xref: /linux/drivers/nvme/host/core.c (revision 8fc4e4aa2bfca8d32e8bc2a01526ea2da450e6cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30 
31 #define NVME_MINORS		(1U << MINORBITS)
32 
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37 
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42 
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46 
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50 
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54 		 "max power saving latency for new devices; use PM QOS to change per device");
55 
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59 
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63 
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77 
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80 
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83 
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_ctrl_base_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static DEFINE_IDA(nvme_ns_chr_minor_ida);
93 static dev_t nvme_ns_chr_devt;
94 static struct class *nvme_ns_chr_class;
95 
96 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
97 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
98 					   unsigned nsid);
99 
100 /*
101  * Prepare a queue for teardown.
102  *
103  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
104  * the capacity to 0 after that to avoid blocking dispatchers that may be
105  * holding bd_butex.  This will end buffered writers dirtying pages that can't
106  * be synced.
107  */
108 static void nvme_set_queue_dying(struct nvme_ns *ns)
109 {
110 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
111 		return;
112 
113 	blk_set_queue_dying(ns->queue);
114 	blk_mq_unquiesce_queue(ns->queue);
115 
116 	set_capacity_and_notify(ns->disk, 0);
117 }
118 
119 void nvme_queue_scan(struct nvme_ctrl *ctrl)
120 {
121 	/*
122 	 * Only new queue scan work when admin and IO queues are both alive
123 	 */
124 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
125 		queue_work(nvme_wq, &ctrl->scan_work);
126 }
127 
128 /*
129  * Use this function to proceed with scheduling reset_work for a controller
130  * that had previously been set to the resetting state. This is intended for
131  * code paths that can't be interrupted by other reset attempts. A hot removal
132  * may prevent this from succeeding.
133  */
134 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
135 {
136 	if (ctrl->state != NVME_CTRL_RESETTING)
137 		return -EBUSY;
138 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
139 		return -EBUSY;
140 	return 0;
141 }
142 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
143 
144 static void nvme_failfast_work(struct work_struct *work)
145 {
146 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
147 			struct nvme_ctrl, failfast_work);
148 
149 	if (ctrl->state != NVME_CTRL_CONNECTING)
150 		return;
151 
152 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
153 	dev_info(ctrl->device, "failfast expired\n");
154 	nvme_kick_requeue_lists(ctrl);
155 }
156 
157 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
158 {
159 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
160 		return;
161 
162 	schedule_delayed_work(&ctrl->failfast_work,
163 			      ctrl->opts->fast_io_fail_tmo * HZ);
164 }
165 
166 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
167 {
168 	if (!ctrl->opts)
169 		return;
170 
171 	cancel_delayed_work_sync(&ctrl->failfast_work);
172 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 }
174 
175 
176 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
177 {
178 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
179 		return -EBUSY;
180 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
181 		return -EBUSY;
182 	return 0;
183 }
184 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
185 
186 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
187 {
188 	int ret;
189 
190 	ret = nvme_reset_ctrl(ctrl);
191 	if (!ret) {
192 		flush_work(&ctrl->reset_work);
193 		if (ctrl->state != NVME_CTRL_LIVE)
194 			ret = -ENETRESET;
195 	}
196 
197 	return ret;
198 }
199 
200 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
201 {
202 	dev_info(ctrl->device,
203 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
204 
205 	flush_work(&ctrl->reset_work);
206 	nvme_stop_ctrl(ctrl);
207 	nvme_remove_namespaces(ctrl);
208 	ctrl->ops->delete_ctrl(ctrl);
209 	nvme_uninit_ctrl(ctrl);
210 }
211 
212 static void nvme_delete_ctrl_work(struct work_struct *work)
213 {
214 	struct nvme_ctrl *ctrl =
215 		container_of(work, struct nvme_ctrl, delete_work);
216 
217 	nvme_do_delete_ctrl(ctrl);
218 }
219 
220 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
223 		return -EBUSY;
224 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
225 		return -EBUSY;
226 	return 0;
227 }
228 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
229 
230 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
231 {
232 	/*
233 	 * Keep a reference until nvme_do_delete_ctrl() complete,
234 	 * since ->delete_ctrl can free the controller.
235 	 */
236 	nvme_get_ctrl(ctrl);
237 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
238 		nvme_do_delete_ctrl(ctrl);
239 	nvme_put_ctrl(ctrl);
240 }
241 
242 static blk_status_t nvme_error_status(u16 status)
243 {
244 	switch (status & 0x7ff) {
245 	case NVME_SC_SUCCESS:
246 		return BLK_STS_OK;
247 	case NVME_SC_CAP_EXCEEDED:
248 		return BLK_STS_NOSPC;
249 	case NVME_SC_LBA_RANGE:
250 	case NVME_SC_CMD_INTERRUPTED:
251 	case NVME_SC_NS_NOT_READY:
252 		return BLK_STS_TARGET;
253 	case NVME_SC_BAD_ATTRIBUTES:
254 	case NVME_SC_ONCS_NOT_SUPPORTED:
255 	case NVME_SC_INVALID_OPCODE:
256 	case NVME_SC_INVALID_FIELD:
257 	case NVME_SC_INVALID_NS:
258 		return BLK_STS_NOTSUPP;
259 	case NVME_SC_WRITE_FAULT:
260 	case NVME_SC_READ_ERROR:
261 	case NVME_SC_UNWRITTEN_BLOCK:
262 	case NVME_SC_ACCESS_DENIED:
263 	case NVME_SC_READ_ONLY:
264 	case NVME_SC_COMPARE_FAILED:
265 		return BLK_STS_MEDIUM;
266 	case NVME_SC_GUARD_CHECK:
267 	case NVME_SC_APPTAG_CHECK:
268 	case NVME_SC_REFTAG_CHECK:
269 	case NVME_SC_INVALID_PI:
270 		return BLK_STS_PROTECTION;
271 	case NVME_SC_RESERVATION_CONFLICT:
272 		return BLK_STS_NEXUS;
273 	case NVME_SC_HOST_PATH_ERROR:
274 		return BLK_STS_TRANSPORT;
275 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
276 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
277 	case NVME_SC_ZONE_TOO_MANY_OPEN:
278 		return BLK_STS_ZONE_OPEN_RESOURCE;
279 	default:
280 		return BLK_STS_IOERR;
281 	}
282 }
283 
284 static void nvme_retry_req(struct request *req)
285 {
286 	unsigned long delay = 0;
287 	u16 crd;
288 
289 	/* The mask and shift result must be <= 3 */
290 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
291 	if (crd)
292 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
293 
294 	nvme_req(req)->retries++;
295 	blk_mq_requeue_request(req, false);
296 	blk_mq_delay_kick_requeue_list(req->q, delay);
297 }
298 
299 enum nvme_disposition {
300 	COMPLETE,
301 	RETRY,
302 	FAILOVER,
303 };
304 
305 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
306 {
307 	if (likely(nvme_req(req)->status == 0))
308 		return COMPLETE;
309 
310 	if (blk_noretry_request(req) ||
311 	    (nvme_req(req)->status & NVME_SC_DNR) ||
312 	    nvme_req(req)->retries >= nvme_max_retries)
313 		return COMPLETE;
314 
315 	if (req->cmd_flags & REQ_NVME_MPATH) {
316 		if (nvme_is_path_error(nvme_req(req)->status) ||
317 		    blk_queue_dying(req->q))
318 			return FAILOVER;
319 	} else {
320 		if (blk_queue_dying(req->q))
321 			return COMPLETE;
322 	}
323 
324 	return RETRY;
325 }
326 
327 static inline void nvme_end_req(struct request *req)
328 {
329 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
330 
331 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
332 	    req_op(req) == REQ_OP_ZONE_APPEND)
333 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
334 			le64_to_cpu(nvme_req(req)->result.u64));
335 
336 	nvme_trace_bio_complete(req);
337 	blk_mq_end_request(req, status);
338 }
339 
340 void nvme_complete_rq(struct request *req)
341 {
342 	trace_nvme_complete_rq(req);
343 	nvme_cleanup_cmd(req);
344 
345 	if (nvme_req(req)->ctrl->kas)
346 		nvme_req(req)->ctrl->comp_seen = true;
347 
348 	switch (nvme_decide_disposition(req)) {
349 	case COMPLETE:
350 		nvme_end_req(req);
351 		return;
352 	case RETRY:
353 		nvme_retry_req(req);
354 		return;
355 	case FAILOVER:
356 		nvme_failover_req(req);
357 		return;
358 	}
359 }
360 EXPORT_SYMBOL_GPL(nvme_complete_rq);
361 
362 /*
363  * Called to unwind from ->queue_rq on a failed command submission so that the
364  * multipathing code gets called to potentially failover to another path.
365  * The caller needs to unwind all transport specific resource allocations and
366  * must return propagate the return value.
367  */
368 blk_status_t nvme_host_path_error(struct request *req)
369 {
370 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
371 	blk_mq_set_request_complete(req);
372 	nvme_complete_rq(req);
373 	return BLK_STS_OK;
374 }
375 EXPORT_SYMBOL_GPL(nvme_host_path_error);
376 
377 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
378 {
379 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
380 				"Cancelling I/O %d", req->tag);
381 
382 	/* don't abort one completed request */
383 	if (blk_mq_request_completed(req))
384 		return true;
385 
386 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
387 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
388 	blk_mq_complete_request(req);
389 	return true;
390 }
391 EXPORT_SYMBOL_GPL(nvme_cancel_request);
392 
393 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
394 {
395 	if (ctrl->tagset) {
396 		blk_mq_tagset_busy_iter(ctrl->tagset,
397 				nvme_cancel_request, ctrl);
398 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
399 	}
400 }
401 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
402 
403 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
404 {
405 	if (ctrl->admin_tagset) {
406 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
407 				nvme_cancel_request, ctrl);
408 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
409 	}
410 }
411 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
412 
413 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
414 		enum nvme_ctrl_state new_state)
415 {
416 	enum nvme_ctrl_state old_state;
417 	unsigned long flags;
418 	bool changed = false;
419 
420 	spin_lock_irqsave(&ctrl->lock, flags);
421 
422 	old_state = ctrl->state;
423 	switch (new_state) {
424 	case NVME_CTRL_LIVE:
425 		switch (old_state) {
426 		case NVME_CTRL_NEW:
427 		case NVME_CTRL_RESETTING:
428 		case NVME_CTRL_CONNECTING:
429 			changed = true;
430 			fallthrough;
431 		default:
432 			break;
433 		}
434 		break;
435 	case NVME_CTRL_RESETTING:
436 		switch (old_state) {
437 		case NVME_CTRL_NEW:
438 		case NVME_CTRL_LIVE:
439 			changed = true;
440 			fallthrough;
441 		default:
442 			break;
443 		}
444 		break;
445 	case NVME_CTRL_CONNECTING:
446 		switch (old_state) {
447 		case NVME_CTRL_NEW:
448 		case NVME_CTRL_RESETTING:
449 			changed = true;
450 			fallthrough;
451 		default:
452 			break;
453 		}
454 		break;
455 	case NVME_CTRL_DELETING:
456 		switch (old_state) {
457 		case NVME_CTRL_LIVE:
458 		case NVME_CTRL_RESETTING:
459 		case NVME_CTRL_CONNECTING:
460 			changed = true;
461 			fallthrough;
462 		default:
463 			break;
464 		}
465 		break;
466 	case NVME_CTRL_DELETING_NOIO:
467 		switch (old_state) {
468 		case NVME_CTRL_DELETING:
469 		case NVME_CTRL_DEAD:
470 			changed = true;
471 			fallthrough;
472 		default:
473 			break;
474 		}
475 		break;
476 	case NVME_CTRL_DEAD:
477 		switch (old_state) {
478 		case NVME_CTRL_DELETING:
479 			changed = true;
480 			fallthrough;
481 		default:
482 			break;
483 		}
484 		break;
485 	default:
486 		break;
487 	}
488 
489 	if (changed) {
490 		ctrl->state = new_state;
491 		wake_up_all(&ctrl->state_wq);
492 	}
493 
494 	spin_unlock_irqrestore(&ctrl->lock, flags);
495 	if (!changed)
496 		return false;
497 
498 	if (ctrl->state == NVME_CTRL_LIVE) {
499 		if (old_state == NVME_CTRL_CONNECTING)
500 			nvme_stop_failfast_work(ctrl);
501 		nvme_kick_requeue_lists(ctrl);
502 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
503 		old_state == NVME_CTRL_RESETTING) {
504 		nvme_start_failfast_work(ctrl);
505 	}
506 	return changed;
507 }
508 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
509 
510 /*
511  * Returns true for sink states that can't ever transition back to live.
512  */
513 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
514 {
515 	switch (ctrl->state) {
516 	case NVME_CTRL_NEW:
517 	case NVME_CTRL_LIVE:
518 	case NVME_CTRL_RESETTING:
519 	case NVME_CTRL_CONNECTING:
520 		return false;
521 	case NVME_CTRL_DELETING:
522 	case NVME_CTRL_DELETING_NOIO:
523 	case NVME_CTRL_DEAD:
524 		return true;
525 	default:
526 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
527 		return true;
528 	}
529 }
530 
531 /*
532  * Waits for the controller state to be resetting, or returns false if it is
533  * not possible to ever transition to that state.
534  */
535 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
536 {
537 	wait_event(ctrl->state_wq,
538 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
539 		   nvme_state_terminal(ctrl));
540 	return ctrl->state == NVME_CTRL_RESETTING;
541 }
542 EXPORT_SYMBOL_GPL(nvme_wait_reset);
543 
544 static void nvme_free_ns_head(struct kref *ref)
545 {
546 	struct nvme_ns_head *head =
547 		container_of(ref, struct nvme_ns_head, ref);
548 
549 	nvme_mpath_remove_disk(head);
550 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
551 	cleanup_srcu_struct(&head->srcu);
552 	nvme_put_subsystem(head->subsys);
553 	kfree(head);
554 }
555 
556 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
557 {
558 	return kref_get_unless_zero(&head->ref);
559 }
560 
561 void nvme_put_ns_head(struct nvme_ns_head *head)
562 {
563 	kref_put(&head->ref, nvme_free_ns_head);
564 }
565 
566 static void nvme_free_ns(struct kref *kref)
567 {
568 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
569 
570 	if (ns->ndev)
571 		nvme_nvm_unregister(ns);
572 
573 	put_disk(ns->disk);
574 	nvme_put_ns_head(ns->head);
575 	nvme_put_ctrl(ns->ctrl);
576 	kfree(ns);
577 }
578 
579 static inline bool nvme_get_ns(struct nvme_ns *ns)
580 {
581 	return kref_get_unless_zero(&ns->kref);
582 }
583 
584 void nvme_put_ns(struct nvme_ns *ns)
585 {
586 	kref_put(&ns->kref, nvme_free_ns);
587 }
588 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
589 
590 static inline void nvme_clear_nvme_request(struct request *req)
591 {
592 	nvme_req(req)->retries = 0;
593 	nvme_req(req)->flags = 0;
594 	req->rq_flags |= RQF_DONTPREP;
595 }
596 
597 static inline unsigned int nvme_req_op(struct nvme_command *cmd)
598 {
599 	return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
600 }
601 
602 static inline void nvme_init_request(struct request *req,
603 		struct nvme_command *cmd)
604 {
605 	if (req->q->queuedata)
606 		req->timeout = NVME_IO_TIMEOUT;
607 	else /* no queuedata implies admin queue */
608 		req->timeout = NVME_ADMIN_TIMEOUT;
609 
610 	/* passthru commands should let the driver set the SGL flags */
611 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
612 
613 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
614 	nvme_clear_nvme_request(req);
615 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
616 }
617 
618 struct request *nvme_alloc_request(struct request_queue *q,
619 		struct nvme_command *cmd, blk_mq_req_flags_t flags)
620 {
621 	struct request *req;
622 
623 	req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
624 	if (!IS_ERR(req))
625 		nvme_init_request(req, cmd);
626 	return req;
627 }
628 EXPORT_SYMBOL_GPL(nvme_alloc_request);
629 
630 static struct request *nvme_alloc_request_qid(struct request_queue *q,
631 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
632 {
633 	struct request *req;
634 
635 	req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
636 			qid ? qid - 1 : 0);
637 	if (!IS_ERR(req))
638 		nvme_init_request(req, cmd);
639 	return req;
640 }
641 
642 /*
643  * For something we're not in a state to send to the device the default action
644  * is to busy it and retry it after the controller state is recovered.  However,
645  * if the controller is deleting or if anything is marked for failfast or
646  * nvme multipath it is immediately failed.
647  *
648  * Note: commands used to initialize the controller will be marked for failfast.
649  * Note: nvme cli/ioctl commands are marked for failfast.
650  */
651 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
652 		struct request *rq)
653 {
654 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
655 	    ctrl->state != NVME_CTRL_DEAD &&
656 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
657 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
658 		return BLK_STS_RESOURCE;
659 	return nvme_host_path_error(rq);
660 }
661 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
662 
663 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
664 		bool queue_live)
665 {
666 	struct nvme_request *req = nvme_req(rq);
667 
668 	/*
669 	 * currently we have a problem sending passthru commands
670 	 * on the admin_q if the controller is not LIVE because we can't
671 	 * make sure that they are going out after the admin connect,
672 	 * controller enable and/or other commands in the initialization
673 	 * sequence. until the controller will be LIVE, fail with
674 	 * BLK_STS_RESOURCE so that they will be rescheduled.
675 	 */
676 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
677 		return false;
678 
679 	if (ctrl->ops->flags & NVME_F_FABRICS) {
680 		/*
681 		 * Only allow commands on a live queue, except for the connect
682 		 * command, which is require to set the queue live in the
683 		 * appropinquate states.
684 		 */
685 		switch (ctrl->state) {
686 		case NVME_CTRL_CONNECTING:
687 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
688 			    req->cmd->fabrics.fctype == nvme_fabrics_type_connect)
689 				return true;
690 			break;
691 		default:
692 			break;
693 		case NVME_CTRL_DEAD:
694 			return false;
695 		}
696 	}
697 
698 	return queue_live;
699 }
700 EXPORT_SYMBOL_GPL(__nvme_check_ready);
701 
702 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
703 {
704 	struct nvme_command c;
705 
706 	memset(&c, 0, sizeof(c));
707 
708 	c.directive.opcode = nvme_admin_directive_send;
709 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
710 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
711 	c.directive.dtype = NVME_DIR_IDENTIFY;
712 	c.directive.tdtype = NVME_DIR_STREAMS;
713 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
714 
715 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
716 }
717 
718 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
719 {
720 	return nvme_toggle_streams(ctrl, false);
721 }
722 
723 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
724 {
725 	return nvme_toggle_streams(ctrl, true);
726 }
727 
728 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
729 				  struct streams_directive_params *s, u32 nsid)
730 {
731 	struct nvme_command c;
732 
733 	memset(&c, 0, sizeof(c));
734 	memset(s, 0, sizeof(*s));
735 
736 	c.directive.opcode = nvme_admin_directive_recv;
737 	c.directive.nsid = cpu_to_le32(nsid);
738 	c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
739 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
740 	c.directive.dtype = NVME_DIR_STREAMS;
741 
742 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
743 }
744 
745 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
746 {
747 	struct streams_directive_params s;
748 	int ret;
749 
750 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
751 		return 0;
752 	if (!streams)
753 		return 0;
754 
755 	ret = nvme_enable_streams(ctrl);
756 	if (ret)
757 		return ret;
758 
759 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
760 	if (ret)
761 		goto out_disable_stream;
762 
763 	ctrl->nssa = le16_to_cpu(s.nssa);
764 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
765 		dev_info(ctrl->device, "too few streams (%u) available\n",
766 					ctrl->nssa);
767 		goto out_disable_stream;
768 	}
769 
770 	ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
771 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
772 	return 0;
773 
774 out_disable_stream:
775 	nvme_disable_streams(ctrl);
776 	return ret;
777 }
778 
779 /*
780  * Check if 'req' has a write hint associated with it. If it does, assign
781  * a valid namespace stream to the write.
782  */
783 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
784 				     struct request *req, u16 *control,
785 				     u32 *dsmgmt)
786 {
787 	enum rw_hint streamid = req->write_hint;
788 
789 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
790 		streamid = 0;
791 	else {
792 		streamid--;
793 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
794 			return;
795 
796 		*control |= NVME_RW_DTYPE_STREAMS;
797 		*dsmgmt |= streamid << 16;
798 	}
799 
800 	if (streamid < ARRAY_SIZE(req->q->write_hints))
801 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
802 }
803 
804 static inline void nvme_setup_flush(struct nvme_ns *ns,
805 		struct nvme_command *cmnd)
806 {
807 	cmnd->common.opcode = nvme_cmd_flush;
808 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
809 }
810 
811 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
812 		struct nvme_command *cmnd)
813 {
814 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
815 	struct nvme_dsm_range *range;
816 	struct bio *bio;
817 
818 	/*
819 	 * Some devices do not consider the DSM 'Number of Ranges' field when
820 	 * determining how much data to DMA. Always allocate memory for maximum
821 	 * number of segments to prevent device reading beyond end of buffer.
822 	 */
823 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
824 
825 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
826 	if (!range) {
827 		/*
828 		 * If we fail allocation our range, fallback to the controller
829 		 * discard page. If that's also busy, it's safe to return
830 		 * busy, as we know we can make progress once that's freed.
831 		 */
832 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
833 			return BLK_STS_RESOURCE;
834 
835 		range = page_address(ns->ctrl->discard_page);
836 	}
837 
838 	__rq_for_each_bio(bio, req) {
839 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
840 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
841 
842 		if (n < segments) {
843 			range[n].cattr = cpu_to_le32(0);
844 			range[n].nlb = cpu_to_le32(nlb);
845 			range[n].slba = cpu_to_le64(slba);
846 		}
847 		n++;
848 	}
849 
850 	if (WARN_ON_ONCE(n != segments)) {
851 		if (virt_to_page(range) == ns->ctrl->discard_page)
852 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
853 		else
854 			kfree(range);
855 		return BLK_STS_IOERR;
856 	}
857 
858 	cmnd->dsm.opcode = nvme_cmd_dsm;
859 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
860 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
861 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
862 
863 	req->special_vec.bv_page = virt_to_page(range);
864 	req->special_vec.bv_offset = offset_in_page(range);
865 	req->special_vec.bv_len = alloc_size;
866 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
867 
868 	return BLK_STS_OK;
869 }
870 
871 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
872 		struct request *req, struct nvme_command *cmnd)
873 {
874 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
875 		return nvme_setup_discard(ns, req, cmnd);
876 
877 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
878 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
879 	cmnd->write_zeroes.slba =
880 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
881 	cmnd->write_zeroes.length =
882 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
883 	cmnd->write_zeroes.control = 0;
884 	return BLK_STS_OK;
885 }
886 
887 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
888 		struct request *req, struct nvme_command *cmnd,
889 		enum nvme_opcode op)
890 {
891 	struct nvme_ctrl *ctrl = ns->ctrl;
892 	u16 control = 0;
893 	u32 dsmgmt = 0;
894 
895 	if (req->cmd_flags & REQ_FUA)
896 		control |= NVME_RW_FUA;
897 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
898 		control |= NVME_RW_LR;
899 
900 	if (req->cmd_flags & REQ_RAHEAD)
901 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
902 
903 	cmnd->rw.opcode = op;
904 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
905 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
906 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
907 
908 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
909 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
910 
911 	if (ns->ms) {
912 		/*
913 		 * If formated with metadata, the block layer always provides a
914 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
915 		 * we enable the PRACT bit for protection information or set the
916 		 * namespace capacity to zero to prevent any I/O.
917 		 */
918 		if (!blk_integrity_rq(req)) {
919 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
920 				return BLK_STS_NOTSUPP;
921 			control |= NVME_RW_PRINFO_PRACT;
922 		}
923 
924 		switch (ns->pi_type) {
925 		case NVME_NS_DPS_PI_TYPE3:
926 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
927 			break;
928 		case NVME_NS_DPS_PI_TYPE1:
929 		case NVME_NS_DPS_PI_TYPE2:
930 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
931 					NVME_RW_PRINFO_PRCHK_REF;
932 			if (op == nvme_cmd_zone_append)
933 				control |= NVME_RW_APPEND_PIREMAP;
934 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
935 			break;
936 		}
937 	}
938 
939 	cmnd->rw.control = cpu_to_le16(control);
940 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
941 	return 0;
942 }
943 
944 void nvme_cleanup_cmd(struct request *req)
945 {
946 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
947 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
948 		struct page *page = req->special_vec.bv_page;
949 
950 		if (page == ctrl->discard_page)
951 			clear_bit_unlock(0, &ctrl->discard_page_busy);
952 		else
953 			kfree(page_address(page) + req->special_vec.bv_offset);
954 	}
955 }
956 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
957 
958 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
959 {
960 	struct nvme_command *cmd = nvme_req(req)->cmd;
961 	blk_status_t ret = BLK_STS_OK;
962 
963 	if (!(req->rq_flags & RQF_DONTPREP)) {
964 		nvme_clear_nvme_request(req);
965 		memset(cmd, 0, sizeof(*cmd));
966 	}
967 
968 	switch (req_op(req)) {
969 	case REQ_OP_DRV_IN:
970 	case REQ_OP_DRV_OUT:
971 		/* these are setup prior to execution in nvme_init_request() */
972 		break;
973 	case REQ_OP_FLUSH:
974 		nvme_setup_flush(ns, cmd);
975 		break;
976 	case REQ_OP_ZONE_RESET_ALL:
977 	case REQ_OP_ZONE_RESET:
978 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
979 		break;
980 	case REQ_OP_ZONE_OPEN:
981 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
982 		break;
983 	case REQ_OP_ZONE_CLOSE:
984 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
985 		break;
986 	case REQ_OP_ZONE_FINISH:
987 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
988 		break;
989 	case REQ_OP_WRITE_ZEROES:
990 		ret = nvme_setup_write_zeroes(ns, req, cmd);
991 		break;
992 	case REQ_OP_DISCARD:
993 		ret = nvme_setup_discard(ns, req, cmd);
994 		break;
995 	case REQ_OP_READ:
996 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
997 		break;
998 	case REQ_OP_WRITE:
999 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1000 		break;
1001 	case REQ_OP_ZONE_APPEND:
1002 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1003 		break;
1004 	default:
1005 		WARN_ON_ONCE(1);
1006 		return BLK_STS_IOERR;
1007 	}
1008 
1009 	cmd->common.command_id = req->tag;
1010 	trace_nvme_setup_cmd(req, cmd);
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1014 
1015 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
1016 {
1017 	struct completion *waiting = rq->end_io_data;
1018 
1019 	rq->end_io_data = NULL;
1020 	complete(waiting);
1021 }
1022 
1023 static void nvme_execute_rq_polled(struct request_queue *q,
1024 		struct gendisk *bd_disk, struct request *rq, int at_head)
1025 {
1026 	DECLARE_COMPLETION_ONSTACK(wait);
1027 
1028 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
1029 
1030 	rq->cmd_flags |= REQ_HIPRI;
1031 	rq->end_io_data = &wait;
1032 	blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
1033 
1034 	while (!completion_done(&wait)) {
1035 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
1036 		cond_resched();
1037 	}
1038 }
1039 
1040 /*
1041  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1042  * if the result is positive, it's an NVM Express status code
1043  */
1044 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1045 		union nvme_result *result, void *buffer, unsigned bufflen,
1046 		unsigned timeout, int qid, int at_head,
1047 		blk_mq_req_flags_t flags, bool poll)
1048 {
1049 	struct request *req;
1050 	int ret;
1051 
1052 	if (qid == NVME_QID_ANY)
1053 		req = nvme_alloc_request(q, cmd, flags);
1054 	else
1055 		req = nvme_alloc_request_qid(q, cmd, flags, qid);
1056 	if (IS_ERR(req))
1057 		return PTR_ERR(req);
1058 
1059 	if (timeout)
1060 		req->timeout = timeout;
1061 
1062 	if (buffer && bufflen) {
1063 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1064 		if (ret)
1065 			goto out;
1066 	}
1067 
1068 	if (poll)
1069 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
1070 	else
1071 		blk_execute_rq(NULL, req, at_head);
1072 	if (result)
1073 		*result = nvme_req(req)->result;
1074 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1075 		ret = -EINTR;
1076 	else
1077 		ret = nvme_req(req)->status;
1078  out:
1079 	blk_mq_free_request(req);
1080 	return ret;
1081 }
1082 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1083 
1084 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1085 		void *buffer, unsigned bufflen)
1086 {
1087 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
1088 			NVME_QID_ANY, 0, 0, false);
1089 }
1090 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1091 
1092 static u32 nvme_known_admin_effects(u8 opcode)
1093 {
1094 	switch (opcode) {
1095 	case nvme_admin_format_nvm:
1096 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1097 			NVME_CMD_EFFECTS_CSE_MASK;
1098 	case nvme_admin_sanitize_nvm:
1099 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1100 	default:
1101 		break;
1102 	}
1103 	return 0;
1104 }
1105 
1106 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1107 {
1108 	u32 effects = 0;
1109 
1110 	if (ns) {
1111 		if (ns->head->effects)
1112 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1113 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1114 			dev_warn_once(ctrl->device,
1115 				"IO command:%02x has unhandled effects:%08x\n",
1116 				opcode, effects);
1117 		return 0;
1118 	}
1119 
1120 	if (ctrl->effects)
1121 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1122 	effects |= nvme_known_admin_effects(opcode);
1123 
1124 	return effects;
1125 }
1126 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1127 
1128 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1129 			       u8 opcode)
1130 {
1131 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1132 
1133 	/*
1134 	 * For simplicity, IO to all namespaces is quiesced even if the command
1135 	 * effects say only one namespace is affected.
1136 	 */
1137 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1138 		mutex_lock(&ctrl->scan_lock);
1139 		mutex_lock(&ctrl->subsys->lock);
1140 		nvme_mpath_start_freeze(ctrl->subsys);
1141 		nvme_mpath_wait_freeze(ctrl->subsys);
1142 		nvme_start_freeze(ctrl);
1143 		nvme_wait_freeze(ctrl);
1144 	}
1145 	return effects;
1146 }
1147 
1148 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1149 {
1150 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1151 		nvme_unfreeze(ctrl);
1152 		nvme_mpath_unfreeze(ctrl->subsys);
1153 		mutex_unlock(&ctrl->subsys->lock);
1154 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1155 		mutex_unlock(&ctrl->scan_lock);
1156 	}
1157 	if (effects & NVME_CMD_EFFECTS_CCC)
1158 		nvme_init_ctrl_finish(ctrl);
1159 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1160 		nvme_queue_scan(ctrl);
1161 		flush_work(&ctrl->scan_work);
1162 	}
1163 }
1164 
1165 void nvme_execute_passthru_rq(struct request *rq)
1166 {
1167 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1168 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1169 	struct nvme_ns *ns = rq->q->queuedata;
1170 	struct gendisk *disk = ns ? ns->disk : NULL;
1171 	u32 effects;
1172 
1173 	effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1174 	blk_execute_rq(disk, rq, 0);
1175 	if (effects) /* nothing to be done for zero cmd effects */
1176 		nvme_passthru_end(ctrl, effects);
1177 }
1178 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1179 
1180 /*
1181  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1182  *
1183  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1184  *   accounting for transport roundtrip times [..].
1185  */
1186 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1187 {
1188 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1189 }
1190 
1191 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1192 {
1193 	struct nvme_ctrl *ctrl = rq->end_io_data;
1194 	unsigned long flags;
1195 	bool startka = false;
1196 
1197 	blk_mq_free_request(rq);
1198 
1199 	if (status) {
1200 		dev_err(ctrl->device,
1201 			"failed nvme_keep_alive_end_io error=%d\n",
1202 				status);
1203 		return;
1204 	}
1205 
1206 	ctrl->comp_seen = false;
1207 	spin_lock_irqsave(&ctrl->lock, flags);
1208 	if (ctrl->state == NVME_CTRL_LIVE ||
1209 	    ctrl->state == NVME_CTRL_CONNECTING)
1210 		startka = true;
1211 	spin_unlock_irqrestore(&ctrl->lock, flags);
1212 	if (startka)
1213 		nvme_queue_keep_alive_work(ctrl);
1214 }
1215 
1216 static void nvme_keep_alive_work(struct work_struct *work)
1217 {
1218 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1219 			struct nvme_ctrl, ka_work);
1220 	bool comp_seen = ctrl->comp_seen;
1221 	struct request *rq;
1222 
1223 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1224 		dev_dbg(ctrl->device,
1225 			"reschedule traffic based keep-alive timer\n");
1226 		ctrl->comp_seen = false;
1227 		nvme_queue_keep_alive_work(ctrl);
1228 		return;
1229 	}
1230 
1231 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
1232 				BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1233 	if (IS_ERR(rq)) {
1234 		/* allocation failure, reset the controller */
1235 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1236 		nvme_reset_ctrl(ctrl);
1237 		return;
1238 	}
1239 
1240 	rq->timeout = ctrl->kato * HZ;
1241 	rq->end_io_data = ctrl;
1242 	blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
1243 }
1244 
1245 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1246 {
1247 	if (unlikely(ctrl->kato == 0))
1248 		return;
1249 
1250 	nvme_queue_keep_alive_work(ctrl);
1251 }
1252 
1253 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1254 {
1255 	if (unlikely(ctrl->kato == 0))
1256 		return;
1257 
1258 	cancel_delayed_work_sync(&ctrl->ka_work);
1259 }
1260 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1261 
1262 /*
1263  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1264  * flag, thus sending any new CNS opcodes has a big chance of not working.
1265  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1266  * (but not for any later version).
1267  */
1268 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1269 {
1270 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1271 		return ctrl->vs < NVME_VS(1, 2, 0);
1272 	return ctrl->vs < NVME_VS(1, 1, 0);
1273 }
1274 
1275 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1276 {
1277 	struct nvme_command c = { };
1278 	int error;
1279 
1280 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1281 	c.identify.opcode = nvme_admin_identify;
1282 	c.identify.cns = NVME_ID_CNS_CTRL;
1283 
1284 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1285 	if (!*id)
1286 		return -ENOMEM;
1287 
1288 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1289 			sizeof(struct nvme_id_ctrl));
1290 	if (error)
1291 		kfree(*id);
1292 	return error;
1293 }
1294 
1295 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1296 {
1297 	return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1298 }
1299 
1300 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1301 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1302 {
1303 	const char *warn_str = "ctrl returned bogus length:";
1304 	void *data = cur;
1305 
1306 	switch (cur->nidt) {
1307 	case NVME_NIDT_EUI64:
1308 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1309 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1310 				 warn_str, cur->nidl);
1311 			return -1;
1312 		}
1313 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1314 		return NVME_NIDT_EUI64_LEN;
1315 	case NVME_NIDT_NGUID:
1316 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1317 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1318 				 warn_str, cur->nidl);
1319 			return -1;
1320 		}
1321 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1322 		return NVME_NIDT_NGUID_LEN;
1323 	case NVME_NIDT_UUID:
1324 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1325 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1326 				 warn_str, cur->nidl);
1327 			return -1;
1328 		}
1329 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1330 		return NVME_NIDT_UUID_LEN;
1331 	case NVME_NIDT_CSI:
1332 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1333 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1334 				 warn_str, cur->nidl);
1335 			return -1;
1336 		}
1337 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1338 		*csi_seen = true;
1339 		return NVME_NIDT_CSI_LEN;
1340 	default:
1341 		/* Skip unknown types */
1342 		return cur->nidl;
1343 	}
1344 }
1345 
1346 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1347 		struct nvme_ns_ids *ids)
1348 {
1349 	struct nvme_command c = { };
1350 	bool csi_seen = false;
1351 	int status, pos, len;
1352 	void *data;
1353 
1354 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1355 		return 0;
1356 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1357 		return 0;
1358 
1359 	c.identify.opcode = nvme_admin_identify;
1360 	c.identify.nsid = cpu_to_le32(nsid);
1361 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1362 
1363 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1364 	if (!data)
1365 		return -ENOMEM;
1366 
1367 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1368 				      NVME_IDENTIFY_DATA_SIZE);
1369 	if (status) {
1370 		dev_warn(ctrl->device,
1371 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1372 			nsid, status);
1373 		goto free_data;
1374 	}
1375 
1376 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1377 		struct nvme_ns_id_desc *cur = data + pos;
1378 
1379 		if (cur->nidl == 0)
1380 			break;
1381 
1382 		len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1383 		if (len < 0)
1384 			break;
1385 
1386 		len += sizeof(*cur);
1387 	}
1388 
1389 	if (nvme_multi_css(ctrl) && !csi_seen) {
1390 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1391 			 nsid);
1392 		status = -EINVAL;
1393 	}
1394 
1395 free_data:
1396 	kfree(data);
1397 	return status;
1398 }
1399 
1400 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1401 			struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1402 {
1403 	struct nvme_command c = { };
1404 	int error;
1405 
1406 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1407 	c.identify.opcode = nvme_admin_identify;
1408 	c.identify.nsid = cpu_to_le32(nsid);
1409 	c.identify.cns = NVME_ID_CNS_NS;
1410 
1411 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1412 	if (!*id)
1413 		return -ENOMEM;
1414 
1415 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1416 	if (error) {
1417 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1418 		goto out_free_id;
1419 	}
1420 
1421 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1422 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1423 		goto out_free_id;
1424 
1425 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1426 	    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1427 		memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1428 	if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1429 	    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1430 		memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1431 
1432 	return 0;
1433 
1434 out_free_id:
1435 	kfree(*id);
1436 	return error;
1437 }
1438 
1439 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1440 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1441 {
1442 	union nvme_result res = { 0 };
1443 	struct nvme_command c;
1444 	int ret;
1445 
1446 	memset(&c, 0, sizeof(c));
1447 	c.features.opcode = op;
1448 	c.features.fid = cpu_to_le32(fid);
1449 	c.features.dword11 = cpu_to_le32(dword11);
1450 
1451 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1452 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1453 	if (ret >= 0 && result)
1454 		*result = le32_to_cpu(res.u32);
1455 	return ret;
1456 }
1457 
1458 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1459 		      unsigned int dword11, void *buffer, size_t buflen,
1460 		      u32 *result)
1461 {
1462 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1463 			     buflen, result);
1464 }
1465 EXPORT_SYMBOL_GPL(nvme_set_features);
1466 
1467 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1468 		      unsigned int dword11, void *buffer, size_t buflen,
1469 		      u32 *result)
1470 {
1471 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1472 			     buflen, result);
1473 }
1474 EXPORT_SYMBOL_GPL(nvme_get_features);
1475 
1476 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1477 {
1478 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1479 	u32 result;
1480 	int status, nr_io_queues;
1481 
1482 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1483 			&result);
1484 	if (status < 0)
1485 		return status;
1486 
1487 	/*
1488 	 * Degraded controllers might return an error when setting the queue
1489 	 * count.  We still want to be able to bring them online and offer
1490 	 * access to the admin queue, as that might be only way to fix them up.
1491 	 */
1492 	if (status > 0) {
1493 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1494 		*count = 0;
1495 	} else {
1496 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1497 		*count = min(*count, nr_io_queues);
1498 	}
1499 
1500 	return 0;
1501 }
1502 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1503 
1504 #define NVME_AEN_SUPPORTED \
1505 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1506 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1507 
1508 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1509 {
1510 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1511 	int status;
1512 
1513 	if (!supported_aens)
1514 		return;
1515 
1516 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1517 			NULL, 0, &result);
1518 	if (status)
1519 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1520 			 supported_aens);
1521 
1522 	queue_work(nvme_wq, &ctrl->async_event_work);
1523 }
1524 
1525 /*
1526  * Issue ioctl requests on the first available path.  Note that unlike normal
1527  * block layer requests we will not retry failed request on another controller.
1528  */
1529 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1530 		struct nvme_ns_head **head, int *srcu_idx)
1531 {
1532 #ifdef CONFIG_NVME_MULTIPATH
1533 	if (disk->fops == &nvme_ns_head_ops) {
1534 		struct nvme_ns *ns;
1535 
1536 		*head = disk->private_data;
1537 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1538 		ns = nvme_find_path(*head);
1539 		if (!ns)
1540 			srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1541 		return ns;
1542 	}
1543 #endif
1544 	*head = NULL;
1545 	*srcu_idx = -1;
1546 	return disk->private_data;
1547 }
1548 
1549 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1550 {
1551 	if (head)
1552 		srcu_read_unlock(&head->srcu, idx);
1553 }
1554 
1555 static int nvme_ns_open(struct nvme_ns *ns)
1556 {
1557 
1558 	/* should never be called due to GENHD_FL_HIDDEN */
1559 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1560 		goto fail;
1561 	if (!nvme_get_ns(ns))
1562 		goto fail;
1563 	if (!try_module_get(ns->ctrl->ops->module))
1564 		goto fail_put_ns;
1565 
1566 	return 0;
1567 
1568 fail_put_ns:
1569 	nvme_put_ns(ns);
1570 fail:
1571 	return -ENXIO;
1572 }
1573 
1574 static void nvme_ns_release(struct nvme_ns *ns)
1575 {
1576 
1577 	module_put(ns->ctrl->ops->module);
1578 	nvme_put_ns(ns);
1579 }
1580 
1581 static int nvme_open(struct block_device *bdev, fmode_t mode)
1582 {
1583 	return nvme_ns_open(bdev->bd_disk->private_data);
1584 }
1585 
1586 static void nvme_release(struct gendisk *disk, fmode_t mode)
1587 {
1588 	nvme_ns_release(disk->private_data);
1589 }
1590 
1591 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1592 {
1593 	/* some standard values */
1594 	geo->heads = 1 << 6;
1595 	geo->sectors = 1 << 5;
1596 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1597 	return 0;
1598 }
1599 
1600 #ifdef CONFIG_BLK_DEV_INTEGRITY
1601 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1602 				u32 max_integrity_segments)
1603 {
1604 	struct blk_integrity integrity;
1605 
1606 	memset(&integrity, 0, sizeof(integrity));
1607 	switch (pi_type) {
1608 	case NVME_NS_DPS_PI_TYPE3:
1609 		integrity.profile = &t10_pi_type3_crc;
1610 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1611 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1612 		break;
1613 	case NVME_NS_DPS_PI_TYPE1:
1614 	case NVME_NS_DPS_PI_TYPE2:
1615 		integrity.profile = &t10_pi_type1_crc;
1616 		integrity.tag_size = sizeof(u16);
1617 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1618 		break;
1619 	default:
1620 		integrity.profile = NULL;
1621 		break;
1622 	}
1623 	integrity.tuple_size = ms;
1624 	blk_integrity_register(disk, &integrity);
1625 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1626 }
1627 #else
1628 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1629 				u32 max_integrity_segments)
1630 {
1631 }
1632 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1633 
1634 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1635 {
1636 	struct nvme_ctrl *ctrl = ns->ctrl;
1637 	struct request_queue *queue = disk->queue;
1638 	u32 size = queue_logical_block_size(queue);
1639 
1640 	if (ctrl->max_discard_sectors == 0) {
1641 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1642 		return;
1643 	}
1644 
1645 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1646 		size *= ns->sws * ns->sgs;
1647 
1648 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1649 			NVME_DSM_MAX_RANGES);
1650 
1651 	queue->limits.discard_alignment = 0;
1652 	queue->limits.discard_granularity = size;
1653 
1654 	/* If discard is already enabled, don't reset queue limits */
1655 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1656 		return;
1657 
1658 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1659 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1660 
1661 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1662 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1663 }
1664 
1665 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1666 {
1667 	return !uuid_is_null(&ids->uuid) ||
1668 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1669 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1670 }
1671 
1672 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1673 {
1674 	return uuid_equal(&a->uuid, &b->uuid) &&
1675 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1676 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1677 		a->csi == b->csi;
1678 }
1679 
1680 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1681 				 u32 *phys_bs, u32 *io_opt)
1682 {
1683 	struct streams_directive_params s;
1684 	int ret;
1685 
1686 	if (!ctrl->nr_streams)
1687 		return 0;
1688 
1689 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1690 	if (ret)
1691 		return ret;
1692 
1693 	ns->sws = le32_to_cpu(s.sws);
1694 	ns->sgs = le16_to_cpu(s.sgs);
1695 
1696 	if (ns->sws) {
1697 		*phys_bs = ns->sws * (1 << ns->lba_shift);
1698 		if (ns->sgs)
1699 			*io_opt = *phys_bs * ns->sgs;
1700 	}
1701 
1702 	return 0;
1703 }
1704 
1705 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1706 {
1707 	struct nvme_ctrl *ctrl = ns->ctrl;
1708 
1709 	/*
1710 	 * The PI implementation requires the metadata size to be equal to the
1711 	 * t10 pi tuple size.
1712 	 */
1713 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1714 	if (ns->ms == sizeof(struct t10_pi_tuple))
1715 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1716 	else
1717 		ns->pi_type = 0;
1718 
1719 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1720 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1721 		return 0;
1722 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1723 		/*
1724 		 * The NVMe over Fabrics specification only supports metadata as
1725 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1726 		 * remap the separate metadata buffer from the block layer.
1727 		 */
1728 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1729 			return -EINVAL;
1730 		if (ctrl->max_integrity_segments)
1731 			ns->features |=
1732 				(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1733 	} else {
1734 		/*
1735 		 * For PCIe controllers, we can't easily remap the separate
1736 		 * metadata buffer from the block layer and thus require a
1737 		 * separate metadata buffer for block layer metadata/PI support.
1738 		 * We allow extended LBAs for the passthrough interface, though.
1739 		 */
1740 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1741 			ns->features |= NVME_NS_EXT_LBAS;
1742 		else
1743 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1744 	}
1745 
1746 	return 0;
1747 }
1748 
1749 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1750 		struct request_queue *q)
1751 {
1752 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1753 
1754 	if (ctrl->max_hw_sectors) {
1755 		u32 max_segments =
1756 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1757 
1758 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1759 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1760 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1761 	}
1762 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1763 	blk_queue_dma_alignment(q, 7);
1764 	blk_queue_write_cache(q, vwc, vwc);
1765 }
1766 
1767 static void nvme_update_disk_info(struct gendisk *disk,
1768 		struct nvme_ns *ns, struct nvme_id_ns *id)
1769 {
1770 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1771 	unsigned short bs = 1 << ns->lba_shift;
1772 	u32 atomic_bs, phys_bs, io_opt = 0;
1773 
1774 	/*
1775 	 * The block layer can't support LBA sizes larger than the page size
1776 	 * yet, so catch this early and don't allow block I/O.
1777 	 */
1778 	if (ns->lba_shift > PAGE_SHIFT) {
1779 		capacity = 0;
1780 		bs = (1 << 9);
1781 	}
1782 
1783 	blk_integrity_unregister(disk);
1784 
1785 	atomic_bs = phys_bs = bs;
1786 	nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
1787 	if (id->nabo == 0) {
1788 		/*
1789 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1790 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1791 		 * 0 then AWUPF must be used instead.
1792 		 */
1793 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1794 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1795 		else
1796 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1797 	}
1798 
1799 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1800 		/* NPWG = Namespace Preferred Write Granularity */
1801 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1802 		/* NOWS = Namespace Optimal Write Size */
1803 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1804 	}
1805 
1806 	blk_queue_logical_block_size(disk->queue, bs);
1807 	/*
1808 	 * Linux filesystems assume writing a single physical block is
1809 	 * an atomic operation. Hence limit the physical block size to the
1810 	 * value of the Atomic Write Unit Power Fail parameter.
1811 	 */
1812 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1813 	blk_queue_io_min(disk->queue, phys_bs);
1814 	blk_queue_io_opt(disk->queue, io_opt);
1815 
1816 	/*
1817 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1818 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1819 	 * I/O to namespaces with metadata except when the namespace supports
1820 	 * PI, as it can strip/insert in that case.
1821 	 */
1822 	if (ns->ms) {
1823 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1824 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1825 			nvme_init_integrity(disk, ns->ms, ns->pi_type,
1826 					    ns->ctrl->max_integrity_segments);
1827 		else if (!nvme_ns_has_pi(ns))
1828 			capacity = 0;
1829 	}
1830 
1831 	set_capacity_and_notify(disk, capacity);
1832 
1833 	nvme_config_discard(disk, ns);
1834 	blk_queue_max_write_zeroes_sectors(disk->queue,
1835 					   ns->ctrl->max_zeroes_sectors);
1836 
1837 	set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
1838 		test_bit(NVME_NS_FORCE_RO, &ns->flags));
1839 }
1840 
1841 static inline bool nvme_first_scan(struct gendisk *disk)
1842 {
1843 	/* nvme_alloc_ns() scans the disk prior to adding it */
1844 	return !(disk->flags & GENHD_FL_UP);
1845 }
1846 
1847 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1848 {
1849 	struct nvme_ctrl *ctrl = ns->ctrl;
1850 	u32 iob;
1851 
1852 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1853 	    is_power_of_2(ctrl->max_hw_sectors))
1854 		iob = ctrl->max_hw_sectors;
1855 	else
1856 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1857 
1858 	if (!iob)
1859 		return;
1860 
1861 	if (!is_power_of_2(iob)) {
1862 		if (nvme_first_scan(ns->disk))
1863 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1864 				ns->disk->disk_name, iob);
1865 		return;
1866 	}
1867 
1868 	if (blk_queue_is_zoned(ns->disk->queue)) {
1869 		if (nvme_first_scan(ns->disk))
1870 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1871 				ns->disk->disk_name);
1872 		return;
1873 	}
1874 
1875 	blk_queue_chunk_sectors(ns->queue, iob);
1876 }
1877 
1878 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
1879 {
1880 	unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1881 	int ret;
1882 
1883 	blk_mq_freeze_queue(ns->disk->queue);
1884 	ns->lba_shift = id->lbaf[lbaf].ds;
1885 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1886 
1887 	ret = nvme_configure_metadata(ns, id);
1888 	if (ret)
1889 		goto out_unfreeze;
1890 	nvme_set_chunk_sectors(ns, id);
1891 	nvme_update_disk_info(ns->disk, ns, id);
1892 
1893 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
1894 		ret = nvme_update_zone_info(ns, lbaf);
1895 		if (ret)
1896 			goto out_unfreeze;
1897 	}
1898 
1899 	blk_mq_unfreeze_queue(ns->disk->queue);
1900 
1901 	if (blk_queue_is_zoned(ns->queue)) {
1902 		ret = nvme_revalidate_zones(ns);
1903 		if (ret && !nvme_first_scan(ns->disk))
1904 			goto out;
1905 	}
1906 
1907 	if (nvme_ns_head_multipath(ns->head)) {
1908 		blk_mq_freeze_queue(ns->head->disk->queue);
1909 		nvme_update_disk_info(ns->head->disk, ns, id);
1910 		blk_stack_limits(&ns->head->disk->queue->limits,
1911 				 &ns->queue->limits, 0);
1912 		blk_queue_update_readahead(ns->head->disk->queue);
1913 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1914 	}
1915 	return 0;
1916 
1917 out_unfreeze:
1918 	blk_mq_unfreeze_queue(ns->disk->queue);
1919 out:
1920 	/*
1921 	 * If probing fails due an unsupported feature, hide the block device,
1922 	 * but still allow other access.
1923 	 */
1924 	if (ret == -ENODEV) {
1925 		ns->disk->flags |= GENHD_FL_HIDDEN;
1926 		ret = 0;
1927 	}
1928 	return ret;
1929 }
1930 
1931 static char nvme_pr_type(enum pr_type type)
1932 {
1933 	switch (type) {
1934 	case PR_WRITE_EXCLUSIVE:
1935 		return 1;
1936 	case PR_EXCLUSIVE_ACCESS:
1937 		return 2;
1938 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1939 		return 3;
1940 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1941 		return 4;
1942 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1943 		return 5;
1944 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1945 		return 6;
1946 	default:
1947 		return 0;
1948 	}
1949 };
1950 
1951 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1952 				u64 key, u64 sa_key, u8 op)
1953 {
1954 	struct nvme_ns_head *head = NULL;
1955 	struct nvme_ns *ns;
1956 	struct nvme_command c;
1957 	int srcu_idx, ret;
1958 	u8 data[16] = { 0, };
1959 
1960 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1961 	if (unlikely(!ns))
1962 		return -EWOULDBLOCK;
1963 
1964 	put_unaligned_le64(key, &data[0]);
1965 	put_unaligned_le64(sa_key, &data[8]);
1966 
1967 	memset(&c, 0, sizeof(c));
1968 	c.common.opcode = op;
1969 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1970 	c.common.cdw10 = cpu_to_le32(cdw10);
1971 
1972 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1973 	nvme_put_ns_from_disk(head, srcu_idx);
1974 	return ret;
1975 }
1976 
1977 static int nvme_pr_register(struct block_device *bdev, u64 old,
1978 		u64 new, unsigned flags)
1979 {
1980 	u32 cdw10;
1981 
1982 	if (flags & ~PR_FL_IGNORE_KEY)
1983 		return -EOPNOTSUPP;
1984 
1985 	cdw10 = old ? 2 : 0;
1986 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1987 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1988 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1989 }
1990 
1991 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1992 		enum pr_type type, unsigned flags)
1993 {
1994 	u32 cdw10;
1995 
1996 	if (flags & ~PR_FL_IGNORE_KEY)
1997 		return -EOPNOTSUPP;
1998 
1999 	cdw10 = nvme_pr_type(type) << 8;
2000 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2001 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2002 }
2003 
2004 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2005 		enum pr_type type, bool abort)
2006 {
2007 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2008 
2009 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2010 }
2011 
2012 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2013 {
2014 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2015 
2016 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2017 }
2018 
2019 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2020 {
2021 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2022 
2023 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2024 }
2025 
2026 const struct pr_ops nvme_pr_ops = {
2027 	.pr_register	= nvme_pr_register,
2028 	.pr_reserve	= nvme_pr_reserve,
2029 	.pr_release	= nvme_pr_release,
2030 	.pr_preempt	= nvme_pr_preempt,
2031 	.pr_clear	= nvme_pr_clear,
2032 };
2033 
2034 #ifdef CONFIG_BLK_SED_OPAL
2035 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2036 		bool send)
2037 {
2038 	struct nvme_ctrl *ctrl = data;
2039 	struct nvme_command cmd;
2040 
2041 	memset(&cmd, 0, sizeof(cmd));
2042 	if (send)
2043 		cmd.common.opcode = nvme_admin_security_send;
2044 	else
2045 		cmd.common.opcode = nvme_admin_security_recv;
2046 	cmd.common.nsid = 0;
2047 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2048 	cmd.common.cdw11 = cpu_to_le32(len);
2049 
2050 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
2051 			NVME_QID_ANY, 1, 0, false);
2052 }
2053 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2054 #endif /* CONFIG_BLK_SED_OPAL */
2055 
2056 static const struct block_device_operations nvme_bdev_ops = {
2057 	.owner		= THIS_MODULE,
2058 	.ioctl		= nvme_ioctl,
2059 	.open		= nvme_open,
2060 	.release	= nvme_release,
2061 	.getgeo		= nvme_getgeo,
2062 	.report_zones	= nvme_report_zones,
2063 	.pr_ops		= &nvme_pr_ops,
2064 };
2065 
2066 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2067 {
2068 	unsigned long timeout =
2069 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2070 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2071 	int ret;
2072 
2073 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2074 		if (csts == ~0)
2075 			return -ENODEV;
2076 		if ((csts & NVME_CSTS_RDY) == bit)
2077 			break;
2078 
2079 		usleep_range(1000, 2000);
2080 		if (fatal_signal_pending(current))
2081 			return -EINTR;
2082 		if (time_after(jiffies, timeout)) {
2083 			dev_err(ctrl->device,
2084 				"Device not ready; aborting %s, CSTS=0x%x\n",
2085 				enabled ? "initialisation" : "reset", csts);
2086 			return -ENODEV;
2087 		}
2088 	}
2089 
2090 	return ret;
2091 }
2092 
2093 /*
2094  * If the device has been passed off to us in an enabled state, just clear
2095  * the enabled bit.  The spec says we should set the 'shutdown notification
2096  * bits', but doing so may cause the device to complete commands to the
2097  * admin queue ... and we don't know what memory that might be pointing at!
2098  */
2099 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2100 {
2101 	int ret;
2102 
2103 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2104 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2105 
2106 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2107 	if (ret)
2108 		return ret;
2109 
2110 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2111 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2112 
2113 	return nvme_wait_ready(ctrl, ctrl->cap, false);
2114 }
2115 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2116 
2117 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2118 {
2119 	unsigned dev_page_min;
2120 	int ret;
2121 
2122 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2123 	if (ret) {
2124 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2125 		return ret;
2126 	}
2127 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2128 
2129 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2130 		dev_err(ctrl->device,
2131 			"Minimum device page size %u too large for host (%u)\n",
2132 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2133 		return -ENODEV;
2134 	}
2135 
2136 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2137 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2138 	else
2139 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2140 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2141 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2142 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2143 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2144 
2145 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2146 	if (ret)
2147 		return ret;
2148 	return nvme_wait_ready(ctrl, ctrl->cap, true);
2149 }
2150 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2151 
2152 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2153 {
2154 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2155 	u32 csts;
2156 	int ret;
2157 
2158 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2159 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2160 
2161 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2162 	if (ret)
2163 		return ret;
2164 
2165 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2166 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2167 			break;
2168 
2169 		msleep(100);
2170 		if (fatal_signal_pending(current))
2171 			return -EINTR;
2172 		if (time_after(jiffies, timeout)) {
2173 			dev_err(ctrl->device,
2174 				"Device shutdown incomplete; abort shutdown\n");
2175 			return -ENODEV;
2176 		}
2177 	}
2178 
2179 	return ret;
2180 }
2181 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2182 
2183 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2184 {
2185 	__le64 ts;
2186 	int ret;
2187 
2188 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2189 		return 0;
2190 
2191 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2192 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2193 			NULL);
2194 	if (ret)
2195 		dev_warn_once(ctrl->device,
2196 			"could not set timestamp (%d)\n", ret);
2197 	return ret;
2198 }
2199 
2200 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2201 {
2202 	struct nvme_feat_host_behavior *host;
2203 	int ret;
2204 
2205 	/* Don't bother enabling the feature if retry delay is not reported */
2206 	if (!ctrl->crdt[0])
2207 		return 0;
2208 
2209 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2210 	if (!host)
2211 		return 0;
2212 
2213 	host->acre = NVME_ENABLE_ACRE;
2214 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2215 				host, sizeof(*host), NULL);
2216 	kfree(host);
2217 	return ret;
2218 }
2219 
2220 /*
2221  * APST (Autonomous Power State Transition) lets us program a table of power
2222  * state transitions that the controller will perform automatically.
2223  * We configure it with a simple heuristic: we are willing to spend at most 2%
2224  * of the time transitioning between power states.  Therefore, when running in
2225  * any given state, we will enter the next lower-power non-operational state
2226  * after waiting 50 * (enlat + exlat) microseconds, as long as that state's exit
2227  * latency is under the requested maximum latency.
2228  *
2229  * We will not autonomously enter any non-operational state for which the total
2230  * latency exceeds ps_max_latency_us.
2231  *
2232  * Users can set ps_max_latency_us to zero to turn off APST.
2233  */
2234 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2235 {
2236 	struct nvme_feat_auto_pst *table;
2237 	unsigned apste = 0;
2238 	u64 max_lat_us = 0;
2239 	__le64 target = 0;
2240 	int max_ps = -1;
2241 	int state;
2242 	int ret;
2243 
2244 	/*
2245 	 * If APST isn't supported or if we haven't been initialized yet,
2246 	 * then don't do anything.
2247 	 */
2248 	if (!ctrl->apsta)
2249 		return 0;
2250 
2251 	if (ctrl->npss > 31) {
2252 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2253 		return 0;
2254 	}
2255 
2256 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2257 	if (!table)
2258 		return 0;
2259 
2260 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2261 		/* Turn off APST. */
2262 		dev_dbg(ctrl->device, "APST disabled\n");
2263 		goto done;
2264 	}
2265 
2266 	/*
2267 	 * Walk through all states from lowest- to highest-power.
2268 	 * According to the spec, lower-numbered states use more power.  NPSS,
2269 	 * despite the name, is the index of the lowest-power state, not the
2270 	 * number of states.
2271 	 */
2272 	for (state = (int)ctrl->npss; state >= 0; state--) {
2273 		u64 total_latency_us, exit_latency_us, transition_ms;
2274 
2275 		if (target)
2276 			table->entries[state] = target;
2277 
2278 		/*
2279 		 * Don't allow transitions to the deepest state if it's quirked
2280 		 * off.
2281 		 */
2282 		if (state == ctrl->npss &&
2283 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2284 			continue;
2285 
2286 		/*
2287 		 * Is this state a useful non-operational state for higher-power
2288 		 * states to autonomously transition to?
2289 		 */
2290 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2291 			continue;
2292 
2293 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2294 		if (exit_latency_us > ctrl->ps_max_latency_us)
2295 			continue;
2296 
2297 		total_latency_us = exit_latency_us +
2298 			le32_to_cpu(ctrl->psd[state].entry_lat);
2299 
2300 		/*
2301 		 * This state is good.  Use it as the APST idle target for
2302 		 * higher power states.
2303 		 */
2304 		transition_ms = total_latency_us + 19;
2305 		do_div(transition_ms, 20);
2306 		if (transition_ms > (1 << 24) - 1)
2307 			transition_ms = (1 << 24) - 1;
2308 
2309 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2310 		if (max_ps == -1)
2311 			max_ps = state;
2312 		if (total_latency_us > max_lat_us)
2313 			max_lat_us = total_latency_us;
2314 	}
2315 
2316 	if (max_ps == -1)
2317 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2318 	else
2319 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2320 			max_ps, max_lat_us, (int)sizeof(*table), table);
2321 	apste = 1;
2322 
2323 done:
2324 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2325 				table, sizeof(*table), NULL);
2326 	if (ret)
2327 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2328 	kfree(table);
2329 	return ret;
2330 }
2331 
2332 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2333 {
2334 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2335 	u64 latency;
2336 
2337 	switch (val) {
2338 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2339 	case PM_QOS_LATENCY_ANY:
2340 		latency = U64_MAX;
2341 		break;
2342 
2343 	default:
2344 		latency = val;
2345 	}
2346 
2347 	if (ctrl->ps_max_latency_us != latency) {
2348 		ctrl->ps_max_latency_us = latency;
2349 		if (ctrl->state == NVME_CTRL_LIVE)
2350 			nvme_configure_apst(ctrl);
2351 	}
2352 }
2353 
2354 struct nvme_core_quirk_entry {
2355 	/*
2356 	 * NVMe model and firmware strings are padded with spaces.  For
2357 	 * simplicity, strings in the quirk table are padded with NULLs
2358 	 * instead.
2359 	 */
2360 	u16 vid;
2361 	const char *mn;
2362 	const char *fr;
2363 	unsigned long quirks;
2364 };
2365 
2366 static const struct nvme_core_quirk_entry core_quirks[] = {
2367 	{
2368 		/*
2369 		 * This Toshiba device seems to die using any APST states.  See:
2370 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2371 		 */
2372 		.vid = 0x1179,
2373 		.mn = "THNSF5256GPUK TOSHIBA",
2374 		.quirks = NVME_QUIRK_NO_APST,
2375 	},
2376 	{
2377 		/*
2378 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2379 		 * condition associated with actions related to suspend to idle
2380 		 * LiteON has resolved the problem in future firmware
2381 		 */
2382 		.vid = 0x14a4,
2383 		.fr = "22301111",
2384 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2385 	}
2386 };
2387 
2388 /* match is null-terminated but idstr is space-padded. */
2389 static bool string_matches(const char *idstr, const char *match, size_t len)
2390 {
2391 	size_t matchlen;
2392 
2393 	if (!match)
2394 		return true;
2395 
2396 	matchlen = strlen(match);
2397 	WARN_ON_ONCE(matchlen > len);
2398 
2399 	if (memcmp(idstr, match, matchlen))
2400 		return false;
2401 
2402 	for (; matchlen < len; matchlen++)
2403 		if (idstr[matchlen] != ' ')
2404 			return false;
2405 
2406 	return true;
2407 }
2408 
2409 static bool quirk_matches(const struct nvme_id_ctrl *id,
2410 			  const struct nvme_core_quirk_entry *q)
2411 {
2412 	return q->vid == le16_to_cpu(id->vid) &&
2413 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2414 		string_matches(id->fr, q->fr, sizeof(id->fr));
2415 }
2416 
2417 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2418 		struct nvme_id_ctrl *id)
2419 {
2420 	size_t nqnlen;
2421 	int off;
2422 
2423 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2424 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2425 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2426 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2427 			return;
2428 		}
2429 
2430 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2431 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2432 	}
2433 
2434 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2435 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2436 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2437 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2438 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2439 	off += sizeof(id->sn);
2440 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2441 	off += sizeof(id->mn);
2442 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2443 }
2444 
2445 static void nvme_release_subsystem(struct device *dev)
2446 {
2447 	struct nvme_subsystem *subsys =
2448 		container_of(dev, struct nvme_subsystem, dev);
2449 
2450 	if (subsys->instance >= 0)
2451 		ida_simple_remove(&nvme_instance_ida, subsys->instance);
2452 	kfree(subsys);
2453 }
2454 
2455 static void nvme_destroy_subsystem(struct kref *ref)
2456 {
2457 	struct nvme_subsystem *subsys =
2458 			container_of(ref, struct nvme_subsystem, ref);
2459 
2460 	mutex_lock(&nvme_subsystems_lock);
2461 	list_del(&subsys->entry);
2462 	mutex_unlock(&nvme_subsystems_lock);
2463 
2464 	ida_destroy(&subsys->ns_ida);
2465 	device_del(&subsys->dev);
2466 	put_device(&subsys->dev);
2467 }
2468 
2469 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2470 {
2471 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2472 }
2473 
2474 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2475 {
2476 	struct nvme_subsystem *subsys;
2477 
2478 	lockdep_assert_held(&nvme_subsystems_lock);
2479 
2480 	/*
2481 	 * Fail matches for discovery subsystems. This results
2482 	 * in each discovery controller bound to a unique subsystem.
2483 	 * This avoids issues with validating controller values
2484 	 * that can only be true when there is a single unique subsystem.
2485 	 * There may be multiple and completely independent entities
2486 	 * that provide discovery controllers.
2487 	 */
2488 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2489 		return NULL;
2490 
2491 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2492 		if (strcmp(subsys->subnqn, subsysnqn))
2493 			continue;
2494 		if (!kref_get_unless_zero(&subsys->ref))
2495 			continue;
2496 		return subsys;
2497 	}
2498 
2499 	return NULL;
2500 }
2501 
2502 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2503 	struct device_attribute subsys_attr_##_name = \
2504 		__ATTR(_name, _mode, _show, NULL)
2505 
2506 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2507 				    struct device_attribute *attr,
2508 				    char *buf)
2509 {
2510 	struct nvme_subsystem *subsys =
2511 		container_of(dev, struct nvme_subsystem, dev);
2512 
2513 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2514 }
2515 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2516 
2517 #define nvme_subsys_show_str_function(field)				\
2518 static ssize_t subsys_##field##_show(struct device *dev,		\
2519 			    struct device_attribute *attr, char *buf)	\
2520 {									\
2521 	struct nvme_subsystem *subsys =					\
2522 		container_of(dev, struct nvme_subsystem, dev);		\
2523 	return sysfs_emit(buf, "%.*s\n",				\
2524 			   (int)sizeof(subsys->field), subsys->field);	\
2525 }									\
2526 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2527 
2528 nvme_subsys_show_str_function(model);
2529 nvme_subsys_show_str_function(serial);
2530 nvme_subsys_show_str_function(firmware_rev);
2531 
2532 static struct attribute *nvme_subsys_attrs[] = {
2533 	&subsys_attr_model.attr,
2534 	&subsys_attr_serial.attr,
2535 	&subsys_attr_firmware_rev.attr,
2536 	&subsys_attr_subsysnqn.attr,
2537 #ifdef CONFIG_NVME_MULTIPATH
2538 	&subsys_attr_iopolicy.attr,
2539 #endif
2540 	NULL,
2541 };
2542 
2543 static const struct attribute_group nvme_subsys_attrs_group = {
2544 	.attrs = nvme_subsys_attrs,
2545 };
2546 
2547 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2548 	&nvme_subsys_attrs_group,
2549 	NULL,
2550 };
2551 
2552 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2553 {
2554 	return ctrl->opts && ctrl->opts->discovery_nqn;
2555 }
2556 
2557 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2558 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2559 {
2560 	struct nvme_ctrl *tmp;
2561 
2562 	lockdep_assert_held(&nvme_subsystems_lock);
2563 
2564 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2565 		if (nvme_state_terminal(tmp))
2566 			continue;
2567 
2568 		if (tmp->cntlid == ctrl->cntlid) {
2569 			dev_err(ctrl->device,
2570 				"Duplicate cntlid %u with %s, rejecting\n",
2571 				ctrl->cntlid, dev_name(tmp->device));
2572 			return false;
2573 		}
2574 
2575 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2576 		    nvme_discovery_ctrl(ctrl))
2577 			continue;
2578 
2579 		dev_err(ctrl->device,
2580 			"Subsystem does not support multiple controllers\n");
2581 		return false;
2582 	}
2583 
2584 	return true;
2585 }
2586 
2587 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2588 {
2589 	struct nvme_subsystem *subsys, *found;
2590 	int ret;
2591 
2592 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2593 	if (!subsys)
2594 		return -ENOMEM;
2595 
2596 	subsys->instance = -1;
2597 	mutex_init(&subsys->lock);
2598 	kref_init(&subsys->ref);
2599 	INIT_LIST_HEAD(&subsys->ctrls);
2600 	INIT_LIST_HEAD(&subsys->nsheads);
2601 	nvme_init_subnqn(subsys, ctrl, id);
2602 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2603 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2604 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2605 	subsys->vendor_id = le16_to_cpu(id->vid);
2606 	subsys->cmic = id->cmic;
2607 	subsys->awupf = le16_to_cpu(id->awupf);
2608 #ifdef CONFIG_NVME_MULTIPATH
2609 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2610 #endif
2611 
2612 	subsys->dev.class = nvme_subsys_class;
2613 	subsys->dev.release = nvme_release_subsystem;
2614 	subsys->dev.groups = nvme_subsys_attrs_groups;
2615 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2616 	device_initialize(&subsys->dev);
2617 
2618 	mutex_lock(&nvme_subsystems_lock);
2619 	found = __nvme_find_get_subsystem(subsys->subnqn);
2620 	if (found) {
2621 		put_device(&subsys->dev);
2622 		subsys = found;
2623 
2624 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2625 			ret = -EINVAL;
2626 			goto out_put_subsystem;
2627 		}
2628 	} else {
2629 		ret = device_add(&subsys->dev);
2630 		if (ret) {
2631 			dev_err(ctrl->device,
2632 				"failed to register subsystem device.\n");
2633 			put_device(&subsys->dev);
2634 			goto out_unlock;
2635 		}
2636 		ida_init(&subsys->ns_ida);
2637 		list_add_tail(&subsys->entry, &nvme_subsystems);
2638 	}
2639 
2640 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2641 				dev_name(ctrl->device));
2642 	if (ret) {
2643 		dev_err(ctrl->device,
2644 			"failed to create sysfs link from subsystem.\n");
2645 		goto out_put_subsystem;
2646 	}
2647 
2648 	if (!found)
2649 		subsys->instance = ctrl->instance;
2650 	ctrl->subsys = subsys;
2651 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2652 	mutex_unlock(&nvme_subsystems_lock);
2653 	return 0;
2654 
2655 out_put_subsystem:
2656 	nvme_put_subsystem(subsys);
2657 out_unlock:
2658 	mutex_unlock(&nvme_subsystems_lock);
2659 	return ret;
2660 }
2661 
2662 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2663 		void *log, size_t size, u64 offset)
2664 {
2665 	struct nvme_command c = { };
2666 	u32 dwlen = nvme_bytes_to_numd(size);
2667 
2668 	c.get_log_page.opcode = nvme_admin_get_log_page;
2669 	c.get_log_page.nsid = cpu_to_le32(nsid);
2670 	c.get_log_page.lid = log_page;
2671 	c.get_log_page.lsp = lsp;
2672 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2673 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2674 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2675 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2676 	c.get_log_page.csi = csi;
2677 
2678 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2679 }
2680 
2681 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2682 				struct nvme_effects_log **log)
2683 {
2684 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2685 	int ret;
2686 
2687 	if (cel)
2688 		goto out;
2689 
2690 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2691 	if (!cel)
2692 		return -ENOMEM;
2693 
2694 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2695 			cel, sizeof(*cel), 0);
2696 	if (ret) {
2697 		kfree(cel);
2698 		return ret;
2699 	}
2700 
2701 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2702 out:
2703 	*log = cel;
2704 	return 0;
2705 }
2706 
2707 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2708 {
2709 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2710 
2711 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2712 		return UINT_MAX;
2713 	return val;
2714 }
2715 
2716 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2717 {
2718 	struct nvme_command c = { };
2719 	struct nvme_id_ctrl_nvm *id;
2720 	int ret;
2721 
2722 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2723 		ctrl->max_discard_sectors = UINT_MAX;
2724 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2725 	} else {
2726 		ctrl->max_discard_sectors = 0;
2727 		ctrl->max_discard_segments = 0;
2728 	}
2729 
2730 	/*
2731 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2732 	 * to the write-zeroes, we are cautious and limit the size to the
2733 	 * controllers max_hw_sectors value, which is based on the MDTS field
2734 	 * and possibly other limiting factors.
2735 	 */
2736 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2737 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2738 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2739 	else
2740 		ctrl->max_zeroes_sectors = 0;
2741 
2742 	if (nvme_ctrl_limited_cns(ctrl))
2743 		return 0;
2744 
2745 	id = kzalloc(sizeof(*id), GFP_KERNEL);
2746 	if (!id)
2747 		return 0;
2748 
2749 	c.identify.opcode = nvme_admin_identify;
2750 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
2751 	c.identify.csi = NVME_CSI_NVM;
2752 
2753 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2754 	if (ret)
2755 		goto free_data;
2756 
2757 	if (id->dmrl)
2758 		ctrl->max_discard_segments = id->dmrl;
2759 	if (id->dmrsl)
2760 		ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl);
2761 	if (id->wzsl)
2762 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2763 
2764 free_data:
2765 	kfree(id);
2766 	return ret;
2767 }
2768 
2769 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2770 {
2771 	struct nvme_id_ctrl *id;
2772 	u32 max_hw_sectors;
2773 	bool prev_apst_enabled;
2774 	int ret;
2775 
2776 	ret = nvme_identify_ctrl(ctrl, &id);
2777 	if (ret) {
2778 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2779 		return -EIO;
2780 	}
2781 
2782 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2783 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2784 		if (ret < 0)
2785 			goto out_free;
2786 	}
2787 
2788 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
2789 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2790 
2791 	if (!ctrl->identified) {
2792 		unsigned int i;
2793 
2794 		ret = nvme_init_subsystem(ctrl, id);
2795 		if (ret)
2796 			goto out_free;
2797 
2798 		/*
2799 		 * Check for quirks.  Quirk can depend on firmware version,
2800 		 * so, in principle, the set of quirks present can change
2801 		 * across a reset.  As a possible future enhancement, we
2802 		 * could re-scan for quirks every time we reinitialize
2803 		 * the device, but we'd have to make sure that the driver
2804 		 * behaves intelligently if the quirks change.
2805 		 */
2806 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2807 			if (quirk_matches(id, &core_quirks[i]))
2808 				ctrl->quirks |= core_quirks[i].quirks;
2809 		}
2810 	}
2811 
2812 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2813 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2814 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2815 	}
2816 
2817 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2818 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2819 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2820 
2821 	ctrl->oacs = le16_to_cpu(id->oacs);
2822 	ctrl->oncs = le16_to_cpu(id->oncs);
2823 	ctrl->mtfa = le16_to_cpu(id->mtfa);
2824 	ctrl->oaes = le32_to_cpu(id->oaes);
2825 	ctrl->wctemp = le16_to_cpu(id->wctemp);
2826 	ctrl->cctemp = le16_to_cpu(id->cctemp);
2827 
2828 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2829 	ctrl->vwc = id->vwc;
2830 	if (id->mdts)
2831 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
2832 	else
2833 		max_hw_sectors = UINT_MAX;
2834 	ctrl->max_hw_sectors =
2835 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2836 
2837 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2838 	ctrl->sgls = le32_to_cpu(id->sgls);
2839 	ctrl->kas = le16_to_cpu(id->kas);
2840 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2841 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2842 
2843 	if (id->rtd3e) {
2844 		/* us -> s */
2845 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
2846 
2847 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2848 						 shutdown_timeout, 60);
2849 
2850 		if (ctrl->shutdown_timeout != shutdown_timeout)
2851 			dev_info(ctrl->device,
2852 				 "Shutdown timeout set to %u seconds\n",
2853 				 ctrl->shutdown_timeout);
2854 	} else
2855 		ctrl->shutdown_timeout = shutdown_timeout;
2856 
2857 	ctrl->npss = id->npss;
2858 	ctrl->apsta = id->apsta;
2859 	prev_apst_enabled = ctrl->apst_enabled;
2860 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2861 		if (force_apst && id->apsta) {
2862 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2863 			ctrl->apst_enabled = true;
2864 		} else {
2865 			ctrl->apst_enabled = false;
2866 		}
2867 	} else {
2868 		ctrl->apst_enabled = id->apsta;
2869 	}
2870 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2871 
2872 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2873 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2874 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2875 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2876 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2877 
2878 		/*
2879 		 * In fabrics we need to verify the cntlid matches the
2880 		 * admin connect
2881 		 */
2882 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2883 			dev_err(ctrl->device,
2884 				"Mismatching cntlid: Connect %u vs Identify "
2885 				"%u, rejecting\n",
2886 				ctrl->cntlid, le16_to_cpu(id->cntlid));
2887 			ret = -EINVAL;
2888 			goto out_free;
2889 		}
2890 
2891 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
2892 			dev_err(ctrl->device,
2893 				"keep-alive support is mandatory for fabrics\n");
2894 			ret = -EINVAL;
2895 			goto out_free;
2896 		}
2897 	} else {
2898 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2899 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2900 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2901 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2902 	}
2903 
2904 	ret = nvme_mpath_init_identify(ctrl, id);
2905 	if (ret < 0)
2906 		goto out_free;
2907 
2908 	if (ctrl->apst_enabled && !prev_apst_enabled)
2909 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2910 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2911 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2912 
2913 out_free:
2914 	kfree(id);
2915 	return ret;
2916 }
2917 
2918 /*
2919  * Initialize the cached copies of the Identify data and various controller
2920  * register in our nvme_ctrl structure.  This should be called as soon as
2921  * the admin queue is fully up and running.
2922  */
2923 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
2924 {
2925 	int ret;
2926 
2927 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2928 	if (ret) {
2929 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2930 		return ret;
2931 	}
2932 
2933 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2934 
2935 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2936 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2937 
2938 	ret = nvme_init_identify(ctrl);
2939 	if (ret)
2940 		return ret;
2941 
2942 	ret = nvme_init_non_mdts_limits(ctrl);
2943 	if (ret < 0)
2944 		return ret;
2945 
2946 	ret = nvme_configure_apst(ctrl);
2947 	if (ret < 0)
2948 		return ret;
2949 
2950 	ret = nvme_configure_timestamp(ctrl);
2951 	if (ret < 0)
2952 		return ret;
2953 
2954 	ret = nvme_configure_directives(ctrl);
2955 	if (ret < 0)
2956 		return ret;
2957 
2958 	ret = nvme_configure_acre(ctrl);
2959 	if (ret < 0)
2960 		return ret;
2961 
2962 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
2963 		ret = nvme_hwmon_init(ctrl);
2964 		if (ret < 0)
2965 			return ret;
2966 	}
2967 
2968 	ctrl->identified = true;
2969 
2970 	return 0;
2971 }
2972 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
2973 
2974 static int nvme_dev_open(struct inode *inode, struct file *file)
2975 {
2976 	struct nvme_ctrl *ctrl =
2977 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2978 
2979 	switch (ctrl->state) {
2980 	case NVME_CTRL_LIVE:
2981 		break;
2982 	default:
2983 		return -EWOULDBLOCK;
2984 	}
2985 
2986 	nvme_get_ctrl(ctrl);
2987 	if (!try_module_get(ctrl->ops->module)) {
2988 		nvme_put_ctrl(ctrl);
2989 		return -EINVAL;
2990 	}
2991 
2992 	file->private_data = ctrl;
2993 	return 0;
2994 }
2995 
2996 static int nvme_dev_release(struct inode *inode, struct file *file)
2997 {
2998 	struct nvme_ctrl *ctrl =
2999 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3000 
3001 	module_put(ctrl->ops->module);
3002 	nvme_put_ctrl(ctrl);
3003 	return 0;
3004 }
3005 
3006 static const struct file_operations nvme_dev_fops = {
3007 	.owner		= THIS_MODULE,
3008 	.open		= nvme_dev_open,
3009 	.release	= nvme_dev_release,
3010 	.unlocked_ioctl	= nvme_dev_ioctl,
3011 	.compat_ioctl	= compat_ptr_ioctl,
3012 };
3013 
3014 static ssize_t nvme_sysfs_reset(struct device *dev,
3015 				struct device_attribute *attr, const char *buf,
3016 				size_t count)
3017 {
3018 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3019 	int ret;
3020 
3021 	ret = nvme_reset_ctrl_sync(ctrl);
3022 	if (ret < 0)
3023 		return ret;
3024 	return count;
3025 }
3026 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3027 
3028 static ssize_t nvme_sysfs_rescan(struct device *dev,
3029 				struct device_attribute *attr, const char *buf,
3030 				size_t count)
3031 {
3032 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3033 
3034 	nvme_queue_scan(ctrl);
3035 	return count;
3036 }
3037 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3038 
3039 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3040 {
3041 	struct gendisk *disk = dev_to_disk(dev);
3042 
3043 	if (disk->fops == &nvme_bdev_ops)
3044 		return nvme_get_ns_from_dev(dev)->head;
3045 	else
3046 		return disk->private_data;
3047 }
3048 
3049 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3050 		char *buf)
3051 {
3052 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3053 	struct nvme_ns_ids *ids = &head->ids;
3054 	struct nvme_subsystem *subsys = head->subsys;
3055 	int serial_len = sizeof(subsys->serial);
3056 	int model_len = sizeof(subsys->model);
3057 
3058 	if (!uuid_is_null(&ids->uuid))
3059 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3060 
3061 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3062 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3063 
3064 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3065 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3066 
3067 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3068 				  subsys->serial[serial_len - 1] == '\0'))
3069 		serial_len--;
3070 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3071 				 subsys->model[model_len - 1] == '\0'))
3072 		model_len--;
3073 
3074 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3075 		serial_len, subsys->serial, model_len, subsys->model,
3076 		head->ns_id);
3077 }
3078 static DEVICE_ATTR_RO(wwid);
3079 
3080 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3081 		char *buf)
3082 {
3083 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3084 }
3085 static DEVICE_ATTR_RO(nguid);
3086 
3087 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3088 		char *buf)
3089 {
3090 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3091 
3092 	/* For backward compatibility expose the NGUID to userspace if
3093 	 * we have no UUID set
3094 	 */
3095 	if (uuid_is_null(&ids->uuid)) {
3096 		printk_ratelimited(KERN_WARNING
3097 				   "No UUID available providing old NGUID\n");
3098 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3099 	}
3100 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3101 }
3102 static DEVICE_ATTR_RO(uuid);
3103 
3104 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3105 		char *buf)
3106 {
3107 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3108 }
3109 static DEVICE_ATTR_RO(eui);
3110 
3111 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3112 		char *buf)
3113 {
3114 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3115 }
3116 static DEVICE_ATTR_RO(nsid);
3117 
3118 static struct attribute *nvme_ns_id_attrs[] = {
3119 	&dev_attr_wwid.attr,
3120 	&dev_attr_uuid.attr,
3121 	&dev_attr_nguid.attr,
3122 	&dev_attr_eui.attr,
3123 	&dev_attr_nsid.attr,
3124 #ifdef CONFIG_NVME_MULTIPATH
3125 	&dev_attr_ana_grpid.attr,
3126 	&dev_attr_ana_state.attr,
3127 #endif
3128 	NULL,
3129 };
3130 
3131 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3132 		struct attribute *a, int n)
3133 {
3134 	struct device *dev = container_of(kobj, struct device, kobj);
3135 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3136 
3137 	if (a == &dev_attr_uuid.attr) {
3138 		if (uuid_is_null(&ids->uuid) &&
3139 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3140 			return 0;
3141 	}
3142 	if (a == &dev_attr_nguid.attr) {
3143 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3144 			return 0;
3145 	}
3146 	if (a == &dev_attr_eui.attr) {
3147 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3148 			return 0;
3149 	}
3150 #ifdef CONFIG_NVME_MULTIPATH
3151 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3152 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3153 			return 0;
3154 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3155 			return 0;
3156 	}
3157 #endif
3158 	return a->mode;
3159 }
3160 
3161 static const struct attribute_group nvme_ns_id_attr_group = {
3162 	.attrs		= nvme_ns_id_attrs,
3163 	.is_visible	= nvme_ns_id_attrs_are_visible,
3164 };
3165 
3166 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3167 	&nvme_ns_id_attr_group,
3168 #ifdef CONFIG_NVM
3169 	&nvme_nvm_attr_group,
3170 #endif
3171 	NULL,
3172 };
3173 
3174 #define nvme_show_str_function(field)						\
3175 static ssize_t  field##_show(struct device *dev,				\
3176 			    struct device_attribute *attr, char *buf)		\
3177 {										\
3178         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3179         return sysfs_emit(buf, "%.*s\n",					\
3180 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3181 }										\
3182 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3183 
3184 nvme_show_str_function(model);
3185 nvme_show_str_function(serial);
3186 nvme_show_str_function(firmware_rev);
3187 
3188 #define nvme_show_int_function(field)						\
3189 static ssize_t  field##_show(struct device *dev,				\
3190 			    struct device_attribute *attr, char *buf)		\
3191 {										\
3192         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3193         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3194 }										\
3195 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3196 
3197 nvme_show_int_function(cntlid);
3198 nvme_show_int_function(numa_node);
3199 nvme_show_int_function(queue_count);
3200 nvme_show_int_function(sqsize);
3201 nvme_show_int_function(kato);
3202 
3203 static ssize_t nvme_sysfs_delete(struct device *dev,
3204 				struct device_attribute *attr, const char *buf,
3205 				size_t count)
3206 {
3207 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3208 
3209 	if (device_remove_file_self(dev, attr))
3210 		nvme_delete_ctrl_sync(ctrl);
3211 	return count;
3212 }
3213 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3214 
3215 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3216 					 struct device_attribute *attr,
3217 					 char *buf)
3218 {
3219 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3220 
3221 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3222 }
3223 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3224 
3225 static ssize_t nvme_sysfs_show_state(struct device *dev,
3226 				     struct device_attribute *attr,
3227 				     char *buf)
3228 {
3229 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3230 	static const char *const state_name[] = {
3231 		[NVME_CTRL_NEW]		= "new",
3232 		[NVME_CTRL_LIVE]	= "live",
3233 		[NVME_CTRL_RESETTING]	= "resetting",
3234 		[NVME_CTRL_CONNECTING]	= "connecting",
3235 		[NVME_CTRL_DELETING]	= "deleting",
3236 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3237 		[NVME_CTRL_DEAD]	= "dead",
3238 	};
3239 
3240 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3241 	    state_name[ctrl->state])
3242 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3243 
3244 	return sysfs_emit(buf, "unknown state\n");
3245 }
3246 
3247 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3248 
3249 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3250 					 struct device_attribute *attr,
3251 					 char *buf)
3252 {
3253 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3254 
3255 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3256 }
3257 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3258 
3259 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3260 					struct device_attribute *attr,
3261 					char *buf)
3262 {
3263 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3264 
3265 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3266 }
3267 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3268 
3269 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3270 					struct device_attribute *attr,
3271 					char *buf)
3272 {
3273 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3274 
3275 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3276 }
3277 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3278 
3279 static ssize_t nvme_sysfs_show_address(struct device *dev,
3280 					 struct device_attribute *attr,
3281 					 char *buf)
3282 {
3283 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3284 
3285 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3286 }
3287 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3288 
3289 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3290 		struct device_attribute *attr, char *buf)
3291 {
3292 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3293 	struct nvmf_ctrl_options *opts = ctrl->opts;
3294 
3295 	if (ctrl->opts->max_reconnects == -1)
3296 		return sysfs_emit(buf, "off\n");
3297 	return sysfs_emit(buf, "%d\n",
3298 			  opts->max_reconnects * opts->reconnect_delay);
3299 }
3300 
3301 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3302 		struct device_attribute *attr, const char *buf, size_t count)
3303 {
3304 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3305 	struct nvmf_ctrl_options *opts = ctrl->opts;
3306 	int ctrl_loss_tmo, err;
3307 
3308 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3309 	if (err)
3310 		return -EINVAL;
3311 
3312 	if (ctrl_loss_tmo < 0)
3313 		opts->max_reconnects = -1;
3314 	else
3315 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3316 						opts->reconnect_delay);
3317 	return count;
3318 }
3319 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3320 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3321 
3322 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3323 		struct device_attribute *attr, char *buf)
3324 {
3325 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3326 
3327 	if (ctrl->opts->reconnect_delay == -1)
3328 		return sysfs_emit(buf, "off\n");
3329 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3330 }
3331 
3332 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3333 		struct device_attribute *attr, const char *buf, size_t count)
3334 {
3335 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3336 	unsigned int v;
3337 	int err;
3338 
3339 	err = kstrtou32(buf, 10, &v);
3340 	if (err)
3341 		return err;
3342 
3343 	ctrl->opts->reconnect_delay = v;
3344 	return count;
3345 }
3346 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3347 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3348 
3349 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3350 		struct device_attribute *attr, char *buf)
3351 {
3352 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3353 
3354 	if (ctrl->opts->fast_io_fail_tmo == -1)
3355 		return sysfs_emit(buf, "off\n");
3356 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3357 }
3358 
3359 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3360 		struct device_attribute *attr, const char *buf, size_t count)
3361 {
3362 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3363 	struct nvmf_ctrl_options *opts = ctrl->opts;
3364 	int fast_io_fail_tmo, err;
3365 
3366 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3367 	if (err)
3368 		return -EINVAL;
3369 
3370 	if (fast_io_fail_tmo < 0)
3371 		opts->fast_io_fail_tmo = -1;
3372 	else
3373 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3374 	return count;
3375 }
3376 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3377 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3378 
3379 static struct attribute *nvme_dev_attrs[] = {
3380 	&dev_attr_reset_controller.attr,
3381 	&dev_attr_rescan_controller.attr,
3382 	&dev_attr_model.attr,
3383 	&dev_attr_serial.attr,
3384 	&dev_attr_firmware_rev.attr,
3385 	&dev_attr_cntlid.attr,
3386 	&dev_attr_delete_controller.attr,
3387 	&dev_attr_transport.attr,
3388 	&dev_attr_subsysnqn.attr,
3389 	&dev_attr_address.attr,
3390 	&dev_attr_state.attr,
3391 	&dev_attr_numa_node.attr,
3392 	&dev_attr_queue_count.attr,
3393 	&dev_attr_sqsize.attr,
3394 	&dev_attr_hostnqn.attr,
3395 	&dev_attr_hostid.attr,
3396 	&dev_attr_ctrl_loss_tmo.attr,
3397 	&dev_attr_reconnect_delay.attr,
3398 	&dev_attr_fast_io_fail_tmo.attr,
3399 	&dev_attr_kato.attr,
3400 	NULL
3401 };
3402 
3403 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3404 		struct attribute *a, int n)
3405 {
3406 	struct device *dev = container_of(kobj, struct device, kobj);
3407 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3408 
3409 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3410 		return 0;
3411 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3412 		return 0;
3413 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3414 		return 0;
3415 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3416 		return 0;
3417 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3418 		return 0;
3419 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3420 		return 0;
3421 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3422 		return 0;
3423 
3424 	return a->mode;
3425 }
3426 
3427 static const struct attribute_group nvme_dev_attrs_group = {
3428 	.attrs		= nvme_dev_attrs,
3429 	.is_visible	= nvme_dev_attrs_are_visible,
3430 };
3431 
3432 static const struct attribute_group *nvme_dev_attr_groups[] = {
3433 	&nvme_dev_attrs_group,
3434 	NULL,
3435 };
3436 
3437 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3438 		unsigned nsid)
3439 {
3440 	struct nvme_ns_head *h;
3441 
3442 	lockdep_assert_held(&subsys->lock);
3443 
3444 	list_for_each_entry(h, &subsys->nsheads, entry) {
3445 		if (h->ns_id == nsid && nvme_tryget_ns_head(h))
3446 			return h;
3447 	}
3448 
3449 	return NULL;
3450 }
3451 
3452 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3453 		struct nvme_ns_head *new)
3454 {
3455 	struct nvme_ns_head *h;
3456 
3457 	lockdep_assert_held(&subsys->lock);
3458 
3459 	list_for_each_entry(h, &subsys->nsheads, entry) {
3460 		if (nvme_ns_ids_valid(&new->ids) &&
3461 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3462 			return -EINVAL;
3463 	}
3464 
3465 	return 0;
3466 }
3467 
3468 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3469 {
3470 	cdev_device_del(cdev, cdev_device);
3471 	ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt));
3472 }
3473 
3474 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3475 		const struct file_operations *fops, struct module *owner)
3476 {
3477 	int minor, ret;
3478 
3479 	minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL);
3480 	if (minor < 0)
3481 		return minor;
3482 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3483 	cdev_device->class = nvme_ns_chr_class;
3484 	device_initialize(cdev_device);
3485 	cdev_init(cdev, fops);
3486 	cdev->owner = owner;
3487 	ret = cdev_device_add(cdev, cdev_device);
3488 	if (ret)
3489 		ida_simple_remove(&nvme_ns_chr_minor_ida, minor);
3490 	return ret;
3491 }
3492 
3493 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3494 {
3495 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3496 }
3497 
3498 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3499 {
3500 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3501 	return 0;
3502 }
3503 
3504 static const struct file_operations nvme_ns_chr_fops = {
3505 	.owner		= THIS_MODULE,
3506 	.open		= nvme_ns_chr_open,
3507 	.release	= nvme_ns_chr_release,
3508 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3509 	.compat_ioctl	= compat_ptr_ioctl,
3510 };
3511 
3512 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3513 {
3514 	int ret;
3515 
3516 	ns->cdev_device.parent = ns->ctrl->device;
3517 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3518 			   ns->ctrl->instance, ns->head->instance);
3519 	if (ret)
3520 		return ret;
3521 	ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3522 			    ns->ctrl->ops->module);
3523 	if (ret)
3524 		kfree_const(ns->cdev_device.kobj.name);
3525 	return ret;
3526 }
3527 
3528 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3529 		unsigned nsid, struct nvme_ns_ids *ids)
3530 {
3531 	struct nvme_ns_head *head;
3532 	size_t size = sizeof(*head);
3533 	int ret = -ENOMEM;
3534 
3535 #ifdef CONFIG_NVME_MULTIPATH
3536 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3537 #endif
3538 
3539 	head = kzalloc(size, GFP_KERNEL);
3540 	if (!head)
3541 		goto out;
3542 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3543 	if (ret < 0)
3544 		goto out_free_head;
3545 	head->instance = ret;
3546 	INIT_LIST_HEAD(&head->list);
3547 	ret = init_srcu_struct(&head->srcu);
3548 	if (ret)
3549 		goto out_ida_remove;
3550 	head->subsys = ctrl->subsys;
3551 	head->ns_id = nsid;
3552 	head->ids = *ids;
3553 	kref_init(&head->ref);
3554 
3555 	ret = __nvme_check_ids(ctrl->subsys, head);
3556 	if (ret) {
3557 		dev_err(ctrl->device,
3558 			"duplicate IDs for nsid %d\n", nsid);
3559 		goto out_cleanup_srcu;
3560 	}
3561 
3562 	if (head->ids.csi) {
3563 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3564 		if (ret)
3565 			goto out_cleanup_srcu;
3566 	} else
3567 		head->effects = ctrl->effects;
3568 
3569 	ret = nvme_mpath_alloc_disk(ctrl, head);
3570 	if (ret)
3571 		goto out_cleanup_srcu;
3572 
3573 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3574 
3575 	kref_get(&ctrl->subsys->ref);
3576 
3577 	return head;
3578 out_cleanup_srcu:
3579 	cleanup_srcu_struct(&head->srcu);
3580 out_ida_remove:
3581 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3582 out_free_head:
3583 	kfree(head);
3584 out:
3585 	if (ret > 0)
3586 		ret = blk_status_to_errno(nvme_error_status(ret));
3587 	return ERR_PTR(ret);
3588 }
3589 
3590 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3591 		struct nvme_ns_ids *ids, bool is_shared)
3592 {
3593 	struct nvme_ctrl *ctrl = ns->ctrl;
3594 	struct nvme_ns_head *head = NULL;
3595 	int ret = 0;
3596 
3597 	mutex_lock(&ctrl->subsys->lock);
3598 	head = nvme_find_ns_head(ctrl->subsys, nsid);
3599 	if (!head) {
3600 		head = nvme_alloc_ns_head(ctrl, nsid, ids);
3601 		if (IS_ERR(head)) {
3602 			ret = PTR_ERR(head);
3603 			goto out_unlock;
3604 		}
3605 		head->shared = is_shared;
3606 	} else {
3607 		ret = -EINVAL;
3608 		if (!is_shared || !head->shared) {
3609 			dev_err(ctrl->device,
3610 				"Duplicate unshared namespace %d\n", nsid);
3611 			goto out_put_ns_head;
3612 		}
3613 		if (!nvme_ns_ids_equal(&head->ids, ids)) {
3614 			dev_err(ctrl->device,
3615 				"IDs don't match for shared namespace %d\n",
3616 					nsid);
3617 			goto out_put_ns_head;
3618 		}
3619 	}
3620 
3621 	list_add_tail_rcu(&ns->siblings, &head->list);
3622 	ns->head = head;
3623 	mutex_unlock(&ctrl->subsys->lock);
3624 	return 0;
3625 
3626 out_put_ns_head:
3627 	nvme_put_ns_head(head);
3628 out_unlock:
3629 	mutex_unlock(&ctrl->subsys->lock);
3630 	return ret;
3631 }
3632 
3633 static int ns_cmp(void *priv, const struct list_head *a,
3634 		const struct list_head *b)
3635 {
3636 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3637 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3638 
3639 	return nsa->head->ns_id - nsb->head->ns_id;
3640 }
3641 
3642 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3643 {
3644 	struct nvme_ns *ns, *ret = NULL;
3645 
3646 	down_read(&ctrl->namespaces_rwsem);
3647 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3648 		if (ns->head->ns_id == nsid) {
3649 			if (!nvme_get_ns(ns))
3650 				continue;
3651 			ret = ns;
3652 			break;
3653 		}
3654 		if (ns->head->ns_id > nsid)
3655 			break;
3656 	}
3657 	up_read(&ctrl->namespaces_rwsem);
3658 	return ret;
3659 }
3660 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3661 
3662 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3663 		struct nvme_ns_ids *ids)
3664 {
3665 	struct nvme_ns *ns;
3666 	struct gendisk *disk;
3667 	struct nvme_id_ns *id;
3668 	int node = ctrl->numa_node;
3669 
3670 	if (nvme_identify_ns(ctrl, nsid, ids, &id))
3671 		return;
3672 
3673 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3674 	if (!ns)
3675 		goto out_free_id;
3676 
3677 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3678 	if (IS_ERR(ns->queue))
3679 		goto out_free_ns;
3680 
3681 	if (ctrl->opts && ctrl->opts->data_digest)
3682 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3683 
3684 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3685 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3686 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3687 
3688 	ns->queue->queuedata = ns;
3689 	ns->ctrl = ctrl;
3690 	kref_init(&ns->kref);
3691 
3692 	if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
3693 		goto out_free_queue;
3694 
3695 	disk = alloc_disk_node(0, node);
3696 	if (!disk)
3697 		goto out_unlink_ns;
3698 
3699 	disk->fops = &nvme_bdev_ops;
3700 	disk->private_data = ns;
3701 	disk->queue = ns->queue;
3702 	disk->flags = GENHD_FL_EXT_DEVT;
3703 	/*
3704 	 * Without the multipath code enabled, multiple controller per
3705 	 * subsystems are visible as devices and thus we cannot use the
3706 	 * subsystem instance.
3707 	 */
3708 	if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags))
3709 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3710 			ns->head->instance);
3711 	ns->disk = disk;
3712 
3713 	if (nvme_update_ns_info(ns, id))
3714 		goto out_put_disk;
3715 
3716 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3717 		if (nvme_nvm_register(ns, disk->disk_name, node)) {
3718 			dev_warn(ctrl->device, "LightNVM init failure\n");
3719 			goto out_put_disk;
3720 		}
3721 	}
3722 
3723 	down_write(&ctrl->namespaces_rwsem);
3724 	list_add_tail(&ns->list, &ctrl->namespaces);
3725 	up_write(&ctrl->namespaces_rwsem);
3726 
3727 	nvme_get_ctrl(ctrl);
3728 
3729 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3730 	if (!nvme_ns_head_multipath(ns->head))
3731 		nvme_add_ns_cdev(ns);
3732 
3733 	nvme_mpath_add_disk(ns, id);
3734 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3735 	kfree(id);
3736 
3737 	return;
3738  out_put_disk:
3739 	/* prevent double queue cleanup */
3740 	ns->disk->queue = NULL;
3741 	put_disk(ns->disk);
3742  out_unlink_ns:
3743 	mutex_lock(&ctrl->subsys->lock);
3744 	list_del_rcu(&ns->siblings);
3745 	if (list_empty(&ns->head->list))
3746 		list_del_init(&ns->head->entry);
3747 	mutex_unlock(&ctrl->subsys->lock);
3748 	nvme_put_ns_head(ns->head);
3749  out_free_queue:
3750 	blk_cleanup_queue(ns->queue);
3751  out_free_ns:
3752 	kfree(ns);
3753  out_free_id:
3754 	kfree(id);
3755 }
3756 
3757 static void nvme_ns_remove(struct nvme_ns *ns)
3758 {
3759 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3760 		return;
3761 
3762 	set_capacity(ns->disk, 0);
3763 	nvme_fault_inject_fini(&ns->fault_inject);
3764 
3765 	mutex_lock(&ns->ctrl->subsys->lock);
3766 	list_del_rcu(&ns->siblings);
3767 	if (list_empty(&ns->head->list))
3768 		list_del_init(&ns->head->entry);
3769 	mutex_unlock(&ns->ctrl->subsys->lock);
3770 
3771 	synchronize_rcu(); /* guarantee not available in head->list */
3772 	nvme_mpath_clear_current_path(ns);
3773 	synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3774 
3775 	if (ns->disk->flags & GENHD_FL_UP) {
3776 		if (!nvme_ns_head_multipath(ns->head))
3777 			nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3778 		del_gendisk(ns->disk);
3779 		blk_cleanup_queue(ns->queue);
3780 		if (blk_get_integrity(ns->disk))
3781 			blk_integrity_unregister(ns->disk);
3782 	}
3783 
3784 	down_write(&ns->ctrl->namespaces_rwsem);
3785 	list_del_init(&ns->list);
3786 	up_write(&ns->ctrl->namespaces_rwsem);
3787 
3788 	nvme_mpath_check_last_path(ns);
3789 	nvme_put_ns(ns);
3790 }
3791 
3792 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3793 {
3794 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3795 
3796 	if (ns) {
3797 		nvme_ns_remove(ns);
3798 		nvme_put_ns(ns);
3799 	}
3800 }
3801 
3802 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3803 {
3804 	struct nvme_id_ns *id;
3805 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3806 
3807 	if (test_bit(NVME_NS_DEAD, &ns->flags))
3808 		goto out;
3809 
3810 	ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3811 	if (ret)
3812 		goto out;
3813 
3814 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3815 	if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3816 		dev_err(ns->ctrl->device,
3817 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3818 		goto out_free_id;
3819 	}
3820 
3821 	ret = nvme_update_ns_info(ns, id);
3822 
3823 out_free_id:
3824 	kfree(id);
3825 out:
3826 	/*
3827 	 * Only remove the namespace if we got a fatal error back from the
3828 	 * device, otherwise ignore the error and just move on.
3829 	 *
3830 	 * TODO: we should probably schedule a delayed retry here.
3831 	 */
3832 	if (ret > 0 && (ret & NVME_SC_DNR))
3833 		nvme_ns_remove(ns);
3834 }
3835 
3836 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3837 {
3838 	struct nvme_ns_ids ids = { };
3839 	struct nvme_ns *ns;
3840 
3841 	if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3842 		return;
3843 
3844 	ns = nvme_find_get_ns(ctrl, nsid);
3845 	if (ns) {
3846 		nvme_validate_ns(ns, &ids);
3847 		nvme_put_ns(ns);
3848 		return;
3849 	}
3850 
3851 	switch (ids.csi) {
3852 	case NVME_CSI_NVM:
3853 		nvme_alloc_ns(ctrl, nsid, &ids);
3854 		break;
3855 	case NVME_CSI_ZNS:
3856 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3857 			dev_warn(ctrl->device,
3858 				"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3859 				nsid);
3860 			break;
3861 		}
3862 		if (!nvme_multi_css(ctrl)) {
3863 			dev_warn(ctrl->device,
3864 				"command set not reported for nsid: %d\n",
3865 				nsid);
3866 			break;
3867 		}
3868 		nvme_alloc_ns(ctrl, nsid, &ids);
3869 		break;
3870 	default:
3871 		dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3872 			ids.csi, nsid);
3873 		break;
3874 	}
3875 }
3876 
3877 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3878 					unsigned nsid)
3879 {
3880 	struct nvme_ns *ns, *next;
3881 	LIST_HEAD(rm_list);
3882 
3883 	down_write(&ctrl->namespaces_rwsem);
3884 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3885 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3886 			list_move_tail(&ns->list, &rm_list);
3887 	}
3888 	up_write(&ctrl->namespaces_rwsem);
3889 
3890 	list_for_each_entry_safe(ns, next, &rm_list, list)
3891 		nvme_ns_remove(ns);
3892 
3893 }
3894 
3895 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3896 {
3897 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3898 	__le32 *ns_list;
3899 	u32 prev = 0;
3900 	int ret = 0, i;
3901 
3902 	if (nvme_ctrl_limited_cns(ctrl))
3903 		return -EOPNOTSUPP;
3904 
3905 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3906 	if (!ns_list)
3907 		return -ENOMEM;
3908 
3909 	for (;;) {
3910 		struct nvme_command cmd = {
3911 			.identify.opcode	= nvme_admin_identify,
3912 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3913 			.identify.nsid		= cpu_to_le32(prev),
3914 		};
3915 
3916 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3917 					    NVME_IDENTIFY_DATA_SIZE);
3918 		if (ret) {
3919 			dev_warn(ctrl->device,
3920 				"Identify NS List failed (status=0x%x)\n", ret);
3921 			goto free;
3922 		}
3923 
3924 		for (i = 0; i < nr_entries; i++) {
3925 			u32 nsid = le32_to_cpu(ns_list[i]);
3926 
3927 			if (!nsid)	/* end of the list? */
3928 				goto out;
3929 			nvme_validate_or_alloc_ns(ctrl, nsid);
3930 			while (++prev < nsid)
3931 				nvme_ns_remove_by_nsid(ctrl, prev);
3932 		}
3933 	}
3934  out:
3935 	nvme_remove_invalid_namespaces(ctrl, prev);
3936  free:
3937 	kfree(ns_list);
3938 	return ret;
3939 }
3940 
3941 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3942 {
3943 	struct nvme_id_ctrl *id;
3944 	u32 nn, i;
3945 
3946 	if (nvme_identify_ctrl(ctrl, &id))
3947 		return;
3948 	nn = le32_to_cpu(id->nn);
3949 	kfree(id);
3950 
3951 	for (i = 1; i <= nn; i++)
3952 		nvme_validate_or_alloc_ns(ctrl, i);
3953 
3954 	nvme_remove_invalid_namespaces(ctrl, nn);
3955 }
3956 
3957 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3958 {
3959 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3960 	__le32 *log;
3961 	int error;
3962 
3963 	log = kzalloc(log_size, GFP_KERNEL);
3964 	if (!log)
3965 		return;
3966 
3967 	/*
3968 	 * We need to read the log to clear the AEN, but we don't want to rely
3969 	 * on it for the changed namespace information as userspace could have
3970 	 * raced with us in reading the log page, which could cause us to miss
3971 	 * updates.
3972 	 */
3973 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3974 			NVME_CSI_NVM, log, log_size, 0);
3975 	if (error)
3976 		dev_warn(ctrl->device,
3977 			"reading changed ns log failed: %d\n", error);
3978 
3979 	kfree(log);
3980 }
3981 
3982 static void nvme_scan_work(struct work_struct *work)
3983 {
3984 	struct nvme_ctrl *ctrl =
3985 		container_of(work, struct nvme_ctrl, scan_work);
3986 
3987 	/* No tagset on a live ctrl means IO queues could not created */
3988 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3989 		return;
3990 
3991 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3992 		dev_info(ctrl->device, "rescanning namespaces.\n");
3993 		nvme_clear_changed_ns_log(ctrl);
3994 	}
3995 
3996 	mutex_lock(&ctrl->scan_lock);
3997 	if (nvme_scan_ns_list(ctrl) != 0)
3998 		nvme_scan_ns_sequential(ctrl);
3999 	mutex_unlock(&ctrl->scan_lock);
4000 
4001 	down_write(&ctrl->namespaces_rwsem);
4002 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
4003 	up_write(&ctrl->namespaces_rwsem);
4004 }
4005 
4006 /*
4007  * This function iterates the namespace list unlocked to allow recovery from
4008  * controller failure. It is up to the caller to ensure the namespace list is
4009  * not modified by scan work while this function is executing.
4010  */
4011 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4012 {
4013 	struct nvme_ns *ns, *next;
4014 	LIST_HEAD(ns_list);
4015 
4016 	/*
4017 	 * make sure to requeue I/O to all namespaces as these
4018 	 * might result from the scan itself and must complete
4019 	 * for the scan_work to make progress
4020 	 */
4021 	nvme_mpath_clear_ctrl_paths(ctrl);
4022 
4023 	/* prevent racing with ns scanning */
4024 	flush_work(&ctrl->scan_work);
4025 
4026 	/*
4027 	 * The dead states indicates the controller was not gracefully
4028 	 * disconnected. In that case, we won't be able to flush any data while
4029 	 * removing the namespaces' disks; fail all the queues now to avoid
4030 	 * potentially having to clean up the failed sync later.
4031 	 */
4032 	if (ctrl->state == NVME_CTRL_DEAD)
4033 		nvme_kill_queues(ctrl);
4034 
4035 	/* this is a no-op when called from the controller reset handler */
4036 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4037 
4038 	down_write(&ctrl->namespaces_rwsem);
4039 	list_splice_init(&ctrl->namespaces, &ns_list);
4040 	up_write(&ctrl->namespaces_rwsem);
4041 
4042 	list_for_each_entry_safe(ns, next, &ns_list, list)
4043 		nvme_ns_remove(ns);
4044 }
4045 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4046 
4047 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4048 {
4049 	struct nvme_ctrl *ctrl =
4050 		container_of(dev, struct nvme_ctrl, ctrl_device);
4051 	struct nvmf_ctrl_options *opts = ctrl->opts;
4052 	int ret;
4053 
4054 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4055 	if (ret)
4056 		return ret;
4057 
4058 	if (opts) {
4059 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4060 		if (ret)
4061 			return ret;
4062 
4063 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4064 				opts->trsvcid ?: "none");
4065 		if (ret)
4066 			return ret;
4067 
4068 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4069 				opts->host_traddr ?: "none");
4070 	}
4071 	return ret;
4072 }
4073 
4074 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4075 {
4076 	char *envp[2] = { NULL, NULL };
4077 	u32 aen_result = ctrl->aen_result;
4078 
4079 	ctrl->aen_result = 0;
4080 	if (!aen_result)
4081 		return;
4082 
4083 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4084 	if (!envp[0])
4085 		return;
4086 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4087 	kfree(envp[0]);
4088 }
4089 
4090 static void nvme_async_event_work(struct work_struct *work)
4091 {
4092 	struct nvme_ctrl *ctrl =
4093 		container_of(work, struct nvme_ctrl, async_event_work);
4094 
4095 	nvme_aen_uevent(ctrl);
4096 	ctrl->ops->submit_async_event(ctrl);
4097 }
4098 
4099 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4100 {
4101 
4102 	u32 csts;
4103 
4104 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4105 		return false;
4106 
4107 	if (csts == ~0)
4108 		return false;
4109 
4110 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4111 }
4112 
4113 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4114 {
4115 	struct nvme_fw_slot_info_log *log;
4116 
4117 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4118 	if (!log)
4119 		return;
4120 
4121 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4122 			log, sizeof(*log), 0))
4123 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4124 	kfree(log);
4125 }
4126 
4127 static void nvme_fw_act_work(struct work_struct *work)
4128 {
4129 	struct nvme_ctrl *ctrl = container_of(work,
4130 				struct nvme_ctrl, fw_act_work);
4131 	unsigned long fw_act_timeout;
4132 
4133 	if (ctrl->mtfa)
4134 		fw_act_timeout = jiffies +
4135 				msecs_to_jiffies(ctrl->mtfa * 100);
4136 	else
4137 		fw_act_timeout = jiffies +
4138 				msecs_to_jiffies(admin_timeout * 1000);
4139 
4140 	nvme_stop_queues(ctrl);
4141 	while (nvme_ctrl_pp_status(ctrl)) {
4142 		if (time_after(jiffies, fw_act_timeout)) {
4143 			dev_warn(ctrl->device,
4144 				"Fw activation timeout, reset controller\n");
4145 			nvme_try_sched_reset(ctrl);
4146 			return;
4147 		}
4148 		msleep(100);
4149 	}
4150 
4151 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4152 		return;
4153 
4154 	nvme_start_queues(ctrl);
4155 	/* read FW slot information to clear the AER */
4156 	nvme_get_fw_slot_info(ctrl);
4157 }
4158 
4159 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4160 {
4161 	u32 aer_notice_type = (result & 0xff00) >> 8;
4162 
4163 	trace_nvme_async_event(ctrl, aer_notice_type);
4164 
4165 	switch (aer_notice_type) {
4166 	case NVME_AER_NOTICE_NS_CHANGED:
4167 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4168 		nvme_queue_scan(ctrl);
4169 		break;
4170 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4171 		/*
4172 		 * We are (ab)using the RESETTING state to prevent subsequent
4173 		 * recovery actions from interfering with the controller's
4174 		 * firmware activation.
4175 		 */
4176 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4177 			queue_work(nvme_wq, &ctrl->fw_act_work);
4178 		break;
4179 #ifdef CONFIG_NVME_MULTIPATH
4180 	case NVME_AER_NOTICE_ANA:
4181 		if (!ctrl->ana_log_buf)
4182 			break;
4183 		queue_work(nvme_wq, &ctrl->ana_work);
4184 		break;
4185 #endif
4186 	case NVME_AER_NOTICE_DISC_CHANGED:
4187 		ctrl->aen_result = result;
4188 		break;
4189 	default:
4190 		dev_warn(ctrl->device, "async event result %08x\n", result);
4191 	}
4192 }
4193 
4194 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4195 		volatile union nvme_result *res)
4196 {
4197 	u32 result = le32_to_cpu(res->u32);
4198 	u32 aer_type = result & 0x07;
4199 
4200 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4201 		return;
4202 
4203 	switch (aer_type) {
4204 	case NVME_AER_NOTICE:
4205 		nvme_handle_aen_notice(ctrl, result);
4206 		break;
4207 	case NVME_AER_ERROR:
4208 	case NVME_AER_SMART:
4209 	case NVME_AER_CSS:
4210 	case NVME_AER_VS:
4211 		trace_nvme_async_event(ctrl, aer_type);
4212 		ctrl->aen_result = result;
4213 		break;
4214 	default:
4215 		break;
4216 	}
4217 	queue_work(nvme_wq, &ctrl->async_event_work);
4218 }
4219 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4220 
4221 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4222 {
4223 	nvme_mpath_stop(ctrl);
4224 	nvme_stop_keep_alive(ctrl);
4225 	nvme_stop_failfast_work(ctrl);
4226 	flush_work(&ctrl->async_event_work);
4227 	cancel_work_sync(&ctrl->fw_act_work);
4228 }
4229 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4230 
4231 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4232 {
4233 	nvme_start_keep_alive(ctrl);
4234 
4235 	nvme_enable_aen(ctrl);
4236 
4237 	if (ctrl->queue_count > 1) {
4238 		nvme_queue_scan(ctrl);
4239 		nvme_start_queues(ctrl);
4240 	}
4241 }
4242 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4243 
4244 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4245 {
4246 	nvme_hwmon_exit(ctrl);
4247 	nvme_fault_inject_fini(&ctrl->fault_inject);
4248 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4249 	cdev_device_del(&ctrl->cdev, ctrl->device);
4250 	nvme_put_ctrl(ctrl);
4251 }
4252 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4253 
4254 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4255 {
4256 	struct nvme_effects_log	*cel;
4257 	unsigned long i;
4258 
4259 	xa_for_each(&ctrl->cels, i, cel) {
4260 		xa_erase(&ctrl->cels, i);
4261 		kfree(cel);
4262 	}
4263 
4264 	xa_destroy(&ctrl->cels);
4265 }
4266 
4267 static void nvme_free_ctrl(struct device *dev)
4268 {
4269 	struct nvme_ctrl *ctrl =
4270 		container_of(dev, struct nvme_ctrl, ctrl_device);
4271 	struct nvme_subsystem *subsys = ctrl->subsys;
4272 
4273 	if (!subsys || ctrl->instance != subsys->instance)
4274 		ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4275 
4276 	nvme_free_cels(ctrl);
4277 	nvme_mpath_uninit(ctrl);
4278 	__free_page(ctrl->discard_page);
4279 
4280 	if (subsys) {
4281 		mutex_lock(&nvme_subsystems_lock);
4282 		list_del(&ctrl->subsys_entry);
4283 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4284 		mutex_unlock(&nvme_subsystems_lock);
4285 	}
4286 
4287 	ctrl->ops->free_ctrl(ctrl);
4288 
4289 	if (subsys)
4290 		nvme_put_subsystem(subsys);
4291 }
4292 
4293 /*
4294  * Initialize a NVMe controller structures.  This needs to be called during
4295  * earliest initialization so that we have the initialized structured around
4296  * during probing.
4297  */
4298 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4299 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4300 {
4301 	int ret;
4302 
4303 	ctrl->state = NVME_CTRL_NEW;
4304 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4305 	spin_lock_init(&ctrl->lock);
4306 	mutex_init(&ctrl->scan_lock);
4307 	INIT_LIST_HEAD(&ctrl->namespaces);
4308 	xa_init(&ctrl->cels);
4309 	init_rwsem(&ctrl->namespaces_rwsem);
4310 	ctrl->dev = dev;
4311 	ctrl->ops = ops;
4312 	ctrl->quirks = quirks;
4313 	ctrl->numa_node = NUMA_NO_NODE;
4314 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4315 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4316 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4317 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4318 	init_waitqueue_head(&ctrl->state_wq);
4319 
4320 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4321 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4322 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4323 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4324 
4325 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4326 			PAGE_SIZE);
4327 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4328 	if (!ctrl->discard_page) {
4329 		ret = -ENOMEM;
4330 		goto out;
4331 	}
4332 
4333 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4334 	if (ret < 0)
4335 		goto out;
4336 	ctrl->instance = ret;
4337 
4338 	device_initialize(&ctrl->ctrl_device);
4339 	ctrl->device = &ctrl->ctrl_device;
4340 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4341 			ctrl->instance);
4342 	ctrl->device->class = nvme_class;
4343 	ctrl->device->parent = ctrl->dev;
4344 	ctrl->device->groups = nvme_dev_attr_groups;
4345 	ctrl->device->release = nvme_free_ctrl;
4346 	dev_set_drvdata(ctrl->device, ctrl);
4347 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4348 	if (ret)
4349 		goto out_release_instance;
4350 
4351 	nvme_get_ctrl(ctrl);
4352 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4353 	ctrl->cdev.owner = ops->module;
4354 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4355 	if (ret)
4356 		goto out_free_name;
4357 
4358 	/*
4359 	 * Initialize latency tolerance controls.  The sysfs files won't
4360 	 * be visible to userspace unless the device actually supports APST.
4361 	 */
4362 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4363 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4364 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4365 
4366 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4367 	nvme_mpath_init_ctrl(ctrl);
4368 
4369 	return 0;
4370 out_free_name:
4371 	nvme_put_ctrl(ctrl);
4372 	kfree_const(ctrl->device->kobj.name);
4373 out_release_instance:
4374 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4375 out:
4376 	if (ctrl->discard_page)
4377 		__free_page(ctrl->discard_page);
4378 	return ret;
4379 }
4380 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4381 
4382 /**
4383  * nvme_kill_queues(): Ends all namespace queues
4384  * @ctrl: the dead controller that needs to end
4385  *
4386  * Call this function when the driver determines it is unable to get the
4387  * controller in a state capable of servicing IO.
4388  */
4389 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4390 {
4391 	struct nvme_ns *ns;
4392 
4393 	down_read(&ctrl->namespaces_rwsem);
4394 
4395 	/* Forcibly unquiesce queues to avoid blocking dispatch */
4396 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4397 		blk_mq_unquiesce_queue(ctrl->admin_q);
4398 
4399 	list_for_each_entry(ns, &ctrl->namespaces, list)
4400 		nvme_set_queue_dying(ns);
4401 
4402 	up_read(&ctrl->namespaces_rwsem);
4403 }
4404 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4405 
4406 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4407 {
4408 	struct nvme_ns *ns;
4409 
4410 	down_read(&ctrl->namespaces_rwsem);
4411 	list_for_each_entry(ns, &ctrl->namespaces, list)
4412 		blk_mq_unfreeze_queue(ns->queue);
4413 	up_read(&ctrl->namespaces_rwsem);
4414 }
4415 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4416 
4417 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4418 {
4419 	struct nvme_ns *ns;
4420 
4421 	down_read(&ctrl->namespaces_rwsem);
4422 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4423 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4424 		if (timeout <= 0)
4425 			break;
4426 	}
4427 	up_read(&ctrl->namespaces_rwsem);
4428 	return timeout;
4429 }
4430 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4431 
4432 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4433 {
4434 	struct nvme_ns *ns;
4435 
4436 	down_read(&ctrl->namespaces_rwsem);
4437 	list_for_each_entry(ns, &ctrl->namespaces, list)
4438 		blk_mq_freeze_queue_wait(ns->queue);
4439 	up_read(&ctrl->namespaces_rwsem);
4440 }
4441 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4442 
4443 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4444 {
4445 	struct nvme_ns *ns;
4446 
4447 	down_read(&ctrl->namespaces_rwsem);
4448 	list_for_each_entry(ns, &ctrl->namespaces, list)
4449 		blk_freeze_queue_start(ns->queue);
4450 	up_read(&ctrl->namespaces_rwsem);
4451 }
4452 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4453 
4454 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4455 {
4456 	struct nvme_ns *ns;
4457 
4458 	down_read(&ctrl->namespaces_rwsem);
4459 	list_for_each_entry(ns, &ctrl->namespaces, list)
4460 		blk_mq_quiesce_queue(ns->queue);
4461 	up_read(&ctrl->namespaces_rwsem);
4462 }
4463 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4464 
4465 void nvme_start_queues(struct nvme_ctrl *ctrl)
4466 {
4467 	struct nvme_ns *ns;
4468 
4469 	down_read(&ctrl->namespaces_rwsem);
4470 	list_for_each_entry(ns, &ctrl->namespaces, list)
4471 		blk_mq_unquiesce_queue(ns->queue);
4472 	up_read(&ctrl->namespaces_rwsem);
4473 }
4474 EXPORT_SYMBOL_GPL(nvme_start_queues);
4475 
4476 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4477 {
4478 	struct nvme_ns *ns;
4479 
4480 	down_read(&ctrl->namespaces_rwsem);
4481 	list_for_each_entry(ns, &ctrl->namespaces, list)
4482 		blk_sync_queue(ns->queue);
4483 	up_read(&ctrl->namespaces_rwsem);
4484 }
4485 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4486 
4487 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4488 {
4489 	nvme_sync_io_queues(ctrl);
4490 	if (ctrl->admin_q)
4491 		blk_sync_queue(ctrl->admin_q);
4492 }
4493 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4494 
4495 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4496 {
4497 	if (file->f_op != &nvme_dev_fops)
4498 		return NULL;
4499 	return file->private_data;
4500 }
4501 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4502 
4503 /*
4504  * Check we didn't inadvertently grow the command structure sizes:
4505  */
4506 static inline void _nvme_check_size(void)
4507 {
4508 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4509 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4510 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4511 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4512 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4513 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4514 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4515 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4516 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4517 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4518 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4519 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4520 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4521 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4522 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4523 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4524 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4525 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4526 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4527 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4528 }
4529 
4530 
4531 static int __init nvme_core_init(void)
4532 {
4533 	int result = -ENOMEM;
4534 
4535 	_nvme_check_size();
4536 
4537 	nvme_wq = alloc_workqueue("nvme-wq",
4538 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4539 	if (!nvme_wq)
4540 		goto out;
4541 
4542 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4543 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4544 	if (!nvme_reset_wq)
4545 		goto destroy_wq;
4546 
4547 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4548 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4549 	if (!nvme_delete_wq)
4550 		goto destroy_reset_wq;
4551 
4552 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4553 			NVME_MINORS, "nvme");
4554 	if (result < 0)
4555 		goto destroy_delete_wq;
4556 
4557 	nvme_class = class_create(THIS_MODULE, "nvme");
4558 	if (IS_ERR(nvme_class)) {
4559 		result = PTR_ERR(nvme_class);
4560 		goto unregister_chrdev;
4561 	}
4562 	nvme_class->dev_uevent = nvme_class_uevent;
4563 
4564 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4565 	if (IS_ERR(nvme_subsys_class)) {
4566 		result = PTR_ERR(nvme_subsys_class);
4567 		goto destroy_class;
4568 	}
4569 
4570 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4571 				     "nvme-generic");
4572 	if (result < 0)
4573 		goto destroy_subsys_class;
4574 
4575 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
4576 	if (IS_ERR(nvme_ns_chr_class)) {
4577 		result = PTR_ERR(nvme_ns_chr_class);
4578 		goto unregister_generic_ns;
4579 	}
4580 
4581 	return 0;
4582 
4583 unregister_generic_ns:
4584 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4585 destroy_subsys_class:
4586 	class_destroy(nvme_subsys_class);
4587 destroy_class:
4588 	class_destroy(nvme_class);
4589 unregister_chrdev:
4590 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4591 destroy_delete_wq:
4592 	destroy_workqueue(nvme_delete_wq);
4593 destroy_reset_wq:
4594 	destroy_workqueue(nvme_reset_wq);
4595 destroy_wq:
4596 	destroy_workqueue(nvme_wq);
4597 out:
4598 	return result;
4599 }
4600 
4601 static void __exit nvme_core_exit(void)
4602 {
4603 	class_destroy(nvme_ns_chr_class);
4604 	class_destroy(nvme_subsys_class);
4605 	class_destroy(nvme_class);
4606 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4607 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4608 	destroy_workqueue(nvme_delete_wq);
4609 	destroy_workqueue(nvme_reset_wq);
4610 	destroy_workqueue(nvme_wq);
4611 	ida_destroy(&nvme_ns_chr_minor_ida);
4612 	ida_destroy(&nvme_instance_ida);
4613 }
4614 
4615 MODULE_LICENSE("GPL");
4616 MODULE_VERSION("1.0");
4617 module_init(nvme_core_init);
4618 module_exit(nvme_core_exit);
4619