1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/compat.h> 10 #include <linux/delay.h> 11 #include <linux/errno.h> 12 #include <linux/hdreg.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/list_sort.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such as scan, aen handling, fw activation, 70 * keep-alive, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static LIST_HEAD(nvme_subsystems); 85 static DEFINE_MUTEX(nvme_subsystems_lock); 86 87 static DEFINE_IDA(nvme_instance_ida); 88 static dev_t nvme_chr_devt; 89 static struct class *nvme_class; 90 static struct class *nvme_subsys_class; 91 92 static int nvme_revalidate_disk(struct gendisk *disk); 93 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 95 unsigned nsid); 96 97 static void nvme_set_queue_dying(struct nvme_ns *ns) 98 { 99 /* 100 * Revalidating a dead namespace sets capacity to 0. This will end 101 * buffered writers dirtying pages that can't be synced. 102 */ 103 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 104 return; 105 blk_set_queue_dying(ns->queue); 106 /* Forcibly unquiesce queues to avoid blocking dispatch */ 107 blk_mq_unquiesce_queue(ns->queue); 108 /* 109 * Revalidate after unblocking dispatchers that may be holding bd_butex 110 */ 111 revalidate_disk(ns->disk); 112 } 113 114 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 115 { 116 /* 117 * Only new queue scan work when admin and IO queues are both alive 118 */ 119 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 120 queue_work(nvme_wq, &ctrl->scan_work); 121 } 122 123 /* 124 * Use this function to proceed with scheduling reset_work for a controller 125 * that had previously been set to the resetting state. This is intended for 126 * code paths that can't be interrupted by other reset attempts. A hot removal 127 * may prevent this from succeeding. 128 */ 129 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 130 { 131 if (ctrl->state != NVME_CTRL_RESETTING) 132 return -EBUSY; 133 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 134 return -EBUSY; 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 138 139 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 140 { 141 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 142 return -EBUSY; 143 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 144 return -EBUSY; 145 return 0; 146 } 147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 148 149 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 150 { 151 int ret; 152 153 ret = nvme_reset_ctrl(ctrl); 154 if (!ret) { 155 flush_work(&ctrl->reset_work); 156 if (ctrl->state != NVME_CTRL_LIVE) 157 ret = -ENETRESET; 158 } 159 160 return ret; 161 } 162 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 163 164 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 165 { 166 dev_info(ctrl->device, 167 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 168 169 flush_work(&ctrl->reset_work); 170 nvme_stop_ctrl(ctrl); 171 nvme_remove_namespaces(ctrl); 172 ctrl->ops->delete_ctrl(ctrl); 173 nvme_uninit_ctrl(ctrl); 174 } 175 176 static void nvme_delete_ctrl_work(struct work_struct *work) 177 { 178 struct nvme_ctrl *ctrl = 179 container_of(work, struct nvme_ctrl, delete_work); 180 181 nvme_do_delete_ctrl(ctrl); 182 } 183 184 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 185 { 186 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 187 return -EBUSY; 188 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 189 return -EBUSY; 190 return 0; 191 } 192 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 193 194 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 195 { 196 /* 197 * Keep a reference until nvme_do_delete_ctrl() complete, 198 * since ->delete_ctrl can free the controller. 199 */ 200 nvme_get_ctrl(ctrl); 201 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 202 nvme_do_delete_ctrl(ctrl); 203 nvme_put_ctrl(ctrl); 204 } 205 206 static blk_status_t nvme_error_status(u16 status) 207 { 208 switch (status & 0x7ff) { 209 case NVME_SC_SUCCESS: 210 return BLK_STS_OK; 211 case NVME_SC_CAP_EXCEEDED: 212 return BLK_STS_NOSPC; 213 case NVME_SC_LBA_RANGE: 214 case NVME_SC_CMD_INTERRUPTED: 215 case NVME_SC_NS_NOT_READY: 216 return BLK_STS_TARGET; 217 case NVME_SC_BAD_ATTRIBUTES: 218 case NVME_SC_ONCS_NOT_SUPPORTED: 219 case NVME_SC_INVALID_OPCODE: 220 case NVME_SC_INVALID_FIELD: 221 case NVME_SC_INVALID_NS: 222 return BLK_STS_NOTSUPP; 223 case NVME_SC_WRITE_FAULT: 224 case NVME_SC_READ_ERROR: 225 case NVME_SC_UNWRITTEN_BLOCK: 226 case NVME_SC_ACCESS_DENIED: 227 case NVME_SC_READ_ONLY: 228 case NVME_SC_COMPARE_FAILED: 229 return BLK_STS_MEDIUM; 230 case NVME_SC_GUARD_CHECK: 231 case NVME_SC_APPTAG_CHECK: 232 case NVME_SC_REFTAG_CHECK: 233 case NVME_SC_INVALID_PI: 234 return BLK_STS_PROTECTION; 235 case NVME_SC_RESERVATION_CONFLICT: 236 return BLK_STS_NEXUS; 237 case NVME_SC_HOST_PATH_ERROR: 238 return BLK_STS_TRANSPORT; 239 default: 240 return BLK_STS_IOERR; 241 } 242 } 243 244 static inline bool nvme_req_needs_retry(struct request *req) 245 { 246 if (blk_noretry_request(req)) 247 return false; 248 if (nvme_req(req)->status & NVME_SC_DNR) 249 return false; 250 if (nvme_req(req)->retries >= nvme_max_retries) 251 return false; 252 return true; 253 } 254 255 static void nvme_retry_req(struct request *req) 256 { 257 struct nvme_ns *ns = req->q->queuedata; 258 unsigned long delay = 0; 259 u16 crd; 260 261 /* The mask and shift result must be <= 3 */ 262 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 263 if (ns && crd) 264 delay = ns->ctrl->crdt[crd - 1] * 100; 265 266 nvme_req(req)->retries++; 267 blk_mq_requeue_request(req, false); 268 blk_mq_delay_kick_requeue_list(req->q, delay); 269 } 270 271 void nvme_complete_rq(struct request *req) 272 { 273 blk_status_t status = nvme_error_status(nvme_req(req)->status); 274 275 trace_nvme_complete_rq(req); 276 277 nvme_cleanup_cmd(req); 278 279 if (nvme_req(req)->ctrl->kas) 280 nvme_req(req)->ctrl->comp_seen = true; 281 282 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 283 if ((req->cmd_flags & REQ_NVME_MPATH) && nvme_failover_req(req)) 284 return; 285 286 if (!blk_queue_dying(req->q)) { 287 nvme_retry_req(req); 288 return; 289 } 290 } 291 292 nvme_trace_bio_complete(req, status); 293 blk_mq_end_request(req, status); 294 } 295 EXPORT_SYMBOL_GPL(nvme_complete_rq); 296 297 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 298 { 299 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 300 "Cancelling I/O %d", req->tag); 301 302 /* don't abort one completed request */ 303 if (blk_mq_request_completed(req)) 304 return true; 305 306 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 307 blk_mq_force_complete_rq(req); 308 return true; 309 } 310 EXPORT_SYMBOL_GPL(nvme_cancel_request); 311 312 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 313 enum nvme_ctrl_state new_state) 314 { 315 enum nvme_ctrl_state old_state; 316 unsigned long flags; 317 bool changed = false; 318 319 spin_lock_irqsave(&ctrl->lock, flags); 320 321 old_state = ctrl->state; 322 switch (new_state) { 323 case NVME_CTRL_LIVE: 324 switch (old_state) { 325 case NVME_CTRL_NEW: 326 case NVME_CTRL_RESETTING: 327 case NVME_CTRL_CONNECTING: 328 changed = true; 329 /* FALLTHRU */ 330 default: 331 break; 332 } 333 break; 334 case NVME_CTRL_RESETTING: 335 switch (old_state) { 336 case NVME_CTRL_NEW: 337 case NVME_CTRL_LIVE: 338 changed = true; 339 /* FALLTHRU */ 340 default: 341 break; 342 } 343 break; 344 case NVME_CTRL_CONNECTING: 345 switch (old_state) { 346 case NVME_CTRL_NEW: 347 case NVME_CTRL_RESETTING: 348 changed = true; 349 /* FALLTHRU */ 350 default: 351 break; 352 } 353 break; 354 case NVME_CTRL_DELETING: 355 switch (old_state) { 356 case NVME_CTRL_LIVE: 357 case NVME_CTRL_RESETTING: 358 case NVME_CTRL_CONNECTING: 359 changed = true; 360 /* FALLTHRU */ 361 default: 362 break; 363 } 364 break; 365 case NVME_CTRL_DEAD: 366 switch (old_state) { 367 case NVME_CTRL_DELETING: 368 changed = true; 369 /* FALLTHRU */ 370 default: 371 break; 372 } 373 break; 374 default: 375 break; 376 } 377 378 if (changed) { 379 ctrl->state = new_state; 380 wake_up_all(&ctrl->state_wq); 381 } 382 383 spin_unlock_irqrestore(&ctrl->lock, flags); 384 if (changed && ctrl->state == NVME_CTRL_LIVE) 385 nvme_kick_requeue_lists(ctrl); 386 return changed; 387 } 388 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 389 390 /* 391 * Returns true for sink states that can't ever transition back to live. 392 */ 393 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 394 { 395 switch (ctrl->state) { 396 case NVME_CTRL_NEW: 397 case NVME_CTRL_LIVE: 398 case NVME_CTRL_RESETTING: 399 case NVME_CTRL_CONNECTING: 400 return false; 401 case NVME_CTRL_DELETING: 402 case NVME_CTRL_DEAD: 403 return true; 404 default: 405 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 406 return true; 407 } 408 } 409 410 /* 411 * Waits for the controller state to be resetting, or returns false if it is 412 * not possible to ever transition to that state. 413 */ 414 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 415 { 416 wait_event(ctrl->state_wq, 417 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 418 nvme_state_terminal(ctrl)); 419 return ctrl->state == NVME_CTRL_RESETTING; 420 } 421 EXPORT_SYMBOL_GPL(nvme_wait_reset); 422 423 static void nvme_free_ns_head(struct kref *ref) 424 { 425 struct nvme_ns_head *head = 426 container_of(ref, struct nvme_ns_head, ref); 427 428 nvme_mpath_remove_disk(head); 429 ida_simple_remove(&head->subsys->ns_ida, head->instance); 430 cleanup_srcu_struct(&head->srcu); 431 nvme_put_subsystem(head->subsys); 432 kfree(head); 433 } 434 435 static void nvme_put_ns_head(struct nvme_ns_head *head) 436 { 437 kref_put(&head->ref, nvme_free_ns_head); 438 } 439 440 static void nvme_free_ns(struct kref *kref) 441 { 442 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 443 444 if (ns->ndev) 445 nvme_nvm_unregister(ns); 446 447 put_disk(ns->disk); 448 nvme_put_ns_head(ns->head); 449 nvme_put_ctrl(ns->ctrl); 450 kfree(ns); 451 } 452 453 static void nvme_put_ns(struct nvme_ns *ns) 454 { 455 kref_put(&ns->kref, nvme_free_ns); 456 } 457 458 static inline void nvme_clear_nvme_request(struct request *req) 459 { 460 if (!(req->rq_flags & RQF_DONTPREP)) { 461 nvme_req(req)->retries = 0; 462 nvme_req(req)->flags = 0; 463 req->rq_flags |= RQF_DONTPREP; 464 } 465 } 466 467 struct request *nvme_alloc_request(struct request_queue *q, 468 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 469 { 470 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 471 struct request *req; 472 473 if (qid == NVME_QID_ANY) { 474 req = blk_mq_alloc_request(q, op, flags); 475 } else { 476 req = blk_mq_alloc_request_hctx(q, op, flags, 477 qid ? qid - 1 : 0); 478 } 479 if (IS_ERR(req)) 480 return req; 481 482 req->cmd_flags |= REQ_FAILFAST_DRIVER; 483 nvme_clear_nvme_request(req); 484 nvme_req(req)->cmd = cmd; 485 486 return req; 487 } 488 EXPORT_SYMBOL_GPL(nvme_alloc_request); 489 490 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 491 { 492 struct nvme_command c; 493 494 memset(&c, 0, sizeof(c)); 495 496 c.directive.opcode = nvme_admin_directive_send; 497 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 498 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 499 c.directive.dtype = NVME_DIR_IDENTIFY; 500 c.directive.tdtype = NVME_DIR_STREAMS; 501 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 502 503 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 504 } 505 506 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 507 { 508 return nvme_toggle_streams(ctrl, false); 509 } 510 511 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 512 { 513 return nvme_toggle_streams(ctrl, true); 514 } 515 516 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 517 struct streams_directive_params *s, u32 nsid) 518 { 519 struct nvme_command c; 520 521 memset(&c, 0, sizeof(c)); 522 memset(s, 0, sizeof(*s)); 523 524 c.directive.opcode = nvme_admin_directive_recv; 525 c.directive.nsid = cpu_to_le32(nsid); 526 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 527 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 528 c.directive.dtype = NVME_DIR_STREAMS; 529 530 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 531 } 532 533 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 534 { 535 struct streams_directive_params s; 536 int ret; 537 538 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 539 return 0; 540 if (!streams) 541 return 0; 542 543 ret = nvme_enable_streams(ctrl); 544 if (ret) 545 return ret; 546 547 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 548 if (ret) 549 goto out_disable_stream; 550 551 ctrl->nssa = le16_to_cpu(s.nssa); 552 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 553 dev_info(ctrl->device, "too few streams (%u) available\n", 554 ctrl->nssa); 555 goto out_disable_stream; 556 } 557 558 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 559 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 560 return 0; 561 562 out_disable_stream: 563 nvme_disable_streams(ctrl); 564 return ret; 565 } 566 567 /* 568 * Check if 'req' has a write hint associated with it. If it does, assign 569 * a valid namespace stream to the write. 570 */ 571 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 572 struct request *req, u16 *control, 573 u32 *dsmgmt) 574 { 575 enum rw_hint streamid = req->write_hint; 576 577 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 578 streamid = 0; 579 else { 580 streamid--; 581 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 582 return; 583 584 *control |= NVME_RW_DTYPE_STREAMS; 585 *dsmgmt |= streamid << 16; 586 } 587 588 if (streamid < ARRAY_SIZE(req->q->write_hints)) 589 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 590 } 591 592 static inline void nvme_setup_flush(struct nvme_ns *ns, 593 struct nvme_command *cmnd) 594 { 595 cmnd->common.opcode = nvme_cmd_flush; 596 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 597 } 598 599 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 600 struct nvme_command *cmnd) 601 { 602 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 603 struct nvme_dsm_range *range; 604 struct bio *bio; 605 606 /* 607 * Some devices do not consider the DSM 'Number of Ranges' field when 608 * determining how much data to DMA. Always allocate memory for maximum 609 * number of segments to prevent device reading beyond end of buffer. 610 */ 611 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 612 613 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 614 if (!range) { 615 /* 616 * If we fail allocation our range, fallback to the controller 617 * discard page. If that's also busy, it's safe to return 618 * busy, as we know we can make progress once that's freed. 619 */ 620 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 621 return BLK_STS_RESOURCE; 622 623 range = page_address(ns->ctrl->discard_page); 624 } 625 626 __rq_for_each_bio(bio, req) { 627 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 628 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 629 630 if (n < segments) { 631 range[n].cattr = cpu_to_le32(0); 632 range[n].nlb = cpu_to_le32(nlb); 633 range[n].slba = cpu_to_le64(slba); 634 } 635 n++; 636 } 637 638 if (WARN_ON_ONCE(n != segments)) { 639 if (virt_to_page(range) == ns->ctrl->discard_page) 640 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 641 else 642 kfree(range); 643 return BLK_STS_IOERR; 644 } 645 646 cmnd->dsm.opcode = nvme_cmd_dsm; 647 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 648 cmnd->dsm.nr = cpu_to_le32(segments - 1); 649 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 650 651 req->special_vec.bv_page = virt_to_page(range); 652 req->special_vec.bv_offset = offset_in_page(range); 653 req->special_vec.bv_len = alloc_size; 654 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 655 656 return BLK_STS_OK; 657 } 658 659 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 660 struct request *req, struct nvme_command *cmnd) 661 { 662 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 663 return nvme_setup_discard(ns, req, cmnd); 664 665 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 666 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 667 cmnd->write_zeroes.slba = 668 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 669 cmnd->write_zeroes.length = 670 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 671 cmnd->write_zeroes.control = 0; 672 return BLK_STS_OK; 673 } 674 675 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 676 struct request *req, struct nvme_command *cmnd) 677 { 678 struct nvme_ctrl *ctrl = ns->ctrl; 679 u16 control = 0; 680 u32 dsmgmt = 0; 681 682 if (req->cmd_flags & REQ_FUA) 683 control |= NVME_RW_FUA; 684 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 685 control |= NVME_RW_LR; 686 687 if (req->cmd_flags & REQ_RAHEAD) 688 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 689 690 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 691 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 692 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 693 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 694 695 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 696 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 697 698 if (ns->ms) { 699 /* 700 * If formated with metadata, the block layer always provides a 701 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 702 * we enable the PRACT bit for protection information or set the 703 * namespace capacity to zero to prevent any I/O. 704 */ 705 if (!blk_integrity_rq(req)) { 706 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 707 return BLK_STS_NOTSUPP; 708 control |= NVME_RW_PRINFO_PRACT; 709 } 710 711 switch (ns->pi_type) { 712 case NVME_NS_DPS_PI_TYPE3: 713 control |= NVME_RW_PRINFO_PRCHK_GUARD; 714 break; 715 case NVME_NS_DPS_PI_TYPE1: 716 case NVME_NS_DPS_PI_TYPE2: 717 control |= NVME_RW_PRINFO_PRCHK_GUARD | 718 NVME_RW_PRINFO_PRCHK_REF; 719 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 720 break; 721 } 722 } 723 724 cmnd->rw.control = cpu_to_le16(control); 725 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 726 return 0; 727 } 728 729 void nvme_cleanup_cmd(struct request *req) 730 { 731 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 732 struct nvme_ns *ns = req->rq_disk->private_data; 733 struct page *page = req->special_vec.bv_page; 734 735 if (page == ns->ctrl->discard_page) 736 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 737 else 738 kfree(page_address(page) + req->special_vec.bv_offset); 739 } 740 } 741 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 742 743 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 744 struct nvme_command *cmd) 745 { 746 blk_status_t ret = BLK_STS_OK; 747 748 nvme_clear_nvme_request(req); 749 750 memset(cmd, 0, sizeof(*cmd)); 751 switch (req_op(req)) { 752 case REQ_OP_DRV_IN: 753 case REQ_OP_DRV_OUT: 754 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 755 break; 756 case REQ_OP_FLUSH: 757 nvme_setup_flush(ns, cmd); 758 break; 759 case REQ_OP_WRITE_ZEROES: 760 ret = nvme_setup_write_zeroes(ns, req, cmd); 761 break; 762 case REQ_OP_DISCARD: 763 ret = nvme_setup_discard(ns, req, cmd); 764 break; 765 case REQ_OP_READ: 766 case REQ_OP_WRITE: 767 ret = nvme_setup_rw(ns, req, cmd); 768 break; 769 default: 770 WARN_ON_ONCE(1); 771 return BLK_STS_IOERR; 772 } 773 774 cmd->common.command_id = req->tag; 775 trace_nvme_setup_cmd(req, cmd); 776 return ret; 777 } 778 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 779 780 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 781 { 782 struct completion *waiting = rq->end_io_data; 783 784 rq->end_io_data = NULL; 785 complete(waiting); 786 } 787 788 static void nvme_execute_rq_polled(struct request_queue *q, 789 struct gendisk *bd_disk, struct request *rq, int at_head) 790 { 791 DECLARE_COMPLETION_ONSTACK(wait); 792 793 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 794 795 rq->cmd_flags |= REQ_HIPRI; 796 rq->end_io_data = &wait; 797 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 798 799 while (!completion_done(&wait)) { 800 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 801 cond_resched(); 802 } 803 } 804 805 /* 806 * Returns 0 on success. If the result is negative, it's a Linux error code; 807 * if the result is positive, it's an NVM Express status code 808 */ 809 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 810 union nvme_result *result, void *buffer, unsigned bufflen, 811 unsigned timeout, int qid, int at_head, 812 blk_mq_req_flags_t flags, bool poll) 813 { 814 struct request *req; 815 int ret; 816 817 req = nvme_alloc_request(q, cmd, flags, qid); 818 if (IS_ERR(req)) 819 return PTR_ERR(req); 820 821 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 822 823 if (buffer && bufflen) { 824 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 825 if (ret) 826 goto out; 827 } 828 829 if (poll) 830 nvme_execute_rq_polled(req->q, NULL, req, at_head); 831 else 832 blk_execute_rq(req->q, NULL, req, at_head); 833 if (result) 834 *result = nvme_req(req)->result; 835 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 836 ret = -EINTR; 837 else 838 ret = nvme_req(req)->status; 839 out: 840 blk_mq_free_request(req); 841 return ret; 842 } 843 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 844 845 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 846 void *buffer, unsigned bufflen) 847 { 848 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 849 NVME_QID_ANY, 0, 0, false); 850 } 851 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 852 853 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 854 unsigned len, u32 seed, bool write) 855 { 856 struct bio_integrity_payload *bip; 857 int ret = -ENOMEM; 858 void *buf; 859 860 buf = kmalloc(len, GFP_KERNEL); 861 if (!buf) 862 goto out; 863 864 ret = -EFAULT; 865 if (write && copy_from_user(buf, ubuf, len)) 866 goto out_free_meta; 867 868 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 869 if (IS_ERR(bip)) { 870 ret = PTR_ERR(bip); 871 goto out_free_meta; 872 } 873 874 bip->bip_iter.bi_size = len; 875 bip->bip_iter.bi_sector = seed; 876 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 877 offset_in_page(buf)); 878 if (ret == len) 879 return buf; 880 ret = -ENOMEM; 881 out_free_meta: 882 kfree(buf); 883 out: 884 return ERR_PTR(ret); 885 } 886 887 static int nvme_submit_user_cmd(struct request_queue *q, 888 struct nvme_command *cmd, void __user *ubuffer, 889 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 890 u32 meta_seed, u64 *result, unsigned timeout) 891 { 892 bool write = nvme_is_write(cmd); 893 struct nvme_ns *ns = q->queuedata; 894 struct gendisk *disk = ns ? ns->disk : NULL; 895 struct request *req; 896 struct bio *bio = NULL; 897 void *meta = NULL; 898 int ret; 899 900 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 901 if (IS_ERR(req)) 902 return PTR_ERR(req); 903 904 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 905 nvme_req(req)->flags |= NVME_REQ_USERCMD; 906 907 if (ubuffer && bufflen) { 908 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 909 GFP_KERNEL); 910 if (ret) 911 goto out; 912 bio = req->bio; 913 bio->bi_disk = disk; 914 if (disk && meta_buffer && meta_len) { 915 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 916 meta_seed, write); 917 if (IS_ERR(meta)) { 918 ret = PTR_ERR(meta); 919 goto out_unmap; 920 } 921 req->cmd_flags |= REQ_INTEGRITY; 922 } 923 } 924 925 blk_execute_rq(req->q, disk, req, 0); 926 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 927 ret = -EINTR; 928 else 929 ret = nvme_req(req)->status; 930 if (result) 931 *result = le64_to_cpu(nvme_req(req)->result.u64); 932 if (meta && !ret && !write) { 933 if (copy_to_user(meta_buffer, meta, meta_len)) 934 ret = -EFAULT; 935 } 936 kfree(meta); 937 out_unmap: 938 if (bio) 939 blk_rq_unmap_user(bio); 940 out: 941 blk_mq_free_request(req); 942 return ret; 943 } 944 945 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 946 { 947 struct nvme_ctrl *ctrl = rq->end_io_data; 948 unsigned long flags; 949 bool startka = false; 950 951 blk_mq_free_request(rq); 952 953 if (status) { 954 dev_err(ctrl->device, 955 "failed nvme_keep_alive_end_io error=%d\n", 956 status); 957 return; 958 } 959 960 ctrl->comp_seen = false; 961 spin_lock_irqsave(&ctrl->lock, flags); 962 if (ctrl->state == NVME_CTRL_LIVE || 963 ctrl->state == NVME_CTRL_CONNECTING) 964 startka = true; 965 spin_unlock_irqrestore(&ctrl->lock, flags); 966 if (startka) 967 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 968 } 969 970 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 971 { 972 struct request *rq; 973 974 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 975 NVME_QID_ANY); 976 if (IS_ERR(rq)) 977 return PTR_ERR(rq); 978 979 rq->timeout = ctrl->kato * HZ; 980 rq->end_io_data = ctrl; 981 982 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 983 984 return 0; 985 } 986 987 static void nvme_keep_alive_work(struct work_struct *work) 988 { 989 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 990 struct nvme_ctrl, ka_work); 991 bool comp_seen = ctrl->comp_seen; 992 993 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 994 dev_dbg(ctrl->device, 995 "reschedule traffic based keep-alive timer\n"); 996 ctrl->comp_seen = false; 997 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 998 return; 999 } 1000 1001 if (nvme_keep_alive(ctrl)) { 1002 /* allocation failure, reset the controller */ 1003 dev_err(ctrl->device, "keep-alive failed\n"); 1004 nvme_reset_ctrl(ctrl); 1005 return; 1006 } 1007 } 1008 1009 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1010 { 1011 if (unlikely(ctrl->kato == 0)) 1012 return; 1013 1014 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ); 1015 } 1016 1017 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1018 { 1019 if (unlikely(ctrl->kato == 0)) 1020 return; 1021 1022 cancel_delayed_work_sync(&ctrl->ka_work); 1023 } 1024 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1025 1026 /* 1027 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1028 * flag, thus sending any new CNS opcodes has a big chance of not working. 1029 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1030 * (but not for any later version). 1031 */ 1032 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1033 { 1034 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1035 return ctrl->vs < NVME_VS(1, 2, 0); 1036 return ctrl->vs < NVME_VS(1, 1, 0); 1037 } 1038 1039 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1040 { 1041 struct nvme_command c = { }; 1042 int error; 1043 1044 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1045 c.identify.opcode = nvme_admin_identify; 1046 c.identify.cns = NVME_ID_CNS_CTRL; 1047 1048 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1049 if (!*id) 1050 return -ENOMEM; 1051 1052 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1053 sizeof(struct nvme_id_ctrl)); 1054 if (error) 1055 kfree(*id); 1056 return error; 1057 } 1058 1059 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1060 struct nvme_ns_id_desc *cur) 1061 { 1062 const char *warn_str = "ctrl returned bogus length:"; 1063 void *data = cur; 1064 1065 switch (cur->nidt) { 1066 case NVME_NIDT_EUI64: 1067 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1068 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1069 warn_str, cur->nidl); 1070 return -1; 1071 } 1072 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1073 return NVME_NIDT_EUI64_LEN; 1074 case NVME_NIDT_NGUID: 1075 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1076 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1077 warn_str, cur->nidl); 1078 return -1; 1079 } 1080 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1081 return NVME_NIDT_NGUID_LEN; 1082 case NVME_NIDT_UUID: 1083 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1084 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1085 warn_str, cur->nidl); 1086 return -1; 1087 } 1088 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1089 return NVME_NIDT_UUID_LEN; 1090 default: 1091 /* Skip unknown types */ 1092 return cur->nidl; 1093 } 1094 } 1095 1096 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1097 struct nvme_ns_ids *ids) 1098 { 1099 struct nvme_command c = { }; 1100 int status; 1101 void *data; 1102 int pos; 1103 int len; 1104 1105 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1106 return 0; 1107 1108 c.identify.opcode = nvme_admin_identify; 1109 c.identify.nsid = cpu_to_le32(nsid); 1110 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1111 1112 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1113 if (!data) 1114 return -ENOMEM; 1115 1116 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1117 NVME_IDENTIFY_DATA_SIZE); 1118 if (status) { 1119 dev_warn(ctrl->device, 1120 "Identify Descriptors failed (%d)\n", status); 1121 goto free_data; 1122 } 1123 1124 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1125 struct nvme_ns_id_desc *cur = data + pos; 1126 1127 if (cur->nidl == 0) 1128 break; 1129 1130 len = nvme_process_ns_desc(ctrl, ids, cur); 1131 if (len < 0) 1132 goto free_data; 1133 1134 len += sizeof(*cur); 1135 } 1136 free_data: 1137 kfree(data); 1138 return status; 1139 } 1140 1141 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1142 { 1143 struct nvme_command c = { }; 1144 1145 c.identify.opcode = nvme_admin_identify; 1146 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1147 c.identify.nsid = cpu_to_le32(nsid); 1148 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1149 NVME_IDENTIFY_DATA_SIZE); 1150 } 1151 1152 static int nvme_identify_ns(struct nvme_ctrl *ctrl, 1153 unsigned nsid, struct nvme_id_ns **id) 1154 { 1155 struct nvme_command c = { }; 1156 int error; 1157 1158 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1159 c.identify.opcode = nvme_admin_identify; 1160 c.identify.nsid = cpu_to_le32(nsid); 1161 c.identify.cns = NVME_ID_CNS_NS; 1162 1163 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1164 if (!*id) 1165 return -ENOMEM; 1166 1167 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1168 if (error) { 1169 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1170 kfree(*id); 1171 } 1172 1173 return error; 1174 } 1175 1176 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1177 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1178 { 1179 union nvme_result res = { 0 }; 1180 struct nvme_command c; 1181 int ret; 1182 1183 memset(&c, 0, sizeof(c)); 1184 c.features.opcode = op; 1185 c.features.fid = cpu_to_le32(fid); 1186 c.features.dword11 = cpu_to_le32(dword11); 1187 1188 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1189 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1190 if (ret >= 0 && result) 1191 *result = le32_to_cpu(res.u32); 1192 return ret; 1193 } 1194 1195 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1196 unsigned int dword11, void *buffer, size_t buflen, 1197 u32 *result) 1198 { 1199 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1200 buflen, result); 1201 } 1202 EXPORT_SYMBOL_GPL(nvme_set_features); 1203 1204 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1205 unsigned int dword11, void *buffer, size_t buflen, 1206 u32 *result) 1207 { 1208 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1209 buflen, result); 1210 } 1211 EXPORT_SYMBOL_GPL(nvme_get_features); 1212 1213 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1214 { 1215 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1216 u32 result; 1217 int status, nr_io_queues; 1218 1219 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1220 &result); 1221 if (status < 0) 1222 return status; 1223 1224 /* 1225 * Degraded controllers might return an error when setting the queue 1226 * count. We still want to be able to bring them online and offer 1227 * access to the admin queue, as that might be only way to fix them up. 1228 */ 1229 if (status > 0) { 1230 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1231 *count = 0; 1232 } else { 1233 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1234 *count = min(*count, nr_io_queues); 1235 } 1236 1237 return 0; 1238 } 1239 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1240 1241 #define NVME_AEN_SUPPORTED \ 1242 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1243 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1244 1245 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1246 { 1247 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1248 int status; 1249 1250 if (!supported_aens) 1251 return; 1252 1253 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1254 NULL, 0, &result); 1255 if (status) 1256 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1257 supported_aens); 1258 1259 queue_work(nvme_wq, &ctrl->async_event_work); 1260 } 1261 1262 /* 1263 * Convert integer values from ioctl structures to user pointers, silently 1264 * ignoring the upper bits in the compat case to match behaviour of 32-bit 1265 * kernels. 1266 */ 1267 static void __user *nvme_to_user_ptr(uintptr_t ptrval) 1268 { 1269 if (in_compat_syscall()) 1270 ptrval = (compat_uptr_t)ptrval; 1271 return (void __user *)ptrval; 1272 } 1273 1274 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1275 { 1276 struct nvme_user_io io; 1277 struct nvme_command c; 1278 unsigned length, meta_len; 1279 void __user *metadata; 1280 1281 if (copy_from_user(&io, uio, sizeof(io))) 1282 return -EFAULT; 1283 if (io.flags) 1284 return -EINVAL; 1285 1286 switch (io.opcode) { 1287 case nvme_cmd_write: 1288 case nvme_cmd_read: 1289 case nvme_cmd_compare: 1290 break; 1291 default: 1292 return -EINVAL; 1293 } 1294 1295 length = (io.nblocks + 1) << ns->lba_shift; 1296 meta_len = (io.nblocks + 1) * ns->ms; 1297 metadata = nvme_to_user_ptr(io.metadata); 1298 1299 if (ns->features & NVME_NS_EXT_LBAS) { 1300 length += meta_len; 1301 meta_len = 0; 1302 } else if (meta_len) { 1303 if ((io.metadata & 3) || !io.metadata) 1304 return -EINVAL; 1305 } 1306 1307 memset(&c, 0, sizeof(c)); 1308 c.rw.opcode = io.opcode; 1309 c.rw.flags = io.flags; 1310 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1311 c.rw.slba = cpu_to_le64(io.slba); 1312 c.rw.length = cpu_to_le16(io.nblocks); 1313 c.rw.control = cpu_to_le16(io.control); 1314 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1315 c.rw.reftag = cpu_to_le32(io.reftag); 1316 c.rw.apptag = cpu_to_le16(io.apptag); 1317 c.rw.appmask = cpu_to_le16(io.appmask); 1318 1319 return nvme_submit_user_cmd(ns->queue, &c, 1320 nvme_to_user_ptr(io.addr), length, 1321 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1322 } 1323 1324 static u32 nvme_known_admin_effects(u8 opcode) 1325 { 1326 switch (opcode) { 1327 case nvme_admin_format_nvm: 1328 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1329 NVME_CMD_EFFECTS_CSE_MASK; 1330 case nvme_admin_sanitize_nvm: 1331 return NVME_CMD_EFFECTS_CSE_MASK; 1332 default: 1333 break; 1334 } 1335 return 0; 1336 } 1337 1338 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1339 u8 opcode) 1340 { 1341 u32 effects = 0; 1342 1343 if (ns) { 1344 if (ctrl->effects) 1345 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1346 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1347 dev_warn(ctrl->device, 1348 "IO command:%02x has unhandled effects:%08x\n", 1349 opcode, effects); 1350 return 0; 1351 } 1352 1353 if (ctrl->effects) 1354 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1355 effects |= nvme_known_admin_effects(opcode); 1356 1357 /* 1358 * For simplicity, IO to all namespaces is quiesced even if the command 1359 * effects say only one namespace is affected. 1360 */ 1361 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1362 mutex_lock(&ctrl->scan_lock); 1363 mutex_lock(&ctrl->subsys->lock); 1364 nvme_mpath_start_freeze(ctrl->subsys); 1365 nvme_mpath_wait_freeze(ctrl->subsys); 1366 nvme_start_freeze(ctrl); 1367 nvme_wait_freeze(ctrl); 1368 } 1369 return effects; 1370 } 1371 1372 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1373 { 1374 struct nvme_ns *ns; 1375 1376 down_read(&ctrl->namespaces_rwsem); 1377 list_for_each_entry(ns, &ctrl->namespaces, list) 1378 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1379 nvme_set_queue_dying(ns); 1380 up_read(&ctrl->namespaces_rwsem); 1381 } 1382 1383 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1384 { 1385 /* 1386 * Revalidate LBA changes prior to unfreezing. This is necessary to 1387 * prevent memory corruption if a logical block size was changed by 1388 * this command. 1389 */ 1390 if (effects & NVME_CMD_EFFECTS_LBCC) 1391 nvme_update_formats(ctrl); 1392 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1393 nvme_unfreeze(ctrl); 1394 nvme_mpath_unfreeze(ctrl->subsys); 1395 mutex_unlock(&ctrl->subsys->lock); 1396 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1397 mutex_unlock(&ctrl->scan_lock); 1398 } 1399 if (effects & NVME_CMD_EFFECTS_CCC) 1400 nvme_init_identify(ctrl); 1401 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1402 nvme_queue_scan(ctrl); 1403 flush_work(&ctrl->scan_work); 1404 } 1405 } 1406 1407 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1408 struct nvme_passthru_cmd __user *ucmd) 1409 { 1410 struct nvme_passthru_cmd cmd; 1411 struct nvme_command c; 1412 unsigned timeout = 0; 1413 u32 effects; 1414 u64 result; 1415 int status; 1416 1417 if (!capable(CAP_SYS_ADMIN)) 1418 return -EACCES; 1419 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1420 return -EFAULT; 1421 if (cmd.flags) 1422 return -EINVAL; 1423 1424 memset(&c, 0, sizeof(c)); 1425 c.common.opcode = cmd.opcode; 1426 c.common.flags = cmd.flags; 1427 c.common.nsid = cpu_to_le32(cmd.nsid); 1428 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1429 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1430 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1431 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1432 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1433 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1434 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1435 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1436 1437 if (cmd.timeout_ms) 1438 timeout = msecs_to_jiffies(cmd.timeout_ms); 1439 1440 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1441 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1442 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1443 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1444 0, &result, timeout); 1445 nvme_passthru_end(ctrl, effects); 1446 1447 if (status >= 0) { 1448 if (put_user(result, &ucmd->result)) 1449 return -EFAULT; 1450 } 1451 1452 return status; 1453 } 1454 1455 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1456 struct nvme_passthru_cmd64 __user *ucmd) 1457 { 1458 struct nvme_passthru_cmd64 cmd; 1459 struct nvme_command c; 1460 unsigned timeout = 0; 1461 u32 effects; 1462 int status; 1463 1464 if (!capable(CAP_SYS_ADMIN)) 1465 return -EACCES; 1466 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1467 return -EFAULT; 1468 if (cmd.flags) 1469 return -EINVAL; 1470 1471 memset(&c, 0, sizeof(c)); 1472 c.common.opcode = cmd.opcode; 1473 c.common.flags = cmd.flags; 1474 c.common.nsid = cpu_to_le32(cmd.nsid); 1475 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1476 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1477 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1478 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1479 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1480 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1481 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1482 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1483 1484 if (cmd.timeout_ms) 1485 timeout = msecs_to_jiffies(cmd.timeout_ms); 1486 1487 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1488 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1489 nvme_to_user_ptr(cmd.addr), cmd.data_len, 1490 nvme_to_user_ptr(cmd.metadata), cmd.metadata_len, 1491 0, &cmd.result, timeout); 1492 nvme_passthru_end(ctrl, effects); 1493 1494 if (status >= 0) { 1495 if (put_user(cmd.result, &ucmd->result)) 1496 return -EFAULT; 1497 } 1498 1499 return status; 1500 } 1501 1502 /* 1503 * Issue ioctl requests on the first available path. Note that unlike normal 1504 * block layer requests we will not retry failed request on another controller. 1505 */ 1506 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1507 struct nvme_ns_head **head, int *srcu_idx) 1508 { 1509 #ifdef CONFIG_NVME_MULTIPATH 1510 if (disk->fops == &nvme_ns_head_ops) { 1511 struct nvme_ns *ns; 1512 1513 *head = disk->private_data; 1514 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1515 ns = nvme_find_path(*head); 1516 if (!ns) 1517 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1518 return ns; 1519 } 1520 #endif 1521 *head = NULL; 1522 *srcu_idx = -1; 1523 return disk->private_data; 1524 } 1525 1526 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1527 { 1528 if (head) 1529 srcu_read_unlock(&head->srcu, idx); 1530 } 1531 1532 static bool is_ctrl_ioctl(unsigned int cmd) 1533 { 1534 if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD) 1535 return true; 1536 if (is_sed_ioctl(cmd)) 1537 return true; 1538 return false; 1539 } 1540 1541 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd, 1542 void __user *argp, 1543 struct nvme_ns_head *head, 1544 int srcu_idx) 1545 { 1546 struct nvme_ctrl *ctrl = ns->ctrl; 1547 int ret; 1548 1549 nvme_get_ctrl(ns->ctrl); 1550 nvme_put_ns_from_disk(head, srcu_idx); 1551 1552 switch (cmd) { 1553 case NVME_IOCTL_ADMIN_CMD: 1554 ret = nvme_user_cmd(ctrl, NULL, argp); 1555 break; 1556 case NVME_IOCTL_ADMIN64_CMD: 1557 ret = nvme_user_cmd64(ctrl, NULL, argp); 1558 break; 1559 default: 1560 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1561 break; 1562 } 1563 nvme_put_ctrl(ctrl); 1564 return ret; 1565 } 1566 1567 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1568 unsigned int cmd, unsigned long arg) 1569 { 1570 struct nvme_ns_head *head = NULL; 1571 void __user *argp = (void __user *)arg; 1572 struct nvme_ns *ns; 1573 int srcu_idx, ret; 1574 1575 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1576 if (unlikely(!ns)) 1577 return -EWOULDBLOCK; 1578 1579 /* 1580 * Handle ioctls that apply to the controller instead of the namespace 1581 * seperately and drop the ns SRCU reference early. This avoids a 1582 * deadlock when deleting namespaces using the passthrough interface. 1583 */ 1584 if (is_ctrl_ioctl(cmd)) 1585 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx); 1586 1587 switch (cmd) { 1588 case NVME_IOCTL_ID: 1589 force_successful_syscall_return(); 1590 ret = ns->head->ns_id; 1591 break; 1592 case NVME_IOCTL_IO_CMD: 1593 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1594 break; 1595 case NVME_IOCTL_SUBMIT_IO: 1596 ret = nvme_submit_io(ns, argp); 1597 break; 1598 case NVME_IOCTL_IO64_CMD: 1599 ret = nvme_user_cmd64(ns->ctrl, ns, argp); 1600 break; 1601 default: 1602 if (ns->ndev) 1603 ret = nvme_nvm_ioctl(ns, cmd, arg); 1604 else 1605 ret = -ENOTTY; 1606 } 1607 1608 nvme_put_ns_from_disk(head, srcu_idx); 1609 return ret; 1610 } 1611 1612 #ifdef CONFIG_COMPAT 1613 struct nvme_user_io32 { 1614 __u8 opcode; 1615 __u8 flags; 1616 __u16 control; 1617 __u16 nblocks; 1618 __u16 rsvd; 1619 __u64 metadata; 1620 __u64 addr; 1621 __u64 slba; 1622 __u32 dsmgmt; 1623 __u32 reftag; 1624 __u16 apptag; 1625 __u16 appmask; 1626 } __attribute__((__packed__)); 1627 1628 #define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32) 1629 1630 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, 1631 unsigned int cmd, unsigned long arg) 1632 { 1633 /* 1634 * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO 1635 * between 32 bit programs and 64 bit kernel. 1636 * The cause is that the results of sizeof(struct nvme_user_io), 1637 * which is used to define NVME_IOCTL_SUBMIT_IO, 1638 * are not same between 32 bit compiler and 64 bit compiler. 1639 * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling 1640 * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs. 1641 * Other IOCTL numbers are same between 32 bit and 64 bit. 1642 * So there is nothing to do regarding to other IOCTL numbers. 1643 */ 1644 if (cmd == NVME_IOCTL_SUBMIT_IO32) 1645 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg); 1646 1647 return nvme_ioctl(bdev, mode, cmd, arg); 1648 } 1649 #else 1650 #define nvme_compat_ioctl NULL 1651 #endif /* CONFIG_COMPAT */ 1652 1653 static int nvme_open(struct block_device *bdev, fmode_t mode) 1654 { 1655 struct nvme_ns *ns = bdev->bd_disk->private_data; 1656 1657 #ifdef CONFIG_NVME_MULTIPATH 1658 /* should never be called due to GENHD_FL_HIDDEN */ 1659 if (WARN_ON_ONCE(ns->head->disk)) 1660 goto fail; 1661 #endif 1662 if (!kref_get_unless_zero(&ns->kref)) 1663 goto fail; 1664 if (!try_module_get(ns->ctrl->ops->module)) 1665 goto fail_put_ns; 1666 1667 return 0; 1668 1669 fail_put_ns: 1670 nvme_put_ns(ns); 1671 fail: 1672 return -ENXIO; 1673 } 1674 1675 static void nvme_release(struct gendisk *disk, fmode_t mode) 1676 { 1677 struct nvme_ns *ns = disk->private_data; 1678 1679 module_put(ns->ctrl->ops->module); 1680 nvme_put_ns(ns); 1681 } 1682 1683 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1684 { 1685 /* some standard values */ 1686 geo->heads = 1 << 6; 1687 geo->sectors = 1 << 5; 1688 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1689 return 0; 1690 } 1691 1692 #ifdef CONFIG_BLK_DEV_INTEGRITY 1693 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1694 u32 max_integrity_segments) 1695 { 1696 struct blk_integrity integrity; 1697 1698 memset(&integrity, 0, sizeof(integrity)); 1699 switch (pi_type) { 1700 case NVME_NS_DPS_PI_TYPE3: 1701 integrity.profile = &t10_pi_type3_crc; 1702 integrity.tag_size = sizeof(u16) + sizeof(u32); 1703 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1704 break; 1705 case NVME_NS_DPS_PI_TYPE1: 1706 case NVME_NS_DPS_PI_TYPE2: 1707 integrity.profile = &t10_pi_type1_crc; 1708 integrity.tag_size = sizeof(u16); 1709 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1710 break; 1711 default: 1712 integrity.profile = NULL; 1713 break; 1714 } 1715 integrity.tuple_size = ms; 1716 blk_integrity_register(disk, &integrity); 1717 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1718 } 1719 #else 1720 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1721 u32 max_integrity_segments) 1722 { 1723 } 1724 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1725 1726 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1727 { 1728 struct nvme_ctrl *ctrl = ns->ctrl; 1729 struct request_queue *queue = disk->queue; 1730 u32 size = queue_logical_block_size(queue); 1731 1732 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1733 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1734 return; 1735 } 1736 1737 if (ctrl->nr_streams && ns->sws && ns->sgs) 1738 size *= ns->sws * ns->sgs; 1739 1740 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1741 NVME_DSM_MAX_RANGES); 1742 1743 queue->limits.discard_alignment = 0; 1744 queue->limits.discard_granularity = size; 1745 1746 /* If discard is already enabled, don't reset queue limits */ 1747 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1748 return; 1749 1750 blk_queue_max_discard_sectors(queue, UINT_MAX); 1751 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1752 1753 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1754 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1755 } 1756 1757 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1758 { 1759 u64 max_blocks; 1760 1761 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1762 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1763 return; 1764 /* 1765 * Even though NVMe spec explicitly states that MDTS is not 1766 * applicable to the write-zeroes:- "The restriction does not apply to 1767 * commands that do not transfer data between the host and the 1768 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1769 * In order to be more cautious use controller's max_hw_sectors value 1770 * to configure the maximum sectors for the write-zeroes which is 1771 * configured based on the controller's MDTS field in the 1772 * nvme_init_identify() if available. 1773 */ 1774 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1775 max_blocks = (u64)USHRT_MAX + 1; 1776 else 1777 max_blocks = ns->ctrl->max_hw_sectors + 1; 1778 1779 blk_queue_max_write_zeroes_sectors(disk->queue, 1780 nvme_lba_to_sect(ns, max_blocks)); 1781 } 1782 1783 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1784 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1785 { 1786 memset(ids, 0, sizeof(*ids)); 1787 1788 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1789 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1790 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1791 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1792 if (ctrl->vs >= NVME_VS(1, 3, 0)) 1793 return nvme_identify_ns_descs(ctrl, nsid, ids); 1794 return 0; 1795 } 1796 1797 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1798 { 1799 return !uuid_is_null(&ids->uuid) || 1800 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1801 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1802 } 1803 1804 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1805 { 1806 return uuid_equal(&a->uuid, &b->uuid) && 1807 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1808 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1809 } 1810 1811 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1812 u32 *phys_bs, u32 *io_opt) 1813 { 1814 struct streams_directive_params s; 1815 int ret; 1816 1817 if (!ctrl->nr_streams) 1818 return 0; 1819 1820 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1821 if (ret) 1822 return ret; 1823 1824 ns->sws = le32_to_cpu(s.sws); 1825 ns->sgs = le16_to_cpu(s.sgs); 1826 1827 if (ns->sws) { 1828 *phys_bs = ns->sws * (1 << ns->lba_shift); 1829 if (ns->sgs) 1830 *io_opt = *phys_bs * ns->sgs; 1831 } 1832 1833 return 0; 1834 } 1835 1836 static void nvme_update_disk_info(struct gendisk *disk, 1837 struct nvme_ns *ns, struct nvme_id_ns *id) 1838 { 1839 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1840 unsigned short bs = 1 << ns->lba_shift; 1841 u32 atomic_bs, phys_bs, io_opt = 0; 1842 1843 if (ns->lba_shift > PAGE_SHIFT) { 1844 /* unsupported block size, set capacity to 0 later */ 1845 bs = (1 << 9); 1846 } 1847 blk_mq_freeze_queue(disk->queue); 1848 blk_integrity_unregister(disk); 1849 1850 atomic_bs = phys_bs = bs; 1851 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1852 if (id->nabo == 0) { 1853 /* 1854 * Bit 1 indicates whether NAWUPF is defined for this namespace 1855 * and whether it should be used instead of AWUPF. If NAWUPF == 1856 * 0 then AWUPF must be used instead. 1857 */ 1858 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1859 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1860 else 1861 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1862 } 1863 1864 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1865 /* NPWG = Namespace Preferred Write Granularity */ 1866 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1867 /* NOWS = Namespace Optimal Write Size */ 1868 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1869 } 1870 1871 blk_queue_logical_block_size(disk->queue, bs); 1872 /* 1873 * Linux filesystems assume writing a single physical block is 1874 * an atomic operation. Hence limit the physical block size to the 1875 * value of the Atomic Write Unit Power Fail parameter. 1876 */ 1877 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1878 blk_queue_io_min(disk->queue, phys_bs); 1879 blk_queue_io_opt(disk->queue, io_opt); 1880 1881 /* 1882 * The block layer can't support LBA sizes larger than the page size 1883 * yet, so catch this early and don't allow block I/O. 1884 */ 1885 if (ns->lba_shift > PAGE_SHIFT) 1886 capacity = 0; 1887 1888 /* 1889 * Register a metadata profile for PI, or the plain non-integrity NVMe 1890 * metadata masquerading as Type 0 if supported, otherwise reject block 1891 * I/O to namespaces with metadata except when the namespace supports 1892 * PI, as it can strip/insert in that case. 1893 */ 1894 if (ns->ms) { 1895 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1896 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1897 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1898 ns->ctrl->max_integrity_segments); 1899 else if (!nvme_ns_has_pi(ns)) 1900 capacity = 0; 1901 } 1902 1903 set_capacity_revalidate_and_notify(disk, capacity, false); 1904 1905 nvme_config_discard(disk, ns); 1906 nvme_config_write_zeroes(disk, ns); 1907 1908 if (id->nsattr & NVME_NS_ATTR_RO) 1909 set_disk_ro(disk, true); 1910 else 1911 set_disk_ro(disk, false); 1912 1913 blk_mq_unfreeze_queue(disk->queue); 1914 } 1915 1916 static int __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1917 { 1918 struct nvme_ns *ns = disk->private_data; 1919 struct nvme_ctrl *ctrl = ns->ctrl; 1920 u32 iob; 1921 1922 /* 1923 * If identify namespace failed, use default 512 byte block size so 1924 * block layer can use before failing read/write for 0 capacity. 1925 */ 1926 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1927 if (ns->lba_shift == 0) 1928 ns->lba_shift = 9; 1929 1930 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1931 is_power_of_2(ctrl->max_hw_sectors)) 1932 iob = ctrl->max_hw_sectors; 1933 else 1934 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1935 1936 ns->features = 0; 1937 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1938 /* the PI implementation requires metadata equal t10 pi tuple size */ 1939 if (ns->ms == sizeof(struct t10_pi_tuple)) 1940 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1941 else 1942 ns->pi_type = 0; 1943 1944 if (ns->ms) { 1945 /* 1946 * For PCIe only the separate metadata pointer is supported, 1947 * as the block layer supplies metadata in a separate bio_vec 1948 * chain. For Fabrics, only metadata as part of extended data 1949 * LBA is supported on the wire per the Fabrics specification, 1950 * but the HBA/HCA will do the remapping from the separate 1951 * metadata buffers for us. 1952 */ 1953 if (id->flbas & NVME_NS_FLBAS_META_EXT) { 1954 ns->features |= NVME_NS_EXT_LBAS; 1955 if ((ctrl->ops->flags & NVME_F_FABRICS) && 1956 (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) && 1957 ctrl->max_integrity_segments) 1958 ns->features |= NVME_NS_METADATA_SUPPORTED; 1959 } else { 1960 if (WARN_ON_ONCE(ctrl->ops->flags & NVME_F_FABRICS)) 1961 return -EINVAL; 1962 if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) 1963 ns->features |= NVME_NS_METADATA_SUPPORTED; 1964 } 1965 } 1966 1967 if (iob) 1968 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(iob)); 1969 nvme_update_disk_info(disk, ns, id); 1970 #ifdef CONFIG_NVME_MULTIPATH 1971 if (ns->head->disk) { 1972 nvme_update_disk_info(ns->head->disk, ns, id); 1973 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1974 nvme_mpath_update_disk_size(ns->head->disk); 1975 } 1976 #endif 1977 return 0; 1978 } 1979 1980 static int nvme_revalidate_disk(struct gendisk *disk) 1981 { 1982 struct nvme_ns *ns = disk->private_data; 1983 struct nvme_ctrl *ctrl = ns->ctrl; 1984 struct nvme_id_ns *id; 1985 struct nvme_ns_ids ids; 1986 int ret = 0; 1987 1988 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1989 set_capacity(disk, 0); 1990 return -ENODEV; 1991 } 1992 1993 ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id); 1994 if (ret) 1995 goto out; 1996 1997 if (id->ncap == 0) { 1998 ret = -ENODEV; 1999 goto free_id; 2000 } 2001 2002 ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 2003 if (ret) 2004 goto free_id; 2005 2006 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 2007 dev_err(ctrl->device, 2008 "identifiers changed for nsid %d\n", ns->head->ns_id); 2009 ret = -ENODEV; 2010 goto free_id; 2011 } 2012 2013 ret = __nvme_revalidate_disk(disk, id); 2014 free_id: 2015 kfree(id); 2016 out: 2017 /* 2018 * Only fail the function if we got a fatal error back from the 2019 * device, otherwise ignore the error and just move on. 2020 */ 2021 if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR))) 2022 ret = 0; 2023 else if (ret > 0) 2024 ret = blk_status_to_errno(nvme_error_status(ret)); 2025 return ret; 2026 } 2027 2028 static char nvme_pr_type(enum pr_type type) 2029 { 2030 switch (type) { 2031 case PR_WRITE_EXCLUSIVE: 2032 return 1; 2033 case PR_EXCLUSIVE_ACCESS: 2034 return 2; 2035 case PR_WRITE_EXCLUSIVE_REG_ONLY: 2036 return 3; 2037 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 2038 return 4; 2039 case PR_WRITE_EXCLUSIVE_ALL_REGS: 2040 return 5; 2041 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 2042 return 6; 2043 default: 2044 return 0; 2045 } 2046 }; 2047 2048 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2049 u64 key, u64 sa_key, u8 op) 2050 { 2051 struct nvme_ns_head *head = NULL; 2052 struct nvme_ns *ns; 2053 struct nvme_command c; 2054 int srcu_idx, ret; 2055 u8 data[16] = { 0, }; 2056 2057 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 2058 if (unlikely(!ns)) 2059 return -EWOULDBLOCK; 2060 2061 put_unaligned_le64(key, &data[0]); 2062 put_unaligned_le64(sa_key, &data[8]); 2063 2064 memset(&c, 0, sizeof(c)); 2065 c.common.opcode = op; 2066 c.common.nsid = cpu_to_le32(ns->head->ns_id); 2067 c.common.cdw10 = cpu_to_le32(cdw10); 2068 2069 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 2070 nvme_put_ns_from_disk(head, srcu_idx); 2071 return ret; 2072 } 2073 2074 static int nvme_pr_register(struct block_device *bdev, u64 old, 2075 u64 new, unsigned flags) 2076 { 2077 u32 cdw10; 2078 2079 if (flags & ~PR_FL_IGNORE_KEY) 2080 return -EOPNOTSUPP; 2081 2082 cdw10 = old ? 2 : 0; 2083 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2084 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2085 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2086 } 2087 2088 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2089 enum pr_type type, unsigned flags) 2090 { 2091 u32 cdw10; 2092 2093 if (flags & ~PR_FL_IGNORE_KEY) 2094 return -EOPNOTSUPP; 2095 2096 cdw10 = nvme_pr_type(type) << 8; 2097 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2098 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2099 } 2100 2101 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2102 enum pr_type type, bool abort) 2103 { 2104 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2105 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2106 } 2107 2108 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2109 { 2110 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2111 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2112 } 2113 2114 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2115 { 2116 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2117 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2118 } 2119 2120 static const struct pr_ops nvme_pr_ops = { 2121 .pr_register = nvme_pr_register, 2122 .pr_reserve = nvme_pr_reserve, 2123 .pr_release = nvme_pr_release, 2124 .pr_preempt = nvme_pr_preempt, 2125 .pr_clear = nvme_pr_clear, 2126 }; 2127 2128 #ifdef CONFIG_BLK_SED_OPAL 2129 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2130 bool send) 2131 { 2132 struct nvme_ctrl *ctrl = data; 2133 struct nvme_command cmd; 2134 2135 memset(&cmd, 0, sizeof(cmd)); 2136 if (send) 2137 cmd.common.opcode = nvme_admin_security_send; 2138 else 2139 cmd.common.opcode = nvme_admin_security_recv; 2140 cmd.common.nsid = 0; 2141 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2142 cmd.common.cdw11 = cpu_to_le32(len); 2143 2144 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2145 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 2146 } 2147 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2148 #endif /* CONFIG_BLK_SED_OPAL */ 2149 2150 static const struct block_device_operations nvme_fops = { 2151 .owner = THIS_MODULE, 2152 .ioctl = nvme_ioctl, 2153 .compat_ioctl = nvme_compat_ioctl, 2154 .open = nvme_open, 2155 .release = nvme_release, 2156 .getgeo = nvme_getgeo, 2157 .revalidate_disk= nvme_revalidate_disk, 2158 .pr_ops = &nvme_pr_ops, 2159 }; 2160 2161 #ifdef CONFIG_NVME_MULTIPATH 2162 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 2163 { 2164 struct nvme_ns_head *head = bdev->bd_disk->private_data; 2165 2166 if (!kref_get_unless_zero(&head->ref)) 2167 return -ENXIO; 2168 return 0; 2169 } 2170 2171 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 2172 { 2173 nvme_put_ns_head(disk->private_data); 2174 } 2175 2176 const struct block_device_operations nvme_ns_head_ops = { 2177 .owner = THIS_MODULE, 2178 .open = nvme_ns_head_open, 2179 .release = nvme_ns_head_release, 2180 .ioctl = nvme_ioctl, 2181 .compat_ioctl = nvme_compat_ioctl, 2182 .getgeo = nvme_getgeo, 2183 .pr_ops = &nvme_pr_ops, 2184 }; 2185 #endif /* CONFIG_NVME_MULTIPATH */ 2186 2187 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2188 { 2189 unsigned long timeout = 2190 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2191 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2192 int ret; 2193 2194 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2195 if (csts == ~0) 2196 return -ENODEV; 2197 if ((csts & NVME_CSTS_RDY) == bit) 2198 break; 2199 2200 usleep_range(1000, 2000); 2201 if (fatal_signal_pending(current)) 2202 return -EINTR; 2203 if (time_after(jiffies, timeout)) { 2204 dev_err(ctrl->device, 2205 "Device not ready; aborting %s, CSTS=0x%x\n", 2206 enabled ? "initialisation" : "reset", csts); 2207 return -ENODEV; 2208 } 2209 } 2210 2211 return ret; 2212 } 2213 2214 /* 2215 * If the device has been passed off to us in an enabled state, just clear 2216 * the enabled bit. The spec says we should set the 'shutdown notification 2217 * bits', but doing so may cause the device to complete commands to the 2218 * admin queue ... and we don't know what memory that might be pointing at! 2219 */ 2220 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2221 { 2222 int ret; 2223 2224 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2225 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2226 2227 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2228 if (ret) 2229 return ret; 2230 2231 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2232 msleep(NVME_QUIRK_DELAY_AMOUNT); 2233 2234 return nvme_wait_ready(ctrl, ctrl->cap, false); 2235 } 2236 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2237 2238 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2239 { 2240 /* 2241 * Default to a 4K page size, with the intention to update this 2242 * path in the future to accomodate architectures with differing 2243 * kernel and IO page sizes. 2244 */ 2245 unsigned dev_page_min, page_shift = 12; 2246 int ret; 2247 2248 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2249 if (ret) { 2250 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2251 return ret; 2252 } 2253 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2254 2255 if (page_shift < dev_page_min) { 2256 dev_err(ctrl->device, 2257 "Minimum device page size %u too large for host (%u)\n", 2258 1 << dev_page_min, 1 << page_shift); 2259 return -ENODEV; 2260 } 2261 2262 ctrl->page_size = 1 << page_shift; 2263 2264 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2265 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 2266 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2267 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2268 ctrl->ctrl_config |= NVME_CC_ENABLE; 2269 2270 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2271 if (ret) 2272 return ret; 2273 return nvme_wait_ready(ctrl, ctrl->cap, true); 2274 } 2275 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2276 2277 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2278 { 2279 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2280 u32 csts; 2281 int ret; 2282 2283 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2284 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2285 2286 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2287 if (ret) 2288 return ret; 2289 2290 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2291 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2292 break; 2293 2294 msleep(100); 2295 if (fatal_signal_pending(current)) 2296 return -EINTR; 2297 if (time_after(jiffies, timeout)) { 2298 dev_err(ctrl->device, 2299 "Device shutdown incomplete; abort shutdown\n"); 2300 return -ENODEV; 2301 } 2302 } 2303 2304 return ret; 2305 } 2306 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2307 2308 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 2309 struct request_queue *q) 2310 { 2311 bool vwc = false; 2312 2313 if (ctrl->max_hw_sectors) { 2314 u32 max_segments = 2315 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 2316 2317 max_segments = min_not_zero(max_segments, ctrl->max_segments); 2318 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 2319 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 2320 } 2321 blk_queue_virt_boundary(q, ctrl->page_size - 1); 2322 blk_queue_dma_alignment(q, 7); 2323 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2324 vwc = true; 2325 blk_queue_write_cache(q, vwc, vwc); 2326 } 2327 2328 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2329 { 2330 __le64 ts; 2331 int ret; 2332 2333 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2334 return 0; 2335 2336 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2337 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2338 NULL); 2339 if (ret) 2340 dev_warn_once(ctrl->device, 2341 "could not set timestamp (%d)\n", ret); 2342 return ret; 2343 } 2344 2345 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2346 { 2347 struct nvme_feat_host_behavior *host; 2348 int ret; 2349 2350 /* Don't bother enabling the feature if retry delay is not reported */ 2351 if (!ctrl->crdt[0]) 2352 return 0; 2353 2354 host = kzalloc(sizeof(*host), GFP_KERNEL); 2355 if (!host) 2356 return 0; 2357 2358 host->acre = NVME_ENABLE_ACRE; 2359 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2360 host, sizeof(*host), NULL); 2361 kfree(host); 2362 return ret; 2363 } 2364 2365 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2366 { 2367 /* 2368 * APST (Autonomous Power State Transition) lets us program a 2369 * table of power state transitions that the controller will 2370 * perform automatically. We configure it with a simple 2371 * heuristic: we are willing to spend at most 2% of the time 2372 * transitioning between power states. Therefore, when running 2373 * in any given state, we will enter the next lower-power 2374 * non-operational state after waiting 50 * (enlat + exlat) 2375 * microseconds, as long as that state's exit latency is under 2376 * the requested maximum latency. 2377 * 2378 * We will not autonomously enter any non-operational state for 2379 * which the total latency exceeds ps_max_latency_us. Users 2380 * can set ps_max_latency_us to zero to turn off APST. 2381 */ 2382 2383 unsigned apste; 2384 struct nvme_feat_auto_pst *table; 2385 u64 max_lat_us = 0; 2386 int max_ps = -1; 2387 int ret; 2388 2389 /* 2390 * If APST isn't supported or if we haven't been initialized yet, 2391 * then don't do anything. 2392 */ 2393 if (!ctrl->apsta) 2394 return 0; 2395 2396 if (ctrl->npss > 31) { 2397 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2398 return 0; 2399 } 2400 2401 table = kzalloc(sizeof(*table), GFP_KERNEL); 2402 if (!table) 2403 return 0; 2404 2405 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2406 /* Turn off APST. */ 2407 apste = 0; 2408 dev_dbg(ctrl->device, "APST disabled\n"); 2409 } else { 2410 __le64 target = cpu_to_le64(0); 2411 int state; 2412 2413 /* 2414 * Walk through all states from lowest- to highest-power. 2415 * According to the spec, lower-numbered states use more 2416 * power. NPSS, despite the name, is the index of the 2417 * lowest-power state, not the number of states. 2418 */ 2419 for (state = (int)ctrl->npss; state >= 0; state--) { 2420 u64 total_latency_us, exit_latency_us, transition_ms; 2421 2422 if (target) 2423 table->entries[state] = target; 2424 2425 /* 2426 * Don't allow transitions to the deepest state 2427 * if it's quirked off. 2428 */ 2429 if (state == ctrl->npss && 2430 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2431 continue; 2432 2433 /* 2434 * Is this state a useful non-operational state for 2435 * higher-power states to autonomously transition to? 2436 */ 2437 if (!(ctrl->psd[state].flags & 2438 NVME_PS_FLAGS_NON_OP_STATE)) 2439 continue; 2440 2441 exit_latency_us = 2442 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2443 if (exit_latency_us > ctrl->ps_max_latency_us) 2444 continue; 2445 2446 total_latency_us = 2447 exit_latency_us + 2448 le32_to_cpu(ctrl->psd[state].entry_lat); 2449 2450 /* 2451 * This state is good. Use it as the APST idle 2452 * target for higher power states. 2453 */ 2454 transition_ms = total_latency_us + 19; 2455 do_div(transition_ms, 20); 2456 if (transition_ms > (1 << 24) - 1) 2457 transition_ms = (1 << 24) - 1; 2458 2459 target = cpu_to_le64((state << 3) | 2460 (transition_ms << 8)); 2461 2462 if (max_ps == -1) 2463 max_ps = state; 2464 2465 if (total_latency_us > max_lat_us) 2466 max_lat_us = total_latency_us; 2467 } 2468 2469 apste = 1; 2470 2471 if (max_ps == -1) { 2472 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2473 } else { 2474 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2475 max_ps, max_lat_us, (int)sizeof(*table), table); 2476 } 2477 } 2478 2479 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2480 table, sizeof(*table), NULL); 2481 if (ret) 2482 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2483 2484 kfree(table); 2485 return ret; 2486 } 2487 2488 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2489 { 2490 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2491 u64 latency; 2492 2493 switch (val) { 2494 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2495 case PM_QOS_LATENCY_ANY: 2496 latency = U64_MAX; 2497 break; 2498 2499 default: 2500 latency = val; 2501 } 2502 2503 if (ctrl->ps_max_latency_us != latency) { 2504 ctrl->ps_max_latency_us = latency; 2505 nvme_configure_apst(ctrl); 2506 } 2507 } 2508 2509 struct nvme_core_quirk_entry { 2510 /* 2511 * NVMe model and firmware strings are padded with spaces. For 2512 * simplicity, strings in the quirk table are padded with NULLs 2513 * instead. 2514 */ 2515 u16 vid; 2516 const char *mn; 2517 const char *fr; 2518 unsigned long quirks; 2519 }; 2520 2521 static const struct nvme_core_quirk_entry core_quirks[] = { 2522 { 2523 /* 2524 * This Toshiba device seems to die using any APST states. See: 2525 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2526 */ 2527 .vid = 0x1179, 2528 .mn = "THNSF5256GPUK TOSHIBA", 2529 .quirks = NVME_QUIRK_NO_APST, 2530 }, 2531 { 2532 /* 2533 * This LiteON CL1-3D*-Q11 firmware version has a race 2534 * condition associated with actions related to suspend to idle 2535 * LiteON has resolved the problem in future firmware 2536 */ 2537 .vid = 0x14a4, 2538 .fr = "22301111", 2539 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2540 } 2541 }; 2542 2543 /* match is null-terminated but idstr is space-padded. */ 2544 static bool string_matches(const char *idstr, const char *match, size_t len) 2545 { 2546 size_t matchlen; 2547 2548 if (!match) 2549 return true; 2550 2551 matchlen = strlen(match); 2552 WARN_ON_ONCE(matchlen > len); 2553 2554 if (memcmp(idstr, match, matchlen)) 2555 return false; 2556 2557 for (; matchlen < len; matchlen++) 2558 if (idstr[matchlen] != ' ') 2559 return false; 2560 2561 return true; 2562 } 2563 2564 static bool quirk_matches(const struct nvme_id_ctrl *id, 2565 const struct nvme_core_quirk_entry *q) 2566 { 2567 return q->vid == le16_to_cpu(id->vid) && 2568 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2569 string_matches(id->fr, q->fr, sizeof(id->fr)); 2570 } 2571 2572 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2573 struct nvme_id_ctrl *id) 2574 { 2575 size_t nqnlen; 2576 int off; 2577 2578 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2579 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2580 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2581 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2582 return; 2583 } 2584 2585 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2586 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2587 } 2588 2589 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2590 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2591 "nqn.2014.08.org.nvmexpress:%04x%04x", 2592 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2593 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2594 off += sizeof(id->sn); 2595 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2596 off += sizeof(id->mn); 2597 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2598 } 2599 2600 static void nvme_release_subsystem(struct device *dev) 2601 { 2602 struct nvme_subsystem *subsys = 2603 container_of(dev, struct nvme_subsystem, dev); 2604 2605 if (subsys->instance >= 0) 2606 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2607 kfree(subsys); 2608 } 2609 2610 static void nvme_destroy_subsystem(struct kref *ref) 2611 { 2612 struct nvme_subsystem *subsys = 2613 container_of(ref, struct nvme_subsystem, ref); 2614 2615 mutex_lock(&nvme_subsystems_lock); 2616 list_del(&subsys->entry); 2617 mutex_unlock(&nvme_subsystems_lock); 2618 2619 ida_destroy(&subsys->ns_ida); 2620 device_del(&subsys->dev); 2621 put_device(&subsys->dev); 2622 } 2623 2624 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2625 { 2626 kref_put(&subsys->ref, nvme_destroy_subsystem); 2627 } 2628 2629 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2630 { 2631 struct nvme_subsystem *subsys; 2632 2633 lockdep_assert_held(&nvme_subsystems_lock); 2634 2635 /* 2636 * Fail matches for discovery subsystems. This results 2637 * in each discovery controller bound to a unique subsystem. 2638 * This avoids issues with validating controller values 2639 * that can only be true when there is a single unique subsystem. 2640 * There may be multiple and completely independent entities 2641 * that provide discovery controllers. 2642 */ 2643 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2644 return NULL; 2645 2646 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2647 if (strcmp(subsys->subnqn, subsysnqn)) 2648 continue; 2649 if (!kref_get_unless_zero(&subsys->ref)) 2650 continue; 2651 return subsys; 2652 } 2653 2654 return NULL; 2655 } 2656 2657 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2658 struct device_attribute subsys_attr_##_name = \ 2659 __ATTR(_name, _mode, _show, NULL) 2660 2661 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2662 struct device_attribute *attr, 2663 char *buf) 2664 { 2665 struct nvme_subsystem *subsys = 2666 container_of(dev, struct nvme_subsystem, dev); 2667 2668 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2669 } 2670 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2671 2672 #define nvme_subsys_show_str_function(field) \ 2673 static ssize_t subsys_##field##_show(struct device *dev, \ 2674 struct device_attribute *attr, char *buf) \ 2675 { \ 2676 struct nvme_subsystem *subsys = \ 2677 container_of(dev, struct nvme_subsystem, dev); \ 2678 return sprintf(buf, "%.*s\n", \ 2679 (int)sizeof(subsys->field), subsys->field); \ 2680 } \ 2681 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2682 2683 nvme_subsys_show_str_function(model); 2684 nvme_subsys_show_str_function(serial); 2685 nvme_subsys_show_str_function(firmware_rev); 2686 2687 static struct attribute *nvme_subsys_attrs[] = { 2688 &subsys_attr_model.attr, 2689 &subsys_attr_serial.attr, 2690 &subsys_attr_firmware_rev.attr, 2691 &subsys_attr_subsysnqn.attr, 2692 #ifdef CONFIG_NVME_MULTIPATH 2693 &subsys_attr_iopolicy.attr, 2694 #endif 2695 NULL, 2696 }; 2697 2698 static struct attribute_group nvme_subsys_attrs_group = { 2699 .attrs = nvme_subsys_attrs, 2700 }; 2701 2702 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2703 &nvme_subsys_attrs_group, 2704 NULL, 2705 }; 2706 2707 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2708 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2709 { 2710 struct nvme_ctrl *tmp; 2711 2712 lockdep_assert_held(&nvme_subsystems_lock); 2713 2714 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2715 if (nvme_state_terminal(tmp)) 2716 continue; 2717 2718 if (tmp->cntlid == ctrl->cntlid) { 2719 dev_err(ctrl->device, 2720 "Duplicate cntlid %u with %s, rejecting\n", 2721 ctrl->cntlid, dev_name(tmp->device)); 2722 return false; 2723 } 2724 2725 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2726 (ctrl->opts && ctrl->opts->discovery_nqn)) 2727 continue; 2728 2729 dev_err(ctrl->device, 2730 "Subsystem does not support multiple controllers\n"); 2731 return false; 2732 } 2733 2734 return true; 2735 } 2736 2737 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2738 { 2739 struct nvme_subsystem *subsys, *found; 2740 int ret; 2741 2742 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2743 if (!subsys) 2744 return -ENOMEM; 2745 2746 subsys->instance = -1; 2747 mutex_init(&subsys->lock); 2748 kref_init(&subsys->ref); 2749 INIT_LIST_HEAD(&subsys->ctrls); 2750 INIT_LIST_HEAD(&subsys->nsheads); 2751 nvme_init_subnqn(subsys, ctrl, id); 2752 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2753 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2754 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2755 subsys->vendor_id = le16_to_cpu(id->vid); 2756 subsys->cmic = id->cmic; 2757 subsys->awupf = le16_to_cpu(id->awupf); 2758 #ifdef CONFIG_NVME_MULTIPATH 2759 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2760 #endif 2761 2762 subsys->dev.class = nvme_subsys_class; 2763 subsys->dev.release = nvme_release_subsystem; 2764 subsys->dev.groups = nvme_subsys_attrs_groups; 2765 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2766 device_initialize(&subsys->dev); 2767 2768 mutex_lock(&nvme_subsystems_lock); 2769 found = __nvme_find_get_subsystem(subsys->subnqn); 2770 if (found) { 2771 put_device(&subsys->dev); 2772 subsys = found; 2773 2774 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2775 ret = -EINVAL; 2776 goto out_put_subsystem; 2777 } 2778 } else { 2779 ret = device_add(&subsys->dev); 2780 if (ret) { 2781 dev_err(ctrl->device, 2782 "failed to register subsystem device.\n"); 2783 put_device(&subsys->dev); 2784 goto out_unlock; 2785 } 2786 ida_init(&subsys->ns_ida); 2787 list_add_tail(&subsys->entry, &nvme_subsystems); 2788 } 2789 2790 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2791 dev_name(ctrl->device)); 2792 if (ret) { 2793 dev_err(ctrl->device, 2794 "failed to create sysfs link from subsystem.\n"); 2795 goto out_put_subsystem; 2796 } 2797 2798 if (!found) 2799 subsys->instance = ctrl->instance; 2800 ctrl->subsys = subsys; 2801 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2802 mutex_unlock(&nvme_subsystems_lock); 2803 return 0; 2804 2805 out_put_subsystem: 2806 nvme_put_subsystem(subsys); 2807 out_unlock: 2808 mutex_unlock(&nvme_subsystems_lock); 2809 return ret; 2810 } 2811 2812 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2813 void *log, size_t size, u64 offset) 2814 { 2815 struct nvme_command c = { }; 2816 u32 dwlen = nvme_bytes_to_numd(size); 2817 2818 c.get_log_page.opcode = nvme_admin_get_log_page; 2819 c.get_log_page.nsid = cpu_to_le32(nsid); 2820 c.get_log_page.lid = log_page; 2821 c.get_log_page.lsp = lsp; 2822 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2823 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2824 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2825 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2826 2827 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2828 } 2829 2830 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2831 { 2832 int ret; 2833 2834 if (!ctrl->effects) 2835 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2836 2837 if (!ctrl->effects) 2838 return 0; 2839 2840 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2841 ctrl->effects, sizeof(*ctrl->effects), 0); 2842 if (ret) { 2843 kfree(ctrl->effects); 2844 ctrl->effects = NULL; 2845 } 2846 return ret; 2847 } 2848 2849 /* 2850 * Initialize the cached copies of the Identify data and various controller 2851 * register in our nvme_ctrl structure. This should be called as soon as 2852 * the admin queue is fully up and running. 2853 */ 2854 int nvme_init_identify(struct nvme_ctrl *ctrl) 2855 { 2856 struct nvme_id_ctrl *id; 2857 int ret, page_shift; 2858 u32 max_hw_sectors; 2859 bool prev_apst_enabled; 2860 2861 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2862 if (ret) { 2863 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2864 return ret; 2865 } 2866 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2867 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 2868 2869 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2870 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 2871 2872 ret = nvme_identify_ctrl(ctrl, &id); 2873 if (ret) { 2874 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2875 return -EIO; 2876 } 2877 2878 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2879 ret = nvme_get_effects_log(ctrl); 2880 if (ret < 0) 2881 goto out_free; 2882 } 2883 2884 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2885 ctrl->cntlid = le16_to_cpu(id->cntlid); 2886 2887 if (!ctrl->identified) { 2888 int i; 2889 2890 ret = nvme_init_subsystem(ctrl, id); 2891 if (ret) 2892 goto out_free; 2893 2894 /* 2895 * Check for quirks. Quirk can depend on firmware version, 2896 * so, in principle, the set of quirks present can change 2897 * across a reset. As a possible future enhancement, we 2898 * could re-scan for quirks every time we reinitialize 2899 * the device, but we'd have to make sure that the driver 2900 * behaves intelligently if the quirks change. 2901 */ 2902 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2903 if (quirk_matches(id, &core_quirks[i])) 2904 ctrl->quirks |= core_quirks[i].quirks; 2905 } 2906 } 2907 2908 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2909 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2910 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2911 } 2912 2913 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2914 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2915 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2916 2917 ctrl->oacs = le16_to_cpu(id->oacs); 2918 ctrl->oncs = le16_to_cpu(id->oncs); 2919 ctrl->mtfa = le16_to_cpu(id->mtfa); 2920 ctrl->oaes = le32_to_cpu(id->oaes); 2921 ctrl->wctemp = le16_to_cpu(id->wctemp); 2922 ctrl->cctemp = le16_to_cpu(id->cctemp); 2923 2924 atomic_set(&ctrl->abort_limit, id->acl + 1); 2925 ctrl->vwc = id->vwc; 2926 if (id->mdts) 2927 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2928 else 2929 max_hw_sectors = UINT_MAX; 2930 ctrl->max_hw_sectors = 2931 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2932 2933 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2934 ctrl->sgls = le32_to_cpu(id->sgls); 2935 ctrl->kas = le16_to_cpu(id->kas); 2936 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2937 ctrl->ctratt = le32_to_cpu(id->ctratt); 2938 2939 if (id->rtd3e) { 2940 /* us -> s */ 2941 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2942 2943 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2944 shutdown_timeout, 60); 2945 2946 if (ctrl->shutdown_timeout != shutdown_timeout) 2947 dev_info(ctrl->device, 2948 "Shutdown timeout set to %u seconds\n", 2949 ctrl->shutdown_timeout); 2950 } else 2951 ctrl->shutdown_timeout = shutdown_timeout; 2952 2953 ctrl->npss = id->npss; 2954 ctrl->apsta = id->apsta; 2955 prev_apst_enabled = ctrl->apst_enabled; 2956 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2957 if (force_apst && id->apsta) { 2958 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2959 ctrl->apst_enabled = true; 2960 } else { 2961 ctrl->apst_enabled = false; 2962 } 2963 } else { 2964 ctrl->apst_enabled = id->apsta; 2965 } 2966 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2967 2968 if (ctrl->ops->flags & NVME_F_FABRICS) { 2969 ctrl->icdoff = le16_to_cpu(id->icdoff); 2970 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2971 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2972 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2973 2974 /* 2975 * In fabrics we need to verify the cntlid matches the 2976 * admin connect 2977 */ 2978 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2979 dev_err(ctrl->device, 2980 "Mismatching cntlid: Connect %u vs Identify " 2981 "%u, rejecting\n", 2982 ctrl->cntlid, le16_to_cpu(id->cntlid)); 2983 ret = -EINVAL; 2984 goto out_free; 2985 } 2986 2987 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2988 dev_err(ctrl->device, 2989 "keep-alive support is mandatory for fabrics\n"); 2990 ret = -EINVAL; 2991 goto out_free; 2992 } 2993 } else { 2994 ctrl->hmpre = le32_to_cpu(id->hmpre); 2995 ctrl->hmmin = le32_to_cpu(id->hmmin); 2996 ctrl->hmminds = le32_to_cpu(id->hmminds); 2997 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2998 } 2999 3000 ret = nvme_mpath_init(ctrl, id); 3001 kfree(id); 3002 3003 if (ret < 0) 3004 return ret; 3005 3006 if (ctrl->apst_enabled && !prev_apst_enabled) 3007 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3008 else if (!ctrl->apst_enabled && prev_apst_enabled) 3009 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3010 3011 ret = nvme_configure_apst(ctrl); 3012 if (ret < 0) 3013 return ret; 3014 3015 ret = nvme_configure_timestamp(ctrl); 3016 if (ret < 0) 3017 return ret; 3018 3019 ret = nvme_configure_directives(ctrl); 3020 if (ret < 0) 3021 return ret; 3022 3023 ret = nvme_configure_acre(ctrl); 3024 if (ret < 0) 3025 return ret; 3026 3027 if (!ctrl->identified) 3028 nvme_hwmon_init(ctrl); 3029 3030 ctrl->identified = true; 3031 3032 return 0; 3033 3034 out_free: 3035 kfree(id); 3036 return ret; 3037 } 3038 EXPORT_SYMBOL_GPL(nvme_init_identify); 3039 3040 static int nvme_dev_open(struct inode *inode, struct file *file) 3041 { 3042 struct nvme_ctrl *ctrl = 3043 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3044 3045 switch (ctrl->state) { 3046 case NVME_CTRL_LIVE: 3047 break; 3048 default: 3049 return -EWOULDBLOCK; 3050 } 3051 3052 file->private_data = ctrl; 3053 return 0; 3054 } 3055 3056 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 3057 { 3058 struct nvme_ns *ns; 3059 int ret; 3060 3061 down_read(&ctrl->namespaces_rwsem); 3062 if (list_empty(&ctrl->namespaces)) { 3063 ret = -ENOTTY; 3064 goto out_unlock; 3065 } 3066 3067 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 3068 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 3069 dev_warn(ctrl->device, 3070 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 3071 ret = -EINVAL; 3072 goto out_unlock; 3073 } 3074 3075 dev_warn(ctrl->device, 3076 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 3077 kref_get(&ns->kref); 3078 up_read(&ctrl->namespaces_rwsem); 3079 3080 ret = nvme_user_cmd(ctrl, ns, argp); 3081 nvme_put_ns(ns); 3082 return ret; 3083 3084 out_unlock: 3085 up_read(&ctrl->namespaces_rwsem); 3086 return ret; 3087 } 3088 3089 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 3090 unsigned long arg) 3091 { 3092 struct nvme_ctrl *ctrl = file->private_data; 3093 void __user *argp = (void __user *)arg; 3094 3095 switch (cmd) { 3096 case NVME_IOCTL_ADMIN_CMD: 3097 return nvme_user_cmd(ctrl, NULL, argp); 3098 case NVME_IOCTL_ADMIN64_CMD: 3099 return nvme_user_cmd64(ctrl, NULL, argp); 3100 case NVME_IOCTL_IO_CMD: 3101 return nvme_dev_user_cmd(ctrl, argp); 3102 case NVME_IOCTL_RESET: 3103 dev_warn(ctrl->device, "resetting controller\n"); 3104 return nvme_reset_ctrl_sync(ctrl); 3105 case NVME_IOCTL_SUBSYS_RESET: 3106 return nvme_reset_subsystem(ctrl); 3107 case NVME_IOCTL_RESCAN: 3108 nvme_queue_scan(ctrl); 3109 return 0; 3110 default: 3111 return -ENOTTY; 3112 } 3113 } 3114 3115 static const struct file_operations nvme_dev_fops = { 3116 .owner = THIS_MODULE, 3117 .open = nvme_dev_open, 3118 .unlocked_ioctl = nvme_dev_ioctl, 3119 .compat_ioctl = compat_ptr_ioctl, 3120 }; 3121 3122 static ssize_t nvme_sysfs_reset(struct device *dev, 3123 struct device_attribute *attr, const char *buf, 3124 size_t count) 3125 { 3126 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3127 int ret; 3128 3129 ret = nvme_reset_ctrl_sync(ctrl); 3130 if (ret < 0) 3131 return ret; 3132 return count; 3133 } 3134 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3135 3136 static ssize_t nvme_sysfs_rescan(struct device *dev, 3137 struct device_attribute *attr, const char *buf, 3138 size_t count) 3139 { 3140 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3141 3142 nvme_queue_scan(ctrl); 3143 return count; 3144 } 3145 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3146 3147 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3148 { 3149 struct gendisk *disk = dev_to_disk(dev); 3150 3151 if (disk->fops == &nvme_fops) 3152 return nvme_get_ns_from_dev(dev)->head; 3153 else 3154 return disk->private_data; 3155 } 3156 3157 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3158 char *buf) 3159 { 3160 struct nvme_ns_head *head = dev_to_ns_head(dev); 3161 struct nvme_ns_ids *ids = &head->ids; 3162 struct nvme_subsystem *subsys = head->subsys; 3163 int serial_len = sizeof(subsys->serial); 3164 int model_len = sizeof(subsys->model); 3165 3166 if (!uuid_is_null(&ids->uuid)) 3167 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 3168 3169 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3170 return sprintf(buf, "eui.%16phN\n", ids->nguid); 3171 3172 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3173 return sprintf(buf, "eui.%8phN\n", ids->eui64); 3174 3175 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3176 subsys->serial[serial_len - 1] == '\0')) 3177 serial_len--; 3178 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3179 subsys->model[model_len - 1] == '\0')) 3180 model_len--; 3181 3182 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3183 serial_len, subsys->serial, model_len, subsys->model, 3184 head->ns_id); 3185 } 3186 static DEVICE_ATTR_RO(wwid); 3187 3188 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3189 char *buf) 3190 { 3191 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3192 } 3193 static DEVICE_ATTR_RO(nguid); 3194 3195 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3196 char *buf) 3197 { 3198 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3199 3200 /* For backward compatibility expose the NGUID to userspace if 3201 * we have no UUID set 3202 */ 3203 if (uuid_is_null(&ids->uuid)) { 3204 printk_ratelimited(KERN_WARNING 3205 "No UUID available providing old NGUID\n"); 3206 return sprintf(buf, "%pU\n", ids->nguid); 3207 } 3208 return sprintf(buf, "%pU\n", &ids->uuid); 3209 } 3210 static DEVICE_ATTR_RO(uuid); 3211 3212 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3213 char *buf) 3214 { 3215 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3216 } 3217 static DEVICE_ATTR_RO(eui); 3218 3219 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3220 char *buf) 3221 { 3222 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3223 } 3224 static DEVICE_ATTR_RO(nsid); 3225 3226 static struct attribute *nvme_ns_id_attrs[] = { 3227 &dev_attr_wwid.attr, 3228 &dev_attr_uuid.attr, 3229 &dev_attr_nguid.attr, 3230 &dev_attr_eui.attr, 3231 &dev_attr_nsid.attr, 3232 #ifdef CONFIG_NVME_MULTIPATH 3233 &dev_attr_ana_grpid.attr, 3234 &dev_attr_ana_state.attr, 3235 #endif 3236 NULL, 3237 }; 3238 3239 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3240 struct attribute *a, int n) 3241 { 3242 struct device *dev = container_of(kobj, struct device, kobj); 3243 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3244 3245 if (a == &dev_attr_uuid.attr) { 3246 if (uuid_is_null(&ids->uuid) && 3247 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3248 return 0; 3249 } 3250 if (a == &dev_attr_nguid.attr) { 3251 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3252 return 0; 3253 } 3254 if (a == &dev_attr_eui.attr) { 3255 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3256 return 0; 3257 } 3258 #ifdef CONFIG_NVME_MULTIPATH 3259 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3260 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 3261 return 0; 3262 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3263 return 0; 3264 } 3265 #endif 3266 return a->mode; 3267 } 3268 3269 static const struct attribute_group nvme_ns_id_attr_group = { 3270 .attrs = nvme_ns_id_attrs, 3271 .is_visible = nvme_ns_id_attrs_are_visible, 3272 }; 3273 3274 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3275 &nvme_ns_id_attr_group, 3276 #ifdef CONFIG_NVM 3277 &nvme_nvm_attr_group, 3278 #endif 3279 NULL, 3280 }; 3281 3282 #define nvme_show_str_function(field) \ 3283 static ssize_t field##_show(struct device *dev, \ 3284 struct device_attribute *attr, char *buf) \ 3285 { \ 3286 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3287 return sprintf(buf, "%.*s\n", \ 3288 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3289 } \ 3290 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3291 3292 nvme_show_str_function(model); 3293 nvme_show_str_function(serial); 3294 nvme_show_str_function(firmware_rev); 3295 3296 #define nvme_show_int_function(field) \ 3297 static ssize_t field##_show(struct device *dev, \ 3298 struct device_attribute *attr, char *buf) \ 3299 { \ 3300 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3301 return sprintf(buf, "%d\n", ctrl->field); \ 3302 } \ 3303 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3304 3305 nvme_show_int_function(cntlid); 3306 nvme_show_int_function(numa_node); 3307 nvme_show_int_function(queue_count); 3308 nvme_show_int_function(sqsize); 3309 3310 static ssize_t nvme_sysfs_delete(struct device *dev, 3311 struct device_attribute *attr, const char *buf, 3312 size_t count) 3313 { 3314 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3315 3316 /* Can't delete non-created controllers */ 3317 if (!ctrl->created) 3318 return -EBUSY; 3319 3320 if (device_remove_file_self(dev, attr)) 3321 nvme_delete_ctrl_sync(ctrl); 3322 return count; 3323 } 3324 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3325 3326 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3327 struct device_attribute *attr, 3328 char *buf) 3329 { 3330 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3331 3332 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3333 } 3334 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3335 3336 static ssize_t nvme_sysfs_show_state(struct device *dev, 3337 struct device_attribute *attr, 3338 char *buf) 3339 { 3340 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3341 static const char *const state_name[] = { 3342 [NVME_CTRL_NEW] = "new", 3343 [NVME_CTRL_LIVE] = "live", 3344 [NVME_CTRL_RESETTING] = "resetting", 3345 [NVME_CTRL_CONNECTING] = "connecting", 3346 [NVME_CTRL_DELETING] = "deleting", 3347 [NVME_CTRL_DEAD] = "dead", 3348 }; 3349 3350 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3351 state_name[ctrl->state]) 3352 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3353 3354 return sprintf(buf, "unknown state\n"); 3355 } 3356 3357 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3358 3359 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3360 struct device_attribute *attr, 3361 char *buf) 3362 { 3363 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3364 3365 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3366 } 3367 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3368 3369 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3370 struct device_attribute *attr, 3371 char *buf) 3372 { 3373 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3374 3375 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn); 3376 } 3377 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3378 3379 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3380 struct device_attribute *attr, 3381 char *buf) 3382 { 3383 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3384 3385 return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id); 3386 } 3387 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3388 3389 static ssize_t nvme_sysfs_show_address(struct device *dev, 3390 struct device_attribute *attr, 3391 char *buf) 3392 { 3393 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3394 3395 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3396 } 3397 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3398 3399 static struct attribute *nvme_dev_attrs[] = { 3400 &dev_attr_reset_controller.attr, 3401 &dev_attr_rescan_controller.attr, 3402 &dev_attr_model.attr, 3403 &dev_attr_serial.attr, 3404 &dev_attr_firmware_rev.attr, 3405 &dev_attr_cntlid.attr, 3406 &dev_attr_delete_controller.attr, 3407 &dev_attr_transport.attr, 3408 &dev_attr_subsysnqn.attr, 3409 &dev_attr_address.attr, 3410 &dev_attr_state.attr, 3411 &dev_attr_numa_node.attr, 3412 &dev_attr_queue_count.attr, 3413 &dev_attr_sqsize.attr, 3414 &dev_attr_hostnqn.attr, 3415 &dev_attr_hostid.attr, 3416 NULL 3417 }; 3418 3419 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3420 struct attribute *a, int n) 3421 { 3422 struct device *dev = container_of(kobj, struct device, kobj); 3423 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3424 3425 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3426 return 0; 3427 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3428 return 0; 3429 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3430 return 0; 3431 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3432 return 0; 3433 3434 return a->mode; 3435 } 3436 3437 static struct attribute_group nvme_dev_attrs_group = { 3438 .attrs = nvme_dev_attrs, 3439 .is_visible = nvme_dev_attrs_are_visible, 3440 }; 3441 3442 static const struct attribute_group *nvme_dev_attr_groups[] = { 3443 &nvme_dev_attrs_group, 3444 NULL, 3445 }; 3446 3447 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3448 unsigned nsid) 3449 { 3450 struct nvme_ns_head *h; 3451 3452 lockdep_assert_held(&subsys->lock); 3453 3454 list_for_each_entry(h, &subsys->nsheads, entry) { 3455 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3456 return h; 3457 } 3458 3459 return NULL; 3460 } 3461 3462 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3463 struct nvme_ns_head *new) 3464 { 3465 struct nvme_ns_head *h; 3466 3467 lockdep_assert_held(&subsys->lock); 3468 3469 list_for_each_entry(h, &subsys->nsheads, entry) { 3470 if (nvme_ns_ids_valid(&new->ids) && 3471 nvme_ns_ids_equal(&new->ids, &h->ids)) 3472 return -EINVAL; 3473 } 3474 3475 return 0; 3476 } 3477 3478 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3479 unsigned nsid, struct nvme_ns_ids *ids) 3480 { 3481 struct nvme_ns_head *head; 3482 size_t size = sizeof(*head); 3483 int ret = -ENOMEM; 3484 3485 #ifdef CONFIG_NVME_MULTIPATH 3486 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3487 #endif 3488 3489 head = kzalloc(size, GFP_KERNEL); 3490 if (!head) 3491 goto out; 3492 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3493 if (ret < 0) 3494 goto out_free_head; 3495 head->instance = ret; 3496 INIT_LIST_HEAD(&head->list); 3497 ret = init_srcu_struct(&head->srcu); 3498 if (ret) 3499 goto out_ida_remove; 3500 head->subsys = ctrl->subsys; 3501 head->ns_id = nsid; 3502 head->ids = *ids; 3503 kref_init(&head->ref); 3504 3505 ret = __nvme_check_ids(ctrl->subsys, head); 3506 if (ret) { 3507 dev_err(ctrl->device, 3508 "duplicate IDs for nsid %d\n", nsid); 3509 goto out_cleanup_srcu; 3510 } 3511 3512 ret = nvme_mpath_alloc_disk(ctrl, head); 3513 if (ret) 3514 goto out_cleanup_srcu; 3515 3516 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3517 3518 kref_get(&ctrl->subsys->ref); 3519 3520 return head; 3521 out_cleanup_srcu: 3522 cleanup_srcu_struct(&head->srcu); 3523 out_ida_remove: 3524 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3525 out_free_head: 3526 kfree(head); 3527 out: 3528 if (ret > 0) 3529 ret = blk_status_to_errno(nvme_error_status(ret)); 3530 return ERR_PTR(ret); 3531 } 3532 3533 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3534 struct nvme_id_ns *id) 3535 { 3536 struct nvme_ctrl *ctrl = ns->ctrl; 3537 bool is_shared = id->nmic & NVME_NS_NMIC_SHARED; 3538 struct nvme_ns_head *head = NULL; 3539 struct nvme_ns_ids ids; 3540 int ret = 0; 3541 3542 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids); 3543 if (ret) { 3544 if (ret < 0) 3545 return ret; 3546 return blk_status_to_errno(nvme_error_status(ret)); 3547 } 3548 3549 mutex_lock(&ctrl->subsys->lock); 3550 head = nvme_find_ns_head(ctrl->subsys, nsid); 3551 if (!head) { 3552 head = nvme_alloc_ns_head(ctrl, nsid, &ids); 3553 if (IS_ERR(head)) { 3554 ret = PTR_ERR(head); 3555 goto out_unlock; 3556 } 3557 head->shared = is_shared; 3558 } else { 3559 ret = -EINVAL; 3560 if (!is_shared || !head->shared) { 3561 dev_err(ctrl->device, 3562 "Duplicate unshared namespace %d\n", nsid); 3563 goto out_put_ns_head; 3564 } 3565 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3566 dev_err(ctrl->device, 3567 "IDs don't match for shared namespace %d\n", 3568 nsid); 3569 goto out_put_ns_head; 3570 } 3571 } 3572 3573 list_add_tail(&ns->siblings, &head->list); 3574 ns->head = head; 3575 mutex_unlock(&ctrl->subsys->lock); 3576 return 0; 3577 3578 out_put_ns_head: 3579 nvme_put_ns_head(head); 3580 out_unlock: 3581 mutex_unlock(&ctrl->subsys->lock); 3582 return ret; 3583 } 3584 3585 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3586 { 3587 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3588 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3589 3590 return nsa->head->ns_id - nsb->head->ns_id; 3591 } 3592 3593 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3594 { 3595 struct nvme_ns *ns, *ret = NULL; 3596 3597 down_read(&ctrl->namespaces_rwsem); 3598 list_for_each_entry(ns, &ctrl->namespaces, list) { 3599 if (ns->head->ns_id == nsid) { 3600 if (!kref_get_unless_zero(&ns->kref)) 3601 continue; 3602 ret = ns; 3603 break; 3604 } 3605 if (ns->head->ns_id > nsid) 3606 break; 3607 } 3608 up_read(&ctrl->namespaces_rwsem); 3609 return ret; 3610 } 3611 3612 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3613 { 3614 struct nvme_ns *ns; 3615 struct gendisk *disk; 3616 struct nvme_id_ns *id; 3617 char disk_name[DISK_NAME_LEN]; 3618 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3619 3620 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3621 if (!ns) 3622 return; 3623 3624 ns->queue = blk_mq_init_queue(ctrl->tagset); 3625 if (IS_ERR(ns->queue)) 3626 goto out_free_ns; 3627 3628 if (ctrl->opts && ctrl->opts->data_digest) 3629 ns->queue->backing_dev_info->capabilities 3630 |= BDI_CAP_STABLE_WRITES; 3631 3632 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3633 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3634 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3635 3636 ns->queue->queuedata = ns; 3637 ns->ctrl = ctrl; 3638 3639 kref_init(&ns->kref); 3640 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3641 3642 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3643 nvme_set_queue_limits(ctrl, ns->queue); 3644 3645 ret = nvme_identify_ns(ctrl, nsid, &id); 3646 if (ret) 3647 goto out_free_queue; 3648 3649 if (id->ncap == 0) /* no namespace (legacy quirk) */ 3650 goto out_free_id; 3651 3652 ret = nvme_init_ns_head(ns, nsid, id); 3653 if (ret) 3654 goto out_free_id; 3655 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3656 3657 disk = alloc_disk_node(0, node); 3658 if (!disk) 3659 goto out_unlink_ns; 3660 3661 disk->fops = &nvme_fops; 3662 disk->private_data = ns; 3663 disk->queue = ns->queue; 3664 disk->flags = flags; 3665 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3666 ns->disk = disk; 3667 3668 if (__nvme_revalidate_disk(disk, id)) 3669 goto out_put_disk; 3670 3671 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3672 ret = nvme_nvm_register(ns, disk_name, node); 3673 if (ret) { 3674 dev_warn(ctrl->device, "LightNVM init failure\n"); 3675 goto out_put_disk; 3676 } 3677 } 3678 3679 down_write(&ctrl->namespaces_rwsem); 3680 list_add_tail(&ns->list, &ctrl->namespaces); 3681 up_write(&ctrl->namespaces_rwsem); 3682 3683 nvme_get_ctrl(ctrl); 3684 3685 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3686 3687 nvme_mpath_add_disk(ns, id); 3688 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3689 kfree(id); 3690 3691 return; 3692 out_put_disk: 3693 /* prevent double queue cleanup */ 3694 ns->disk->queue = NULL; 3695 put_disk(ns->disk); 3696 out_unlink_ns: 3697 mutex_lock(&ctrl->subsys->lock); 3698 list_del_rcu(&ns->siblings); 3699 if (list_empty(&ns->head->list)) 3700 list_del_init(&ns->head->entry); 3701 mutex_unlock(&ctrl->subsys->lock); 3702 nvme_put_ns_head(ns->head); 3703 out_free_id: 3704 kfree(id); 3705 out_free_queue: 3706 blk_cleanup_queue(ns->queue); 3707 out_free_ns: 3708 kfree(ns); 3709 } 3710 3711 static void nvme_ns_remove(struct nvme_ns *ns) 3712 { 3713 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3714 return; 3715 3716 nvme_fault_inject_fini(&ns->fault_inject); 3717 3718 mutex_lock(&ns->ctrl->subsys->lock); 3719 list_del_rcu(&ns->siblings); 3720 if (list_empty(&ns->head->list)) 3721 list_del_init(&ns->head->entry); 3722 mutex_unlock(&ns->ctrl->subsys->lock); 3723 3724 synchronize_rcu(); /* guarantee not available in head->list */ 3725 nvme_mpath_clear_current_path(ns); 3726 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3727 3728 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3729 del_gendisk(ns->disk); 3730 blk_cleanup_queue(ns->queue); 3731 if (blk_get_integrity(ns->disk)) 3732 blk_integrity_unregister(ns->disk); 3733 } 3734 3735 down_write(&ns->ctrl->namespaces_rwsem); 3736 list_del_init(&ns->list); 3737 up_write(&ns->ctrl->namespaces_rwsem); 3738 3739 nvme_mpath_check_last_path(ns); 3740 nvme_put_ns(ns); 3741 } 3742 3743 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3744 { 3745 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3746 3747 if (ns) { 3748 nvme_ns_remove(ns); 3749 nvme_put_ns(ns); 3750 } 3751 } 3752 3753 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3754 { 3755 struct nvme_ns *ns; 3756 3757 ns = nvme_find_get_ns(ctrl, nsid); 3758 if (ns) { 3759 if (ns->disk && revalidate_disk(ns->disk)) 3760 nvme_ns_remove(ns); 3761 nvme_put_ns(ns); 3762 } else 3763 nvme_alloc_ns(ctrl, nsid); 3764 } 3765 3766 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3767 unsigned nsid) 3768 { 3769 struct nvme_ns *ns, *next; 3770 LIST_HEAD(rm_list); 3771 3772 down_write(&ctrl->namespaces_rwsem); 3773 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3774 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3775 list_move_tail(&ns->list, &rm_list); 3776 } 3777 up_write(&ctrl->namespaces_rwsem); 3778 3779 list_for_each_entry_safe(ns, next, &rm_list, list) 3780 nvme_ns_remove(ns); 3781 3782 } 3783 3784 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3785 { 3786 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3787 __le32 *ns_list; 3788 u32 prev = 0; 3789 int ret = 0, i; 3790 3791 if (nvme_ctrl_limited_cns(ctrl)) 3792 return -EOPNOTSUPP; 3793 3794 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3795 if (!ns_list) 3796 return -ENOMEM; 3797 3798 for (;;) { 3799 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3800 if (ret) 3801 goto free; 3802 3803 for (i = 0; i < nr_entries; i++) { 3804 u32 nsid = le32_to_cpu(ns_list[i]); 3805 3806 if (!nsid) /* end of the list? */ 3807 goto out; 3808 nvme_validate_ns(ctrl, nsid); 3809 while (++prev < nsid) 3810 nvme_ns_remove_by_nsid(ctrl, prev); 3811 } 3812 } 3813 out: 3814 nvme_remove_invalid_namespaces(ctrl, prev); 3815 free: 3816 kfree(ns_list); 3817 return ret; 3818 } 3819 3820 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 3821 { 3822 struct nvme_id_ctrl *id; 3823 u32 nn, i; 3824 3825 if (nvme_identify_ctrl(ctrl, &id)) 3826 return; 3827 nn = le32_to_cpu(id->nn); 3828 kfree(id); 3829 3830 for (i = 1; i <= nn; i++) 3831 nvme_validate_ns(ctrl, i); 3832 3833 nvme_remove_invalid_namespaces(ctrl, nn); 3834 } 3835 3836 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3837 { 3838 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3839 __le32 *log; 3840 int error; 3841 3842 log = kzalloc(log_size, GFP_KERNEL); 3843 if (!log) 3844 return; 3845 3846 /* 3847 * We need to read the log to clear the AEN, but we don't want to rely 3848 * on it for the changed namespace information as userspace could have 3849 * raced with us in reading the log page, which could cause us to miss 3850 * updates. 3851 */ 3852 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3853 log_size, 0); 3854 if (error) 3855 dev_warn(ctrl->device, 3856 "reading changed ns log failed: %d\n", error); 3857 3858 kfree(log); 3859 } 3860 3861 static void nvme_scan_work(struct work_struct *work) 3862 { 3863 struct nvme_ctrl *ctrl = 3864 container_of(work, struct nvme_ctrl, scan_work); 3865 3866 /* No tagset on a live ctrl means IO queues could not created */ 3867 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 3868 return; 3869 3870 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3871 dev_info(ctrl->device, "rescanning namespaces.\n"); 3872 nvme_clear_changed_ns_log(ctrl); 3873 } 3874 3875 mutex_lock(&ctrl->scan_lock); 3876 if (nvme_scan_ns_list(ctrl) != 0) 3877 nvme_scan_ns_sequential(ctrl); 3878 mutex_unlock(&ctrl->scan_lock); 3879 3880 down_write(&ctrl->namespaces_rwsem); 3881 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3882 up_write(&ctrl->namespaces_rwsem); 3883 } 3884 3885 /* 3886 * This function iterates the namespace list unlocked to allow recovery from 3887 * controller failure. It is up to the caller to ensure the namespace list is 3888 * not modified by scan work while this function is executing. 3889 */ 3890 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3891 { 3892 struct nvme_ns *ns, *next; 3893 LIST_HEAD(ns_list); 3894 3895 /* 3896 * make sure to requeue I/O to all namespaces as these 3897 * might result from the scan itself and must complete 3898 * for the scan_work to make progress 3899 */ 3900 nvme_mpath_clear_ctrl_paths(ctrl); 3901 3902 /* prevent racing with ns scanning */ 3903 flush_work(&ctrl->scan_work); 3904 3905 /* 3906 * The dead states indicates the controller was not gracefully 3907 * disconnected. In that case, we won't be able to flush any data while 3908 * removing the namespaces' disks; fail all the queues now to avoid 3909 * potentially having to clean up the failed sync later. 3910 */ 3911 if (ctrl->state == NVME_CTRL_DEAD) 3912 nvme_kill_queues(ctrl); 3913 3914 down_write(&ctrl->namespaces_rwsem); 3915 list_splice_init(&ctrl->namespaces, &ns_list); 3916 up_write(&ctrl->namespaces_rwsem); 3917 3918 list_for_each_entry_safe(ns, next, &ns_list, list) 3919 nvme_ns_remove(ns); 3920 } 3921 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3922 3923 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 3924 { 3925 struct nvme_ctrl *ctrl = 3926 container_of(dev, struct nvme_ctrl, ctrl_device); 3927 struct nvmf_ctrl_options *opts = ctrl->opts; 3928 int ret; 3929 3930 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 3931 if (ret) 3932 return ret; 3933 3934 if (opts) { 3935 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 3936 if (ret) 3937 return ret; 3938 3939 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 3940 opts->trsvcid ?: "none"); 3941 if (ret) 3942 return ret; 3943 3944 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 3945 opts->host_traddr ?: "none"); 3946 } 3947 return ret; 3948 } 3949 3950 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3951 { 3952 char *envp[2] = { NULL, NULL }; 3953 u32 aen_result = ctrl->aen_result; 3954 3955 ctrl->aen_result = 0; 3956 if (!aen_result) 3957 return; 3958 3959 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3960 if (!envp[0]) 3961 return; 3962 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3963 kfree(envp[0]); 3964 } 3965 3966 static void nvme_async_event_work(struct work_struct *work) 3967 { 3968 struct nvme_ctrl *ctrl = 3969 container_of(work, struct nvme_ctrl, async_event_work); 3970 3971 nvme_aen_uevent(ctrl); 3972 ctrl->ops->submit_async_event(ctrl); 3973 } 3974 3975 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3976 { 3977 3978 u32 csts; 3979 3980 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3981 return false; 3982 3983 if (csts == ~0) 3984 return false; 3985 3986 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3987 } 3988 3989 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3990 { 3991 struct nvme_fw_slot_info_log *log; 3992 3993 log = kmalloc(sizeof(*log), GFP_KERNEL); 3994 if (!log) 3995 return; 3996 3997 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, log, 3998 sizeof(*log), 0)) 3999 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4000 kfree(log); 4001 } 4002 4003 static void nvme_fw_act_work(struct work_struct *work) 4004 { 4005 struct nvme_ctrl *ctrl = container_of(work, 4006 struct nvme_ctrl, fw_act_work); 4007 unsigned long fw_act_timeout; 4008 4009 if (ctrl->mtfa) 4010 fw_act_timeout = jiffies + 4011 msecs_to_jiffies(ctrl->mtfa * 100); 4012 else 4013 fw_act_timeout = jiffies + 4014 msecs_to_jiffies(admin_timeout * 1000); 4015 4016 nvme_stop_queues(ctrl); 4017 while (nvme_ctrl_pp_status(ctrl)) { 4018 if (time_after(jiffies, fw_act_timeout)) { 4019 dev_warn(ctrl->device, 4020 "Fw activation timeout, reset controller\n"); 4021 nvme_try_sched_reset(ctrl); 4022 return; 4023 } 4024 msleep(100); 4025 } 4026 4027 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4028 return; 4029 4030 nvme_start_queues(ctrl); 4031 /* read FW slot information to clear the AER */ 4032 nvme_get_fw_slot_info(ctrl); 4033 } 4034 4035 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4036 { 4037 u32 aer_notice_type = (result & 0xff00) >> 8; 4038 4039 trace_nvme_async_event(ctrl, aer_notice_type); 4040 4041 switch (aer_notice_type) { 4042 case NVME_AER_NOTICE_NS_CHANGED: 4043 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4044 nvme_queue_scan(ctrl); 4045 break; 4046 case NVME_AER_NOTICE_FW_ACT_STARTING: 4047 /* 4048 * We are (ab)using the RESETTING state to prevent subsequent 4049 * recovery actions from interfering with the controller's 4050 * firmware activation. 4051 */ 4052 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4053 queue_work(nvme_wq, &ctrl->fw_act_work); 4054 break; 4055 #ifdef CONFIG_NVME_MULTIPATH 4056 case NVME_AER_NOTICE_ANA: 4057 if (!ctrl->ana_log_buf) 4058 break; 4059 queue_work(nvme_wq, &ctrl->ana_work); 4060 break; 4061 #endif 4062 case NVME_AER_NOTICE_DISC_CHANGED: 4063 ctrl->aen_result = result; 4064 break; 4065 default: 4066 dev_warn(ctrl->device, "async event result %08x\n", result); 4067 } 4068 } 4069 4070 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4071 volatile union nvme_result *res) 4072 { 4073 u32 result = le32_to_cpu(res->u32); 4074 u32 aer_type = result & 0x07; 4075 4076 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4077 return; 4078 4079 switch (aer_type) { 4080 case NVME_AER_NOTICE: 4081 nvme_handle_aen_notice(ctrl, result); 4082 break; 4083 case NVME_AER_ERROR: 4084 case NVME_AER_SMART: 4085 case NVME_AER_CSS: 4086 case NVME_AER_VS: 4087 trace_nvme_async_event(ctrl, aer_type); 4088 ctrl->aen_result = result; 4089 break; 4090 default: 4091 break; 4092 } 4093 queue_work(nvme_wq, &ctrl->async_event_work); 4094 } 4095 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4096 4097 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4098 { 4099 nvme_mpath_stop(ctrl); 4100 nvme_stop_keep_alive(ctrl); 4101 flush_work(&ctrl->async_event_work); 4102 cancel_work_sync(&ctrl->fw_act_work); 4103 } 4104 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4105 4106 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4107 { 4108 if (ctrl->kato) 4109 nvme_start_keep_alive(ctrl); 4110 4111 nvme_enable_aen(ctrl); 4112 4113 if (ctrl->queue_count > 1) { 4114 nvme_queue_scan(ctrl); 4115 nvme_start_queues(ctrl); 4116 } 4117 ctrl->created = true; 4118 } 4119 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4120 4121 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4122 { 4123 nvme_fault_inject_fini(&ctrl->fault_inject); 4124 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4125 cdev_device_del(&ctrl->cdev, ctrl->device); 4126 nvme_put_ctrl(ctrl); 4127 } 4128 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4129 4130 static void nvme_free_ctrl(struct device *dev) 4131 { 4132 struct nvme_ctrl *ctrl = 4133 container_of(dev, struct nvme_ctrl, ctrl_device); 4134 struct nvme_subsystem *subsys = ctrl->subsys; 4135 4136 if (subsys && ctrl->instance != subsys->instance) 4137 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4138 4139 kfree(ctrl->effects); 4140 nvme_mpath_uninit(ctrl); 4141 __free_page(ctrl->discard_page); 4142 4143 if (subsys) { 4144 mutex_lock(&nvme_subsystems_lock); 4145 list_del(&ctrl->subsys_entry); 4146 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4147 mutex_unlock(&nvme_subsystems_lock); 4148 } 4149 4150 ctrl->ops->free_ctrl(ctrl); 4151 4152 if (subsys) 4153 nvme_put_subsystem(subsys); 4154 } 4155 4156 /* 4157 * Initialize a NVMe controller structures. This needs to be called during 4158 * earliest initialization so that we have the initialized structured around 4159 * during probing. 4160 */ 4161 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4162 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4163 { 4164 int ret; 4165 4166 ctrl->state = NVME_CTRL_NEW; 4167 spin_lock_init(&ctrl->lock); 4168 mutex_init(&ctrl->scan_lock); 4169 INIT_LIST_HEAD(&ctrl->namespaces); 4170 init_rwsem(&ctrl->namespaces_rwsem); 4171 ctrl->dev = dev; 4172 ctrl->ops = ops; 4173 ctrl->quirks = quirks; 4174 ctrl->numa_node = NUMA_NO_NODE; 4175 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4176 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4177 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4178 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4179 init_waitqueue_head(&ctrl->state_wq); 4180 4181 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4182 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4183 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4184 4185 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4186 PAGE_SIZE); 4187 ctrl->discard_page = alloc_page(GFP_KERNEL); 4188 if (!ctrl->discard_page) { 4189 ret = -ENOMEM; 4190 goto out; 4191 } 4192 4193 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4194 if (ret < 0) 4195 goto out; 4196 ctrl->instance = ret; 4197 4198 device_initialize(&ctrl->ctrl_device); 4199 ctrl->device = &ctrl->ctrl_device; 4200 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 4201 ctrl->device->class = nvme_class; 4202 ctrl->device->parent = ctrl->dev; 4203 ctrl->device->groups = nvme_dev_attr_groups; 4204 ctrl->device->release = nvme_free_ctrl; 4205 dev_set_drvdata(ctrl->device, ctrl); 4206 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4207 if (ret) 4208 goto out_release_instance; 4209 4210 nvme_get_ctrl(ctrl); 4211 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4212 ctrl->cdev.owner = ops->module; 4213 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4214 if (ret) 4215 goto out_free_name; 4216 4217 /* 4218 * Initialize latency tolerance controls. The sysfs files won't 4219 * be visible to userspace unless the device actually supports APST. 4220 */ 4221 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4222 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4223 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4224 4225 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4226 4227 return 0; 4228 out_free_name: 4229 nvme_put_ctrl(ctrl); 4230 kfree_const(ctrl->device->kobj.name); 4231 out_release_instance: 4232 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4233 out: 4234 if (ctrl->discard_page) 4235 __free_page(ctrl->discard_page); 4236 return ret; 4237 } 4238 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4239 4240 /** 4241 * nvme_kill_queues(): Ends all namespace queues 4242 * @ctrl: the dead controller that needs to end 4243 * 4244 * Call this function when the driver determines it is unable to get the 4245 * controller in a state capable of servicing IO. 4246 */ 4247 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4248 { 4249 struct nvme_ns *ns; 4250 4251 down_read(&ctrl->namespaces_rwsem); 4252 4253 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4254 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4255 blk_mq_unquiesce_queue(ctrl->admin_q); 4256 4257 list_for_each_entry(ns, &ctrl->namespaces, list) 4258 nvme_set_queue_dying(ns); 4259 4260 up_read(&ctrl->namespaces_rwsem); 4261 } 4262 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4263 4264 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4265 { 4266 struct nvme_ns *ns; 4267 4268 down_read(&ctrl->namespaces_rwsem); 4269 list_for_each_entry(ns, &ctrl->namespaces, list) 4270 blk_mq_unfreeze_queue(ns->queue); 4271 up_read(&ctrl->namespaces_rwsem); 4272 } 4273 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4274 4275 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4276 { 4277 struct nvme_ns *ns; 4278 4279 down_read(&ctrl->namespaces_rwsem); 4280 list_for_each_entry(ns, &ctrl->namespaces, list) { 4281 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4282 if (timeout <= 0) 4283 break; 4284 } 4285 up_read(&ctrl->namespaces_rwsem); 4286 } 4287 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4288 4289 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4290 { 4291 struct nvme_ns *ns; 4292 4293 down_read(&ctrl->namespaces_rwsem); 4294 list_for_each_entry(ns, &ctrl->namespaces, list) 4295 blk_mq_freeze_queue_wait(ns->queue); 4296 up_read(&ctrl->namespaces_rwsem); 4297 } 4298 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4299 4300 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4301 { 4302 struct nvme_ns *ns; 4303 4304 down_read(&ctrl->namespaces_rwsem); 4305 list_for_each_entry(ns, &ctrl->namespaces, list) 4306 blk_freeze_queue_start(ns->queue); 4307 up_read(&ctrl->namespaces_rwsem); 4308 } 4309 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4310 4311 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4312 { 4313 struct nvme_ns *ns; 4314 4315 down_read(&ctrl->namespaces_rwsem); 4316 list_for_each_entry(ns, &ctrl->namespaces, list) 4317 blk_mq_quiesce_queue(ns->queue); 4318 up_read(&ctrl->namespaces_rwsem); 4319 } 4320 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4321 4322 void nvme_start_queues(struct nvme_ctrl *ctrl) 4323 { 4324 struct nvme_ns *ns; 4325 4326 down_read(&ctrl->namespaces_rwsem); 4327 list_for_each_entry(ns, &ctrl->namespaces, list) 4328 blk_mq_unquiesce_queue(ns->queue); 4329 up_read(&ctrl->namespaces_rwsem); 4330 } 4331 EXPORT_SYMBOL_GPL(nvme_start_queues); 4332 4333 4334 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4335 { 4336 struct nvme_ns *ns; 4337 4338 down_read(&ctrl->namespaces_rwsem); 4339 list_for_each_entry(ns, &ctrl->namespaces, list) 4340 blk_sync_queue(ns->queue); 4341 up_read(&ctrl->namespaces_rwsem); 4342 4343 if (ctrl->admin_q) 4344 blk_sync_queue(ctrl->admin_q); 4345 } 4346 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4347 4348 /* 4349 * Check we didn't inadvertently grow the command structure sizes: 4350 */ 4351 static inline void _nvme_check_size(void) 4352 { 4353 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4354 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4355 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4356 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4357 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4358 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4359 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4360 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4361 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4362 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4363 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4364 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4365 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4366 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4367 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4368 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4369 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4370 } 4371 4372 4373 static int __init nvme_core_init(void) 4374 { 4375 int result = -ENOMEM; 4376 4377 _nvme_check_size(); 4378 4379 nvme_wq = alloc_workqueue("nvme-wq", 4380 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4381 if (!nvme_wq) 4382 goto out; 4383 4384 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4385 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4386 if (!nvme_reset_wq) 4387 goto destroy_wq; 4388 4389 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4390 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4391 if (!nvme_delete_wq) 4392 goto destroy_reset_wq; 4393 4394 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4395 if (result < 0) 4396 goto destroy_delete_wq; 4397 4398 nvme_class = class_create(THIS_MODULE, "nvme"); 4399 if (IS_ERR(nvme_class)) { 4400 result = PTR_ERR(nvme_class); 4401 goto unregister_chrdev; 4402 } 4403 nvme_class->dev_uevent = nvme_class_uevent; 4404 4405 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4406 if (IS_ERR(nvme_subsys_class)) { 4407 result = PTR_ERR(nvme_subsys_class); 4408 goto destroy_class; 4409 } 4410 return 0; 4411 4412 destroy_class: 4413 class_destroy(nvme_class); 4414 unregister_chrdev: 4415 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4416 destroy_delete_wq: 4417 destroy_workqueue(nvme_delete_wq); 4418 destroy_reset_wq: 4419 destroy_workqueue(nvme_reset_wq); 4420 destroy_wq: 4421 destroy_workqueue(nvme_wq); 4422 out: 4423 return result; 4424 } 4425 4426 static void __exit nvme_core_exit(void) 4427 { 4428 class_destroy(nvme_subsys_class); 4429 class_destroy(nvme_class); 4430 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4431 destroy_workqueue(nvme_delete_wq); 4432 destroy_workqueue(nvme_reset_wq); 4433 destroy_workqueue(nvme_wq); 4434 ida_destroy(&nvme_instance_ida); 4435 } 4436 4437 MODULE_LICENSE("GPL"); 4438 MODULE_VERSION("1.0"); 4439 module_init(nvme_core_init); 4440 module_exit(nvme_core_exit); 4441