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3199 { 3200 /* 3201 * In fabrics we need to verify the cntlid matches the 3202 * admin connect 3203 */ 3204 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3205 dev_err(ctrl->device, 3206 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3207 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3208 return -EINVAL; 3209 } 3210 3211 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3212 dev_err(ctrl->device, 3213 "keep-alive support is mandatory for fabrics\n"); 3214 return -EINVAL; 3215 } 3216 3217 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3218 dev_err(ctrl->device, 3219 "I/O queue command capsule supported size %d < 4\n", 3220 ctrl->ioccsz); 3221 return -EINVAL; 3222 } 3223 3224 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3225 dev_err(ctrl->device, 3226 "I/O queue response capsule supported size %d < 1\n", 3227 ctrl->iorcsz); 3228 return -EINVAL; 3229 } 3230 3231 if (!ctrl->maxcmd) { 3232 dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); 3233 return -EINVAL; 3234 } 3235 3236 return 0; 3237 } 3238 3239 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3240 { 3241 struct queue_limits lim; 3242 struct nvme_id_ctrl *id; 3243 u32 max_hw_sectors; 3244 bool prev_apst_enabled; 3245 int ret; 3246 3247 ret = nvme_identify_ctrl(ctrl, &id); 3248 if (ret) { 3249 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3250 return -EIO; 3251 } 3252 3253 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3254 ctrl->cntlid = le16_to_cpu(id->cntlid); 3255 3256 if (!ctrl->identified) { 3257 unsigned int i; 3258 3259 /* 3260 * Check for quirks. Quirk can depend on firmware version, 3261 * so, in principle, the set of quirks present can change 3262 * across a reset. As a possible future enhancement, we 3263 * could re-scan for quirks every time we reinitialize 3264 * the device, but we'd have to make sure that the driver 3265 * behaves intelligently if the quirks change. 3266 */ 3267 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3268 if (quirk_matches(id, &core_quirks[i])) 3269 ctrl->quirks |= core_quirks[i].quirks; 3270 } 3271 3272 ret = nvme_init_subsystem(ctrl, id); 3273 if (ret) 3274 goto out_free; 3275 3276 ret = nvme_init_effects(ctrl, id); 3277 if (ret) 3278 goto out_free; 3279 } 3280 memcpy(ctrl->subsys->firmware_rev, id->fr, 3281 sizeof(ctrl->subsys->firmware_rev)); 3282 3283 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3284 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3285 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3286 } 3287 3288 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3289 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3290 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3291 3292 ctrl->oacs = le16_to_cpu(id->oacs); 3293 ctrl->oncs = le16_to_cpu(id->oncs); 3294 ctrl->mtfa = le16_to_cpu(id->mtfa); 3295 ctrl->oaes = le32_to_cpu(id->oaes); 3296 ctrl->wctemp = le16_to_cpu(id->wctemp); 3297 ctrl->cctemp = le16_to_cpu(id->cctemp); 3298 3299 atomic_set(&ctrl->abort_limit, id->acl + 1); 3300 ctrl->vwc = id->vwc; 3301 if (id->mdts) 3302 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3303 else 3304 max_hw_sectors = UINT_MAX; 3305 ctrl->max_hw_sectors = 3306 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3307 3308 lim = queue_limits_start_update(ctrl->admin_q); 3309 nvme_set_ctrl_limits(ctrl, &lim); 3310 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3311 if (ret) 3312 goto out_free; 3313 3314 ctrl->sgls = le32_to_cpu(id->sgls); 3315 ctrl->kas = le16_to_cpu(id->kas); 3316 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3317 ctrl->ctratt = le32_to_cpu(id->ctratt); 3318 3319 ctrl->cntrltype = id->cntrltype; 3320 ctrl->dctype = id->dctype; 3321 3322 if (id->rtd3e) { 3323 /* us -> s */ 3324 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3325 3326 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3327 shutdown_timeout, 60); 3328 3329 if (ctrl->shutdown_timeout != shutdown_timeout) 3330 dev_info(ctrl->device, 3331 "D3 entry latency set to %u seconds\n", 3332 ctrl->shutdown_timeout); 3333 } else 3334 ctrl->shutdown_timeout = shutdown_timeout; 3335 3336 ctrl->npss = id->npss; 3337 ctrl->apsta = id->apsta; 3338 prev_apst_enabled = ctrl->apst_enabled; 3339 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3340 if (force_apst && id->apsta) { 3341 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3342 ctrl->apst_enabled = true; 3343 } else { 3344 ctrl->apst_enabled = false; 3345 } 3346 } else { 3347 ctrl->apst_enabled = id->apsta; 3348 } 3349 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3350 3351 if (ctrl->ops->flags & NVME_F_FABRICS) { 3352 ctrl->icdoff = le16_to_cpu(id->icdoff); 3353 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3354 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3355 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3356 3357 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3358 if (ret) 3359 goto out_free; 3360 } else { 3361 ctrl->hmpre = le32_to_cpu(id->hmpre); 3362 ctrl->hmmin = le32_to_cpu(id->hmmin); 3363 ctrl->hmminds = le32_to_cpu(id->hmminds); 3364 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3365 } 3366 3367 ret = nvme_mpath_init_identify(ctrl, id); 3368 if (ret < 0) 3369 goto out_free; 3370 3371 if (ctrl->apst_enabled && !prev_apst_enabled) 3372 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3373 else if (!ctrl->apst_enabled && prev_apst_enabled) 3374 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3375 3376 out_free: 3377 kfree(id); 3378 return ret; 3379 } 3380 3381 /* 3382 * Initialize the cached copies of the Identify data and various controller 3383 * register in our nvme_ctrl structure. This should be called as soon as 3384 * the admin queue is fully up and running. 3385 */ 3386 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3387 { 3388 int ret; 3389 3390 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3391 if (ret) { 3392 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3393 return ret; 3394 } 3395 3396 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3397 3398 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3399 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3400 3401 ret = nvme_init_identify(ctrl); 3402 if (ret) 3403 return ret; 3404 3405 ret = nvme_configure_apst(ctrl); 3406 if (ret < 0) 3407 return ret; 3408 3409 ret = nvme_configure_timestamp(ctrl); 3410 if (ret < 0) 3411 return ret; 3412 3413 ret = nvme_configure_host_options(ctrl); 3414 if (ret < 0) 3415 return ret; 3416 3417 nvme_configure_opal(ctrl, was_suspended); 3418 3419 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3420 /* 3421 * Do not return errors unless we are in a controller reset, 3422 * the controller works perfectly fine without hwmon. 3423 */ 3424 ret = nvme_hwmon_init(ctrl); 3425 if (ret == -EINTR) 3426 return ret; 3427 } 3428 3429 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3430 ctrl->identified = true; 3431 3432 nvme_start_keep_alive(ctrl); 3433 3434 return 0; 3435 } 3436 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3437 3438 static int nvme_dev_open(struct inode *inode, struct file *file) 3439 { 3440 struct nvme_ctrl *ctrl = 3441 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3442 3443 switch (nvme_ctrl_state(ctrl)) { 3444 case NVME_CTRL_LIVE: 3445 break; 3446 default: 3447 return -EWOULDBLOCK; 3448 } 3449 3450 nvme_get_ctrl(ctrl); 3451 if (!try_module_get(ctrl->ops->module)) { 3452 nvme_put_ctrl(ctrl); 3453 return -EINVAL; 3454 } 3455 3456 file->private_data = ctrl; 3457 return 0; 3458 } 3459 3460 static int nvme_dev_release(struct inode *inode, struct file *file) 3461 { 3462 struct nvme_ctrl *ctrl = 3463 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3464 3465 module_put(ctrl->ops->module); 3466 nvme_put_ctrl(ctrl); 3467 return 0; 3468 } 3469 3470 static const struct file_operations nvme_dev_fops = { 3471 .owner = THIS_MODULE, 3472 .open = nvme_dev_open, 3473 .release = nvme_dev_release, 3474 .unlocked_ioctl = nvme_dev_ioctl, 3475 .compat_ioctl = compat_ptr_ioctl, 3476 .uring_cmd = nvme_dev_uring_cmd, 3477 }; 3478 3479 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3480 unsigned nsid) 3481 { 3482 struct nvme_ns_head *h; 3483 3484 lockdep_assert_held(&ctrl->subsys->lock); 3485 3486 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3487 /* 3488 * Private namespaces can share NSIDs under some conditions. 3489 * In that case we can't use the same ns_head for namespaces 3490 * with the same NSID. 3491 */ 3492 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3493 continue; 3494 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3495 return h; 3496 } 3497 3498 return NULL; 3499 } 3500 3501 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3502 struct nvme_ns_ids *ids) 3503 { 3504 bool has_uuid = !uuid_is_null(&ids->uuid); 3505 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3506 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3507 struct nvme_ns_head *h; 3508 3509 lockdep_assert_held(&subsys->lock); 3510 3511 list_for_each_entry(h, &subsys->nsheads, entry) { 3512 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3513 return -EINVAL; 3514 if (has_nguid && 3515 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3516 return -EINVAL; 3517 if (has_eui64 && 3518 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3519 return -EINVAL; 3520 } 3521 3522 return 0; 3523 } 3524 3525 static void nvme_cdev_rel(struct device *dev) 3526 { 3527 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3528 } 3529 3530 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3531 { 3532 cdev_device_del(cdev, cdev_device); 3533 put_device(cdev_device); 3534 } 3535 3536 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3537 const struct file_operations *fops, struct module *owner) 3538 { 3539 int minor, ret; 3540 3541 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3542 if (minor < 0) 3543 return minor; 3544 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3545 cdev_device->class = &nvme_ns_chr_class; 3546 cdev_device->release = nvme_cdev_rel; 3547 device_initialize(cdev_device); 3548 cdev_init(cdev, fops); 3549 cdev->owner = owner; 3550 ret = cdev_device_add(cdev, cdev_device); 3551 if (ret) 3552 put_device(cdev_device); 3553 3554 return ret; 3555 } 3556 3557 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3558 { 3559 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3560 } 3561 3562 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3563 { 3564 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3565 return 0; 3566 } 3567 3568 static const struct file_operations nvme_ns_chr_fops = { 3569 .owner = THIS_MODULE, 3570 .open = nvme_ns_chr_open, 3571 .release = nvme_ns_chr_release, 3572 .unlocked_ioctl = nvme_ns_chr_ioctl, 3573 .compat_ioctl = compat_ptr_ioctl, 3574 .uring_cmd = nvme_ns_chr_uring_cmd, 3575 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3576 }; 3577 3578 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3579 { 3580 int ret; 3581 3582 ns->cdev_device.parent = ns->ctrl->device; 3583 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3584 ns->ctrl->instance, ns->head->instance); 3585 if (ret) 3586 return ret; 3587 3588 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3589 ns->ctrl->ops->module); 3590 } 3591 3592 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3593 struct nvme_ns_info *info) 3594 { 3595 struct nvme_ns_head *head; 3596 size_t size = sizeof(*head); 3597 int ret = -ENOMEM; 3598 3599 #ifdef CONFIG_NVME_MULTIPATH 3600 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3601 #endif 3602 3603 head = kzalloc(size, GFP_KERNEL); 3604 if (!head) 3605 goto out; 3606 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3607 if (ret < 0) 3608 goto out_free_head; 3609 head->instance = ret; 3610 INIT_LIST_HEAD(&head->list); 3611 ret = init_srcu_struct(&head->srcu); 3612 if (ret) 3613 goto out_ida_remove; 3614 head->subsys = ctrl->subsys; 3615 head->ns_id = info->nsid; 3616 head->ids = info->ids; 3617 head->shared = info->is_shared; 3618 head->rotational = info->is_rotational; 3619 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3620 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3621 kref_init(&head->ref); 3622 3623 if (head->ids.csi) { 3624 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3625 if (ret) 3626 goto out_cleanup_srcu; 3627 } else 3628 head->effects = ctrl->effects; 3629 3630 ret = nvme_mpath_alloc_disk(ctrl, head); 3631 if (ret) 3632 goto out_cleanup_srcu; 3633 3634 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3635 3636 kref_get(&ctrl->subsys->ref); 3637 3638 return head; 3639 out_cleanup_srcu: 3640 cleanup_srcu_struct(&head->srcu); 3641 out_ida_remove: 3642 ida_free(&ctrl->subsys->ns_ida, head->instance); 3643 out_free_head: 3644 kfree(head); 3645 out: 3646 if (ret > 0) 3647 ret = blk_status_to_errno(nvme_error_status(ret)); 3648 return ERR_PTR(ret); 3649 } 3650 3651 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3652 struct nvme_ns_ids *ids) 3653 { 3654 struct nvme_subsystem *s; 3655 int ret = 0; 3656 3657 /* 3658 * Note that this check is racy as we try to avoid holding the global 3659 * lock over the whole ns_head creation. But it is only intended as 3660 * a sanity check anyway. 3661 */ 3662 mutex_lock(&nvme_subsystems_lock); 3663 list_for_each_entry(s, &nvme_subsystems, entry) { 3664 if (s == this) 3665 continue; 3666 mutex_lock(&s->lock); 3667 ret = nvme_subsys_check_duplicate_ids(s, ids); 3668 mutex_unlock(&s->lock); 3669 if (ret) 3670 break; 3671 } 3672 mutex_unlock(&nvme_subsystems_lock); 3673 3674 return ret; 3675 } 3676 3677 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3678 { 3679 struct nvme_ctrl *ctrl = ns->ctrl; 3680 struct nvme_ns_head *head = NULL; 3681 int ret; 3682 3683 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3684 if (ret) { 3685 /* 3686 * We've found two different namespaces on two different 3687 * subsystems that report the same ID. This is pretty nasty 3688 * for anything that actually requires unique device 3689 * identification. In the kernel we need this for multipathing, 3690 * and in user space the /dev/disk/by-id/ links rely on it. 3691 * 3692 * If the device also claims to be multi-path capable back off 3693 * here now and refuse the probe the second device as this is a 3694 * recipe for data corruption. If not this is probably a 3695 * cheap consumer device if on the PCIe bus, so let the user 3696 * proceed and use the shiny toy, but warn that with changing 3697 * probing order (which due to our async probing could just be 3698 * device taking longer to startup) the other device could show 3699 * up at any time. 3700 */ 3701 nvme_print_device_info(ctrl); 3702 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3703 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3704 info->is_shared)) { 3705 dev_err(ctrl->device, 3706 "ignoring nsid %d because of duplicate IDs\n", 3707 info->nsid); 3708 return ret; 3709 } 3710 3711 dev_err(ctrl->device, 3712 "clearing duplicate IDs for nsid %d\n", info->nsid); 3713 dev_err(ctrl->device, 3714 "use of /dev/disk/by-id/ may cause data corruption\n"); 3715 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3716 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3717 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3718 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3719 } 3720 3721 mutex_lock(&ctrl->subsys->lock); 3722 head = nvme_find_ns_head(ctrl, info->nsid); 3723 if (!head) { 3724 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3725 if (ret) { 3726 dev_err(ctrl->device, 3727 "duplicate IDs in subsystem for nsid %d\n", 3728 info->nsid); 3729 goto out_unlock; 3730 } 3731 head = nvme_alloc_ns_head(ctrl, info); 3732 if (IS_ERR(head)) { 3733 ret = PTR_ERR(head); 3734 goto out_unlock; 3735 } 3736 } else { 3737 ret = -EINVAL; 3738 if (!info->is_shared || !head->shared) { 3739 dev_err(ctrl->device, 3740 "Duplicate unshared namespace %d\n", 3741 info->nsid); 3742 goto out_put_ns_head; 3743 } 3744 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3745 dev_err(ctrl->device, 3746 "IDs don't match for shared namespace %d\n", 3747 info->nsid); 3748 goto out_put_ns_head; 3749 } 3750 3751 if (!multipath) { 3752 dev_warn(ctrl->device, 3753 "Found shared namespace %d, but multipathing not supported.\n", 3754 info->nsid); 3755 dev_warn_once(ctrl->device, 3756 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3757 } 3758 } 3759 3760 list_add_tail_rcu(&ns->siblings, &head->list); 3761 ns->head = head; 3762 mutex_unlock(&ctrl->subsys->lock); 3763 return 0; 3764 3765 out_put_ns_head: 3766 nvme_put_ns_head(head); 3767 out_unlock: 3768 mutex_unlock(&ctrl->subsys->lock); 3769 return ret; 3770 } 3771 3772 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3773 { 3774 struct nvme_ns *ns, *ret = NULL; 3775 int srcu_idx; 3776 3777 srcu_idx = srcu_read_lock(&ctrl->srcu); 3778 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 3779 if (ns->head->ns_id == nsid) { 3780 if (!nvme_get_ns(ns)) 3781 continue; 3782 ret = ns; 3783 break; 3784 } 3785 if (ns->head->ns_id > nsid) 3786 break; 3787 } 3788 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3789 return ret; 3790 } 3791 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3792 3793 /* 3794 * Add the namespace to the controller list while keeping the list ordered. 3795 */ 3796 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3797 { 3798 struct nvme_ns *tmp; 3799 3800 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3801 if (tmp->head->ns_id < ns->head->ns_id) { 3802 list_add_rcu(&ns->list, &tmp->list); 3803 return; 3804 } 3805 } 3806 list_add(&ns->list, &ns->ctrl->namespaces); 3807 } 3808 3809 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3810 { 3811 struct queue_limits lim = { }; 3812 struct nvme_ns *ns; 3813 struct gendisk *disk; 3814 int node = ctrl->numa_node; 3815 3816 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3817 if (!ns) 3818 return; 3819 3820 if (ctrl->opts && ctrl->opts->data_digest) 3821 lim.features |= BLK_FEAT_STABLE_WRITES; 3822 if (ctrl->ops->supports_pci_p2pdma && 3823 ctrl->ops->supports_pci_p2pdma(ctrl)) 3824 lim.features |= BLK_FEAT_PCI_P2PDMA; 3825 3826 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); 3827 if (IS_ERR(disk)) 3828 goto out_free_ns; 3829 disk->fops = &nvme_bdev_ops; 3830 disk->private_data = ns; 3831 3832 ns->disk = disk; 3833 ns->queue = disk->queue; 3834 ns->ctrl = ctrl; 3835 kref_init(&ns->kref); 3836 3837 if (nvme_init_ns_head(ns, info)) 3838 goto out_cleanup_disk; 3839 3840 /* 3841 * If multipathing is enabled, the device name for all disks and not 3842 * just those that represent shared namespaces needs to be based on the 3843 * subsystem instance. Using the controller instance for private 3844 * namespaces could lead to naming collisions between shared and private 3845 * namespaces if they don't use a common numbering scheme. 3846 * 3847 * If multipathing is not enabled, disk names must use the controller 3848 * instance as shared namespaces will show up as multiple block 3849 * devices. 3850 */ 3851 if (nvme_ns_head_multipath(ns->head)) { 3852 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3853 ctrl->instance, ns->head->instance); 3854 disk->flags |= GENHD_FL_HIDDEN; 3855 } else if (multipath) { 3856 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3857 ns->head->instance); 3858 } else { 3859 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3860 ns->head->instance); 3861 } 3862 3863 if (nvme_update_ns_info(ns, info)) 3864 goto out_unlink_ns; 3865 3866 mutex_lock(&ctrl->namespaces_lock); 3867 /* 3868 * Ensure that no namespaces are added to the ctrl list after the queues 3869 * are frozen, thereby avoiding a deadlock between scan and reset. 3870 */ 3871 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3872 mutex_unlock(&ctrl->namespaces_lock); 3873 goto out_unlink_ns; 3874 } 3875 nvme_ns_add_to_ctrl_list(ns); 3876 mutex_unlock(&ctrl->namespaces_lock); 3877 synchronize_srcu(&ctrl->srcu); 3878 nvme_get_ctrl(ctrl); 3879 3880 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3881 goto out_cleanup_ns_from_list; 3882 3883 if (!nvme_ns_head_multipath(ns->head)) 3884 nvme_add_ns_cdev(ns); 3885 3886 nvme_mpath_add_disk(ns, info->anagrpid); 3887 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3888 3889 /* 3890 * Set ns->disk->device->driver_data to ns so we can access 3891 * ns->head->passthru_err_log_enabled in 3892 * nvme_io_passthru_err_log_enabled_[store | show](). 3893 */ 3894 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3895 3896 return; 3897 3898 out_cleanup_ns_from_list: 3899 nvme_put_ctrl(ctrl); 3900 mutex_lock(&ctrl->namespaces_lock); 3901 list_del_rcu(&ns->list); 3902 mutex_unlock(&ctrl->namespaces_lock); 3903 synchronize_srcu(&ctrl->srcu); 3904 out_unlink_ns: 3905 mutex_lock(&ctrl->subsys->lock); 3906 list_del_rcu(&ns->siblings); 3907 if (list_empty(&ns->head->list)) 3908 list_del_init(&ns->head->entry); 3909 mutex_unlock(&ctrl->subsys->lock); 3910 nvme_put_ns_head(ns->head); 3911 out_cleanup_disk: 3912 put_disk(disk); 3913 out_free_ns: 3914 kfree(ns); 3915 } 3916 3917 static void nvme_ns_remove(struct nvme_ns *ns) 3918 { 3919 bool last_path = false; 3920 3921 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3922 return; 3923 3924 clear_bit(NVME_NS_READY, &ns->flags); 3925 set_capacity(ns->disk, 0); 3926 nvme_fault_inject_fini(&ns->fault_inject); 3927 3928 /* 3929 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3930 * this ns going back into current_path. 3931 */ 3932 synchronize_srcu(&ns->head->srcu); 3933 3934 /* wait for concurrent submissions */ 3935 if (nvme_mpath_clear_current_path(ns)) 3936 synchronize_srcu(&ns->head->srcu); 3937 3938 mutex_lock(&ns->ctrl->subsys->lock); 3939 list_del_rcu(&ns->siblings); 3940 if (list_empty(&ns->head->list)) { 3941 list_del_init(&ns->head->entry); 3942 last_path = true; 3943 } 3944 mutex_unlock(&ns->ctrl->subsys->lock); 3945 3946 /* guarantee not available in head->list */ 3947 synchronize_srcu(&ns->head->srcu); 3948 3949 if (!nvme_ns_head_multipath(ns->head)) 3950 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3951 del_gendisk(ns->disk); 3952 3953 mutex_lock(&ns->ctrl->namespaces_lock); 3954 list_del_rcu(&ns->list); 3955 mutex_unlock(&ns->ctrl->namespaces_lock); 3956 synchronize_srcu(&ns->ctrl->srcu); 3957 3958 if (last_path) 3959 nvme_mpath_shutdown_disk(ns->head); 3960 nvme_put_ns(ns); 3961 } 3962 3963 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3964 { 3965 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3966 3967 if (ns) { 3968 nvme_ns_remove(ns); 3969 nvme_put_ns(ns); 3970 } 3971 } 3972 3973 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3974 { 3975 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; 3976 3977 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3978 dev_err(ns->ctrl->device, 3979 "identifiers changed for nsid %d\n", ns->head->ns_id); 3980 goto out; 3981 } 3982 3983 ret = nvme_update_ns_info(ns, info); 3984 out: 3985 /* 3986 * Only remove the namespace if we got a fatal error back from the 3987 * device, otherwise ignore the error and just move on. 3988 * 3989 * TODO: we should probably schedule a delayed retry here. 3990 */ 3991 if (ret > 0 && (ret & NVME_STATUS_DNR)) 3992 nvme_ns_remove(ns); 3993 } 3994 3995 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3996 { 3997 struct nvme_ns_info info = { .nsid = nsid }; 3998 struct nvme_ns *ns; 3999 int ret = 1; 4000 4001 if (nvme_identify_ns_descs(ctrl, &info)) 4002 return; 4003 4004 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4005 dev_warn(ctrl->device, 4006 "command set not reported for nsid: %d\n", nsid); 4007 return; 4008 } 4009 4010 /* 4011 * If available try to use the Command Set Idependent Identify Namespace 4012 * data structure to find all the generic information that is needed to 4013 * set up a namespace. If not fall back to the legacy version. 4014 */ 4015 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4016 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) || 4017 ctrl->vs >= NVME_VS(2, 0, 0)) 4018 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 4019 if (ret > 0) 4020 ret = nvme_ns_info_from_identify(ctrl, &info); 4021 4022 if (info.is_removed) 4023 nvme_ns_remove_by_nsid(ctrl, nsid); 4024 4025 /* 4026 * Ignore the namespace if it is not ready. We will get an AEN once it 4027 * becomes ready and restart the scan. 4028 */ 4029 if (ret || !info.is_ready) 4030 return; 4031 4032 ns = nvme_find_get_ns(ctrl, nsid); 4033 if (ns) { 4034 nvme_validate_ns(ns, &info); 4035 nvme_put_ns(ns); 4036 } else { 4037 nvme_alloc_ns(ctrl, &info); 4038 } 4039 } 4040 4041 /** 4042 * struct async_scan_info - keeps track of controller & NSIDs to scan 4043 * @ctrl: Controller on which namespaces are being scanned 4044 * @next_nsid: Index of next NSID to scan in ns_list 4045 * @ns_list: Pointer to list of NSIDs to scan 4046 * 4047 * Note: There is a single async_scan_info structure shared by all instances 4048 * of nvme_scan_ns_async() scanning a given controller, so the atomic 4049 * operations on next_nsid are critical to ensure each instance scans a unique 4050 * NSID. 4051 */ 4052 struct async_scan_info { 4053 struct nvme_ctrl *ctrl; 4054 atomic_t next_nsid; 4055 __le32 *ns_list; 4056 }; 4057 4058 static void nvme_scan_ns_async(void *data, async_cookie_t cookie) 4059 { 4060 struct async_scan_info *scan_info = data; 4061 int idx; 4062 u32 nsid; 4063 4064 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid); 4065 nsid = le32_to_cpu(scan_info->ns_list[idx]); 4066 4067 nvme_scan_ns(scan_info->ctrl, nsid); 4068 } 4069 4070 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4071 unsigned nsid) 4072 { 4073 struct nvme_ns *ns, *next; 4074 LIST_HEAD(rm_list); 4075 4076 mutex_lock(&ctrl->namespaces_lock); 4077 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4078 if (ns->head->ns_id > nsid) { 4079 list_del_rcu(&ns->list); 4080 synchronize_srcu(&ctrl->srcu); 4081 list_add_tail_rcu(&ns->list, &rm_list); 4082 } 4083 } 4084 mutex_unlock(&ctrl->namespaces_lock); 4085 4086 list_for_each_entry_safe(ns, next, &rm_list, list) 4087 nvme_ns_remove(ns); 4088 } 4089 4090 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4091 { 4092 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4093 __le32 *ns_list; 4094 u32 prev = 0; 4095 int ret = 0, i; 4096 ASYNC_DOMAIN(domain); 4097 struct async_scan_info scan_info; 4098 4099 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4100 if (!ns_list) 4101 return -ENOMEM; 4102 4103 scan_info.ctrl = ctrl; 4104 scan_info.ns_list = ns_list; 4105 for (;;) { 4106 struct nvme_command cmd = { 4107 .identify.opcode = nvme_admin_identify, 4108 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4109 .identify.nsid = cpu_to_le32(prev), 4110 }; 4111 4112 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4113 NVME_IDENTIFY_DATA_SIZE); 4114 if (ret) { 4115 dev_warn(ctrl->device, 4116 "Identify NS List failed (status=0x%x)\n", ret); 4117 goto free; 4118 } 4119 4120 atomic_set(&scan_info.next_nsid, 0); 4121 for (i = 0; i < nr_entries; i++) { 4122 u32 nsid = le32_to_cpu(ns_list[i]); 4123 4124 if (!nsid) /* end of the list? */ 4125 goto out; 4126 async_schedule_domain(nvme_scan_ns_async, &scan_info, 4127 &domain); 4128 while (++prev < nsid) 4129 nvme_ns_remove_by_nsid(ctrl, prev); 4130 } 4131 async_synchronize_full_domain(&domain); 4132 } 4133 out: 4134 nvme_remove_invalid_namespaces(ctrl, prev); 4135 free: 4136 async_synchronize_full_domain(&domain); 4137 kfree(ns_list); 4138 return ret; 4139 } 4140 4141 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4142 { 4143 struct nvme_id_ctrl *id; 4144 u32 nn, i; 4145 4146 if (nvme_identify_ctrl(ctrl, &id)) 4147 return; 4148 nn = le32_to_cpu(id->nn); 4149 kfree(id); 4150 4151 for (i = 1; i <= nn; i++) 4152 nvme_scan_ns(ctrl, i); 4153 4154 nvme_remove_invalid_namespaces(ctrl, nn); 4155 } 4156 4157 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4158 { 4159 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4160 __le32 *log; 4161 int error; 4162 4163 log = kzalloc(log_size, GFP_KERNEL); 4164 if (!log) 4165 return; 4166 4167 /* 4168 * We need to read the log to clear the AEN, but we don't want to rely 4169 * on it for the changed namespace information as userspace could have 4170 * raced with us in reading the log page, which could cause us to miss 4171 * updates. 4172 */ 4173 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4174 NVME_CSI_NVM, log, log_size, 0); 4175 if (error) 4176 dev_warn(ctrl->device, 4177 "reading changed ns log failed: %d\n", error); 4178 4179 kfree(log); 4180 } 4181 4182 static void nvme_scan_work(struct work_struct *work) 4183 { 4184 struct nvme_ctrl *ctrl = 4185 container_of(work, struct nvme_ctrl, scan_work); 4186 int ret; 4187 4188 /* No tagset on a live ctrl means IO queues could not created */ 4189 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4190 return; 4191 4192 /* 4193 * Identify controller limits can change at controller reset due to 4194 * new firmware download, even though it is not common we cannot ignore 4195 * such scenario. Controller's non-mdts limits are reported in the unit 4196 * of logical blocks that is dependent on the format of attached 4197 * namespace. Hence re-read the limits at the time of ns allocation. 4198 */ 4199 ret = nvme_init_non_mdts_limits(ctrl); 4200 if (ret < 0) { 4201 dev_warn(ctrl->device, 4202 "reading non-mdts-limits failed: %d\n", ret); 4203 return; 4204 } 4205 4206 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4207 dev_info(ctrl->device, "rescanning namespaces.\n"); 4208 nvme_clear_changed_ns_log(ctrl); 4209 } 4210 4211 mutex_lock(&ctrl->scan_lock); 4212 if (nvme_ctrl_limited_cns(ctrl)) { 4213 nvme_scan_ns_sequential(ctrl); 4214 } else { 4215 /* 4216 * Fall back to sequential scan if DNR is set to handle broken 4217 * devices which should support Identify NS List (as per the VS 4218 * they report) but don't actually support it. 4219 */ 4220 ret = nvme_scan_ns_list(ctrl); 4221 if (ret > 0 && ret & NVME_STATUS_DNR) 4222 nvme_scan_ns_sequential(ctrl); 4223 } 4224 mutex_unlock(&ctrl->scan_lock); 4225 } 4226 4227 /* 4228 * This function iterates the namespace list unlocked to allow recovery from 4229 * controller failure. It is up to the caller to ensure the namespace list is 4230 * not modified by scan work while this function is executing. 4231 */ 4232 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4233 { 4234 struct nvme_ns *ns, *next; 4235 LIST_HEAD(ns_list); 4236 4237 /* 4238 * make sure to requeue I/O to all namespaces as these 4239 * might result from the scan itself and must complete 4240 * for the scan_work to make progress 4241 */ 4242 nvme_mpath_clear_ctrl_paths(ctrl); 4243 4244 /* 4245 * Unquiesce io queues so any pending IO won't hang, especially 4246 * those submitted from scan work 4247 */ 4248 nvme_unquiesce_io_queues(ctrl); 4249 4250 /* prevent racing with ns scanning */ 4251 flush_work(&ctrl->scan_work); 4252 4253 /* 4254 * The dead states indicates the controller was not gracefully 4255 * disconnected. In that case, we won't be able to flush any data while 4256 * removing the namespaces' disks; fail all the queues now to avoid 4257 * potentially having to clean up the failed sync later. 4258 */ 4259 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4260 nvme_mark_namespaces_dead(ctrl); 4261 4262 /* this is a no-op when called from the controller reset handler */ 4263 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4264 4265 mutex_lock(&ctrl->namespaces_lock); 4266 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4267 mutex_unlock(&ctrl->namespaces_lock); 4268 synchronize_srcu(&ctrl->srcu); 4269 4270 list_for_each_entry_safe(ns, next, &ns_list, list) 4271 nvme_ns_remove(ns); 4272 } 4273 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4274 4275 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4276 { 4277 const struct nvme_ctrl *ctrl = 4278 container_of(dev, struct nvme_ctrl, ctrl_device); 4279 struct nvmf_ctrl_options *opts = ctrl->opts; 4280 int ret; 4281 4282 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4283 if (ret) 4284 return ret; 4285 4286 if (opts) { 4287 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4288 if (ret) 4289 return ret; 4290 4291 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4292 opts->trsvcid ?: "none"); 4293 if (ret) 4294 return ret; 4295 4296 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4297 opts->host_traddr ?: "none"); 4298 if (ret) 4299 return ret; 4300 4301 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4302 opts->host_iface ?: "none"); 4303 } 4304 return ret; 4305 } 4306 4307 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4308 { 4309 char *envp[2] = { envdata, NULL }; 4310 4311 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4312 } 4313 4314 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4315 { 4316 char *envp[2] = { NULL, NULL }; 4317 u32 aen_result = ctrl->aen_result; 4318 4319 ctrl->aen_result = 0; 4320 if (!aen_result) 4321 return; 4322 4323 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4324 if (!envp[0]) 4325 return; 4326 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4327 kfree(envp[0]); 4328 } 4329 4330 static void nvme_async_event_work(struct work_struct *work) 4331 { 4332 struct nvme_ctrl *ctrl = 4333 container_of(work, struct nvme_ctrl, async_event_work); 4334 4335 nvme_aen_uevent(ctrl); 4336 4337 /* 4338 * The transport drivers must guarantee AER submission here is safe by 4339 * flushing ctrl async_event_work after changing the controller state 4340 * from LIVE and before freeing the admin queue. 4341 */ 4342 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4343 ctrl->ops->submit_async_event(ctrl); 4344 } 4345 4346 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4347 { 4348 4349 u32 csts; 4350 4351 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4352 return false; 4353 4354 if (csts == ~0) 4355 return false; 4356 4357 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4358 } 4359 4360 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4361 { 4362 struct nvme_fw_slot_info_log *log; 4363 u8 next_fw_slot, cur_fw_slot; 4364 4365 log = kmalloc(sizeof(*log), GFP_KERNEL); 4366 if (!log) 4367 return; 4368 4369 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4370 log, sizeof(*log), 0)) { 4371 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4372 goto out_free_log; 4373 } 4374 4375 cur_fw_slot = log->afi & 0x7; 4376 next_fw_slot = (log->afi & 0x70) >> 4; 4377 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4378 dev_info(ctrl->device, 4379 "Firmware is activated after next Controller Level Reset\n"); 4380 goto out_free_log; 4381 } 4382 4383 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4384 sizeof(ctrl->subsys->firmware_rev)); 4385 4386 out_free_log: 4387 kfree(log); 4388 } 4389 4390 static void nvme_fw_act_work(struct work_struct *work) 4391 { 4392 struct nvme_ctrl *ctrl = container_of(work, 4393 struct nvme_ctrl, fw_act_work); 4394 unsigned long fw_act_timeout; 4395 4396 nvme_auth_stop(ctrl); 4397 4398 if (ctrl->mtfa) 4399 fw_act_timeout = jiffies + 4400 msecs_to_jiffies(ctrl->mtfa * 100); 4401 else 4402 fw_act_timeout = jiffies + 4403 msecs_to_jiffies(admin_timeout * 1000); 4404 4405 nvme_quiesce_io_queues(ctrl); 4406 while (nvme_ctrl_pp_status(ctrl)) { 4407 if (time_after(jiffies, fw_act_timeout)) { 4408 dev_warn(ctrl->device, 4409 "Fw activation timeout, reset controller\n"); 4410 nvme_try_sched_reset(ctrl); 4411 return; 4412 } 4413 msleep(100); 4414 } 4415 4416 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4417 return; 4418 4419 nvme_unquiesce_io_queues(ctrl); 4420 /* read FW slot information to clear the AER */ 4421 nvme_get_fw_slot_info(ctrl); 4422 4423 queue_work(nvme_wq, &ctrl->async_event_work); 4424 } 4425 4426 static u32 nvme_aer_type(u32 result) 4427 { 4428 return result & 0x7; 4429 } 4430 4431 static u32 nvme_aer_subtype(u32 result) 4432 { 4433 return (result & 0xff00) >> 8; 4434 } 4435 4436 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4437 { 4438 u32 aer_notice_type = nvme_aer_subtype(result); 4439 bool requeue = true; 4440 4441 switch (aer_notice_type) { 4442 case NVME_AER_NOTICE_NS_CHANGED: 4443 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4444 nvme_queue_scan(ctrl); 4445 break; 4446 case NVME_AER_NOTICE_FW_ACT_STARTING: 4447 /* 4448 * We are (ab)using the RESETTING state to prevent subsequent 4449 * recovery actions from interfering with the controller's 4450 * firmware activation. 4451 */ 4452 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4453 requeue = false; 4454 queue_work(nvme_wq, &ctrl->fw_act_work); 4455 } 4456 break; 4457 #ifdef CONFIG_NVME_MULTIPATH 4458 case NVME_AER_NOTICE_ANA: 4459 if (!ctrl->ana_log_buf) 4460 break; 4461 queue_work(nvme_wq, &ctrl->ana_work); 4462 break; 4463 #endif 4464 case NVME_AER_NOTICE_DISC_CHANGED: 4465 ctrl->aen_result = result; 4466 break; 4467 default: 4468 dev_warn(ctrl->device, "async event result %08x\n", result); 4469 } 4470 return requeue; 4471 } 4472 4473 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4474 { 4475 dev_warn(ctrl->device, 4476 "resetting controller due to persistent internal error\n"); 4477 nvme_reset_ctrl(ctrl); 4478 } 4479 4480 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4481 volatile union nvme_result *res) 4482 { 4483 u32 result = le32_to_cpu(res->u32); 4484 u32 aer_type = nvme_aer_type(result); 4485 u32 aer_subtype = nvme_aer_subtype(result); 4486 bool requeue = true; 4487 4488 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4489 return; 4490 4491 trace_nvme_async_event(ctrl, result); 4492 switch (aer_type) { 4493 case NVME_AER_NOTICE: 4494 requeue = nvme_handle_aen_notice(ctrl, result); 4495 break; 4496 case NVME_AER_ERROR: 4497 /* 4498 * For a persistent internal error, don't run async_event_work 4499 * to submit a new AER. The controller reset will do it. 4500 */ 4501 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4502 nvme_handle_aer_persistent_error(ctrl); 4503 return; 4504 } 4505 fallthrough; 4506 case NVME_AER_SMART: 4507 case NVME_AER_CSS: 4508 case NVME_AER_VS: 4509 ctrl->aen_result = result; 4510 break; 4511 default: 4512 break; 4513 } 4514 4515 if (requeue) 4516 queue_work(nvme_wq, &ctrl->async_event_work); 4517 } 4518 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4519 4520 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4521 const struct blk_mq_ops *ops, unsigned int cmd_size) 4522 { 4523 struct queue_limits lim = {}; 4524 int ret; 4525 4526 memset(set, 0, sizeof(*set)); 4527 set->ops = ops; 4528 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4529 if (ctrl->ops->flags & NVME_F_FABRICS) 4530 /* Reserved for fabric connect and keep alive */ 4531 set->reserved_tags = 2; 4532 set->numa_node = ctrl->numa_node; 4533 set->flags = BLK_MQ_F_NO_SCHED; 4534 if (ctrl->ops->flags & NVME_F_BLOCKING) 4535 set->flags |= BLK_MQ_F_BLOCKING; 4536 set->cmd_size = cmd_size; 4537 set->driver_data = ctrl; 4538 set->nr_hw_queues = 1; 4539 set->timeout = NVME_ADMIN_TIMEOUT; 4540 ret = blk_mq_alloc_tag_set(set); 4541 if (ret) 4542 return ret; 4543 4544 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4545 if (IS_ERR(ctrl->admin_q)) { 4546 ret = PTR_ERR(ctrl->admin_q); 4547 goto out_free_tagset; 4548 } 4549 4550 if (ctrl->ops->flags & NVME_F_FABRICS) { 4551 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4552 if (IS_ERR(ctrl->fabrics_q)) { 4553 ret = PTR_ERR(ctrl->fabrics_q); 4554 goto out_cleanup_admin_q; 4555 } 4556 } 4557 4558 ctrl->admin_tagset = set; 4559 return 0; 4560 4561 out_cleanup_admin_q: 4562 blk_mq_destroy_queue(ctrl->admin_q); 4563 blk_put_queue(ctrl->admin_q); 4564 out_free_tagset: 4565 blk_mq_free_tag_set(set); 4566 ctrl->admin_q = NULL; 4567 ctrl->fabrics_q = NULL; 4568 return ret; 4569 } 4570 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4571 4572 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4573 { 4574 blk_mq_destroy_queue(ctrl->admin_q); 4575 blk_put_queue(ctrl->admin_q); 4576 if (ctrl->ops->flags & NVME_F_FABRICS) { 4577 blk_mq_destroy_queue(ctrl->fabrics_q); 4578 blk_put_queue(ctrl->fabrics_q); 4579 } 4580 blk_mq_free_tag_set(ctrl->admin_tagset); 4581 } 4582 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4583 4584 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4585 const struct blk_mq_ops *ops, unsigned int nr_maps, 4586 unsigned int cmd_size) 4587 { 4588 int ret; 4589 4590 memset(set, 0, sizeof(*set)); 4591 set->ops = ops; 4592 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4593 /* 4594 * Some Apple controllers requires tags to be unique across admin and 4595 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4596 */ 4597 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4598 set->reserved_tags = NVME_AQ_DEPTH; 4599 else if (ctrl->ops->flags & NVME_F_FABRICS) 4600 /* Reserved for fabric connect */ 4601 set->reserved_tags = 1; 4602 set->numa_node = ctrl->numa_node; 4603 set->flags = BLK_MQ_F_SHOULD_MERGE; 4604 if (ctrl->ops->flags & NVME_F_BLOCKING) 4605 set->flags |= BLK_MQ_F_BLOCKING; 4606 set->cmd_size = cmd_size; 4607 set->driver_data = ctrl; 4608 set->nr_hw_queues = ctrl->queue_count - 1; 4609 set->timeout = NVME_IO_TIMEOUT; 4610 set->nr_maps = nr_maps; 4611 ret = blk_mq_alloc_tag_set(set); 4612 if (ret) 4613 return ret; 4614 4615 if (ctrl->ops->flags & NVME_F_FABRICS) { 4616 struct queue_limits lim = { 4617 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, 4618 }; 4619 4620 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); 4621 if (IS_ERR(ctrl->connect_q)) { 4622 ret = PTR_ERR(ctrl->connect_q); 4623 goto out_free_tag_set; 4624 } 4625 } 4626 4627 ctrl->tagset = set; 4628 return 0; 4629 4630 out_free_tag_set: 4631 blk_mq_free_tag_set(set); 4632 ctrl->connect_q = NULL; 4633 return ret; 4634 } 4635 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4636 4637 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4638 { 4639 if (ctrl->ops->flags & NVME_F_FABRICS) { 4640 blk_mq_destroy_queue(ctrl->connect_q); 4641 blk_put_queue(ctrl->connect_q); 4642 } 4643 blk_mq_free_tag_set(ctrl->tagset); 4644 } 4645 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4646 4647 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4648 { 4649 nvme_mpath_stop(ctrl); 4650 nvme_auth_stop(ctrl); 4651 nvme_stop_failfast_work(ctrl); 4652 flush_work(&ctrl->async_event_work); 4653 cancel_work_sync(&ctrl->fw_act_work); 4654 if (ctrl->ops->stop_ctrl) 4655 ctrl->ops->stop_ctrl(ctrl); 4656 } 4657 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4658 4659 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4660 { 4661 nvme_enable_aen(ctrl); 4662 4663 /* 4664 * persistent discovery controllers need to send indication to userspace 4665 * to re-read the discovery log page to learn about possible changes 4666 * that were missed. We identify persistent discovery controllers by 4667 * checking that they started once before, hence are reconnecting back. 4668 */ 4669 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4670 nvme_discovery_ctrl(ctrl)) 4671 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4672 4673 if (ctrl->queue_count > 1) { 4674 nvme_queue_scan(ctrl); 4675 nvme_unquiesce_io_queues(ctrl); 4676 nvme_mpath_update(ctrl); 4677 } 4678 4679 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4680 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4681 } 4682 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4683 4684 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4685 { 4686 nvme_stop_keep_alive(ctrl); 4687 nvme_hwmon_exit(ctrl); 4688 nvme_fault_inject_fini(&ctrl->fault_inject); 4689 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4690 cdev_device_del(&ctrl->cdev, ctrl->device); 4691 nvme_put_ctrl(ctrl); 4692 } 4693 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4694 4695 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4696 { 4697 struct nvme_effects_log *cel; 4698 unsigned long i; 4699 4700 xa_for_each(&ctrl->cels, i, cel) { 4701 xa_erase(&ctrl->cels, i); 4702 kfree(cel); 4703 } 4704 4705 xa_destroy(&ctrl->cels); 4706 } 4707 4708 static void nvme_free_ctrl(struct device *dev) 4709 { 4710 struct nvme_ctrl *ctrl = 4711 container_of(dev, struct nvme_ctrl, ctrl_device); 4712 struct nvme_subsystem *subsys = ctrl->subsys; 4713 4714 if (!subsys || ctrl->instance != subsys->instance) 4715 ida_free(&nvme_instance_ida, ctrl->instance); 4716 nvme_free_cels(ctrl); 4717 nvme_mpath_uninit(ctrl); 4718 cleanup_srcu_struct(&ctrl->srcu); 4719 nvme_auth_stop(ctrl); 4720 nvme_auth_free(ctrl); 4721 __free_page(ctrl->discard_page); 4722 free_opal_dev(ctrl->opal_dev); 4723 4724 if (subsys) { 4725 mutex_lock(&nvme_subsystems_lock); 4726 list_del(&ctrl->subsys_entry); 4727 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4728 mutex_unlock(&nvme_subsystems_lock); 4729 } 4730 4731 ctrl->ops->free_ctrl(ctrl); 4732 4733 if (subsys) 4734 nvme_put_subsystem(subsys); 4735 } 4736 4737 /* 4738 * Initialize a NVMe controller structures. This needs to be called during 4739 * earliest initialization so that we have the initialized structured around 4740 * during probing. 4741 * 4742 * On success, the caller must use the nvme_put_ctrl() to release this when 4743 * needed, which also invokes the ops->free_ctrl() callback. 4744 */ 4745 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4746 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4747 { 4748 int ret; 4749 4750 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4751 ctrl->passthru_err_log_enabled = false; 4752 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4753 spin_lock_init(&ctrl->lock); 4754 mutex_init(&ctrl->namespaces_lock); 4755 4756 ret = init_srcu_struct(&ctrl->srcu); 4757 if (ret) 4758 return ret; 4759 4760 mutex_init(&ctrl->scan_lock); 4761 INIT_LIST_HEAD(&ctrl->namespaces); 4762 xa_init(&ctrl->cels); 4763 ctrl->dev = dev; 4764 ctrl->ops = ops; 4765 ctrl->quirks = quirks; 4766 ctrl->numa_node = NUMA_NO_NODE; 4767 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4768 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4769 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4770 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4771 init_waitqueue_head(&ctrl->state_wq); 4772 4773 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4774 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4775 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4776 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4777 ctrl->ka_last_check_time = jiffies; 4778 4779 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4780 PAGE_SIZE); 4781 ctrl->discard_page = alloc_page(GFP_KERNEL); 4782 if (!ctrl->discard_page) { 4783 ret = -ENOMEM; 4784 goto out; 4785 } 4786 4787 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4788 if (ret < 0) 4789 goto out; 4790 ctrl->instance = ret; 4791 4792 ret = nvme_auth_init_ctrl(ctrl); 4793 if (ret) 4794 goto out_release_instance; 4795 4796 nvme_mpath_init_ctrl(ctrl); 4797 4798 device_initialize(&ctrl->ctrl_device); 4799 ctrl->device = &ctrl->ctrl_device; 4800 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4801 ctrl->instance); 4802 ctrl->device->class = &nvme_class; 4803 ctrl->device->parent = ctrl->dev; 4804 if (ops->dev_attr_groups) 4805 ctrl->device->groups = ops->dev_attr_groups; 4806 else 4807 ctrl->device->groups = nvme_dev_attr_groups; 4808 ctrl->device->release = nvme_free_ctrl; 4809 dev_set_drvdata(ctrl->device, ctrl); 4810 4811 return ret; 4812 4813 out_release_instance: 4814 ida_free(&nvme_instance_ida, ctrl->instance); 4815 out: 4816 if (ctrl->discard_page) 4817 __free_page(ctrl->discard_page); 4818 cleanup_srcu_struct(&ctrl->srcu); 4819 return ret; 4820 } 4821 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4822 4823 /* 4824 * On success, returns with an elevated controller reference and caller must 4825 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. 4826 */ 4827 int nvme_add_ctrl(struct nvme_ctrl *ctrl) 4828 { 4829 int ret; 4830 4831 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4832 if (ret) 4833 return ret; 4834 4835 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4836 ctrl->cdev.owner = ctrl->ops->module; 4837 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4838 if (ret) 4839 return ret; 4840 4841 /* 4842 * Initialize latency tolerance controls. The sysfs files won't 4843 * be visible to userspace unless the device actually supports APST. 4844 */ 4845 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4846 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4847 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4848 4849 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4850 nvme_get_ctrl(ctrl); 4851 4852 return 0; 4853 } 4854 EXPORT_SYMBOL_GPL(nvme_add_ctrl); 4855 4856 /* let I/O to all namespaces fail in preparation for surprise removal */ 4857 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4858 { 4859 struct nvme_ns *ns; 4860 int srcu_idx; 4861 4862 srcu_idx = srcu_read_lock(&ctrl->srcu); 4863 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4864 blk_mark_disk_dead(ns->disk); 4865 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4866 } 4867 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4868 4869 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4870 { 4871 struct nvme_ns *ns; 4872 int srcu_idx; 4873 4874 srcu_idx = srcu_read_lock(&ctrl->srcu); 4875 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4876 blk_mq_unfreeze_queue_non_owner(ns->queue); 4877 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4878 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4879 } 4880 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4881 4882 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4883 { 4884 struct nvme_ns *ns; 4885 int srcu_idx; 4886 4887 srcu_idx = srcu_read_lock(&ctrl->srcu); 4888 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 4889 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4890 if (timeout <= 0) 4891 break; 4892 } 4893 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4894 return timeout; 4895 } 4896 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4897 4898 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4899 { 4900 struct nvme_ns *ns; 4901 int srcu_idx; 4902 4903 srcu_idx = srcu_read_lock(&ctrl->srcu); 4904 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4905 blk_mq_freeze_queue_wait(ns->queue); 4906 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4907 } 4908 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4909 4910 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4911 { 4912 struct nvme_ns *ns; 4913 int srcu_idx; 4914 4915 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4916 srcu_idx = srcu_read_lock(&ctrl->srcu); 4917 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4918 /* 4919 * Typical non_owner use case is from pci driver, in which 4920 * start_freeze is called from timeout work function, but 4921 * unfreeze is done in reset work context 4922 */ 4923 blk_freeze_queue_start_non_owner(ns->queue); 4924 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4925 } 4926 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4927 4928 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4929 { 4930 if (!ctrl->tagset) 4931 return; 4932 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4933 blk_mq_quiesce_tagset(ctrl->tagset); 4934 else 4935 blk_mq_wait_quiesce_done(ctrl->tagset); 4936 } 4937 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4938 4939 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4940 { 4941 if (!ctrl->tagset) 4942 return; 4943 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4944 blk_mq_unquiesce_tagset(ctrl->tagset); 4945 } 4946 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4947 4948 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4949 { 4950 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4951 blk_mq_quiesce_queue(ctrl->admin_q); 4952 else 4953 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4954 } 4955 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4956 4957 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4958 { 4959 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4960 blk_mq_unquiesce_queue(ctrl->admin_q); 4961 } 4962 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4963 4964 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4965 { 4966 struct nvme_ns *ns; 4967 int srcu_idx; 4968 4969 srcu_idx = srcu_read_lock(&ctrl->srcu); 4970 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4971 blk_sync_queue(ns->queue); 4972 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4973 } 4974 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4975 4976 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4977 { 4978 nvme_sync_io_queues(ctrl); 4979 if (ctrl->admin_q) 4980 blk_sync_queue(ctrl->admin_q); 4981 } 4982 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4983 4984 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4985 { 4986 if (file->f_op != &nvme_dev_fops) 4987 return NULL; 4988 return file->private_data; 4989 } 4990 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4991 4992 /* 4993 * Check we didn't inadvertently grow the command structure sizes: 4994 */ 4995 static inline void _nvme_check_size(void) 4996 { 4997 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4998 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4999 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 5000 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 5001 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 5002 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 5003 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 5004 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 5005 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 5006 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 5007 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 5008 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 5009 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 5010 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 5011 NVME_IDENTIFY_DATA_SIZE); 5012 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 5013 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 5014 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 5015 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 5016 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 5017 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 5018 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512); 5019 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512); 5020 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 5021 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 5022 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 5023 } 5024 5025 5026 static int __init nvme_core_init(void) 5027 { 5028 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS; 5029 int result = -ENOMEM; 5030 5031 _nvme_check_size(); 5032 5033 nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0); 5034 if (!nvme_wq) 5035 goto out; 5036 5037 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0); 5038 if (!nvme_reset_wq) 5039 goto destroy_wq; 5040 5041 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0); 5042 if (!nvme_delete_wq) 5043 goto destroy_reset_wq; 5044 5045 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5046 NVME_MINORS, "nvme"); 5047 if (result < 0) 5048 goto destroy_delete_wq; 5049 5050 result = class_register(&nvme_class); 5051 if (result) 5052 goto unregister_chrdev; 5053 5054 result = class_register(&nvme_subsys_class); 5055 if (result) 5056 goto destroy_class; 5057 5058 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5059 "nvme-generic"); 5060 if (result < 0) 5061 goto destroy_subsys_class; 5062 5063 result = class_register(&nvme_ns_chr_class); 5064 if (result) 5065 goto unregister_generic_ns; 5066 5067 result = nvme_init_auth(); 5068 if (result) 5069 goto destroy_ns_chr; 5070 return 0; 5071 5072 destroy_ns_chr: 5073 class_unregister(&nvme_ns_chr_class); 5074 unregister_generic_ns: 5075 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5076 destroy_subsys_class: 5077 class_unregister(&nvme_subsys_class); 5078 destroy_class: 5079 class_unregister(&nvme_class); 5080 unregister_chrdev: 5081 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5082 destroy_delete_wq: 5083 destroy_workqueue(nvme_delete_wq); 5084 destroy_reset_wq: 5085 destroy_workqueue(nvme_reset_wq); 5086 destroy_wq: 5087 destroy_workqueue(nvme_wq); 5088 out: 5089 return result; 5090 } 5091 5092 static void __exit nvme_core_exit(void) 5093 { 5094 nvme_exit_auth(); 5095 class_unregister(&nvme_ns_chr_class); 5096 class_unregister(&nvme_subsys_class); 5097 class_unregister(&nvme_class); 5098 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5099 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5100 destroy_workqueue(nvme_delete_wq); 5101 destroy_workqueue(nvme_reset_wq); 5102 destroy_workqueue(nvme_wq); 5103 ida_destroy(&nvme_ns_chr_minor_ida); 5104 ida_destroy(&nvme_instance_ida); 5105 } 5106 5107 MODULE_LICENSE("GPL"); 5108 MODULE_VERSION("1.0"); 5109 MODULE_DESCRIPTION("NVMe host core framework"); 5110 module_init(nvme_core_init); 5111 module_exit(nvme_core_exit); 5112