1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/list_sort.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such as scan, aen handling, fw activation, 70 * keep-alive, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_ctrl_base_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static DEFINE_IDA(nvme_ns_chr_minor_ida); 93 static dev_t nvme_ns_chr_devt; 94 static struct class *nvme_ns_chr_class; 95 96 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 97 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 98 unsigned nsid); 99 100 /* 101 * Prepare a queue for teardown. 102 * 103 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 104 * the capacity to 0 after that to avoid blocking dispatchers that may be 105 * holding bd_butex. This will end buffered writers dirtying pages that can't 106 * be synced. 107 */ 108 static void nvme_set_queue_dying(struct nvme_ns *ns) 109 { 110 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 111 return; 112 113 blk_set_queue_dying(ns->queue); 114 blk_mq_unquiesce_queue(ns->queue); 115 116 set_capacity_and_notify(ns->disk, 0); 117 } 118 119 void nvme_queue_scan(struct nvme_ctrl *ctrl) 120 { 121 /* 122 * Only new queue scan work when admin and IO queues are both alive 123 */ 124 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 125 queue_work(nvme_wq, &ctrl->scan_work); 126 } 127 128 /* 129 * Use this function to proceed with scheduling reset_work for a controller 130 * that had previously been set to the resetting state. This is intended for 131 * code paths that can't be interrupted by other reset attempts. A hot removal 132 * may prevent this from succeeding. 133 */ 134 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 135 { 136 if (ctrl->state != NVME_CTRL_RESETTING) 137 return -EBUSY; 138 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 139 return -EBUSY; 140 return 0; 141 } 142 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 143 144 static void nvme_failfast_work(struct work_struct *work) 145 { 146 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 147 struct nvme_ctrl, failfast_work); 148 149 if (ctrl->state != NVME_CTRL_CONNECTING) 150 return; 151 152 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 153 dev_info(ctrl->device, "failfast expired\n"); 154 nvme_kick_requeue_lists(ctrl); 155 } 156 157 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 158 { 159 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 160 return; 161 162 schedule_delayed_work(&ctrl->failfast_work, 163 ctrl->opts->fast_io_fail_tmo * HZ); 164 } 165 166 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 167 { 168 if (!ctrl->opts) 169 return; 170 171 cancel_delayed_work_sync(&ctrl->failfast_work); 172 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 173 } 174 175 176 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 177 { 178 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 179 return -EBUSY; 180 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 181 return -EBUSY; 182 return 0; 183 } 184 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 185 186 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 187 { 188 int ret; 189 190 ret = nvme_reset_ctrl(ctrl); 191 if (!ret) { 192 flush_work(&ctrl->reset_work); 193 if (ctrl->state != NVME_CTRL_LIVE) 194 ret = -ENETRESET; 195 } 196 197 return ret; 198 } 199 200 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 201 { 202 dev_info(ctrl->device, 203 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 204 205 flush_work(&ctrl->reset_work); 206 nvme_stop_ctrl(ctrl); 207 nvme_remove_namespaces(ctrl); 208 ctrl->ops->delete_ctrl(ctrl); 209 nvme_uninit_ctrl(ctrl); 210 } 211 212 static void nvme_delete_ctrl_work(struct work_struct *work) 213 { 214 struct nvme_ctrl *ctrl = 215 container_of(work, struct nvme_ctrl, delete_work); 216 217 nvme_do_delete_ctrl(ctrl); 218 } 219 220 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 221 { 222 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 223 return -EBUSY; 224 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 225 return -EBUSY; 226 return 0; 227 } 228 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 229 230 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 231 { 232 /* 233 * Keep a reference until nvme_do_delete_ctrl() complete, 234 * since ->delete_ctrl can free the controller. 235 */ 236 nvme_get_ctrl(ctrl); 237 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 238 nvme_do_delete_ctrl(ctrl); 239 nvme_put_ctrl(ctrl); 240 } 241 242 static blk_status_t nvme_error_status(u16 status) 243 { 244 switch (status & 0x7ff) { 245 case NVME_SC_SUCCESS: 246 return BLK_STS_OK; 247 case NVME_SC_CAP_EXCEEDED: 248 return BLK_STS_NOSPC; 249 case NVME_SC_LBA_RANGE: 250 case NVME_SC_CMD_INTERRUPTED: 251 case NVME_SC_NS_NOT_READY: 252 return BLK_STS_TARGET; 253 case NVME_SC_BAD_ATTRIBUTES: 254 case NVME_SC_ONCS_NOT_SUPPORTED: 255 case NVME_SC_INVALID_OPCODE: 256 case NVME_SC_INVALID_FIELD: 257 case NVME_SC_INVALID_NS: 258 return BLK_STS_NOTSUPP; 259 case NVME_SC_WRITE_FAULT: 260 case NVME_SC_READ_ERROR: 261 case NVME_SC_UNWRITTEN_BLOCK: 262 case NVME_SC_ACCESS_DENIED: 263 case NVME_SC_READ_ONLY: 264 case NVME_SC_COMPARE_FAILED: 265 return BLK_STS_MEDIUM; 266 case NVME_SC_GUARD_CHECK: 267 case NVME_SC_APPTAG_CHECK: 268 case NVME_SC_REFTAG_CHECK: 269 case NVME_SC_INVALID_PI: 270 return BLK_STS_PROTECTION; 271 case NVME_SC_RESERVATION_CONFLICT: 272 return BLK_STS_NEXUS; 273 case NVME_SC_HOST_PATH_ERROR: 274 return BLK_STS_TRANSPORT; 275 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 276 return BLK_STS_ZONE_ACTIVE_RESOURCE; 277 case NVME_SC_ZONE_TOO_MANY_OPEN: 278 return BLK_STS_ZONE_OPEN_RESOURCE; 279 default: 280 return BLK_STS_IOERR; 281 } 282 } 283 284 static void nvme_retry_req(struct request *req) 285 { 286 unsigned long delay = 0; 287 u16 crd; 288 289 /* The mask and shift result must be <= 3 */ 290 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 291 if (crd) 292 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 293 294 nvme_req(req)->retries++; 295 blk_mq_requeue_request(req, false); 296 blk_mq_delay_kick_requeue_list(req->q, delay); 297 } 298 299 enum nvme_disposition { 300 COMPLETE, 301 RETRY, 302 FAILOVER, 303 }; 304 305 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 306 { 307 if (likely(nvme_req(req)->status == 0)) 308 return COMPLETE; 309 310 if (blk_noretry_request(req) || 311 (nvme_req(req)->status & NVME_SC_DNR) || 312 nvme_req(req)->retries >= nvme_max_retries) 313 return COMPLETE; 314 315 if (req->cmd_flags & REQ_NVME_MPATH) { 316 if (nvme_is_path_error(nvme_req(req)->status) || 317 blk_queue_dying(req->q)) 318 return FAILOVER; 319 } else { 320 if (blk_queue_dying(req->q)) 321 return COMPLETE; 322 } 323 324 return RETRY; 325 } 326 327 static inline void nvme_end_req(struct request *req) 328 { 329 blk_status_t status = nvme_error_status(nvme_req(req)->status); 330 331 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 332 req_op(req) == REQ_OP_ZONE_APPEND) 333 req->__sector = nvme_lba_to_sect(req->q->queuedata, 334 le64_to_cpu(nvme_req(req)->result.u64)); 335 336 nvme_trace_bio_complete(req); 337 blk_mq_end_request(req, status); 338 } 339 340 void nvme_complete_rq(struct request *req) 341 { 342 trace_nvme_complete_rq(req); 343 nvme_cleanup_cmd(req); 344 345 if (nvme_req(req)->ctrl->kas) 346 nvme_req(req)->ctrl->comp_seen = true; 347 348 switch (nvme_decide_disposition(req)) { 349 case COMPLETE: 350 nvme_end_req(req); 351 return; 352 case RETRY: 353 nvme_retry_req(req); 354 return; 355 case FAILOVER: 356 nvme_failover_req(req); 357 return; 358 } 359 } 360 EXPORT_SYMBOL_GPL(nvme_complete_rq); 361 362 /* 363 * Called to unwind from ->queue_rq on a failed command submission so that the 364 * multipathing code gets called to potentially failover to another path. 365 * The caller needs to unwind all transport specific resource allocations and 366 * must return propagate the return value. 367 */ 368 blk_status_t nvme_host_path_error(struct request *req) 369 { 370 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 371 blk_mq_set_request_complete(req); 372 nvme_complete_rq(req); 373 return BLK_STS_OK; 374 } 375 EXPORT_SYMBOL_GPL(nvme_host_path_error); 376 377 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 378 { 379 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 380 "Cancelling I/O %d", req->tag); 381 382 /* don't abort one completed request */ 383 if (blk_mq_request_completed(req)) 384 return true; 385 386 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 387 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 388 blk_mq_complete_request(req); 389 return true; 390 } 391 EXPORT_SYMBOL_GPL(nvme_cancel_request); 392 393 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 394 { 395 if (ctrl->tagset) { 396 blk_mq_tagset_busy_iter(ctrl->tagset, 397 nvme_cancel_request, ctrl); 398 blk_mq_tagset_wait_completed_request(ctrl->tagset); 399 } 400 } 401 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 402 403 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 404 { 405 if (ctrl->admin_tagset) { 406 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 407 nvme_cancel_request, ctrl); 408 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 409 } 410 } 411 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 412 413 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 414 enum nvme_ctrl_state new_state) 415 { 416 enum nvme_ctrl_state old_state; 417 unsigned long flags; 418 bool changed = false; 419 420 spin_lock_irqsave(&ctrl->lock, flags); 421 422 old_state = ctrl->state; 423 switch (new_state) { 424 case NVME_CTRL_LIVE: 425 switch (old_state) { 426 case NVME_CTRL_NEW: 427 case NVME_CTRL_RESETTING: 428 case NVME_CTRL_CONNECTING: 429 changed = true; 430 fallthrough; 431 default: 432 break; 433 } 434 break; 435 case NVME_CTRL_RESETTING: 436 switch (old_state) { 437 case NVME_CTRL_NEW: 438 case NVME_CTRL_LIVE: 439 changed = true; 440 fallthrough; 441 default: 442 break; 443 } 444 break; 445 case NVME_CTRL_CONNECTING: 446 switch (old_state) { 447 case NVME_CTRL_NEW: 448 case NVME_CTRL_RESETTING: 449 changed = true; 450 fallthrough; 451 default: 452 break; 453 } 454 break; 455 case NVME_CTRL_DELETING: 456 switch (old_state) { 457 case NVME_CTRL_LIVE: 458 case NVME_CTRL_RESETTING: 459 case NVME_CTRL_CONNECTING: 460 changed = true; 461 fallthrough; 462 default: 463 break; 464 } 465 break; 466 case NVME_CTRL_DELETING_NOIO: 467 switch (old_state) { 468 case NVME_CTRL_DELETING: 469 case NVME_CTRL_DEAD: 470 changed = true; 471 fallthrough; 472 default: 473 break; 474 } 475 break; 476 case NVME_CTRL_DEAD: 477 switch (old_state) { 478 case NVME_CTRL_DELETING: 479 changed = true; 480 fallthrough; 481 default: 482 break; 483 } 484 break; 485 default: 486 break; 487 } 488 489 if (changed) { 490 ctrl->state = new_state; 491 wake_up_all(&ctrl->state_wq); 492 } 493 494 spin_unlock_irqrestore(&ctrl->lock, flags); 495 if (!changed) 496 return false; 497 498 if (ctrl->state == NVME_CTRL_LIVE) { 499 if (old_state == NVME_CTRL_CONNECTING) 500 nvme_stop_failfast_work(ctrl); 501 nvme_kick_requeue_lists(ctrl); 502 } else if (ctrl->state == NVME_CTRL_CONNECTING && 503 old_state == NVME_CTRL_RESETTING) { 504 nvme_start_failfast_work(ctrl); 505 } 506 return changed; 507 } 508 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 509 510 /* 511 * Returns true for sink states that can't ever transition back to live. 512 */ 513 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 514 { 515 switch (ctrl->state) { 516 case NVME_CTRL_NEW: 517 case NVME_CTRL_LIVE: 518 case NVME_CTRL_RESETTING: 519 case NVME_CTRL_CONNECTING: 520 return false; 521 case NVME_CTRL_DELETING: 522 case NVME_CTRL_DELETING_NOIO: 523 case NVME_CTRL_DEAD: 524 return true; 525 default: 526 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 527 return true; 528 } 529 } 530 531 /* 532 * Waits for the controller state to be resetting, or returns false if it is 533 * not possible to ever transition to that state. 534 */ 535 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 536 { 537 wait_event(ctrl->state_wq, 538 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 539 nvme_state_terminal(ctrl)); 540 return ctrl->state == NVME_CTRL_RESETTING; 541 } 542 EXPORT_SYMBOL_GPL(nvme_wait_reset); 543 544 static void nvme_free_ns_head(struct kref *ref) 545 { 546 struct nvme_ns_head *head = 547 container_of(ref, struct nvme_ns_head, ref); 548 549 nvme_mpath_remove_disk(head); 550 ida_simple_remove(&head->subsys->ns_ida, head->instance); 551 cleanup_srcu_struct(&head->srcu); 552 nvme_put_subsystem(head->subsys); 553 kfree(head); 554 } 555 556 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 557 { 558 return kref_get_unless_zero(&head->ref); 559 } 560 561 void nvme_put_ns_head(struct nvme_ns_head *head) 562 { 563 kref_put(&head->ref, nvme_free_ns_head); 564 } 565 566 static void nvme_free_ns(struct kref *kref) 567 { 568 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 569 570 if (ns->ndev) 571 nvme_nvm_unregister(ns); 572 573 put_disk(ns->disk); 574 nvme_put_ns_head(ns->head); 575 nvme_put_ctrl(ns->ctrl); 576 kfree(ns); 577 } 578 579 static inline bool nvme_get_ns(struct nvme_ns *ns) 580 { 581 return kref_get_unless_zero(&ns->kref); 582 } 583 584 void nvme_put_ns(struct nvme_ns *ns) 585 { 586 kref_put(&ns->kref, nvme_free_ns); 587 } 588 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 589 590 static inline void nvme_clear_nvme_request(struct request *req) 591 { 592 nvme_req(req)->retries = 0; 593 nvme_req(req)->flags = 0; 594 req->rq_flags |= RQF_DONTPREP; 595 } 596 597 static inline unsigned int nvme_req_op(struct nvme_command *cmd) 598 { 599 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 600 } 601 602 static inline void nvme_init_request(struct request *req, 603 struct nvme_command *cmd) 604 { 605 if (req->q->queuedata) 606 req->timeout = NVME_IO_TIMEOUT; 607 else /* no queuedata implies admin queue */ 608 req->timeout = NVME_ADMIN_TIMEOUT; 609 610 /* passthru commands should let the driver set the SGL flags */ 611 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 612 613 req->cmd_flags |= REQ_FAILFAST_DRIVER; 614 nvme_clear_nvme_request(req); 615 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 616 } 617 618 struct request *nvme_alloc_request(struct request_queue *q, 619 struct nvme_command *cmd, blk_mq_req_flags_t flags) 620 { 621 struct request *req; 622 623 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 624 if (!IS_ERR(req)) 625 nvme_init_request(req, cmd); 626 return req; 627 } 628 EXPORT_SYMBOL_GPL(nvme_alloc_request); 629 630 static struct request *nvme_alloc_request_qid(struct request_queue *q, 631 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 632 { 633 struct request *req; 634 635 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 636 qid ? qid - 1 : 0); 637 if (!IS_ERR(req)) 638 nvme_init_request(req, cmd); 639 return req; 640 } 641 642 /* 643 * For something we're not in a state to send to the device the default action 644 * is to busy it and retry it after the controller state is recovered. However, 645 * if the controller is deleting or if anything is marked for failfast or 646 * nvme multipath it is immediately failed. 647 * 648 * Note: commands used to initialize the controller will be marked for failfast. 649 * Note: nvme cli/ioctl commands are marked for failfast. 650 */ 651 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 652 struct request *rq) 653 { 654 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 655 ctrl->state != NVME_CTRL_DEAD && 656 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 657 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 658 return BLK_STS_RESOURCE; 659 return nvme_host_path_error(rq); 660 } 661 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 662 663 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 664 bool queue_live) 665 { 666 struct nvme_request *req = nvme_req(rq); 667 668 /* 669 * currently we have a problem sending passthru commands 670 * on the admin_q if the controller is not LIVE because we can't 671 * make sure that they are going out after the admin connect, 672 * controller enable and/or other commands in the initialization 673 * sequence. until the controller will be LIVE, fail with 674 * BLK_STS_RESOURCE so that they will be rescheduled. 675 */ 676 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 677 return false; 678 679 if (ctrl->ops->flags & NVME_F_FABRICS) { 680 /* 681 * Only allow commands on a live queue, except for the connect 682 * command, which is require to set the queue live in the 683 * appropinquate states. 684 */ 685 switch (ctrl->state) { 686 case NVME_CTRL_CONNECTING: 687 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 688 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 689 return true; 690 break; 691 default: 692 break; 693 case NVME_CTRL_DEAD: 694 return false; 695 } 696 } 697 698 return queue_live; 699 } 700 EXPORT_SYMBOL_GPL(__nvme_check_ready); 701 702 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 703 { 704 struct nvme_command c; 705 706 memset(&c, 0, sizeof(c)); 707 708 c.directive.opcode = nvme_admin_directive_send; 709 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 710 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 711 c.directive.dtype = NVME_DIR_IDENTIFY; 712 c.directive.tdtype = NVME_DIR_STREAMS; 713 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 714 715 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 716 } 717 718 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 719 { 720 return nvme_toggle_streams(ctrl, false); 721 } 722 723 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 724 { 725 return nvme_toggle_streams(ctrl, true); 726 } 727 728 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 729 struct streams_directive_params *s, u32 nsid) 730 { 731 struct nvme_command c; 732 733 memset(&c, 0, sizeof(c)); 734 memset(s, 0, sizeof(*s)); 735 736 c.directive.opcode = nvme_admin_directive_recv; 737 c.directive.nsid = cpu_to_le32(nsid); 738 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 739 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 740 c.directive.dtype = NVME_DIR_STREAMS; 741 742 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 743 } 744 745 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 746 { 747 struct streams_directive_params s; 748 int ret; 749 750 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 751 return 0; 752 if (!streams) 753 return 0; 754 755 ret = nvme_enable_streams(ctrl); 756 if (ret) 757 return ret; 758 759 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 760 if (ret) 761 goto out_disable_stream; 762 763 ctrl->nssa = le16_to_cpu(s.nssa); 764 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 765 dev_info(ctrl->device, "too few streams (%u) available\n", 766 ctrl->nssa); 767 goto out_disable_stream; 768 } 769 770 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 771 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 772 return 0; 773 774 out_disable_stream: 775 nvme_disable_streams(ctrl); 776 return ret; 777 } 778 779 /* 780 * Check if 'req' has a write hint associated with it. If it does, assign 781 * a valid namespace stream to the write. 782 */ 783 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 784 struct request *req, u16 *control, 785 u32 *dsmgmt) 786 { 787 enum rw_hint streamid = req->write_hint; 788 789 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 790 streamid = 0; 791 else { 792 streamid--; 793 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 794 return; 795 796 *control |= NVME_RW_DTYPE_STREAMS; 797 *dsmgmt |= streamid << 16; 798 } 799 800 if (streamid < ARRAY_SIZE(req->q->write_hints)) 801 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 802 } 803 804 static inline void nvme_setup_flush(struct nvme_ns *ns, 805 struct nvme_command *cmnd) 806 { 807 cmnd->common.opcode = nvme_cmd_flush; 808 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 809 } 810 811 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 812 struct nvme_command *cmnd) 813 { 814 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 815 struct nvme_dsm_range *range; 816 struct bio *bio; 817 818 /* 819 * Some devices do not consider the DSM 'Number of Ranges' field when 820 * determining how much data to DMA. Always allocate memory for maximum 821 * number of segments to prevent device reading beyond end of buffer. 822 */ 823 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 824 825 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 826 if (!range) { 827 /* 828 * If we fail allocation our range, fallback to the controller 829 * discard page. If that's also busy, it's safe to return 830 * busy, as we know we can make progress once that's freed. 831 */ 832 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 833 return BLK_STS_RESOURCE; 834 835 range = page_address(ns->ctrl->discard_page); 836 } 837 838 __rq_for_each_bio(bio, req) { 839 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 840 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 841 842 if (n < segments) { 843 range[n].cattr = cpu_to_le32(0); 844 range[n].nlb = cpu_to_le32(nlb); 845 range[n].slba = cpu_to_le64(slba); 846 } 847 n++; 848 } 849 850 if (WARN_ON_ONCE(n != segments)) { 851 if (virt_to_page(range) == ns->ctrl->discard_page) 852 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 853 else 854 kfree(range); 855 return BLK_STS_IOERR; 856 } 857 858 cmnd->dsm.opcode = nvme_cmd_dsm; 859 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 860 cmnd->dsm.nr = cpu_to_le32(segments - 1); 861 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 862 863 req->special_vec.bv_page = virt_to_page(range); 864 req->special_vec.bv_offset = offset_in_page(range); 865 req->special_vec.bv_len = alloc_size; 866 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 867 868 return BLK_STS_OK; 869 } 870 871 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 872 struct request *req, struct nvme_command *cmnd) 873 { 874 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 875 return nvme_setup_discard(ns, req, cmnd); 876 877 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 878 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 879 cmnd->write_zeroes.slba = 880 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 881 cmnd->write_zeroes.length = 882 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 883 cmnd->write_zeroes.control = 0; 884 return BLK_STS_OK; 885 } 886 887 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 888 struct request *req, struct nvme_command *cmnd, 889 enum nvme_opcode op) 890 { 891 struct nvme_ctrl *ctrl = ns->ctrl; 892 u16 control = 0; 893 u32 dsmgmt = 0; 894 895 if (req->cmd_flags & REQ_FUA) 896 control |= NVME_RW_FUA; 897 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 898 control |= NVME_RW_LR; 899 900 if (req->cmd_flags & REQ_RAHEAD) 901 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 902 903 cmnd->rw.opcode = op; 904 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 905 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 906 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 907 908 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 909 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 910 911 if (ns->ms) { 912 /* 913 * If formated with metadata, the block layer always provides a 914 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 915 * we enable the PRACT bit for protection information or set the 916 * namespace capacity to zero to prevent any I/O. 917 */ 918 if (!blk_integrity_rq(req)) { 919 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 920 return BLK_STS_NOTSUPP; 921 control |= NVME_RW_PRINFO_PRACT; 922 } 923 924 switch (ns->pi_type) { 925 case NVME_NS_DPS_PI_TYPE3: 926 control |= NVME_RW_PRINFO_PRCHK_GUARD; 927 break; 928 case NVME_NS_DPS_PI_TYPE1: 929 case NVME_NS_DPS_PI_TYPE2: 930 control |= NVME_RW_PRINFO_PRCHK_GUARD | 931 NVME_RW_PRINFO_PRCHK_REF; 932 if (op == nvme_cmd_zone_append) 933 control |= NVME_RW_APPEND_PIREMAP; 934 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 935 break; 936 } 937 } 938 939 cmnd->rw.control = cpu_to_le16(control); 940 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 941 return 0; 942 } 943 944 void nvme_cleanup_cmd(struct request *req) 945 { 946 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 947 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 948 struct page *page = req->special_vec.bv_page; 949 950 if (page == ctrl->discard_page) 951 clear_bit_unlock(0, &ctrl->discard_page_busy); 952 else 953 kfree(page_address(page) + req->special_vec.bv_offset); 954 } 955 } 956 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 957 958 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 959 { 960 struct nvme_command *cmd = nvme_req(req)->cmd; 961 blk_status_t ret = BLK_STS_OK; 962 963 if (!(req->rq_flags & RQF_DONTPREP)) { 964 nvme_clear_nvme_request(req); 965 memset(cmd, 0, sizeof(*cmd)); 966 } 967 968 switch (req_op(req)) { 969 case REQ_OP_DRV_IN: 970 case REQ_OP_DRV_OUT: 971 /* these are setup prior to execution in nvme_init_request() */ 972 break; 973 case REQ_OP_FLUSH: 974 nvme_setup_flush(ns, cmd); 975 break; 976 case REQ_OP_ZONE_RESET_ALL: 977 case REQ_OP_ZONE_RESET: 978 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 979 break; 980 case REQ_OP_ZONE_OPEN: 981 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 982 break; 983 case REQ_OP_ZONE_CLOSE: 984 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 985 break; 986 case REQ_OP_ZONE_FINISH: 987 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 988 break; 989 case REQ_OP_WRITE_ZEROES: 990 ret = nvme_setup_write_zeroes(ns, req, cmd); 991 break; 992 case REQ_OP_DISCARD: 993 ret = nvme_setup_discard(ns, req, cmd); 994 break; 995 case REQ_OP_READ: 996 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 997 break; 998 case REQ_OP_WRITE: 999 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1000 break; 1001 case REQ_OP_ZONE_APPEND: 1002 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1003 break; 1004 default: 1005 WARN_ON_ONCE(1); 1006 return BLK_STS_IOERR; 1007 } 1008 1009 cmd->common.command_id = req->tag; 1010 trace_nvme_setup_cmd(req, cmd); 1011 return ret; 1012 } 1013 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1014 1015 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 1016 { 1017 struct completion *waiting = rq->end_io_data; 1018 1019 rq->end_io_data = NULL; 1020 complete(waiting); 1021 } 1022 1023 static void nvme_execute_rq_polled(struct request_queue *q, 1024 struct gendisk *bd_disk, struct request *rq, int at_head) 1025 { 1026 DECLARE_COMPLETION_ONSTACK(wait); 1027 1028 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 1029 1030 rq->cmd_flags |= REQ_HIPRI; 1031 rq->end_io_data = &wait; 1032 blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq); 1033 1034 while (!completion_done(&wait)) { 1035 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 1036 cond_resched(); 1037 } 1038 } 1039 1040 /* 1041 * Returns 0 on success. If the result is negative, it's a Linux error code; 1042 * if the result is positive, it's an NVM Express status code 1043 */ 1044 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1045 union nvme_result *result, void *buffer, unsigned bufflen, 1046 unsigned timeout, int qid, int at_head, 1047 blk_mq_req_flags_t flags, bool poll) 1048 { 1049 struct request *req; 1050 int ret; 1051 1052 if (qid == NVME_QID_ANY) 1053 req = nvme_alloc_request(q, cmd, flags); 1054 else 1055 req = nvme_alloc_request_qid(q, cmd, flags, qid); 1056 if (IS_ERR(req)) 1057 return PTR_ERR(req); 1058 1059 if (timeout) 1060 req->timeout = timeout; 1061 1062 if (buffer && bufflen) { 1063 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1064 if (ret) 1065 goto out; 1066 } 1067 1068 if (poll) 1069 nvme_execute_rq_polled(req->q, NULL, req, at_head); 1070 else 1071 blk_execute_rq(NULL, req, at_head); 1072 if (result) 1073 *result = nvme_req(req)->result; 1074 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 1075 ret = -EINTR; 1076 else 1077 ret = nvme_req(req)->status; 1078 out: 1079 blk_mq_free_request(req); 1080 return ret; 1081 } 1082 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1083 1084 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1085 void *buffer, unsigned bufflen) 1086 { 1087 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1088 NVME_QID_ANY, 0, 0, false); 1089 } 1090 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1091 1092 static u32 nvme_known_admin_effects(u8 opcode) 1093 { 1094 switch (opcode) { 1095 case nvme_admin_format_nvm: 1096 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1097 NVME_CMD_EFFECTS_CSE_MASK; 1098 case nvme_admin_sanitize_nvm: 1099 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1100 default: 1101 break; 1102 } 1103 return 0; 1104 } 1105 1106 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1107 { 1108 u32 effects = 0; 1109 1110 if (ns) { 1111 if (ns->head->effects) 1112 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1113 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1114 dev_warn_once(ctrl->device, 1115 "IO command:%02x has unhandled effects:%08x\n", 1116 opcode, effects); 1117 return 0; 1118 } 1119 1120 if (ctrl->effects) 1121 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1122 effects |= nvme_known_admin_effects(opcode); 1123 1124 return effects; 1125 } 1126 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1127 1128 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1129 u8 opcode) 1130 { 1131 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1132 1133 /* 1134 * For simplicity, IO to all namespaces is quiesced even if the command 1135 * effects say only one namespace is affected. 1136 */ 1137 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1138 mutex_lock(&ctrl->scan_lock); 1139 mutex_lock(&ctrl->subsys->lock); 1140 nvme_mpath_start_freeze(ctrl->subsys); 1141 nvme_mpath_wait_freeze(ctrl->subsys); 1142 nvme_start_freeze(ctrl); 1143 nvme_wait_freeze(ctrl); 1144 } 1145 return effects; 1146 } 1147 1148 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1149 { 1150 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1151 nvme_unfreeze(ctrl); 1152 nvme_mpath_unfreeze(ctrl->subsys); 1153 mutex_unlock(&ctrl->subsys->lock); 1154 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1155 mutex_unlock(&ctrl->scan_lock); 1156 } 1157 if (effects & NVME_CMD_EFFECTS_CCC) 1158 nvme_init_ctrl_finish(ctrl); 1159 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1160 nvme_queue_scan(ctrl); 1161 flush_work(&ctrl->scan_work); 1162 } 1163 } 1164 1165 void nvme_execute_passthru_rq(struct request *rq) 1166 { 1167 struct nvme_command *cmd = nvme_req(rq)->cmd; 1168 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1169 struct nvme_ns *ns = rq->q->queuedata; 1170 struct gendisk *disk = ns ? ns->disk : NULL; 1171 u32 effects; 1172 1173 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1174 blk_execute_rq(disk, rq, 0); 1175 if (effects) /* nothing to be done for zero cmd effects */ 1176 nvme_passthru_end(ctrl, effects); 1177 } 1178 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1179 1180 /* 1181 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1182 * 1183 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1184 * accounting for transport roundtrip times [..]. 1185 */ 1186 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1187 { 1188 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1189 } 1190 1191 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1192 { 1193 struct nvme_ctrl *ctrl = rq->end_io_data; 1194 unsigned long flags; 1195 bool startka = false; 1196 1197 blk_mq_free_request(rq); 1198 1199 if (status) { 1200 dev_err(ctrl->device, 1201 "failed nvme_keep_alive_end_io error=%d\n", 1202 status); 1203 return; 1204 } 1205 1206 ctrl->comp_seen = false; 1207 spin_lock_irqsave(&ctrl->lock, flags); 1208 if (ctrl->state == NVME_CTRL_LIVE || 1209 ctrl->state == NVME_CTRL_CONNECTING) 1210 startka = true; 1211 spin_unlock_irqrestore(&ctrl->lock, flags); 1212 if (startka) 1213 nvme_queue_keep_alive_work(ctrl); 1214 } 1215 1216 static void nvme_keep_alive_work(struct work_struct *work) 1217 { 1218 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1219 struct nvme_ctrl, ka_work); 1220 bool comp_seen = ctrl->comp_seen; 1221 struct request *rq; 1222 1223 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1224 dev_dbg(ctrl->device, 1225 "reschedule traffic based keep-alive timer\n"); 1226 ctrl->comp_seen = false; 1227 nvme_queue_keep_alive_work(ctrl); 1228 return; 1229 } 1230 1231 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, 1232 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1233 if (IS_ERR(rq)) { 1234 /* allocation failure, reset the controller */ 1235 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1236 nvme_reset_ctrl(ctrl); 1237 return; 1238 } 1239 1240 rq->timeout = ctrl->kato * HZ; 1241 rq->end_io_data = ctrl; 1242 blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io); 1243 } 1244 1245 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1246 { 1247 if (unlikely(ctrl->kato == 0)) 1248 return; 1249 1250 nvme_queue_keep_alive_work(ctrl); 1251 } 1252 1253 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1254 { 1255 if (unlikely(ctrl->kato == 0)) 1256 return; 1257 1258 cancel_delayed_work_sync(&ctrl->ka_work); 1259 } 1260 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1261 1262 /* 1263 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1264 * flag, thus sending any new CNS opcodes has a big chance of not working. 1265 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1266 * (but not for any later version). 1267 */ 1268 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1269 { 1270 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1271 return ctrl->vs < NVME_VS(1, 2, 0); 1272 return ctrl->vs < NVME_VS(1, 1, 0); 1273 } 1274 1275 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1276 { 1277 struct nvme_command c = { }; 1278 int error; 1279 1280 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1281 c.identify.opcode = nvme_admin_identify; 1282 c.identify.cns = NVME_ID_CNS_CTRL; 1283 1284 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1285 if (!*id) 1286 return -ENOMEM; 1287 1288 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1289 sizeof(struct nvme_id_ctrl)); 1290 if (error) 1291 kfree(*id); 1292 return error; 1293 } 1294 1295 static bool nvme_multi_css(struct nvme_ctrl *ctrl) 1296 { 1297 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI; 1298 } 1299 1300 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1301 struct nvme_ns_id_desc *cur, bool *csi_seen) 1302 { 1303 const char *warn_str = "ctrl returned bogus length:"; 1304 void *data = cur; 1305 1306 switch (cur->nidt) { 1307 case NVME_NIDT_EUI64: 1308 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1309 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1310 warn_str, cur->nidl); 1311 return -1; 1312 } 1313 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1314 return NVME_NIDT_EUI64_LEN; 1315 case NVME_NIDT_NGUID: 1316 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1317 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1318 warn_str, cur->nidl); 1319 return -1; 1320 } 1321 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1322 return NVME_NIDT_NGUID_LEN; 1323 case NVME_NIDT_UUID: 1324 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1325 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1326 warn_str, cur->nidl); 1327 return -1; 1328 } 1329 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1330 return NVME_NIDT_UUID_LEN; 1331 case NVME_NIDT_CSI: 1332 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1333 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1334 warn_str, cur->nidl); 1335 return -1; 1336 } 1337 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1338 *csi_seen = true; 1339 return NVME_NIDT_CSI_LEN; 1340 default: 1341 /* Skip unknown types */ 1342 return cur->nidl; 1343 } 1344 } 1345 1346 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1347 struct nvme_ns_ids *ids) 1348 { 1349 struct nvme_command c = { }; 1350 bool csi_seen = false; 1351 int status, pos, len; 1352 void *data; 1353 1354 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1355 return 0; 1356 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1357 return 0; 1358 1359 c.identify.opcode = nvme_admin_identify; 1360 c.identify.nsid = cpu_to_le32(nsid); 1361 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1362 1363 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1364 if (!data) 1365 return -ENOMEM; 1366 1367 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1368 NVME_IDENTIFY_DATA_SIZE); 1369 if (status) { 1370 dev_warn(ctrl->device, 1371 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1372 nsid, status); 1373 goto free_data; 1374 } 1375 1376 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1377 struct nvme_ns_id_desc *cur = data + pos; 1378 1379 if (cur->nidl == 0) 1380 break; 1381 1382 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1383 if (len < 0) 1384 break; 1385 1386 len += sizeof(*cur); 1387 } 1388 1389 if (nvme_multi_css(ctrl) && !csi_seen) { 1390 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1391 nsid); 1392 status = -EINVAL; 1393 } 1394 1395 free_data: 1396 kfree(data); 1397 return status; 1398 } 1399 1400 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1401 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1402 { 1403 struct nvme_command c = { }; 1404 int error; 1405 1406 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1407 c.identify.opcode = nvme_admin_identify; 1408 c.identify.nsid = cpu_to_le32(nsid); 1409 c.identify.cns = NVME_ID_CNS_NS; 1410 1411 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1412 if (!*id) 1413 return -ENOMEM; 1414 1415 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1416 if (error) { 1417 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1418 goto out_free_id; 1419 } 1420 1421 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1422 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1423 goto out_free_id; 1424 1425 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1426 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1427 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1428 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1429 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1430 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1431 1432 return 0; 1433 1434 out_free_id: 1435 kfree(*id); 1436 return error; 1437 } 1438 1439 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1440 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1441 { 1442 union nvme_result res = { 0 }; 1443 struct nvme_command c; 1444 int ret; 1445 1446 memset(&c, 0, sizeof(c)); 1447 c.features.opcode = op; 1448 c.features.fid = cpu_to_le32(fid); 1449 c.features.dword11 = cpu_to_le32(dword11); 1450 1451 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1452 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1453 if (ret >= 0 && result) 1454 *result = le32_to_cpu(res.u32); 1455 return ret; 1456 } 1457 1458 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1459 unsigned int dword11, void *buffer, size_t buflen, 1460 u32 *result) 1461 { 1462 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1463 buflen, result); 1464 } 1465 EXPORT_SYMBOL_GPL(nvme_set_features); 1466 1467 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1468 unsigned int dword11, void *buffer, size_t buflen, 1469 u32 *result) 1470 { 1471 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1472 buflen, result); 1473 } 1474 EXPORT_SYMBOL_GPL(nvme_get_features); 1475 1476 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1477 { 1478 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1479 u32 result; 1480 int status, nr_io_queues; 1481 1482 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1483 &result); 1484 if (status < 0) 1485 return status; 1486 1487 /* 1488 * Degraded controllers might return an error when setting the queue 1489 * count. We still want to be able to bring them online and offer 1490 * access to the admin queue, as that might be only way to fix them up. 1491 */ 1492 if (status > 0) { 1493 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1494 *count = 0; 1495 } else { 1496 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1497 *count = min(*count, nr_io_queues); 1498 } 1499 1500 return 0; 1501 } 1502 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1503 1504 #define NVME_AEN_SUPPORTED \ 1505 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1506 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1507 1508 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1509 { 1510 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1511 int status; 1512 1513 if (!supported_aens) 1514 return; 1515 1516 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1517 NULL, 0, &result); 1518 if (status) 1519 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1520 supported_aens); 1521 1522 queue_work(nvme_wq, &ctrl->async_event_work); 1523 } 1524 1525 /* 1526 * Issue ioctl requests on the first available path. Note that unlike normal 1527 * block layer requests we will not retry failed request on another controller. 1528 */ 1529 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1530 struct nvme_ns_head **head, int *srcu_idx) 1531 { 1532 #ifdef CONFIG_NVME_MULTIPATH 1533 if (disk->fops == &nvme_ns_head_ops) { 1534 struct nvme_ns *ns; 1535 1536 *head = disk->private_data; 1537 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1538 ns = nvme_find_path(*head); 1539 if (!ns) 1540 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1541 return ns; 1542 } 1543 #endif 1544 *head = NULL; 1545 *srcu_idx = -1; 1546 return disk->private_data; 1547 } 1548 1549 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1550 { 1551 if (head) 1552 srcu_read_unlock(&head->srcu, idx); 1553 } 1554 1555 static int nvme_ns_open(struct nvme_ns *ns) 1556 { 1557 1558 /* should never be called due to GENHD_FL_HIDDEN */ 1559 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1560 goto fail; 1561 if (!nvme_get_ns(ns)) 1562 goto fail; 1563 if (!try_module_get(ns->ctrl->ops->module)) 1564 goto fail_put_ns; 1565 1566 return 0; 1567 1568 fail_put_ns: 1569 nvme_put_ns(ns); 1570 fail: 1571 return -ENXIO; 1572 } 1573 1574 static void nvme_ns_release(struct nvme_ns *ns) 1575 { 1576 1577 module_put(ns->ctrl->ops->module); 1578 nvme_put_ns(ns); 1579 } 1580 1581 static int nvme_open(struct block_device *bdev, fmode_t mode) 1582 { 1583 return nvme_ns_open(bdev->bd_disk->private_data); 1584 } 1585 1586 static void nvme_release(struct gendisk *disk, fmode_t mode) 1587 { 1588 nvme_ns_release(disk->private_data); 1589 } 1590 1591 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1592 { 1593 /* some standard values */ 1594 geo->heads = 1 << 6; 1595 geo->sectors = 1 << 5; 1596 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1597 return 0; 1598 } 1599 1600 #ifdef CONFIG_BLK_DEV_INTEGRITY 1601 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1602 u32 max_integrity_segments) 1603 { 1604 struct blk_integrity integrity; 1605 1606 memset(&integrity, 0, sizeof(integrity)); 1607 switch (pi_type) { 1608 case NVME_NS_DPS_PI_TYPE3: 1609 integrity.profile = &t10_pi_type3_crc; 1610 integrity.tag_size = sizeof(u16) + sizeof(u32); 1611 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1612 break; 1613 case NVME_NS_DPS_PI_TYPE1: 1614 case NVME_NS_DPS_PI_TYPE2: 1615 integrity.profile = &t10_pi_type1_crc; 1616 integrity.tag_size = sizeof(u16); 1617 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1618 break; 1619 default: 1620 integrity.profile = NULL; 1621 break; 1622 } 1623 integrity.tuple_size = ms; 1624 blk_integrity_register(disk, &integrity); 1625 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1626 } 1627 #else 1628 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1629 u32 max_integrity_segments) 1630 { 1631 } 1632 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1633 1634 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1635 { 1636 struct nvme_ctrl *ctrl = ns->ctrl; 1637 struct request_queue *queue = disk->queue; 1638 u32 size = queue_logical_block_size(queue); 1639 1640 if (ctrl->max_discard_sectors == 0) { 1641 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1642 return; 1643 } 1644 1645 if (ctrl->nr_streams && ns->sws && ns->sgs) 1646 size *= ns->sws * ns->sgs; 1647 1648 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1649 NVME_DSM_MAX_RANGES); 1650 1651 queue->limits.discard_alignment = 0; 1652 queue->limits.discard_granularity = size; 1653 1654 /* If discard is already enabled, don't reset queue limits */ 1655 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1656 return; 1657 1658 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1659 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1660 1661 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1662 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1663 } 1664 1665 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1666 { 1667 return !uuid_is_null(&ids->uuid) || 1668 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1669 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1670 } 1671 1672 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1673 { 1674 return uuid_equal(&a->uuid, &b->uuid) && 1675 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1676 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1677 a->csi == b->csi; 1678 } 1679 1680 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1681 u32 *phys_bs, u32 *io_opt) 1682 { 1683 struct streams_directive_params s; 1684 int ret; 1685 1686 if (!ctrl->nr_streams) 1687 return 0; 1688 1689 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1690 if (ret) 1691 return ret; 1692 1693 ns->sws = le32_to_cpu(s.sws); 1694 ns->sgs = le16_to_cpu(s.sgs); 1695 1696 if (ns->sws) { 1697 *phys_bs = ns->sws * (1 << ns->lba_shift); 1698 if (ns->sgs) 1699 *io_opt = *phys_bs * ns->sgs; 1700 } 1701 1702 return 0; 1703 } 1704 1705 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1706 { 1707 struct nvme_ctrl *ctrl = ns->ctrl; 1708 1709 /* 1710 * The PI implementation requires the metadata size to be equal to the 1711 * t10 pi tuple size. 1712 */ 1713 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1714 if (ns->ms == sizeof(struct t10_pi_tuple)) 1715 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1716 else 1717 ns->pi_type = 0; 1718 1719 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1720 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1721 return 0; 1722 if (ctrl->ops->flags & NVME_F_FABRICS) { 1723 /* 1724 * The NVMe over Fabrics specification only supports metadata as 1725 * part of the extended data LBA. We rely on HCA/HBA support to 1726 * remap the separate metadata buffer from the block layer. 1727 */ 1728 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1729 return -EINVAL; 1730 if (ctrl->max_integrity_segments) 1731 ns->features |= 1732 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1733 } else { 1734 /* 1735 * For PCIe controllers, we can't easily remap the separate 1736 * metadata buffer from the block layer and thus require a 1737 * separate metadata buffer for block layer metadata/PI support. 1738 * We allow extended LBAs for the passthrough interface, though. 1739 */ 1740 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1741 ns->features |= NVME_NS_EXT_LBAS; 1742 else 1743 ns->features |= NVME_NS_METADATA_SUPPORTED; 1744 } 1745 1746 return 0; 1747 } 1748 1749 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1750 struct request_queue *q) 1751 { 1752 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1753 1754 if (ctrl->max_hw_sectors) { 1755 u32 max_segments = 1756 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1757 1758 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1759 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1760 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1761 } 1762 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1763 blk_queue_dma_alignment(q, 7); 1764 blk_queue_write_cache(q, vwc, vwc); 1765 } 1766 1767 static void nvme_update_disk_info(struct gendisk *disk, 1768 struct nvme_ns *ns, struct nvme_id_ns *id) 1769 { 1770 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1771 unsigned short bs = 1 << ns->lba_shift; 1772 u32 atomic_bs, phys_bs, io_opt = 0; 1773 1774 /* 1775 * The block layer can't support LBA sizes larger than the page size 1776 * yet, so catch this early and don't allow block I/O. 1777 */ 1778 if (ns->lba_shift > PAGE_SHIFT) { 1779 capacity = 0; 1780 bs = (1 << 9); 1781 } 1782 1783 blk_integrity_unregister(disk); 1784 1785 atomic_bs = phys_bs = bs; 1786 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1787 if (id->nabo == 0) { 1788 /* 1789 * Bit 1 indicates whether NAWUPF is defined for this namespace 1790 * and whether it should be used instead of AWUPF. If NAWUPF == 1791 * 0 then AWUPF must be used instead. 1792 */ 1793 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1794 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1795 else 1796 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1797 } 1798 1799 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1800 /* NPWG = Namespace Preferred Write Granularity */ 1801 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1802 /* NOWS = Namespace Optimal Write Size */ 1803 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1804 } 1805 1806 blk_queue_logical_block_size(disk->queue, bs); 1807 /* 1808 * Linux filesystems assume writing a single physical block is 1809 * an atomic operation. Hence limit the physical block size to the 1810 * value of the Atomic Write Unit Power Fail parameter. 1811 */ 1812 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1813 blk_queue_io_min(disk->queue, phys_bs); 1814 blk_queue_io_opt(disk->queue, io_opt); 1815 1816 /* 1817 * Register a metadata profile for PI, or the plain non-integrity NVMe 1818 * metadata masquerading as Type 0 if supported, otherwise reject block 1819 * I/O to namespaces with metadata except when the namespace supports 1820 * PI, as it can strip/insert in that case. 1821 */ 1822 if (ns->ms) { 1823 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1824 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1825 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1826 ns->ctrl->max_integrity_segments); 1827 else if (!nvme_ns_has_pi(ns)) 1828 capacity = 0; 1829 } 1830 1831 set_capacity_and_notify(disk, capacity); 1832 1833 nvme_config_discard(disk, ns); 1834 blk_queue_max_write_zeroes_sectors(disk->queue, 1835 ns->ctrl->max_zeroes_sectors); 1836 1837 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) || 1838 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1839 } 1840 1841 static inline bool nvme_first_scan(struct gendisk *disk) 1842 { 1843 /* nvme_alloc_ns() scans the disk prior to adding it */ 1844 return !(disk->flags & GENHD_FL_UP); 1845 } 1846 1847 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1848 { 1849 struct nvme_ctrl *ctrl = ns->ctrl; 1850 u32 iob; 1851 1852 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1853 is_power_of_2(ctrl->max_hw_sectors)) 1854 iob = ctrl->max_hw_sectors; 1855 else 1856 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1857 1858 if (!iob) 1859 return; 1860 1861 if (!is_power_of_2(iob)) { 1862 if (nvme_first_scan(ns->disk)) 1863 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1864 ns->disk->disk_name, iob); 1865 return; 1866 } 1867 1868 if (blk_queue_is_zoned(ns->disk->queue)) { 1869 if (nvme_first_scan(ns->disk)) 1870 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1871 ns->disk->disk_name); 1872 return; 1873 } 1874 1875 blk_queue_chunk_sectors(ns->queue, iob); 1876 } 1877 1878 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1879 { 1880 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1881 int ret; 1882 1883 blk_mq_freeze_queue(ns->disk->queue); 1884 ns->lba_shift = id->lbaf[lbaf].ds; 1885 nvme_set_queue_limits(ns->ctrl, ns->queue); 1886 1887 ret = nvme_configure_metadata(ns, id); 1888 if (ret) 1889 goto out_unfreeze; 1890 nvme_set_chunk_sectors(ns, id); 1891 nvme_update_disk_info(ns->disk, ns, id); 1892 1893 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1894 ret = nvme_update_zone_info(ns, lbaf); 1895 if (ret) 1896 goto out_unfreeze; 1897 } 1898 1899 blk_mq_unfreeze_queue(ns->disk->queue); 1900 1901 if (blk_queue_is_zoned(ns->queue)) { 1902 ret = nvme_revalidate_zones(ns); 1903 if (ret && !nvme_first_scan(ns->disk)) 1904 goto out; 1905 } 1906 1907 if (nvme_ns_head_multipath(ns->head)) { 1908 blk_mq_freeze_queue(ns->head->disk->queue); 1909 nvme_update_disk_info(ns->head->disk, ns, id); 1910 blk_stack_limits(&ns->head->disk->queue->limits, 1911 &ns->queue->limits, 0); 1912 blk_queue_update_readahead(ns->head->disk->queue); 1913 blk_mq_unfreeze_queue(ns->head->disk->queue); 1914 } 1915 return 0; 1916 1917 out_unfreeze: 1918 blk_mq_unfreeze_queue(ns->disk->queue); 1919 out: 1920 /* 1921 * If probing fails due an unsupported feature, hide the block device, 1922 * but still allow other access. 1923 */ 1924 if (ret == -ENODEV) { 1925 ns->disk->flags |= GENHD_FL_HIDDEN; 1926 ret = 0; 1927 } 1928 return ret; 1929 } 1930 1931 static char nvme_pr_type(enum pr_type type) 1932 { 1933 switch (type) { 1934 case PR_WRITE_EXCLUSIVE: 1935 return 1; 1936 case PR_EXCLUSIVE_ACCESS: 1937 return 2; 1938 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1939 return 3; 1940 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1941 return 4; 1942 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1943 return 5; 1944 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1945 return 6; 1946 default: 1947 return 0; 1948 } 1949 }; 1950 1951 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1952 u64 key, u64 sa_key, u8 op) 1953 { 1954 struct nvme_ns_head *head = NULL; 1955 struct nvme_ns *ns; 1956 struct nvme_command c; 1957 int srcu_idx, ret; 1958 u8 data[16] = { 0, }; 1959 1960 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1961 if (unlikely(!ns)) 1962 return -EWOULDBLOCK; 1963 1964 put_unaligned_le64(key, &data[0]); 1965 put_unaligned_le64(sa_key, &data[8]); 1966 1967 memset(&c, 0, sizeof(c)); 1968 c.common.opcode = op; 1969 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1970 c.common.cdw10 = cpu_to_le32(cdw10); 1971 1972 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1973 nvme_put_ns_from_disk(head, srcu_idx); 1974 return ret; 1975 } 1976 1977 static int nvme_pr_register(struct block_device *bdev, u64 old, 1978 u64 new, unsigned flags) 1979 { 1980 u32 cdw10; 1981 1982 if (flags & ~PR_FL_IGNORE_KEY) 1983 return -EOPNOTSUPP; 1984 1985 cdw10 = old ? 2 : 0; 1986 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1987 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1988 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1989 } 1990 1991 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1992 enum pr_type type, unsigned flags) 1993 { 1994 u32 cdw10; 1995 1996 if (flags & ~PR_FL_IGNORE_KEY) 1997 return -EOPNOTSUPP; 1998 1999 cdw10 = nvme_pr_type(type) << 8; 2000 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2001 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2002 } 2003 2004 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2005 enum pr_type type, bool abort) 2006 { 2007 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2008 2009 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2010 } 2011 2012 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2013 { 2014 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2015 2016 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2017 } 2018 2019 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2020 { 2021 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2022 2023 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2024 } 2025 2026 const struct pr_ops nvme_pr_ops = { 2027 .pr_register = nvme_pr_register, 2028 .pr_reserve = nvme_pr_reserve, 2029 .pr_release = nvme_pr_release, 2030 .pr_preempt = nvme_pr_preempt, 2031 .pr_clear = nvme_pr_clear, 2032 }; 2033 2034 #ifdef CONFIG_BLK_SED_OPAL 2035 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2036 bool send) 2037 { 2038 struct nvme_ctrl *ctrl = data; 2039 struct nvme_command cmd; 2040 2041 memset(&cmd, 0, sizeof(cmd)); 2042 if (send) 2043 cmd.common.opcode = nvme_admin_security_send; 2044 else 2045 cmd.common.opcode = nvme_admin_security_recv; 2046 cmd.common.nsid = 0; 2047 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2048 cmd.common.cdw11 = cpu_to_le32(len); 2049 2050 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2051 NVME_QID_ANY, 1, 0, false); 2052 } 2053 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2054 #endif /* CONFIG_BLK_SED_OPAL */ 2055 2056 static const struct block_device_operations nvme_bdev_ops = { 2057 .owner = THIS_MODULE, 2058 .ioctl = nvme_ioctl, 2059 .open = nvme_open, 2060 .release = nvme_release, 2061 .getgeo = nvme_getgeo, 2062 .report_zones = nvme_report_zones, 2063 .pr_ops = &nvme_pr_ops, 2064 }; 2065 2066 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2067 { 2068 unsigned long timeout = 2069 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2070 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2071 int ret; 2072 2073 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2074 if (csts == ~0) 2075 return -ENODEV; 2076 if ((csts & NVME_CSTS_RDY) == bit) 2077 break; 2078 2079 usleep_range(1000, 2000); 2080 if (fatal_signal_pending(current)) 2081 return -EINTR; 2082 if (time_after(jiffies, timeout)) { 2083 dev_err(ctrl->device, 2084 "Device not ready; aborting %s, CSTS=0x%x\n", 2085 enabled ? "initialisation" : "reset", csts); 2086 return -ENODEV; 2087 } 2088 } 2089 2090 return ret; 2091 } 2092 2093 /* 2094 * If the device has been passed off to us in an enabled state, just clear 2095 * the enabled bit. The spec says we should set the 'shutdown notification 2096 * bits', but doing so may cause the device to complete commands to the 2097 * admin queue ... and we don't know what memory that might be pointing at! 2098 */ 2099 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2100 { 2101 int ret; 2102 2103 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2104 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2105 2106 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2107 if (ret) 2108 return ret; 2109 2110 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2111 msleep(NVME_QUIRK_DELAY_AMOUNT); 2112 2113 return nvme_wait_ready(ctrl, ctrl->cap, false); 2114 } 2115 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2116 2117 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2118 { 2119 unsigned dev_page_min; 2120 int ret; 2121 2122 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2123 if (ret) { 2124 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2125 return ret; 2126 } 2127 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2128 2129 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2130 dev_err(ctrl->device, 2131 "Minimum device page size %u too large for host (%u)\n", 2132 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2133 return -ENODEV; 2134 } 2135 2136 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2137 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2138 else 2139 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2140 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2141 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2142 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2143 ctrl->ctrl_config |= NVME_CC_ENABLE; 2144 2145 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2146 if (ret) 2147 return ret; 2148 return nvme_wait_ready(ctrl, ctrl->cap, true); 2149 } 2150 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2151 2152 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2153 { 2154 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2155 u32 csts; 2156 int ret; 2157 2158 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2159 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2160 2161 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2162 if (ret) 2163 return ret; 2164 2165 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2166 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2167 break; 2168 2169 msleep(100); 2170 if (fatal_signal_pending(current)) 2171 return -EINTR; 2172 if (time_after(jiffies, timeout)) { 2173 dev_err(ctrl->device, 2174 "Device shutdown incomplete; abort shutdown\n"); 2175 return -ENODEV; 2176 } 2177 } 2178 2179 return ret; 2180 } 2181 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2182 2183 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2184 { 2185 __le64 ts; 2186 int ret; 2187 2188 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2189 return 0; 2190 2191 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2192 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2193 NULL); 2194 if (ret) 2195 dev_warn_once(ctrl->device, 2196 "could not set timestamp (%d)\n", ret); 2197 return ret; 2198 } 2199 2200 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2201 { 2202 struct nvme_feat_host_behavior *host; 2203 int ret; 2204 2205 /* Don't bother enabling the feature if retry delay is not reported */ 2206 if (!ctrl->crdt[0]) 2207 return 0; 2208 2209 host = kzalloc(sizeof(*host), GFP_KERNEL); 2210 if (!host) 2211 return 0; 2212 2213 host->acre = NVME_ENABLE_ACRE; 2214 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2215 host, sizeof(*host), NULL); 2216 kfree(host); 2217 return ret; 2218 } 2219 2220 /* 2221 * APST (Autonomous Power State Transition) lets us program a table of power 2222 * state transitions that the controller will perform automatically. 2223 * We configure it with a simple heuristic: we are willing to spend at most 2% 2224 * of the time transitioning between power states. Therefore, when running in 2225 * any given state, we will enter the next lower-power non-operational state 2226 * after waiting 50 * (enlat + exlat) microseconds, as long as that state's exit 2227 * latency is under the requested maximum latency. 2228 * 2229 * We will not autonomously enter any non-operational state for which the total 2230 * latency exceeds ps_max_latency_us. 2231 * 2232 * Users can set ps_max_latency_us to zero to turn off APST. 2233 */ 2234 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2235 { 2236 struct nvme_feat_auto_pst *table; 2237 unsigned apste = 0; 2238 u64 max_lat_us = 0; 2239 __le64 target = 0; 2240 int max_ps = -1; 2241 int state; 2242 int ret; 2243 2244 /* 2245 * If APST isn't supported or if we haven't been initialized yet, 2246 * then don't do anything. 2247 */ 2248 if (!ctrl->apsta) 2249 return 0; 2250 2251 if (ctrl->npss > 31) { 2252 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2253 return 0; 2254 } 2255 2256 table = kzalloc(sizeof(*table), GFP_KERNEL); 2257 if (!table) 2258 return 0; 2259 2260 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2261 /* Turn off APST. */ 2262 dev_dbg(ctrl->device, "APST disabled\n"); 2263 goto done; 2264 } 2265 2266 /* 2267 * Walk through all states from lowest- to highest-power. 2268 * According to the spec, lower-numbered states use more power. NPSS, 2269 * despite the name, is the index of the lowest-power state, not the 2270 * number of states. 2271 */ 2272 for (state = (int)ctrl->npss; state >= 0; state--) { 2273 u64 total_latency_us, exit_latency_us, transition_ms; 2274 2275 if (target) 2276 table->entries[state] = target; 2277 2278 /* 2279 * Don't allow transitions to the deepest state if it's quirked 2280 * off. 2281 */ 2282 if (state == ctrl->npss && 2283 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2284 continue; 2285 2286 /* 2287 * Is this state a useful non-operational state for higher-power 2288 * states to autonomously transition to? 2289 */ 2290 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2291 continue; 2292 2293 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2294 if (exit_latency_us > ctrl->ps_max_latency_us) 2295 continue; 2296 2297 total_latency_us = exit_latency_us + 2298 le32_to_cpu(ctrl->psd[state].entry_lat); 2299 2300 /* 2301 * This state is good. Use it as the APST idle target for 2302 * higher power states. 2303 */ 2304 transition_ms = total_latency_us + 19; 2305 do_div(transition_ms, 20); 2306 if (transition_ms > (1 << 24) - 1) 2307 transition_ms = (1 << 24) - 1; 2308 2309 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2310 if (max_ps == -1) 2311 max_ps = state; 2312 if (total_latency_us > max_lat_us) 2313 max_lat_us = total_latency_us; 2314 } 2315 2316 if (max_ps == -1) 2317 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2318 else 2319 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2320 max_ps, max_lat_us, (int)sizeof(*table), table); 2321 apste = 1; 2322 2323 done: 2324 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2325 table, sizeof(*table), NULL); 2326 if (ret) 2327 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2328 kfree(table); 2329 return ret; 2330 } 2331 2332 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2333 { 2334 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2335 u64 latency; 2336 2337 switch (val) { 2338 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2339 case PM_QOS_LATENCY_ANY: 2340 latency = U64_MAX; 2341 break; 2342 2343 default: 2344 latency = val; 2345 } 2346 2347 if (ctrl->ps_max_latency_us != latency) { 2348 ctrl->ps_max_latency_us = latency; 2349 if (ctrl->state == NVME_CTRL_LIVE) 2350 nvme_configure_apst(ctrl); 2351 } 2352 } 2353 2354 struct nvme_core_quirk_entry { 2355 /* 2356 * NVMe model and firmware strings are padded with spaces. For 2357 * simplicity, strings in the quirk table are padded with NULLs 2358 * instead. 2359 */ 2360 u16 vid; 2361 const char *mn; 2362 const char *fr; 2363 unsigned long quirks; 2364 }; 2365 2366 static const struct nvme_core_quirk_entry core_quirks[] = { 2367 { 2368 /* 2369 * This Toshiba device seems to die using any APST states. See: 2370 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2371 */ 2372 .vid = 0x1179, 2373 .mn = "THNSF5256GPUK TOSHIBA", 2374 .quirks = NVME_QUIRK_NO_APST, 2375 }, 2376 { 2377 /* 2378 * This LiteON CL1-3D*-Q11 firmware version has a race 2379 * condition associated with actions related to suspend to idle 2380 * LiteON has resolved the problem in future firmware 2381 */ 2382 .vid = 0x14a4, 2383 .fr = "22301111", 2384 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2385 } 2386 }; 2387 2388 /* match is null-terminated but idstr is space-padded. */ 2389 static bool string_matches(const char *idstr, const char *match, size_t len) 2390 { 2391 size_t matchlen; 2392 2393 if (!match) 2394 return true; 2395 2396 matchlen = strlen(match); 2397 WARN_ON_ONCE(matchlen > len); 2398 2399 if (memcmp(idstr, match, matchlen)) 2400 return false; 2401 2402 for (; matchlen < len; matchlen++) 2403 if (idstr[matchlen] != ' ') 2404 return false; 2405 2406 return true; 2407 } 2408 2409 static bool quirk_matches(const struct nvme_id_ctrl *id, 2410 const struct nvme_core_quirk_entry *q) 2411 { 2412 return q->vid == le16_to_cpu(id->vid) && 2413 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2414 string_matches(id->fr, q->fr, sizeof(id->fr)); 2415 } 2416 2417 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2418 struct nvme_id_ctrl *id) 2419 { 2420 size_t nqnlen; 2421 int off; 2422 2423 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2424 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2425 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2426 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2427 return; 2428 } 2429 2430 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2431 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2432 } 2433 2434 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2435 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2436 "nqn.2014.08.org.nvmexpress:%04x%04x", 2437 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2438 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2439 off += sizeof(id->sn); 2440 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2441 off += sizeof(id->mn); 2442 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2443 } 2444 2445 static void nvme_release_subsystem(struct device *dev) 2446 { 2447 struct nvme_subsystem *subsys = 2448 container_of(dev, struct nvme_subsystem, dev); 2449 2450 if (subsys->instance >= 0) 2451 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2452 kfree(subsys); 2453 } 2454 2455 static void nvme_destroy_subsystem(struct kref *ref) 2456 { 2457 struct nvme_subsystem *subsys = 2458 container_of(ref, struct nvme_subsystem, ref); 2459 2460 mutex_lock(&nvme_subsystems_lock); 2461 list_del(&subsys->entry); 2462 mutex_unlock(&nvme_subsystems_lock); 2463 2464 ida_destroy(&subsys->ns_ida); 2465 device_del(&subsys->dev); 2466 put_device(&subsys->dev); 2467 } 2468 2469 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2470 { 2471 kref_put(&subsys->ref, nvme_destroy_subsystem); 2472 } 2473 2474 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2475 { 2476 struct nvme_subsystem *subsys; 2477 2478 lockdep_assert_held(&nvme_subsystems_lock); 2479 2480 /* 2481 * Fail matches for discovery subsystems. This results 2482 * in each discovery controller bound to a unique subsystem. 2483 * This avoids issues with validating controller values 2484 * that can only be true when there is a single unique subsystem. 2485 * There may be multiple and completely independent entities 2486 * that provide discovery controllers. 2487 */ 2488 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2489 return NULL; 2490 2491 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2492 if (strcmp(subsys->subnqn, subsysnqn)) 2493 continue; 2494 if (!kref_get_unless_zero(&subsys->ref)) 2495 continue; 2496 return subsys; 2497 } 2498 2499 return NULL; 2500 } 2501 2502 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2503 struct device_attribute subsys_attr_##_name = \ 2504 __ATTR(_name, _mode, _show, NULL) 2505 2506 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2507 struct device_attribute *attr, 2508 char *buf) 2509 { 2510 struct nvme_subsystem *subsys = 2511 container_of(dev, struct nvme_subsystem, dev); 2512 2513 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2514 } 2515 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2516 2517 #define nvme_subsys_show_str_function(field) \ 2518 static ssize_t subsys_##field##_show(struct device *dev, \ 2519 struct device_attribute *attr, char *buf) \ 2520 { \ 2521 struct nvme_subsystem *subsys = \ 2522 container_of(dev, struct nvme_subsystem, dev); \ 2523 return sysfs_emit(buf, "%.*s\n", \ 2524 (int)sizeof(subsys->field), subsys->field); \ 2525 } \ 2526 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2527 2528 nvme_subsys_show_str_function(model); 2529 nvme_subsys_show_str_function(serial); 2530 nvme_subsys_show_str_function(firmware_rev); 2531 2532 static struct attribute *nvme_subsys_attrs[] = { 2533 &subsys_attr_model.attr, 2534 &subsys_attr_serial.attr, 2535 &subsys_attr_firmware_rev.attr, 2536 &subsys_attr_subsysnqn.attr, 2537 #ifdef CONFIG_NVME_MULTIPATH 2538 &subsys_attr_iopolicy.attr, 2539 #endif 2540 NULL, 2541 }; 2542 2543 static const struct attribute_group nvme_subsys_attrs_group = { 2544 .attrs = nvme_subsys_attrs, 2545 }; 2546 2547 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2548 &nvme_subsys_attrs_group, 2549 NULL, 2550 }; 2551 2552 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2553 { 2554 return ctrl->opts && ctrl->opts->discovery_nqn; 2555 } 2556 2557 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2558 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2559 { 2560 struct nvme_ctrl *tmp; 2561 2562 lockdep_assert_held(&nvme_subsystems_lock); 2563 2564 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2565 if (nvme_state_terminal(tmp)) 2566 continue; 2567 2568 if (tmp->cntlid == ctrl->cntlid) { 2569 dev_err(ctrl->device, 2570 "Duplicate cntlid %u with %s, rejecting\n", 2571 ctrl->cntlid, dev_name(tmp->device)); 2572 return false; 2573 } 2574 2575 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2576 nvme_discovery_ctrl(ctrl)) 2577 continue; 2578 2579 dev_err(ctrl->device, 2580 "Subsystem does not support multiple controllers\n"); 2581 return false; 2582 } 2583 2584 return true; 2585 } 2586 2587 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2588 { 2589 struct nvme_subsystem *subsys, *found; 2590 int ret; 2591 2592 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2593 if (!subsys) 2594 return -ENOMEM; 2595 2596 subsys->instance = -1; 2597 mutex_init(&subsys->lock); 2598 kref_init(&subsys->ref); 2599 INIT_LIST_HEAD(&subsys->ctrls); 2600 INIT_LIST_HEAD(&subsys->nsheads); 2601 nvme_init_subnqn(subsys, ctrl, id); 2602 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2603 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2604 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2605 subsys->vendor_id = le16_to_cpu(id->vid); 2606 subsys->cmic = id->cmic; 2607 subsys->awupf = le16_to_cpu(id->awupf); 2608 #ifdef CONFIG_NVME_MULTIPATH 2609 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2610 #endif 2611 2612 subsys->dev.class = nvme_subsys_class; 2613 subsys->dev.release = nvme_release_subsystem; 2614 subsys->dev.groups = nvme_subsys_attrs_groups; 2615 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2616 device_initialize(&subsys->dev); 2617 2618 mutex_lock(&nvme_subsystems_lock); 2619 found = __nvme_find_get_subsystem(subsys->subnqn); 2620 if (found) { 2621 put_device(&subsys->dev); 2622 subsys = found; 2623 2624 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2625 ret = -EINVAL; 2626 goto out_put_subsystem; 2627 } 2628 } else { 2629 ret = device_add(&subsys->dev); 2630 if (ret) { 2631 dev_err(ctrl->device, 2632 "failed to register subsystem device.\n"); 2633 put_device(&subsys->dev); 2634 goto out_unlock; 2635 } 2636 ida_init(&subsys->ns_ida); 2637 list_add_tail(&subsys->entry, &nvme_subsystems); 2638 } 2639 2640 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2641 dev_name(ctrl->device)); 2642 if (ret) { 2643 dev_err(ctrl->device, 2644 "failed to create sysfs link from subsystem.\n"); 2645 goto out_put_subsystem; 2646 } 2647 2648 if (!found) 2649 subsys->instance = ctrl->instance; 2650 ctrl->subsys = subsys; 2651 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2652 mutex_unlock(&nvme_subsystems_lock); 2653 return 0; 2654 2655 out_put_subsystem: 2656 nvme_put_subsystem(subsys); 2657 out_unlock: 2658 mutex_unlock(&nvme_subsystems_lock); 2659 return ret; 2660 } 2661 2662 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2663 void *log, size_t size, u64 offset) 2664 { 2665 struct nvme_command c = { }; 2666 u32 dwlen = nvme_bytes_to_numd(size); 2667 2668 c.get_log_page.opcode = nvme_admin_get_log_page; 2669 c.get_log_page.nsid = cpu_to_le32(nsid); 2670 c.get_log_page.lid = log_page; 2671 c.get_log_page.lsp = lsp; 2672 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2673 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2674 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2675 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2676 c.get_log_page.csi = csi; 2677 2678 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2679 } 2680 2681 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2682 struct nvme_effects_log **log) 2683 { 2684 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2685 int ret; 2686 2687 if (cel) 2688 goto out; 2689 2690 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2691 if (!cel) 2692 return -ENOMEM; 2693 2694 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2695 cel, sizeof(*cel), 0); 2696 if (ret) { 2697 kfree(cel); 2698 return ret; 2699 } 2700 2701 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2702 out: 2703 *log = cel; 2704 return 0; 2705 } 2706 2707 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2708 { 2709 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2710 2711 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2712 return UINT_MAX; 2713 return val; 2714 } 2715 2716 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2717 { 2718 struct nvme_command c = { }; 2719 struct nvme_id_ctrl_nvm *id; 2720 int ret; 2721 2722 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2723 ctrl->max_discard_sectors = UINT_MAX; 2724 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2725 } else { 2726 ctrl->max_discard_sectors = 0; 2727 ctrl->max_discard_segments = 0; 2728 } 2729 2730 /* 2731 * Even though NVMe spec explicitly states that MDTS is not applicable 2732 * to the write-zeroes, we are cautious and limit the size to the 2733 * controllers max_hw_sectors value, which is based on the MDTS field 2734 * and possibly other limiting factors. 2735 */ 2736 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2737 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2738 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2739 else 2740 ctrl->max_zeroes_sectors = 0; 2741 2742 if (nvme_ctrl_limited_cns(ctrl)) 2743 return 0; 2744 2745 id = kzalloc(sizeof(*id), GFP_KERNEL); 2746 if (!id) 2747 return 0; 2748 2749 c.identify.opcode = nvme_admin_identify; 2750 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2751 c.identify.csi = NVME_CSI_NVM; 2752 2753 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2754 if (ret) 2755 goto free_data; 2756 2757 if (id->dmrl) 2758 ctrl->max_discard_segments = id->dmrl; 2759 if (id->dmrsl) 2760 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2761 if (id->wzsl) 2762 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2763 2764 free_data: 2765 kfree(id); 2766 return ret; 2767 } 2768 2769 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2770 { 2771 struct nvme_id_ctrl *id; 2772 u32 max_hw_sectors; 2773 bool prev_apst_enabled; 2774 int ret; 2775 2776 ret = nvme_identify_ctrl(ctrl, &id); 2777 if (ret) { 2778 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2779 return -EIO; 2780 } 2781 2782 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2783 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2784 if (ret < 0) 2785 goto out_free; 2786 } 2787 2788 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2789 ctrl->cntlid = le16_to_cpu(id->cntlid); 2790 2791 if (!ctrl->identified) { 2792 unsigned int i; 2793 2794 ret = nvme_init_subsystem(ctrl, id); 2795 if (ret) 2796 goto out_free; 2797 2798 /* 2799 * Check for quirks. Quirk can depend on firmware version, 2800 * so, in principle, the set of quirks present can change 2801 * across a reset. As a possible future enhancement, we 2802 * could re-scan for quirks every time we reinitialize 2803 * the device, but we'd have to make sure that the driver 2804 * behaves intelligently if the quirks change. 2805 */ 2806 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2807 if (quirk_matches(id, &core_quirks[i])) 2808 ctrl->quirks |= core_quirks[i].quirks; 2809 } 2810 } 2811 2812 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2813 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2814 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2815 } 2816 2817 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2818 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2819 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2820 2821 ctrl->oacs = le16_to_cpu(id->oacs); 2822 ctrl->oncs = le16_to_cpu(id->oncs); 2823 ctrl->mtfa = le16_to_cpu(id->mtfa); 2824 ctrl->oaes = le32_to_cpu(id->oaes); 2825 ctrl->wctemp = le16_to_cpu(id->wctemp); 2826 ctrl->cctemp = le16_to_cpu(id->cctemp); 2827 2828 atomic_set(&ctrl->abort_limit, id->acl + 1); 2829 ctrl->vwc = id->vwc; 2830 if (id->mdts) 2831 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2832 else 2833 max_hw_sectors = UINT_MAX; 2834 ctrl->max_hw_sectors = 2835 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2836 2837 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2838 ctrl->sgls = le32_to_cpu(id->sgls); 2839 ctrl->kas = le16_to_cpu(id->kas); 2840 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2841 ctrl->ctratt = le32_to_cpu(id->ctratt); 2842 2843 if (id->rtd3e) { 2844 /* us -> s */ 2845 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 2846 2847 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2848 shutdown_timeout, 60); 2849 2850 if (ctrl->shutdown_timeout != shutdown_timeout) 2851 dev_info(ctrl->device, 2852 "Shutdown timeout set to %u seconds\n", 2853 ctrl->shutdown_timeout); 2854 } else 2855 ctrl->shutdown_timeout = shutdown_timeout; 2856 2857 ctrl->npss = id->npss; 2858 ctrl->apsta = id->apsta; 2859 prev_apst_enabled = ctrl->apst_enabled; 2860 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2861 if (force_apst && id->apsta) { 2862 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2863 ctrl->apst_enabled = true; 2864 } else { 2865 ctrl->apst_enabled = false; 2866 } 2867 } else { 2868 ctrl->apst_enabled = id->apsta; 2869 } 2870 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2871 2872 if (ctrl->ops->flags & NVME_F_FABRICS) { 2873 ctrl->icdoff = le16_to_cpu(id->icdoff); 2874 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2875 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2876 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2877 2878 /* 2879 * In fabrics we need to verify the cntlid matches the 2880 * admin connect 2881 */ 2882 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2883 dev_err(ctrl->device, 2884 "Mismatching cntlid: Connect %u vs Identify " 2885 "%u, rejecting\n", 2886 ctrl->cntlid, le16_to_cpu(id->cntlid)); 2887 ret = -EINVAL; 2888 goto out_free; 2889 } 2890 2891 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 2892 dev_err(ctrl->device, 2893 "keep-alive support is mandatory for fabrics\n"); 2894 ret = -EINVAL; 2895 goto out_free; 2896 } 2897 } else { 2898 ctrl->hmpre = le32_to_cpu(id->hmpre); 2899 ctrl->hmmin = le32_to_cpu(id->hmmin); 2900 ctrl->hmminds = le32_to_cpu(id->hmminds); 2901 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2902 } 2903 2904 ret = nvme_mpath_init_identify(ctrl, id); 2905 if (ret < 0) 2906 goto out_free; 2907 2908 if (ctrl->apst_enabled && !prev_apst_enabled) 2909 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2910 else if (!ctrl->apst_enabled && prev_apst_enabled) 2911 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2912 2913 out_free: 2914 kfree(id); 2915 return ret; 2916 } 2917 2918 /* 2919 * Initialize the cached copies of the Identify data and various controller 2920 * register in our nvme_ctrl structure. This should be called as soon as 2921 * the admin queue is fully up and running. 2922 */ 2923 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 2924 { 2925 int ret; 2926 2927 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2928 if (ret) { 2929 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2930 return ret; 2931 } 2932 2933 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2934 2935 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2936 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2937 2938 ret = nvme_init_identify(ctrl); 2939 if (ret) 2940 return ret; 2941 2942 ret = nvme_init_non_mdts_limits(ctrl); 2943 if (ret < 0) 2944 return ret; 2945 2946 ret = nvme_configure_apst(ctrl); 2947 if (ret < 0) 2948 return ret; 2949 2950 ret = nvme_configure_timestamp(ctrl); 2951 if (ret < 0) 2952 return ret; 2953 2954 ret = nvme_configure_directives(ctrl); 2955 if (ret < 0) 2956 return ret; 2957 2958 ret = nvme_configure_acre(ctrl); 2959 if (ret < 0) 2960 return ret; 2961 2962 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 2963 ret = nvme_hwmon_init(ctrl); 2964 if (ret < 0) 2965 return ret; 2966 } 2967 2968 ctrl->identified = true; 2969 2970 return 0; 2971 } 2972 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 2973 2974 static int nvme_dev_open(struct inode *inode, struct file *file) 2975 { 2976 struct nvme_ctrl *ctrl = 2977 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2978 2979 switch (ctrl->state) { 2980 case NVME_CTRL_LIVE: 2981 break; 2982 default: 2983 return -EWOULDBLOCK; 2984 } 2985 2986 nvme_get_ctrl(ctrl); 2987 if (!try_module_get(ctrl->ops->module)) { 2988 nvme_put_ctrl(ctrl); 2989 return -EINVAL; 2990 } 2991 2992 file->private_data = ctrl; 2993 return 0; 2994 } 2995 2996 static int nvme_dev_release(struct inode *inode, struct file *file) 2997 { 2998 struct nvme_ctrl *ctrl = 2999 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3000 3001 module_put(ctrl->ops->module); 3002 nvme_put_ctrl(ctrl); 3003 return 0; 3004 } 3005 3006 static const struct file_operations nvme_dev_fops = { 3007 .owner = THIS_MODULE, 3008 .open = nvme_dev_open, 3009 .release = nvme_dev_release, 3010 .unlocked_ioctl = nvme_dev_ioctl, 3011 .compat_ioctl = compat_ptr_ioctl, 3012 }; 3013 3014 static ssize_t nvme_sysfs_reset(struct device *dev, 3015 struct device_attribute *attr, const char *buf, 3016 size_t count) 3017 { 3018 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3019 int ret; 3020 3021 ret = nvme_reset_ctrl_sync(ctrl); 3022 if (ret < 0) 3023 return ret; 3024 return count; 3025 } 3026 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3027 3028 static ssize_t nvme_sysfs_rescan(struct device *dev, 3029 struct device_attribute *attr, const char *buf, 3030 size_t count) 3031 { 3032 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3033 3034 nvme_queue_scan(ctrl); 3035 return count; 3036 } 3037 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3038 3039 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3040 { 3041 struct gendisk *disk = dev_to_disk(dev); 3042 3043 if (disk->fops == &nvme_bdev_ops) 3044 return nvme_get_ns_from_dev(dev)->head; 3045 else 3046 return disk->private_data; 3047 } 3048 3049 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3050 char *buf) 3051 { 3052 struct nvme_ns_head *head = dev_to_ns_head(dev); 3053 struct nvme_ns_ids *ids = &head->ids; 3054 struct nvme_subsystem *subsys = head->subsys; 3055 int serial_len = sizeof(subsys->serial); 3056 int model_len = sizeof(subsys->model); 3057 3058 if (!uuid_is_null(&ids->uuid)) 3059 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3060 3061 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3062 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3063 3064 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3065 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3066 3067 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3068 subsys->serial[serial_len - 1] == '\0')) 3069 serial_len--; 3070 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3071 subsys->model[model_len - 1] == '\0')) 3072 model_len--; 3073 3074 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3075 serial_len, subsys->serial, model_len, subsys->model, 3076 head->ns_id); 3077 } 3078 static DEVICE_ATTR_RO(wwid); 3079 3080 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3081 char *buf) 3082 { 3083 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3084 } 3085 static DEVICE_ATTR_RO(nguid); 3086 3087 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3088 char *buf) 3089 { 3090 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3091 3092 /* For backward compatibility expose the NGUID to userspace if 3093 * we have no UUID set 3094 */ 3095 if (uuid_is_null(&ids->uuid)) { 3096 printk_ratelimited(KERN_WARNING 3097 "No UUID available providing old NGUID\n"); 3098 return sysfs_emit(buf, "%pU\n", ids->nguid); 3099 } 3100 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3101 } 3102 static DEVICE_ATTR_RO(uuid); 3103 3104 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3105 char *buf) 3106 { 3107 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3108 } 3109 static DEVICE_ATTR_RO(eui); 3110 3111 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3112 char *buf) 3113 { 3114 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3115 } 3116 static DEVICE_ATTR_RO(nsid); 3117 3118 static struct attribute *nvme_ns_id_attrs[] = { 3119 &dev_attr_wwid.attr, 3120 &dev_attr_uuid.attr, 3121 &dev_attr_nguid.attr, 3122 &dev_attr_eui.attr, 3123 &dev_attr_nsid.attr, 3124 #ifdef CONFIG_NVME_MULTIPATH 3125 &dev_attr_ana_grpid.attr, 3126 &dev_attr_ana_state.attr, 3127 #endif 3128 NULL, 3129 }; 3130 3131 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3132 struct attribute *a, int n) 3133 { 3134 struct device *dev = container_of(kobj, struct device, kobj); 3135 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3136 3137 if (a == &dev_attr_uuid.attr) { 3138 if (uuid_is_null(&ids->uuid) && 3139 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3140 return 0; 3141 } 3142 if (a == &dev_attr_nguid.attr) { 3143 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3144 return 0; 3145 } 3146 if (a == &dev_attr_eui.attr) { 3147 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3148 return 0; 3149 } 3150 #ifdef CONFIG_NVME_MULTIPATH 3151 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3152 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3153 return 0; 3154 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3155 return 0; 3156 } 3157 #endif 3158 return a->mode; 3159 } 3160 3161 static const struct attribute_group nvme_ns_id_attr_group = { 3162 .attrs = nvme_ns_id_attrs, 3163 .is_visible = nvme_ns_id_attrs_are_visible, 3164 }; 3165 3166 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3167 &nvme_ns_id_attr_group, 3168 #ifdef CONFIG_NVM 3169 &nvme_nvm_attr_group, 3170 #endif 3171 NULL, 3172 }; 3173 3174 #define nvme_show_str_function(field) \ 3175 static ssize_t field##_show(struct device *dev, \ 3176 struct device_attribute *attr, char *buf) \ 3177 { \ 3178 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3179 return sysfs_emit(buf, "%.*s\n", \ 3180 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3181 } \ 3182 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3183 3184 nvme_show_str_function(model); 3185 nvme_show_str_function(serial); 3186 nvme_show_str_function(firmware_rev); 3187 3188 #define nvme_show_int_function(field) \ 3189 static ssize_t field##_show(struct device *dev, \ 3190 struct device_attribute *attr, char *buf) \ 3191 { \ 3192 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3193 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3194 } \ 3195 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3196 3197 nvme_show_int_function(cntlid); 3198 nvme_show_int_function(numa_node); 3199 nvme_show_int_function(queue_count); 3200 nvme_show_int_function(sqsize); 3201 nvme_show_int_function(kato); 3202 3203 static ssize_t nvme_sysfs_delete(struct device *dev, 3204 struct device_attribute *attr, const char *buf, 3205 size_t count) 3206 { 3207 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3208 3209 if (device_remove_file_self(dev, attr)) 3210 nvme_delete_ctrl_sync(ctrl); 3211 return count; 3212 } 3213 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3214 3215 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3216 struct device_attribute *attr, 3217 char *buf) 3218 { 3219 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3220 3221 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3222 } 3223 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3224 3225 static ssize_t nvme_sysfs_show_state(struct device *dev, 3226 struct device_attribute *attr, 3227 char *buf) 3228 { 3229 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3230 static const char *const state_name[] = { 3231 [NVME_CTRL_NEW] = "new", 3232 [NVME_CTRL_LIVE] = "live", 3233 [NVME_CTRL_RESETTING] = "resetting", 3234 [NVME_CTRL_CONNECTING] = "connecting", 3235 [NVME_CTRL_DELETING] = "deleting", 3236 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3237 [NVME_CTRL_DEAD] = "dead", 3238 }; 3239 3240 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3241 state_name[ctrl->state]) 3242 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3243 3244 return sysfs_emit(buf, "unknown state\n"); 3245 } 3246 3247 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3248 3249 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3250 struct device_attribute *attr, 3251 char *buf) 3252 { 3253 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3254 3255 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3256 } 3257 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3258 3259 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3260 struct device_attribute *attr, 3261 char *buf) 3262 { 3263 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3264 3265 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3266 } 3267 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3268 3269 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3270 struct device_attribute *attr, 3271 char *buf) 3272 { 3273 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3274 3275 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3276 } 3277 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3278 3279 static ssize_t nvme_sysfs_show_address(struct device *dev, 3280 struct device_attribute *attr, 3281 char *buf) 3282 { 3283 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3284 3285 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3286 } 3287 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3288 3289 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3290 struct device_attribute *attr, char *buf) 3291 { 3292 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3293 struct nvmf_ctrl_options *opts = ctrl->opts; 3294 3295 if (ctrl->opts->max_reconnects == -1) 3296 return sysfs_emit(buf, "off\n"); 3297 return sysfs_emit(buf, "%d\n", 3298 opts->max_reconnects * opts->reconnect_delay); 3299 } 3300 3301 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3302 struct device_attribute *attr, const char *buf, size_t count) 3303 { 3304 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3305 struct nvmf_ctrl_options *opts = ctrl->opts; 3306 int ctrl_loss_tmo, err; 3307 3308 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3309 if (err) 3310 return -EINVAL; 3311 3312 if (ctrl_loss_tmo < 0) 3313 opts->max_reconnects = -1; 3314 else 3315 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3316 opts->reconnect_delay); 3317 return count; 3318 } 3319 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3320 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3321 3322 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3323 struct device_attribute *attr, char *buf) 3324 { 3325 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3326 3327 if (ctrl->opts->reconnect_delay == -1) 3328 return sysfs_emit(buf, "off\n"); 3329 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3330 } 3331 3332 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3333 struct device_attribute *attr, const char *buf, size_t count) 3334 { 3335 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3336 unsigned int v; 3337 int err; 3338 3339 err = kstrtou32(buf, 10, &v); 3340 if (err) 3341 return err; 3342 3343 ctrl->opts->reconnect_delay = v; 3344 return count; 3345 } 3346 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3347 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3348 3349 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3350 struct device_attribute *attr, char *buf) 3351 { 3352 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3353 3354 if (ctrl->opts->fast_io_fail_tmo == -1) 3355 return sysfs_emit(buf, "off\n"); 3356 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3357 } 3358 3359 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3360 struct device_attribute *attr, const char *buf, size_t count) 3361 { 3362 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3363 struct nvmf_ctrl_options *opts = ctrl->opts; 3364 int fast_io_fail_tmo, err; 3365 3366 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3367 if (err) 3368 return -EINVAL; 3369 3370 if (fast_io_fail_tmo < 0) 3371 opts->fast_io_fail_tmo = -1; 3372 else 3373 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3374 return count; 3375 } 3376 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3377 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3378 3379 static struct attribute *nvme_dev_attrs[] = { 3380 &dev_attr_reset_controller.attr, 3381 &dev_attr_rescan_controller.attr, 3382 &dev_attr_model.attr, 3383 &dev_attr_serial.attr, 3384 &dev_attr_firmware_rev.attr, 3385 &dev_attr_cntlid.attr, 3386 &dev_attr_delete_controller.attr, 3387 &dev_attr_transport.attr, 3388 &dev_attr_subsysnqn.attr, 3389 &dev_attr_address.attr, 3390 &dev_attr_state.attr, 3391 &dev_attr_numa_node.attr, 3392 &dev_attr_queue_count.attr, 3393 &dev_attr_sqsize.attr, 3394 &dev_attr_hostnqn.attr, 3395 &dev_attr_hostid.attr, 3396 &dev_attr_ctrl_loss_tmo.attr, 3397 &dev_attr_reconnect_delay.attr, 3398 &dev_attr_fast_io_fail_tmo.attr, 3399 &dev_attr_kato.attr, 3400 NULL 3401 }; 3402 3403 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3404 struct attribute *a, int n) 3405 { 3406 struct device *dev = container_of(kobj, struct device, kobj); 3407 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3408 3409 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3410 return 0; 3411 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3412 return 0; 3413 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3414 return 0; 3415 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3416 return 0; 3417 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3418 return 0; 3419 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3420 return 0; 3421 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3422 return 0; 3423 3424 return a->mode; 3425 } 3426 3427 static const struct attribute_group nvme_dev_attrs_group = { 3428 .attrs = nvme_dev_attrs, 3429 .is_visible = nvme_dev_attrs_are_visible, 3430 }; 3431 3432 static const struct attribute_group *nvme_dev_attr_groups[] = { 3433 &nvme_dev_attrs_group, 3434 NULL, 3435 }; 3436 3437 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3438 unsigned nsid) 3439 { 3440 struct nvme_ns_head *h; 3441 3442 lockdep_assert_held(&subsys->lock); 3443 3444 list_for_each_entry(h, &subsys->nsheads, entry) { 3445 if (h->ns_id == nsid && nvme_tryget_ns_head(h)) 3446 return h; 3447 } 3448 3449 return NULL; 3450 } 3451 3452 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3453 struct nvme_ns_head *new) 3454 { 3455 struct nvme_ns_head *h; 3456 3457 lockdep_assert_held(&subsys->lock); 3458 3459 list_for_each_entry(h, &subsys->nsheads, entry) { 3460 if (nvme_ns_ids_valid(&new->ids) && 3461 nvme_ns_ids_equal(&new->ids, &h->ids)) 3462 return -EINVAL; 3463 } 3464 3465 return 0; 3466 } 3467 3468 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3469 { 3470 cdev_device_del(cdev, cdev_device); 3471 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(cdev_device->devt)); 3472 } 3473 3474 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3475 const struct file_operations *fops, struct module *owner) 3476 { 3477 int minor, ret; 3478 3479 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL); 3480 if (minor < 0) 3481 return minor; 3482 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3483 cdev_device->class = nvme_ns_chr_class; 3484 device_initialize(cdev_device); 3485 cdev_init(cdev, fops); 3486 cdev->owner = owner; 3487 ret = cdev_device_add(cdev, cdev_device); 3488 if (ret) 3489 ida_simple_remove(&nvme_ns_chr_minor_ida, minor); 3490 return ret; 3491 } 3492 3493 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3494 { 3495 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3496 } 3497 3498 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3499 { 3500 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3501 return 0; 3502 } 3503 3504 static const struct file_operations nvme_ns_chr_fops = { 3505 .owner = THIS_MODULE, 3506 .open = nvme_ns_chr_open, 3507 .release = nvme_ns_chr_release, 3508 .unlocked_ioctl = nvme_ns_chr_ioctl, 3509 .compat_ioctl = compat_ptr_ioctl, 3510 }; 3511 3512 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3513 { 3514 int ret; 3515 3516 ns->cdev_device.parent = ns->ctrl->device; 3517 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3518 ns->ctrl->instance, ns->head->instance); 3519 if (ret) 3520 return ret; 3521 ret = nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3522 ns->ctrl->ops->module); 3523 if (ret) 3524 kfree_const(ns->cdev_device.kobj.name); 3525 return ret; 3526 } 3527 3528 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3529 unsigned nsid, struct nvme_ns_ids *ids) 3530 { 3531 struct nvme_ns_head *head; 3532 size_t size = sizeof(*head); 3533 int ret = -ENOMEM; 3534 3535 #ifdef CONFIG_NVME_MULTIPATH 3536 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3537 #endif 3538 3539 head = kzalloc(size, GFP_KERNEL); 3540 if (!head) 3541 goto out; 3542 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3543 if (ret < 0) 3544 goto out_free_head; 3545 head->instance = ret; 3546 INIT_LIST_HEAD(&head->list); 3547 ret = init_srcu_struct(&head->srcu); 3548 if (ret) 3549 goto out_ida_remove; 3550 head->subsys = ctrl->subsys; 3551 head->ns_id = nsid; 3552 head->ids = *ids; 3553 kref_init(&head->ref); 3554 3555 ret = __nvme_check_ids(ctrl->subsys, head); 3556 if (ret) { 3557 dev_err(ctrl->device, 3558 "duplicate IDs for nsid %d\n", nsid); 3559 goto out_cleanup_srcu; 3560 } 3561 3562 if (head->ids.csi) { 3563 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3564 if (ret) 3565 goto out_cleanup_srcu; 3566 } else 3567 head->effects = ctrl->effects; 3568 3569 ret = nvme_mpath_alloc_disk(ctrl, head); 3570 if (ret) 3571 goto out_cleanup_srcu; 3572 3573 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3574 3575 kref_get(&ctrl->subsys->ref); 3576 3577 return head; 3578 out_cleanup_srcu: 3579 cleanup_srcu_struct(&head->srcu); 3580 out_ida_remove: 3581 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3582 out_free_head: 3583 kfree(head); 3584 out: 3585 if (ret > 0) 3586 ret = blk_status_to_errno(nvme_error_status(ret)); 3587 return ERR_PTR(ret); 3588 } 3589 3590 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3591 struct nvme_ns_ids *ids, bool is_shared) 3592 { 3593 struct nvme_ctrl *ctrl = ns->ctrl; 3594 struct nvme_ns_head *head = NULL; 3595 int ret = 0; 3596 3597 mutex_lock(&ctrl->subsys->lock); 3598 head = nvme_find_ns_head(ctrl->subsys, nsid); 3599 if (!head) { 3600 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3601 if (IS_ERR(head)) { 3602 ret = PTR_ERR(head); 3603 goto out_unlock; 3604 } 3605 head->shared = is_shared; 3606 } else { 3607 ret = -EINVAL; 3608 if (!is_shared || !head->shared) { 3609 dev_err(ctrl->device, 3610 "Duplicate unshared namespace %d\n", nsid); 3611 goto out_put_ns_head; 3612 } 3613 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3614 dev_err(ctrl->device, 3615 "IDs don't match for shared namespace %d\n", 3616 nsid); 3617 goto out_put_ns_head; 3618 } 3619 } 3620 3621 list_add_tail_rcu(&ns->siblings, &head->list); 3622 ns->head = head; 3623 mutex_unlock(&ctrl->subsys->lock); 3624 return 0; 3625 3626 out_put_ns_head: 3627 nvme_put_ns_head(head); 3628 out_unlock: 3629 mutex_unlock(&ctrl->subsys->lock); 3630 return ret; 3631 } 3632 3633 static int ns_cmp(void *priv, const struct list_head *a, 3634 const struct list_head *b) 3635 { 3636 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3637 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3638 3639 return nsa->head->ns_id - nsb->head->ns_id; 3640 } 3641 3642 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3643 { 3644 struct nvme_ns *ns, *ret = NULL; 3645 3646 down_read(&ctrl->namespaces_rwsem); 3647 list_for_each_entry(ns, &ctrl->namespaces, list) { 3648 if (ns->head->ns_id == nsid) { 3649 if (!nvme_get_ns(ns)) 3650 continue; 3651 ret = ns; 3652 break; 3653 } 3654 if (ns->head->ns_id > nsid) 3655 break; 3656 } 3657 up_read(&ctrl->namespaces_rwsem); 3658 return ret; 3659 } 3660 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3661 3662 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3663 struct nvme_ns_ids *ids) 3664 { 3665 struct nvme_ns *ns; 3666 struct gendisk *disk; 3667 struct nvme_id_ns *id; 3668 int node = ctrl->numa_node; 3669 3670 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3671 return; 3672 3673 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3674 if (!ns) 3675 goto out_free_id; 3676 3677 ns->queue = blk_mq_init_queue(ctrl->tagset); 3678 if (IS_ERR(ns->queue)) 3679 goto out_free_ns; 3680 3681 if (ctrl->opts && ctrl->opts->data_digest) 3682 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3683 3684 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3685 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3686 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3687 3688 ns->queue->queuedata = ns; 3689 ns->ctrl = ctrl; 3690 kref_init(&ns->kref); 3691 3692 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3693 goto out_free_queue; 3694 3695 disk = alloc_disk_node(0, node); 3696 if (!disk) 3697 goto out_unlink_ns; 3698 3699 disk->fops = &nvme_bdev_ops; 3700 disk->private_data = ns; 3701 disk->queue = ns->queue; 3702 disk->flags = GENHD_FL_EXT_DEVT; 3703 /* 3704 * Without the multipath code enabled, multiple controller per 3705 * subsystems are visible as devices and thus we cannot use the 3706 * subsystem instance. 3707 */ 3708 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags)) 3709 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3710 ns->head->instance); 3711 ns->disk = disk; 3712 3713 if (nvme_update_ns_info(ns, id)) 3714 goto out_put_disk; 3715 3716 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3717 if (nvme_nvm_register(ns, disk->disk_name, node)) { 3718 dev_warn(ctrl->device, "LightNVM init failure\n"); 3719 goto out_put_disk; 3720 } 3721 } 3722 3723 down_write(&ctrl->namespaces_rwsem); 3724 list_add_tail(&ns->list, &ctrl->namespaces); 3725 up_write(&ctrl->namespaces_rwsem); 3726 3727 nvme_get_ctrl(ctrl); 3728 3729 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3730 if (!nvme_ns_head_multipath(ns->head)) 3731 nvme_add_ns_cdev(ns); 3732 3733 nvme_mpath_add_disk(ns, id); 3734 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3735 kfree(id); 3736 3737 return; 3738 out_put_disk: 3739 /* prevent double queue cleanup */ 3740 ns->disk->queue = NULL; 3741 put_disk(ns->disk); 3742 out_unlink_ns: 3743 mutex_lock(&ctrl->subsys->lock); 3744 list_del_rcu(&ns->siblings); 3745 if (list_empty(&ns->head->list)) 3746 list_del_init(&ns->head->entry); 3747 mutex_unlock(&ctrl->subsys->lock); 3748 nvme_put_ns_head(ns->head); 3749 out_free_queue: 3750 blk_cleanup_queue(ns->queue); 3751 out_free_ns: 3752 kfree(ns); 3753 out_free_id: 3754 kfree(id); 3755 } 3756 3757 static void nvme_ns_remove(struct nvme_ns *ns) 3758 { 3759 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3760 return; 3761 3762 set_capacity(ns->disk, 0); 3763 nvme_fault_inject_fini(&ns->fault_inject); 3764 3765 mutex_lock(&ns->ctrl->subsys->lock); 3766 list_del_rcu(&ns->siblings); 3767 if (list_empty(&ns->head->list)) 3768 list_del_init(&ns->head->entry); 3769 mutex_unlock(&ns->ctrl->subsys->lock); 3770 3771 synchronize_rcu(); /* guarantee not available in head->list */ 3772 nvme_mpath_clear_current_path(ns); 3773 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3774 3775 if (ns->disk->flags & GENHD_FL_UP) { 3776 if (!nvme_ns_head_multipath(ns->head)) 3777 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3778 del_gendisk(ns->disk); 3779 blk_cleanup_queue(ns->queue); 3780 if (blk_get_integrity(ns->disk)) 3781 blk_integrity_unregister(ns->disk); 3782 } 3783 3784 down_write(&ns->ctrl->namespaces_rwsem); 3785 list_del_init(&ns->list); 3786 up_write(&ns->ctrl->namespaces_rwsem); 3787 3788 nvme_mpath_check_last_path(ns); 3789 nvme_put_ns(ns); 3790 } 3791 3792 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3793 { 3794 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3795 3796 if (ns) { 3797 nvme_ns_remove(ns); 3798 nvme_put_ns(ns); 3799 } 3800 } 3801 3802 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 3803 { 3804 struct nvme_id_ns *id; 3805 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3806 3807 if (test_bit(NVME_NS_DEAD, &ns->flags)) 3808 goto out; 3809 3810 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 3811 if (ret) 3812 goto out; 3813 3814 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3815 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 3816 dev_err(ns->ctrl->device, 3817 "identifiers changed for nsid %d\n", ns->head->ns_id); 3818 goto out_free_id; 3819 } 3820 3821 ret = nvme_update_ns_info(ns, id); 3822 3823 out_free_id: 3824 kfree(id); 3825 out: 3826 /* 3827 * Only remove the namespace if we got a fatal error back from the 3828 * device, otherwise ignore the error and just move on. 3829 * 3830 * TODO: we should probably schedule a delayed retry here. 3831 */ 3832 if (ret > 0 && (ret & NVME_SC_DNR)) 3833 nvme_ns_remove(ns); 3834 } 3835 3836 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3837 { 3838 struct nvme_ns_ids ids = { }; 3839 struct nvme_ns *ns; 3840 3841 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 3842 return; 3843 3844 ns = nvme_find_get_ns(ctrl, nsid); 3845 if (ns) { 3846 nvme_validate_ns(ns, &ids); 3847 nvme_put_ns(ns); 3848 return; 3849 } 3850 3851 switch (ids.csi) { 3852 case NVME_CSI_NVM: 3853 nvme_alloc_ns(ctrl, nsid, &ids); 3854 break; 3855 case NVME_CSI_ZNS: 3856 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 3857 dev_warn(ctrl->device, 3858 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 3859 nsid); 3860 break; 3861 } 3862 if (!nvme_multi_css(ctrl)) { 3863 dev_warn(ctrl->device, 3864 "command set not reported for nsid: %d\n", 3865 nsid); 3866 break; 3867 } 3868 nvme_alloc_ns(ctrl, nsid, &ids); 3869 break; 3870 default: 3871 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 3872 ids.csi, nsid); 3873 break; 3874 } 3875 } 3876 3877 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3878 unsigned nsid) 3879 { 3880 struct nvme_ns *ns, *next; 3881 LIST_HEAD(rm_list); 3882 3883 down_write(&ctrl->namespaces_rwsem); 3884 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3885 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3886 list_move_tail(&ns->list, &rm_list); 3887 } 3888 up_write(&ctrl->namespaces_rwsem); 3889 3890 list_for_each_entry_safe(ns, next, &rm_list, list) 3891 nvme_ns_remove(ns); 3892 3893 } 3894 3895 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3896 { 3897 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3898 __le32 *ns_list; 3899 u32 prev = 0; 3900 int ret = 0, i; 3901 3902 if (nvme_ctrl_limited_cns(ctrl)) 3903 return -EOPNOTSUPP; 3904 3905 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3906 if (!ns_list) 3907 return -ENOMEM; 3908 3909 for (;;) { 3910 struct nvme_command cmd = { 3911 .identify.opcode = nvme_admin_identify, 3912 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 3913 .identify.nsid = cpu_to_le32(prev), 3914 }; 3915 3916 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 3917 NVME_IDENTIFY_DATA_SIZE); 3918 if (ret) { 3919 dev_warn(ctrl->device, 3920 "Identify NS List failed (status=0x%x)\n", ret); 3921 goto free; 3922 } 3923 3924 for (i = 0; i < nr_entries; i++) { 3925 u32 nsid = le32_to_cpu(ns_list[i]); 3926 3927 if (!nsid) /* end of the list? */ 3928 goto out; 3929 nvme_validate_or_alloc_ns(ctrl, nsid); 3930 while (++prev < nsid) 3931 nvme_ns_remove_by_nsid(ctrl, prev); 3932 } 3933 } 3934 out: 3935 nvme_remove_invalid_namespaces(ctrl, prev); 3936 free: 3937 kfree(ns_list); 3938 return ret; 3939 } 3940 3941 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 3942 { 3943 struct nvme_id_ctrl *id; 3944 u32 nn, i; 3945 3946 if (nvme_identify_ctrl(ctrl, &id)) 3947 return; 3948 nn = le32_to_cpu(id->nn); 3949 kfree(id); 3950 3951 for (i = 1; i <= nn; i++) 3952 nvme_validate_or_alloc_ns(ctrl, i); 3953 3954 nvme_remove_invalid_namespaces(ctrl, nn); 3955 } 3956 3957 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3958 { 3959 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3960 __le32 *log; 3961 int error; 3962 3963 log = kzalloc(log_size, GFP_KERNEL); 3964 if (!log) 3965 return; 3966 3967 /* 3968 * We need to read the log to clear the AEN, but we don't want to rely 3969 * on it for the changed namespace information as userspace could have 3970 * raced with us in reading the log page, which could cause us to miss 3971 * updates. 3972 */ 3973 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 3974 NVME_CSI_NVM, log, log_size, 0); 3975 if (error) 3976 dev_warn(ctrl->device, 3977 "reading changed ns log failed: %d\n", error); 3978 3979 kfree(log); 3980 } 3981 3982 static void nvme_scan_work(struct work_struct *work) 3983 { 3984 struct nvme_ctrl *ctrl = 3985 container_of(work, struct nvme_ctrl, scan_work); 3986 3987 /* No tagset on a live ctrl means IO queues could not created */ 3988 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 3989 return; 3990 3991 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3992 dev_info(ctrl->device, "rescanning namespaces.\n"); 3993 nvme_clear_changed_ns_log(ctrl); 3994 } 3995 3996 mutex_lock(&ctrl->scan_lock); 3997 if (nvme_scan_ns_list(ctrl) != 0) 3998 nvme_scan_ns_sequential(ctrl); 3999 mutex_unlock(&ctrl->scan_lock); 4000 4001 down_write(&ctrl->namespaces_rwsem); 4002 list_sort(NULL, &ctrl->namespaces, ns_cmp); 4003 up_write(&ctrl->namespaces_rwsem); 4004 } 4005 4006 /* 4007 * This function iterates the namespace list unlocked to allow recovery from 4008 * controller failure. It is up to the caller to ensure the namespace list is 4009 * not modified by scan work while this function is executing. 4010 */ 4011 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4012 { 4013 struct nvme_ns *ns, *next; 4014 LIST_HEAD(ns_list); 4015 4016 /* 4017 * make sure to requeue I/O to all namespaces as these 4018 * might result from the scan itself and must complete 4019 * for the scan_work to make progress 4020 */ 4021 nvme_mpath_clear_ctrl_paths(ctrl); 4022 4023 /* prevent racing with ns scanning */ 4024 flush_work(&ctrl->scan_work); 4025 4026 /* 4027 * The dead states indicates the controller was not gracefully 4028 * disconnected. In that case, we won't be able to flush any data while 4029 * removing the namespaces' disks; fail all the queues now to avoid 4030 * potentially having to clean up the failed sync later. 4031 */ 4032 if (ctrl->state == NVME_CTRL_DEAD) 4033 nvme_kill_queues(ctrl); 4034 4035 /* this is a no-op when called from the controller reset handler */ 4036 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4037 4038 down_write(&ctrl->namespaces_rwsem); 4039 list_splice_init(&ctrl->namespaces, &ns_list); 4040 up_write(&ctrl->namespaces_rwsem); 4041 4042 list_for_each_entry_safe(ns, next, &ns_list, list) 4043 nvme_ns_remove(ns); 4044 } 4045 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4046 4047 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4048 { 4049 struct nvme_ctrl *ctrl = 4050 container_of(dev, struct nvme_ctrl, ctrl_device); 4051 struct nvmf_ctrl_options *opts = ctrl->opts; 4052 int ret; 4053 4054 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4055 if (ret) 4056 return ret; 4057 4058 if (opts) { 4059 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4060 if (ret) 4061 return ret; 4062 4063 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4064 opts->trsvcid ?: "none"); 4065 if (ret) 4066 return ret; 4067 4068 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4069 opts->host_traddr ?: "none"); 4070 } 4071 return ret; 4072 } 4073 4074 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4075 { 4076 char *envp[2] = { NULL, NULL }; 4077 u32 aen_result = ctrl->aen_result; 4078 4079 ctrl->aen_result = 0; 4080 if (!aen_result) 4081 return; 4082 4083 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4084 if (!envp[0]) 4085 return; 4086 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4087 kfree(envp[0]); 4088 } 4089 4090 static void nvme_async_event_work(struct work_struct *work) 4091 { 4092 struct nvme_ctrl *ctrl = 4093 container_of(work, struct nvme_ctrl, async_event_work); 4094 4095 nvme_aen_uevent(ctrl); 4096 ctrl->ops->submit_async_event(ctrl); 4097 } 4098 4099 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4100 { 4101 4102 u32 csts; 4103 4104 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4105 return false; 4106 4107 if (csts == ~0) 4108 return false; 4109 4110 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4111 } 4112 4113 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4114 { 4115 struct nvme_fw_slot_info_log *log; 4116 4117 log = kmalloc(sizeof(*log), GFP_KERNEL); 4118 if (!log) 4119 return; 4120 4121 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4122 log, sizeof(*log), 0)) 4123 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4124 kfree(log); 4125 } 4126 4127 static void nvme_fw_act_work(struct work_struct *work) 4128 { 4129 struct nvme_ctrl *ctrl = container_of(work, 4130 struct nvme_ctrl, fw_act_work); 4131 unsigned long fw_act_timeout; 4132 4133 if (ctrl->mtfa) 4134 fw_act_timeout = jiffies + 4135 msecs_to_jiffies(ctrl->mtfa * 100); 4136 else 4137 fw_act_timeout = jiffies + 4138 msecs_to_jiffies(admin_timeout * 1000); 4139 4140 nvme_stop_queues(ctrl); 4141 while (nvme_ctrl_pp_status(ctrl)) { 4142 if (time_after(jiffies, fw_act_timeout)) { 4143 dev_warn(ctrl->device, 4144 "Fw activation timeout, reset controller\n"); 4145 nvme_try_sched_reset(ctrl); 4146 return; 4147 } 4148 msleep(100); 4149 } 4150 4151 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4152 return; 4153 4154 nvme_start_queues(ctrl); 4155 /* read FW slot information to clear the AER */ 4156 nvme_get_fw_slot_info(ctrl); 4157 } 4158 4159 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4160 { 4161 u32 aer_notice_type = (result & 0xff00) >> 8; 4162 4163 trace_nvme_async_event(ctrl, aer_notice_type); 4164 4165 switch (aer_notice_type) { 4166 case NVME_AER_NOTICE_NS_CHANGED: 4167 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4168 nvme_queue_scan(ctrl); 4169 break; 4170 case NVME_AER_NOTICE_FW_ACT_STARTING: 4171 /* 4172 * We are (ab)using the RESETTING state to prevent subsequent 4173 * recovery actions from interfering with the controller's 4174 * firmware activation. 4175 */ 4176 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4177 queue_work(nvme_wq, &ctrl->fw_act_work); 4178 break; 4179 #ifdef CONFIG_NVME_MULTIPATH 4180 case NVME_AER_NOTICE_ANA: 4181 if (!ctrl->ana_log_buf) 4182 break; 4183 queue_work(nvme_wq, &ctrl->ana_work); 4184 break; 4185 #endif 4186 case NVME_AER_NOTICE_DISC_CHANGED: 4187 ctrl->aen_result = result; 4188 break; 4189 default: 4190 dev_warn(ctrl->device, "async event result %08x\n", result); 4191 } 4192 } 4193 4194 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4195 volatile union nvme_result *res) 4196 { 4197 u32 result = le32_to_cpu(res->u32); 4198 u32 aer_type = result & 0x07; 4199 4200 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4201 return; 4202 4203 switch (aer_type) { 4204 case NVME_AER_NOTICE: 4205 nvme_handle_aen_notice(ctrl, result); 4206 break; 4207 case NVME_AER_ERROR: 4208 case NVME_AER_SMART: 4209 case NVME_AER_CSS: 4210 case NVME_AER_VS: 4211 trace_nvme_async_event(ctrl, aer_type); 4212 ctrl->aen_result = result; 4213 break; 4214 default: 4215 break; 4216 } 4217 queue_work(nvme_wq, &ctrl->async_event_work); 4218 } 4219 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4220 4221 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4222 { 4223 nvme_mpath_stop(ctrl); 4224 nvme_stop_keep_alive(ctrl); 4225 nvme_stop_failfast_work(ctrl); 4226 flush_work(&ctrl->async_event_work); 4227 cancel_work_sync(&ctrl->fw_act_work); 4228 } 4229 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4230 4231 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4232 { 4233 nvme_start_keep_alive(ctrl); 4234 4235 nvme_enable_aen(ctrl); 4236 4237 if (ctrl->queue_count > 1) { 4238 nvme_queue_scan(ctrl); 4239 nvme_start_queues(ctrl); 4240 } 4241 } 4242 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4243 4244 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4245 { 4246 nvme_hwmon_exit(ctrl); 4247 nvme_fault_inject_fini(&ctrl->fault_inject); 4248 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4249 cdev_device_del(&ctrl->cdev, ctrl->device); 4250 nvme_put_ctrl(ctrl); 4251 } 4252 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4253 4254 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4255 { 4256 struct nvme_effects_log *cel; 4257 unsigned long i; 4258 4259 xa_for_each(&ctrl->cels, i, cel) { 4260 xa_erase(&ctrl->cels, i); 4261 kfree(cel); 4262 } 4263 4264 xa_destroy(&ctrl->cels); 4265 } 4266 4267 static void nvme_free_ctrl(struct device *dev) 4268 { 4269 struct nvme_ctrl *ctrl = 4270 container_of(dev, struct nvme_ctrl, ctrl_device); 4271 struct nvme_subsystem *subsys = ctrl->subsys; 4272 4273 if (!subsys || ctrl->instance != subsys->instance) 4274 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4275 4276 nvme_free_cels(ctrl); 4277 nvme_mpath_uninit(ctrl); 4278 __free_page(ctrl->discard_page); 4279 4280 if (subsys) { 4281 mutex_lock(&nvme_subsystems_lock); 4282 list_del(&ctrl->subsys_entry); 4283 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4284 mutex_unlock(&nvme_subsystems_lock); 4285 } 4286 4287 ctrl->ops->free_ctrl(ctrl); 4288 4289 if (subsys) 4290 nvme_put_subsystem(subsys); 4291 } 4292 4293 /* 4294 * Initialize a NVMe controller structures. This needs to be called during 4295 * earliest initialization so that we have the initialized structured around 4296 * during probing. 4297 */ 4298 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4299 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4300 { 4301 int ret; 4302 4303 ctrl->state = NVME_CTRL_NEW; 4304 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4305 spin_lock_init(&ctrl->lock); 4306 mutex_init(&ctrl->scan_lock); 4307 INIT_LIST_HEAD(&ctrl->namespaces); 4308 xa_init(&ctrl->cels); 4309 init_rwsem(&ctrl->namespaces_rwsem); 4310 ctrl->dev = dev; 4311 ctrl->ops = ops; 4312 ctrl->quirks = quirks; 4313 ctrl->numa_node = NUMA_NO_NODE; 4314 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4315 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4316 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4317 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4318 init_waitqueue_head(&ctrl->state_wq); 4319 4320 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4321 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4322 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4323 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4324 4325 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4326 PAGE_SIZE); 4327 ctrl->discard_page = alloc_page(GFP_KERNEL); 4328 if (!ctrl->discard_page) { 4329 ret = -ENOMEM; 4330 goto out; 4331 } 4332 4333 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4334 if (ret < 0) 4335 goto out; 4336 ctrl->instance = ret; 4337 4338 device_initialize(&ctrl->ctrl_device); 4339 ctrl->device = &ctrl->ctrl_device; 4340 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4341 ctrl->instance); 4342 ctrl->device->class = nvme_class; 4343 ctrl->device->parent = ctrl->dev; 4344 ctrl->device->groups = nvme_dev_attr_groups; 4345 ctrl->device->release = nvme_free_ctrl; 4346 dev_set_drvdata(ctrl->device, ctrl); 4347 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4348 if (ret) 4349 goto out_release_instance; 4350 4351 nvme_get_ctrl(ctrl); 4352 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4353 ctrl->cdev.owner = ops->module; 4354 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4355 if (ret) 4356 goto out_free_name; 4357 4358 /* 4359 * Initialize latency tolerance controls. The sysfs files won't 4360 * be visible to userspace unless the device actually supports APST. 4361 */ 4362 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4363 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4364 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4365 4366 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4367 nvme_mpath_init_ctrl(ctrl); 4368 4369 return 0; 4370 out_free_name: 4371 nvme_put_ctrl(ctrl); 4372 kfree_const(ctrl->device->kobj.name); 4373 out_release_instance: 4374 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4375 out: 4376 if (ctrl->discard_page) 4377 __free_page(ctrl->discard_page); 4378 return ret; 4379 } 4380 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4381 4382 /** 4383 * nvme_kill_queues(): Ends all namespace queues 4384 * @ctrl: the dead controller that needs to end 4385 * 4386 * Call this function when the driver determines it is unable to get the 4387 * controller in a state capable of servicing IO. 4388 */ 4389 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4390 { 4391 struct nvme_ns *ns; 4392 4393 down_read(&ctrl->namespaces_rwsem); 4394 4395 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4396 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4397 blk_mq_unquiesce_queue(ctrl->admin_q); 4398 4399 list_for_each_entry(ns, &ctrl->namespaces, list) 4400 nvme_set_queue_dying(ns); 4401 4402 up_read(&ctrl->namespaces_rwsem); 4403 } 4404 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4405 4406 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4407 { 4408 struct nvme_ns *ns; 4409 4410 down_read(&ctrl->namespaces_rwsem); 4411 list_for_each_entry(ns, &ctrl->namespaces, list) 4412 blk_mq_unfreeze_queue(ns->queue); 4413 up_read(&ctrl->namespaces_rwsem); 4414 } 4415 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4416 4417 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4418 { 4419 struct nvme_ns *ns; 4420 4421 down_read(&ctrl->namespaces_rwsem); 4422 list_for_each_entry(ns, &ctrl->namespaces, list) { 4423 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4424 if (timeout <= 0) 4425 break; 4426 } 4427 up_read(&ctrl->namespaces_rwsem); 4428 return timeout; 4429 } 4430 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4431 4432 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4433 { 4434 struct nvme_ns *ns; 4435 4436 down_read(&ctrl->namespaces_rwsem); 4437 list_for_each_entry(ns, &ctrl->namespaces, list) 4438 blk_mq_freeze_queue_wait(ns->queue); 4439 up_read(&ctrl->namespaces_rwsem); 4440 } 4441 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4442 4443 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4444 { 4445 struct nvme_ns *ns; 4446 4447 down_read(&ctrl->namespaces_rwsem); 4448 list_for_each_entry(ns, &ctrl->namespaces, list) 4449 blk_freeze_queue_start(ns->queue); 4450 up_read(&ctrl->namespaces_rwsem); 4451 } 4452 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4453 4454 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4455 { 4456 struct nvme_ns *ns; 4457 4458 down_read(&ctrl->namespaces_rwsem); 4459 list_for_each_entry(ns, &ctrl->namespaces, list) 4460 blk_mq_quiesce_queue(ns->queue); 4461 up_read(&ctrl->namespaces_rwsem); 4462 } 4463 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4464 4465 void nvme_start_queues(struct nvme_ctrl *ctrl) 4466 { 4467 struct nvme_ns *ns; 4468 4469 down_read(&ctrl->namespaces_rwsem); 4470 list_for_each_entry(ns, &ctrl->namespaces, list) 4471 blk_mq_unquiesce_queue(ns->queue); 4472 up_read(&ctrl->namespaces_rwsem); 4473 } 4474 EXPORT_SYMBOL_GPL(nvme_start_queues); 4475 4476 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4477 { 4478 struct nvme_ns *ns; 4479 4480 down_read(&ctrl->namespaces_rwsem); 4481 list_for_each_entry(ns, &ctrl->namespaces, list) 4482 blk_sync_queue(ns->queue); 4483 up_read(&ctrl->namespaces_rwsem); 4484 } 4485 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4486 4487 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4488 { 4489 nvme_sync_io_queues(ctrl); 4490 if (ctrl->admin_q) 4491 blk_sync_queue(ctrl->admin_q); 4492 } 4493 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4494 4495 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4496 { 4497 if (file->f_op != &nvme_dev_fops) 4498 return NULL; 4499 return file->private_data; 4500 } 4501 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4502 4503 /* 4504 * Check we didn't inadvertently grow the command structure sizes: 4505 */ 4506 static inline void _nvme_check_size(void) 4507 { 4508 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4509 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4510 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4511 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4512 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4513 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4514 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4515 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4516 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4517 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4518 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4519 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4520 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4521 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4522 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4523 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4524 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4525 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4526 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4527 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4528 } 4529 4530 4531 static int __init nvme_core_init(void) 4532 { 4533 int result = -ENOMEM; 4534 4535 _nvme_check_size(); 4536 4537 nvme_wq = alloc_workqueue("nvme-wq", 4538 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4539 if (!nvme_wq) 4540 goto out; 4541 4542 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4543 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4544 if (!nvme_reset_wq) 4545 goto destroy_wq; 4546 4547 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4548 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4549 if (!nvme_delete_wq) 4550 goto destroy_reset_wq; 4551 4552 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4553 NVME_MINORS, "nvme"); 4554 if (result < 0) 4555 goto destroy_delete_wq; 4556 4557 nvme_class = class_create(THIS_MODULE, "nvme"); 4558 if (IS_ERR(nvme_class)) { 4559 result = PTR_ERR(nvme_class); 4560 goto unregister_chrdev; 4561 } 4562 nvme_class->dev_uevent = nvme_class_uevent; 4563 4564 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4565 if (IS_ERR(nvme_subsys_class)) { 4566 result = PTR_ERR(nvme_subsys_class); 4567 goto destroy_class; 4568 } 4569 4570 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4571 "nvme-generic"); 4572 if (result < 0) 4573 goto destroy_subsys_class; 4574 4575 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4576 if (IS_ERR(nvme_ns_chr_class)) { 4577 result = PTR_ERR(nvme_ns_chr_class); 4578 goto unregister_generic_ns; 4579 } 4580 4581 return 0; 4582 4583 unregister_generic_ns: 4584 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4585 destroy_subsys_class: 4586 class_destroy(nvme_subsys_class); 4587 destroy_class: 4588 class_destroy(nvme_class); 4589 unregister_chrdev: 4590 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4591 destroy_delete_wq: 4592 destroy_workqueue(nvme_delete_wq); 4593 destroy_reset_wq: 4594 destroy_workqueue(nvme_reset_wq); 4595 destroy_wq: 4596 destroy_workqueue(nvme_wq); 4597 out: 4598 return result; 4599 } 4600 4601 static void __exit nvme_core_exit(void) 4602 { 4603 class_destroy(nvme_ns_chr_class); 4604 class_destroy(nvme_subsys_class); 4605 class_destroy(nvme_class); 4606 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4607 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4608 destroy_workqueue(nvme_delete_wq); 4609 destroy_workqueue(nvme_reset_wq); 4610 destroy_workqueue(nvme_wq); 4611 ida_destroy(&nvme_ns_chr_minor_ida); 4612 ida_destroy(&nvme_instance_ida); 4613 } 4614 4615 MODULE_LICENSE("GPL"); 4616 MODULE_VERSION("1.0"); 4617 module_init(nvme_core_init); 4618 module_exit(nvme_core_exit); 4619