xref: /linux/drivers/nvme/host/core.c (revision 9fffa4e9b3b158f63334e603e610da7d529a0f9a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	bool is_shared;
42 	bool is_readonly;
43 	bool is_ready;
44 	bool is_removed;
45 };
46 
47 unsigned int admin_timeout = 60;
48 module_param(admin_timeout, uint, 0644);
49 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
50 EXPORT_SYMBOL_GPL(admin_timeout);
51 
52 unsigned int nvme_io_timeout = 30;
53 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
54 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
55 EXPORT_SYMBOL_GPL(nvme_io_timeout);
56 
57 static unsigned char shutdown_timeout = 5;
58 module_param(shutdown_timeout, byte, 0644);
59 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
60 
61 static u8 nvme_max_retries = 5;
62 module_param_named(max_retries, nvme_max_retries, byte, 0644);
63 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
64 
65 static unsigned long default_ps_max_latency_us = 100000;
66 module_param(default_ps_max_latency_us, ulong, 0644);
67 MODULE_PARM_DESC(default_ps_max_latency_us,
68 		 "max power saving latency for new devices; use PM QOS to change per device");
69 
70 static bool force_apst;
71 module_param(force_apst, bool, 0644);
72 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
73 
74 static unsigned long apst_primary_timeout_ms = 100;
75 module_param(apst_primary_timeout_ms, ulong, 0644);
76 MODULE_PARM_DESC(apst_primary_timeout_ms,
77 	"primary APST timeout in ms");
78 
79 static unsigned long apst_secondary_timeout_ms = 2000;
80 module_param(apst_secondary_timeout_ms, ulong, 0644);
81 MODULE_PARM_DESC(apst_secondary_timeout_ms,
82 	"secondary APST timeout in ms");
83 
84 static unsigned long apst_primary_latency_tol_us = 15000;
85 module_param(apst_primary_latency_tol_us, ulong, 0644);
86 MODULE_PARM_DESC(apst_primary_latency_tol_us,
87 	"primary APST latency tolerance in us");
88 
89 static unsigned long apst_secondary_latency_tol_us = 100000;
90 module_param(apst_secondary_latency_tol_us, ulong, 0644);
91 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
92 	"secondary APST latency tolerance in us");
93 
94 /*
95  * nvme_wq - hosts nvme related works that are not reset or delete
96  * nvme_reset_wq - hosts nvme reset works
97  * nvme_delete_wq - hosts nvme delete works
98  *
99  * nvme_wq will host works such as scan, aen handling, fw activation,
100  * keep-alive, periodic reconnects etc. nvme_reset_wq
101  * runs reset works which also flush works hosted on nvme_wq for
102  * serialization purposes. nvme_delete_wq host controller deletion
103  * works which flush reset works for serialization.
104  */
105 struct workqueue_struct *nvme_wq;
106 EXPORT_SYMBOL_GPL(nvme_wq);
107 
108 struct workqueue_struct *nvme_reset_wq;
109 EXPORT_SYMBOL_GPL(nvme_reset_wq);
110 
111 struct workqueue_struct *nvme_delete_wq;
112 EXPORT_SYMBOL_GPL(nvme_delete_wq);
113 
114 static LIST_HEAD(nvme_subsystems);
115 DEFINE_MUTEX(nvme_subsystems_lock);
116 
117 static DEFINE_IDA(nvme_instance_ida);
118 static dev_t nvme_ctrl_base_chr_devt;
119 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
120 static const struct class nvme_class = {
121 	.name = "nvme",
122 	.dev_uevent = nvme_class_uevent,
123 };
124 
125 static const struct class nvme_subsys_class = {
126 	.name = "nvme-subsystem",
127 };
128 
129 static DEFINE_IDA(nvme_ns_chr_minor_ida);
130 static dev_t nvme_ns_chr_devt;
131 static const struct class nvme_ns_chr_class = {
132 	.name = "nvme-generic",
133 };
134 
135 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
136 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
137 					   unsigned nsid);
138 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
139 				   struct nvme_command *cmd);
140 
141 void nvme_queue_scan(struct nvme_ctrl *ctrl)
142 {
143 	/*
144 	 * Only new queue scan work when admin and IO queues are both alive
145 	 */
146 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
147 		queue_work(nvme_wq, &ctrl->scan_work);
148 }
149 
150 /*
151  * Use this function to proceed with scheduling reset_work for a controller
152  * that had previously been set to the resetting state. This is intended for
153  * code paths that can't be interrupted by other reset attempts. A hot removal
154  * may prevent this from succeeding.
155  */
156 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
157 {
158 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
159 		return -EBUSY;
160 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
161 		return -EBUSY;
162 	return 0;
163 }
164 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
165 
166 static void nvme_failfast_work(struct work_struct *work)
167 {
168 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
169 			struct nvme_ctrl, failfast_work);
170 
171 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
172 		return;
173 
174 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
175 	dev_info(ctrl->device, "failfast expired\n");
176 	nvme_kick_requeue_lists(ctrl);
177 }
178 
179 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
180 {
181 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
182 		return;
183 
184 	schedule_delayed_work(&ctrl->failfast_work,
185 			      ctrl->opts->fast_io_fail_tmo * HZ);
186 }
187 
188 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
189 {
190 	if (!ctrl->opts)
191 		return;
192 
193 	cancel_delayed_work_sync(&ctrl->failfast_work);
194 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
195 }
196 
197 
198 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
199 {
200 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
201 		return -EBUSY;
202 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
203 		return -EBUSY;
204 	return 0;
205 }
206 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
207 
208 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
209 {
210 	int ret;
211 
212 	ret = nvme_reset_ctrl(ctrl);
213 	if (!ret) {
214 		flush_work(&ctrl->reset_work);
215 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
216 			ret = -ENETRESET;
217 	}
218 
219 	return ret;
220 }
221 
222 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
223 {
224 	dev_info(ctrl->device,
225 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
226 
227 	flush_work(&ctrl->reset_work);
228 	nvme_stop_ctrl(ctrl);
229 	nvme_remove_namespaces(ctrl);
230 	ctrl->ops->delete_ctrl(ctrl);
231 	nvme_uninit_ctrl(ctrl);
232 }
233 
234 static void nvme_delete_ctrl_work(struct work_struct *work)
235 {
236 	struct nvme_ctrl *ctrl =
237 		container_of(work, struct nvme_ctrl, delete_work);
238 
239 	nvme_do_delete_ctrl(ctrl);
240 }
241 
242 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
243 {
244 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
245 		return -EBUSY;
246 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
247 		return -EBUSY;
248 	return 0;
249 }
250 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
251 
252 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
253 {
254 	/*
255 	 * Keep a reference until nvme_do_delete_ctrl() complete,
256 	 * since ->delete_ctrl can free the controller.
257 	 */
258 	nvme_get_ctrl(ctrl);
259 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
260 		nvme_do_delete_ctrl(ctrl);
261 	nvme_put_ctrl(ctrl);
262 }
263 
264 static blk_status_t nvme_error_status(u16 status)
265 {
266 	switch (status & NVME_SCT_SC_MASK) {
267 	case NVME_SC_SUCCESS:
268 		return BLK_STS_OK;
269 	case NVME_SC_CAP_EXCEEDED:
270 		return BLK_STS_NOSPC;
271 	case NVME_SC_LBA_RANGE:
272 	case NVME_SC_CMD_INTERRUPTED:
273 	case NVME_SC_NS_NOT_READY:
274 		return BLK_STS_TARGET;
275 	case NVME_SC_BAD_ATTRIBUTES:
276 	case NVME_SC_ONCS_NOT_SUPPORTED:
277 	case NVME_SC_INVALID_OPCODE:
278 	case NVME_SC_INVALID_FIELD:
279 	case NVME_SC_INVALID_NS:
280 		return BLK_STS_NOTSUPP;
281 	case NVME_SC_WRITE_FAULT:
282 	case NVME_SC_READ_ERROR:
283 	case NVME_SC_UNWRITTEN_BLOCK:
284 	case NVME_SC_ACCESS_DENIED:
285 	case NVME_SC_READ_ONLY:
286 	case NVME_SC_COMPARE_FAILED:
287 		return BLK_STS_MEDIUM;
288 	case NVME_SC_GUARD_CHECK:
289 	case NVME_SC_APPTAG_CHECK:
290 	case NVME_SC_REFTAG_CHECK:
291 	case NVME_SC_INVALID_PI:
292 		return BLK_STS_PROTECTION;
293 	case NVME_SC_RESERVATION_CONFLICT:
294 		return BLK_STS_RESV_CONFLICT;
295 	case NVME_SC_HOST_PATH_ERROR:
296 		return BLK_STS_TRANSPORT;
297 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
298 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
299 	case NVME_SC_ZONE_TOO_MANY_OPEN:
300 		return BLK_STS_ZONE_OPEN_RESOURCE;
301 	default:
302 		return BLK_STS_IOERR;
303 	}
304 }
305 
306 static void nvme_retry_req(struct request *req)
307 {
308 	unsigned long delay = 0;
309 	u16 crd;
310 
311 	/* The mask and shift result must be <= 3 */
312 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
313 	if (crd)
314 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
315 
316 	nvme_req(req)->retries++;
317 	blk_mq_requeue_request(req, false);
318 	blk_mq_delay_kick_requeue_list(req->q, delay);
319 }
320 
321 static void nvme_log_error(struct request *req)
322 {
323 	struct nvme_ns *ns = req->q->queuedata;
324 	struct nvme_request *nr = nvme_req(req);
325 
326 	if (ns) {
327 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
328 		       ns->disk ? ns->disk->disk_name : "?",
329 		       nvme_get_opcode_str(nr->cmd->common.opcode),
330 		       nr->cmd->common.opcode,
331 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
332 		       blk_rq_bytes(req) >> ns->head->lba_shift,
333 		       nvme_get_error_status_str(nr->status),
334 		       NVME_SCT(nr->status),		/* Status Code Type */
335 		       nr->status & NVME_SC_MASK,	/* Status Code */
336 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
337 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
338 		return;
339 	}
340 
341 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
342 			   dev_name(nr->ctrl->device),
343 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
344 			   nr->cmd->common.opcode,
345 			   nvme_get_error_status_str(nr->status),
346 			   NVME_SCT(nr->status),	/* Status Code Type */
347 			   nr->status & NVME_SC_MASK,	/* Status Code */
348 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
349 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
350 }
351 
352 static void nvme_log_err_passthru(struct request *req)
353 {
354 	struct nvme_ns *ns = req->q->queuedata;
355 	struct nvme_request *nr = nvme_req(req);
356 
357 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
358 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
359 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
360 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
361 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
362 		nr->cmd->common.opcode,
363 		nvme_get_error_status_str(nr->status),
364 		NVME_SCT(nr->status),		/* Status Code Type */
365 		nr->status & NVME_SC_MASK,	/* Status Code */
366 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
367 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
368 		nr->cmd->common.cdw10,
369 		nr->cmd->common.cdw11,
370 		nr->cmd->common.cdw12,
371 		nr->cmd->common.cdw13,
372 		nr->cmd->common.cdw14,
373 		nr->cmd->common.cdw14);
374 }
375 
376 enum nvme_disposition {
377 	COMPLETE,
378 	RETRY,
379 	FAILOVER,
380 	AUTHENTICATE,
381 };
382 
383 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
384 {
385 	if (likely(nvme_req(req)->status == 0))
386 		return COMPLETE;
387 
388 	if (blk_noretry_request(req) ||
389 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
390 	    nvme_req(req)->retries >= nvme_max_retries)
391 		return COMPLETE;
392 
393 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
394 		return AUTHENTICATE;
395 
396 	if (req->cmd_flags & REQ_NVME_MPATH) {
397 		if (nvme_is_path_error(nvme_req(req)->status) ||
398 		    blk_queue_dying(req->q))
399 			return FAILOVER;
400 	} else {
401 		if (blk_queue_dying(req->q))
402 			return COMPLETE;
403 	}
404 
405 	return RETRY;
406 }
407 
408 static inline void nvme_end_req_zoned(struct request *req)
409 {
410 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
411 	    req_op(req) == REQ_OP_ZONE_APPEND) {
412 		struct nvme_ns *ns = req->q->queuedata;
413 
414 		req->__sector = nvme_lba_to_sect(ns->head,
415 			le64_to_cpu(nvme_req(req)->result.u64));
416 	}
417 }
418 
419 static inline void __nvme_end_req(struct request *req)
420 {
421 	nvme_end_req_zoned(req);
422 	nvme_trace_bio_complete(req);
423 	if (req->cmd_flags & REQ_NVME_MPATH)
424 		nvme_mpath_end_request(req);
425 }
426 
427 void nvme_end_req(struct request *req)
428 {
429 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
430 
431 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
432 		if (blk_rq_is_passthrough(req))
433 			nvme_log_err_passthru(req);
434 		else
435 			nvme_log_error(req);
436 	}
437 	__nvme_end_req(req);
438 	blk_mq_end_request(req, status);
439 }
440 
441 void nvme_complete_rq(struct request *req)
442 {
443 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
444 
445 	trace_nvme_complete_rq(req);
446 	nvme_cleanup_cmd(req);
447 
448 	/*
449 	 * Completions of long-running commands should not be able to
450 	 * defer sending of periodic keep alives, since the controller
451 	 * may have completed processing such commands a long time ago
452 	 * (arbitrarily close to command submission time).
453 	 * req->deadline - req->timeout is the command submission time
454 	 * in jiffies.
455 	 */
456 	if (ctrl->kas &&
457 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
458 		ctrl->comp_seen = true;
459 
460 	switch (nvme_decide_disposition(req)) {
461 	case COMPLETE:
462 		nvme_end_req(req);
463 		return;
464 	case RETRY:
465 		nvme_retry_req(req);
466 		return;
467 	case FAILOVER:
468 		nvme_failover_req(req);
469 		return;
470 	case AUTHENTICATE:
471 #ifdef CONFIG_NVME_HOST_AUTH
472 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
473 		nvme_retry_req(req);
474 #else
475 		nvme_end_req(req);
476 #endif
477 		return;
478 	}
479 }
480 EXPORT_SYMBOL_GPL(nvme_complete_rq);
481 
482 void nvme_complete_batch_req(struct request *req)
483 {
484 	trace_nvme_complete_rq(req);
485 	nvme_cleanup_cmd(req);
486 	__nvme_end_req(req);
487 }
488 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
489 
490 /*
491  * Called to unwind from ->queue_rq on a failed command submission so that the
492  * multipathing code gets called to potentially failover to another path.
493  * The caller needs to unwind all transport specific resource allocations and
494  * must return propagate the return value.
495  */
496 blk_status_t nvme_host_path_error(struct request *req)
497 {
498 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
499 	blk_mq_set_request_complete(req);
500 	nvme_complete_rq(req);
501 	return BLK_STS_OK;
502 }
503 EXPORT_SYMBOL_GPL(nvme_host_path_error);
504 
505 bool nvme_cancel_request(struct request *req, void *data)
506 {
507 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
508 				"Cancelling I/O %d", req->tag);
509 
510 	/* don't abort one completed or idle request */
511 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
512 		return true;
513 
514 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
515 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
516 	blk_mq_complete_request(req);
517 	return true;
518 }
519 EXPORT_SYMBOL_GPL(nvme_cancel_request);
520 
521 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
522 {
523 	if (ctrl->tagset) {
524 		blk_mq_tagset_busy_iter(ctrl->tagset,
525 				nvme_cancel_request, ctrl);
526 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
527 	}
528 }
529 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
530 
531 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
532 {
533 	if (ctrl->admin_tagset) {
534 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
535 				nvme_cancel_request, ctrl);
536 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
537 	}
538 }
539 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
540 
541 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
542 		enum nvme_ctrl_state new_state)
543 {
544 	enum nvme_ctrl_state old_state;
545 	unsigned long flags;
546 	bool changed = false;
547 
548 	spin_lock_irqsave(&ctrl->lock, flags);
549 
550 	old_state = nvme_ctrl_state(ctrl);
551 	switch (new_state) {
552 	case NVME_CTRL_LIVE:
553 		switch (old_state) {
554 		case NVME_CTRL_NEW:
555 		case NVME_CTRL_RESETTING:
556 		case NVME_CTRL_CONNECTING:
557 			changed = true;
558 			fallthrough;
559 		default:
560 			break;
561 		}
562 		break;
563 	case NVME_CTRL_RESETTING:
564 		switch (old_state) {
565 		case NVME_CTRL_NEW:
566 		case NVME_CTRL_LIVE:
567 			changed = true;
568 			fallthrough;
569 		default:
570 			break;
571 		}
572 		break;
573 	case NVME_CTRL_CONNECTING:
574 		switch (old_state) {
575 		case NVME_CTRL_NEW:
576 		case NVME_CTRL_RESETTING:
577 			changed = true;
578 			fallthrough;
579 		default:
580 			break;
581 		}
582 		break;
583 	case NVME_CTRL_DELETING:
584 		switch (old_state) {
585 		case NVME_CTRL_LIVE:
586 		case NVME_CTRL_RESETTING:
587 		case NVME_CTRL_CONNECTING:
588 			changed = true;
589 			fallthrough;
590 		default:
591 			break;
592 		}
593 		break;
594 	case NVME_CTRL_DELETING_NOIO:
595 		switch (old_state) {
596 		case NVME_CTRL_DELETING:
597 		case NVME_CTRL_DEAD:
598 			changed = true;
599 			fallthrough;
600 		default:
601 			break;
602 		}
603 		break;
604 	case NVME_CTRL_DEAD:
605 		switch (old_state) {
606 		case NVME_CTRL_DELETING:
607 			changed = true;
608 			fallthrough;
609 		default:
610 			break;
611 		}
612 		break;
613 	default:
614 		break;
615 	}
616 
617 	if (changed) {
618 		WRITE_ONCE(ctrl->state, new_state);
619 		wake_up_all(&ctrl->state_wq);
620 	}
621 
622 	spin_unlock_irqrestore(&ctrl->lock, flags);
623 	if (!changed)
624 		return false;
625 
626 	if (new_state == NVME_CTRL_LIVE) {
627 		if (old_state == NVME_CTRL_CONNECTING)
628 			nvme_stop_failfast_work(ctrl);
629 		nvme_kick_requeue_lists(ctrl);
630 	} else if (new_state == NVME_CTRL_CONNECTING &&
631 		old_state == NVME_CTRL_RESETTING) {
632 		nvme_start_failfast_work(ctrl);
633 	}
634 	return changed;
635 }
636 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
637 
638 /*
639  * Waits for the controller state to be resetting, or returns false if it is
640  * not possible to ever transition to that state.
641  */
642 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
643 {
644 	wait_event(ctrl->state_wq,
645 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
646 		   nvme_state_terminal(ctrl));
647 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
648 }
649 EXPORT_SYMBOL_GPL(nvme_wait_reset);
650 
651 static void nvme_free_ns_head(struct kref *ref)
652 {
653 	struct nvme_ns_head *head =
654 		container_of(ref, struct nvme_ns_head, ref);
655 
656 	nvme_mpath_remove_disk(head);
657 	ida_free(&head->subsys->ns_ida, head->instance);
658 	cleanup_srcu_struct(&head->srcu);
659 	nvme_put_subsystem(head->subsys);
660 	kfree(head);
661 }
662 
663 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
664 {
665 	return kref_get_unless_zero(&head->ref);
666 }
667 
668 void nvme_put_ns_head(struct nvme_ns_head *head)
669 {
670 	kref_put(&head->ref, nvme_free_ns_head);
671 }
672 
673 static void nvme_free_ns(struct kref *kref)
674 {
675 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
676 
677 	put_disk(ns->disk);
678 	nvme_put_ns_head(ns->head);
679 	nvme_put_ctrl(ns->ctrl);
680 	kfree(ns);
681 }
682 
683 bool nvme_get_ns(struct nvme_ns *ns)
684 {
685 	return kref_get_unless_zero(&ns->kref);
686 }
687 
688 void nvme_put_ns(struct nvme_ns *ns)
689 {
690 	kref_put(&ns->kref, nvme_free_ns);
691 }
692 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
693 
694 static inline void nvme_clear_nvme_request(struct request *req)
695 {
696 	nvme_req(req)->status = 0;
697 	nvme_req(req)->retries = 0;
698 	nvme_req(req)->flags = 0;
699 	req->rq_flags |= RQF_DONTPREP;
700 }
701 
702 /* initialize a passthrough request */
703 void nvme_init_request(struct request *req, struct nvme_command *cmd)
704 {
705 	struct nvme_request *nr = nvme_req(req);
706 	bool logging_enabled;
707 
708 	if (req->q->queuedata) {
709 		struct nvme_ns *ns = req->q->disk->private_data;
710 
711 		logging_enabled = ns->head->passthru_err_log_enabled;
712 		req->timeout = NVME_IO_TIMEOUT;
713 	} else { /* no queuedata implies admin queue */
714 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
715 		req->timeout = NVME_ADMIN_TIMEOUT;
716 	}
717 
718 	if (!logging_enabled)
719 		req->rq_flags |= RQF_QUIET;
720 
721 	/* passthru commands should let the driver set the SGL flags */
722 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
723 
724 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
725 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
726 		req->cmd_flags |= REQ_POLLED;
727 	nvme_clear_nvme_request(req);
728 	memcpy(nr->cmd, cmd, sizeof(*cmd));
729 }
730 EXPORT_SYMBOL_GPL(nvme_init_request);
731 
732 /*
733  * For something we're not in a state to send to the device the default action
734  * is to busy it and retry it after the controller state is recovered.  However,
735  * if the controller is deleting or if anything is marked for failfast or
736  * nvme multipath it is immediately failed.
737  *
738  * Note: commands used to initialize the controller will be marked for failfast.
739  * Note: nvme cli/ioctl commands are marked for failfast.
740  */
741 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
742 		struct request *rq)
743 {
744 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
745 
746 	if (state != NVME_CTRL_DELETING_NOIO &&
747 	    state != NVME_CTRL_DELETING &&
748 	    state != NVME_CTRL_DEAD &&
749 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
750 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
751 		return BLK_STS_RESOURCE;
752 	return nvme_host_path_error(rq);
753 }
754 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
755 
756 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
757 		bool queue_live, enum nvme_ctrl_state state)
758 {
759 	struct nvme_request *req = nvme_req(rq);
760 
761 	/*
762 	 * currently we have a problem sending passthru commands
763 	 * on the admin_q if the controller is not LIVE because we can't
764 	 * make sure that they are going out after the admin connect,
765 	 * controller enable and/or other commands in the initialization
766 	 * sequence. until the controller will be LIVE, fail with
767 	 * BLK_STS_RESOURCE so that they will be rescheduled.
768 	 */
769 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
770 		return false;
771 
772 	if (ctrl->ops->flags & NVME_F_FABRICS) {
773 		/*
774 		 * Only allow commands on a live queue, except for the connect
775 		 * command, which is require to set the queue live in the
776 		 * appropinquate states.
777 		 */
778 		switch (state) {
779 		case NVME_CTRL_CONNECTING:
780 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
781 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
782 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
783 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
784 				return true;
785 			break;
786 		default:
787 			break;
788 		case NVME_CTRL_DEAD:
789 			return false;
790 		}
791 	}
792 
793 	return queue_live;
794 }
795 EXPORT_SYMBOL_GPL(__nvme_check_ready);
796 
797 static inline void nvme_setup_flush(struct nvme_ns *ns,
798 		struct nvme_command *cmnd)
799 {
800 	memset(cmnd, 0, sizeof(*cmnd));
801 	cmnd->common.opcode = nvme_cmd_flush;
802 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
803 }
804 
805 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
806 		struct nvme_command *cmnd)
807 {
808 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
809 	struct nvme_dsm_range *range;
810 	struct bio *bio;
811 
812 	/*
813 	 * Some devices do not consider the DSM 'Number of Ranges' field when
814 	 * determining how much data to DMA. Always allocate memory for maximum
815 	 * number of segments to prevent device reading beyond end of buffer.
816 	 */
817 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
818 
819 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
820 	if (!range) {
821 		/*
822 		 * If we fail allocation our range, fallback to the controller
823 		 * discard page. If that's also busy, it's safe to return
824 		 * busy, as we know we can make progress once that's freed.
825 		 */
826 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
827 			return BLK_STS_RESOURCE;
828 
829 		range = page_address(ns->ctrl->discard_page);
830 	}
831 
832 	if (queue_max_discard_segments(req->q) == 1) {
833 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
834 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
835 
836 		range[0].cattr = cpu_to_le32(0);
837 		range[0].nlb = cpu_to_le32(nlb);
838 		range[0].slba = cpu_to_le64(slba);
839 		n = 1;
840 	} else {
841 		__rq_for_each_bio(bio, req) {
842 			u64 slba = nvme_sect_to_lba(ns->head,
843 						    bio->bi_iter.bi_sector);
844 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
845 
846 			if (n < segments) {
847 				range[n].cattr = cpu_to_le32(0);
848 				range[n].nlb = cpu_to_le32(nlb);
849 				range[n].slba = cpu_to_le64(slba);
850 			}
851 			n++;
852 		}
853 	}
854 
855 	if (WARN_ON_ONCE(n != segments)) {
856 		if (virt_to_page(range) == ns->ctrl->discard_page)
857 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
858 		else
859 			kfree(range);
860 		return BLK_STS_IOERR;
861 	}
862 
863 	memset(cmnd, 0, sizeof(*cmnd));
864 	cmnd->dsm.opcode = nvme_cmd_dsm;
865 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
866 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
867 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
868 
869 	bvec_set_virt(&req->special_vec, range, alloc_size);
870 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
871 
872 	return BLK_STS_OK;
873 }
874 
875 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
876 			      struct request *req)
877 {
878 	u32 upper, lower;
879 	u64 ref48;
880 
881 	/* both rw and write zeroes share the same reftag format */
882 	switch (ns->head->guard_type) {
883 	case NVME_NVM_NS_16B_GUARD:
884 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
885 		break;
886 	case NVME_NVM_NS_64B_GUARD:
887 		ref48 = ext_pi_ref_tag(req);
888 		lower = lower_32_bits(ref48);
889 		upper = upper_32_bits(ref48);
890 
891 		cmnd->rw.reftag = cpu_to_le32(lower);
892 		cmnd->rw.cdw3 = cpu_to_le32(upper);
893 		break;
894 	default:
895 		break;
896 	}
897 }
898 
899 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
900 		struct request *req, struct nvme_command *cmnd)
901 {
902 	memset(cmnd, 0, sizeof(*cmnd));
903 
904 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
905 		return nvme_setup_discard(ns, req, cmnd);
906 
907 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
908 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
909 	cmnd->write_zeroes.slba =
910 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
911 	cmnd->write_zeroes.length =
912 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
913 
914 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
915 	    (ns->head->features & NVME_NS_DEAC))
916 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
917 
918 	if (nvme_ns_has_pi(ns->head)) {
919 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
920 
921 		switch (ns->head->pi_type) {
922 		case NVME_NS_DPS_PI_TYPE1:
923 		case NVME_NS_DPS_PI_TYPE2:
924 			nvme_set_ref_tag(ns, cmnd, req);
925 			break;
926 		}
927 	}
928 
929 	return BLK_STS_OK;
930 }
931 
932 /*
933  * NVMe does not support a dedicated command to issue an atomic write. A write
934  * which does adhere to the device atomic limits will silently be executed
935  * non-atomically. The request issuer should ensure that the write is within
936  * the queue atomic writes limits, but just validate this in case it is not.
937  */
938 static bool nvme_valid_atomic_write(struct request *req)
939 {
940 	struct request_queue *q = req->q;
941 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
942 
943 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
944 		return false;
945 
946 	if (boundary_bytes) {
947 		u64 mask = boundary_bytes - 1, imask = ~mask;
948 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
949 		u64 end = start + blk_rq_bytes(req) - 1;
950 
951 		/* If greater then must be crossing a boundary */
952 		if (blk_rq_bytes(req) > boundary_bytes)
953 			return false;
954 
955 		if ((start & imask) != (end & imask))
956 			return false;
957 	}
958 
959 	return true;
960 }
961 
962 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
963 		struct request *req, struct nvme_command *cmnd,
964 		enum nvme_opcode op)
965 {
966 	u16 control = 0;
967 	u32 dsmgmt = 0;
968 
969 	if (req->cmd_flags & REQ_FUA)
970 		control |= NVME_RW_FUA;
971 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
972 		control |= NVME_RW_LR;
973 
974 	if (req->cmd_flags & REQ_RAHEAD)
975 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
976 
977 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
978 		return BLK_STS_INVAL;
979 
980 	cmnd->rw.opcode = op;
981 	cmnd->rw.flags = 0;
982 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
983 	cmnd->rw.cdw2 = 0;
984 	cmnd->rw.cdw3 = 0;
985 	cmnd->rw.metadata = 0;
986 	cmnd->rw.slba =
987 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
988 	cmnd->rw.length =
989 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
990 	cmnd->rw.reftag = 0;
991 	cmnd->rw.lbat = 0;
992 	cmnd->rw.lbatm = 0;
993 
994 	if (ns->head->ms) {
995 		/*
996 		 * If formated with metadata, the block layer always provides a
997 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
998 		 * we enable the PRACT bit for protection information or set the
999 		 * namespace capacity to zero to prevent any I/O.
1000 		 */
1001 		if (!blk_integrity_rq(req)) {
1002 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1003 				return BLK_STS_NOTSUPP;
1004 			control |= NVME_RW_PRINFO_PRACT;
1005 		}
1006 
1007 		switch (ns->head->pi_type) {
1008 		case NVME_NS_DPS_PI_TYPE3:
1009 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1010 			break;
1011 		case NVME_NS_DPS_PI_TYPE1:
1012 		case NVME_NS_DPS_PI_TYPE2:
1013 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
1014 					NVME_RW_PRINFO_PRCHK_REF;
1015 			if (op == nvme_cmd_zone_append)
1016 				control |= NVME_RW_APPEND_PIREMAP;
1017 			nvme_set_ref_tag(ns, cmnd, req);
1018 			break;
1019 		}
1020 	}
1021 
1022 	cmnd->rw.control = cpu_to_le16(control);
1023 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1024 	return 0;
1025 }
1026 
1027 void nvme_cleanup_cmd(struct request *req)
1028 {
1029 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1030 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1031 
1032 		if (req->special_vec.bv_page == ctrl->discard_page)
1033 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1034 		else
1035 			kfree(bvec_virt(&req->special_vec));
1036 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1037 	}
1038 }
1039 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1040 
1041 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1042 {
1043 	struct nvme_command *cmd = nvme_req(req)->cmd;
1044 	blk_status_t ret = BLK_STS_OK;
1045 
1046 	if (!(req->rq_flags & RQF_DONTPREP))
1047 		nvme_clear_nvme_request(req);
1048 
1049 	switch (req_op(req)) {
1050 	case REQ_OP_DRV_IN:
1051 	case REQ_OP_DRV_OUT:
1052 		/* these are setup prior to execution in nvme_init_request() */
1053 		break;
1054 	case REQ_OP_FLUSH:
1055 		nvme_setup_flush(ns, cmd);
1056 		break;
1057 	case REQ_OP_ZONE_RESET_ALL:
1058 	case REQ_OP_ZONE_RESET:
1059 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1060 		break;
1061 	case REQ_OP_ZONE_OPEN:
1062 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1063 		break;
1064 	case REQ_OP_ZONE_CLOSE:
1065 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1066 		break;
1067 	case REQ_OP_ZONE_FINISH:
1068 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1069 		break;
1070 	case REQ_OP_WRITE_ZEROES:
1071 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1072 		break;
1073 	case REQ_OP_DISCARD:
1074 		ret = nvme_setup_discard(ns, req, cmd);
1075 		break;
1076 	case REQ_OP_READ:
1077 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1078 		break;
1079 	case REQ_OP_WRITE:
1080 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1081 		break;
1082 	case REQ_OP_ZONE_APPEND:
1083 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1084 		break;
1085 	default:
1086 		WARN_ON_ONCE(1);
1087 		return BLK_STS_IOERR;
1088 	}
1089 
1090 	cmd->common.command_id = nvme_cid(req);
1091 	trace_nvme_setup_cmd(req, cmd);
1092 	return ret;
1093 }
1094 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1095 
1096 /*
1097  * Return values:
1098  * 0:  success
1099  * >0: nvme controller's cqe status response
1100  * <0: kernel error in lieu of controller response
1101  */
1102 int nvme_execute_rq(struct request *rq, bool at_head)
1103 {
1104 	blk_status_t status;
1105 
1106 	status = blk_execute_rq(rq, at_head);
1107 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1108 		return -EINTR;
1109 	if (nvme_req(rq)->status)
1110 		return nvme_req(rq)->status;
1111 	return blk_status_to_errno(status);
1112 }
1113 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1114 
1115 /*
1116  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1117  * if the result is positive, it's an NVM Express status code
1118  */
1119 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1120 		union nvme_result *result, void *buffer, unsigned bufflen,
1121 		int qid, nvme_submit_flags_t flags)
1122 {
1123 	struct request *req;
1124 	int ret;
1125 	blk_mq_req_flags_t blk_flags = 0;
1126 
1127 	if (flags & NVME_SUBMIT_NOWAIT)
1128 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1129 	if (flags & NVME_SUBMIT_RESERVED)
1130 		blk_flags |= BLK_MQ_REQ_RESERVED;
1131 	if (qid == NVME_QID_ANY)
1132 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1133 	else
1134 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1135 						qid - 1);
1136 
1137 	if (IS_ERR(req))
1138 		return PTR_ERR(req);
1139 	nvme_init_request(req, cmd);
1140 	if (flags & NVME_SUBMIT_RETRY)
1141 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1142 
1143 	if (buffer && bufflen) {
1144 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1145 		if (ret)
1146 			goto out;
1147 	}
1148 
1149 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1150 	if (result && ret >= 0)
1151 		*result = nvme_req(req)->result;
1152  out:
1153 	blk_mq_free_request(req);
1154 	return ret;
1155 }
1156 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1157 
1158 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1159 		void *buffer, unsigned bufflen)
1160 {
1161 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1162 			NVME_QID_ANY, 0);
1163 }
1164 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1165 
1166 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1167 {
1168 	u32 effects = 0;
1169 
1170 	if (ns) {
1171 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1172 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1173 			dev_warn_once(ctrl->device,
1174 				"IO command:%02x has unusual effects:%08x\n",
1175 				opcode, effects);
1176 
1177 		/*
1178 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1179 		 * which would deadlock when done on an I/O command.  Note that
1180 		 * We already warn about an unusual effect above.
1181 		 */
1182 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1183 	} else {
1184 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1185 
1186 		/* Ignore execution restrictions if any relaxation bits are set */
1187 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1188 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1189 	}
1190 
1191 	return effects;
1192 }
1193 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1194 
1195 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1196 {
1197 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1198 
1199 	/*
1200 	 * For simplicity, IO to all namespaces is quiesced even if the command
1201 	 * effects say only one namespace is affected.
1202 	 */
1203 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1204 		mutex_lock(&ctrl->scan_lock);
1205 		mutex_lock(&ctrl->subsys->lock);
1206 		nvme_mpath_start_freeze(ctrl->subsys);
1207 		nvme_mpath_wait_freeze(ctrl->subsys);
1208 		nvme_start_freeze(ctrl);
1209 		nvme_wait_freeze(ctrl);
1210 	}
1211 	return effects;
1212 }
1213 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1214 
1215 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1216 		       struct nvme_command *cmd, int status)
1217 {
1218 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1219 		nvme_unfreeze(ctrl);
1220 		nvme_mpath_unfreeze(ctrl->subsys);
1221 		mutex_unlock(&ctrl->subsys->lock);
1222 		mutex_unlock(&ctrl->scan_lock);
1223 	}
1224 	if (effects & NVME_CMD_EFFECTS_CCC) {
1225 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1226 				      &ctrl->flags)) {
1227 			dev_info(ctrl->device,
1228 "controller capabilities changed, reset may be required to take effect.\n");
1229 		}
1230 	}
1231 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1232 		nvme_queue_scan(ctrl);
1233 		flush_work(&ctrl->scan_work);
1234 	}
1235 	if (ns)
1236 		return;
1237 
1238 	switch (cmd->common.opcode) {
1239 	case nvme_admin_set_features:
1240 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1241 		case NVME_FEAT_KATO:
1242 			/*
1243 			 * Keep alive commands interval on the host should be
1244 			 * updated when KATO is modified by Set Features
1245 			 * commands.
1246 			 */
1247 			if (!status)
1248 				nvme_update_keep_alive(ctrl, cmd);
1249 			break;
1250 		default:
1251 			break;
1252 		}
1253 		break;
1254 	default:
1255 		break;
1256 	}
1257 }
1258 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1259 
1260 /*
1261  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1262  *
1263  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1264  *   accounting for transport roundtrip times [..].
1265  */
1266 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1267 {
1268 	unsigned long delay = ctrl->kato * HZ / 2;
1269 
1270 	/*
1271 	 * When using Traffic Based Keep Alive, we need to run
1272 	 * nvme_keep_alive_work at twice the normal frequency, as one
1273 	 * command completion can postpone sending a keep alive command
1274 	 * by up to twice the delay between runs.
1275 	 */
1276 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1277 		delay /= 2;
1278 	return delay;
1279 }
1280 
1281 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1282 {
1283 	unsigned long now = jiffies;
1284 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1285 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1286 
1287 	if (time_after(now, ka_next_check_tm))
1288 		delay = 0;
1289 	else
1290 		delay = ka_next_check_tm - now;
1291 
1292 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1293 }
1294 
1295 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1296 						 blk_status_t status)
1297 {
1298 	struct nvme_ctrl *ctrl = rq->end_io_data;
1299 	unsigned long flags;
1300 	bool startka = false;
1301 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1302 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1303 
1304 	/*
1305 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1306 	 * at the desired frequency.
1307 	 */
1308 	if (rtt <= delay) {
1309 		delay -= rtt;
1310 	} else {
1311 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1312 			 jiffies_to_msecs(rtt));
1313 		delay = 0;
1314 	}
1315 
1316 	blk_mq_free_request(rq);
1317 
1318 	if (status) {
1319 		dev_err(ctrl->device,
1320 			"failed nvme_keep_alive_end_io error=%d\n",
1321 				status);
1322 		return RQ_END_IO_NONE;
1323 	}
1324 
1325 	ctrl->ka_last_check_time = jiffies;
1326 	ctrl->comp_seen = false;
1327 	spin_lock_irqsave(&ctrl->lock, flags);
1328 	if (ctrl->state == NVME_CTRL_LIVE ||
1329 	    ctrl->state == NVME_CTRL_CONNECTING)
1330 		startka = true;
1331 	spin_unlock_irqrestore(&ctrl->lock, flags);
1332 	if (startka)
1333 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1334 	return RQ_END_IO_NONE;
1335 }
1336 
1337 static void nvme_keep_alive_work(struct work_struct *work)
1338 {
1339 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1340 			struct nvme_ctrl, ka_work);
1341 	bool comp_seen = ctrl->comp_seen;
1342 	struct request *rq;
1343 
1344 	ctrl->ka_last_check_time = jiffies;
1345 
1346 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1347 		dev_dbg(ctrl->device,
1348 			"reschedule traffic based keep-alive timer\n");
1349 		ctrl->comp_seen = false;
1350 		nvme_queue_keep_alive_work(ctrl);
1351 		return;
1352 	}
1353 
1354 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1355 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1356 	if (IS_ERR(rq)) {
1357 		/* allocation failure, reset the controller */
1358 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1359 		nvme_reset_ctrl(ctrl);
1360 		return;
1361 	}
1362 	nvme_init_request(rq, &ctrl->ka_cmd);
1363 
1364 	rq->timeout = ctrl->kato * HZ;
1365 	rq->end_io = nvme_keep_alive_end_io;
1366 	rq->end_io_data = ctrl;
1367 	blk_execute_rq_nowait(rq, false);
1368 }
1369 
1370 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1371 {
1372 	if (unlikely(ctrl->kato == 0))
1373 		return;
1374 
1375 	nvme_queue_keep_alive_work(ctrl);
1376 }
1377 
1378 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1379 {
1380 	if (unlikely(ctrl->kato == 0))
1381 		return;
1382 
1383 	cancel_delayed_work_sync(&ctrl->ka_work);
1384 }
1385 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1386 
1387 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1388 				   struct nvme_command *cmd)
1389 {
1390 	unsigned int new_kato =
1391 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1392 
1393 	dev_info(ctrl->device,
1394 		 "keep alive interval updated from %u ms to %u ms\n",
1395 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1396 
1397 	nvme_stop_keep_alive(ctrl);
1398 	ctrl->kato = new_kato;
1399 	nvme_start_keep_alive(ctrl);
1400 }
1401 
1402 /*
1403  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1404  * flag, thus sending any new CNS opcodes has a big chance of not working.
1405  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1406  * (but not for any later version).
1407  */
1408 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1409 {
1410 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1411 		return ctrl->vs < NVME_VS(1, 2, 0);
1412 	return ctrl->vs < NVME_VS(1, 1, 0);
1413 }
1414 
1415 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1416 {
1417 	struct nvme_command c = { };
1418 	int error;
1419 
1420 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1421 	c.identify.opcode = nvme_admin_identify;
1422 	c.identify.cns = NVME_ID_CNS_CTRL;
1423 
1424 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1425 	if (!*id)
1426 		return -ENOMEM;
1427 
1428 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1429 			sizeof(struct nvme_id_ctrl));
1430 	if (error) {
1431 		kfree(*id);
1432 		*id = NULL;
1433 	}
1434 	return error;
1435 }
1436 
1437 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1438 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1439 {
1440 	const char *warn_str = "ctrl returned bogus length:";
1441 	void *data = cur;
1442 
1443 	switch (cur->nidt) {
1444 	case NVME_NIDT_EUI64:
1445 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1446 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1447 				 warn_str, cur->nidl);
1448 			return -1;
1449 		}
1450 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1451 			return NVME_NIDT_EUI64_LEN;
1452 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1453 		return NVME_NIDT_EUI64_LEN;
1454 	case NVME_NIDT_NGUID:
1455 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1456 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1457 				 warn_str, cur->nidl);
1458 			return -1;
1459 		}
1460 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1461 			return NVME_NIDT_NGUID_LEN;
1462 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1463 		return NVME_NIDT_NGUID_LEN;
1464 	case NVME_NIDT_UUID:
1465 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1466 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1467 				 warn_str, cur->nidl);
1468 			return -1;
1469 		}
1470 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1471 			return NVME_NIDT_UUID_LEN;
1472 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1473 		return NVME_NIDT_UUID_LEN;
1474 	case NVME_NIDT_CSI:
1475 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1476 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1477 				 warn_str, cur->nidl);
1478 			return -1;
1479 		}
1480 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1481 		*csi_seen = true;
1482 		return NVME_NIDT_CSI_LEN;
1483 	default:
1484 		/* Skip unknown types */
1485 		return cur->nidl;
1486 	}
1487 }
1488 
1489 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1490 		struct nvme_ns_info *info)
1491 {
1492 	struct nvme_command c = { };
1493 	bool csi_seen = false;
1494 	int status, pos, len;
1495 	void *data;
1496 
1497 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1498 		return 0;
1499 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1500 		return 0;
1501 
1502 	c.identify.opcode = nvme_admin_identify;
1503 	c.identify.nsid = cpu_to_le32(info->nsid);
1504 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1505 
1506 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1507 	if (!data)
1508 		return -ENOMEM;
1509 
1510 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1511 				      NVME_IDENTIFY_DATA_SIZE);
1512 	if (status) {
1513 		dev_warn(ctrl->device,
1514 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1515 			info->nsid, status);
1516 		goto free_data;
1517 	}
1518 
1519 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1520 		struct nvme_ns_id_desc *cur = data + pos;
1521 
1522 		if (cur->nidl == 0)
1523 			break;
1524 
1525 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1526 		if (len < 0)
1527 			break;
1528 
1529 		len += sizeof(*cur);
1530 	}
1531 
1532 	if (nvme_multi_css(ctrl) && !csi_seen) {
1533 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1534 			 info->nsid);
1535 		status = -EINVAL;
1536 	}
1537 
1538 free_data:
1539 	kfree(data);
1540 	return status;
1541 }
1542 
1543 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1544 			struct nvme_id_ns **id)
1545 {
1546 	struct nvme_command c = { };
1547 	int error;
1548 
1549 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1550 	c.identify.opcode = nvme_admin_identify;
1551 	c.identify.nsid = cpu_to_le32(nsid);
1552 	c.identify.cns = NVME_ID_CNS_NS;
1553 
1554 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1555 	if (!*id)
1556 		return -ENOMEM;
1557 
1558 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1559 	if (error) {
1560 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1561 		kfree(*id);
1562 		*id = NULL;
1563 	}
1564 	return error;
1565 }
1566 
1567 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1568 		struct nvme_ns_info *info)
1569 {
1570 	struct nvme_ns_ids *ids = &info->ids;
1571 	struct nvme_id_ns *id;
1572 	int ret;
1573 
1574 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1575 	if (ret)
1576 		return ret;
1577 
1578 	if (id->ncap == 0) {
1579 		/* namespace not allocated or attached */
1580 		info->is_removed = true;
1581 		ret = -ENODEV;
1582 		goto error;
1583 	}
1584 
1585 	info->anagrpid = id->anagrpid;
1586 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1587 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1588 	info->is_ready = true;
1589 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1590 		dev_info(ctrl->device,
1591 			 "Ignoring bogus Namespace Identifiers\n");
1592 	} else {
1593 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1594 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1595 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1596 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1597 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1598 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1599 	}
1600 
1601 error:
1602 	kfree(id);
1603 	return ret;
1604 }
1605 
1606 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1607 		struct nvme_ns_info *info)
1608 {
1609 	struct nvme_id_ns_cs_indep *id;
1610 	struct nvme_command c = {
1611 		.identify.opcode	= nvme_admin_identify,
1612 		.identify.nsid		= cpu_to_le32(info->nsid),
1613 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1614 	};
1615 	int ret;
1616 
1617 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1618 	if (!id)
1619 		return -ENOMEM;
1620 
1621 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1622 	if (!ret) {
1623 		info->anagrpid = id->anagrpid;
1624 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1625 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1626 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1627 	}
1628 	kfree(id);
1629 	return ret;
1630 }
1631 
1632 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1633 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1634 {
1635 	union nvme_result res = { 0 };
1636 	struct nvme_command c = { };
1637 	int ret;
1638 
1639 	c.features.opcode = op;
1640 	c.features.fid = cpu_to_le32(fid);
1641 	c.features.dword11 = cpu_to_le32(dword11);
1642 
1643 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1644 			buffer, buflen, NVME_QID_ANY, 0);
1645 	if (ret >= 0 && result)
1646 		*result = le32_to_cpu(res.u32);
1647 	return ret;
1648 }
1649 
1650 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1651 		      unsigned int dword11, void *buffer, size_t buflen,
1652 		      u32 *result)
1653 {
1654 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1655 			     buflen, result);
1656 }
1657 EXPORT_SYMBOL_GPL(nvme_set_features);
1658 
1659 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1660 		      unsigned int dword11, void *buffer, size_t buflen,
1661 		      u32 *result)
1662 {
1663 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1664 			     buflen, result);
1665 }
1666 EXPORT_SYMBOL_GPL(nvme_get_features);
1667 
1668 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1669 {
1670 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1671 	u32 result;
1672 	int status, nr_io_queues;
1673 
1674 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1675 			&result);
1676 	if (status < 0)
1677 		return status;
1678 
1679 	/*
1680 	 * Degraded controllers might return an error when setting the queue
1681 	 * count.  We still want to be able to bring them online and offer
1682 	 * access to the admin queue, as that might be only way to fix them up.
1683 	 */
1684 	if (status > 0) {
1685 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1686 		*count = 0;
1687 	} else {
1688 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1689 		*count = min(*count, nr_io_queues);
1690 	}
1691 
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1695 
1696 #define NVME_AEN_SUPPORTED \
1697 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1698 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1699 
1700 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1701 {
1702 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1703 	int status;
1704 
1705 	if (!supported_aens)
1706 		return;
1707 
1708 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1709 			NULL, 0, &result);
1710 	if (status)
1711 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1712 			 supported_aens);
1713 
1714 	queue_work(nvme_wq, &ctrl->async_event_work);
1715 }
1716 
1717 static int nvme_ns_open(struct nvme_ns *ns)
1718 {
1719 
1720 	/* should never be called due to GENHD_FL_HIDDEN */
1721 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1722 		goto fail;
1723 	if (!nvme_get_ns(ns))
1724 		goto fail;
1725 	if (!try_module_get(ns->ctrl->ops->module))
1726 		goto fail_put_ns;
1727 
1728 	return 0;
1729 
1730 fail_put_ns:
1731 	nvme_put_ns(ns);
1732 fail:
1733 	return -ENXIO;
1734 }
1735 
1736 static void nvme_ns_release(struct nvme_ns *ns)
1737 {
1738 
1739 	module_put(ns->ctrl->ops->module);
1740 	nvme_put_ns(ns);
1741 }
1742 
1743 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1744 {
1745 	return nvme_ns_open(disk->private_data);
1746 }
1747 
1748 static void nvme_release(struct gendisk *disk)
1749 {
1750 	nvme_ns_release(disk->private_data);
1751 }
1752 
1753 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1754 {
1755 	/* some standard values */
1756 	geo->heads = 1 << 6;
1757 	geo->sectors = 1 << 5;
1758 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1759 	return 0;
1760 }
1761 
1762 static bool nvme_init_integrity(struct nvme_ns_head *head,
1763 		struct queue_limits *lim, struct nvme_ns_info *info)
1764 {
1765 	struct blk_integrity *bi = &lim->integrity;
1766 
1767 	memset(bi, 0, sizeof(*bi));
1768 
1769 	if (!head->ms)
1770 		return true;
1771 
1772 	/*
1773 	 * PI can always be supported as we can ask the controller to simply
1774 	 * insert/strip it, which is not possible for other kinds of metadata.
1775 	 */
1776 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1777 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1778 		return nvme_ns_has_pi(head);
1779 
1780 	switch (head->pi_type) {
1781 	case NVME_NS_DPS_PI_TYPE3:
1782 		switch (head->guard_type) {
1783 		case NVME_NVM_NS_16B_GUARD:
1784 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1785 			bi->tag_size = sizeof(u16) + sizeof(u32);
1786 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1787 			break;
1788 		case NVME_NVM_NS_64B_GUARD:
1789 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1790 			bi->tag_size = sizeof(u16) + 6;
1791 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1792 			break;
1793 		default:
1794 			break;
1795 		}
1796 		break;
1797 	case NVME_NS_DPS_PI_TYPE1:
1798 	case NVME_NS_DPS_PI_TYPE2:
1799 		switch (head->guard_type) {
1800 		case NVME_NVM_NS_16B_GUARD:
1801 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1802 			bi->tag_size = sizeof(u16);
1803 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1804 				     BLK_INTEGRITY_REF_TAG;
1805 			break;
1806 		case NVME_NVM_NS_64B_GUARD:
1807 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1808 			bi->tag_size = sizeof(u16);
1809 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1810 				     BLK_INTEGRITY_REF_TAG;
1811 			break;
1812 		default:
1813 			break;
1814 		}
1815 		break;
1816 	default:
1817 		break;
1818 	}
1819 
1820 	bi->tuple_size = head->ms;
1821 	bi->pi_offset = info->pi_offset;
1822 	return true;
1823 }
1824 
1825 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1826 {
1827 	struct nvme_ctrl *ctrl = ns->ctrl;
1828 
1829 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1830 		lim->max_hw_discard_sectors =
1831 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1832 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1833 		lim->max_hw_discard_sectors = UINT_MAX;
1834 	else
1835 		lim->max_hw_discard_sectors = 0;
1836 
1837 	lim->discard_granularity = lim->logical_block_size;
1838 
1839 	if (ctrl->dmrl)
1840 		lim->max_discard_segments = ctrl->dmrl;
1841 	else
1842 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1843 }
1844 
1845 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1846 {
1847 	return uuid_equal(&a->uuid, &b->uuid) &&
1848 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1849 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1850 		a->csi == b->csi;
1851 }
1852 
1853 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1854 		struct nvme_id_ns_nvm **nvmp)
1855 {
1856 	struct nvme_command c = {
1857 		.identify.opcode	= nvme_admin_identify,
1858 		.identify.nsid		= cpu_to_le32(nsid),
1859 		.identify.cns		= NVME_ID_CNS_CS_NS,
1860 		.identify.csi		= NVME_CSI_NVM,
1861 	};
1862 	struct nvme_id_ns_nvm *nvm;
1863 	int ret;
1864 
1865 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1866 	if (!nvm)
1867 		return -ENOMEM;
1868 
1869 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1870 	if (ret)
1871 		kfree(nvm);
1872 	else
1873 		*nvmp = nvm;
1874 	return ret;
1875 }
1876 
1877 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1878 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1879 {
1880 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1881 	u8 guard_type;
1882 
1883 	/* no support for storage tag formats right now */
1884 	if (nvme_elbaf_sts(elbaf))
1885 		return;
1886 
1887 	guard_type = nvme_elbaf_guard_type(elbaf);
1888 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1889 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1890 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1891 
1892 	head->guard_type = guard_type;
1893 	switch (head->guard_type) {
1894 	case NVME_NVM_NS_64B_GUARD:
1895 		head->pi_size = sizeof(struct crc64_pi_tuple);
1896 		break;
1897 	case NVME_NVM_NS_16B_GUARD:
1898 		head->pi_size = sizeof(struct t10_pi_tuple);
1899 		break;
1900 	default:
1901 		break;
1902 	}
1903 }
1904 
1905 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1906 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1907 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1908 {
1909 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1910 	head->pi_type = 0;
1911 	head->pi_size = 0;
1912 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1913 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1914 		return;
1915 
1916 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1917 		nvme_configure_pi_elbas(head, id, nvm);
1918 	} else {
1919 		head->pi_size = sizeof(struct t10_pi_tuple);
1920 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1921 	}
1922 
1923 	if (head->pi_size && head->ms >= head->pi_size)
1924 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1925 	if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1926 		info->pi_offset = head->ms - head->pi_size;
1927 
1928 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1929 		/*
1930 		 * The NVMe over Fabrics specification only supports metadata as
1931 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1932 		 * remap the separate metadata buffer from the block layer.
1933 		 */
1934 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1935 			return;
1936 
1937 		head->features |= NVME_NS_EXT_LBAS;
1938 
1939 		/*
1940 		 * The current fabrics transport drivers support namespace
1941 		 * metadata formats only if nvme_ns_has_pi() returns true.
1942 		 * Suppress support for all other formats so the namespace will
1943 		 * have a 0 capacity and not be usable through the block stack.
1944 		 *
1945 		 * Note, this check will need to be modified if any drivers
1946 		 * gain the ability to use other metadata formats.
1947 		 */
1948 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1949 			head->features |= NVME_NS_METADATA_SUPPORTED;
1950 	} else {
1951 		/*
1952 		 * For PCIe controllers, we can't easily remap the separate
1953 		 * metadata buffer from the block layer and thus require a
1954 		 * separate metadata buffer for block layer metadata/PI support.
1955 		 * We allow extended LBAs for the passthrough interface, though.
1956 		 */
1957 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1958 			head->features |= NVME_NS_EXT_LBAS;
1959 		else
1960 			head->features |= NVME_NS_METADATA_SUPPORTED;
1961 	}
1962 }
1963 
1964 
1965 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1966 			struct nvme_id_ns *id, struct queue_limits *lim,
1967 			u32 bs, u32 atomic_bs)
1968 {
1969 	unsigned int boundary = 0;
1970 
1971 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1972 		if (le16_to_cpu(id->nabspf))
1973 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
1974 	}
1975 	lim->atomic_write_hw_max = atomic_bs;
1976 	lim->atomic_write_hw_boundary = boundary;
1977 	lim->atomic_write_hw_unit_min = bs;
1978 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
1979 }
1980 
1981 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1982 {
1983 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1984 }
1985 
1986 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1987 		struct queue_limits *lim)
1988 {
1989 	lim->max_hw_sectors = ctrl->max_hw_sectors;
1990 	lim->max_segments = min_t(u32, USHRT_MAX,
1991 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1992 	lim->max_integrity_segments = ctrl->max_integrity_segments;
1993 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1994 	lim->max_segment_size = UINT_MAX;
1995 	lim->dma_alignment = 3;
1996 }
1997 
1998 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1999 		struct queue_limits *lim)
2000 {
2001 	struct nvme_ns_head *head = ns->head;
2002 	u32 bs = 1U << head->lba_shift;
2003 	u32 atomic_bs, phys_bs, io_opt = 0;
2004 	bool valid = true;
2005 
2006 	/*
2007 	 * The block layer can't support LBA sizes larger than the page size
2008 	 * or smaller than a sector size yet, so catch this early and don't
2009 	 * allow block I/O.
2010 	 */
2011 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
2012 		bs = (1 << 9);
2013 		valid = false;
2014 	}
2015 
2016 	atomic_bs = phys_bs = bs;
2017 	if (id->nabo == 0) {
2018 		/*
2019 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2020 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2021 		 * 0 then AWUPF must be used instead.
2022 		 */
2023 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2024 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2025 		else
2026 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2027 
2028 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2029 	}
2030 
2031 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2032 		/* NPWG = Namespace Preferred Write Granularity */
2033 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2034 		/* NOWS = Namespace Optimal Write Size */
2035 		if (id->nows)
2036 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2037 	}
2038 
2039 	/*
2040 	 * Linux filesystems assume writing a single physical block is
2041 	 * an atomic operation. Hence limit the physical block size to the
2042 	 * value of the Atomic Write Unit Power Fail parameter.
2043 	 */
2044 	lim->logical_block_size = bs;
2045 	lim->physical_block_size = min(phys_bs, atomic_bs);
2046 	lim->io_min = phys_bs;
2047 	lim->io_opt = io_opt;
2048 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2049 		lim->max_write_zeroes_sectors = UINT_MAX;
2050 	else
2051 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2052 	return valid;
2053 }
2054 
2055 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2056 {
2057 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2058 }
2059 
2060 static inline bool nvme_first_scan(struct gendisk *disk)
2061 {
2062 	/* nvme_alloc_ns() scans the disk prior to adding it */
2063 	return !disk_live(disk);
2064 }
2065 
2066 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2067 		struct queue_limits *lim)
2068 {
2069 	struct nvme_ctrl *ctrl = ns->ctrl;
2070 	u32 iob;
2071 
2072 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2073 	    is_power_of_2(ctrl->max_hw_sectors))
2074 		iob = ctrl->max_hw_sectors;
2075 	else
2076 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2077 
2078 	if (!iob)
2079 		return;
2080 
2081 	if (!is_power_of_2(iob)) {
2082 		if (nvme_first_scan(ns->disk))
2083 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2084 				ns->disk->disk_name, iob);
2085 		return;
2086 	}
2087 
2088 	if (blk_queue_is_zoned(ns->disk->queue)) {
2089 		if (nvme_first_scan(ns->disk))
2090 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2091 				ns->disk->disk_name);
2092 		return;
2093 	}
2094 
2095 	lim->chunk_sectors = iob;
2096 }
2097 
2098 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2099 		struct nvme_ns_info *info)
2100 {
2101 	struct queue_limits lim;
2102 	int ret;
2103 
2104 	blk_mq_freeze_queue(ns->disk->queue);
2105 	lim = queue_limits_start_update(ns->disk->queue);
2106 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2107 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2108 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2109 	blk_mq_unfreeze_queue(ns->disk->queue);
2110 
2111 	/* Hide the block-interface for these devices */
2112 	if (!ret)
2113 		ret = -ENODEV;
2114 	return ret;
2115 }
2116 
2117 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2118 		struct nvme_ns_info *info)
2119 {
2120 	struct queue_limits lim;
2121 	struct nvme_id_ns_nvm *nvm = NULL;
2122 	struct nvme_zone_info zi = {};
2123 	struct nvme_id_ns *id;
2124 	sector_t capacity;
2125 	unsigned lbaf;
2126 	int ret;
2127 
2128 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2129 	if (ret)
2130 		return ret;
2131 
2132 	if (id->ncap == 0) {
2133 		/* namespace not allocated or attached */
2134 		info->is_removed = true;
2135 		ret = -ENXIO;
2136 		goto out;
2137 	}
2138 	lbaf = nvme_lbaf_index(id->flbas);
2139 
2140 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2141 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2142 		if (ret < 0)
2143 			goto out;
2144 	}
2145 
2146 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2147 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2148 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2149 		if (ret < 0)
2150 			goto out;
2151 	}
2152 
2153 	blk_mq_freeze_queue(ns->disk->queue);
2154 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2155 	ns->head->nuse = le64_to_cpu(id->nuse);
2156 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2157 
2158 	lim = queue_limits_start_update(ns->disk->queue);
2159 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2160 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2161 	nvme_set_chunk_sectors(ns, id, &lim);
2162 	if (!nvme_update_disk_info(ns, id, &lim))
2163 		capacity = 0;
2164 	nvme_config_discard(ns, &lim);
2165 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2166 	    ns->head->ids.csi == NVME_CSI_ZNS)
2167 		nvme_update_zone_info(ns, &lim, &zi);
2168 
2169 	if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2170 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2171 	else
2172 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2173 
2174 	/*
2175 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2176 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2177 	 * I/O to namespaces with metadata except when the namespace supports
2178 	 * PI, as it can strip/insert in that case.
2179 	 */
2180 	if (!nvme_init_integrity(ns->head, &lim, info))
2181 		capacity = 0;
2182 
2183 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2184 	if (ret) {
2185 		blk_mq_unfreeze_queue(ns->disk->queue);
2186 		goto out;
2187 	}
2188 
2189 	set_capacity_and_notify(ns->disk, capacity);
2190 
2191 	/*
2192 	 * Only set the DEAC bit if the device guarantees that reads from
2193 	 * deallocated data return zeroes.  While the DEAC bit does not
2194 	 * require that, it must be a no-op if reads from deallocated data
2195 	 * do not return zeroes.
2196 	 */
2197 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2198 		ns->head->features |= NVME_NS_DEAC;
2199 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2200 	set_bit(NVME_NS_READY, &ns->flags);
2201 	blk_mq_unfreeze_queue(ns->disk->queue);
2202 
2203 	if (blk_queue_is_zoned(ns->queue)) {
2204 		ret = blk_revalidate_disk_zones(ns->disk);
2205 		if (ret && !nvme_first_scan(ns->disk))
2206 			goto out;
2207 	}
2208 
2209 	ret = 0;
2210 out:
2211 	kfree(nvm);
2212 	kfree(id);
2213 	return ret;
2214 }
2215 
2216 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2217 {
2218 	bool unsupported = false;
2219 	int ret;
2220 
2221 	switch (info->ids.csi) {
2222 	case NVME_CSI_ZNS:
2223 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2224 			dev_info(ns->ctrl->device,
2225 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2226 				info->nsid);
2227 			ret = nvme_update_ns_info_generic(ns, info);
2228 			break;
2229 		}
2230 		ret = nvme_update_ns_info_block(ns, info);
2231 		break;
2232 	case NVME_CSI_NVM:
2233 		ret = nvme_update_ns_info_block(ns, info);
2234 		break;
2235 	default:
2236 		dev_info(ns->ctrl->device,
2237 			"block device for nsid %u not supported (csi %u)\n",
2238 			info->nsid, info->ids.csi);
2239 		ret = nvme_update_ns_info_generic(ns, info);
2240 		break;
2241 	}
2242 
2243 	/*
2244 	 * If probing fails due an unsupported feature, hide the block device,
2245 	 * but still allow other access.
2246 	 */
2247 	if (ret == -ENODEV) {
2248 		ns->disk->flags |= GENHD_FL_HIDDEN;
2249 		set_bit(NVME_NS_READY, &ns->flags);
2250 		unsupported = true;
2251 		ret = 0;
2252 	}
2253 
2254 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2255 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2256 		struct queue_limits lim;
2257 
2258 		blk_mq_freeze_queue(ns->head->disk->queue);
2259 		/*
2260 		 * queue_limits mixes values that are the hardware limitations
2261 		 * for bio splitting with what is the device configuration.
2262 		 *
2263 		 * For NVMe the device configuration can change after e.g. a
2264 		 * Format command, and we really want to pick up the new format
2265 		 * value here.  But we must still stack the queue limits to the
2266 		 * least common denominator for multipathing to split the bios
2267 		 * properly.
2268 		 *
2269 		 * To work around this, we explicitly set the device
2270 		 * configuration to those that we just queried, but only stack
2271 		 * the splitting limits in to make sure we still obey possibly
2272 		 * lower limitations of other controllers.
2273 		 */
2274 		lim = queue_limits_start_update(ns->head->disk->queue);
2275 		lim.logical_block_size = ns_lim->logical_block_size;
2276 		lim.physical_block_size = ns_lim->physical_block_size;
2277 		lim.io_min = ns_lim->io_min;
2278 		lim.io_opt = ns_lim->io_opt;
2279 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2280 					ns->head->disk->disk_name);
2281 		if (unsupported)
2282 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2283 		else
2284 			nvme_init_integrity(ns->head, &lim, info);
2285 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2286 
2287 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2288 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2289 		nvme_mpath_revalidate_paths(ns);
2290 
2291 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2292 	}
2293 
2294 	return ret;
2295 }
2296 
2297 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2298 		enum blk_unique_id type)
2299 {
2300 	struct nvme_ns_ids *ids = &ns->head->ids;
2301 
2302 	if (type != BLK_UID_EUI64)
2303 		return -EINVAL;
2304 
2305 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2306 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2307 		return sizeof(ids->nguid);
2308 	}
2309 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2310 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2311 		return sizeof(ids->eui64);
2312 	}
2313 
2314 	return -EINVAL;
2315 }
2316 
2317 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2318 		enum blk_unique_id type)
2319 {
2320 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2321 }
2322 
2323 #ifdef CONFIG_BLK_SED_OPAL
2324 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2325 		bool send)
2326 {
2327 	struct nvme_ctrl *ctrl = data;
2328 	struct nvme_command cmd = { };
2329 
2330 	if (send)
2331 		cmd.common.opcode = nvme_admin_security_send;
2332 	else
2333 		cmd.common.opcode = nvme_admin_security_recv;
2334 	cmd.common.nsid = 0;
2335 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2336 	cmd.common.cdw11 = cpu_to_le32(len);
2337 
2338 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2339 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2340 }
2341 
2342 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2343 {
2344 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2345 		if (!ctrl->opal_dev)
2346 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2347 		else if (was_suspended)
2348 			opal_unlock_from_suspend(ctrl->opal_dev);
2349 	} else {
2350 		free_opal_dev(ctrl->opal_dev);
2351 		ctrl->opal_dev = NULL;
2352 	}
2353 }
2354 #else
2355 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2356 {
2357 }
2358 #endif /* CONFIG_BLK_SED_OPAL */
2359 
2360 #ifdef CONFIG_BLK_DEV_ZONED
2361 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2362 		unsigned int nr_zones, report_zones_cb cb, void *data)
2363 {
2364 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2365 			data);
2366 }
2367 #else
2368 #define nvme_report_zones	NULL
2369 #endif /* CONFIG_BLK_DEV_ZONED */
2370 
2371 const struct block_device_operations nvme_bdev_ops = {
2372 	.owner		= THIS_MODULE,
2373 	.ioctl		= nvme_ioctl,
2374 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2375 	.open		= nvme_open,
2376 	.release	= nvme_release,
2377 	.getgeo		= nvme_getgeo,
2378 	.get_unique_id	= nvme_get_unique_id,
2379 	.report_zones	= nvme_report_zones,
2380 	.pr_ops		= &nvme_pr_ops,
2381 };
2382 
2383 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2384 		u32 timeout, const char *op)
2385 {
2386 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2387 	u32 csts;
2388 	int ret;
2389 
2390 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2391 		if (csts == ~0)
2392 			return -ENODEV;
2393 		if ((csts & mask) == val)
2394 			break;
2395 
2396 		usleep_range(1000, 2000);
2397 		if (fatal_signal_pending(current))
2398 			return -EINTR;
2399 		if (time_after(jiffies, timeout_jiffies)) {
2400 			dev_err(ctrl->device,
2401 				"Device not ready; aborting %s, CSTS=0x%x\n",
2402 				op, csts);
2403 			return -ENODEV;
2404 		}
2405 	}
2406 
2407 	return ret;
2408 }
2409 
2410 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2411 {
2412 	int ret;
2413 
2414 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2415 	if (shutdown)
2416 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2417 	else
2418 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2419 
2420 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2421 	if (ret)
2422 		return ret;
2423 
2424 	if (shutdown) {
2425 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2426 				       NVME_CSTS_SHST_CMPLT,
2427 				       ctrl->shutdown_timeout, "shutdown");
2428 	}
2429 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2430 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2431 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2432 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2433 }
2434 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2435 
2436 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2437 {
2438 	unsigned dev_page_min;
2439 	u32 timeout;
2440 	int ret;
2441 
2442 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2443 	if (ret) {
2444 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2445 		return ret;
2446 	}
2447 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2448 
2449 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2450 		dev_err(ctrl->device,
2451 			"Minimum device page size %u too large for host (%u)\n",
2452 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2453 		return -ENODEV;
2454 	}
2455 
2456 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2457 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2458 	else
2459 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2460 
2461 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2462 		ctrl->ctrl_config |= NVME_CC_CRIME;
2463 
2464 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2465 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2466 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2467 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2468 	if (ret)
2469 		return ret;
2470 
2471 	/* CAP value may change after initial CC write */
2472 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2473 	if (ret)
2474 		return ret;
2475 
2476 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2477 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2478 		u32 crto, ready_timeout;
2479 
2480 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2481 		if (ret) {
2482 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2483 				ret);
2484 			return ret;
2485 		}
2486 
2487 		/*
2488 		 * CRTO should always be greater or equal to CAP.TO, but some
2489 		 * devices are known to get this wrong. Use the larger of the
2490 		 * two values.
2491 		 */
2492 		if (ctrl->ctrl_config & NVME_CC_CRIME)
2493 			ready_timeout = NVME_CRTO_CRIMT(crto);
2494 		else
2495 			ready_timeout = NVME_CRTO_CRWMT(crto);
2496 
2497 		if (ready_timeout < timeout)
2498 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2499 				      crto, ctrl->cap);
2500 		else
2501 			timeout = ready_timeout;
2502 	}
2503 
2504 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2505 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2506 	if (ret)
2507 		return ret;
2508 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2509 			       (timeout + 1) / 2, "initialisation");
2510 }
2511 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2512 
2513 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2514 {
2515 	__le64 ts;
2516 	int ret;
2517 
2518 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2519 		return 0;
2520 
2521 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2522 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2523 			NULL);
2524 	if (ret)
2525 		dev_warn_once(ctrl->device,
2526 			"could not set timestamp (%d)\n", ret);
2527 	return ret;
2528 }
2529 
2530 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2531 {
2532 	struct nvme_feat_host_behavior *host;
2533 	u8 acre = 0, lbafee = 0;
2534 	int ret;
2535 
2536 	/* Don't bother enabling the feature if retry delay is not reported */
2537 	if (ctrl->crdt[0])
2538 		acre = NVME_ENABLE_ACRE;
2539 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2540 		lbafee = NVME_ENABLE_LBAFEE;
2541 
2542 	if (!acre && !lbafee)
2543 		return 0;
2544 
2545 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2546 	if (!host)
2547 		return 0;
2548 
2549 	host->acre = acre;
2550 	host->lbafee = lbafee;
2551 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2552 				host, sizeof(*host), NULL);
2553 	kfree(host);
2554 	return ret;
2555 }
2556 
2557 /*
2558  * The function checks whether the given total (exlat + enlat) latency of
2559  * a power state allows the latter to be used as an APST transition target.
2560  * It does so by comparing the latency to the primary and secondary latency
2561  * tolerances defined by module params. If there's a match, the corresponding
2562  * timeout value is returned and the matching tolerance index (1 or 2) is
2563  * reported.
2564  */
2565 static bool nvme_apst_get_transition_time(u64 total_latency,
2566 		u64 *transition_time, unsigned *last_index)
2567 {
2568 	if (total_latency <= apst_primary_latency_tol_us) {
2569 		if (*last_index == 1)
2570 			return false;
2571 		*last_index = 1;
2572 		*transition_time = apst_primary_timeout_ms;
2573 		return true;
2574 	}
2575 	if (apst_secondary_timeout_ms &&
2576 		total_latency <= apst_secondary_latency_tol_us) {
2577 		if (*last_index <= 2)
2578 			return false;
2579 		*last_index = 2;
2580 		*transition_time = apst_secondary_timeout_ms;
2581 		return true;
2582 	}
2583 	return false;
2584 }
2585 
2586 /*
2587  * APST (Autonomous Power State Transition) lets us program a table of power
2588  * state transitions that the controller will perform automatically.
2589  *
2590  * Depending on module params, one of the two supported techniques will be used:
2591  *
2592  * - If the parameters provide explicit timeouts and tolerances, they will be
2593  *   used to build a table with up to 2 non-operational states to transition to.
2594  *   The default parameter values were selected based on the values used by
2595  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2596  *   regeneration of the APST table in the event of switching between external
2597  *   and battery power, the timeouts and tolerances reflect a compromise
2598  *   between values used by Microsoft for AC and battery scenarios.
2599  * - If not, we'll configure the table with a simple heuristic: we are willing
2600  *   to spend at most 2% of the time transitioning between power states.
2601  *   Therefore, when running in any given state, we will enter the next
2602  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2603  *   microseconds, as long as that state's exit latency is under the requested
2604  *   maximum latency.
2605  *
2606  * We will not autonomously enter any non-operational state for which the total
2607  * latency exceeds ps_max_latency_us.
2608  *
2609  * Users can set ps_max_latency_us to zero to turn off APST.
2610  */
2611 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2612 {
2613 	struct nvme_feat_auto_pst *table;
2614 	unsigned apste = 0;
2615 	u64 max_lat_us = 0;
2616 	__le64 target = 0;
2617 	int max_ps = -1;
2618 	int state;
2619 	int ret;
2620 	unsigned last_lt_index = UINT_MAX;
2621 
2622 	/*
2623 	 * If APST isn't supported or if we haven't been initialized yet,
2624 	 * then don't do anything.
2625 	 */
2626 	if (!ctrl->apsta)
2627 		return 0;
2628 
2629 	if (ctrl->npss > 31) {
2630 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2631 		return 0;
2632 	}
2633 
2634 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2635 	if (!table)
2636 		return 0;
2637 
2638 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2639 		/* Turn off APST. */
2640 		dev_dbg(ctrl->device, "APST disabled\n");
2641 		goto done;
2642 	}
2643 
2644 	/*
2645 	 * Walk through all states from lowest- to highest-power.
2646 	 * According to the spec, lower-numbered states use more power.  NPSS,
2647 	 * despite the name, is the index of the lowest-power state, not the
2648 	 * number of states.
2649 	 */
2650 	for (state = (int)ctrl->npss; state >= 0; state--) {
2651 		u64 total_latency_us, exit_latency_us, transition_ms;
2652 
2653 		if (target)
2654 			table->entries[state] = target;
2655 
2656 		/*
2657 		 * Don't allow transitions to the deepest state if it's quirked
2658 		 * off.
2659 		 */
2660 		if (state == ctrl->npss &&
2661 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2662 			continue;
2663 
2664 		/*
2665 		 * Is this state a useful non-operational state for higher-power
2666 		 * states to autonomously transition to?
2667 		 */
2668 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2669 			continue;
2670 
2671 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2672 		if (exit_latency_us > ctrl->ps_max_latency_us)
2673 			continue;
2674 
2675 		total_latency_us = exit_latency_us +
2676 			le32_to_cpu(ctrl->psd[state].entry_lat);
2677 
2678 		/*
2679 		 * This state is good. It can be used as the APST idle target
2680 		 * for higher power states.
2681 		 */
2682 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2683 			if (!nvme_apst_get_transition_time(total_latency_us,
2684 					&transition_ms, &last_lt_index))
2685 				continue;
2686 		} else {
2687 			transition_ms = total_latency_us + 19;
2688 			do_div(transition_ms, 20);
2689 			if (transition_ms > (1 << 24) - 1)
2690 				transition_ms = (1 << 24) - 1;
2691 		}
2692 
2693 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2694 		if (max_ps == -1)
2695 			max_ps = state;
2696 		if (total_latency_us > max_lat_us)
2697 			max_lat_us = total_latency_us;
2698 	}
2699 
2700 	if (max_ps == -1)
2701 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2702 	else
2703 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2704 			max_ps, max_lat_us, (int)sizeof(*table), table);
2705 	apste = 1;
2706 
2707 done:
2708 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2709 				table, sizeof(*table), NULL);
2710 	if (ret)
2711 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2712 	kfree(table);
2713 	return ret;
2714 }
2715 
2716 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2717 {
2718 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2719 	u64 latency;
2720 
2721 	switch (val) {
2722 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2723 	case PM_QOS_LATENCY_ANY:
2724 		latency = U64_MAX;
2725 		break;
2726 
2727 	default:
2728 		latency = val;
2729 	}
2730 
2731 	if (ctrl->ps_max_latency_us != latency) {
2732 		ctrl->ps_max_latency_us = latency;
2733 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2734 			nvme_configure_apst(ctrl);
2735 	}
2736 }
2737 
2738 struct nvme_core_quirk_entry {
2739 	/*
2740 	 * NVMe model and firmware strings are padded with spaces.  For
2741 	 * simplicity, strings in the quirk table are padded with NULLs
2742 	 * instead.
2743 	 */
2744 	u16 vid;
2745 	const char *mn;
2746 	const char *fr;
2747 	unsigned long quirks;
2748 };
2749 
2750 static const struct nvme_core_quirk_entry core_quirks[] = {
2751 	{
2752 		/*
2753 		 * This Toshiba device seems to die using any APST states.  See:
2754 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2755 		 */
2756 		.vid = 0x1179,
2757 		.mn = "THNSF5256GPUK TOSHIBA",
2758 		.quirks = NVME_QUIRK_NO_APST,
2759 	},
2760 	{
2761 		/*
2762 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2763 		 * condition associated with actions related to suspend to idle
2764 		 * LiteON has resolved the problem in future firmware
2765 		 */
2766 		.vid = 0x14a4,
2767 		.fr = "22301111",
2768 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2769 	},
2770 	{
2771 		/*
2772 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2773 		 * aborts I/O during any load, but more easily reproducible
2774 		 * with discards (fstrim).
2775 		 *
2776 		 * The device is left in a state where it is also not possible
2777 		 * to use "nvme set-feature" to disable APST, but booting with
2778 		 * nvme_core.default_ps_max_latency=0 works.
2779 		 */
2780 		.vid = 0x1e0f,
2781 		.mn = "KCD6XVUL6T40",
2782 		.quirks = NVME_QUIRK_NO_APST,
2783 	},
2784 	{
2785 		/*
2786 		 * The external Samsung X5 SSD fails initialization without a
2787 		 * delay before checking if it is ready and has a whole set of
2788 		 * other problems.  To make this even more interesting, it
2789 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2790 		 * does not need or want these quirks.
2791 		 */
2792 		.vid = 0x144d,
2793 		.mn = "Samsung Portable SSD X5",
2794 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2795 			  NVME_QUIRK_NO_DEEPEST_PS |
2796 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2797 	}
2798 };
2799 
2800 /* match is null-terminated but idstr is space-padded. */
2801 static bool string_matches(const char *idstr, const char *match, size_t len)
2802 {
2803 	size_t matchlen;
2804 
2805 	if (!match)
2806 		return true;
2807 
2808 	matchlen = strlen(match);
2809 	WARN_ON_ONCE(matchlen > len);
2810 
2811 	if (memcmp(idstr, match, matchlen))
2812 		return false;
2813 
2814 	for (; matchlen < len; matchlen++)
2815 		if (idstr[matchlen] != ' ')
2816 			return false;
2817 
2818 	return true;
2819 }
2820 
2821 static bool quirk_matches(const struct nvme_id_ctrl *id,
2822 			  const struct nvme_core_quirk_entry *q)
2823 {
2824 	return q->vid == le16_to_cpu(id->vid) &&
2825 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2826 		string_matches(id->fr, q->fr, sizeof(id->fr));
2827 }
2828 
2829 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2830 		struct nvme_id_ctrl *id)
2831 {
2832 	size_t nqnlen;
2833 	int off;
2834 
2835 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2836 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2837 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2838 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2839 			return;
2840 		}
2841 
2842 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2843 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2844 	}
2845 
2846 	/*
2847 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2848 	 * Base Specification 2.0.  It is slightly different from the format
2849 	 * specified there due to historic reasons, and we can't change it now.
2850 	 */
2851 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2852 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2853 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2854 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2855 	off += sizeof(id->sn);
2856 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2857 	off += sizeof(id->mn);
2858 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2859 }
2860 
2861 static void nvme_release_subsystem(struct device *dev)
2862 {
2863 	struct nvme_subsystem *subsys =
2864 		container_of(dev, struct nvme_subsystem, dev);
2865 
2866 	if (subsys->instance >= 0)
2867 		ida_free(&nvme_instance_ida, subsys->instance);
2868 	kfree(subsys);
2869 }
2870 
2871 static void nvme_destroy_subsystem(struct kref *ref)
2872 {
2873 	struct nvme_subsystem *subsys =
2874 			container_of(ref, struct nvme_subsystem, ref);
2875 
2876 	mutex_lock(&nvme_subsystems_lock);
2877 	list_del(&subsys->entry);
2878 	mutex_unlock(&nvme_subsystems_lock);
2879 
2880 	ida_destroy(&subsys->ns_ida);
2881 	device_del(&subsys->dev);
2882 	put_device(&subsys->dev);
2883 }
2884 
2885 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2886 {
2887 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2888 }
2889 
2890 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2891 {
2892 	struct nvme_subsystem *subsys;
2893 
2894 	lockdep_assert_held(&nvme_subsystems_lock);
2895 
2896 	/*
2897 	 * Fail matches for discovery subsystems. This results
2898 	 * in each discovery controller bound to a unique subsystem.
2899 	 * This avoids issues with validating controller values
2900 	 * that can only be true when there is a single unique subsystem.
2901 	 * There may be multiple and completely independent entities
2902 	 * that provide discovery controllers.
2903 	 */
2904 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2905 		return NULL;
2906 
2907 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2908 		if (strcmp(subsys->subnqn, subsysnqn))
2909 			continue;
2910 		if (!kref_get_unless_zero(&subsys->ref))
2911 			continue;
2912 		return subsys;
2913 	}
2914 
2915 	return NULL;
2916 }
2917 
2918 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2919 {
2920 	return ctrl->opts && ctrl->opts->discovery_nqn;
2921 }
2922 
2923 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2924 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2925 {
2926 	struct nvme_ctrl *tmp;
2927 
2928 	lockdep_assert_held(&nvme_subsystems_lock);
2929 
2930 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2931 		if (nvme_state_terminal(tmp))
2932 			continue;
2933 
2934 		if (tmp->cntlid == ctrl->cntlid) {
2935 			dev_err(ctrl->device,
2936 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2937 				ctrl->cntlid, dev_name(tmp->device),
2938 				subsys->subnqn);
2939 			return false;
2940 		}
2941 
2942 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2943 		    nvme_discovery_ctrl(ctrl))
2944 			continue;
2945 
2946 		dev_err(ctrl->device,
2947 			"Subsystem does not support multiple controllers\n");
2948 		return false;
2949 	}
2950 
2951 	return true;
2952 }
2953 
2954 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2955 {
2956 	struct nvme_subsystem *subsys, *found;
2957 	int ret;
2958 
2959 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2960 	if (!subsys)
2961 		return -ENOMEM;
2962 
2963 	subsys->instance = -1;
2964 	mutex_init(&subsys->lock);
2965 	kref_init(&subsys->ref);
2966 	INIT_LIST_HEAD(&subsys->ctrls);
2967 	INIT_LIST_HEAD(&subsys->nsheads);
2968 	nvme_init_subnqn(subsys, ctrl, id);
2969 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2970 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2971 	subsys->vendor_id = le16_to_cpu(id->vid);
2972 	subsys->cmic = id->cmic;
2973 
2974 	/* Versions prior to 1.4 don't necessarily report a valid type */
2975 	if (id->cntrltype == NVME_CTRL_DISC ||
2976 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2977 		subsys->subtype = NVME_NQN_DISC;
2978 	else
2979 		subsys->subtype = NVME_NQN_NVME;
2980 
2981 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2982 		dev_err(ctrl->device,
2983 			"Subsystem %s is not a discovery controller",
2984 			subsys->subnqn);
2985 		kfree(subsys);
2986 		return -EINVAL;
2987 	}
2988 	subsys->awupf = le16_to_cpu(id->awupf);
2989 	nvme_mpath_default_iopolicy(subsys);
2990 
2991 	subsys->dev.class = &nvme_subsys_class;
2992 	subsys->dev.release = nvme_release_subsystem;
2993 	subsys->dev.groups = nvme_subsys_attrs_groups;
2994 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2995 	device_initialize(&subsys->dev);
2996 
2997 	mutex_lock(&nvme_subsystems_lock);
2998 	found = __nvme_find_get_subsystem(subsys->subnqn);
2999 	if (found) {
3000 		put_device(&subsys->dev);
3001 		subsys = found;
3002 
3003 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3004 			ret = -EINVAL;
3005 			goto out_put_subsystem;
3006 		}
3007 	} else {
3008 		ret = device_add(&subsys->dev);
3009 		if (ret) {
3010 			dev_err(ctrl->device,
3011 				"failed to register subsystem device.\n");
3012 			put_device(&subsys->dev);
3013 			goto out_unlock;
3014 		}
3015 		ida_init(&subsys->ns_ida);
3016 		list_add_tail(&subsys->entry, &nvme_subsystems);
3017 	}
3018 
3019 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3020 				dev_name(ctrl->device));
3021 	if (ret) {
3022 		dev_err(ctrl->device,
3023 			"failed to create sysfs link from subsystem.\n");
3024 		goto out_put_subsystem;
3025 	}
3026 
3027 	if (!found)
3028 		subsys->instance = ctrl->instance;
3029 	ctrl->subsys = subsys;
3030 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3031 	mutex_unlock(&nvme_subsystems_lock);
3032 	return 0;
3033 
3034 out_put_subsystem:
3035 	nvme_put_subsystem(subsys);
3036 out_unlock:
3037 	mutex_unlock(&nvme_subsystems_lock);
3038 	return ret;
3039 }
3040 
3041 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3042 		void *log, size_t size, u64 offset)
3043 {
3044 	struct nvme_command c = { };
3045 	u32 dwlen = nvme_bytes_to_numd(size);
3046 
3047 	c.get_log_page.opcode = nvme_admin_get_log_page;
3048 	c.get_log_page.nsid = cpu_to_le32(nsid);
3049 	c.get_log_page.lid = log_page;
3050 	c.get_log_page.lsp = lsp;
3051 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3052 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3053 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3054 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3055 	c.get_log_page.csi = csi;
3056 
3057 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3058 }
3059 
3060 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3061 				struct nvme_effects_log **log)
3062 {
3063 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3064 	int ret;
3065 
3066 	if (cel)
3067 		goto out;
3068 
3069 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3070 	if (!cel)
3071 		return -ENOMEM;
3072 
3073 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3074 			cel, sizeof(*cel), 0);
3075 	if (ret) {
3076 		kfree(cel);
3077 		return ret;
3078 	}
3079 
3080 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3081 out:
3082 	*log = cel;
3083 	return 0;
3084 }
3085 
3086 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3087 {
3088 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3089 
3090 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3091 		return UINT_MAX;
3092 	return val;
3093 }
3094 
3095 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3096 {
3097 	struct nvme_command c = { };
3098 	struct nvme_id_ctrl_nvm *id;
3099 	int ret;
3100 
3101 	/*
3102 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3103 	 * to the write-zeroes, we are cautious and limit the size to the
3104 	 * controllers max_hw_sectors value, which is based on the MDTS field
3105 	 * and possibly other limiting factors.
3106 	 */
3107 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3108 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3109 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3110 	else
3111 		ctrl->max_zeroes_sectors = 0;
3112 
3113 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3114 	    nvme_ctrl_limited_cns(ctrl) ||
3115 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3116 		return 0;
3117 
3118 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3119 	if (!id)
3120 		return -ENOMEM;
3121 
3122 	c.identify.opcode = nvme_admin_identify;
3123 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3124 	c.identify.csi = NVME_CSI_NVM;
3125 
3126 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3127 	if (ret)
3128 		goto free_data;
3129 
3130 	ctrl->dmrl = id->dmrl;
3131 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3132 	if (id->wzsl)
3133 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3134 
3135 free_data:
3136 	if (ret > 0)
3137 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3138 	kfree(id);
3139 	return ret;
3140 }
3141 
3142 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3143 {
3144 	struct nvme_effects_log	*log = ctrl->effects;
3145 
3146 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3147 						NVME_CMD_EFFECTS_NCC |
3148 						NVME_CMD_EFFECTS_CSE_MASK);
3149 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3150 						NVME_CMD_EFFECTS_CSE_MASK);
3151 
3152 	/*
3153 	 * The spec says the result of a security receive command depends on
3154 	 * the previous security send command. As such, many vendors log this
3155 	 * command as one to submitted only when no other commands to the same
3156 	 * namespace are outstanding. The intention is to tell the host to
3157 	 * prevent mixing security send and receive.
3158 	 *
3159 	 * This driver can only enforce such exclusive access against IO
3160 	 * queues, though. We are not readily able to enforce such a rule for
3161 	 * two commands to the admin queue, which is the only queue that
3162 	 * matters for this command.
3163 	 *
3164 	 * Rather than blindly freezing the IO queues for this effect that
3165 	 * doesn't even apply to IO, mask it off.
3166 	 */
3167 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3168 
3169 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3170 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3171 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3172 }
3173 
3174 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3175 {
3176 	int ret = 0;
3177 
3178 	if (ctrl->effects)
3179 		return 0;
3180 
3181 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3182 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3183 		if (ret < 0)
3184 			return ret;
3185 	}
3186 
3187 	if (!ctrl->effects) {
3188 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3189 		if (!ctrl->effects)
3190 			return -ENOMEM;
3191 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3192 	}
3193 
3194 	nvme_init_known_nvm_effects(ctrl);
3195 	return 0;
3196 }
3197 
3198 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3199 {
3200 	/*
3201 	 * In fabrics we need to verify the cntlid matches the
3202 	 * admin connect
3203 	 */
3204 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3205 		dev_err(ctrl->device,
3206 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3207 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3208 		return -EINVAL;
3209 	}
3210 
3211 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3212 		dev_err(ctrl->device,
3213 			"keep-alive support is mandatory for fabrics\n");
3214 		return -EINVAL;
3215 	}
3216 
3217 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3218 		dev_err(ctrl->device,
3219 			"I/O queue command capsule supported size %d < 4\n",
3220 			ctrl->ioccsz);
3221 		return -EINVAL;
3222 	}
3223 
3224 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3225 		dev_err(ctrl->device,
3226 			"I/O queue response capsule supported size %d < 1\n",
3227 			ctrl->iorcsz);
3228 		return -EINVAL;
3229 	}
3230 
3231 	if (!ctrl->maxcmd) {
3232 		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3233 		return -EINVAL;
3234 	}
3235 
3236 	return 0;
3237 }
3238 
3239 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3240 {
3241 	struct queue_limits lim;
3242 	struct nvme_id_ctrl *id;
3243 	u32 max_hw_sectors;
3244 	bool prev_apst_enabled;
3245 	int ret;
3246 
3247 	ret = nvme_identify_ctrl(ctrl, &id);
3248 	if (ret) {
3249 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3250 		return -EIO;
3251 	}
3252 
3253 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3254 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3255 
3256 	if (!ctrl->identified) {
3257 		unsigned int i;
3258 
3259 		/*
3260 		 * Check for quirks.  Quirk can depend on firmware version,
3261 		 * so, in principle, the set of quirks present can change
3262 		 * across a reset.  As a possible future enhancement, we
3263 		 * could re-scan for quirks every time we reinitialize
3264 		 * the device, but we'd have to make sure that the driver
3265 		 * behaves intelligently if the quirks change.
3266 		 */
3267 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3268 			if (quirk_matches(id, &core_quirks[i]))
3269 				ctrl->quirks |= core_quirks[i].quirks;
3270 		}
3271 
3272 		ret = nvme_init_subsystem(ctrl, id);
3273 		if (ret)
3274 			goto out_free;
3275 
3276 		ret = nvme_init_effects(ctrl, id);
3277 		if (ret)
3278 			goto out_free;
3279 	}
3280 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3281 	       sizeof(ctrl->subsys->firmware_rev));
3282 
3283 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3284 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3285 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3286 	}
3287 
3288 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3289 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3290 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3291 
3292 	ctrl->oacs = le16_to_cpu(id->oacs);
3293 	ctrl->oncs = le16_to_cpu(id->oncs);
3294 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3295 	ctrl->oaes = le32_to_cpu(id->oaes);
3296 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3297 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3298 
3299 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3300 	ctrl->vwc = id->vwc;
3301 	if (id->mdts)
3302 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3303 	else
3304 		max_hw_sectors = UINT_MAX;
3305 	ctrl->max_hw_sectors =
3306 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3307 
3308 	lim = queue_limits_start_update(ctrl->admin_q);
3309 	nvme_set_ctrl_limits(ctrl, &lim);
3310 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3311 	if (ret)
3312 		goto out_free;
3313 
3314 	ctrl->sgls = le32_to_cpu(id->sgls);
3315 	ctrl->kas = le16_to_cpu(id->kas);
3316 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3317 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3318 
3319 	ctrl->cntrltype = id->cntrltype;
3320 	ctrl->dctype = id->dctype;
3321 
3322 	if (id->rtd3e) {
3323 		/* us -> s */
3324 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3325 
3326 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3327 						 shutdown_timeout, 60);
3328 
3329 		if (ctrl->shutdown_timeout != shutdown_timeout)
3330 			dev_info(ctrl->device,
3331 				 "D3 entry latency set to %u seconds\n",
3332 				 ctrl->shutdown_timeout);
3333 	} else
3334 		ctrl->shutdown_timeout = shutdown_timeout;
3335 
3336 	ctrl->npss = id->npss;
3337 	ctrl->apsta = id->apsta;
3338 	prev_apst_enabled = ctrl->apst_enabled;
3339 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3340 		if (force_apst && id->apsta) {
3341 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3342 			ctrl->apst_enabled = true;
3343 		} else {
3344 			ctrl->apst_enabled = false;
3345 		}
3346 	} else {
3347 		ctrl->apst_enabled = id->apsta;
3348 	}
3349 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3350 
3351 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3352 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3353 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3354 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3355 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3356 
3357 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3358 		if (ret)
3359 			goto out_free;
3360 	} else {
3361 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3362 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3363 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3364 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3365 	}
3366 
3367 	ret = nvme_mpath_init_identify(ctrl, id);
3368 	if (ret < 0)
3369 		goto out_free;
3370 
3371 	if (ctrl->apst_enabled && !prev_apst_enabled)
3372 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3373 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3374 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3375 
3376 out_free:
3377 	kfree(id);
3378 	return ret;
3379 }
3380 
3381 /*
3382  * Initialize the cached copies of the Identify data and various controller
3383  * register in our nvme_ctrl structure.  This should be called as soon as
3384  * the admin queue is fully up and running.
3385  */
3386 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3387 {
3388 	int ret;
3389 
3390 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3391 	if (ret) {
3392 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3393 		return ret;
3394 	}
3395 
3396 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3397 
3398 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3399 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3400 
3401 	ret = nvme_init_identify(ctrl);
3402 	if (ret)
3403 		return ret;
3404 
3405 	ret = nvme_configure_apst(ctrl);
3406 	if (ret < 0)
3407 		return ret;
3408 
3409 	ret = nvme_configure_timestamp(ctrl);
3410 	if (ret < 0)
3411 		return ret;
3412 
3413 	ret = nvme_configure_host_options(ctrl);
3414 	if (ret < 0)
3415 		return ret;
3416 
3417 	nvme_configure_opal(ctrl, was_suspended);
3418 
3419 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3420 		/*
3421 		 * Do not return errors unless we are in a controller reset,
3422 		 * the controller works perfectly fine without hwmon.
3423 		 */
3424 		ret = nvme_hwmon_init(ctrl);
3425 		if (ret == -EINTR)
3426 			return ret;
3427 	}
3428 
3429 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3430 	ctrl->identified = true;
3431 
3432 	nvme_start_keep_alive(ctrl);
3433 
3434 	return 0;
3435 }
3436 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3437 
3438 static int nvme_dev_open(struct inode *inode, struct file *file)
3439 {
3440 	struct nvme_ctrl *ctrl =
3441 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3442 
3443 	switch (nvme_ctrl_state(ctrl)) {
3444 	case NVME_CTRL_LIVE:
3445 		break;
3446 	default:
3447 		return -EWOULDBLOCK;
3448 	}
3449 
3450 	nvme_get_ctrl(ctrl);
3451 	if (!try_module_get(ctrl->ops->module)) {
3452 		nvme_put_ctrl(ctrl);
3453 		return -EINVAL;
3454 	}
3455 
3456 	file->private_data = ctrl;
3457 	return 0;
3458 }
3459 
3460 static int nvme_dev_release(struct inode *inode, struct file *file)
3461 {
3462 	struct nvme_ctrl *ctrl =
3463 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3464 
3465 	module_put(ctrl->ops->module);
3466 	nvme_put_ctrl(ctrl);
3467 	return 0;
3468 }
3469 
3470 static const struct file_operations nvme_dev_fops = {
3471 	.owner		= THIS_MODULE,
3472 	.open		= nvme_dev_open,
3473 	.release	= nvme_dev_release,
3474 	.unlocked_ioctl	= nvme_dev_ioctl,
3475 	.compat_ioctl	= compat_ptr_ioctl,
3476 	.uring_cmd	= nvme_dev_uring_cmd,
3477 };
3478 
3479 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3480 		unsigned nsid)
3481 {
3482 	struct nvme_ns_head *h;
3483 
3484 	lockdep_assert_held(&ctrl->subsys->lock);
3485 
3486 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3487 		/*
3488 		 * Private namespaces can share NSIDs under some conditions.
3489 		 * In that case we can't use the same ns_head for namespaces
3490 		 * with the same NSID.
3491 		 */
3492 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3493 			continue;
3494 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3495 			return h;
3496 	}
3497 
3498 	return NULL;
3499 }
3500 
3501 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3502 		struct nvme_ns_ids *ids)
3503 {
3504 	bool has_uuid = !uuid_is_null(&ids->uuid);
3505 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3506 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3507 	struct nvme_ns_head *h;
3508 
3509 	lockdep_assert_held(&subsys->lock);
3510 
3511 	list_for_each_entry(h, &subsys->nsheads, entry) {
3512 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3513 			return -EINVAL;
3514 		if (has_nguid &&
3515 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3516 			return -EINVAL;
3517 		if (has_eui64 &&
3518 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3519 			return -EINVAL;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 static void nvme_cdev_rel(struct device *dev)
3526 {
3527 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3528 }
3529 
3530 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3531 {
3532 	cdev_device_del(cdev, cdev_device);
3533 	put_device(cdev_device);
3534 }
3535 
3536 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3537 		const struct file_operations *fops, struct module *owner)
3538 {
3539 	int minor, ret;
3540 
3541 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3542 	if (minor < 0)
3543 		return minor;
3544 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3545 	cdev_device->class = &nvme_ns_chr_class;
3546 	cdev_device->release = nvme_cdev_rel;
3547 	device_initialize(cdev_device);
3548 	cdev_init(cdev, fops);
3549 	cdev->owner = owner;
3550 	ret = cdev_device_add(cdev, cdev_device);
3551 	if (ret)
3552 		put_device(cdev_device);
3553 
3554 	return ret;
3555 }
3556 
3557 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3558 {
3559 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3560 }
3561 
3562 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3563 {
3564 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3565 	return 0;
3566 }
3567 
3568 static const struct file_operations nvme_ns_chr_fops = {
3569 	.owner		= THIS_MODULE,
3570 	.open		= nvme_ns_chr_open,
3571 	.release	= nvme_ns_chr_release,
3572 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3573 	.compat_ioctl	= compat_ptr_ioctl,
3574 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3575 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3576 };
3577 
3578 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3579 {
3580 	int ret;
3581 
3582 	ns->cdev_device.parent = ns->ctrl->device;
3583 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3584 			   ns->ctrl->instance, ns->head->instance);
3585 	if (ret)
3586 		return ret;
3587 
3588 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3589 			     ns->ctrl->ops->module);
3590 }
3591 
3592 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3593 		struct nvme_ns_info *info)
3594 {
3595 	struct nvme_ns_head *head;
3596 	size_t size = sizeof(*head);
3597 	int ret = -ENOMEM;
3598 
3599 #ifdef CONFIG_NVME_MULTIPATH
3600 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3601 #endif
3602 
3603 	head = kzalloc(size, GFP_KERNEL);
3604 	if (!head)
3605 		goto out;
3606 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3607 	if (ret < 0)
3608 		goto out_free_head;
3609 	head->instance = ret;
3610 	INIT_LIST_HEAD(&head->list);
3611 	ret = init_srcu_struct(&head->srcu);
3612 	if (ret)
3613 		goto out_ida_remove;
3614 	head->subsys = ctrl->subsys;
3615 	head->ns_id = info->nsid;
3616 	head->ids = info->ids;
3617 	head->shared = info->is_shared;
3618 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3619 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3620 	kref_init(&head->ref);
3621 
3622 	if (head->ids.csi) {
3623 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3624 		if (ret)
3625 			goto out_cleanup_srcu;
3626 	} else
3627 		head->effects = ctrl->effects;
3628 
3629 	ret = nvme_mpath_alloc_disk(ctrl, head);
3630 	if (ret)
3631 		goto out_cleanup_srcu;
3632 
3633 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3634 
3635 	kref_get(&ctrl->subsys->ref);
3636 
3637 	return head;
3638 out_cleanup_srcu:
3639 	cleanup_srcu_struct(&head->srcu);
3640 out_ida_remove:
3641 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3642 out_free_head:
3643 	kfree(head);
3644 out:
3645 	if (ret > 0)
3646 		ret = blk_status_to_errno(nvme_error_status(ret));
3647 	return ERR_PTR(ret);
3648 }
3649 
3650 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3651 		struct nvme_ns_ids *ids)
3652 {
3653 	struct nvme_subsystem *s;
3654 	int ret = 0;
3655 
3656 	/*
3657 	 * Note that this check is racy as we try to avoid holding the global
3658 	 * lock over the whole ns_head creation.  But it is only intended as
3659 	 * a sanity check anyway.
3660 	 */
3661 	mutex_lock(&nvme_subsystems_lock);
3662 	list_for_each_entry(s, &nvme_subsystems, entry) {
3663 		if (s == this)
3664 			continue;
3665 		mutex_lock(&s->lock);
3666 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3667 		mutex_unlock(&s->lock);
3668 		if (ret)
3669 			break;
3670 	}
3671 	mutex_unlock(&nvme_subsystems_lock);
3672 
3673 	return ret;
3674 }
3675 
3676 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3677 {
3678 	struct nvme_ctrl *ctrl = ns->ctrl;
3679 	struct nvme_ns_head *head = NULL;
3680 	int ret;
3681 
3682 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3683 	if (ret) {
3684 		/*
3685 		 * We've found two different namespaces on two different
3686 		 * subsystems that report the same ID.  This is pretty nasty
3687 		 * for anything that actually requires unique device
3688 		 * identification.  In the kernel we need this for multipathing,
3689 		 * and in user space the /dev/disk/by-id/ links rely on it.
3690 		 *
3691 		 * If the device also claims to be multi-path capable back off
3692 		 * here now and refuse the probe the second device as this is a
3693 		 * recipe for data corruption.  If not this is probably a
3694 		 * cheap consumer device if on the PCIe bus, so let the user
3695 		 * proceed and use the shiny toy, but warn that with changing
3696 		 * probing order (which due to our async probing could just be
3697 		 * device taking longer to startup) the other device could show
3698 		 * up at any time.
3699 		 */
3700 		nvme_print_device_info(ctrl);
3701 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3702 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3703 		     info->is_shared)) {
3704 			dev_err(ctrl->device,
3705 				"ignoring nsid %d because of duplicate IDs\n",
3706 				info->nsid);
3707 			return ret;
3708 		}
3709 
3710 		dev_err(ctrl->device,
3711 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3712 		dev_err(ctrl->device,
3713 			"use of /dev/disk/by-id/ may cause data corruption\n");
3714 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3715 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3716 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3717 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3718 	}
3719 
3720 	mutex_lock(&ctrl->subsys->lock);
3721 	head = nvme_find_ns_head(ctrl, info->nsid);
3722 	if (!head) {
3723 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3724 		if (ret) {
3725 			dev_err(ctrl->device,
3726 				"duplicate IDs in subsystem for nsid %d\n",
3727 				info->nsid);
3728 			goto out_unlock;
3729 		}
3730 		head = nvme_alloc_ns_head(ctrl, info);
3731 		if (IS_ERR(head)) {
3732 			ret = PTR_ERR(head);
3733 			goto out_unlock;
3734 		}
3735 	} else {
3736 		ret = -EINVAL;
3737 		if (!info->is_shared || !head->shared) {
3738 			dev_err(ctrl->device,
3739 				"Duplicate unshared namespace %d\n",
3740 				info->nsid);
3741 			goto out_put_ns_head;
3742 		}
3743 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3744 			dev_err(ctrl->device,
3745 				"IDs don't match for shared namespace %d\n",
3746 					info->nsid);
3747 			goto out_put_ns_head;
3748 		}
3749 
3750 		if (!multipath) {
3751 			dev_warn(ctrl->device,
3752 				"Found shared namespace %d, but multipathing not supported.\n",
3753 				info->nsid);
3754 			dev_warn_once(ctrl->device,
3755 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3756 		}
3757 	}
3758 
3759 	list_add_tail_rcu(&ns->siblings, &head->list);
3760 	ns->head = head;
3761 	mutex_unlock(&ctrl->subsys->lock);
3762 	return 0;
3763 
3764 out_put_ns_head:
3765 	nvme_put_ns_head(head);
3766 out_unlock:
3767 	mutex_unlock(&ctrl->subsys->lock);
3768 	return ret;
3769 }
3770 
3771 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3772 {
3773 	struct nvme_ns *ns, *ret = NULL;
3774 	int srcu_idx;
3775 
3776 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3777 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
3778 		if (ns->head->ns_id == nsid) {
3779 			if (!nvme_get_ns(ns))
3780 				continue;
3781 			ret = ns;
3782 			break;
3783 		}
3784 		if (ns->head->ns_id > nsid)
3785 			break;
3786 	}
3787 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3788 	return ret;
3789 }
3790 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3791 
3792 /*
3793  * Add the namespace to the controller list while keeping the list ordered.
3794  */
3795 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3796 {
3797 	struct nvme_ns *tmp;
3798 
3799 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3800 		if (tmp->head->ns_id < ns->head->ns_id) {
3801 			list_add_rcu(&ns->list, &tmp->list);
3802 			return;
3803 		}
3804 	}
3805 	list_add(&ns->list, &ns->ctrl->namespaces);
3806 }
3807 
3808 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3809 {
3810 	struct queue_limits lim = { };
3811 	struct nvme_ns *ns;
3812 	struct gendisk *disk;
3813 	int node = ctrl->numa_node;
3814 
3815 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3816 	if (!ns)
3817 		return;
3818 
3819 	if (ctrl->opts && ctrl->opts->data_digest)
3820 		lim.features |= BLK_FEAT_STABLE_WRITES;
3821 	if (ctrl->ops->supports_pci_p2pdma &&
3822 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3823 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3824 
3825 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3826 	if (IS_ERR(disk))
3827 		goto out_free_ns;
3828 	disk->fops = &nvme_bdev_ops;
3829 	disk->private_data = ns;
3830 
3831 	ns->disk = disk;
3832 	ns->queue = disk->queue;
3833 	ns->ctrl = ctrl;
3834 	kref_init(&ns->kref);
3835 
3836 	if (nvme_init_ns_head(ns, info))
3837 		goto out_cleanup_disk;
3838 
3839 	/*
3840 	 * If multipathing is enabled, the device name for all disks and not
3841 	 * just those that represent shared namespaces needs to be based on the
3842 	 * subsystem instance.  Using the controller instance for private
3843 	 * namespaces could lead to naming collisions between shared and private
3844 	 * namespaces if they don't use a common numbering scheme.
3845 	 *
3846 	 * If multipathing is not enabled, disk names must use the controller
3847 	 * instance as shared namespaces will show up as multiple block
3848 	 * devices.
3849 	 */
3850 	if (nvme_ns_head_multipath(ns->head)) {
3851 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3852 			ctrl->instance, ns->head->instance);
3853 		disk->flags |= GENHD_FL_HIDDEN;
3854 	} else if (multipath) {
3855 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3856 			ns->head->instance);
3857 	} else {
3858 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3859 			ns->head->instance);
3860 	}
3861 
3862 	if (nvme_update_ns_info(ns, info))
3863 		goto out_unlink_ns;
3864 
3865 	mutex_lock(&ctrl->namespaces_lock);
3866 	/*
3867 	 * Ensure that no namespaces are added to the ctrl list after the queues
3868 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3869 	 */
3870 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3871 		mutex_unlock(&ctrl->namespaces_lock);
3872 		goto out_unlink_ns;
3873 	}
3874 	nvme_ns_add_to_ctrl_list(ns);
3875 	mutex_unlock(&ctrl->namespaces_lock);
3876 	synchronize_srcu(&ctrl->srcu);
3877 	nvme_get_ctrl(ctrl);
3878 
3879 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3880 		goto out_cleanup_ns_from_list;
3881 
3882 	if (!nvme_ns_head_multipath(ns->head))
3883 		nvme_add_ns_cdev(ns);
3884 
3885 	nvme_mpath_add_disk(ns, info->anagrpid);
3886 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3887 
3888 	/*
3889 	 * Set ns->disk->device->driver_data to ns so we can access
3890 	 * ns->head->passthru_err_log_enabled in
3891 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3892 	 */
3893 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3894 
3895 	return;
3896 
3897  out_cleanup_ns_from_list:
3898 	nvme_put_ctrl(ctrl);
3899 	mutex_lock(&ctrl->namespaces_lock);
3900 	list_del_rcu(&ns->list);
3901 	mutex_unlock(&ctrl->namespaces_lock);
3902 	synchronize_srcu(&ctrl->srcu);
3903  out_unlink_ns:
3904 	mutex_lock(&ctrl->subsys->lock);
3905 	list_del_rcu(&ns->siblings);
3906 	if (list_empty(&ns->head->list))
3907 		list_del_init(&ns->head->entry);
3908 	mutex_unlock(&ctrl->subsys->lock);
3909 	nvme_put_ns_head(ns->head);
3910  out_cleanup_disk:
3911 	put_disk(disk);
3912  out_free_ns:
3913 	kfree(ns);
3914 }
3915 
3916 static void nvme_ns_remove(struct nvme_ns *ns)
3917 {
3918 	bool last_path = false;
3919 
3920 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3921 		return;
3922 
3923 	clear_bit(NVME_NS_READY, &ns->flags);
3924 	set_capacity(ns->disk, 0);
3925 	nvme_fault_inject_fini(&ns->fault_inject);
3926 
3927 	/*
3928 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3929 	 * this ns going back into current_path.
3930 	 */
3931 	synchronize_srcu(&ns->head->srcu);
3932 
3933 	/* wait for concurrent submissions */
3934 	if (nvme_mpath_clear_current_path(ns))
3935 		synchronize_srcu(&ns->head->srcu);
3936 
3937 	mutex_lock(&ns->ctrl->subsys->lock);
3938 	list_del_rcu(&ns->siblings);
3939 	if (list_empty(&ns->head->list)) {
3940 		list_del_init(&ns->head->entry);
3941 		last_path = true;
3942 	}
3943 	mutex_unlock(&ns->ctrl->subsys->lock);
3944 
3945 	/* guarantee not available in head->list */
3946 	synchronize_srcu(&ns->head->srcu);
3947 
3948 	if (!nvme_ns_head_multipath(ns->head))
3949 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3950 	del_gendisk(ns->disk);
3951 
3952 	mutex_lock(&ns->ctrl->namespaces_lock);
3953 	list_del_rcu(&ns->list);
3954 	mutex_unlock(&ns->ctrl->namespaces_lock);
3955 	synchronize_srcu(&ns->ctrl->srcu);
3956 
3957 	if (last_path)
3958 		nvme_mpath_shutdown_disk(ns->head);
3959 	nvme_put_ns(ns);
3960 }
3961 
3962 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3963 {
3964 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3965 
3966 	if (ns) {
3967 		nvme_ns_remove(ns);
3968 		nvme_put_ns(ns);
3969 	}
3970 }
3971 
3972 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3973 {
3974 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
3975 
3976 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3977 		dev_err(ns->ctrl->device,
3978 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3979 		goto out;
3980 	}
3981 
3982 	ret = nvme_update_ns_info(ns, info);
3983 out:
3984 	/*
3985 	 * Only remove the namespace if we got a fatal error back from the
3986 	 * device, otherwise ignore the error and just move on.
3987 	 *
3988 	 * TODO: we should probably schedule a delayed retry here.
3989 	 */
3990 	if (ret > 0 && (ret & NVME_STATUS_DNR))
3991 		nvme_ns_remove(ns);
3992 }
3993 
3994 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3995 {
3996 	struct nvme_ns_info info = { .nsid = nsid };
3997 	struct nvme_ns *ns;
3998 	int ret;
3999 
4000 	if (nvme_identify_ns_descs(ctrl, &info))
4001 		return;
4002 
4003 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4004 		dev_warn(ctrl->device,
4005 			"command set not reported for nsid: %d\n", nsid);
4006 		return;
4007 	}
4008 
4009 	/*
4010 	 * If available try to use the Command Set Idependent Identify Namespace
4011 	 * data structure to find all the generic information that is needed to
4012 	 * set up a namespace.  If not fall back to the legacy version.
4013 	 */
4014 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4015 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
4016 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4017 	else
4018 		ret = nvme_ns_info_from_identify(ctrl, &info);
4019 
4020 	if (info.is_removed)
4021 		nvme_ns_remove_by_nsid(ctrl, nsid);
4022 
4023 	/*
4024 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4025 	 * becomes ready and restart the scan.
4026 	 */
4027 	if (ret || !info.is_ready)
4028 		return;
4029 
4030 	ns = nvme_find_get_ns(ctrl, nsid);
4031 	if (ns) {
4032 		nvme_validate_ns(ns, &info);
4033 		nvme_put_ns(ns);
4034 	} else {
4035 		nvme_alloc_ns(ctrl, &info);
4036 	}
4037 }
4038 
4039 /**
4040  * struct async_scan_info - keeps track of controller & NSIDs to scan
4041  * @ctrl:	Controller on which namespaces are being scanned
4042  * @next_nsid:	Index of next NSID to scan in ns_list
4043  * @ns_list:	Pointer to list of NSIDs to scan
4044  *
4045  * Note: There is a single async_scan_info structure shared by all instances
4046  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4047  * operations on next_nsid are critical to ensure each instance scans a unique
4048  * NSID.
4049  */
4050 struct async_scan_info {
4051 	struct nvme_ctrl *ctrl;
4052 	atomic_t next_nsid;
4053 	__le32 *ns_list;
4054 };
4055 
4056 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4057 {
4058 	struct async_scan_info *scan_info = data;
4059 	int idx;
4060 	u32 nsid;
4061 
4062 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4063 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4064 
4065 	nvme_scan_ns(scan_info->ctrl, nsid);
4066 }
4067 
4068 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4069 					unsigned nsid)
4070 {
4071 	struct nvme_ns *ns, *next;
4072 	LIST_HEAD(rm_list);
4073 
4074 	mutex_lock(&ctrl->namespaces_lock);
4075 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4076 		if (ns->head->ns_id > nsid) {
4077 			list_del_rcu(&ns->list);
4078 			synchronize_srcu(&ctrl->srcu);
4079 			list_add_tail_rcu(&ns->list, &rm_list);
4080 		}
4081 	}
4082 	mutex_unlock(&ctrl->namespaces_lock);
4083 
4084 	list_for_each_entry_safe(ns, next, &rm_list, list)
4085 		nvme_ns_remove(ns);
4086 }
4087 
4088 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4089 {
4090 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4091 	__le32 *ns_list;
4092 	u32 prev = 0;
4093 	int ret = 0, i;
4094 	ASYNC_DOMAIN(domain);
4095 	struct async_scan_info scan_info;
4096 
4097 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4098 	if (!ns_list)
4099 		return -ENOMEM;
4100 
4101 	scan_info.ctrl = ctrl;
4102 	scan_info.ns_list = ns_list;
4103 	for (;;) {
4104 		struct nvme_command cmd = {
4105 			.identify.opcode	= nvme_admin_identify,
4106 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4107 			.identify.nsid		= cpu_to_le32(prev),
4108 		};
4109 
4110 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4111 					    NVME_IDENTIFY_DATA_SIZE);
4112 		if (ret) {
4113 			dev_warn(ctrl->device,
4114 				"Identify NS List failed (status=0x%x)\n", ret);
4115 			goto free;
4116 		}
4117 
4118 		atomic_set(&scan_info.next_nsid, 0);
4119 		for (i = 0; i < nr_entries; i++) {
4120 			u32 nsid = le32_to_cpu(ns_list[i]);
4121 
4122 			if (!nsid)	/* end of the list? */
4123 				goto out;
4124 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4125 						&domain);
4126 			while (++prev < nsid)
4127 				nvme_ns_remove_by_nsid(ctrl, prev);
4128 		}
4129 		async_synchronize_full_domain(&domain);
4130 	}
4131  out:
4132 	nvme_remove_invalid_namespaces(ctrl, prev);
4133  free:
4134 	async_synchronize_full_domain(&domain);
4135 	kfree(ns_list);
4136 	return ret;
4137 }
4138 
4139 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4140 {
4141 	struct nvme_id_ctrl *id;
4142 	u32 nn, i;
4143 
4144 	if (nvme_identify_ctrl(ctrl, &id))
4145 		return;
4146 	nn = le32_to_cpu(id->nn);
4147 	kfree(id);
4148 
4149 	for (i = 1; i <= nn; i++)
4150 		nvme_scan_ns(ctrl, i);
4151 
4152 	nvme_remove_invalid_namespaces(ctrl, nn);
4153 }
4154 
4155 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4156 {
4157 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4158 	__le32 *log;
4159 	int error;
4160 
4161 	log = kzalloc(log_size, GFP_KERNEL);
4162 	if (!log)
4163 		return;
4164 
4165 	/*
4166 	 * We need to read the log to clear the AEN, but we don't want to rely
4167 	 * on it for the changed namespace information as userspace could have
4168 	 * raced with us in reading the log page, which could cause us to miss
4169 	 * updates.
4170 	 */
4171 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4172 			NVME_CSI_NVM, log, log_size, 0);
4173 	if (error)
4174 		dev_warn(ctrl->device,
4175 			"reading changed ns log failed: %d\n", error);
4176 
4177 	kfree(log);
4178 }
4179 
4180 static void nvme_scan_work(struct work_struct *work)
4181 {
4182 	struct nvme_ctrl *ctrl =
4183 		container_of(work, struct nvme_ctrl, scan_work);
4184 	int ret;
4185 
4186 	/* No tagset on a live ctrl means IO queues could not created */
4187 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4188 		return;
4189 
4190 	/*
4191 	 * Identify controller limits can change at controller reset due to
4192 	 * new firmware download, even though it is not common we cannot ignore
4193 	 * such scenario. Controller's non-mdts limits are reported in the unit
4194 	 * of logical blocks that is dependent on the format of attached
4195 	 * namespace. Hence re-read the limits at the time of ns allocation.
4196 	 */
4197 	ret = nvme_init_non_mdts_limits(ctrl);
4198 	if (ret < 0) {
4199 		dev_warn(ctrl->device,
4200 			"reading non-mdts-limits failed: %d\n", ret);
4201 		return;
4202 	}
4203 
4204 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4205 		dev_info(ctrl->device, "rescanning namespaces.\n");
4206 		nvme_clear_changed_ns_log(ctrl);
4207 	}
4208 
4209 	mutex_lock(&ctrl->scan_lock);
4210 	if (nvme_ctrl_limited_cns(ctrl)) {
4211 		nvme_scan_ns_sequential(ctrl);
4212 	} else {
4213 		/*
4214 		 * Fall back to sequential scan if DNR is set to handle broken
4215 		 * devices which should support Identify NS List (as per the VS
4216 		 * they report) but don't actually support it.
4217 		 */
4218 		ret = nvme_scan_ns_list(ctrl);
4219 		if (ret > 0 && ret & NVME_STATUS_DNR)
4220 			nvme_scan_ns_sequential(ctrl);
4221 	}
4222 	mutex_unlock(&ctrl->scan_lock);
4223 }
4224 
4225 /*
4226  * This function iterates the namespace list unlocked to allow recovery from
4227  * controller failure. It is up to the caller to ensure the namespace list is
4228  * not modified by scan work while this function is executing.
4229  */
4230 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4231 {
4232 	struct nvme_ns *ns, *next;
4233 	LIST_HEAD(ns_list);
4234 
4235 	/*
4236 	 * make sure to requeue I/O to all namespaces as these
4237 	 * might result from the scan itself and must complete
4238 	 * for the scan_work to make progress
4239 	 */
4240 	nvme_mpath_clear_ctrl_paths(ctrl);
4241 
4242 	/*
4243 	 * Unquiesce io queues so any pending IO won't hang, especially
4244 	 * those submitted from scan work
4245 	 */
4246 	nvme_unquiesce_io_queues(ctrl);
4247 
4248 	/* prevent racing with ns scanning */
4249 	flush_work(&ctrl->scan_work);
4250 
4251 	/*
4252 	 * The dead states indicates the controller was not gracefully
4253 	 * disconnected. In that case, we won't be able to flush any data while
4254 	 * removing the namespaces' disks; fail all the queues now to avoid
4255 	 * potentially having to clean up the failed sync later.
4256 	 */
4257 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4258 		nvme_mark_namespaces_dead(ctrl);
4259 
4260 	/* this is a no-op when called from the controller reset handler */
4261 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4262 
4263 	mutex_lock(&ctrl->namespaces_lock);
4264 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4265 	mutex_unlock(&ctrl->namespaces_lock);
4266 	synchronize_srcu(&ctrl->srcu);
4267 
4268 	list_for_each_entry_safe(ns, next, &ns_list, list)
4269 		nvme_ns_remove(ns);
4270 }
4271 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4272 
4273 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4274 {
4275 	const struct nvme_ctrl *ctrl =
4276 		container_of(dev, struct nvme_ctrl, ctrl_device);
4277 	struct nvmf_ctrl_options *opts = ctrl->opts;
4278 	int ret;
4279 
4280 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4281 	if (ret)
4282 		return ret;
4283 
4284 	if (opts) {
4285 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4286 		if (ret)
4287 			return ret;
4288 
4289 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4290 				opts->trsvcid ?: "none");
4291 		if (ret)
4292 			return ret;
4293 
4294 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4295 				opts->host_traddr ?: "none");
4296 		if (ret)
4297 			return ret;
4298 
4299 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4300 				opts->host_iface ?: "none");
4301 	}
4302 	return ret;
4303 }
4304 
4305 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4306 {
4307 	char *envp[2] = { envdata, NULL };
4308 
4309 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4310 }
4311 
4312 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4313 {
4314 	char *envp[2] = { NULL, NULL };
4315 	u32 aen_result = ctrl->aen_result;
4316 
4317 	ctrl->aen_result = 0;
4318 	if (!aen_result)
4319 		return;
4320 
4321 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4322 	if (!envp[0])
4323 		return;
4324 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4325 	kfree(envp[0]);
4326 }
4327 
4328 static void nvme_async_event_work(struct work_struct *work)
4329 {
4330 	struct nvme_ctrl *ctrl =
4331 		container_of(work, struct nvme_ctrl, async_event_work);
4332 
4333 	nvme_aen_uevent(ctrl);
4334 
4335 	/*
4336 	 * The transport drivers must guarantee AER submission here is safe by
4337 	 * flushing ctrl async_event_work after changing the controller state
4338 	 * from LIVE and before freeing the admin queue.
4339 	*/
4340 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4341 		ctrl->ops->submit_async_event(ctrl);
4342 }
4343 
4344 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4345 {
4346 
4347 	u32 csts;
4348 
4349 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4350 		return false;
4351 
4352 	if (csts == ~0)
4353 		return false;
4354 
4355 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4356 }
4357 
4358 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4359 {
4360 	struct nvme_fw_slot_info_log *log;
4361 	u8 next_fw_slot, cur_fw_slot;
4362 
4363 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4364 	if (!log)
4365 		return;
4366 
4367 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4368 			 log, sizeof(*log), 0)) {
4369 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4370 		goto out_free_log;
4371 	}
4372 
4373 	cur_fw_slot = log->afi & 0x7;
4374 	next_fw_slot = (log->afi & 0x70) >> 4;
4375 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4376 		dev_info(ctrl->device,
4377 			 "Firmware is activated after next Controller Level Reset\n");
4378 		goto out_free_log;
4379 	}
4380 
4381 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4382 		sizeof(ctrl->subsys->firmware_rev));
4383 
4384 out_free_log:
4385 	kfree(log);
4386 }
4387 
4388 static void nvme_fw_act_work(struct work_struct *work)
4389 {
4390 	struct nvme_ctrl *ctrl = container_of(work,
4391 				struct nvme_ctrl, fw_act_work);
4392 	unsigned long fw_act_timeout;
4393 
4394 	nvme_auth_stop(ctrl);
4395 
4396 	if (ctrl->mtfa)
4397 		fw_act_timeout = jiffies +
4398 				msecs_to_jiffies(ctrl->mtfa * 100);
4399 	else
4400 		fw_act_timeout = jiffies +
4401 				msecs_to_jiffies(admin_timeout * 1000);
4402 
4403 	nvme_quiesce_io_queues(ctrl);
4404 	while (nvme_ctrl_pp_status(ctrl)) {
4405 		if (time_after(jiffies, fw_act_timeout)) {
4406 			dev_warn(ctrl->device,
4407 				"Fw activation timeout, reset controller\n");
4408 			nvme_try_sched_reset(ctrl);
4409 			return;
4410 		}
4411 		msleep(100);
4412 	}
4413 
4414 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4415 		return;
4416 
4417 	nvme_unquiesce_io_queues(ctrl);
4418 	/* read FW slot information to clear the AER */
4419 	nvme_get_fw_slot_info(ctrl);
4420 
4421 	queue_work(nvme_wq, &ctrl->async_event_work);
4422 }
4423 
4424 static u32 nvme_aer_type(u32 result)
4425 {
4426 	return result & 0x7;
4427 }
4428 
4429 static u32 nvme_aer_subtype(u32 result)
4430 {
4431 	return (result & 0xff00) >> 8;
4432 }
4433 
4434 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4435 {
4436 	u32 aer_notice_type = nvme_aer_subtype(result);
4437 	bool requeue = true;
4438 
4439 	switch (aer_notice_type) {
4440 	case NVME_AER_NOTICE_NS_CHANGED:
4441 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4442 		nvme_queue_scan(ctrl);
4443 		break;
4444 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4445 		/*
4446 		 * We are (ab)using the RESETTING state to prevent subsequent
4447 		 * recovery actions from interfering with the controller's
4448 		 * firmware activation.
4449 		 */
4450 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4451 			requeue = false;
4452 			queue_work(nvme_wq, &ctrl->fw_act_work);
4453 		}
4454 		break;
4455 #ifdef CONFIG_NVME_MULTIPATH
4456 	case NVME_AER_NOTICE_ANA:
4457 		if (!ctrl->ana_log_buf)
4458 			break;
4459 		queue_work(nvme_wq, &ctrl->ana_work);
4460 		break;
4461 #endif
4462 	case NVME_AER_NOTICE_DISC_CHANGED:
4463 		ctrl->aen_result = result;
4464 		break;
4465 	default:
4466 		dev_warn(ctrl->device, "async event result %08x\n", result);
4467 	}
4468 	return requeue;
4469 }
4470 
4471 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4472 {
4473 	dev_warn(ctrl->device,
4474 		"resetting controller due to persistent internal error\n");
4475 	nvme_reset_ctrl(ctrl);
4476 }
4477 
4478 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4479 		volatile union nvme_result *res)
4480 {
4481 	u32 result = le32_to_cpu(res->u32);
4482 	u32 aer_type = nvme_aer_type(result);
4483 	u32 aer_subtype = nvme_aer_subtype(result);
4484 	bool requeue = true;
4485 
4486 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4487 		return;
4488 
4489 	trace_nvme_async_event(ctrl, result);
4490 	switch (aer_type) {
4491 	case NVME_AER_NOTICE:
4492 		requeue = nvme_handle_aen_notice(ctrl, result);
4493 		break;
4494 	case NVME_AER_ERROR:
4495 		/*
4496 		 * For a persistent internal error, don't run async_event_work
4497 		 * to submit a new AER. The controller reset will do it.
4498 		 */
4499 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4500 			nvme_handle_aer_persistent_error(ctrl);
4501 			return;
4502 		}
4503 		fallthrough;
4504 	case NVME_AER_SMART:
4505 	case NVME_AER_CSS:
4506 	case NVME_AER_VS:
4507 		ctrl->aen_result = result;
4508 		break;
4509 	default:
4510 		break;
4511 	}
4512 
4513 	if (requeue)
4514 		queue_work(nvme_wq, &ctrl->async_event_work);
4515 }
4516 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4517 
4518 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4519 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4520 {
4521 	struct queue_limits lim = {};
4522 	int ret;
4523 
4524 	memset(set, 0, sizeof(*set));
4525 	set->ops = ops;
4526 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4527 	if (ctrl->ops->flags & NVME_F_FABRICS)
4528 		/* Reserved for fabric connect and keep alive */
4529 		set->reserved_tags = 2;
4530 	set->numa_node = ctrl->numa_node;
4531 	set->flags = BLK_MQ_F_NO_SCHED;
4532 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4533 		set->flags |= BLK_MQ_F_BLOCKING;
4534 	set->cmd_size = cmd_size;
4535 	set->driver_data = ctrl;
4536 	set->nr_hw_queues = 1;
4537 	set->timeout = NVME_ADMIN_TIMEOUT;
4538 	ret = blk_mq_alloc_tag_set(set);
4539 	if (ret)
4540 		return ret;
4541 
4542 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4543 	if (IS_ERR(ctrl->admin_q)) {
4544 		ret = PTR_ERR(ctrl->admin_q);
4545 		goto out_free_tagset;
4546 	}
4547 
4548 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4549 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4550 		if (IS_ERR(ctrl->fabrics_q)) {
4551 			ret = PTR_ERR(ctrl->fabrics_q);
4552 			goto out_cleanup_admin_q;
4553 		}
4554 	}
4555 
4556 	ctrl->admin_tagset = set;
4557 	return 0;
4558 
4559 out_cleanup_admin_q:
4560 	blk_mq_destroy_queue(ctrl->admin_q);
4561 	blk_put_queue(ctrl->admin_q);
4562 out_free_tagset:
4563 	blk_mq_free_tag_set(set);
4564 	ctrl->admin_q = NULL;
4565 	ctrl->fabrics_q = NULL;
4566 	return ret;
4567 }
4568 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4569 
4570 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4571 {
4572 	blk_mq_destroy_queue(ctrl->admin_q);
4573 	blk_put_queue(ctrl->admin_q);
4574 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4575 		blk_mq_destroy_queue(ctrl->fabrics_q);
4576 		blk_put_queue(ctrl->fabrics_q);
4577 	}
4578 	blk_mq_free_tag_set(ctrl->admin_tagset);
4579 }
4580 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4581 
4582 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4583 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4584 		unsigned int cmd_size)
4585 {
4586 	int ret;
4587 
4588 	memset(set, 0, sizeof(*set));
4589 	set->ops = ops;
4590 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4591 	/*
4592 	 * Some Apple controllers requires tags to be unique across admin and
4593 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4594 	 */
4595 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4596 		set->reserved_tags = NVME_AQ_DEPTH;
4597 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4598 		/* Reserved for fabric connect */
4599 		set->reserved_tags = 1;
4600 	set->numa_node = ctrl->numa_node;
4601 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4602 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4603 		set->flags |= BLK_MQ_F_BLOCKING;
4604 	set->cmd_size = cmd_size;
4605 	set->driver_data = ctrl;
4606 	set->nr_hw_queues = ctrl->queue_count - 1;
4607 	set->timeout = NVME_IO_TIMEOUT;
4608 	set->nr_maps = nr_maps;
4609 	ret = blk_mq_alloc_tag_set(set);
4610 	if (ret)
4611 		return ret;
4612 
4613 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4614 		struct queue_limits lim = {
4615 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4616 		};
4617 
4618 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4619         	if (IS_ERR(ctrl->connect_q)) {
4620 			ret = PTR_ERR(ctrl->connect_q);
4621 			goto out_free_tag_set;
4622 		}
4623 	}
4624 
4625 	ctrl->tagset = set;
4626 	return 0;
4627 
4628 out_free_tag_set:
4629 	blk_mq_free_tag_set(set);
4630 	ctrl->connect_q = NULL;
4631 	return ret;
4632 }
4633 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4634 
4635 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4636 {
4637 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4638 		blk_mq_destroy_queue(ctrl->connect_q);
4639 		blk_put_queue(ctrl->connect_q);
4640 	}
4641 	blk_mq_free_tag_set(ctrl->tagset);
4642 }
4643 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4644 
4645 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4646 {
4647 	nvme_mpath_stop(ctrl);
4648 	nvme_auth_stop(ctrl);
4649 	nvme_stop_failfast_work(ctrl);
4650 	flush_work(&ctrl->async_event_work);
4651 	cancel_work_sync(&ctrl->fw_act_work);
4652 	if (ctrl->ops->stop_ctrl)
4653 		ctrl->ops->stop_ctrl(ctrl);
4654 }
4655 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4656 
4657 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4658 {
4659 	nvme_enable_aen(ctrl);
4660 
4661 	/*
4662 	 * persistent discovery controllers need to send indication to userspace
4663 	 * to re-read the discovery log page to learn about possible changes
4664 	 * that were missed. We identify persistent discovery controllers by
4665 	 * checking that they started once before, hence are reconnecting back.
4666 	 */
4667 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4668 	    nvme_discovery_ctrl(ctrl))
4669 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4670 
4671 	if (ctrl->queue_count > 1) {
4672 		nvme_queue_scan(ctrl);
4673 		nvme_unquiesce_io_queues(ctrl);
4674 		nvme_mpath_update(ctrl);
4675 	}
4676 
4677 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4678 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4679 }
4680 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4681 
4682 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4683 {
4684 	nvme_stop_keep_alive(ctrl);
4685 	nvme_hwmon_exit(ctrl);
4686 	nvme_fault_inject_fini(&ctrl->fault_inject);
4687 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4688 	cdev_device_del(&ctrl->cdev, ctrl->device);
4689 	nvme_put_ctrl(ctrl);
4690 }
4691 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4692 
4693 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4694 {
4695 	struct nvme_effects_log	*cel;
4696 	unsigned long i;
4697 
4698 	xa_for_each(&ctrl->cels, i, cel) {
4699 		xa_erase(&ctrl->cels, i);
4700 		kfree(cel);
4701 	}
4702 
4703 	xa_destroy(&ctrl->cels);
4704 }
4705 
4706 static void nvme_free_ctrl(struct device *dev)
4707 {
4708 	struct nvme_ctrl *ctrl =
4709 		container_of(dev, struct nvme_ctrl, ctrl_device);
4710 	struct nvme_subsystem *subsys = ctrl->subsys;
4711 
4712 	if (!subsys || ctrl->instance != subsys->instance)
4713 		ida_free(&nvme_instance_ida, ctrl->instance);
4714 	nvme_free_cels(ctrl);
4715 	nvme_mpath_uninit(ctrl);
4716 	cleanup_srcu_struct(&ctrl->srcu);
4717 	nvme_auth_stop(ctrl);
4718 	nvme_auth_free(ctrl);
4719 	__free_page(ctrl->discard_page);
4720 	free_opal_dev(ctrl->opal_dev);
4721 
4722 	if (subsys) {
4723 		mutex_lock(&nvme_subsystems_lock);
4724 		list_del(&ctrl->subsys_entry);
4725 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4726 		mutex_unlock(&nvme_subsystems_lock);
4727 	}
4728 
4729 	ctrl->ops->free_ctrl(ctrl);
4730 
4731 	if (subsys)
4732 		nvme_put_subsystem(subsys);
4733 }
4734 
4735 /*
4736  * Initialize a NVMe controller structures.  This needs to be called during
4737  * earliest initialization so that we have the initialized structured around
4738  * during probing.
4739  *
4740  * On success, the caller must use the nvme_put_ctrl() to release this when
4741  * needed, which also invokes the ops->free_ctrl() callback.
4742  */
4743 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4744 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4745 {
4746 	int ret;
4747 
4748 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4749 	ctrl->passthru_err_log_enabled = false;
4750 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4751 	spin_lock_init(&ctrl->lock);
4752 	mutex_init(&ctrl->namespaces_lock);
4753 
4754 	ret = init_srcu_struct(&ctrl->srcu);
4755 	if (ret)
4756 		return ret;
4757 
4758 	mutex_init(&ctrl->scan_lock);
4759 	INIT_LIST_HEAD(&ctrl->namespaces);
4760 	xa_init(&ctrl->cels);
4761 	ctrl->dev = dev;
4762 	ctrl->ops = ops;
4763 	ctrl->quirks = quirks;
4764 	ctrl->numa_node = NUMA_NO_NODE;
4765 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4766 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4767 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4768 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4769 	init_waitqueue_head(&ctrl->state_wq);
4770 
4771 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4772 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4773 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4774 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4775 	ctrl->ka_last_check_time = jiffies;
4776 
4777 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4778 			PAGE_SIZE);
4779 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4780 	if (!ctrl->discard_page) {
4781 		ret = -ENOMEM;
4782 		goto out;
4783 	}
4784 
4785 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4786 	if (ret < 0)
4787 		goto out;
4788 	ctrl->instance = ret;
4789 
4790 	ret = nvme_auth_init_ctrl(ctrl);
4791 	if (ret)
4792 		goto out_release_instance;
4793 
4794 	nvme_mpath_init_ctrl(ctrl);
4795 
4796 	device_initialize(&ctrl->ctrl_device);
4797 	ctrl->device = &ctrl->ctrl_device;
4798 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4799 			ctrl->instance);
4800 	ctrl->device->class = &nvme_class;
4801 	ctrl->device->parent = ctrl->dev;
4802 	if (ops->dev_attr_groups)
4803 		ctrl->device->groups = ops->dev_attr_groups;
4804 	else
4805 		ctrl->device->groups = nvme_dev_attr_groups;
4806 	ctrl->device->release = nvme_free_ctrl;
4807 	dev_set_drvdata(ctrl->device, ctrl);
4808 
4809 	return ret;
4810 
4811 out_release_instance:
4812 	ida_free(&nvme_instance_ida, ctrl->instance);
4813 out:
4814 	if (ctrl->discard_page)
4815 		__free_page(ctrl->discard_page);
4816 	cleanup_srcu_struct(&ctrl->srcu);
4817 	return ret;
4818 }
4819 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4820 
4821 /*
4822  * On success, returns with an elevated controller reference and caller must
4823  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4824  */
4825 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4826 {
4827 	int ret;
4828 
4829 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4830 	if (ret)
4831 		return ret;
4832 
4833 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4834 	ctrl->cdev.owner = ctrl->ops->module;
4835 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4836 	if (ret)
4837 		return ret;
4838 
4839 	/*
4840 	 * Initialize latency tolerance controls.  The sysfs files won't
4841 	 * be visible to userspace unless the device actually supports APST.
4842 	 */
4843 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4844 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4845 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4846 
4847 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4848 	nvme_get_ctrl(ctrl);
4849 
4850 	return 0;
4851 }
4852 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4853 
4854 /* let I/O to all namespaces fail in preparation for surprise removal */
4855 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4856 {
4857 	struct nvme_ns *ns;
4858 	int srcu_idx;
4859 
4860 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4861 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4862 		blk_mark_disk_dead(ns->disk);
4863 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4864 }
4865 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4866 
4867 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4868 {
4869 	struct nvme_ns *ns;
4870 	int srcu_idx;
4871 
4872 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4873 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4874 		blk_mq_unfreeze_queue(ns->queue);
4875 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4876 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4877 }
4878 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4879 
4880 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4881 {
4882 	struct nvme_ns *ns;
4883 	int srcu_idx;
4884 
4885 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4886 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
4887 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4888 		if (timeout <= 0)
4889 			break;
4890 	}
4891 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4892 	return timeout;
4893 }
4894 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4895 
4896 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4897 {
4898 	struct nvme_ns *ns;
4899 	int srcu_idx;
4900 
4901 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4902 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4903 		blk_mq_freeze_queue_wait(ns->queue);
4904 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4905 }
4906 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4907 
4908 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4909 {
4910 	struct nvme_ns *ns;
4911 	int srcu_idx;
4912 
4913 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4914 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4915 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4916 		blk_freeze_queue_start(ns->queue);
4917 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4918 }
4919 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4920 
4921 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4922 {
4923 	if (!ctrl->tagset)
4924 		return;
4925 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4926 		blk_mq_quiesce_tagset(ctrl->tagset);
4927 	else
4928 		blk_mq_wait_quiesce_done(ctrl->tagset);
4929 }
4930 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4931 
4932 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4933 {
4934 	if (!ctrl->tagset)
4935 		return;
4936 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4937 		blk_mq_unquiesce_tagset(ctrl->tagset);
4938 }
4939 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4940 
4941 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4942 {
4943 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4944 		blk_mq_quiesce_queue(ctrl->admin_q);
4945 	else
4946 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4947 }
4948 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4949 
4950 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4951 {
4952 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4953 		blk_mq_unquiesce_queue(ctrl->admin_q);
4954 }
4955 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4956 
4957 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4958 {
4959 	struct nvme_ns *ns;
4960 	int srcu_idx;
4961 
4962 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4963 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4964 		blk_sync_queue(ns->queue);
4965 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4966 }
4967 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4968 
4969 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4970 {
4971 	nvme_sync_io_queues(ctrl);
4972 	if (ctrl->admin_q)
4973 		blk_sync_queue(ctrl->admin_q);
4974 }
4975 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4976 
4977 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4978 {
4979 	if (file->f_op != &nvme_dev_fops)
4980 		return NULL;
4981 	return file->private_data;
4982 }
4983 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4984 
4985 /*
4986  * Check we didn't inadvertently grow the command structure sizes:
4987  */
4988 static inline void _nvme_check_size(void)
4989 {
4990 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4991 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4992 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4993 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4994 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4995 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4996 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4997 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4998 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4999 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5000 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5001 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5002 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5003 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5004 			NVME_IDENTIFY_DATA_SIZE);
5005 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5006 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5007 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5008 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5009 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5010 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5011 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5012 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5013 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5014 }
5015 
5016 
5017 static int __init nvme_core_init(void)
5018 {
5019 	int result = -ENOMEM;
5020 
5021 	_nvme_check_size();
5022 
5023 	nvme_wq = alloc_workqueue("nvme-wq",
5024 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5025 	if (!nvme_wq)
5026 		goto out;
5027 
5028 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5029 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5030 	if (!nvme_reset_wq)
5031 		goto destroy_wq;
5032 
5033 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5034 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5035 	if (!nvme_delete_wq)
5036 		goto destroy_reset_wq;
5037 
5038 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5039 			NVME_MINORS, "nvme");
5040 	if (result < 0)
5041 		goto destroy_delete_wq;
5042 
5043 	result = class_register(&nvme_class);
5044 	if (result)
5045 		goto unregister_chrdev;
5046 
5047 	result = class_register(&nvme_subsys_class);
5048 	if (result)
5049 		goto destroy_class;
5050 
5051 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5052 				     "nvme-generic");
5053 	if (result < 0)
5054 		goto destroy_subsys_class;
5055 
5056 	result = class_register(&nvme_ns_chr_class);
5057 	if (result)
5058 		goto unregister_generic_ns;
5059 
5060 	result = nvme_init_auth();
5061 	if (result)
5062 		goto destroy_ns_chr;
5063 	return 0;
5064 
5065 destroy_ns_chr:
5066 	class_unregister(&nvme_ns_chr_class);
5067 unregister_generic_ns:
5068 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5069 destroy_subsys_class:
5070 	class_unregister(&nvme_subsys_class);
5071 destroy_class:
5072 	class_unregister(&nvme_class);
5073 unregister_chrdev:
5074 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5075 destroy_delete_wq:
5076 	destroy_workqueue(nvme_delete_wq);
5077 destroy_reset_wq:
5078 	destroy_workqueue(nvme_reset_wq);
5079 destroy_wq:
5080 	destroy_workqueue(nvme_wq);
5081 out:
5082 	return result;
5083 }
5084 
5085 static void __exit nvme_core_exit(void)
5086 {
5087 	nvme_exit_auth();
5088 	class_unregister(&nvme_ns_chr_class);
5089 	class_unregister(&nvme_subsys_class);
5090 	class_unregister(&nvme_class);
5091 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5092 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5093 	destroy_workqueue(nvme_delete_wq);
5094 	destroy_workqueue(nvme_reset_wq);
5095 	destroy_workqueue(nvme_wq);
5096 	ida_destroy(&nvme_ns_chr_minor_ida);
5097 	ida_destroy(&nvme_instance_ida);
5098 }
5099 
5100 MODULE_LICENSE("GPL");
5101 MODULE_VERSION("1.0");
5102 MODULE_DESCRIPTION("NVMe host core framework");
5103 module_init(nvme_core_init);
5104 module_exit(nvme_core_exit);
5105