1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/async.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-mq.h> 10 #include <linux/blk-integrity.h> 11 #include <linux/compat.h> 12 #include <linux/delay.h> 13 #include <linux/errno.h> 14 #include <linux/hdreg.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/pr.h> 21 #include <linux/ptrace.h> 22 #include <linux/nvme_ioctl.h> 23 #include <linux/pm_qos.h> 24 #include <linux/ratelimit.h> 25 #include <linux/unaligned.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 #include <linux/nvme-auth.h> 30 31 #define CREATE_TRACE_POINTS 32 #include "trace.h" 33 34 #define NVME_MINORS (1U << MINORBITS) 35 36 struct nvme_ns_info { 37 struct nvme_ns_ids ids; 38 u32 nsid; 39 __le32 anagrpid; 40 u8 pi_offset; 41 bool is_shared; 42 bool is_readonly; 43 bool is_ready; 44 bool is_removed; 45 bool is_rotational; 46 bool no_vwc; 47 }; 48 49 unsigned int admin_timeout = 60; 50 module_param(admin_timeout, uint, 0644); 51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 52 EXPORT_SYMBOL_GPL(admin_timeout); 53 54 unsigned int nvme_io_timeout = 30; 55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 57 EXPORT_SYMBOL_GPL(nvme_io_timeout); 58 59 static unsigned char shutdown_timeout = 5; 60 module_param(shutdown_timeout, byte, 0644); 61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 62 63 static u8 nvme_max_retries = 5; 64 module_param_named(max_retries, nvme_max_retries, byte, 0644); 65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 66 67 static unsigned long default_ps_max_latency_us = 100000; 68 module_param(default_ps_max_latency_us, ulong, 0644); 69 MODULE_PARM_DESC(default_ps_max_latency_us, 70 "max power saving latency for new devices; use PM QOS to change per device"); 71 72 static bool force_apst; 73 module_param(force_apst, bool, 0644); 74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 75 76 static unsigned long apst_primary_timeout_ms = 100; 77 module_param(apst_primary_timeout_ms, ulong, 0644); 78 MODULE_PARM_DESC(apst_primary_timeout_ms, 79 "primary APST timeout in ms"); 80 81 static unsigned long apst_secondary_timeout_ms = 2000; 82 module_param(apst_secondary_timeout_ms, ulong, 0644); 83 MODULE_PARM_DESC(apst_secondary_timeout_ms, 84 "secondary APST timeout in ms"); 85 86 static unsigned long apst_primary_latency_tol_us = 15000; 87 module_param(apst_primary_latency_tol_us, ulong, 0644); 88 MODULE_PARM_DESC(apst_primary_latency_tol_us, 89 "primary APST latency tolerance in us"); 90 91 static unsigned long apst_secondary_latency_tol_us = 100000; 92 module_param(apst_secondary_latency_tol_us, ulong, 0644); 93 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 94 "secondary APST latency tolerance in us"); 95 96 /* 97 * Older kernels didn't enable protection information if it was at an offset. 98 * Newer kernels do, so it breaks reads on the upgrade if such formats were 99 * used in prior kernels since the metadata written did not contain a valid 100 * checksum. 101 */ 102 static bool disable_pi_offsets = false; 103 module_param(disable_pi_offsets, bool, 0444); 104 MODULE_PARM_DESC(disable_pi_offsets, 105 "disable protection information if it has an offset"); 106 107 /* 108 * nvme_wq - hosts nvme related works that are not reset or delete 109 * nvme_reset_wq - hosts nvme reset works 110 * nvme_delete_wq - hosts nvme delete works 111 * 112 * nvme_wq will host works such as scan, aen handling, fw activation, 113 * keep-alive, periodic reconnects etc. nvme_reset_wq 114 * runs reset works which also flush works hosted on nvme_wq for 115 * serialization purposes. nvme_delete_wq host controller deletion 116 * works which flush reset works for serialization. 117 */ 118 struct workqueue_struct *nvme_wq; 119 EXPORT_SYMBOL_GPL(nvme_wq); 120 121 struct workqueue_struct *nvme_reset_wq; 122 EXPORT_SYMBOL_GPL(nvme_reset_wq); 123 124 struct workqueue_struct *nvme_delete_wq; 125 EXPORT_SYMBOL_GPL(nvme_delete_wq); 126 127 static LIST_HEAD(nvme_subsystems); 128 DEFINE_MUTEX(nvme_subsystems_lock); 129 130 static DEFINE_IDA(nvme_instance_ida); 131 static dev_t nvme_ctrl_base_chr_devt; 132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 133 static const struct class nvme_class = { 134 .name = "nvme", 135 .dev_uevent = nvme_class_uevent, 136 }; 137 138 static const struct class nvme_subsys_class = { 139 .name = "nvme-subsystem", 140 }; 141 142 static DEFINE_IDA(nvme_ns_chr_minor_ida); 143 static dev_t nvme_ns_chr_devt; 144 static const struct class nvme_ns_chr_class = { 145 .name = "nvme-generic", 146 }; 147 148 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 150 unsigned nsid); 151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 152 struct nvme_command *cmd); 153 154 void nvme_queue_scan(struct nvme_ctrl *ctrl) 155 { 156 /* 157 * Only new queue scan work when admin and IO queues are both alive 158 */ 159 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 160 queue_work(nvme_wq, &ctrl->scan_work); 161 } 162 163 /* 164 * Use this function to proceed with scheduling reset_work for a controller 165 * that had previously been set to the resetting state. This is intended for 166 * code paths that can't be interrupted by other reset attempts. A hot removal 167 * may prevent this from succeeding. 168 */ 169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 170 { 171 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 172 return -EBUSY; 173 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 174 return -EBUSY; 175 return 0; 176 } 177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 178 179 static void nvme_failfast_work(struct work_struct *work) 180 { 181 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 182 struct nvme_ctrl, failfast_work); 183 184 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 185 return; 186 187 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 188 dev_info(ctrl->device, "failfast expired\n"); 189 nvme_kick_requeue_lists(ctrl); 190 } 191 192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 193 { 194 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 195 return; 196 197 schedule_delayed_work(&ctrl->failfast_work, 198 ctrl->opts->fast_io_fail_tmo * HZ); 199 } 200 201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 202 { 203 if (!ctrl->opts) 204 return; 205 206 cancel_delayed_work_sync(&ctrl->failfast_work); 207 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 208 } 209 210 211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 212 { 213 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 214 return -EBUSY; 215 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 216 return -EBUSY; 217 return 0; 218 } 219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 220 221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 222 { 223 int ret; 224 225 ret = nvme_reset_ctrl(ctrl); 226 if (!ret) { 227 flush_work(&ctrl->reset_work); 228 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 229 ret = -ENETRESET; 230 } 231 232 return ret; 233 } 234 235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 236 { 237 dev_info(ctrl->device, 238 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 239 240 flush_work(&ctrl->reset_work); 241 nvme_stop_ctrl(ctrl); 242 nvme_remove_namespaces(ctrl); 243 ctrl->ops->delete_ctrl(ctrl); 244 nvme_uninit_ctrl(ctrl); 245 } 246 247 static void nvme_delete_ctrl_work(struct work_struct *work) 248 { 249 struct nvme_ctrl *ctrl = 250 container_of(work, struct nvme_ctrl, delete_work); 251 252 nvme_do_delete_ctrl(ctrl); 253 } 254 255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 256 { 257 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 258 return -EBUSY; 259 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 260 return -EBUSY; 261 return 0; 262 } 263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 264 265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 266 { 267 /* 268 * Keep a reference until nvme_do_delete_ctrl() complete, 269 * since ->delete_ctrl can free the controller. 270 */ 271 nvme_get_ctrl(ctrl); 272 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 273 nvme_do_delete_ctrl(ctrl); 274 nvme_put_ctrl(ctrl); 275 } 276 277 static blk_status_t nvme_error_status(u16 status) 278 { 279 switch (status & NVME_SCT_SC_MASK) { 280 case NVME_SC_SUCCESS: 281 return BLK_STS_OK; 282 case NVME_SC_CAP_EXCEEDED: 283 return BLK_STS_NOSPC; 284 case NVME_SC_LBA_RANGE: 285 case NVME_SC_CMD_INTERRUPTED: 286 case NVME_SC_NS_NOT_READY: 287 return BLK_STS_TARGET; 288 case NVME_SC_BAD_ATTRIBUTES: 289 case NVME_SC_ONCS_NOT_SUPPORTED: 290 case NVME_SC_INVALID_OPCODE: 291 case NVME_SC_INVALID_FIELD: 292 case NVME_SC_INVALID_NS: 293 return BLK_STS_NOTSUPP; 294 case NVME_SC_WRITE_FAULT: 295 case NVME_SC_READ_ERROR: 296 case NVME_SC_UNWRITTEN_BLOCK: 297 case NVME_SC_ACCESS_DENIED: 298 case NVME_SC_READ_ONLY: 299 case NVME_SC_COMPARE_FAILED: 300 return BLK_STS_MEDIUM; 301 case NVME_SC_GUARD_CHECK: 302 case NVME_SC_APPTAG_CHECK: 303 case NVME_SC_REFTAG_CHECK: 304 case NVME_SC_INVALID_PI: 305 return BLK_STS_PROTECTION; 306 case NVME_SC_RESERVATION_CONFLICT: 307 return BLK_STS_RESV_CONFLICT; 308 case NVME_SC_HOST_PATH_ERROR: 309 return BLK_STS_TRANSPORT; 310 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 311 return BLK_STS_ZONE_ACTIVE_RESOURCE; 312 case NVME_SC_ZONE_TOO_MANY_OPEN: 313 return BLK_STS_ZONE_OPEN_RESOURCE; 314 default: 315 return BLK_STS_IOERR; 316 } 317 } 318 319 static void nvme_retry_req(struct request *req) 320 { 321 unsigned long delay = 0; 322 u16 crd; 323 324 /* The mask and shift result must be <= 3 */ 325 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; 326 if (crd) 327 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 328 329 nvme_req(req)->retries++; 330 blk_mq_requeue_request(req, false); 331 blk_mq_delay_kick_requeue_list(req->q, delay); 332 } 333 334 static void nvme_log_error(struct request *req) 335 { 336 struct nvme_ns *ns = req->q->queuedata; 337 struct nvme_request *nr = nvme_req(req); 338 339 if (ns) { 340 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 341 ns->disk ? ns->disk->disk_name : "?", 342 nvme_get_opcode_str(nr->cmd->common.opcode), 343 nr->cmd->common.opcode, 344 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 345 blk_rq_bytes(req) >> ns->head->lba_shift, 346 nvme_get_error_status_str(nr->status), 347 NVME_SCT(nr->status), /* Status Code Type */ 348 nr->status & NVME_SC_MASK, /* Status Code */ 349 nr->status & NVME_STATUS_MORE ? "MORE " : "", 350 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 351 return; 352 } 353 354 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 355 dev_name(nr->ctrl->device), 356 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 357 nr->cmd->common.opcode, 358 nvme_get_error_status_str(nr->status), 359 NVME_SCT(nr->status), /* Status Code Type */ 360 nr->status & NVME_SC_MASK, /* Status Code */ 361 nr->status & NVME_STATUS_MORE ? "MORE " : "", 362 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 363 } 364 365 static void nvme_log_err_passthru(struct request *req) 366 { 367 struct nvme_ns *ns = req->q->queuedata; 368 struct nvme_request *nr = nvme_req(req); 369 370 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 371 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 372 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 373 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 374 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 375 nr->cmd->common.opcode, 376 nvme_get_error_status_str(nr->status), 377 NVME_SCT(nr->status), /* Status Code Type */ 378 nr->status & NVME_SC_MASK, /* Status Code */ 379 nr->status & NVME_STATUS_MORE ? "MORE " : "", 380 nr->status & NVME_STATUS_DNR ? "DNR " : "", 381 nr->cmd->common.cdw10, 382 nr->cmd->common.cdw11, 383 nr->cmd->common.cdw12, 384 nr->cmd->common.cdw13, 385 nr->cmd->common.cdw14, 386 nr->cmd->common.cdw14); 387 } 388 389 enum nvme_disposition { 390 COMPLETE, 391 RETRY, 392 FAILOVER, 393 AUTHENTICATE, 394 }; 395 396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 397 { 398 if (likely(nvme_req(req)->status == 0)) 399 return COMPLETE; 400 401 if (blk_noretry_request(req) || 402 (nvme_req(req)->status & NVME_STATUS_DNR) || 403 nvme_req(req)->retries >= nvme_max_retries) 404 return COMPLETE; 405 406 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) 407 return AUTHENTICATE; 408 409 if (req->cmd_flags & REQ_NVME_MPATH) { 410 if (nvme_is_path_error(nvme_req(req)->status) || 411 blk_queue_dying(req->q)) 412 return FAILOVER; 413 } else { 414 if (blk_queue_dying(req->q)) 415 return COMPLETE; 416 } 417 418 return RETRY; 419 } 420 421 static inline void nvme_end_req_zoned(struct request *req) 422 { 423 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 424 req_op(req) == REQ_OP_ZONE_APPEND) { 425 struct nvme_ns *ns = req->q->queuedata; 426 427 req->__sector = nvme_lba_to_sect(ns->head, 428 le64_to_cpu(nvme_req(req)->result.u64)); 429 } 430 } 431 432 static inline void __nvme_end_req(struct request *req) 433 { 434 nvme_end_req_zoned(req); 435 nvme_trace_bio_complete(req); 436 if (req->cmd_flags & REQ_NVME_MPATH) 437 nvme_mpath_end_request(req); 438 } 439 440 void nvme_end_req(struct request *req) 441 { 442 blk_status_t status = nvme_error_status(nvme_req(req)->status); 443 444 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 445 if (blk_rq_is_passthrough(req)) 446 nvme_log_err_passthru(req); 447 else 448 nvme_log_error(req); 449 } 450 __nvme_end_req(req); 451 blk_mq_end_request(req, status); 452 } 453 454 void nvme_complete_rq(struct request *req) 455 { 456 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 457 458 trace_nvme_complete_rq(req); 459 nvme_cleanup_cmd(req); 460 461 /* 462 * Completions of long-running commands should not be able to 463 * defer sending of periodic keep alives, since the controller 464 * may have completed processing such commands a long time ago 465 * (arbitrarily close to command submission time). 466 * req->deadline - req->timeout is the command submission time 467 * in jiffies. 468 */ 469 if (ctrl->kas && 470 req->deadline - req->timeout >= ctrl->ka_last_check_time) 471 ctrl->comp_seen = true; 472 473 switch (nvme_decide_disposition(req)) { 474 case COMPLETE: 475 nvme_end_req(req); 476 return; 477 case RETRY: 478 nvme_retry_req(req); 479 return; 480 case FAILOVER: 481 nvme_failover_req(req); 482 return; 483 case AUTHENTICATE: 484 #ifdef CONFIG_NVME_HOST_AUTH 485 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 486 nvme_retry_req(req); 487 #else 488 nvme_end_req(req); 489 #endif 490 return; 491 } 492 } 493 EXPORT_SYMBOL_GPL(nvme_complete_rq); 494 495 void nvme_complete_batch_req(struct request *req) 496 { 497 trace_nvme_complete_rq(req); 498 nvme_cleanup_cmd(req); 499 __nvme_end_req(req); 500 } 501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 502 503 /* 504 * Called to unwind from ->queue_rq on a failed command submission so that the 505 * multipathing code gets called to potentially failover to another path. 506 * The caller needs to unwind all transport specific resource allocations and 507 * must return propagate the return value. 508 */ 509 blk_status_t nvme_host_path_error(struct request *req) 510 { 511 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 512 blk_mq_set_request_complete(req); 513 nvme_complete_rq(req); 514 return BLK_STS_OK; 515 } 516 EXPORT_SYMBOL_GPL(nvme_host_path_error); 517 518 bool nvme_cancel_request(struct request *req, void *data) 519 { 520 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 521 "Cancelling I/O %d", req->tag); 522 523 /* don't abort one completed or idle request */ 524 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 525 return true; 526 527 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 528 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 529 blk_mq_complete_request(req); 530 return true; 531 } 532 EXPORT_SYMBOL_GPL(nvme_cancel_request); 533 534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 535 { 536 if (ctrl->tagset) { 537 blk_mq_tagset_busy_iter(ctrl->tagset, 538 nvme_cancel_request, ctrl); 539 blk_mq_tagset_wait_completed_request(ctrl->tagset); 540 } 541 } 542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 543 544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 545 { 546 if (ctrl->admin_tagset) { 547 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 548 nvme_cancel_request, ctrl); 549 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 550 } 551 } 552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 553 554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 555 enum nvme_ctrl_state new_state) 556 { 557 enum nvme_ctrl_state old_state; 558 unsigned long flags; 559 bool changed = false; 560 561 spin_lock_irqsave(&ctrl->lock, flags); 562 563 old_state = nvme_ctrl_state(ctrl); 564 switch (new_state) { 565 case NVME_CTRL_LIVE: 566 switch (old_state) { 567 case NVME_CTRL_NEW: 568 case NVME_CTRL_RESETTING: 569 case NVME_CTRL_CONNECTING: 570 changed = true; 571 fallthrough; 572 default: 573 break; 574 } 575 break; 576 case NVME_CTRL_RESETTING: 577 switch (old_state) { 578 case NVME_CTRL_NEW: 579 case NVME_CTRL_LIVE: 580 changed = true; 581 fallthrough; 582 default: 583 break; 584 } 585 break; 586 case NVME_CTRL_CONNECTING: 587 switch (old_state) { 588 case NVME_CTRL_NEW: 589 case NVME_CTRL_RESETTING: 590 changed = true; 591 fallthrough; 592 default: 593 break; 594 } 595 break; 596 case NVME_CTRL_DELETING: 597 switch (old_state) { 598 case NVME_CTRL_LIVE: 599 case NVME_CTRL_RESETTING: 600 case NVME_CTRL_CONNECTING: 601 changed = true; 602 fallthrough; 603 default: 604 break; 605 } 606 break; 607 case NVME_CTRL_DELETING_NOIO: 608 switch (old_state) { 609 case NVME_CTRL_DELETING: 610 case NVME_CTRL_DEAD: 611 changed = true; 612 fallthrough; 613 default: 614 break; 615 } 616 break; 617 case NVME_CTRL_DEAD: 618 switch (old_state) { 619 case NVME_CTRL_DELETING: 620 changed = true; 621 fallthrough; 622 default: 623 break; 624 } 625 break; 626 default: 627 break; 628 } 629 630 if (changed) { 631 WRITE_ONCE(ctrl->state, new_state); 632 wake_up_all(&ctrl->state_wq); 633 } 634 635 spin_unlock_irqrestore(&ctrl->lock, flags); 636 if (!changed) 637 return false; 638 639 if (new_state == NVME_CTRL_LIVE) { 640 if (old_state == NVME_CTRL_CONNECTING) 641 nvme_stop_failfast_work(ctrl); 642 nvme_kick_requeue_lists(ctrl); 643 } else if (new_state == NVME_CTRL_CONNECTING && 644 old_state == NVME_CTRL_RESETTING) { 645 nvme_start_failfast_work(ctrl); 646 } 647 return changed; 648 } 649 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 650 651 /* 652 * Waits for the controller state to be resetting, or returns false if it is 653 * not possible to ever transition to that state. 654 */ 655 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 656 { 657 wait_event(ctrl->state_wq, 658 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 659 nvme_state_terminal(ctrl)); 660 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 661 } 662 EXPORT_SYMBOL_GPL(nvme_wait_reset); 663 664 static void nvme_free_ns_head(struct kref *ref) 665 { 666 struct nvme_ns_head *head = 667 container_of(ref, struct nvme_ns_head, ref); 668 669 nvme_mpath_remove_disk(head); 670 ida_free(&head->subsys->ns_ida, head->instance); 671 cleanup_srcu_struct(&head->srcu); 672 nvme_put_subsystem(head->subsys); 673 kfree(head); 674 } 675 676 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 677 { 678 return kref_get_unless_zero(&head->ref); 679 } 680 681 void nvme_put_ns_head(struct nvme_ns_head *head) 682 { 683 kref_put(&head->ref, nvme_free_ns_head); 684 } 685 686 static void nvme_free_ns(struct kref *kref) 687 { 688 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 689 690 put_disk(ns->disk); 691 nvme_put_ns_head(ns->head); 692 nvme_put_ctrl(ns->ctrl); 693 kfree(ns); 694 } 695 696 bool nvme_get_ns(struct nvme_ns *ns) 697 { 698 return kref_get_unless_zero(&ns->kref); 699 } 700 701 void nvme_put_ns(struct nvme_ns *ns) 702 { 703 kref_put(&ns->kref, nvme_free_ns); 704 } 705 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU"); 706 707 static inline void nvme_clear_nvme_request(struct request *req) 708 { 709 nvme_req(req)->status = 0; 710 nvme_req(req)->retries = 0; 711 nvme_req(req)->flags = 0; 712 req->rq_flags |= RQF_DONTPREP; 713 } 714 715 /* initialize a passthrough request */ 716 void nvme_init_request(struct request *req, struct nvme_command *cmd) 717 { 718 struct nvme_request *nr = nvme_req(req); 719 bool logging_enabled; 720 721 if (req->q->queuedata) { 722 struct nvme_ns *ns = req->q->disk->private_data; 723 724 logging_enabled = ns->head->passthru_err_log_enabled; 725 req->timeout = NVME_IO_TIMEOUT; 726 } else { /* no queuedata implies admin queue */ 727 logging_enabled = nr->ctrl->passthru_err_log_enabled; 728 req->timeout = NVME_ADMIN_TIMEOUT; 729 } 730 731 if (!logging_enabled) 732 req->rq_flags |= RQF_QUIET; 733 734 /* passthru commands should let the driver set the SGL flags */ 735 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 736 737 req->cmd_flags |= REQ_FAILFAST_DRIVER; 738 if (req->mq_hctx->type == HCTX_TYPE_POLL) 739 req->cmd_flags |= REQ_POLLED; 740 nvme_clear_nvme_request(req); 741 memcpy(nr->cmd, cmd, sizeof(*cmd)); 742 } 743 EXPORT_SYMBOL_GPL(nvme_init_request); 744 745 /* 746 * For something we're not in a state to send to the device the default action 747 * is to busy it and retry it after the controller state is recovered. However, 748 * if the controller is deleting or if anything is marked for failfast or 749 * nvme multipath it is immediately failed. 750 * 751 * Note: commands used to initialize the controller will be marked for failfast. 752 * Note: nvme cli/ioctl commands are marked for failfast. 753 */ 754 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 755 struct request *rq) 756 { 757 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 758 759 if (state != NVME_CTRL_DELETING_NOIO && 760 state != NVME_CTRL_DELETING && 761 state != NVME_CTRL_DEAD && 762 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 763 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 764 return BLK_STS_RESOURCE; 765 return nvme_host_path_error(rq); 766 } 767 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 768 769 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 770 bool queue_live, enum nvme_ctrl_state state) 771 { 772 struct nvme_request *req = nvme_req(rq); 773 774 /* 775 * currently we have a problem sending passthru commands 776 * on the admin_q if the controller is not LIVE because we can't 777 * make sure that they are going out after the admin connect, 778 * controller enable and/or other commands in the initialization 779 * sequence. until the controller will be LIVE, fail with 780 * BLK_STS_RESOURCE so that they will be rescheduled. 781 */ 782 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 783 return false; 784 785 if (ctrl->ops->flags & NVME_F_FABRICS) { 786 /* 787 * Only allow commands on a live queue, except for the connect 788 * command, which is require to set the queue live in the 789 * appropinquate states. 790 */ 791 switch (state) { 792 case NVME_CTRL_CONNECTING: 793 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 794 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 795 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 796 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 797 return true; 798 break; 799 default: 800 break; 801 case NVME_CTRL_DEAD: 802 return false; 803 } 804 } 805 806 return queue_live; 807 } 808 EXPORT_SYMBOL_GPL(__nvme_check_ready); 809 810 static inline void nvme_setup_flush(struct nvme_ns *ns, 811 struct nvme_command *cmnd) 812 { 813 memset(cmnd, 0, sizeof(*cmnd)); 814 cmnd->common.opcode = nvme_cmd_flush; 815 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 816 } 817 818 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 819 struct nvme_command *cmnd) 820 { 821 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 822 struct nvme_dsm_range *range; 823 struct bio *bio; 824 825 /* 826 * Some devices do not consider the DSM 'Number of Ranges' field when 827 * determining how much data to DMA. Always allocate memory for maximum 828 * number of segments to prevent device reading beyond end of buffer. 829 */ 830 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 831 832 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 833 if (!range) { 834 /* 835 * If we fail allocation our range, fallback to the controller 836 * discard page. If that's also busy, it's safe to return 837 * busy, as we know we can make progress once that's freed. 838 */ 839 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 840 return BLK_STS_RESOURCE; 841 842 range = page_address(ns->ctrl->discard_page); 843 } 844 845 if (queue_max_discard_segments(req->q) == 1) { 846 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 847 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 848 849 range[0].cattr = cpu_to_le32(0); 850 range[0].nlb = cpu_to_le32(nlb); 851 range[0].slba = cpu_to_le64(slba); 852 n = 1; 853 } else { 854 __rq_for_each_bio(bio, req) { 855 u64 slba = nvme_sect_to_lba(ns->head, 856 bio->bi_iter.bi_sector); 857 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 858 859 if (n < segments) { 860 range[n].cattr = cpu_to_le32(0); 861 range[n].nlb = cpu_to_le32(nlb); 862 range[n].slba = cpu_to_le64(slba); 863 } 864 n++; 865 } 866 } 867 868 if (WARN_ON_ONCE(n != segments)) { 869 if (virt_to_page(range) == ns->ctrl->discard_page) 870 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 871 else 872 kfree(range); 873 return BLK_STS_IOERR; 874 } 875 876 memset(cmnd, 0, sizeof(*cmnd)); 877 cmnd->dsm.opcode = nvme_cmd_dsm; 878 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 879 cmnd->dsm.nr = cpu_to_le32(segments - 1); 880 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 881 882 bvec_set_virt(&req->special_vec, range, alloc_size); 883 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 884 885 return BLK_STS_OK; 886 } 887 888 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd) 889 { 890 cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag); 891 cmnd->rw.lbatm = cpu_to_le16(0xffff); 892 } 893 894 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 895 struct request *req) 896 { 897 u32 upper, lower; 898 u64 ref48; 899 900 /* both rw and write zeroes share the same reftag format */ 901 switch (ns->head->guard_type) { 902 case NVME_NVM_NS_16B_GUARD: 903 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 904 break; 905 case NVME_NVM_NS_64B_GUARD: 906 ref48 = ext_pi_ref_tag(req); 907 lower = lower_32_bits(ref48); 908 upper = upper_32_bits(ref48); 909 910 cmnd->rw.reftag = cpu_to_le32(lower); 911 cmnd->rw.cdw3 = cpu_to_le32(upper); 912 break; 913 default: 914 break; 915 } 916 } 917 918 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 919 struct request *req, struct nvme_command *cmnd) 920 { 921 memset(cmnd, 0, sizeof(*cmnd)); 922 923 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 924 return nvme_setup_discard(ns, req, cmnd); 925 926 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 927 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 928 cmnd->write_zeroes.slba = 929 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 930 cmnd->write_zeroes.length = 931 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 932 933 if (!(req->cmd_flags & REQ_NOUNMAP) && 934 (ns->head->features & NVME_NS_DEAC)) 935 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 936 937 if (nvme_ns_has_pi(ns->head)) { 938 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 939 940 switch (ns->head->pi_type) { 941 case NVME_NS_DPS_PI_TYPE1: 942 case NVME_NS_DPS_PI_TYPE2: 943 nvme_set_ref_tag(ns, cmnd, req); 944 break; 945 } 946 } 947 948 return BLK_STS_OK; 949 } 950 951 /* 952 * NVMe does not support a dedicated command to issue an atomic write. A write 953 * which does adhere to the device atomic limits will silently be executed 954 * non-atomically. The request issuer should ensure that the write is within 955 * the queue atomic writes limits, but just validate this in case it is not. 956 */ 957 static bool nvme_valid_atomic_write(struct request *req) 958 { 959 struct request_queue *q = req->q; 960 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); 961 962 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) 963 return false; 964 965 if (boundary_bytes) { 966 u64 mask = boundary_bytes - 1, imask = ~mask; 967 u64 start = blk_rq_pos(req) << SECTOR_SHIFT; 968 u64 end = start + blk_rq_bytes(req) - 1; 969 970 /* If greater then must be crossing a boundary */ 971 if (blk_rq_bytes(req) > boundary_bytes) 972 return false; 973 974 if ((start & imask) != (end & imask)) 975 return false; 976 } 977 978 return true; 979 } 980 981 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 982 struct request *req, struct nvme_command *cmnd, 983 enum nvme_opcode op) 984 { 985 u16 control = 0; 986 u32 dsmgmt = 0; 987 988 if (req->cmd_flags & REQ_FUA) 989 control |= NVME_RW_FUA; 990 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 991 control |= NVME_RW_LR; 992 993 if (req->cmd_flags & REQ_RAHEAD) 994 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 995 996 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) 997 return BLK_STS_INVAL; 998 999 cmnd->rw.opcode = op; 1000 cmnd->rw.flags = 0; 1001 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 1002 cmnd->rw.cdw2 = 0; 1003 cmnd->rw.cdw3 = 0; 1004 cmnd->rw.metadata = 0; 1005 cmnd->rw.slba = 1006 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 1007 cmnd->rw.length = 1008 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 1009 cmnd->rw.reftag = 0; 1010 cmnd->rw.lbat = 0; 1011 cmnd->rw.lbatm = 0; 1012 1013 if (ns->head->ms) { 1014 /* 1015 * If formated with metadata, the block layer always provides a 1016 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 1017 * we enable the PRACT bit for protection information or set the 1018 * namespace capacity to zero to prevent any I/O. 1019 */ 1020 if (!blk_integrity_rq(req)) { 1021 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 1022 return BLK_STS_NOTSUPP; 1023 control |= NVME_RW_PRINFO_PRACT; 1024 } 1025 1026 if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD)) 1027 control |= NVME_RW_PRINFO_PRCHK_GUARD; 1028 if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) { 1029 control |= NVME_RW_PRINFO_PRCHK_REF; 1030 if (op == nvme_cmd_zone_append) 1031 control |= NVME_RW_APPEND_PIREMAP; 1032 nvme_set_ref_tag(ns, cmnd, req); 1033 } 1034 if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) { 1035 control |= NVME_RW_PRINFO_PRCHK_APP; 1036 nvme_set_app_tag(req, cmnd); 1037 } 1038 } 1039 1040 cmnd->rw.control = cpu_to_le16(control); 1041 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 1042 return 0; 1043 } 1044 1045 void nvme_cleanup_cmd(struct request *req) 1046 { 1047 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 1048 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 1049 1050 if (req->special_vec.bv_page == ctrl->discard_page) 1051 clear_bit_unlock(0, &ctrl->discard_page_busy); 1052 else 1053 kfree(bvec_virt(&req->special_vec)); 1054 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; 1055 } 1056 } 1057 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1058 1059 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1060 { 1061 struct nvme_command *cmd = nvme_req(req)->cmd; 1062 blk_status_t ret = BLK_STS_OK; 1063 1064 if (!(req->rq_flags & RQF_DONTPREP)) 1065 nvme_clear_nvme_request(req); 1066 1067 switch (req_op(req)) { 1068 case REQ_OP_DRV_IN: 1069 case REQ_OP_DRV_OUT: 1070 /* these are setup prior to execution in nvme_init_request() */ 1071 break; 1072 case REQ_OP_FLUSH: 1073 nvme_setup_flush(ns, cmd); 1074 break; 1075 case REQ_OP_ZONE_RESET_ALL: 1076 case REQ_OP_ZONE_RESET: 1077 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1078 break; 1079 case REQ_OP_ZONE_OPEN: 1080 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1081 break; 1082 case REQ_OP_ZONE_CLOSE: 1083 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1084 break; 1085 case REQ_OP_ZONE_FINISH: 1086 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1087 break; 1088 case REQ_OP_WRITE_ZEROES: 1089 ret = nvme_setup_write_zeroes(ns, req, cmd); 1090 break; 1091 case REQ_OP_DISCARD: 1092 ret = nvme_setup_discard(ns, req, cmd); 1093 break; 1094 case REQ_OP_READ: 1095 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1096 break; 1097 case REQ_OP_WRITE: 1098 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1099 break; 1100 case REQ_OP_ZONE_APPEND: 1101 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1102 break; 1103 default: 1104 WARN_ON_ONCE(1); 1105 return BLK_STS_IOERR; 1106 } 1107 1108 cmd->common.command_id = nvme_cid(req); 1109 trace_nvme_setup_cmd(req, cmd); 1110 return ret; 1111 } 1112 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1113 1114 /* 1115 * Return values: 1116 * 0: success 1117 * >0: nvme controller's cqe status response 1118 * <0: kernel error in lieu of controller response 1119 */ 1120 int nvme_execute_rq(struct request *rq, bool at_head) 1121 { 1122 blk_status_t status; 1123 1124 status = blk_execute_rq(rq, at_head); 1125 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1126 return -EINTR; 1127 if (nvme_req(rq)->status) 1128 return nvme_req(rq)->status; 1129 return blk_status_to_errno(status); 1130 } 1131 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU"); 1132 1133 /* 1134 * Returns 0 on success. If the result is negative, it's a Linux error code; 1135 * if the result is positive, it's an NVM Express status code 1136 */ 1137 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1138 union nvme_result *result, void *buffer, unsigned bufflen, 1139 int qid, nvme_submit_flags_t flags) 1140 { 1141 struct request *req; 1142 int ret; 1143 blk_mq_req_flags_t blk_flags = 0; 1144 1145 if (flags & NVME_SUBMIT_NOWAIT) 1146 blk_flags |= BLK_MQ_REQ_NOWAIT; 1147 if (flags & NVME_SUBMIT_RESERVED) 1148 blk_flags |= BLK_MQ_REQ_RESERVED; 1149 if (qid == NVME_QID_ANY) 1150 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1151 else 1152 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1153 qid - 1); 1154 1155 if (IS_ERR(req)) 1156 return PTR_ERR(req); 1157 nvme_init_request(req, cmd); 1158 if (flags & NVME_SUBMIT_RETRY) 1159 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1160 1161 if (buffer && bufflen) { 1162 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1163 if (ret) 1164 goto out; 1165 } 1166 1167 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1168 if (result && ret >= 0) 1169 *result = nvme_req(req)->result; 1170 out: 1171 blk_mq_free_request(req); 1172 return ret; 1173 } 1174 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1175 1176 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1177 void *buffer, unsigned bufflen) 1178 { 1179 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1180 NVME_QID_ANY, 0); 1181 } 1182 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1183 1184 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1185 { 1186 u32 effects = 0; 1187 1188 if (ns) { 1189 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1190 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1191 dev_warn_once(ctrl->device, 1192 "IO command:%02x has unusual effects:%08x\n", 1193 opcode, effects); 1194 1195 /* 1196 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1197 * which would deadlock when done on an I/O command. Note that 1198 * We already warn about an unusual effect above. 1199 */ 1200 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1201 } else { 1202 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1203 1204 /* Ignore execution restrictions if any relaxation bits are set */ 1205 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1206 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1207 } 1208 1209 return effects; 1210 } 1211 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU"); 1212 1213 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1214 { 1215 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1216 1217 /* 1218 * For simplicity, IO to all namespaces is quiesced even if the command 1219 * effects say only one namespace is affected. 1220 */ 1221 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1222 mutex_lock(&ctrl->scan_lock); 1223 mutex_lock(&ctrl->subsys->lock); 1224 nvme_mpath_start_freeze(ctrl->subsys); 1225 nvme_mpath_wait_freeze(ctrl->subsys); 1226 nvme_start_freeze(ctrl); 1227 nvme_wait_freeze(ctrl); 1228 } 1229 return effects; 1230 } 1231 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU"); 1232 1233 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1234 struct nvme_command *cmd, int status) 1235 { 1236 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1237 nvme_unfreeze(ctrl); 1238 nvme_mpath_unfreeze(ctrl->subsys); 1239 mutex_unlock(&ctrl->subsys->lock); 1240 mutex_unlock(&ctrl->scan_lock); 1241 } 1242 if (effects & NVME_CMD_EFFECTS_CCC) { 1243 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1244 &ctrl->flags)) { 1245 dev_info(ctrl->device, 1246 "controller capabilities changed, reset may be required to take effect.\n"); 1247 } 1248 } 1249 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1250 nvme_queue_scan(ctrl); 1251 flush_work(&ctrl->scan_work); 1252 } 1253 if (ns) 1254 return; 1255 1256 switch (cmd->common.opcode) { 1257 case nvme_admin_set_features: 1258 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1259 case NVME_FEAT_KATO: 1260 /* 1261 * Keep alive commands interval on the host should be 1262 * updated when KATO is modified by Set Features 1263 * commands. 1264 */ 1265 if (!status) 1266 nvme_update_keep_alive(ctrl, cmd); 1267 break; 1268 default: 1269 break; 1270 } 1271 break; 1272 default: 1273 break; 1274 } 1275 } 1276 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU"); 1277 1278 /* 1279 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1280 * 1281 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1282 * accounting for transport roundtrip times [..]. 1283 */ 1284 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1285 { 1286 unsigned long delay = ctrl->kato * HZ / 2; 1287 1288 /* 1289 * When using Traffic Based Keep Alive, we need to run 1290 * nvme_keep_alive_work at twice the normal frequency, as one 1291 * command completion can postpone sending a keep alive command 1292 * by up to twice the delay between runs. 1293 */ 1294 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1295 delay /= 2; 1296 return delay; 1297 } 1298 1299 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1300 { 1301 unsigned long now = jiffies; 1302 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1303 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1304 1305 if (time_after(now, ka_next_check_tm)) 1306 delay = 0; 1307 else 1308 delay = ka_next_check_tm - now; 1309 1310 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1311 } 1312 1313 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1314 blk_status_t status) 1315 { 1316 struct nvme_ctrl *ctrl = rq->end_io_data; 1317 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1318 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1319 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 1320 1321 /* 1322 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1323 * at the desired frequency. 1324 */ 1325 if (rtt <= delay) { 1326 delay -= rtt; 1327 } else { 1328 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1329 jiffies_to_msecs(rtt)); 1330 delay = 0; 1331 } 1332 1333 blk_mq_free_request(rq); 1334 1335 if (status) { 1336 dev_err(ctrl->device, 1337 "failed nvme_keep_alive_end_io error=%d\n", 1338 status); 1339 return RQ_END_IO_NONE; 1340 } 1341 1342 ctrl->ka_last_check_time = jiffies; 1343 ctrl->comp_seen = false; 1344 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING) 1345 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1346 return RQ_END_IO_NONE; 1347 } 1348 1349 static void nvme_keep_alive_work(struct work_struct *work) 1350 { 1351 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1352 struct nvme_ctrl, ka_work); 1353 bool comp_seen = ctrl->comp_seen; 1354 struct request *rq; 1355 1356 ctrl->ka_last_check_time = jiffies; 1357 1358 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1359 dev_dbg(ctrl->device, 1360 "reschedule traffic based keep-alive timer\n"); 1361 ctrl->comp_seen = false; 1362 nvme_queue_keep_alive_work(ctrl); 1363 return; 1364 } 1365 1366 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1367 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1368 if (IS_ERR(rq)) { 1369 /* allocation failure, reset the controller */ 1370 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1371 nvme_reset_ctrl(ctrl); 1372 return; 1373 } 1374 nvme_init_request(rq, &ctrl->ka_cmd); 1375 1376 rq->timeout = ctrl->kato * HZ; 1377 rq->end_io = nvme_keep_alive_end_io; 1378 rq->end_io_data = ctrl; 1379 blk_execute_rq_nowait(rq, false); 1380 } 1381 1382 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1383 { 1384 if (unlikely(ctrl->kato == 0)) 1385 return; 1386 1387 nvme_queue_keep_alive_work(ctrl); 1388 } 1389 1390 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1391 { 1392 if (unlikely(ctrl->kato == 0)) 1393 return; 1394 1395 cancel_delayed_work_sync(&ctrl->ka_work); 1396 } 1397 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1398 1399 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1400 struct nvme_command *cmd) 1401 { 1402 unsigned int new_kato = 1403 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1404 1405 dev_info(ctrl->device, 1406 "keep alive interval updated from %u ms to %u ms\n", 1407 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1408 1409 nvme_stop_keep_alive(ctrl); 1410 ctrl->kato = new_kato; 1411 nvme_start_keep_alive(ctrl); 1412 } 1413 1414 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns) 1415 { 1416 /* 1417 * The CNS field occupies a full byte starting with NVMe 1.2 1418 */ 1419 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1420 return true; 1421 1422 /* 1423 * NVMe 1.1 expanded the CNS value to two bits, which means values 1424 * larger than that could get truncated and treated as an incorrect 1425 * value. 1426 * 1427 * Qemu implemented 1.0 behavior for controllers claiming 1.1 1428 * compliance, so they need to be quirked here. 1429 */ 1430 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1431 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) 1432 return cns <= 3; 1433 1434 /* 1435 * NVMe 1.0 used a single bit for the CNS value. 1436 */ 1437 return cns <= 1; 1438 } 1439 1440 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1441 { 1442 struct nvme_command c = { }; 1443 int error; 1444 1445 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1446 c.identify.opcode = nvme_admin_identify; 1447 c.identify.cns = NVME_ID_CNS_CTRL; 1448 1449 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1450 if (!*id) 1451 return -ENOMEM; 1452 1453 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1454 sizeof(struct nvme_id_ctrl)); 1455 if (error) { 1456 kfree(*id); 1457 *id = NULL; 1458 } 1459 return error; 1460 } 1461 1462 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1463 struct nvme_ns_id_desc *cur, bool *csi_seen) 1464 { 1465 const char *warn_str = "ctrl returned bogus length:"; 1466 void *data = cur; 1467 1468 switch (cur->nidt) { 1469 case NVME_NIDT_EUI64: 1470 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1471 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1472 warn_str, cur->nidl); 1473 return -1; 1474 } 1475 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1476 return NVME_NIDT_EUI64_LEN; 1477 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1478 return NVME_NIDT_EUI64_LEN; 1479 case NVME_NIDT_NGUID: 1480 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1481 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1482 warn_str, cur->nidl); 1483 return -1; 1484 } 1485 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1486 return NVME_NIDT_NGUID_LEN; 1487 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1488 return NVME_NIDT_NGUID_LEN; 1489 case NVME_NIDT_UUID: 1490 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1491 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1492 warn_str, cur->nidl); 1493 return -1; 1494 } 1495 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1496 return NVME_NIDT_UUID_LEN; 1497 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1498 return NVME_NIDT_UUID_LEN; 1499 case NVME_NIDT_CSI: 1500 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1501 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1502 warn_str, cur->nidl); 1503 return -1; 1504 } 1505 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1506 *csi_seen = true; 1507 return NVME_NIDT_CSI_LEN; 1508 default: 1509 /* Skip unknown types */ 1510 return cur->nidl; 1511 } 1512 } 1513 1514 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1515 struct nvme_ns_info *info) 1516 { 1517 struct nvme_command c = { }; 1518 bool csi_seen = false; 1519 int status, pos, len; 1520 void *data; 1521 1522 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1523 return 0; 1524 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1525 return 0; 1526 1527 c.identify.opcode = nvme_admin_identify; 1528 c.identify.nsid = cpu_to_le32(info->nsid); 1529 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1530 1531 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1532 if (!data) 1533 return -ENOMEM; 1534 1535 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1536 NVME_IDENTIFY_DATA_SIZE); 1537 if (status) { 1538 dev_warn(ctrl->device, 1539 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1540 info->nsid, status); 1541 goto free_data; 1542 } 1543 1544 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1545 struct nvme_ns_id_desc *cur = data + pos; 1546 1547 if (cur->nidl == 0) 1548 break; 1549 1550 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1551 if (len < 0) 1552 break; 1553 1554 len += sizeof(*cur); 1555 } 1556 1557 if (nvme_multi_css(ctrl) && !csi_seen) { 1558 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1559 info->nsid); 1560 status = -EINVAL; 1561 } 1562 1563 free_data: 1564 kfree(data); 1565 return status; 1566 } 1567 1568 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1569 struct nvme_id_ns **id) 1570 { 1571 struct nvme_command c = { }; 1572 int error; 1573 1574 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1575 c.identify.opcode = nvme_admin_identify; 1576 c.identify.nsid = cpu_to_le32(nsid); 1577 c.identify.cns = NVME_ID_CNS_NS; 1578 1579 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1580 if (!*id) 1581 return -ENOMEM; 1582 1583 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1584 if (error) { 1585 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1586 kfree(*id); 1587 *id = NULL; 1588 } 1589 return error; 1590 } 1591 1592 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1593 struct nvme_ns_info *info) 1594 { 1595 struct nvme_ns_ids *ids = &info->ids; 1596 struct nvme_id_ns *id; 1597 int ret; 1598 1599 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1600 if (ret) 1601 return ret; 1602 1603 if (id->ncap == 0) { 1604 /* namespace not allocated or attached */ 1605 info->is_removed = true; 1606 ret = -ENODEV; 1607 goto error; 1608 } 1609 1610 info->anagrpid = id->anagrpid; 1611 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1612 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1613 info->is_ready = true; 1614 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1615 dev_info(ctrl->device, 1616 "Ignoring bogus Namespace Identifiers\n"); 1617 } else { 1618 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1619 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1620 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1621 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1622 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1623 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1624 } 1625 1626 error: 1627 kfree(id); 1628 return ret; 1629 } 1630 1631 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1632 struct nvme_ns_info *info) 1633 { 1634 struct nvme_id_ns_cs_indep *id; 1635 struct nvme_command c = { 1636 .identify.opcode = nvme_admin_identify, 1637 .identify.nsid = cpu_to_le32(info->nsid), 1638 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1639 }; 1640 int ret; 1641 1642 id = kmalloc(sizeof(*id), GFP_KERNEL); 1643 if (!id) 1644 return -ENOMEM; 1645 1646 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1647 if (!ret) { 1648 info->anagrpid = id->anagrpid; 1649 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1650 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1651 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1652 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL; 1653 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT; 1654 } 1655 kfree(id); 1656 return ret; 1657 } 1658 1659 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1660 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1661 { 1662 union nvme_result res = { 0 }; 1663 struct nvme_command c = { }; 1664 int ret; 1665 1666 c.features.opcode = op; 1667 c.features.fid = cpu_to_le32(fid); 1668 c.features.dword11 = cpu_to_le32(dword11); 1669 1670 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1671 buffer, buflen, NVME_QID_ANY, 0); 1672 if (ret >= 0 && result) 1673 *result = le32_to_cpu(res.u32); 1674 return ret; 1675 } 1676 1677 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1678 unsigned int dword11, void *buffer, size_t buflen, 1679 u32 *result) 1680 { 1681 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1682 buflen, result); 1683 } 1684 EXPORT_SYMBOL_GPL(nvme_set_features); 1685 1686 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1687 unsigned int dword11, void *buffer, size_t buflen, 1688 u32 *result) 1689 { 1690 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1691 buflen, result); 1692 } 1693 EXPORT_SYMBOL_GPL(nvme_get_features); 1694 1695 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1696 { 1697 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1698 u32 result; 1699 int status, nr_io_queues; 1700 1701 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1702 &result); 1703 if (status < 0) 1704 return status; 1705 1706 /* 1707 * Degraded controllers might return an error when setting the queue 1708 * count. We still want to be able to bring them online and offer 1709 * access to the admin queue, as that might be only way to fix them up. 1710 */ 1711 if (status > 0) { 1712 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1713 *count = 0; 1714 } else { 1715 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1716 *count = min(*count, nr_io_queues); 1717 } 1718 1719 return 0; 1720 } 1721 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1722 1723 #define NVME_AEN_SUPPORTED \ 1724 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1725 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1726 1727 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1728 { 1729 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1730 int status; 1731 1732 if (!supported_aens) 1733 return; 1734 1735 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1736 NULL, 0, &result); 1737 if (status) 1738 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1739 supported_aens); 1740 1741 queue_work(nvme_wq, &ctrl->async_event_work); 1742 } 1743 1744 static int nvme_ns_open(struct nvme_ns *ns) 1745 { 1746 1747 /* should never be called due to GENHD_FL_HIDDEN */ 1748 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1749 goto fail; 1750 if (!nvme_get_ns(ns)) 1751 goto fail; 1752 if (!try_module_get(ns->ctrl->ops->module)) 1753 goto fail_put_ns; 1754 1755 return 0; 1756 1757 fail_put_ns: 1758 nvme_put_ns(ns); 1759 fail: 1760 return -ENXIO; 1761 } 1762 1763 static void nvme_ns_release(struct nvme_ns *ns) 1764 { 1765 1766 module_put(ns->ctrl->ops->module); 1767 nvme_put_ns(ns); 1768 } 1769 1770 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1771 { 1772 return nvme_ns_open(disk->private_data); 1773 } 1774 1775 static void nvme_release(struct gendisk *disk) 1776 { 1777 nvme_ns_release(disk->private_data); 1778 } 1779 1780 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1781 { 1782 /* some standard values */ 1783 geo->heads = 1 << 6; 1784 geo->sectors = 1 << 5; 1785 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1786 return 0; 1787 } 1788 1789 static bool nvme_init_integrity(struct nvme_ns_head *head, 1790 struct queue_limits *lim, struct nvme_ns_info *info) 1791 { 1792 struct blk_integrity *bi = &lim->integrity; 1793 1794 memset(bi, 0, sizeof(*bi)); 1795 1796 if (!head->ms) 1797 return true; 1798 1799 /* 1800 * PI can always be supported as we can ask the controller to simply 1801 * insert/strip it, which is not possible for other kinds of metadata. 1802 */ 1803 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1804 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1805 return nvme_ns_has_pi(head); 1806 1807 switch (head->pi_type) { 1808 case NVME_NS_DPS_PI_TYPE3: 1809 switch (head->guard_type) { 1810 case NVME_NVM_NS_16B_GUARD: 1811 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1812 bi->tag_size = sizeof(u16) + sizeof(u32); 1813 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1814 break; 1815 case NVME_NVM_NS_64B_GUARD: 1816 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1817 bi->tag_size = sizeof(u16) + 6; 1818 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1819 break; 1820 default: 1821 break; 1822 } 1823 break; 1824 case NVME_NS_DPS_PI_TYPE1: 1825 case NVME_NS_DPS_PI_TYPE2: 1826 switch (head->guard_type) { 1827 case NVME_NVM_NS_16B_GUARD: 1828 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1829 bi->tag_size = sizeof(u16); 1830 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1831 BLK_INTEGRITY_REF_TAG; 1832 break; 1833 case NVME_NVM_NS_64B_GUARD: 1834 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1835 bi->tag_size = sizeof(u16); 1836 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1837 BLK_INTEGRITY_REF_TAG; 1838 break; 1839 default: 1840 break; 1841 } 1842 break; 1843 default: 1844 break; 1845 } 1846 1847 bi->tuple_size = head->ms; 1848 bi->pi_offset = info->pi_offset; 1849 return true; 1850 } 1851 1852 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1853 { 1854 struct nvme_ctrl *ctrl = ns->ctrl; 1855 1856 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1857 lim->max_hw_discard_sectors = 1858 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1859 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1860 lim->max_hw_discard_sectors = UINT_MAX; 1861 else 1862 lim->max_hw_discard_sectors = 0; 1863 1864 lim->discard_granularity = lim->logical_block_size; 1865 1866 if (ctrl->dmrl) 1867 lim->max_discard_segments = ctrl->dmrl; 1868 else 1869 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1870 } 1871 1872 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1873 { 1874 return uuid_equal(&a->uuid, &b->uuid) && 1875 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1876 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1877 a->csi == b->csi; 1878 } 1879 1880 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1881 struct nvme_id_ns_nvm **nvmp) 1882 { 1883 struct nvme_command c = { 1884 .identify.opcode = nvme_admin_identify, 1885 .identify.nsid = cpu_to_le32(nsid), 1886 .identify.cns = NVME_ID_CNS_CS_NS, 1887 .identify.csi = NVME_CSI_NVM, 1888 }; 1889 struct nvme_id_ns_nvm *nvm; 1890 int ret; 1891 1892 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1893 if (!nvm) 1894 return -ENOMEM; 1895 1896 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1897 if (ret) 1898 kfree(nvm); 1899 else 1900 *nvmp = nvm; 1901 return ret; 1902 } 1903 1904 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1905 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1906 { 1907 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1908 u8 guard_type; 1909 1910 /* no support for storage tag formats right now */ 1911 if (nvme_elbaf_sts(elbaf)) 1912 return; 1913 1914 guard_type = nvme_elbaf_guard_type(elbaf); 1915 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && 1916 guard_type == NVME_NVM_NS_QTYPE_GUARD) 1917 guard_type = nvme_elbaf_qualified_guard_type(elbaf); 1918 1919 head->guard_type = guard_type; 1920 switch (head->guard_type) { 1921 case NVME_NVM_NS_64B_GUARD: 1922 head->pi_size = sizeof(struct crc64_pi_tuple); 1923 break; 1924 case NVME_NVM_NS_16B_GUARD: 1925 head->pi_size = sizeof(struct t10_pi_tuple); 1926 break; 1927 default: 1928 break; 1929 } 1930 } 1931 1932 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1933 struct nvme_ns_head *head, struct nvme_id_ns *id, 1934 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) 1935 { 1936 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1937 head->pi_type = 0; 1938 head->pi_size = 0; 1939 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1940 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1941 return; 1942 1943 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1944 nvme_configure_pi_elbas(head, id, nvm); 1945 } else { 1946 head->pi_size = sizeof(struct t10_pi_tuple); 1947 head->guard_type = NVME_NVM_NS_16B_GUARD; 1948 } 1949 1950 if (head->pi_size && head->ms >= head->pi_size) 1951 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1952 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) { 1953 if (disable_pi_offsets) 1954 head->pi_type = 0; 1955 else 1956 info->pi_offset = head->ms - head->pi_size; 1957 } 1958 1959 if (ctrl->ops->flags & NVME_F_FABRICS) { 1960 /* 1961 * The NVMe over Fabrics specification only supports metadata as 1962 * part of the extended data LBA. We rely on HCA/HBA support to 1963 * remap the separate metadata buffer from the block layer. 1964 */ 1965 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1966 return; 1967 1968 head->features |= NVME_NS_EXT_LBAS; 1969 1970 /* 1971 * The current fabrics transport drivers support namespace 1972 * metadata formats only if nvme_ns_has_pi() returns true. 1973 * Suppress support for all other formats so the namespace will 1974 * have a 0 capacity and not be usable through the block stack. 1975 * 1976 * Note, this check will need to be modified if any drivers 1977 * gain the ability to use other metadata formats. 1978 */ 1979 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1980 head->features |= NVME_NS_METADATA_SUPPORTED; 1981 } else { 1982 /* 1983 * For PCIe controllers, we can't easily remap the separate 1984 * metadata buffer from the block layer and thus require a 1985 * separate metadata buffer for block layer metadata/PI support. 1986 * We allow extended LBAs for the passthrough interface, though. 1987 */ 1988 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1989 head->features |= NVME_NS_EXT_LBAS; 1990 else 1991 head->features |= NVME_NS_METADATA_SUPPORTED; 1992 } 1993 } 1994 1995 1996 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, 1997 struct nvme_id_ns *id, struct queue_limits *lim, 1998 u32 bs, u32 atomic_bs) 1999 { 2000 unsigned int boundary = 0; 2001 2002 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { 2003 if (le16_to_cpu(id->nabspf)) 2004 boundary = (le16_to_cpu(id->nabspf) + 1) * bs; 2005 } 2006 lim->atomic_write_hw_max = atomic_bs; 2007 lim->atomic_write_hw_boundary = boundary; 2008 lim->atomic_write_hw_unit_min = bs; 2009 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); 2010 lim->features |= BLK_FEAT_ATOMIC_WRITES; 2011 } 2012 2013 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 2014 { 2015 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 2016 } 2017 2018 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 2019 struct queue_limits *lim) 2020 { 2021 lim->max_hw_sectors = ctrl->max_hw_sectors; 2022 lim->max_segments = min_t(u32, USHRT_MAX, 2023 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 2024 lim->max_integrity_segments = ctrl->max_integrity_segments; 2025 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 2026 lim->max_segment_size = UINT_MAX; 2027 lim->dma_alignment = 3; 2028 } 2029 2030 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 2031 struct queue_limits *lim) 2032 { 2033 struct nvme_ns_head *head = ns->head; 2034 u32 bs = 1U << head->lba_shift; 2035 u32 atomic_bs, phys_bs, io_opt = 0; 2036 bool valid = true; 2037 2038 /* 2039 * The block layer can't support LBA sizes larger than the page size 2040 * or smaller than a sector size yet, so catch this early and don't 2041 * allow block I/O. 2042 */ 2043 if (blk_validate_block_size(bs)) { 2044 bs = (1 << 9); 2045 valid = false; 2046 } 2047 2048 atomic_bs = phys_bs = bs; 2049 if (id->nabo == 0) { 2050 /* 2051 * Bit 1 indicates whether NAWUPF is defined for this namespace 2052 * and whether it should be used instead of AWUPF. If NAWUPF == 2053 * 0 then AWUPF must be used instead. 2054 */ 2055 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 2056 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2057 else 2058 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2059 2060 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); 2061 } 2062 2063 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2064 /* NPWG = Namespace Preferred Write Granularity */ 2065 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2066 /* NOWS = Namespace Optimal Write Size */ 2067 if (id->nows) 2068 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2069 } 2070 2071 /* 2072 * Linux filesystems assume writing a single physical block is 2073 * an atomic operation. Hence limit the physical block size to the 2074 * value of the Atomic Write Unit Power Fail parameter. 2075 */ 2076 lim->logical_block_size = bs; 2077 lim->physical_block_size = min(phys_bs, atomic_bs); 2078 lim->io_min = phys_bs; 2079 lim->io_opt = io_opt; 2080 if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) && 2081 (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)) 2082 lim->max_write_zeroes_sectors = UINT_MAX; 2083 else 2084 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 2085 return valid; 2086 } 2087 2088 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 2089 { 2090 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 2091 } 2092 2093 static inline bool nvme_first_scan(struct gendisk *disk) 2094 { 2095 /* nvme_alloc_ns() scans the disk prior to adding it */ 2096 return !disk_live(disk); 2097 } 2098 2099 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2100 struct queue_limits *lim) 2101 { 2102 struct nvme_ctrl *ctrl = ns->ctrl; 2103 u32 iob; 2104 2105 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2106 is_power_of_2(ctrl->max_hw_sectors)) 2107 iob = ctrl->max_hw_sectors; 2108 else 2109 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2110 2111 if (!iob) 2112 return; 2113 2114 if (!is_power_of_2(iob)) { 2115 if (nvme_first_scan(ns->disk)) 2116 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2117 ns->disk->disk_name, iob); 2118 return; 2119 } 2120 2121 if (blk_queue_is_zoned(ns->disk->queue)) { 2122 if (nvme_first_scan(ns->disk)) 2123 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2124 ns->disk->disk_name); 2125 return; 2126 } 2127 2128 lim->chunk_sectors = iob; 2129 } 2130 2131 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2132 struct nvme_ns_info *info) 2133 { 2134 struct queue_limits lim; 2135 int ret; 2136 2137 lim = queue_limits_start_update(ns->disk->queue); 2138 nvme_set_ctrl_limits(ns->ctrl, &lim); 2139 2140 blk_mq_freeze_queue(ns->disk->queue); 2141 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2142 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2143 blk_mq_unfreeze_queue(ns->disk->queue); 2144 2145 /* Hide the block-interface for these devices */ 2146 if (!ret) 2147 ret = -ENODEV; 2148 return ret; 2149 } 2150 2151 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2152 struct nvme_ns_info *info) 2153 { 2154 struct queue_limits lim; 2155 struct nvme_id_ns_nvm *nvm = NULL; 2156 struct nvme_zone_info zi = {}; 2157 struct nvme_id_ns *id; 2158 sector_t capacity; 2159 unsigned lbaf; 2160 int ret; 2161 2162 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2163 if (ret) 2164 return ret; 2165 2166 if (id->ncap == 0) { 2167 /* namespace not allocated or attached */ 2168 info->is_removed = true; 2169 ret = -ENXIO; 2170 goto out; 2171 } 2172 lbaf = nvme_lbaf_index(id->flbas); 2173 2174 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2175 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2176 if (ret < 0) 2177 goto out; 2178 } 2179 2180 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2181 ns->head->ids.csi == NVME_CSI_ZNS) { 2182 ret = nvme_query_zone_info(ns, lbaf, &zi); 2183 if (ret < 0) 2184 goto out; 2185 } 2186 2187 lim = queue_limits_start_update(ns->disk->queue); 2188 2189 blk_mq_freeze_queue(ns->disk->queue); 2190 ns->head->lba_shift = id->lbaf[lbaf].ds; 2191 ns->head->nuse = le64_to_cpu(id->nuse); 2192 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2193 nvme_set_ctrl_limits(ns->ctrl, &lim); 2194 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info); 2195 nvme_set_chunk_sectors(ns, id, &lim); 2196 if (!nvme_update_disk_info(ns, id, &lim)) 2197 capacity = 0; 2198 nvme_config_discard(ns, &lim); 2199 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2200 ns->head->ids.csi == NVME_CSI_ZNS) 2201 nvme_update_zone_info(ns, &lim, &zi); 2202 2203 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc) 2204 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2205 else 2206 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2207 2208 if (info->is_rotational) 2209 lim.features |= BLK_FEAT_ROTATIONAL; 2210 2211 /* 2212 * Register a metadata profile for PI, or the plain non-integrity NVMe 2213 * metadata masquerading as Type 0 if supported, otherwise reject block 2214 * I/O to namespaces with metadata except when the namespace supports 2215 * PI, as it can strip/insert in that case. 2216 */ 2217 if (!nvme_init_integrity(ns->head, &lim, info)) 2218 capacity = 0; 2219 2220 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2221 if (ret) { 2222 blk_mq_unfreeze_queue(ns->disk->queue); 2223 goto out; 2224 } 2225 2226 set_capacity_and_notify(ns->disk, capacity); 2227 2228 /* 2229 * Only set the DEAC bit if the device guarantees that reads from 2230 * deallocated data return zeroes. While the DEAC bit does not 2231 * require that, it must be a no-op if reads from deallocated data 2232 * do not return zeroes. 2233 */ 2234 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2235 ns->head->features |= NVME_NS_DEAC; 2236 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2237 set_bit(NVME_NS_READY, &ns->flags); 2238 blk_mq_unfreeze_queue(ns->disk->queue); 2239 2240 if (blk_queue_is_zoned(ns->queue)) { 2241 ret = blk_revalidate_disk_zones(ns->disk); 2242 if (ret && !nvme_first_scan(ns->disk)) 2243 goto out; 2244 } 2245 2246 ret = 0; 2247 out: 2248 kfree(nvm); 2249 kfree(id); 2250 return ret; 2251 } 2252 2253 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2254 { 2255 bool unsupported = false; 2256 int ret; 2257 2258 switch (info->ids.csi) { 2259 case NVME_CSI_ZNS: 2260 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2261 dev_info(ns->ctrl->device, 2262 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2263 info->nsid); 2264 ret = nvme_update_ns_info_generic(ns, info); 2265 break; 2266 } 2267 ret = nvme_update_ns_info_block(ns, info); 2268 break; 2269 case NVME_CSI_NVM: 2270 ret = nvme_update_ns_info_block(ns, info); 2271 break; 2272 default: 2273 dev_info(ns->ctrl->device, 2274 "block device for nsid %u not supported (csi %u)\n", 2275 info->nsid, info->ids.csi); 2276 ret = nvme_update_ns_info_generic(ns, info); 2277 break; 2278 } 2279 2280 /* 2281 * If probing fails due an unsupported feature, hide the block device, 2282 * but still allow other access. 2283 */ 2284 if (ret == -ENODEV) { 2285 ns->disk->flags |= GENHD_FL_HIDDEN; 2286 set_bit(NVME_NS_READY, &ns->flags); 2287 unsupported = true; 2288 ret = 0; 2289 } 2290 2291 if (!ret && nvme_ns_head_multipath(ns->head)) { 2292 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2293 struct queue_limits lim; 2294 2295 lim = queue_limits_start_update(ns->head->disk->queue); 2296 blk_mq_freeze_queue(ns->head->disk->queue); 2297 /* 2298 * queue_limits mixes values that are the hardware limitations 2299 * for bio splitting with what is the device configuration. 2300 * 2301 * For NVMe the device configuration can change after e.g. a 2302 * Format command, and we really want to pick up the new format 2303 * value here. But we must still stack the queue limits to the 2304 * least common denominator for multipathing to split the bios 2305 * properly. 2306 * 2307 * To work around this, we explicitly set the device 2308 * configuration to those that we just queried, but only stack 2309 * the splitting limits in to make sure we still obey possibly 2310 * lower limitations of other controllers. 2311 */ 2312 lim.logical_block_size = ns_lim->logical_block_size; 2313 lim.physical_block_size = ns_lim->physical_block_size; 2314 lim.io_min = ns_lim->io_min; 2315 lim.io_opt = ns_lim->io_opt; 2316 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2317 ns->head->disk->disk_name); 2318 if (unsupported) 2319 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2320 else 2321 nvme_init_integrity(ns->head, &lim, info); 2322 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2323 2324 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2325 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2326 nvme_mpath_revalidate_paths(ns); 2327 2328 blk_mq_unfreeze_queue(ns->head->disk->queue); 2329 } 2330 2331 return ret; 2332 } 2333 2334 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], 2335 enum blk_unique_id type) 2336 { 2337 struct nvme_ns_ids *ids = &ns->head->ids; 2338 2339 if (type != BLK_UID_EUI64) 2340 return -EINVAL; 2341 2342 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { 2343 memcpy(id, &ids->nguid, sizeof(ids->nguid)); 2344 return sizeof(ids->nguid); 2345 } 2346 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { 2347 memcpy(id, &ids->eui64, sizeof(ids->eui64)); 2348 return sizeof(ids->eui64); 2349 } 2350 2351 return -EINVAL; 2352 } 2353 2354 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], 2355 enum blk_unique_id type) 2356 { 2357 return nvme_ns_get_unique_id(disk->private_data, id, type); 2358 } 2359 2360 #ifdef CONFIG_BLK_SED_OPAL 2361 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2362 bool send) 2363 { 2364 struct nvme_ctrl *ctrl = data; 2365 struct nvme_command cmd = { }; 2366 2367 if (send) 2368 cmd.common.opcode = nvme_admin_security_send; 2369 else 2370 cmd.common.opcode = nvme_admin_security_recv; 2371 cmd.common.nsid = 0; 2372 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2373 cmd.common.cdw11 = cpu_to_le32(len); 2374 2375 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2376 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2377 } 2378 2379 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2380 { 2381 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2382 if (!ctrl->opal_dev) 2383 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2384 else if (was_suspended) 2385 opal_unlock_from_suspend(ctrl->opal_dev); 2386 } else { 2387 free_opal_dev(ctrl->opal_dev); 2388 ctrl->opal_dev = NULL; 2389 } 2390 } 2391 #else 2392 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2393 { 2394 } 2395 #endif /* CONFIG_BLK_SED_OPAL */ 2396 2397 #ifdef CONFIG_BLK_DEV_ZONED 2398 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2399 unsigned int nr_zones, report_zones_cb cb, void *data) 2400 { 2401 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2402 data); 2403 } 2404 #else 2405 #define nvme_report_zones NULL 2406 #endif /* CONFIG_BLK_DEV_ZONED */ 2407 2408 const struct block_device_operations nvme_bdev_ops = { 2409 .owner = THIS_MODULE, 2410 .ioctl = nvme_ioctl, 2411 .compat_ioctl = blkdev_compat_ptr_ioctl, 2412 .open = nvme_open, 2413 .release = nvme_release, 2414 .getgeo = nvme_getgeo, 2415 .get_unique_id = nvme_get_unique_id, 2416 .report_zones = nvme_report_zones, 2417 .pr_ops = &nvme_pr_ops, 2418 }; 2419 2420 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2421 u32 timeout, const char *op) 2422 { 2423 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2424 u32 csts; 2425 int ret; 2426 2427 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2428 if (csts == ~0) 2429 return -ENODEV; 2430 if ((csts & mask) == val) 2431 break; 2432 2433 usleep_range(1000, 2000); 2434 if (fatal_signal_pending(current)) 2435 return -EINTR; 2436 if (time_after(jiffies, timeout_jiffies)) { 2437 dev_err(ctrl->device, 2438 "Device not ready; aborting %s, CSTS=0x%x\n", 2439 op, csts); 2440 return -ENODEV; 2441 } 2442 } 2443 2444 return ret; 2445 } 2446 2447 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2448 { 2449 int ret; 2450 2451 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2452 if (shutdown) 2453 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2454 else 2455 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2456 2457 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2458 if (ret) 2459 return ret; 2460 2461 if (shutdown) { 2462 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2463 NVME_CSTS_SHST_CMPLT, 2464 ctrl->shutdown_timeout, "shutdown"); 2465 } 2466 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2467 msleep(NVME_QUIRK_DELAY_AMOUNT); 2468 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2469 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2470 } 2471 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2472 2473 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2474 { 2475 unsigned dev_page_min; 2476 u32 timeout; 2477 int ret; 2478 2479 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2480 if (ret) { 2481 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2482 return ret; 2483 } 2484 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2485 2486 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2487 dev_err(ctrl->device, 2488 "Minimum device page size %u too large for host (%u)\n", 2489 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2490 return -ENODEV; 2491 } 2492 2493 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2494 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2495 else 2496 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2497 2498 /* 2499 * Setting CRIME results in CSTS.RDY before the media is ready. This 2500 * makes it possible for media related commands to return the error 2501 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is 2502 * restructured to handle retries, disable CC.CRIME. 2503 */ 2504 ctrl->ctrl_config &= ~NVME_CC_CRIME; 2505 2506 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2507 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2508 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2509 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2510 if (ret) 2511 return ret; 2512 2513 /* CAP value may change after initial CC write */ 2514 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2515 if (ret) 2516 return ret; 2517 2518 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2519 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2520 u32 crto, ready_timeout; 2521 2522 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2523 if (ret) { 2524 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2525 ret); 2526 return ret; 2527 } 2528 2529 /* 2530 * CRTO should always be greater or equal to CAP.TO, but some 2531 * devices are known to get this wrong. Use the larger of the 2532 * two values. 2533 */ 2534 ready_timeout = NVME_CRTO_CRWMT(crto); 2535 2536 if (ready_timeout < timeout) 2537 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2538 crto, ctrl->cap); 2539 else 2540 timeout = ready_timeout; 2541 } 2542 2543 ctrl->ctrl_config |= NVME_CC_ENABLE; 2544 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2545 if (ret) 2546 return ret; 2547 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2548 (timeout + 1) / 2, "initialisation"); 2549 } 2550 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2551 2552 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2553 { 2554 __le64 ts; 2555 int ret; 2556 2557 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2558 return 0; 2559 2560 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2561 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2562 NULL); 2563 if (ret) 2564 dev_warn_once(ctrl->device, 2565 "could not set timestamp (%d)\n", ret); 2566 return ret; 2567 } 2568 2569 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2570 { 2571 struct nvme_feat_host_behavior *host; 2572 u8 acre = 0, lbafee = 0; 2573 int ret; 2574 2575 /* Don't bother enabling the feature if retry delay is not reported */ 2576 if (ctrl->crdt[0]) 2577 acre = NVME_ENABLE_ACRE; 2578 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2579 lbafee = NVME_ENABLE_LBAFEE; 2580 2581 if (!acre && !lbafee) 2582 return 0; 2583 2584 host = kzalloc(sizeof(*host), GFP_KERNEL); 2585 if (!host) 2586 return 0; 2587 2588 host->acre = acre; 2589 host->lbafee = lbafee; 2590 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2591 host, sizeof(*host), NULL); 2592 kfree(host); 2593 return ret; 2594 } 2595 2596 /* 2597 * The function checks whether the given total (exlat + enlat) latency of 2598 * a power state allows the latter to be used as an APST transition target. 2599 * It does so by comparing the latency to the primary and secondary latency 2600 * tolerances defined by module params. If there's a match, the corresponding 2601 * timeout value is returned and the matching tolerance index (1 or 2) is 2602 * reported. 2603 */ 2604 static bool nvme_apst_get_transition_time(u64 total_latency, 2605 u64 *transition_time, unsigned *last_index) 2606 { 2607 if (total_latency <= apst_primary_latency_tol_us) { 2608 if (*last_index == 1) 2609 return false; 2610 *last_index = 1; 2611 *transition_time = apst_primary_timeout_ms; 2612 return true; 2613 } 2614 if (apst_secondary_timeout_ms && 2615 total_latency <= apst_secondary_latency_tol_us) { 2616 if (*last_index <= 2) 2617 return false; 2618 *last_index = 2; 2619 *transition_time = apst_secondary_timeout_ms; 2620 return true; 2621 } 2622 return false; 2623 } 2624 2625 /* 2626 * APST (Autonomous Power State Transition) lets us program a table of power 2627 * state transitions that the controller will perform automatically. 2628 * 2629 * Depending on module params, one of the two supported techniques will be used: 2630 * 2631 * - If the parameters provide explicit timeouts and tolerances, they will be 2632 * used to build a table with up to 2 non-operational states to transition to. 2633 * The default parameter values were selected based on the values used by 2634 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2635 * regeneration of the APST table in the event of switching between external 2636 * and battery power, the timeouts and tolerances reflect a compromise 2637 * between values used by Microsoft for AC and battery scenarios. 2638 * - If not, we'll configure the table with a simple heuristic: we are willing 2639 * to spend at most 2% of the time transitioning between power states. 2640 * Therefore, when running in any given state, we will enter the next 2641 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2642 * microseconds, as long as that state's exit latency is under the requested 2643 * maximum latency. 2644 * 2645 * We will not autonomously enter any non-operational state for which the total 2646 * latency exceeds ps_max_latency_us. 2647 * 2648 * Users can set ps_max_latency_us to zero to turn off APST. 2649 */ 2650 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2651 { 2652 struct nvme_feat_auto_pst *table; 2653 unsigned apste = 0; 2654 u64 max_lat_us = 0; 2655 __le64 target = 0; 2656 int max_ps = -1; 2657 int state; 2658 int ret; 2659 unsigned last_lt_index = UINT_MAX; 2660 2661 /* 2662 * If APST isn't supported or if we haven't been initialized yet, 2663 * then don't do anything. 2664 */ 2665 if (!ctrl->apsta) 2666 return 0; 2667 2668 if (ctrl->npss > 31) { 2669 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2670 return 0; 2671 } 2672 2673 table = kzalloc(sizeof(*table), GFP_KERNEL); 2674 if (!table) 2675 return 0; 2676 2677 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2678 /* Turn off APST. */ 2679 dev_dbg(ctrl->device, "APST disabled\n"); 2680 goto done; 2681 } 2682 2683 /* 2684 * Walk through all states from lowest- to highest-power. 2685 * According to the spec, lower-numbered states use more power. NPSS, 2686 * despite the name, is the index of the lowest-power state, not the 2687 * number of states. 2688 */ 2689 for (state = (int)ctrl->npss; state >= 0; state--) { 2690 u64 total_latency_us, exit_latency_us, transition_ms; 2691 2692 if (target) 2693 table->entries[state] = target; 2694 2695 /* 2696 * Don't allow transitions to the deepest state if it's quirked 2697 * off. 2698 */ 2699 if (state == ctrl->npss && 2700 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2701 continue; 2702 2703 /* 2704 * Is this state a useful non-operational state for higher-power 2705 * states to autonomously transition to? 2706 */ 2707 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2708 continue; 2709 2710 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2711 if (exit_latency_us > ctrl->ps_max_latency_us) 2712 continue; 2713 2714 total_latency_us = exit_latency_us + 2715 le32_to_cpu(ctrl->psd[state].entry_lat); 2716 2717 /* 2718 * This state is good. It can be used as the APST idle target 2719 * for higher power states. 2720 */ 2721 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2722 if (!nvme_apst_get_transition_time(total_latency_us, 2723 &transition_ms, &last_lt_index)) 2724 continue; 2725 } else { 2726 transition_ms = total_latency_us + 19; 2727 do_div(transition_ms, 20); 2728 if (transition_ms > (1 << 24) - 1) 2729 transition_ms = (1 << 24) - 1; 2730 } 2731 2732 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2733 if (max_ps == -1) 2734 max_ps = state; 2735 if (total_latency_us > max_lat_us) 2736 max_lat_us = total_latency_us; 2737 } 2738 2739 if (max_ps == -1) 2740 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2741 else 2742 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2743 max_ps, max_lat_us, (int)sizeof(*table), table); 2744 apste = 1; 2745 2746 done: 2747 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2748 table, sizeof(*table), NULL); 2749 if (ret) 2750 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2751 kfree(table); 2752 return ret; 2753 } 2754 2755 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2756 { 2757 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2758 u64 latency; 2759 2760 switch (val) { 2761 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2762 case PM_QOS_LATENCY_ANY: 2763 latency = U64_MAX; 2764 break; 2765 2766 default: 2767 latency = val; 2768 } 2769 2770 if (ctrl->ps_max_latency_us != latency) { 2771 ctrl->ps_max_latency_us = latency; 2772 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2773 nvme_configure_apst(ctrl); 2774 } 2775 } 2776 2777 struct nvme_core_quirk_entry { 2778 /* 2779 * NVMe model and firmware strings are padded with spaces. For 2780 * simplicity, strings in the quirk table are padded with NULLs 2781 * instead. 2782 */ 2783 u16 vid; 2784 const char *mn; 2785 const char *fr; 2786 unsigned long quirks; 2787 }; 2788 2789 static const struct nvme_core_quirk_entry core_quirks[] = { 2790 { 2791 /* 2792 * This Toshiba device seems to die using any APST states. See: 2793 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2794 */ 2795 .vid = 0x1179, 2796 .mn = "THNSF5256GPUK TOSHIBA", 2797 .quirks = NVME_QUIRK_NO_APST, 2798 }, 2799 { 2800 /* 2801 * This LiteON CL1-3D*-Q11 firmware version has a race 2802 * condition associated with actions related to suspend to idle 2803 * LiteON has resolved the problem in future firmware 2804 */ 2805 .vid = 0x14a4, 2806 .fr = "22301111", 2807 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2808 }, 2809 { 2810 /* 2811 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2812 * aborts I/O during any load, but more easily reproducible 2813 * with discards (fstrim). 2814 * 2815 * The device is left in a state where it is also not possible 2816 * to use "nvme set-feature" to disable APST, but booting with 2817 * nvme_core.default_ps_max_latency=0 works. 2818 */ 2819 .vid = 0x1e0f, 2820 .mn = "KCD6XVUL6T40", 2821 .quirks = NVME_QUIRK_NO_APST, 2822 }, 2823 { 2824 /* 2825 * The external Samsung X5 SSD fails initialization without a 2826 * delay before checking if it is ready and has a whole set of 2827 * other problems. To make this even more interesting, it 2828 * shares the PCI ID with internal Samsung 970 Evo Plus that 2829 * does not need or want these quirks. 2830 */ 2831 .vid = 0x144d, 2832 .mn = "Samsung Portable SSD X5", 2833 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2834 NVME_QUIRK_NO_DEEPEST_PS | 2835 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2836 } 2837 }; 2838 2839 /* match is null-terminated but idstr is space-padded. */ 2840 static bool string_matches(const char *idstr, const char *match, size_t len) 2841 { 2842 size_t matchlen; 2843 2844 if (!match) 2845 return true; 2846 2847 matchlen = strlen(match); 2848 WARN_ON_ONCE(matchlen > len); 2849 2850 if (memcmp(idstr, match, matchlen)) 2851 return false; 2852 2853 for (; matchlen < len; matchlen++) 2854 if (idstr[matchlen] != ' ') 2855 return false; 2856 2857 return true; 2858 } 2859 2860 static bool quirk_matches(const struct nvme_id_ctrl *id, 2861 const struct nvme_core_quirk_entry *q) 2862 { 2863 return q->vid == le16_to_cpu(id->vid) && 2864 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2865 string_matches(id->fr, q->fr, sizeof(id->fr)); 2866 } 2867 2868 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2869 struct nvme_id_ctrl *id) 2870 { 2871 size_t nqnlen; 2872 int off; 2873 2874 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2875 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2876 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2877 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2878 return; 2879 } 2880 2881 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2882 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2883 } 2884 2885 /* 2886 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2887 * Base Specification 2.0. It is slightly different from the format 2888 * specified there due to historic reasons, and we can't change it now. 2889 */ 2890 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2891 "nqn.2014.08.org.nvmexpress:%04x%04x", 2892 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2893 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2894 off += sizeof(id->sn); 2895 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2896 off += sizeof(id->mn); 2897 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2898 } 2899 2900 static void nvme_release_subsystem(struct device *dev) 2901 { 2902 struct nvme_subsystem *subsys = 2903 container_of(dev, struct nvme_subsystem, dev); 2904 2905 if (subsys->instance >= 0) 2906 ida_free(&nvme_instance_ida, subsys->instance); 2907 kfree(subsys); 2908 } 2909 2910 static void nvme_destroy_subsystem(struct kref *ref) 2911 { 2912 struct nvme_subsystem *subsys = 2913 container_of(ref, struct nvme_subsystem, ref); 2914 2915 mutex_lock(&nvme_subsystems_lock); 2916 list_del(&subsys->entry); 2917 mutex_unlock(&nvme_subsystems_lock); 2918 2919 ida_destroy(&subsys->ns_ida); 2920 device_del(&subsys->dev); 2921 put_device(&subsys->dev); 2922 } 2923 2924 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2925 { 2926 kref_put(&subsys->ref, nvme_destroy_subsystem); 2927 } 2928 2929 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2930 { 2931 struct nvme_subsystem *subsys; 2932 2933 lockdep_assert_held(&nvme_subsystems_lock); 2934 2935 /* 2936 * Fail matches for discovery subsystems. This results 2937 * in each discovery controller bound to a unique subsystem. 2938 * This avoids issues with validating controller values 2939 * that can only be true when there is a single unique subsystem. 2940 * There may be multiple and completely independent entities 2941 * that provide discovery controllers. 2942 */ 2943 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2944 return NULL; 2945 2946 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2947 if (strcmp(subsys->subnqn, subsysnqn)) 2948 continue; 2949 if (!kref_get_unless_zero(&subsys->ref)) 2950 continue; 2951 return subsys; 2952 } 2953 2954 return NULL; 2955 } 2956 2957 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2958 { 2959 return ctrl->opts && ctrl->opts->discovery_nqn; 2960 } 2961 2962 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2963 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2964 { 2965 struct nvme_ctrl *tmp; 2966 2967 lockdep_assert_held(&nvme_subsystems_lock); 2968 2969 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2970 if (nvme_state_terminal(tmp)) 2971 continue; 2972 2973 if (tmp->cntlid == ctrl->cntlid) { 2974 dev_err(ctrl->device, 2975 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2976 ctrl->cntlid, dev_name(tmp->device), 2977 subsys->subnqn); 2978 return false; 2979 } 2980 2981 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2982 nvme_discovery_ctrl(ctrl)) 2983 continue; 2984 2985 dev_err(ctrl->device, 2986 "Subsystem does not support multiple controllers\n"); 2987 return false; 2988 } 2989 2990 return true; 2991 } 2992 2993 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2994 { 2995 struct nvme_subsystem *subsys, *found; 2996 int ret; 2997 2998 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2999 if (!subsys) 3000 return -ENOMEM; 3001 3002 subsys->instance = -1; 3003 mutex_init(&subsys->lock); 3004 kref_init(&subsys->ref); 3005 INIT_LIST_HEAD(&subsys->ctrls); 3006 INIT_LIST_HEAD(&subsys->nsheads); 3007 nvme_init_subnqn(subsys, ctrl, id); 3008 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 3009 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 3010 subsys->vendor_id = le16_to_cpu(id->vid); 3011 subsys->cmic = id->cmic; 3012 3013 /* Versions prior to 1.4 don't necessarily report a valid type */ 3014 if (id->cntrltype == NVME_CTRL_DISC || 3015 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 3016 subsys->subtype = NVME_NQN_DISC; 3017 else 3018 subsys->subtype = NVME_NQN_NVME; 3019 3020 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 3021 dev_err(ctrl->device, 3022 "Subsystem %s is not a discovery controller", 3023 subsys->subnqn); 3024 kfree(subsys); 3025 return -EINVAL; 3026 } 3027 subsys->awupf = le16_to_cpu(id->awupf); 3028 nvme_mpath_default_iopolicy(subsys); 3029 3030 subsys->dev.class = &nvme_subsys_class; 3031 subsys->dev.release = nvme_release_subsystem; 3032 subsys->dev.groups = nvme_subsys_attrs_groups; 3033 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 3034 device_initialize(&subsys->dev); 3035 3036 mutex_lock(&nvme_subsystems_lock); 3037 found = __nvme_find_get_subsystem(subsys->subnqn); 3038 if (found) { 3039 put_device(&subsys->dev); 3040 subsys = found; 3041 3042 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 3043 ret = -EINVAL; 3044 goto out_put_subsystem; 3045 } 3046 } else { 3047 ret = device_add(&subsys->dev); 3048 if (ret) { 3049 dev_err(ctrl->device, 3050 "failed to register subsystem device.\n"); 3051 put_device(&subsys->dev); 3052 goto out_unlock; 3053 } 3054 ida_init(&subsys->ns_ida); 3055 list_add_tail(&subsys->entry, &nvme_subsystems); 3056 } 3057 3058 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 3059 dev_name(ctrl->device)); 3060 if (ret) { 3061 dev_err(ctrl->device, 3062 "failed to create sysfs link from subsystem.\n"); 3063 goto out_put_subsystem; 3064 } 3065 3066 if (!found) 3067 subsys->instance = ctrl->instance; 3068 ctrl->subsys = subsys; 3069 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3070 mutex_unlock(&nvme_subsystems_lock); 3071 return 0; 3072 3073 out_put_subsystem: 3074 nvme_put_subsystem(subsys); 3075 out_unlock: 3076 mutex_unlock(&nvme_subsystems_lock); 3077 return ret; 3078 } 3079 3080 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3081 void *log, size_t size, u64 offset) 3082 { 3083 struct nvme_command c = { }; 3084 u32 dwlen = nvme_bytes_to_numd(size); 3085 3086 c.get_log_page.opcode = nvme_admin_get_log_page; 3087 c.get_log_page.nsid = cpu_to_le32(nsid); 3088 c.get_log_page.lid = log_page; 3089 c.get_log_page.lsp = lsp; 3090 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3091 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3092 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3093 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3094 c.get_log_page.csi = csi; 3095 3096 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3097 } 3098 3099 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3100 struct nvme_effects_log **log) 3101 { 3102 struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi); 3103 int ret; 3104 3105 if (cel) 3106 goto out; 3107 3108 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3109 if (!cel) 3110 return -ENOMEM; 3111 3112 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3113 cel, sizeof(*cel), 0); 3114 if (ret) { 3115 kfree(cel); 3116 return ret; 3117 } 3118 3119 old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3120 if (xa_is_err(old)) { 3121 kfree(cel); 3122 return xa_err(old); 3123 } 3124 out: 3125 *log = cel; 3126 return 0; 3127 } 3128 3129 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3130 { 3131 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3132 3133 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3134 return UINT_MAX; 3135 return val; 3136 } 3137 3138 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3139 { 3140 struct nvme_command c = { }; 3141 struct nvme_id_ctrl_nvm *id; 3142 int ret; 3143 3144 /* 3145 * Even though NVMe spec explicitly states that MDTS is not applicable 3146 * to the write-zeroes, we are cautious and limit the size to the 3147 * controllers max_hw_sectors value, which is based on the MDTS field 3148 * and possibly other limiting factors. 3149 */ 3150 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3151 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3152 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3153 else 3154 ctrl->max_zeroes_sectors = 0; 3155 3156 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3157 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) || 3158 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3159 return 0; 3160 3161 id = kzalloc(sizeof(*id), GFP_KERNEL); 3162 if (!id) 3163 return -ENOMEM; 3164 3165 c.identify.opcode = nvme_admin_identify; 3166 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3167 c.identify.csi = NVME_CSI_NVM; 3168 3169 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3170 if (ret) 3171 goto free_data; 3172 3173 ctrl->dmrl = id->dmrl; 3174 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3175 if (id->wzsl) 3176 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3177 3178 free_data: 3179 if (ret > 0) 3180 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3181 kfree(id); 3182 return ret; 3183 } 3184 3185 static int nvme_init_effects_log(struct nvme_ctrl *ctrl, 3186 u8 csi, struct nvme_effects_log **log) 3187 { 3188 struct nvme_effects_log *effects, *old; 3189 3190 effects = kzalloc(sizeof(*effects), GFP_KERNEL); 3191 if (!effects) 3192 return -ENOMEM; 3193 3194 old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL); 3195 if (xa_is_err(old)) { 3196 kfree(effects); 3197 return xa_err(old); 3198 } 3199 3200 *log = effects; 3201 return 0; 3202 } 3203 3204 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3205 { 3206 struct nvme_effects_log *log = ctrl->effects; 3207 3208 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3209 NVME_CMD_EFFECTS_NCC | 3210 NVME_CMD_EFFECTS_CSE_MASK); 3211 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3212 NVME_CMD_EFFECTS_CSE_MASK); 3213 3214 /* 3215 * The spec says the result of a security receive command depends on 3216 * the previous security send command. As such, many vendors log this 3217 * command as one to submitted only when no other commands to the same 3218 * namespace are outstanding. The intention is to tell the host to 3219 * prevent mixing security send and receive. 3220 * 3221 * This driver can only enforce such exclusive access against IO 3222 * queues, though. We are not readily able to enforce such a rule for 3223 * two commands to the admin queue, which is the only queue that 3224 * matters for this command. 3225 * 3226 * Rather than blindly freezing the IO queues for this effect that 3227 * doesn't even apply to IO, mask it off. 3228 */ 3229 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3230 3231 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3232 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3233 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3234 } 3235 3236 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3237 { 3238 int ret = 0; 3239 3240 if (ctrl->effects) 3241 return 0; 3242 3243 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3244 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3245 if (ret < 0) 3246 return ret; 3247 } 3248 3249 if (!ctrl->effects) { 3250 ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3251 if (ret < 0) 3252 return ret; 3253 } 3254 3255 nvme_init_known_nvm_effects(ctrl); 3256 return 0; 3257 } 3258 3259 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3260 { 3261 /* 3262 * In fabrics we need to verify the cntlid matches the 3263 * admin connect 3264 */ 3265 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3266 dev_err(ctrl->device, 3267 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3268 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3269 return -EINVAL; 3270 } 3271 3272 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3273 dev_err(ctrl->device, 3274 "keep-alive support is mandatory for fabrics\n"); 3275 return -EINVAL; 3276 } 3277 3278 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3279 dev_err(ctrl->device, 3280 "I/O queue command capsule supported size %d < 4\n", 3281 ctrl->ioccsz); 3282 return -EINVAL; 3283 } 3284 3285 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3286 dev_err(ctrl->device, 3287 "I/O queue response capsule supported size %d < 1\n", 3288 ctrl->iorcsz); 3289 return -EINVAL; 3290 } 3291 3292 if (!ctrl->maxcmd) { 3293 dev_warn(ctrl->device, 3294 "Firmware bug: maximum outstanding commands is 0\n"); 3295 ctrl->maxcmd = ctrl->sqsize + 1; 3296 } 3297 3298 return 0; 3299 } 3300 3301 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3302 { 3303 struct queue_limits lim; 3304 struct nvme_id_ctrl *id; 3305 u32 max_hw_sectors; 3306 bool prev_apst_enabled; 3307 int ret; 3308 3309 ret = nvme_identify_ctrl(ctrl, &id); 3310 if (ret) { 3311 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3312 return -EIO; 3313 } 3314 3315 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3316 ctrl->cntlid = le16_to_cpu(id->cntlid); 3317 3318 if (!ctrl->identified) { 3319 unsigned int i; 3320 3321 /* 3322 * Check for quirks. Quirk can depend on firmware version, 3323 * so, in principle, the set of quirks present can change 3324 * across a reset. As a possible future enhancement, we 3325 * could re-scan for quirks every time we reinitialize 3326 * the device, but we'd have to make sure that the driver 3327 * behaves intelligently if the quirks change. 3328 */ 3329 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3330 if (quirk_matches(id, &core_quirks[i])) 3331 ctrl->quirks |= core_quirks[i].quirks; 3332 } 3333 3334 ret = nvme_init_subsystem(ctrl, id); 3335 if (ret) 3336 goto out_free; 3337 3338 ret = nvme_init_effects(ctrl, id); 3339 if (ret) 3340 goto out_free; 3341 } 3342 memcpy(ctrl->subsys->firmware_rev, id->fr, 3343 sizeof(ctrl->subsys->firmware_rev)); 3344 3345 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3346 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3347 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3348 } 3349 3350 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3351 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3352 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3353 3354 ctrl->oacs = le16_to_cpu(id->oacs); 3355 ctrl->oncs = le16_to_cpu(id->oncs); 3356 ctrl->mtfa = le16_to_cpu(id->mtfa); 3357 ctrl->oaes = le32_to_cpu(id->oaes); 3358 ctrl->wctemp = le16_to_cpu(id->wctemp); 3359 ctrl->cctemp = le16_to_cpu(id->cctemp); 3360 3361 atomic_set(&ctrl->abort_limit, id->acl + 1); 3362 ctrl->vwc = id->vwc; 3363 if (id->mdts) 3364 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3365 else 3366 max_hw_sectors = UINT_MAX; 3367 ctrl->max_hw_sectors = 3368 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3369 3370 lim = queue_limits_start_update(ctrl->admin_q); 3371 nvme_set_ctrl_limits(ctrl, &lim); 3372 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3373 if (ret) 3374 goto out_free; 3375 3376 ctrl->sgls = le32_to_cpu(id->sgls); 3377 ctrl->kas = le16_to_cpu(id->kas); 3378 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3379 ctrl->ctratt = le32_to_cpu(id->ctratt); 3380 3381 ctrl->cntrltype = id->cntrltype; 3382 ctrl->dctype = id->dctype; 3383 3384 if (id->rtd3e) { 3385 /* us -> s */ 3386 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3387 3388 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3389 shutdown_timeout, 60); 3390 3391 if (ctrl->shutdown_timeout != shutdown_timeout) 3392 dev_info(ctrl->device, 3393 "D3 entry latency set to %u seconds\n", 3394 ctrl->shutdown_timeout); 3395 } else 3396 ctrl->shutdown_timeout = shutdown_timeout; 3397 3398 ctrl->npss = id->npss; 3399 ctrl->apsta = id->apsta; 3400 prev_apst_enabled = ctrl->apst_enabled; 3401 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3402 if (force_apst && id->apsta) { 3403 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3404 ctrl->apst_enabled = true; 3405 } else { 3406 ctrl->apst_enabled = false; 3407 } 3408 } else { 3409 ctrl->apst_enabled = id->apsta; 3410 } 3411 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3412 3413 if (ctrl->ops->flags & NVME_F_FABRICS) { 3414 ctrl->icdoff = le16_to_cpu(id->icdoff); 3415 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3416 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3417 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3418 3419 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3420 if (ret) 3421 goto out_free; 3422 } else { 3423 ctrl->hmpre = le32_to_cpu(id->hmpre); 3424 ctrl->hmmin = le32_to_cpu(id->hmmin); 3425 ctrl->hmminds = le32_to_cpu(id->hmminds); 3426 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3427 } 3428 3429 ret = nvme_mpath_init_identify(ctrl, id); 3430 if (ret < 0) 3431 goto out_free; 3432 3433 if (ctrl->apst_enabled && !prev_apst_enabled) 3434 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3435 else if (!ctrl->apst_enabled && prev_apst_enabled) 3436 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3437 3438 out_free: 3439 kfree(id); 3440 return ret; 3441 } 3442 3443 /* 3444 * Initialize the cached copies of the Identify data and various controller 3445 * register in our nvme_ctrl structure. This should be called as soon as 3446 * the admin queue is fully up and running. 3447 */ 3448 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3449 { 3450 int ret; 3451 3452 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3453 if (ret) { 3454 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3455 return ret; 3456 } 3457 3458 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3459 3460 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3461 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3462 3463 ret = nvme_init_identify(ctrl); 3464 if (ret) 3465 return ret; 3466 3467 ret = nvme_configure_apst(ctrl); 3468 if (ret < 0) 3469 return ret; 3470 3471 ret = nvme_configure_timestamp(ctrl); 3472 if (ret < 0) 3473 return ret; 3474 3475 ret = nvme_configure_host_options(ctrl); 3476 if (ret < 0) 3477 return ret; 3478 3479 nvme_configure_opal(ctrl, was_suspended); 3480 3481 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3482 /* 3483 * Do not return errors unless we are in a controller reset, 3484 * the controller works perfectly fine without hwmon. 3485 */ 3486 ret = nvme_hwmon_init(ctrl); 3487 if (ret == -EINTR) 3488 return ret; 3489 } 3490 3491 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3492 ctrl->identified = true; 3493 3494 nvme_start_keep_alive(ctrl); 3495 3496 return 0; 3497 } 3498 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3499 3500 static int nvme_dev_open(struct inode *inode, struct file *file) 3501 { 3502 struct nvme_ctrl *ctrl = 3503 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3504 3505 switch (nvme_ctrl_state(ctrl)) { 3506 case NVME_CTRL_LIVE: 3507 break; 3508 default: 3509 return -EWOULDBLOCK; 3510 } 3511 3512 nvme_get_ctrl(ctrl); 3513 if (!try_module_get(ctrl->ops->module)) { 3514 nvme_put_ctrl(ctrl); 3515 return -EINVAL; 3516 } 3517 3518 file->private_data = ctrl; 3519 return 0; 3520 } 3521 3522 static int nvme_dev_release(struct inode *inode, struct file *file) 3523 { 3524 struct nvme_ctrl *ctrl = 3525 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3526 3527 module_put(ctrl->ops->module); 3528 nvme_put_ctrl(ctrl); 3529 return 0; 3530 } 3531 3532 static const struct file_operations nvme_dev_fops = { 3533 .owner = THIS_MODULE, 3534 .open = nvme_dev_open, 3535 .release = nvme_dev_release, 3536 .unlocked_ioctl = nvme_dev_ioctl, 3537 .compat_ioctl = compat_ptr_ioctl, 3538 .uring_cmd = nvme_dev_uring_cmd, 3539 }; 3540 3541 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3542 unsigned nsid) 3543 { 3544 struct nvme_ns_head *h; 3545 3546 lockdep_assert_held(&ctrl->subsys->lock); 3547 3548 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3549 /* 3550 * Private namespaces can share NSIDs under some conditions. 3551 * In that case we can't use the same ns_head for namespaces 3552 * with the same NSID. 3553 */ 3554 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3555 continue; 3556 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3557 return h; 3558 } 3559 3560 return NULL; 3561 } 3562 3563 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3564 struct nvme_ns_ids *ids) 3565 { 3566 bool has_uuid = !uuid_is_null(&ids->uuid); 3567 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3568 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3569 struct nvme_ns_head *h; 3570 3571 lockdep_assert_held(&subsys->lock); 3572 3573 list_for_each_entry(h, &subsys->nsheads, entry) { 3574 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3575 return -EINVAL; 3576 if (has_nguid && 3577 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3578 return -EINVAL; 3579 if (has_eui64 && 3580 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3581 return -EINVAL; 3582 } 3583 3584 return 0; 3585 } 3586 3587 static void nvme_cdev_rel(struct device *dev) 3588 { 3589 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3590 } 3591 3592 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3593 { 3594 cdev_device_del(cdev, cdev_device); 3595 put_device(cdev_device); 3596 } 3597 3598 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3599 const struct file_operations *fops, struct module *owner) 3600 { 3601 int minor, ret; 3602 3603 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3604 if (minor < 0) 3605 return minor; 3606 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3607 cdev_device->class = &nvme_ns_chr_class; 3608 cdev_device->release = nvme_cdev_rel; 3609 device_initialize(cdev_device); 3610 cdev_init(cdev, fops); 3611 cdev->owner = owner; 3612 ret = cdev_device_add(cdev, cdev_device); 3613 if (ret) 3614 put_device(cdev_device); 3615 3616 return ret; 3617 } 3618 3619 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3620 { 3621 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3622 } 3623 3624 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3625 { 3626 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3627 return 0; 3628 } 3629 3630 static const struct file_operations nvme_ns_chr_fops = { 3631 .owner = THIS_MODULE, 3632 .open = nvme_ns_chr_open, 3633 .release = nvme_ns_chr_release, 3634 .unlocked_ioctl = nvme_ns_chr_ioctl, 3635 .compat_ioctl = compat_ptr_ioctl, 3636 .uring_cmd = nvme_ns_chr_uring_cmd, 3637 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3638 }; 3639 3640 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3641 { 3642 int ret; 3643 3644 ns->cdev_device.parent = ns->ctrl->device; 3645 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3646 ns->ctrl->instance, ns->head->instance); 3647 if (ret) 3648 return ret; 3649 3650 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3651 ns->ctrl->ops->module); 3652 } 3653 3654 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3655 struct nvme_ns_info *info) 3656 { 3657 struct nvme_ns_head *head; 3658 size_t size = sizeof(*head); 3659 int ret = -ENOMEM; 3660 3661 #ifdef CONFIG_NVME_MULTIPATH 3662 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3663 #endif 3664 3665 head = kzalloc(size, GFP_KERNEL); 3666 if (!head) 3667 goto out; 3668 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3669 if (ret < 0) 3670 goto out_free_head; 3671 head->instance = ret; 3672 INIT_LIST_HEAD(&head->list); 3673 ret = init_srcu_struct(&head->srcu); 3674 if (ret) 3675 goto out_ida_remove; 3676 head->subsys = ctrl->subsys; 3677 head->ns_id = info->nsid; 3678 head->ids = info->ids; 3679 head->shared = info->is_shared; 3680 head->rotational = info->is_rotational; 3681 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3682 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3683 kref_init(&head->ref); 3684 3685 if (head->ids.csi) { 3686 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3687 if (ret) 3688 goto out_cleanup_srcu; 3689 } else 3690 head->effects = ctrl->effects; 3691 3692 ret = nvme_mpath_alloc_disk(ctrl, head); 3693 if (ret) 3694 goto out_cleanup_srcu; 3695 3696 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3697 3698 kref_get(&ctrl->subsys->ref); 3699 3700 return head; 3701 out_cleanup_srcu: 3702 cleanup_srcu_struct(&head->srcu); 3703 out_ida_remove: 3704 ida_free(&ctrl->subsys->ns_ida, head->instance); 3705 out_free_head: 3706 kfree(head); 3707 out: 3708 if (ret > 0) 3709 ret = blk_status_to_errno(nvme_error_status(ret)); 3710 return ERR_PTR(ret); 3711 } 3712 3713 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3714 struct nvme_ns_ids *ids) 3715 { 3716 struct nvme_subsystem *s; 3717 int ret = 0; 3718 3719 /* 3720 * Note that this check is racy as we try to avoid holding the global 3721 * lock over the whole ns_head creation. But it is only intended as 3722 * a sanity check anyway. 3723 */ 3724 mutex_lock(&nvme_subsystems_lock); 3725 list_for_each_entry(s, &nvme_subsystems, entry) { 3726 if (s == this) 3727 continue; 3728 mutex_lock(&s->lock); 3729 ret = nvme_subsys_check_duplicate_ids(s, ids); 3730 mutex_unlock(&s->lock); 3731 if (ret) 3732 break; 3733 } 3734 mutex_unlock(&nvme_subsystems_lock); 3735 3736 return ret; 3737 } 3738 3739 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3740 { 3741 struct nvme_ctrl *ctrl = ns->ctrl; 3742 struct nvme_ns_head *head = NULL; 3743 int ret; 3744 3745 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3746 if (ret) { 3747 /* 3748 * We've found two different namespaces on two different 3749 * subsystems that report the same ID. This is pretty nasty 3750 * for anything that actually requires unique device 3751 * identification. In the kernel we need this for multipathing, 3752 * and in user space the /dev/disk/by-id/ links rely on it. 3753 * 3754 * If the device also claims to be multi-path capable back off 3755 * here now and refuse the probe the second device as this is a 3756 * recipe for data corruption. If not this is probably a 3757 * cheap consumer device if on the PCIe bus, so let the user 3758 * proceed and use the shiny toy, but warn that with changing 3759 * probing order (which due to our async probing could just be 3760 * device taking longer to startup) the other device could show 3761 * up at any time. 3762 */ 3763 nvme_print_device_info(ctrl); 3764 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3765 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3766 info->is_shared)) { 3767 dev_err(ctrl->device, 3768 "ignoring nsid %d because of duplicate IDs\n", 3769 info->nsid); 3770 return ret; 3771 } 3772 3773 dev_err(ctrl->device, 3774 "clearing duplicate IDs for nsid %d\n", info->nsid); 3775 dev_err(ctrl->device, 3776 "use of /dev/disk/by-id/ may cause data corruption\n"); 3777 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3778 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3779 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3780 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3781 } 3782 3783 mutex_lock(&ctrl->subsys->lock); 3784 head = nvme_find_ns_head(ctrl, info->nsid); 3785 if (!head) { 3786 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3787 if (ret) { 3788 dev_err(ctrl->device, 3789 "duplicate IDs in subsystem for nsid %d\n", 3790 info->nsid); 3791 goto out_unlock; 3792 } 3793 head = nvme_alloc_ns_head(ctrl, info); 3794 if (IS_ERR(head)) { 3795 ret = PTR_ERR(head); 3796 goto out_unlock; 3797 } 3798 } else { 3799 ret = -EINVAL; 3800 if (!info->is_shared || !head->shared) { 3801 dev_err(ctrl->device, 3802 "Duplicate unshared namespace %d\n", 3803 info->nsid); 3804 goto out_put_ns_head; 3805 } 3806 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3807 dev_err(ctrl->device, 3808 "IDs don't match for shared namespace %d\n", 3809 info->nsid); 3810 goto out_put_ns_head; 3811 } 3812 3813 if (!multipath) { 3814 dev_warn(ctrl->device, 3815 "Found shared namespace %d, but multipathing not supported.\n", 3816 info->nsid); 3817 dev_warn_once(ctrl->device, 3818 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3819 } 3820 } 3821 3822 list_add_tail_rcu(&ns->siblings, &head->list); 3823 ns->head = head; 3824 mutex_unlock(&ctrl->subsys->lock); 3825 return 0; 3826 3827 out_put_ns_head: 3828 nvme_put_ns_head(head); 3829 out_unlock: 3830 mutex_unlock(&ctrl->subsys->lock); 3831 return ret; 3832 } 3833 3834 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3835 { 3836 struct nvme_ns *ns, *ret = NULL; 3837 int srcu_idx; 3838 3839 srcu_idx = srcu_read_lock(&ctrl->srcu); 3840 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 3841 srcu_read_lock_held(&ctrl->srcu)) { 3842 if (ns->head->ns_id == nsid) { 3843 if (!nvme_get_ns(ns)) 3844 continue; 3845 ret = ns; 3846 break; 3847 } 3848 if (ns->head->ns_id > nsid) 3849 break; 3850 } 3851 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3852 return ret; 3853 } 3854 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU"); 3855 3856 /* 3857 * Add the namespace to the controller list while keeping the list ordered. 3858 */ 3859 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3860 { 3861 struct nvme_ns *tmp; 3862 3863 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3864 if (tmp->head->ns_id < ns->head->ns_id) { 3865 list_add_rcu(&ns->list, &tmp->list); 3866 return; 3867 } 3868 } 3869 list_add(&ns->list, &ns->ctrl->namespaces); 3870 } 3871 3872 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3873 { 3874 struct queue_limits lim = { }; 3875 struct nvme_ns *ns; 3876 struct gendisk *disk; 3877 int node = ctrl->numa_node; 3878 3879 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3880 if (!ns) 3881 return; 3882 3883 if (ctrl->opts && ctrl->opts->data_digest) 3884 lim.features |= BLK_FEAT_STABLE_WRITES; 3885 if (ctrl->ops->supports_pci_p2pdma && 3886 ctrl->ops->supports_pci_p2pdma(ctrl)) 3887 lim.features |= BLK_FEAT_PCI_P2PDMA; 3888 3889 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); 3890 if (IS_ERR(disk)) 3891 goto out_free_ns; 3892 disk->fops = &nvme_bdev_ops; 3893 disk->private_data = ns; 3894 3895 ns->disk = disk; 3896 ns->queue = disk->queue; 3897 ns->ctrl = ctrl; 3898 kref_init(&ns->kref); 3899 3900 if (nvme_init_ns_head(ns, info)) 3901 goto out_cleanup_disk; 3902 3903 /* 3904 * If multipathing is enabled, the device name for all disks and not 3905 * just those that represent shared namespaces needs to be based on the 3906 * subsystem instance. Using the controller instance for private 3907 * namespaces could lead to naming collisions between shared and private 3908 * namespaces if they don't use a common numbering scheme. 3909 * 3910 * If multipathing is not enabled, disk names must use the controller 3911 * instance as shared namespaces will show up as multiple block 3912 * devices. 3913 */ 3914 if (nvme_ns_head_multipath(ns->head)) { 3915 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3916 ctrl->instance, ns->head->instance); 3917 disk->flags |= GENHD_FL_HIDDEN; 3918 } else if (multipath) { 3919 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3920 ns->head->instance); 3921 } else { 3922 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3923 ns->head->instance); 3924 } 3925 3926 if (nvme_update_ns_info(ns, info)) 3927 goto out_unlink_ns; 3928 3929 mutex_lock(&ctrl->namespaces_lock); 3930 /* 3931 * Ensure that no namespaces are added to the ctrl list after the queues 3932 * are frozen, thereby avoiding a deadlock between scan and reset. 3933 */ 3934 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3935 mutex_unlock(&ctrl->namespaces_lock); 3936 goto out_unlink_ns; 3937 } 3938 nvme_ns_add_to_ctrl_list(ns); 3939 mutex_unlock(&ctrl->namespaces_lock); 3940 synchronize_srcu(&ctrl->srcu); 3941 nvme_get_ctrl(ctrl); 3942 3943 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3944 goto out_cleanup_ns_from_list; 3945 3946 if (!nvme_ns_head_multipath(ns->head)) 3947 nvme_add_ns_cdev(ns); 3948 3949 nvme_mpath_add_disk(ns, info->anagrpid); 3950 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3951 3952 /* 3953 * Set ns->disk->device->driver_data to ns so we can access 3954 * ns->head->passthru_err_log_enabled in 3955 * nvme_io_passthru_err_log_enabled_[store | show](). 3956 */ 3957 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3958 3959 return; 3960 3961 out_cleanup_ns_from_list: 3962 nvme_put_ctrl(ctrl); 3963 mutex_lock(&ctrl->namespaces_lock); 3964 list_del_rcu(&ns->list); 3965 mutex_unlock(&ctrl->namespaces_lock); 3966 synchronize_srcu(&ctrl->srcu); 3967 out_unlink_ns: 3968 mutex_lock(&ctrl->subsys->lock); 3969 list_del_rcu(&ns->siblings); 3970 if (list_empty(&ns->head->list)) 3971 list_del_init(&ns->head->entry); 3972 mutex_unlock(&ctrl->subsys->lock); 3973 nvme_put_ns_head(ns->head); 3974 out_cleanup_disk: 3975 put_disk(disk); 3976 out_free_ns: 3977 kfree(ns); 3978 } 3979 3980 static void nvme_ns_remove(struct nvme_ns *ns) 3981 { 3982 bool last_path = false; 3983 3984 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3985 return; 3986 3987 clear_bit(NVME_NS_READY, &ns->flags); 3988 set_capacity(ns->disk, 0); 3989 nvme_fault_inject_fini(&ns->fault_inject); 3990 3991 /* 3992 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3993 * this ns going back into current_path. 3994 */ 3995 synchronize_srcu(&ns->head->srcu); 3996 3997 /* wait for concurrent submissions */ 3998 if (nvme_mpath_clear_current_path(ns)) 3999 synchronize_srcu(&ns->head->srcu); 4000 4001 mutex_lock(&ns->ctrl->subsys->lock); 4002 list_del_rcu(&ns->siblings); 4003 if (list_empty(&ns->head->list)) { 4004 list_del_init(&ns->head->entry); 4005 last_path = true; 4006 } 4007 mutex_unlock(&ns->ctrl->subsys->lock); 4008 4009 /* guarantee not available in head->list */ 4010 synchronize_srcu(&ns->head->srcu); 4011 4012 if (!nvme_ns_head_multipath(ns->head)) 4013 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4014 del_gendisk(ns->disk); 4015 4016 mutex_lock(&ns->ctrl->namespaces_lock); 4017 list_del_rcu(&ns->list); 4018 mutex_unlock(&ns->ctrl->namespaces_lock); 4019 synchronize_srcu(&ns->ctrl->srcu); 4020 4021 if (last_path) 4022 nvme_mpath_shutdown_disk(ns->head); 4023 nvme_put_ns(ns); 4024 } 4025 4026 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4027 { 4028 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4029 4030 if (ns) { 4031 nvme_ns_remove(ns); 4032 nvme_put_ns(ns); 4033 } 4034 } 4035 4036 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 4037 { 4038 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; 4039 4040 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 4041 dev_err(ns->ctrl->device, 4042 "identifiers changed for nsid %d\n", ns->head->ns_id); 4043 goto out; 4044 } 4045 4046 ret = nvme_update_ns_info(ns, info); 4047 out: 4048 /* 4049 * Only remove the namespace if we got a fatal error back from the 4050 * device, otherwise ignore the error and just move on. 4051 * 4052 * TODO: we should probably schedule a delayed retry here. 4053 */ 4054 if (ret > 0 && (ret & NVME_STATUS_DNR)) 4055 nvme_ns_remove(ns); 4056 } 4057 4058 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4059 { 4060 struct nvme_ns_info info = { .nsid = nsid }; 4061 struct nvme_ns *ns; 4062 int ret = 1; 4063 4064 if (nvme_identify_ns_descs(ctrl, &info)) 4065 return; 4066 4067 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4068 dev_warn(ctrl->device, 4069 "command set not reported for nsid: %d\n", nsid); 4070 return; 4071 } 4072 4073 /* 4074 * If available try to use the Command Set Idependent Identify Namespace 4075 * data structure to find all the generic information that is needed to 4076 * set up a namespace. If not fall back to the legacy version. 4077 */ 4078 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4079 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) || 4080 ctrl->vs >= NVME_VS(2, 0, 0)) 4081 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 4082 if (ret > 0) 4083 ret = nvme_ns_info_from_identify(ctrl, &info); 4084 4085 if (info.is_removed) 4086 nvme_ns_remove_by_nsid(ctrl, nsid); 4087 4088 /* 4089 * Ignore the namespace if it is not ready. We will get an AEN once it 4090 * becomes ready and restart the scan. 4091 */ 4092 if (ret || !info.is_ready) 4093 return; 4094 4095 ns = nvme_find_get_ns(ctrl, nsid); 4096 if (ns) { 4097 nvme_validate_ns(ns, &info); 4098 nvme_put_ns(ns); 4099 } else { 4100 nvme_alloc_ns(ctrl, &info); 4101 } 4102 } 4103 4104 /** 4105 * struct async_scan_info - keeps track of controller & NSIDs to scan 4106 * @ctrl: Controller on which namespaces are being scanned 4107 * @next_nsid: Index of next NSID to scan in ns_list 4108 * @ns_list: Pointer to list of NSIDs to scan 4109 * 4110 * Note: There is a single async_scan_info structure shared by all instances 4111 * of nvme_scan_ns_async() scanning a given controller, so the atomic 4112 * operations on next_nsid are critical to ensure each instance scans a unique 4113 * NSID. 4114 */ 4115 struct async_scan_info { 4116 struct nvme_ctrl *ctrl; 4117 atomic_t next_nsid; 4118 __le32 *ns_list; 4119 }; 4120 4121 static void nvme_scan_ns_async(void *data, async_cookie_t cookie) 4122 { 4123 struct async_scan_info *scan_info = data; 4124 int idx; 4125 u32 nsid; 4126 4127 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid); 4128 nsid = le32_to_cpu(scan_info->ns_list[idx]); 4129 4130 nvme_scan_ns(scan_info->ctrl, nsid); 4131 } 4132 4133 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4134 unsigned nsid) 4135 { 4136 struct nvme_ns *ns, *next; 4137 LIST_HEAD(rm_list); 4138 4139 mutex_lock(&ctrl->namespaces_lock); 4140 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4141 if (ns->head->ns_id > nsid) { 4142 list_del_rcu(&ns->list); 4143 synchronize_srcu(&ctrl->srcu); 4144 list_add_tail_rcu(&ns->list, &rm_list); 4145 } 4146 } 4147 mutex_unlock(&ctrl->namespaces_lock); 4148 4149 list_for_each_entry_safe(ns, next, &rm_list, list) 4150 nvme_ns_remove(ns); 4151 } 4152 4153 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4154 { 4155 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4156 __le32 *ns_list; 4157 u32 prev = 0; 4158 int ret = 0, i; 4159 ASYNC_DOMAIN(domain); 4160 struct async_scan_info scan_info; 4161 4162 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4163 if (!ns_list) 4164 return -ENOMEM; 4165 4166 scan_info.ctrl = ctrl; 4167 scan_info.ns_list = ns_list; 4168 for (;;) { 4169 struct nvme_command cmd = { 4170 .identify.opcode = nvme_admin_identify, 4171 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4172 .identify.nsid = cpu_to_le32(prev), 4173 }; 4174 4175 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4176 NVME_IDENTIFY_DATA_SIZE); 4177 if (ret) { 4178 dev_warn(ctrl->device, 4179 "Identify NS List failed (status=0x%x)\n", ret); 4180 goto free; 4181 } 4182 4183 atomic_set(&scan_info.next_nsid, 0); 4184 for (i = 0; i < nr_entries; i++) { 4185 u32 nsid = le32_to_cpu(ns_list[i]); 4186 4187 if (!nsid) /* end of the list? */ 4188 goto out; 4189 async_schedule_domain(nvme_scan_ns_async, &scan_info, 4190 &domain); 4191 while (++prev < nsid) 4192 nvme_ns_remove_by_nsid(ctrl, prev); 4193 } 4194 async_synchronize_full_domain(&domain); 4195 } 4196 out: 4197 nvme_remove_invalid_namespaces(ctrl, prev); 4198 free: 4199 async_synchronize_full_domain(&domain); 4200 kfree(ns_list); 4201 return ret; 4202 } 4203 4204 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4205 { 4206 struct nvme_id_ctrl *id; 4207 u32 nn, i; 4208 4209 if (nvme_identify_ctrl(ctrl, &id)) 4210 return; 4211 nn = le32_to_cpu(id->nn); 4212 kfree(id); 4213 4214 for (i = 1; i <= nn; i++) 4215 nvme_scan_ns(ctrl, i); 4216 4217 nvme_remove_invalid_namespaces(ctrl, nn); 4218 } 4219 4220 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4221 { 4222 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4223 __le32 *log; 4224 int error; 4225 4226 log = kzalloc(log_size, GFP_KERNEL); 4227 if (!log) 4228 return; 4229 4230 /* 4231 * We need to read the log to clear the AEN, but we don't want to rely 4232 * on it for the changed namespace information as userspace could have 4233 * raced with us in reading the log page, which could cause us to miss 4234 * updates. 4235 */ 4236 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4237 NVME_CSI_NVM, log, log_size, 0); 4238 if (error) 4239 dev_warn(ctrl->device, 4240 "reading changed ns log failed: %d\n", error); 4241 4242 kfree(log); 4243 } 4244 4245 static void nvme_scan_work(struct work_struct *work) 4246 { 4247 struct nvme_ctrl *ctrl = 4248 container_of(work, struct nvme_ctrl, scan_work); 4249 int ret; 4250 4251 /* No tagset on a live ctrl means IO queues could not created */ 4252 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4253 return; 4254 4255 /* 4256 * Identify controller limits can change at controller reset due to 4257 * new firmware download, even though it is not common we cannot ignore 4258 * such scenario. Controller's non-mdts limits are reported in the unit 4259 * of logical blocks that is dependent on the format of attached 4260 * namespace. Hence re-read the limits at the time of ns allocation. 4261 */ 4262 ret = nvme_init_non_mdts_limits(ctrl); 4263 if (ret < 0) { 4264 dev_warn(ctrl->device, 4265 "reading non-mdts-limits failed: %d\n", ret); 4266 return; 4267 } 4268 4269 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4270 dev_info(ctrl->device, "rescanning namespaces.\n"); 4271 nvme_clear_changed_ns_log(ctrl); 4272 } 4273 4274 mutex_lock(&ctrl->scan_lock); 4275 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) { 4276 nvme_scan_ns_sequential(ctrl); 4277 } else { 4278 /* 4279 * Fall back to sequential scan if DNR is set to handle broken 4280 * devices which should support Identify NS List (as per the VS 4281 * they report) but don't actually support it. 4282 */ 4283 ret = nvme_scan_ns_list(ctrl); 4284 if (ret > 0 && ret & NVME_STATUS_DNR) 4285 nvme_scan_ns_sequential(ctrl); 4286 } 4287 mutex_unlock(&ctrl->scan_lock); 4288 } 4289 4290 /* 4291 * This function iterates the namespace list unlocked to allow recovery from 4292 * controller failure. It is up to the caller to ensure the namespace list is 4293 * not modified by scan work while this function is executing. 4294 */ 4295 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4296 { 4297 struct nvme_ns *ns, *next; 4298 LIST_HEAD(ns_list); 4299 4300 /* 4301 * make sure to requeue I/O to all namespaces as these 4302 * might result from the scan itself and must complete 4303 * for the scan_work to make progress 4304 */ 4305 nvme_mpath_clear_ctrl_paths(ctrl); 4306 4307 /* 4308 * Unquiesce io queues so any pending IO won't hang, especially 4309 * those submitted from scan work 4310 */ 4311 nvme_unquiesce_io_queues(ctrl); 4312 4313 /* prevent racing with ns scanning */ 4314 flush_work(&ctrl->scan_work); 4315 4316 /* 4317 * The dead states indicates the controller was not gracefully 4318 * disconnected. In that case, we won't be able to flush any data while 4319 * removing the namespaces' disks; fail all the queues now to avoid 4320 * potentially having to clean up the failed sync later. 4321 */ 4322 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4323 nvme_mark_namespaces_dead(ctrl); 4324 4325 /* this is a no-op when called from the controller reset handler */ 4326 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4327 4328 mutex_lock(&ctrl->namespaces_lock); 4329 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4330 mutex_unlock(&ctrl->namespaces_lock); 4331 synchronize_srcu(&ctrl->srcu); 4332 4333 list_for_each_entry_safe(ns, next, &ns_list, list) 4334 nvme_ns_remove(ns); 4335 } 4336 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4337 4338 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4339 { 4340 const struct nvme_ctrl *ctrl = 4341 container_of(dev, struct nvme_ctrl, ctrl_device); 4342 struct nvmf_ctrl_options *opts = ctrl->opts; 4343 int ret; 4344 4345 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4346 if (ret) 4347 return ret; 4348 4349 if (opts) { 4350 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4351 if (ret) 4352 return ret; 4353 4354 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4355 opts->trsvcid ?: "none"); 4356 if (ret) 4357 return ret; 4358 4359 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4360 opts->host_traddr ?: "none"); 4361 if (ret) 4362 return ret; 4363 4364 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4365 opts->host_iface ?: "none"); 4366 } 4367 return ret; 4368 } 4369 4370 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4371 { 4372 char *envp[2] = { envdata, NULL }; 4373 4374 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4375 } 4376 4377 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4378 { 4379 char *envp[2] = { NULL, NULL }; 4380 u32 aen_result = ctrl->aen_result; 4381 4382 ctrl->aen_result = 0; 4383 if (!aen_result) 4384 return; 4385 4386 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4387 if (!envp[0]) 4388 return; 4389 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4390 kfree(envp[0]); 4391 } 4392 4393 static void nvme_async_event_work(struct work_struct *work) 4394 { 4395 struct nvme_ctrl *ctrl = 4396 container_of(work, struct nvme_ctrl, async_event_work); 4397 4398 nvme_aen_uevent(ctrl); 4399 4400 /* 4401 * The transport drivers must guarantee AER submission here is safe by 4402 * flushing ctrl async_event_work after changing the controller state 4403 * from LIVE and before freeing the admin queue. 4404 */ 4405 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4406 ctrl->ops->submit_async_event(ctrl); 4407 } 4408 4409 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4410 { 4411 4412 u32 csts; 4413 4414 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4415 return false; 4416 4417 if (csts == ~0) 4418 return false; 4419 4420 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4421 } 4422 4423 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4424 { 4425 struct nvme_fw_slot_info_log *log; 4426 u8 next_fw_slot, cur_fw_slot; 4427 4428 log = kmalloc(sizeof(*log), GFP_KERNEL); 4429 if (!log) 4430 return; 4431 4432 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4433 log, sizeof(*log), 0)) { 4434 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4435 goto out_free_log; 4436 } 4437 4438 cur_fw_slot = log->afi & 0x7; 4439 next_fw_slot = (log->afi & 0x70) >> 4; 4440 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4441 dev_info(ctrl->device, 4442 "Firmware is activated after next Controller Level Reset\n"); 4443 goto out_free_log; 4444 } 4445 4446 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4447 sizeof(ctrl->subsys->firmware_rev)); 4448 4449 out_free_log: 4450 kfree(log); 4451 } 4452 4453 static void nvme_fw_act_work(struct work_struct *work) 4454 { 4455 struct nvme_ctrl *ctrl = container_of(work, 4456 struct nvme_ctrl, fw_act_work); 4457 unsigned long fw_act_timeout; 4458 4459 nvme_auth_stop(ctrl); 4460 4461 if (ctrl->mtfa) 4462 fw_act_timeout = jiffies + 4463 msecs_to_jiffies(ctrl->mtfa * 100); 4464 else 4465 fw_act_timeout = jiffies + 4466 msecs_to_jiffies(admin_timeout * 1000); 4467 4468 nvme_quiesce_io_queues(ctrl); 4469 while (nvme_ctrl_pp_status(ctrl)) { 4470 if (time_after(jiffies, fw_act_timeout)) { 4471 dev_warn(ctrl->device, 4472 "Fw activation timeout, reset controller\n"); 4473 nvme_try_sched_reset(ctrl); 4474 return; 4475 } 4476 msleep(100); 4477 } 4478 4479 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4480 return; 4481 4482 nvme_unquiesce_io_queues(ctrl); 4483 /* read FW slot information to clear the AER */ 4484 nvme_get_fw_slot_info(ctrl); 4485 4486 queue_work(nvme_wq, &ctrl->async_event_work); 4487 } 4488 4489 static u32 nvme_aer_type(u32 result) 4490 { 4491 return result & 0x7; 4492 } 4493 4494 static u32 nvme_aer_subtype(u32 result) 4495 { 4496 return (result & 0xff00) >> 8; 4497 } 4498 4499 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4500 { 4501 u32 aer_notice_type = nvme_aer_subtype(result); 4502 bool requeue = true; 4503 4504 switch (aer_notice_type) { 4505 case NVME_AER_NOTICE_NS_CHANGED: 4506 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4507 nvme_queue_scan(ctrl); 4508 break; 4509 case NVME_AER_NOTICE_FW_ACT_STARTING: 4510 /* 4511 * We are (ab)using the RESETTING state to prevent subsequent 4512 * recovery actions from interfering with the controller's 4513 * firmware activation. 4514 */ 4515 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4516 requeue = false; 4517 queue_work(nvme_wq, &ctrl->fw_act_work); 4518 } 4519 break; 4520 #ifdef CONFIG_NVME_MULTIPATH 4521 case NVME_AER_NOTICE_ANA: 4522 if (!ctrl->ana_log_buf) 4523 break; 4524 queue_work(nvme_wq, &ctrl->ana_work); 4525 break; 4526 #endif 4527 case NVME_AER_NOTICE_DISC_CHANGED: 4528 ctrl->aen_result = result; 4529 break; 4530 default: 4531 dev_warn(ctrl->device, "async event result %08x\n", result); 4532 } 4533 return requeue; 4534 } 4535 4536 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4537 { 4538 dev_warn(ctrl->device, 4539 "resetting controller due to persistent internal error\n"); 4540 nvme_reset_ctrl(ctrl); 4541 } 4542 4543 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4544 volatile union nvme_result *res) 4545 { 4546 u32 result = le32_to_cpu(res->u32); 4547 u32 aer_type = nvme_aer_type(result); 4548 u32 aer_subtype = nvme_aer_subtype(result); 4549 bool requeue = true; 4550 4551 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4552 return; 4553 4554 trace_nvme_async_event(ctrl, result); 4555 switch (aer_type) { 4556 case NVME_AER_NOTICE: 4557 requeue = nvme_handle_aen_notice(ctrl, result); 4558 break; 4559 case NVME_AER_ERROR: 4560 /* 4561 * For a persistent internal error, don't run async_event_work 4562 * to submit a new AER. The controller reset will do it. 4563 */ 4564 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4565 nvme_handle_aer_persistent_error(ctrl); 4566 return; 4567 } 4568 fallthrough; 4569 case NVME_AER_SMART: 4570 case NVME_AER_CSS: 4571 case NVME_AER_VS: 4572 ctrl->aen_result = result; 4573 break; 4574 default: 4575 break; 4576 } 4577 4578 if (requeue) 4579 queue_work(nvme_wq, &ctrl->async_event_work); 4580 } 4581 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4582 4583 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4584 const struct blk_mq_ops *ops, unsigned int cmd_size) 4585 { 4586 struct queue_limits lim = {}; 4587 int ret; 4588 4589 memset(set, 0, sizeof(*set)); 4590 set->ops = ops; 4591 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4592 if (ctrl->ops->flags & NVME_F_FABRICS) 4593 /* Reserved for fabric connect and keep alive */ 4594 set->reserved_tags = 2; 4595 set->numa_node = ctrl->numa_node; 4596 if (ctrl->ops->flags & NVME_F_BLOCKING) 4597 set->flags |= BLK_MQ_F_BLOCKING; 4598 set->cmd_size = cmd_size; 4599 set->driver_data = ctrl; 4600 set->nr_hw_queues = 1; 4601 set->timeout = NVME_ADMIN_TIMEOUT; 4602 ret = blk_mq_alloc_tag_set(set); 4603 if (ret) 4604 return ret; 4605 4606 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4607 if (IS_ERR(ctrl->admin_q)) { 4608 ret = PTR_ERR(ctrl->admin_q); 4609 goto out_free_tagset; 4610 } 4611 4612 if (ctrl->ops->flags & NVME_F_FABRICS) { 4613 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4614 if (IS_ERR(ctrl->fabrics_q)) { 4615 ret = PTR_ERR(ctrl->fabrics_q); 4616 goto out_cleanup_admin_q; 4617 } 4618 } 4619 4620 ctrl->admin_tagset = set; 4621 return 0; 4622 4623 out_cleanup_admin_q: 4624 blk_mq_destroy_queue(ctrl->admin_q); 4625 blk_put_queue(ctrl->admin_q); 4626 out_free_tagset: 4627 blk_mq_free_tag_set(set); 4628 ctrl->admin_q = NULL; 4629 ctrl->fabrics_q = NULL; 4630 return ret; 4631 } 4632 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4633 4634 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4635 { 4636 /* 4637 * As we're about to destroy the queue and free tagset 4638 * we can not have keep-alive work running. 4639 */ 4640 nvme_stop_keep_alive(ctrl); 4641 blk_mq_destroy_queue(ctrl->admin_q); 4642 blk_put_queue(ctrl->admin_q); 4643 if (ctrl->ops->flags & NVME_F_FABRICS) { 4644 blk_mq_destroy_queue(ctrl->fabrics_q); 4645 blk_put_queue(ctrl->fabrics_q); 4646 } 4647 blk_mq_free_tag_set(ctrl->admin_tagset); 4648 } 4649 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4650 4651 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4652 const struct blk_mq_ops *ops, unsigned int nr_maps, 4653 unsigned int cmd_size) 4654 { 4655 int ret; 4656 4657 memset(set, 0, sizeof(*set)); 4658 set->ops = ops; 4659 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4660 /* 4661 * Some Apple controllers requires tags to be unique across admin and 4662 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4663 */ 4664 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4665 set->reserved_tags = NVME_AQ_DEPTH; 4666 else if (ctrl->ops->flags & NVME_F_FABRICS) 4667 /* Reserved for fabric connect */ 4668 set->reserved_tags = 1; 4669 set->numa_node = ctrl->numa_node; 4670 if (ctrl->ops->flags & NVME_F_BLOCKING) 4671 set->flags |= BLK_MQ_F_BLOCKING; 4672 set->cmd_size = cmd_size; 4673 set->driver_data = ctrl; 4674 set->nr_hw_queues = ctrl->queue_count - 1; 4675 set->timeout = NVME_IO_TIMEOUT; 4676 set->nr_maps = nr_maps; 4677 ret = blk_mq_alloc_tag_set(set); 4678 if (ret) 4679 return ret; 4680 4681 if (ctrl->ops->flags & NVME_F_FABRICS) { 4682 struct queue_limits lim = { 4683 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, 4684 }; 4685 4686 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); 4687 if (IS_ERR(ctrl->connect_q)) { 4688 ret = PTR_ERR(ctrl->connect_q); 4689 goto out_free_tag_set; 4690 } 4691 } 4692 4693 ctrl->tagset = set; 4694 return 0; 4695 4696 out_free_tag_set: 4697 blk_mq_free_tag_set(set); 4698 ctrl->connect_q = NULL; 4699 return ret; 4700 } 4701 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4702 4703 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4704 { 4705 if (ctrl->ops->flags & NVME_F_FABRICS) { 4706 blk_mq_destroy_queue(ctrl->connect_q); 4707 blk_put_queue(ctrl->connect_q); 4708 } 4709 blk_mq_free_tag_set(ctrl->tagset); 4710 } 4711 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4712 4713 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4714 { 4715 nvme_mpath_stop(ctrl); 4716 nvme_auth_stop(ctrl); 4717 nvme_stop_failfast_work(ctrl); 4718 flush_work(&ctrl->async_event_work); 4719 cancel_work_sync(&ctrl->fw_act_work); 4720 if (ctrl->ops->stop_ctrl) 4721 ctrl->ops->stop_ctrl(ctrl); 4722 } 4723 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4724 4725 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4726 { 4727 nvme_enable_aen(ctrl); 4728 4729 /* 4730 * persistent discovery controllers need to send indication to userspace 4731 * to re-read the discovery log page to learn about possible changes 4732 * that were missed. We identify persistent discovery controllers by 4733 * checking that they started once before, hence are reconnecting back. 4734 */ 4735 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4736 nvme_discovery_ctrl(ctrl)) 4737 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4738 4739 if (ctrl->queue_count > 1) { 4740 nvme_queue_scan(ctrl); 4741 nvme_unquiesce_io_queues(ctrl); 4742 nvme_mpath_update(ctrl); 4743 } 4744 4745 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4746 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4747 } 4748 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4749 4750 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4751 { 4752 nvme_stop_keep_alive(ctrl); 4753 nvme_hwmon_exit(ctrl); 4754 nvme_fault_inject_fini(&ctrl->fault_inject); 4755 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4756 cdev_device_del(&ctrl->cdev, ctrl->device); 4757 nvme_put_ctrl(ctrl); 4758 } 4759 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4760 4761 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4762 { 4763 struct nvme_effects_log *cel; 4764 unsigned long i; 4765 4766 xa_for_each(&ctrl->cels, i, cel) { 4767 xa_erase(&ctrl->cels, i); 4768 kfree(cel); 4769 } 4770 4771 xa_destroy(&ctrl->cels); 4772 } 4773 4774 static void nvme_free_ctrl(struct device *dev) 4775 { 4776 struct nvme_ctrl *ctrl = 4777 container_of(dev, struct nvme_ctrl, ctrl_device); 4778 struct nvme_subsystem *subsys = ctrl->subsys; 4779 4780 if (!subsys || ctrl->instance != subsys->instance) 4781 ida_free(&nvme_instance_ida, ctrl->instance); 4782 nvme_free_cels(ctrl); 4783 nvme_mpath_uninit(ctrl); 4784 cleanup_srcu_struct(&ctrl->srcu); 4785 nvme_auth_stop(ctrl); 4786 nvme_auth_free(ctrl); 4787 __free_page(ctrl->discard_page); 4788 free_opal_dev(ctrl->opal_dev); 4789 4790 if (subsys) { 4791 mutex_lock(&nvme_subsystems_lock); 4792 list_del(&ctrl->subsys_entry); 4793 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4794 mutex_unlock(&nvme_subsystems_lock); 4795 } 4796 4797 ctrl->ops->free_ctrl(ctrl); 4798 4799 if (subsys) 4800 nvme_put_subsystem(subsys); 4801 } 4802 4803 /* 4804 * Initialize a NVMe controller structures. This needs to be called during 4805 * earliest initialization so that we have the initialized structured around 4806 * during probing. 4807 * 4808 * On success, the caller must use the nvme_put_ctrl() to release this when 4809 * needed, which also invokes the ops->free_ctrl() callback. 4810 */ 4811 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4812 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4813 { 4814 int ret; 4815 4816 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4817 ctrl->passthru_err_log_enabled = false; 4818 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4819 spin_lock_init(&ctrl->lock); 4820 mutex_init(&ctrl->namespaces_lock); 4821 4822 ret = init_srcu_struct(&ctrl->srcu); 4823 if (ret) 4824 return ret; 4825 4826 mutex_init(&ctrl->scan_lock); 4827 INIT_LIST_HEAD(&ctrl->namespaces); 4828 xa_init(&ctrl->cels); 4829 ctrl->dev = dev; 4830 ctrl->ops = ops; 4831 ctrl->quirks = quirks; 4832 ctrl->numa_node = NUMA_NO_NODE; 4833 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4834 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4835 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4836 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4837 init_waitqueue_head(&ctrl->state_wq); 4838 4839 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4840 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4841 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4842 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4843 ctrl->ka_last_check_time = jiffies; 4844 4845 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4846 PAGE_SIZE); 4847 ctrl->discard_page = alloc_page(GFP_KERNEL); 4848 if (!ctrl->discard_page) { 4849 ret = -ENOMEM; 4850 goto out; 4851 } 4852 4853 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4854 if (ret < 0) 4855 goto out; 4856 ctrl->instance = ret; 4857 4858 ret = nvme_auth_init_ctrl(ctrl); 4859 if (ret) 4860 goto out_release_instance; 4861 4862 nvme_mpath_init_ctrl(ctrl); 4863 4864 device_initialize(&ctrl->ctrl_device); 4865 ctrl->device = &ctrl->ctrl_device; 4866 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4867 ctrl->instance); 4868 ctrl->device->class = &nvme_class; 4869 ctrl->device->parent = ctrl->dev; 4870 if (ops->dev_attr_groups) 4871 ctrl->device->groups = ops->dev_attr_groups; 4872 else 4873 ctrl->device->groups = nvme_dev_attr_groups; 4874 ctrl->device->release = nvme_free_ctrl; 4875 dev_set_drvdata(ctrl->device, ctrl); 4876 4877 return ret; 4878 4879 out_release_instance: 4880 ida_free(&nvme_instance_ida, ctrl->instance); 4881 out: 4882 if (ctrl->discard_page) 4883 __free_page(ctrl->discard_page); 4884 cleanup_srcu_struct(&ctrl->srcu); 4885 return ret; 4886 } 4887 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4888 4889 /* 4890 * On success, returns with an elevated controller reference and caller must 4891 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. 4892 */ 4893 int nvme_add_ctrl(struct nvme_ctrl *ctrl) 4894 { 4895 int ret; 4896 4897 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4898 if (ret) 4899 return ret; 4900 4901 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4902 ctrl->cdev.owner = ctrl->ops->module; 4903 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4904 if (ret) 4905 return ret; 4906 4907 /* 4908 * Initialize latency tolerance controls. The sysfs files won't 4909 * be visible to userspace unless the device actually supports APST. 4910 */ 4911 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4912 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4913 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4914 4915 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4916 nvme_get_ctrl(ctrl); 4917 4918 return 0; 4919 } 4920 EXPORT_SYMBOL_GPL(nvme_add_ctrl); 4921 4922 /* let I/O to all namespaces fail in preparation for surprise removal */ 4923 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4924 { 4925 struct nvme_ns *ns; 4926 int srcu_idx; 4927 4928 srcu_idx = srcu_read_lock(&ctrl->srcu); 4929 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4930 srcu_read_lock_held(&ctrl->srcu)) 4931 blk_mark_disk_dead(ns->disk); 4932 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4933 } 4934 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4935 4936 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4937 { 4938 struct nvme_ns *ns; 4939 int srcu_idx; 4940 4941 srcu_idx = srcu_read_lock(&ctrl->srcu); 4942 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4943 srcu_read_lock_held(&ctrl->srcu)) 4944 blk_mq_unfreeze_queue_non_owner(ns->queue); 4945 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4946 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4947 } 4948 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4949 4950 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4951 { 4952 struct nvme_ns *ns; 4953 int srcu_idx; 4954 4955 srcu_idx = srcu_read_lock(&ctrl->srcu); 4956 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4957 srcu_read_lock_held(&ctrl->srcu)) { 4958 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4959 if (timeout <= 0) 4960 break; 4961 } 4962 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4963 return timeout; 4964 } 4965 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4966 4967 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4968 { 4969 struct nvme_ns *ns; 4970 int srcu_idx; 4971 4972 srcu_idx = srcu_read_lock(&ctrl->srcu); 4973 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4974 srcu_read_lock_held(&ctrl->srcu)) 4975 blk_mq_freeze_queue_wait(ns->queue); 4976 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4977 } 4978 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4979 4980 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4981 { 4982 struct nvme_ns *ns; 4983 int srcu_idx; 4984 4985 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4986 srcu_idx = srcu_read_lock(&ctrl->srcu); 4987 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4988 srcu_read_lock_held(&ctrl->srcu)) 4989 /* 4990 * Typical non_owner use case is from pci driver, in which 4991 * start_freeze is called from timeout work function, but 4992 * unfreeze is done in reset work context 4993 */ 4994 blk_freeze_queue_start_non_owner(ns->queue); 4995 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4996 } 4997 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4998 4999 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 5000 { 5001 if (!ctrl->tagset) 5002 return; 5003 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5004 blk_mq_quiesce_tagset(ctrl->tagset); 5005 else 5006 blk_mq_wait_quiesce_done(ctrl->tagset); 5007 } 5008 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 5009 5010 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 5011 { 5012 if (!ctrl->tagset) 5013 return; 5014 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5015 blk_mq_unquiesce_tagset(ctrl->tagset); 5016 } 5017 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 5018 5019 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 5020 { 5021 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5022 blk_mq_quiesce_queue(ctrl->admin_q); 5023 else 5024 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 5025 } 5026 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 5027 5028 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 5029 { 5030 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5031 blk_mq_unquiesce_queue(ctrl->admin_q); 5032 } 5033 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 5034 5035 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 5036 { 5037 struct nvme_ns *ns; 5038 int srcu_idx; 5039 5040 srcu_idx = srcu_read_lock(&ctrl->srcu); 5041 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 5042 srcu_read_lock_held(&ctrl->srcu)) 5043 blk_sync_queue(ns->queue); 5044 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5045 } 5046 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 5047 5048 void nvme_sync_queues(struct nvme_ctrl *ctrl) 5049 { 5050 nvme_sync_io_queues(ctrl); 5051 if (ctrl->admin_q) 5052 blk_sync_queue(ctrl->admin_q); 5053 } 5054 EXPORT_SYMBOL_GPL(nvme_sync_queues); 5055 5056 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 5057 { 5058 if (file->f_op != &nvme_dev_fops) 5059 return NULL; 5060 return file->private_data; 5061 } 5062 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU"); 5063 5064 /* 5065 * Check we didn't inadvertently grow the command structure sizes: 5066 */ 5067 static inline void _nvme_check_size(void) 5068 { 5069 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 5070 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 5071 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 5072 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 5073 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 5074 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 5075 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 5076 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 5077 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 5078 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 5079 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 5080 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 5081 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 5082 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 5083 NVME_IDENTIFY_DATA_SIZE); 5084 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 5085 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 5086 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 5087 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 5088 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 5089 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 5090 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512); 5091 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512); 5092 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 5093 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 5094 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 5095 } 5096 5097 5098 static int __init nvme_core_init(void) 5099 { 5100 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS; 5101 int result = -ENOMEM; 5102 5103 _nvme_check_size(); 5104 5105 nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0); 5106 if (!nvme_wq) 5107 goto out; 5108 5109 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0); 5110 if (!nvme_reset_wq) 5111 goto destroy_wq; 5112 5113 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0); 5114 if (!nvme_delete_wq) 5115 goto destroy_reset_wq; 5116 5117 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5118 NVME_MINORS, "nvme"); 5119 if (result < 0) 5120 goto destroy_delete_wq; 5121 5122 result = class_register(&nvme_class); 5123 if (result) 5124 goto unregister_chrdev; 5125 5126 result = class_register(&nvme_subsys_class); 5127 if (result) 5128 goto destroy_class; 5129 5130 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5131 "nvme-generic"); 5132 if (result < 0) 5133 goto destroy_subsys_class; 5134 5135 result = class_register(&nvme_ns_chr_class); 5136 if (result) 5137 goto unregister_generic_ns; 5138 5139 result = nvme_init_auth(); 5140 if (result) 5141 goto destroy_ns_chr; 5142 return 0; 5143 5144 destroy_ns_chr: 5145 class_unregister(&nvme_ns_chr_class); 5146 unregister_generic_ns: 5147 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5148 destroy_subsys_class: 5149 class_unregister(&nvme_subsys_class); 5150 destroy_class: 5151 class_unregister(&nvme_class); 5152 unregister_chrdev: 5153 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5154 destroy_delete_wq: 5155 destroy_workqueue(nvme_delete_wq); 5156 destroy_reset_wq: 5157 destroy_workqueue(nvme_reset_wq); 5158 destroy_wq: 5159 destroy_workqueue(nvme_wq); 5160 out: 5161 return result; 5162 } 5163 5164 static void __exit nvme_core_exit(void) 5165 { 5166 nvme_exit_auth(); 5167 class_unregister(&nvme_ns_chr_class); 5168 class_unregister(&nvme_subsys_class); 5169 class_unregister(&nvme_class); 5170 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5171 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5172 destroy_workqueue(nvme_delete_wq); 5173 destroy_workqueue(nvme_reset_wq); 5174 destroy_workqueue(nvme_wq); 5175 ida_destroy(&nvme_ns_chr_minor_ida); 5176 ida_destroy(&nvme_instance_ida); 5177 } 5178 5179 MODULE_LICENSE("GPL"); 5180 MODULE_VERSION("1.0"); 5181 MODULE_DESCRIPTION("NVMe host core framework"); 5182 module_init(nvme_core_init); 5183 module_exit(nvme_core_exit); 5184