1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/async.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-mq.h> 10 #include <linux/blk-integrity.h> 11 #include <linux/compat.h> 12 #include <linux/delay.h> 13 #include <linux/errno.h> 14 #include <linux/hdreg.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/pr.h> 21 #include <linux/ptrace.h> 22 #include <linux/nvme_ioctl.h> 23 #include <linux/pm_qos.h> 24 #include <linux/ratelimit.h> 25 #include <linux/unaligned.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 #include <linux/nvme-auth.h> 30 31 #define CREATE_TRACE_POINTS 32 #include "trace.h" 33 34 #define NVME_MINORS (1U << MINORBITS) 35 36 struct nvme_ns_info { 37 struct nvme_ns_ids ids; 38 u32 nsid; 39 __le32 anagrpid; 40 u8 pi_offset; 41 bool is_shared; 42 bool is_readonly; 43 bool is_ready; 44 bool is_removed; 45 bool is_rotational; 46 bool no_vwc; 47 }; 48 49 unsigned int admin_timeout = 60; 50 module_param(admin_timeout, uint, 0644); 51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 52 EXPORT_SYMBOL_GPL(admin_timeout); 53 54 unsigned int nvme_io_timeout = 30; 55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 57 EXPORT_SYMBOL_GPL(nvme_io_timeout); 58 59 static unsigned char shutdown_timeout = 5; 60 module_param(shutdown_timeout, byte, 0644); 61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 62 63 static u8 nvme_max_retries = 5; 64 module_param_named(max_retries, nvme_max_retries, byte, 0644); 65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 66 67 static unsigned long default_ps_max_latency_us = 100000; 68 module_param(default_ps_max_latency_us, ulong, 0644); 69 MODULE_PARM_DESC(default_ps_max_latency_us, 70 "max power saving latency for new devices; use PM QOS to change per device"); 71 72 static bool force_apst; 73 module_param(force_apst, bool, 0644); 74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 75 76 static unsigned long apst_primary_timeout_ms = 100; 77 module_param(apst_primary_timeout_ms, ulong, 0644); 78 MODULE_PARM_DESC(apst_primary_timeout_ms, 79 "primary APST timeout in ms"); 80 81 static unsigned long apst_secondary_timeout_ms = 2000; 82 module_param(apst_secondary_timeout_ms, ulong, 0644); 83 MODULE_PARM_DESC(apst_secondary_timeout_ms, 84 "secondary APST timeout in ms"); 85 86 static unsigned long apst_primary_latency_tol_us = 15000; 87 module_param(apst_primary_latency_tol_us, ulong, 0644); 88 MODULE_PARM_DESC(apst_primary_latency_tol_us, 89 "primary APST latency tolerance in us"); 90 91 static unsigned long apst_secondary_latency_tol_us = 100000; 92 module_param(apst_secondary_latency_tol_us, ulong, 0644); 93 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 94 "secondary APST latency tolerance in us"); 95 96 /* 97 * Older kernels didn't enable protection information if it was at an offset. 98 * Newer kernels do, so it breaks reads on the upgrade if such formats were 99 * used in prior kernels since the metadata written did not contain a valid 100 * checksum. 101 */ 102 static bool disable_pi_offsets = false; 103 module_param(disable_pi_offsets, bool, 0444); 104 MODULE_PARM_DESC(disable_pi_offsets, 105 "disable protection information if it has an offset"); 106 107 /* 108 * nvme_wq - hosts nvme related works that are not reset or delete 109 * nvme_reset_wq - hosts nvme reset works 110 * nvme_delete_wq - hosts nvme delete works 111 * 112 * nvme_wq will host works such as scan, aen handling, fw activation, 113 * keep-alive, periodic reconnects etc. nvme_reset_wq 114 * runs reset works which also flush works hosted on nvme_wq for 115 * serialization purposes. nvme_delete_wq host controller deletion 116 * works which flush reset works for serialization. 117 */ 118 struct workqueue_struct *nvme_wq; 119 EXPORT_SYMBOL_GPL(nvme_wq); 120 121 struct workqueue_struct *nvme_reset_wq; 122 EXPORT_SYMBOL_GPL(nvme_reset_wq); 123 124 struct workqueue_struct *nvme_delete_wq; 125 EXPORT_SYMBOL_GPL(nvme_delete_wq); 126 127 static LIST_HEAD(nvme_subsystems); 128 DEFINE_MUTEX(nvme_subsystems_lock); 129 130 static DEFINE_IDA(nvme_instance_ida); 131 static dev_t nvme_ctrl_base_chr_devt; 132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 133 static const struct class nvme_class = { 134 .name = "nvme", 135 .dev_uevent = nvme_class_uevent, 136 }; 137 138 static const struct class nvme_subsys_class = { 139 .name = "nvme-subsystem", 140 }; 141 142 static DEFINE_IDA(nvme_ns_chr_minor_ida); 143 static dev_t nvme_ns_chr_devt; 144 static const struct class nvme_ns_chr_class = { 145 .name = "nvme-generic", 146 }; 147 148 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 150 unsigned nsid); 151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 152 struct nvme_command *cmd); 153 154 void nvme_queue_scan(struct nvme_ctrl *ctrl) 155 { 156 /* 157 * Only new queue scan work when admin and IO queues are both alive 158 */ 159 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 160 queue_work(nvme_wq, &ctrl->scan_work); 161 } 162 163 /* 164 * Use this function to proceed with scheduling reset_work for a controller 165 * that had previously been set to the resetting state. This is intended for 166 * code paths that can't be interrupted by other reset attempts. A hot removal 167 * may prevent this from succeeding. 168 */ 169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 170 { 171 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 172 return -EBUSY; 173 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 174 return -EBUSY; 175 return 0; 176 } 177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 178 179 static void nvme_failfast_work(struct work_struct *work) 180 { 181 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 182 struct nvme_ctrl, failfast_work); 183 184 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 185 return; 186 187 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 188 dev_info(ctrl->device, "failfast expired\n"); 189 nvme_kick_requeue_lists(ctrl); 190 } 191 192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 193 { 194 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 195 return; 196 197 schedule_delayed_work(&ctrl->failfast_work, 198 ctrl->opts->fast_io_fail_tmo * HZ); 199 } 200 201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 202 { 203 if (!ctrl->opts) 204 return; 205 206 cancel_delayed_work_sync(&ctrl->failfast_work); 207 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 208 } 209 210 211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 212 { 213 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 214 return -EBUSY; 215 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 216 return -EBUSY; 217 return 0; 218 } 219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 220 221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 222 { 223 int ret; 224 225 ret = nvme_reset_ctrl(ctrl); 226 if (!ret) { 227 flush_work(&ctrl->reset_work); 228 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 229 ret = -ENETRESET; 230 } 231 232 return ret; 233 } 234 235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 236 { 237 dev_info(ctrl->device, 238 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 239 240 flush_work(&ctrl->reset_work); 241 nvme_stop_ctrl(ctrl); 242 nvme_remove_namespaces(ctrl); 243 ctrl->ops->delete_ctrl(ctrl); 244 nvme_uninit_ctrl(ctrl); 245 } 246 247 static void nvme_delete_ctrl_work(struct work_struct *work) 248 { 249 struct nvme_ctrl *ctrl = 250 container_of(work, struct nvme_ctrl, delete_work); 251 252 nvme_do_delete_ctrl(ctrl); 253 } 254 255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 256 { 257 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 258 return -EBUSY; 259 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 260 return -EBUSY; 261 return 0; 262 } 263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 264 265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 266 { 267 /* 268 * Keep a reference until nvme_do_delete_ctrl() complete, 269 * since ->delete_ctrl can free the controller. 270 */ 271 nvme_get_ctrl(ctrl); 272 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 273 nvme_do_delete_ctrl(ctrl); 274 nvme_put_ctrl(ctrl); 275 } 276 277 static blk_status_t nvme_error_status(u16 status) 278 { 279 switch (status & NVME_SCT_SC_MASK) { 280 case NVME_SC_SUCCESS: 281 return BLK_STS_OK; 282 case NVME_SC_CAP_EXCEEDED: 283 return BLK_STS_NOSPC; 284 case NVME_SC_LBA_RANGE: 285 case NVME_SC_CMD_INTERRUPTED: 286 case NVME_SC_NS_NOT_READY: 287 return BLK_STS_TARGET; 288 case NVME_SC_BAD_ATTRIBUTES: 289 case NVME_SC_ONCS_NOT_SUPPORTED: 290 case NVME_SC_INVALID_OPCODE: 291 case NVME_SC_INVALID_FIELD: 292 case NVME_SC_INVALID_NS: 293 return BLK_STS_NOTSUPP; 294 case NVME_SC_WRITE_FAULT: 295 case NVME_SC_READ_ERROR: 296 case NVME_SC_UNWRITTEN_BLOCK: 297 case NVME_SC_ACCESS_DENIED: 298 case NVME_SC_READ_ONLY: 299 case NVME_SC_COMPARE_FAILED: 300 return BLK_STS_MEDIUM; 301 case NVME_SC_GUARD_CHECK: 302 case NVME_SC_APPTAG_CHECK: 303 case NVME_SC_REFTAG_CHECK: 304 case NVME_SC_INVALID_PI: 305 return BLK_STS_PROTECTION; 306 case NVME_SC_RESERVATION_CONFLICT: 307 return BLK_STS_RESV_CONFLICT; 308 case NVME_SC_HOST_PATH_ERROR: 309 return BLK_STS_TRANSPORT; 310 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 311 return BLK_STS_ZONE_ACTIVE_RESOURCE; 312 case NVME_SC_ZONE_TOO_MANY_OPEN: 313 return BLK_STS_ZONE_OPEN_RESOURCE; 314 default: 315 return BLK_STS_IOERR; 316 } 317 } 318 319 static void nvme_retry_req(struct request *req) 320 { 321 unsigned long delay = 0; 322 u16 crd; 323 324 /* The mask and shift result must be <= 3 */ 325 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; 326 if (crd) 327 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 328 329 nvme_req(req)->retries++; 330 blk_mq_requeue_request(req, false); 331 blk_mq_delay_kick_requeue_list(req->q, delay); 332 } 333 334 static void nvme_log_error(struct request *req) 335 { 336 struct nvme_ns *ns = req->q->queuedata; 337 struct nvme_request *nr = nvme_req(req); 338 339 if (ns) { 340 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 341 ns->disk ? ns->disk->disk_name : "?", 342 nvme_get_opcode_str(nr->cmd->common.opcode), 343 nr->cmd->common.opcode, 344 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 345 blk_rq_bytes(req) >> ns->head->lba_shift, 346 nvme_get_error_status_str(nr->status), 347 NVME_SCT(nr->status), /* Status Code Type */ 348 nr->status & NVME_SC_MASK, /* Status Code */ 349 nr->status & NVME_STATUS_MORE ? "MORE " : "", 350 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 351 return; 352 } 353 354 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 355 dev_name(nr->ctrl->device), 356 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 357 nr->cmd->common.opcode, 358 nvme_get_error_status_str(nr->status), 359 NVME_SCT(nr->status), /* Status Code Type */ 360 nr->status & NVME_SC_MASK, /* Status Code */ 361 nr->status & NVME_STATUS_MORE ? "MORE " : "", 362 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 363 } 364 365 static void nvme_log_err_passthru(struct request *req) 366 { 367 struct nvme_ns *ns = req->q->queuedata; 368 struct nvme_request *nr = nvme_req(req); 369 370 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 371 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 372 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 373 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 374 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 375 nr->cmd->common.opcode, 376 nvme_get_error_status_str(nr->status), 377 NVME_SCT(nr->status), /* Status Code Type */ 378 nr->status & NVME_SC_MASK, /* Status Code */ 379 nr->status & NVME_STATUS_MORE ? "MORE " : "", 380 nr->status & NVME_STATUS_DNR ? "DNR " : "", 381 nr->cmd->common.cdw10, 382 nr->cmd->common.cdw11, 383 nr->cmd->common.cdw12, 384 nr->cmd->common.cdw13, 385 nr->cmd->common.cdw14, 386 nr->cmd->common.cdw14); 387 } 388 389 enum nvme_disposition { 390 COMPLETE, 391 RETRY, 392 FAILOVER, 393 AUTHENTICATE, 394 }; 395 396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 397 { 398 if (likely(nvme_req(req)->status == 0)) 399 return COMPLETE; 400 401 if (blk_noretry_request(req) || 402 (nvme_req(req)->status & NVME_STATUS_DNR) || 403 nvme_req(req)->retries >= nvme_max_retries) 404 return COMPLETE; 405 406 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) 407 return AUTHENTICATE; 408 409 if (req->cmd_flags & REQ_NVME_MPATH) { 410 if (nvme_is_path_error(nvme_req(req)->status) || 411 blk_queue_dying(req->q)) 412 return FAILOVER; 413 } else { 414 if (blk_queue_dying(req->q)) 415 return COMPLETE; 416 } 417 418 return RETRY; 419 } 420 421 static inline void nvme_end_req_zoned(struct request *req) 422 { 423 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 424 req_op(req) == REQ_OP_ZONE_APPEND) { 425 struct nvme_ns *ns = req->q->queuedata; 426 427 req->__sector = nvme_lba_to_sect(ns->head, 428 le64_to_cpu(nvme_req(req)->result.u64)); 429 } 430 } 431 432 static inline void __nvme_end_req(struct request *req) 433 { 434 nvme_end_req_zoned(req); 435 nvme_trace_bio_complete(req); 436 if (req->cmd_flags & REQ_NVME_MPATH) 437 nvme_mpath_end_request(req); 438 } 439 440 void nvme_end_req(struct request *req) 441 { 442 blk_status_t status = nvme_error_status(nvme_req(req)->status); 443 444 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 445 if (blk_rq_is_passthrough(req)) 446 nvme_log_err_passthru(req); 447 else 448 nvme_log_error(req); 449 } 450 __nvme_end_req(req); 451 blk_mq_end_request(req, status); 452 } 453 454 void nvme_complete_rq(struct request *req) 455 { 456 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 457 458 trace_nvme_complete_rq(req); 459 nvme_cleanup_cmd(req); 460 461 /* 462 * Completions of long-running commands should not be able to 463 * defer sending of periodic keep alives, since the controller 464 * may have completed processing such commands a long time ago 465 * (arbitrarily close to command submission time). 466 * req->deadline - req->timeout is the command submission time 467 * in jiffies. 468 */ 469 if (ctrl->kas && 470 req->deadline - req->timeout >= ctrl->ka_last_check_time) 471 ctrl->comp_seen = true; 472 473 switch (nvme_decide_disposition(req)) { 474 case COMPLETE: 475 nvme_end_req(req); 476 return; 477 case RETRY: 478 nvme_retry_req(req); 479 return; 480 case FAILOVER: 481 nvme_failover_req(req); 482 return; 483 case AUTHENTICATE: 484 #ifdef CONFIG_NVME_HOST_AUTH 485 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 486 nvme_retry_req(req); 487 #else 488 nvme_end_req(req); 489 #endif 490 return; 491 } 492 } 493 EXPORT_SYMBOL_GPL(nvme_complete_rq); 494 495 void nvme_complete_batch_req(struct request *req) 496 { 497 trace_nvme_complete_rq(req); 498 nvme_cleanup_cmd(req); 499 __nvme_end_req(req); 500 } 501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 502 503 /* 504 * Called to unwind from ->queue_rq on a failed command submission so that the 505 * multipathing code gets called to potentially failover to another path. 506 * The caller needs to unwind all transport specific resource allocations and 507 * must return propagate the return value. 508 */ 509 blk_status_t nvme_host_path_error(struct request *req) 510 { 511 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 512 blk_mq_set_request_complete(req); 513 nvme_complete_rq(req); 514 return BLK_STS_OK; 515 } 516 EXPORT_SYMBOL_GPL(nvme_host_path_error); 517 518 bool nvme_cancel_request(struct request *req, void *data) 519 { 520 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 521 "Cancelling I/O %d", req->tag); 522 523 /* don't abort one completed or idle request */ 524 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 525 return true; 526 527 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 528 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 529 blk_mq_complete_request(req); 530 return true; 531 } 532 EXPORT_SYMBOL_GPL(nvme_cancel_request); 533 534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 535 { 536 if (ctrl->tagset) { 537 blk_mq_tagset_busy_iter(ctrl->tagset, 538 nvme_cancel_request, ctrl); 539 blk_mq_tagset_wait_completed_request(ctrl->tagset); 540 } 541 } 542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 543 544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 545 { 546 if (ctrl->admin_tagset) { 547 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 548 nvme_cancel_request, ctrl); 549 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 550 } 551 } 552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 553 554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 555 enum nvme_ctrl_state new_state) 556 { 557 enum nvme_ctrl_state old_state; 558 unsigned long flags; 559 bool changed = false; 560 561 spin_lock_irqsave(&ctrl->lock, flags); 562 563 old_state = nvme_ctrl_state(ctrl); 564 switch (new_state) { 565 case NVME_CTRL_LIVE: 566 switch (old_state) { 567 case NVME_CTRL_CONNECTING: 568 changed = true; 569 fallthrough; 570 default: 571 break; 572 } 573 break; 574 case NVME_CTRL_RESETTING: 575 switch (old_state) { 576 case NVME_CTRL_NEW: 577 case NVME_CTRL_LIVE: 578 changed = true; 579 fallthrough; 580 default: 581 break; 582 } 583 break; 584 case NVME_CTRL_CONNECTING: 585 switch (old_state) { 586 case NVME_CTRL_NEW: 587 case NVME_CTRL_RESETTING: 588 changed = true; 589 fallthrough; 590 default: 591 break; 592 } 593 break; 594 case NVME_CTRL_DELETING: 595 switch (old_state) { 596 case NVME_CTRL_LIVE: 597 case NVME_CTRL_RESETTING: 598 case NVME_CTRL_CONNECTING: 599 changed = true; 600 fallthrough; 601 default: 602 break; 603 } 604 break; 605 case NVME_CTRL_DELETING_NOIO: 606 switch (old_state) { 607 case NVME_CTRL_DELETING: 608 case NVME_CTRL_DEAD: 609 changed = true; 610 fallthrough; 611 default: 612 break; 613 } 614 break; 615 case NVME_CTRL_DEAD: 616 switch (old_state) { 617 case NVME_CTRL_DELETING: 618 changed = true; 619 fallthrough; 620 default: 621 break; 622 } 623 break; 624 default: 625 break; 626 } 627 628 if (changed) { 629 WRITE_ONCE(ctrl->state, new_state); 630 wake_up_all(&ctrl->state_wq); 631 } 632 633 spin_unlock_irqrestore(&ctrl->lock, flags); 634 if (!changed) 635 return false; 636 637 if (new_state == NVME_CTRL_LIVE) { 638 if (old_state == NVME_CTRL_CONNECTING) 639 nvme_stop_failfast_work(ctrl); 640 nvme_kick_requeue_lists(ctrl); 641 } else if (new_state == NVME_CTRL_CONNECTING && 642 old_state == NVME_CTRL_RESETTING) { 643 nvme_start_failfast_work(ctrl); 644 } 645 return changed; 646 } 647 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 648 649 /* 650 * Waits for the controller state to be resetting, or returns false if it is 651 * not possible to ever transition to that state. 652 */ 653 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 654 { 655 wait_event(ctrl->state_wq, 656 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 657 nvme_state_terminal(ctrl)); 658 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 659 } 660 EXPORT_SYMBOL_GPL(nvme_wait_reset); 661 662 static void nvme_free_ns_head(struct kref *ref) 663 { 664 struct nvme_ns_head *head = 665 container_of(ref, struct nvme_ns_head, ref); 666 667 nvme_mpath_remove_disk(head); 668 ida_free(&head->subsys->ns_ida, head->instance); 669 cleanup_srcu_struct(&head->srcu); 670 nvme_put_subsystem(head->subsys); 671 kfree(head); 672 } 673 674 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 675 { 676 return kref_get_unless_zero(&head->ref); 677 } 678 679 void nvme_put_ns_head(struct nvme_ns_head *head) 680 { 681 kref_put(&head->ref, nvme_free_ns_head); 682 } 683 684 static void nvme_free_ns(struct kref *kref) 685 { 686 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 687 688 put_disk(ns->disk); 689 nvme_put_ns_head(ns->head); 690 nvme_put_ctrl(ns->ctrl); 691 kfree(ns); 692 } 693 694 bool nvme_get_ns(struct nvme_ns *ns) 695 { 696 return kref_get_unless_zero(&ns->kref); 697 } 698 699 void nvme_put_ns(struct nvme_ns *ns) 700 { 701 kref_put(&ns->kref, nvme_free_ns); 702 } 703 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU"); 704 705 static inline void nvme_clear_nvme_request(struct request *req) 706 { 707 nvme_req(req)->status = 0; 708 nvme_req(req)->retries = 0; 709 nvme_req(req)->flags = 0; 710 req->rq_flags |= RQF_DONTPREP; 711 } 712 713 /* initialize a passthrough request */ 714 void nvme_init_request(struct request *req, struct nvme_command *cmd) 715 { 716 struct nvme_request *nr = nvme_req(req); 717 bool logging_enabled; 718 719 if (req->q->queuedata) { 720 struct nvme_ns *ns = req->q->disk->private_data; 721 722 logging_enabled = ns->head->passthru_err_log_enabled; 723 req->timeout = NVME_IO_TIMEOUT; 724 } else { /* no queuedata implies admin queue */ 725 logging_enabled = nr->ctrl->passthru_err_log_enabled; 726 req->timeout = NVME_ADMIN_TIMEOUT; 727 } 728 729 if (!logging_enabled) 730 req->rq_flags |= RQF_QUIET; 731 732 /* passthru commands should let the driver set the SGL flags */ 733 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 734 735 req->cmd_flags |= REQ_FAILFAST_DRIVER; 736 if (req->mq_hctx->type == HCTX_TYPE_POLL) 737 req->cmd_flags |= REQ_POLLED; 738 nvme_clear_nvme_request(req); 739 memcpy(nr->cmd, cmd, sizeof(*cmd)); 740 } 741 EXPORT_SYMBOL_GPL(nvme_init_request); 742 743 /* 744 * For something we're not in a state to send to the device the default action 745 * is to busy it and retry it after the controller state is recovered. However, 746 * if the controller is deleting or if anything is marked for failfast or 747 * nvme multipath it is immediately failed. 748 * 749 * Note: commands used to initialize the controller will be marked for failfast. 750 * Note: nvme cli/ioctl commands are marked for failfast. 751 */ 752 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 753 struct request *rq) 754 { 755 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 756 757 if (state != NVME_CTRL_DELETING_NOIO && 758 state != NVME_CTRL_DELETING && 759 state != NVME_CTRL_DEAD && 760 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 761 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 762 return BLK_STS_RESOURCE; 763 return nvme_host_path_error(rq); 764 } 765 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 766 767 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 768 bool queue_live, enum nvme_ctrl_state state) 769 { 770 struct nvme_request *req = nvme_req(rq); 771 772 /* 773 * currently we have a problem sending passthru commands 774 * on the admin_q if the controller is not LIVE because we can't 775 * make sure that they are going out after the admin connect, 776 * controller enable and/or other commands in the initialization 777 * sequence. until the controller will be LIVE, fail with 778 * BLK_STS_RESOURCE so that they will be rescheduled. 779 */ 780 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 781 return false; 782 783 if (ctrl->ops->flags & NVME_F_FABRICS) { 784 /* 785 * Only allow commands on a live queue, except for the connect 786 * command, which is require to set the queue live in the 787 * appropinquate states. 788 */ 789 switch (state) { 790 case NVME_CTRL_CONNECTING: 791 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 792 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 793 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 794 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 795 return true; 796 break; 797 default: 798 break; 799 case NVME_CTRL_DEAD: 800 return false; 801 } 802 } 803 804 return queue_live; 805 } 806 EXPORT_SYMBOL_GPL(__nvme_check_ready); 807 808 static inline void nvme_setup_flush(struct nvme_ns *ns, 809 struct nvme_command *cmnd) 810 { 811 memset(cmnd, 0, sizeof(*cmnd)); 812 cmnd->common.opcode = nvme_cmd_flush; 813 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 814 } 815 816 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 817 struct nvme_command *cmnd) 818 { 819 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 820 struct nvme_dsm_range *range; 821 struct bio *bio; 822 823 /* 824 * Some devices do not consider the DSM 'Number of Ranges' field when 825 * determining how much data to DMA. Always allocate memory for maximum 826 * number of segments to prevent device reading beyond end of buffer. 827 */ 828 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 829 830 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 831 if (!range) { 832 /* 833 * If we fail allocation our range, fallback to the controller 834 * discard page. If that's also busy, it's safe to return 835 * busy, as we know we can make progress once that's freed. 836 */ 837 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 838 return BLK_STS_RESOURCE; 839 840 range = page_address(ns->ctrl->discard_page); 841 } 842 843 if (queue_max_discard_segments(req->q) == 1) { 844 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 845 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 846 847 range[0].cattr = cpu_to_le32(0); 848 range[0].nlb = cpu_to_le32(nlb); 849 range[0].slba = cpu_to_le64(slba); 850 n = 1; 851 } else { 852 __rq_for_each_bio(bio, req) { 853 u64 slba = nvme_sect_to_lba(ns->head, 854 bio->bi_iter.bi_sector); 855 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 856 857 if (n < segments) { 858 range[n].cattr = cpu_to_le32(0); 859 range[n].nlb = cpu_to_le32(nlb); 860 range[n].slba = cpu_to_le64(slba); 861 } 862 n++; 863 } 864 } 865 866 if (WARN_ON_ONCE(n != segments)) { 867 if (virt_to_page(range) == ns->ctrl->discard_page) 868 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 869 else 870 kfree(range); 871 return BLK_STS_IOERR; 872 } 873 874 memset(cmnd, 0, sizeof(*cmnd)); 875 cmnd->dsm.opcode = nvme_cmd_dsm; 876 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 877 cmnd->dsm.nr = cpu_to_le32(segments - 1); 878 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 879 880 bvec_set_virt(&req->special_vec, range, alloc_size); 881 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 882 883 return BLK_STS_OK; 884 } 885 886 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd) 887 { 888 cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag); 889 cmnd->rw.lbatm = cpu_to_le16(0xffff); 890 } 891 892 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 893 struct request *req) 894 { 895 u32 upper, lower; 896 u64 ref48; 897 898 /* both rw and write zeroes share the same reftag format */ 899 switch (ns->head->guard_type) { 900 case NVME_NVM_NS_16B_GUARD: 901 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 902 break; 903 case NVME_NVM_NS_64B_GUARD: 904 ref48 = ext_pi_ref_tag(req); 905 lower = lower_32_bits(ref48); 906 upper = upper_32_bits(ref48); 907 908 cmnd->rw.reftag = cpu_to_le32(lower); 909 cmnd->rw.cdw3 = cpu_to_le32(upper); 910 break; 911 default: 912 break; 913 } 914 } 915 916 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 917 struct request *req, struct nvme_command *cmnd) 918 { 919 memset(cmnd, 0, sizeof(*cmnd)); 920 921 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 922 return nvme_setup_discard(ns, req, cmnd); 923 924 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 925 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 926 cmnd->write_zeroes.slba = 927 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 928 cmnd->write_zeroes.length = 929 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 930 931 if (!(req->cmd_flags & REQ_NOUNMAP) && 932 (ns->head->features & NVME_NS_DEAC)) 933 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 934 935 if (nvme_ns_has_pi(ns->head)) { 936 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 937 938 switch (ns->head->pi_type) { 939 case NVME_NS_DPS_PI_TYPE1: 940 case NVME_NS_DPS_PI_TYPE2: 941 nvme_set_ref_tag(ns, cmnd, req); 942 break; 943 } 944 } 945 946 return BLK_STS_OK; 947 } 948 949 /* 950 * NVMe does not support a dedicated command to issue an atomic write. A write 951 * which does adhere to the device atomic limits will silently be executed 952 * non-atomically. The request issuer should ensure that the write is within 953 * the queue atomic writes limits, but just validate this in case it is not. 954 */ 955 static bool nvme_valid_atomic_write(struct request *req) 956 { 957 struct request_queue *q = req->q; 958 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); 959 960 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) 961 return false; 962 963 if (boundary_bytes) { 964 u64 mask = boundary_bytes - 1, imask = ~mask; 965 u64 start = blk_rq_pos(req) << SECTOR_SHIFT; 966 u64 end = start + blk_rq_bytes(req) - 1; 967 968 /* If greater then must be crossing a boundary */ 969 if (blk_rq_bytes(req) > boundary_bytes) 970 return false; 971 972 if ((start & imask) != (end & imask)) 973 return false; 974 } 975 976 return true; 977 } 978 979 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 980 struct request *req, struct nvme_command *cmnd, 981 enum nvme_opcode op) 982 { 983 u16 control = 0; 984 u32 dsmgmt = 0; 985 986 if (req->cmd_flags & REQ_FUA) 987 control |= NVME_RW_FUA; 988 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 989 control |= NVME_RW_LR; 990 991 if (req->cmd_flags & REQ_RAHEAD) 992 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 993 994 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) 995 return BLK_STS_INVAL; 996 997 cmnd->rw.opcode = op; 998 cmnd->rw.flags = 0; 999 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 1000 cmnd->rw.cdw2 = 0; 1001 cmnd->rw.cdw3 = 0; 1002 cmnd->rw.metadata = 0; 1003 cmnd->rw.slba = 1004 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 1005 cmnd->rw.length = 1006 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 1007 cmnd->rw.reftag = 0; 1008 cmnd->rw.lbat = 0; 1009 cmnd->rw.lbatm = 0; 1010 1011 if (ns->head->ms) { 1012 /* 1013 * If formated with metadata, the block layer always provides a 1014 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 1015 * we enable the PRACT bit for protection information or set the 1016 * namespace capacity to zero to prevent any I/O. 1017 */ 1018 if (!blk_integrity_rq(req)) { 1019 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 1020 return BLK_STS_NOTSUPP; 1021 control |= NVME_RW_PRINFO_PRACT; 1022 } 1023 1024 if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD)) 1025 control |= NVME_RW_PRINFO_PRCHK_GUARD; 1026 if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) { 1027 control |= NVME_RW_PRINFO_PRCHK_REF; 1028 if (op == nvme_cmd_zone_append) 1029 control |= NVME_RW_APPEND_PIREMAP; 1030 nvme_set_ref_tag(ns, cmnd, req); 1031 } 1032 if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) { 1033 control |= NVME_RW_PRINFO_PRCHK_APP; 1034 nvme_set_app_tag(req, cmnd); 1035 } 1036 } 1037 1038 cmnd->rw.control = cpu_to_le16(control); 1039 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 1040 return 0; 1041 } 1042 1043 void nvme_cleanup_cmd(struct request *req) 1044 { 1045 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 1046 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 1047 1048 if (req->special_vec.bv_page == ctrl->discard_page) 1049 clear_bit_unlock(0, &ctrl->discard_page_busy); 1050 else 1051 kfree(bvec_virt(&req->special_vec)); 1052 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; 1053 } 1054 } 1055 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1056 1057 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1058 { 1059 struct nvme_command *cmd = nvme_req(req)->cmd; 1060 blk_status_t ret = BLK_STS_OK; 1061 1062 if (!(req->rq_flags & RQF_DONTPREP)) 1063 nvme_clear_nvme_request(req); 1064 1065 switch (req_op(req)) { 1066 case REQ_OP_DRV_IN: 1067 case REQ_OP_DRV_OUT: 1068 /* these are setup prior to execution in nvme_init_request() */ 1069 break; 1070 case REQ_OP_FLUSH: 1071 nvme_setup_flush(ns, cmd); 1072 break; 1073 case REQ_OP_ZONE_RESET_ALL: 1074 case REQ_OP_ZONE_RESET: 1075 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1076 break; 1077 case REQ_OP_ZONE_OPEN: 1078 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1079 break; 1080 case REQ_OP_ZONE_CLOSE: 1081 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1082 break; 1083 case REQ_OP_ZONE_FINISH: 1084 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1085 break; 1086 case REQ_OP_WRITE_ZEROES: 1087 ret = nvme_setup_write_zeroes(ns, req, cmd); 1088 break; 1089 case REQ_OP_DISCARD: 1090 ret = nvme_setup_discard(ns, req, cmd); 1091 break; 1092 case REQ_OP_READ: 1093 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1094 break; 1095 case REQ_OP_WRITE: 1096 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1097 break; 1098 case REQ_OP_ZONE_APPEND: 1099 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1100 break; 1101 default: 1102 WARN_ON_ONCE(1); 1103 return BLK_STS_IOERR; 1104 } 1105 1106 cmd->common.command_id = nvme_cid(req); 1107 trace_nvme_setup_cmd(req, cmd); 1108 return ret; 1109 } 1110 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1111 1112 /* 1113 * Return values: 1114 * 0: success 1115 * >0: nvme controller's cqe status response 1116 * <0: kernel error in lieu of controller response 1117 */ 1118 int nvme_execute_rq(struct request *rq, bool at_head) 1119 { 1120 blk_status_t status; 1121 1122 status = blk_execute_rq(rq, at_head); 1123 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1124 return -EINTR; 1125 if (nvme_req(rq)->status) 1126 return nvme_req(rq)->status; 1127 return blk_status_to_errno(status); 1128 } 1129 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU"); 1130 1131 /* 1132 * Returns 0 on success. If the result is negative, it's a Linux error code; 1133 * if the result is positive, it's an NVM Express status code 1134 */ 1135 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1136 union nvme_result *result, void *buffer, unsigned bufflen, 1137 int qid, nvme_submit_flags_t flags) 1138 { 1139 struct request *req; 1140 int ret; 1141 blk_mq_req_flags_t blk_flags = 0; 1142 1143 if (flags & NVME_SUBMIT_NOWAIT) 1144 blk_flags |= BLK_MQ_REQ_NOWAIT; 1145 if (flags & NVME_SUBMIT_RESERVED) 1146 blk_flags |= BLK_MQ_REQ_RESERVED; 1147 if (qid == NVME_QID_ANY) 1148 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1149 else 1150 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1151 qid - 1); 1152 1153 if (IS_ERR(req)) 1154 return PTR_ERR(req); 1155 nvme_init_request(req, cmd); 1156 if (flags & NVME_SUBMIT_RETRY) 1157 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1158 1159 if (buffer && bufflen) { 1160 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1161 if (ret) 1162 goto out; 1163 } 1164 1165 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1166 if (result && ret >= 0) 1167 *result = nvme_req(req)->result; 1168 out: 1169 blk_mq_free_request(req); 1170 return ret; 1171 } 1172 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1173 1174 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1175 void *buffer, unsigned bufflen) 1176 { 1177 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1178 NVME_QID_ANY, 0); 1179 } 1180 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1181 1182 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1183 { 1184 u32 effects = 0; 1185 1186 if (ns) { 1187 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1188 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1189 dev_warn_once(ctrl->device, 1190 "IO command:%02x has unusual effects:%08x\n", 1191 opcode, effects); 1192 1193 /* 1194 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1195 * which would deadlock when done on an I/O command. Note that 1196 * We already warn about an unusual effect above. 1197 */ 1198 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1199 } else { 1200 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1201 1202 /* Ignore execution restrictions if any relaxation bits are set */ 1203 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1204 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1205 } 1206 1207 return effects; 1208 } 1209 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU"); 1210 1211 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1212 { 1213 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1214 1215 /* 1216 * For simplicity, IO to all namespaces is quiesced even if the command 1217 * effects say only one namespace is affected. 1218 */ 1219 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1220 mutex_lock(&ctrl->scan_lock); 1221 mutex_lock(&ctrl->subsys->lock); 1222 nvme_mpath_start_freeze(ctrl->subsys); 1223 nvme_mpath_wait_freeze(ctrl->subsys); 1224 nvme_start_freeze(ctrl); 1225 nvme_wait_freeze(ctrl); 1226 } 1227 return effects; 1228 } 1229 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU"); 1230 1231 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1232 struct nvme_command *cmd, int status) 1233 { 1234 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1235 nvme_unfreeze(ctrl); 1236 nvme_mpath_unfreeze(ctrl->subsys); 1237 mutex_unlock(&ctrl->subsys->lock); 1238 mutex_unlock(&ctrl->scan_lock); 1239 } 1240 if (effects & NVME_CMD_EFFECTS_CCC) { 1241 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1242 &ctrl->flags)) { 1243 dev_info(ctrl->device, 1244 "controller capabilities changed, reset may be required to take effect.\n"); 1245 } 1246 } 1247 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1248 nvme_queue_scan(ctrl); 1249 flush_work(&ctrl->scan_work); 1250 } 1251 if (ns) 1252 return; 1253 1254 switch (cmd->common.opcode) { 1255 case nvme_admin_set_features: 1256 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1257 case NVME_FEAT_KATO: 1258 /* 1259 * Keep alive commands interval on the host should be 1260 * updated when KATO is modified by Set Features 1261 * commands. 1262 */ 1263 if (!status) 1264 nvme_update_keep_alive(ctrl, cmd); 1265 break; 1266 default: 1267 break; 1268 } 1269 break; 1270 default: 1271 break; 1272 } 1273 } 1274 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU"); 1275 1276 /* 1277 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1278 * 1279 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1280 * accounting for transport roundtrip times [..]. 1281 */ 1282 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1283 { 1284 unsigned long delay = ctrl->kato * HZ / 2; 1285 1286 /* 1287 * When using Traffic Based Keep Alive, we need to run 1288 * nvme_keep_alive_work at twice the normal frequency, as one 1289 * command completion can postpone sending a keep alive command 1290 * by up to twice the delay between runs. 1291 */ 1292 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1293 delay /= 2; 1294 return delay; 1295 } 1296 1297 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1298 { 1299 unsigned long now = jiffies; 1300 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1301 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1302 1303 if (time_after(now, ka_next_check_tm)) 1304 delay = 0; 1305 else 1306 delay = ka_next_check_tm - now; 1307 1308 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1309 } 1310 1311 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1312 blk_status_t status) 1313 { 1314 struct nvme_ctrl *ctrl = rq->end_io_data; 1315 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1316 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1317 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 1318 1319 /* 1320 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1321 * at the desired frequency. 1322 */ 1323 if (rtt <= delay) { 1324 delay -= rtt; 1325 } else { 1326 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1327 jiffies_to_msecs(rtt)); 1328 delay = 0; 1329 } 1330 1331 blk_mq_free_request(rq); 1332 1333 if (status) { 1334 dev_err(ctrl->device, 1335 "failed nvme_keep_alive_end_io error=%d\n", 1336 status); 1337 return RQ_END_IO_NONE; 1338 } 1339 1340 ctrl->ka_last_check_time = jiffies; 1341 ctrl->comp_seen = false; 1342 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING) 1343 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1344 return RQ_END_IO_NONE; 1345 } 1346 1347 static void nvme_keep_alive_work(struct work_struct *work) 1348 { 1349 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1350 struct nvme_ctrl, ka_work); 1351 bool comp_seen = ctrl->comp_seen; 1352 struct request *rq; 1353 1354 ctrl->ka_last_check_time = jiffies; 1355 1356 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1357 dev_dbg(ctrl->device, 1358 "reschedule traffic based keep-alive timer\n"); 1359 ctrl->comp_seen = false; 1360 nvme_queue_keep_alive_work(ctrl); 1361 return; 1362 } 1363 1364 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1365 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1366 if (IS_ERR(rq)) { 1367 /* allocation failure, reset the controller */ 1368 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1369 nvme_reset_ctrl(ctrl); 1370 return; 1371 } 1372 nvme_init_request(rq, &ctrl->ka_cmd); 1373 1374 rq->timeout = ctrl->kato * HZ; 1375 rq->end_io = nvme_keep_alive_end_io; 1376 rq->end_io_data = ctrl; 1377 blk_execute_rq_nowait(rq, false); 1378 } 1379 1380 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1381 { 1382 if (unlikely(ctrl->kato == 0)) 1383 return; 1384 1385 nvme_queue_keep_alive_work(ctrl); 1386 } 1387 1388 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1389 { 1390 if (unlikely(ctrl->kato == 0)) 1391 return; 1392 1393 cancel_delayed_work_sync(&ctrl->ka_work); 1394 } 1395 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1396 1397 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1398 struct nvme_command *cmd) 1399 { 1400 unsigned int new_kato = 1401 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1402 1403 dev_info(ctrl->device, 1404 "keep alive interval updated from %u ms to %u ms\n", 1405 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1406 1407 nvme_stop_keep_alive(ctrl); 1408 ctrl->kato = new_kato; 1409 nvme_start_keep_alive(ctrl); 1410 } 1411 1412 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns) 1413 { 1414 /* 1415 * The CNS field occupies a full byte starting with NVMe 1.2 1416 */ 1417 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1418 return true; 1419 1420 /* 1421 * NVMe 1.1 expanded the CNS value to two bits, which means values 1422 * larger than that could get truncated and treated as an incorrect 1423 * value. 1424 * 1425 * Qemu implemented 1.0 behavior for controllers claiming 1.1 1426 * compliance, so they need to be quirked here. 1427 */ 1428 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1429 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) 1430 return cns <= 3; 1431 1432 /* 1433 * NVMe 1.0 used a single bit for the CNS value. 1434 */ 1435 return cns <= 1; 1436 } 1437 1438 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1439 { 1440 struct nvme_command c = { }; 1441 int error; 1442 1443 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1444 c.identify.opcode = nvme_admin_identify; 1445 c.identify.cns = NVME_ID_CNS_CTRL; 1446 1447 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1448 if (!*id) 1449 return -ENOMEM; 1450 1451 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1452 sizeof(struct nvme_id_ctrl)); 1453 if (error) { 1454 kfree(*id); 1455 *id = NULL; 1456 } 1457 return error; 1458 } 1459 1460 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1461 struct nvme_ns_id_desc *cur, bool *csi_seen) 1462 { 1463 const char *warn_str = "ctrl returned bogus length:"; 1464 void *data = cur; 1465 1466 switch (cur->nidt) { 1467 case NVME_NIDT_EUI64: 1468 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1469 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1470 warn_str, cur->nidl); 1471 return -1; 1472 } 1473 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1474 return NVME_NIDT_EUI64_LEN; 1475 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1476 return NVME_NIDT_EUI64_LEN; 1477 case NVME_NIDT_NGUID: 1478 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1479 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1480 warn_str, cur->nidl); 1481 return -1; 1482 } 1483 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1484 return NVME_NIDT_NGUID_LEN; 1485 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1486 return NVME_NIDT_NGUID_LEN; 1487 case NVME_NIDT_UUID: 1488 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1489 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1490 warn_str, cur->nidl); 1491 return -1; 1492 } 1493 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1494 return NVME_NIDT_UUID_LEN; 1495 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1496 return NVME_NIDT_UUID_LEN; 1497 case NVME_NIDT_CSI: 1498 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1499 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1500 warn_str, cur->nidl); 1501 return -1; 1502 } 1503 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1504 *csi_seen = true; 1505 return NVME_NIDT_CSI_LEN; 1506 default: 1507 /* Skip unknown types */ 1508 return cur->nidl; 1509 } 1510 } 1511 1512 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1513 struct nvme_ns_info *info) 1514 { 1515 struct nvme_command c = { }; 1516 bool csi_seen = false; 1517 int status, pos, len; 1518 void *data; 1519 1520 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1521 return 0; 1522 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1523 return 0; 1524 1525 c.identify.opcode = nvme_admin_identify; 1526 c.identify.nsid = cpu_to_le32(info->nsid); 1527 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1528 1529 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1530 if (!data) 1531 return -ENOMEM; 1532 1533 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1534 NVME_IDENTIFY_DATA_SIZE); 1535 if (status) { 1536 dev_warn(ctrl->device, 1537 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1538 info->nsid, status); 1539 goto free_data; 1540 } 1541 1542 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1543 struct nvme_ns_id_desc *cur = data + pos; 1544 1545 if (cur->nidl == 0) 1546 break; 1547 1548 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1549 if (len < 0) 1550 break; 1551 1552 len += sizeof(*cur); 1553 } 1554 1555 if (nvme_multi_css(ctrl) && !csi_seen) { 1556 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1557 info->nsid); 1558 status = -EINVAL; 1559 } 1560 1561 free_data: 1562 kfree(data); 1563 return status; 1564 } 1565 1566 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1567 struct nvme_id_ns **id) 1568 { 1569 struct nvme_command c = { }; 1570 int error; 1571 1572 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1573 c.identify.opcode = nvme_admin_identify; 1574 c.identify.nsid = cpu_to_le32(nsid); 1575 c.identify.cns = NVME_ID_CNS_NS; 1576 1577 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1578 if (!*id) 1579 return -ENOMEM; 1580 1581 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1582 if (error) { 1583 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1584 kfree(*id); 1585 *id = NULL; 1586 } 1587 return error; 1588 } 1589 1590 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1591 struct nvme_ns_info *info) 1592 { 1593 struct nvme_ns_ids *ids = &info->ids; 1594 struct nvme_id_ns *id; 1595 int ret; 1596 1597 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1598 if (ret) 1599 return ret; 1600 1601 if (id->ncap == 0) { 1602 /* namespace not allocated or attached */ 1603 info->is_removed = true; 1604 ret = -ENODEV; 1605 goto error; 1606 } 1607 1608 info->anagrpid = id->anagrpid; 1609 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1610 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1611 info->is_ready = true; 1612 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1613 dev_info(ctrl->device, 1614 "Ignoring bogus Namespace Identifiers\n"); 1615 } else { 1616 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1617 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1618 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1619 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1620 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1621 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1622 } 1623 1624 error: 1625 kfree(id); 1626 return ret; 1627 } 1628 1629 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1630 struct nvme_ns_info *info) 1631 { 1632 struct nvme_id_ns_cs_indep *id; 1633 struct nvme_command c = { 1634 .identify.opcode = nvme_admin_identify, 1635 .identify.nsid = cpu_to_le32(info->nsid), 1636 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1637 }; 1638 int ret; 1639 1640 id = kmalloc(sizeof(*id), GFP_KERNEL); 1641 if (!id) 1642 return -ENOMEM; 1643 1644 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1645 if (!ret) { 1646 info->anagrpid = id->anagrpid; 1647 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1648 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1649 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1650 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL; 1651 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT; 1652 } 1653 kfree(id); 1654 return ret; 1655 } 1656 1657 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1658 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1659 { 1660 union nvme_result res = { 0 }; 1661 struct nvme_command c = { }; 1662 int ret; 1663 1664 c.features.opcode = op; 1665 c.features.fid = cpu_to_le32(fid); 1666 c.features.dword11 = cpu_to_le32(dword11); 1667 1668 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1669 buffer, buflen, NVME_QID_ANY, 0); 1670 if (ret >= 0 && result) 1671 *result = le32_to_cpu(res.u32); 1672 return ret; 1673 } 1674 1675 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1676 unsigned int dword11, void *buffer, size_t buflen, 1677 u32 *result) 1678 { 1679 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1680 buflen, result); 1681 } 1682 EXPORT_SYMBOL_GPL(nvme_set_features); 1683 1684 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1685 unsigned int dword11, void *buffer, size_t buflen, 1686 u32 *result) 1687 { 1688 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1689 buflen, result); 1690 } 1691 EXPORT_SYMBOL_GPL(nvme_get_features); 1692 1693 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1694 { 1695 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1696 u32 result; 1697 int status, nr_io_queues; 1698 1699 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1700 &result); 1701 1702 /* 1703 * It's either a kernel error or the host observed a connection 1704 * lost. In either case it's not possible communicate with the 1705 * controller and thus enter the error code path. 1706 */ 1707 if (status < 0 || status == NVME_SC_HOST_PATH_ERROR) 1708 return status; 1709 1710 /* 1711 * Degraded controllers might return an error when setting the queue 1712 * count. We still want to be able to bring them online and offer 1713 * access to the admin queue, as that might be only way to fix them up. 1714 */ 1715 if (status > 0) { 1716 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1717 *count = 0; 1718 } else { 1719 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1720 *count = min(*count, nr_io_queues); 1721 } 1722 1723 return 0; 1724 } 1725 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1726 1727 #define NVME_AEN_SUPPORTED \ 1728 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1729 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1730 1731 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1732 { 1733 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1734 int status; 1735 1736 if (!supported_aens) 1737 return; 1738 1739 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1740 NULL, 0, &result); 1741 if (status) 1742 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1743 supported_aens); 1744 1745 queue_work(nvme_wq, &ctrl->async_event_work); 1746 } 1747 1748 static int nvme_ns_open(struct nvme_ns *ns) 1749 { 1750 1751 /* should never be called due to GENHD_FL_HIDDEN */ 1752 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1753 goto fail; 1754 if (!nvme_get_ns(ns)) 1755 goto fail; 1756 if (!try_module_get(ns->ctrl->ops->module)) 1757 goto fail_put_ns; 1758 1759 return 0; 1760 1761 fail_put_ns: 1762 nvme_put_ns(ns); 1763 fail: 1764 return -ENXIO; 1765 } 1766 1767 static void nvme_ns_release(struct nvme_ns *ns) 1768 { 1769 1770 module_put(ns->ctrl->ops->module); 1771 nvme_put_ns(ns); 1772 } 1773 1774 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1775 { 1776 return nvme_ns_open(disk->private_data); 1777 } 1778 1779 static void nvme_release(struct gendisk *disk) 1780 { 1781 nvme_ns_release(disk->private_data); 1782 } 1783 1784 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1785 { 1786 /* some standard values */ 1787 geo->heads = 1 << 6; 1788 geo->sectors = 1 << 5; 1789 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1790 return 0; 1791 } 1792 1793 static bool nvme_init_integrity(struct nvme_ns_head *head, 1794 struct queue_limits *lim, struct nvme_ns_info *info) 1795 { 1796 struct blk_integrity *bi = &lim->integrity; 1797 1798 memset(bi, 0, sizeof(*bi)); 1799 1800 if (!head->ms) 1801 return true; 1802 1803 /* 1804 * PI can always be supported as we can ask the controller to simply 1805 * insert/strip it, which is not possible for other kinds of metadata. 1806 */ 1807 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1808 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1809 return nvme_ns_has_pi(head); 1810 1811 switch (head->pi_type) { 1812 case NVME_NS_DPS_PI_TYPE3: 1813 switch (head->guard_type) { 1814 case NVME_NVM_NS_16B_GUARD: 1815 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1816 bi->tag_size = sizeof(u16) + sizeof(u32); 1817 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1818 break; 1819 case NVME_NVM_NS_64B_GUARD: 1820 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1821 bi->tag_size = sizeof(u16) + 6; 1822 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1823 break; 1824 default: 1825 break; 1826 } 1827 break; 1828 case NVME_NS_DPS_PI_TYPE1: 1829 case NVME_NS_DPS_PI_TYPE2: 1830 switch (head->guard_type) { 1831 case NVME_NVM_NS_16B_GUARD: 1832 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1833 bi->tag_size = sizeof(u16); 1834 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1835 BLK_INTEGRITY_REF_TAG; 1836 break; 1837 case NVME_NVM_NS_64B_GUARD: 1838 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1839 bi->tag_size = sizeof(u16); 1840 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1841 BLK_INTEGRITY_REF_TAG; 1842 break; 1843 default: 1844 break; 1845 } 1846 break; 1847 default: 1848 break; 1849 } 1850 1851 bi->tuple_size = head->ms; 1852 bi->pi_offset = info->pi_offset; 1853 return true; 1854 } 1855 1856 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1857 { 1858 struct nvme_ctrl *ctrl = ns->ctrl; 1859 1860 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1861 lim->max_hw_discard_sectors = 1862 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1863 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1864 lim->max_hw_discard_sectors = UINT_MAX; 1865 else 1866 lim->max_hw_discard_sectors = 0; 1867 1868 lim->discard_granularity = lim->logical_block_size; 1869 1870 if (ctrl->dmrl) 1871 lim->max_discard_segments = ctrl->dmrl; 1872 else 1873 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1874 } 1875 1876 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1877 { 1878 return uuid_equal(&a->uuid, &b->uuid) && 1879 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1880 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1881 a->csi == b->csi; 1882 } 1883 1884 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1885 struct nvme_id_ns_nvm **nvmp) 1886 { 1887 struct nvme_command c = { 1888 .identify.opcode = nvme_admin_identify, 1889 .identify.nsid = cpu_to_le32(nsid), 1890 .identify.cns = NVME_ID_CNS_CS_NS, 1891 .identify.csi = NVME_CSI_NVM, 1892 }; 1893 struct nvme_id_ns_nvm *nvm; 1894 int ret; 1895 1896 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1897 if (!nvm) 1898 return -ENOMEM; 1899 1900 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1901 if (ret) 1902 kfree(nvm); 1903 else 1904 *nvmp = nvm; 1905 return ret; 1906 } 1907 1908 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1909 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1910 { 1911 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1912 u8 guard_type; 1913 1914 /* no support for storage tag formats right now */ 1915 if (nvme_elbaf_sts(elbaf)) 1916 return; 1917 1918 guard_type = nvme_elbaf_guard_type(elbaf); 1919 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && 1920 guard_type == NVME_NVM_NS_QTYPE_GUARD) 1921 guard_type = nvme_elbaf_qualified_guard_type(elbaf); 1922 1923 head->guard_type = guard_type; 1924 switch (head->guard_type) { 1925 case NVME_NVM_NS_64B_GUARD: 1926 head->pi_size = sizeof(struct crc64_pi_tuple); 1927 break; 1928 case NVME_NVM_NS_16B_GUARD: 1929 head->pi_size = sizeof(struct t10_pi_tuple); 1930 break; 1931 default: 1932 break; 1933 } 1934 } 1935 1936 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1937 struct nvme_ns_head *head, struct nvme_id_ns *id, 1938 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) 1939 { 1940 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1941 head->pi_type = 0; 1942 head->pi_size = 0; 1943 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1944 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1945 return; 1946 1947 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1948 nvme_configure_pi_elbas(head, id, nvm); 1949 } else { 1950 head->pi_size = sizeof(struct t10_pi_tuple); 1951 head->guard_type = NVME_NVM_NS_16B_GUARD; 1952 } 1953 1954 if (head->pi_size && head->ms >= head->pi_size) 1955 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1956 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) { 1957 if (disable_pi_offsets) 1958 head->pi_type = 0; 1959 else 1960 info->pi_offset = head->ms - head->pi_size; 1961 } 1962 1963 if (ctrl->ops->flags & NVME_F_FABRICS) { 1964 /* 1965 * The NVMe over Fabrics specification only supports metadata as 1966 * part of the extended data LBA. We rely on HCA/HBA support to 1967 * remap the separate metadata buffer from the block layer. 1968 */ 1969 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1970 return; 1971 1972 head->features |= NVME_NS_EXT_LBAS; 1973 1974 /* 1975 * The current fabrics transport drivers support namespace 1976 * metadata formats only if nvme_ns_has_pi() returns true. 1977 * Suppress support for all other formats so the namespace will 1978 * have a 0 capacity and not be usable through the block stack. 1979 * 1980 * Note, this check will need to be modified if any drivers 1981 * gain the ability to use other metadata formats. 1982 */ 1983 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1984 head->features |= NVME_NS_METADATA_SUPPORTED; 1985 } else { 1986 /* 1987 * For PCIe controllers, we can't easily remap the separate 1988 * metadata buffer from the block layer and thus require a 1989 * separate metadata buffer for block layer metadata/PI support. 1990 * We allow extended LBAs for the passthrough interface, though. 1991 */ 1992 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1993 head->features |= NVME_NS_EXT_LBAS; 1994 else 1995 head->features |= NVME_NS_METADATA_SUPPORTED; 1996 } 1997 } 1998 1999 2000 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, 2001 struct nvme_id_ns *id, struct queue_limits *lim, 2002 u32 bs, u32 atomic_bs) 2003 { 2004 unsigned int boundary = 0; 2005 2006 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { 2007 if (le16_to_cpu(id->nabspf)) 2008 boundary = (le16_to_cpu(id->nabspf) + 1) * bs; 2009 } 2010 lim->atomic_write_hw_max = atomic_bs; 2011 lim->atomic_write_hw_boundary = boundary; 2012 lim->atomic_write_hw_unit_min = bs; 2013 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); 2014 lim->features |= BLK_FEAT_ATOMIC_WRITES; 2015 } 2016 2017 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 2018 { 2019 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 2020 } 2021 2022 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 2023 struct queue_limits *lim) 2024 { 2025 lim->max_hw_sectors = ctrl->max_hw_sectors; 2026 lim->max_segments = min_t(u32, USHRT_MAX, 2027 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 2028 lim->max_integrity_segments = ctrl->max_integrity_segments; 2029 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 2030 lim->max_segment_size = UINT_MAX; 2031 lim->dma_alignment = 3; 2032 } 2033 2034 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 2035 struct queue_limits *lim) 2036 { 2037 struct nvme_ns_head *head = ns->head; 2038 u32 bs = 1U << head->lba_shift; 2039 u32 atomic_bs, phys_bs, io_opt = 0; 2040 bool valid = true; 2041 2042 /* 2043 * The block layer can't support LBA sizes larger than the page size 2044 * or smaller than a sector size yet, so catch this early and don't 2045 * allow block I/O. 2046 */ 2047 if (blk_validate_block_size(bs)) { 2048 bs = (1 << 9); 2049 valid = false; 2050 } 2051 2052 atomic_bs = phys_bs = bs; 2053 if (id->nabo == 0) { 2054 /* 2055 * Bit 1 indicates whether NAWUPF is defined for this namespace 2056 * and whether it should be used instead of AWUPF. If NAWUPF == 2057 * 0 then AWUPF must be used instead. 2058 */ 2059 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 2060 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2061 else 2062 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2063 2064 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); 2065 } 2066 2067 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2068 /* NPWG = Namespace Preferred Write Granularity */ 2069 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2070 /* NOWS = Namespace Optimal Write Size */ 2071 if (id->nows) 2072 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2073 } 2074 2075 /* 2076 * Linux filesystems assume writing a single physical block is 2077 * an atomic operation. Hence limit the physical block size to the 2078 * value of the Atomic Write Unit Power Fail parameter. 2079 */ 2080 lim->logical_block_size = bs; 2081 lim->physical_block_size = min(phys_bs, atomic_bs); 2082 lim->io_min = phys_bs; 2083 lim->io_opt = io_opt; 2084 if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) && 2085 (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)) 2086 lim->max_write_zeroes_sectors = UINT_MAX; 2087 else 2088 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 2089 return valid; 2090 } 2091 2092 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 2093 { 2094 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 2095 } 2096 2097 static inline bool nvme_first_scan(struct gendisk *disk) 2098 { 2099 /* nvme_alloc_ns() scans the disk prior to adding it */ 2100 return !disk_live(disk); 2101 } 2102 2103 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2104 struct queue_limits *lim) 2105 { 2106 struct nvme_ctrl *ctrl = ns->ctrl; 2107 u32 iob; 2108 2109 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2110 is_power_of_2(ctrl->max_hw_sectors)) 2111 iob = ctrl->max_hw_sectors; 2112 else 2113 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2114 2115 if (!iob) 2116 return; 2117 2118 if (!is_power_of_2(iob)) { 2119 if (nvme_first_scan(ns->disk)) 2120 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2121 ns->disk->disk_name, iob); 2122 return; 2123 } 2124 2125 if (blk_queue_is_zoned(ns->disk->queue)) { 2126 if (nvme_first_scan(ns->disk)) 2127 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2128 ns->disk->disk_name); 2129 return; 2130 } 2131 2132 lim->chunk_sectors = iob; 2133 } 2134 2135 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2136 struct nvme_ns_info *info) 2137 { 2138 struct queue_limits lim; 2139 unsigned int memflags; 2140 int ret; 2141 2142 lim = queue_limits_start_update(ns->disk->queue); 2143 nvme_set_ctrl_limits(ns->ctrl, &lim); 2144 2145 memflags = blk_mq_freeze_queue(ns->disk->queue); 2146 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2147 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2148 blk_mq_unfreeze_queue(ns->disk->queue, memflags); 2149 2150 /* Hide the block-interface for these devices */ 2151 if (!ret) 2152 ret = -ENODEV; 2153 return ret; 2154 } 2155 2156 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2157 struct nvme_ns_info *info) 2158 { 2159 struct queue_limits lim; 2160 struct nvme_id_ns_nvm *nvm = NULL; 2161 struct nvme_zone_info zi = {}; 2162 struct nvme_id_ns *id; 2163 unsigned int memflags; 2164 sector_t capacity; 2165 unsigned lbaf; 2166 int ret; 2167 2168 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2169 if (ret) 2170 return ret; 2171 2172 if (id->ncap == 0) { 2173 /* namespace not allocated or attached */ 2174 info->is_removed = true; 2175 ret = -ENXIO; 2176 goto out; 2177 } 2178 lbaf = nvme_lbaf_index(id->flbas); 2179 2180 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2181 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2182 if (ret < 0) 2183 goto out; 2184 } 2185 2186 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2187 ns->head->ids.csi == NVME_CSI_ZNS) { 2188 ret = nvme_query_zone_info(ns, lbaf, &zi); 2189 if (ret < 0) 2190 goto out; 2191 } 2192 2193 lim = queue_limits_start_update(ns->disk->queue); 2194 2195 memflags = blk_mq_freeze_queue(ns->disk->queue); 2196 ns->head->lba_shift = id->lbaf[lbaf].ds; 2197 ns->head->nuse = le64_to_cpu(id->nuse); 2198 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2199 nvme_set_ctrl_limits(ns->ctrl, &lim); 2200 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info); 2201 nvme_set_chunk_sectors(ns, id, &lim); 2202 if (!nvme_update_disk_info(ns, id, &lim)) 2203 capacity = 0; 2204 nvme_config_discard(ns, &lim); 2205 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2206 ns->head->ids.csi == NVME_CSI_ZNS) 2207 nvme_update_zone_info(ns, &lim, &zi); 2208 2209 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc) 2210 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2211 else 2212 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2213 2214 if (info->is_rotational) 2215 lim.features |= BLK_FEAT_ROTATIONAL; 2216 2217 /* 2218 * Register a metadata profile for PI, or the plain non-integrity NVMe 2219 * metadata masquerading as Type 0 if supported, otherwise reject block 2220 * I/O to namespaces with metadata except when the namespace supports 2221 * PI, as it can strip/insert in that case. 2222 */ 2223 if (!nvme_init_integrity(ns->head, &lim, info)) 2224 capacity = 0; 2225 2226 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2227 if (ret) { 2228 blk_mq_unfreeze_queue(ns->disk->queue, memflags); 2229 goto out; 2230 } 2231 2232 set_capacity_and_notify(ns->disk, capacity); 2233 2234 /* 2235 * Only set the DEAC bit if the device guarantees that reads from 2236 * deallocated data return zeroes. While the DEAC bit does not 2237 * require that, it must be a no-op if reads from deallocated data 2238 * do not return zeroes. 2239 */ 2240 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2241 ns->head->features |= NVME_NS_DEAC; 2242 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2243 set_bit(NVME_NS_READY, &ns->flags); 2244 blk_mq_unfreeze_queue(ns->disk->queue, memflags); 2245 2246 if (blk_queue_is_zoned(ns->queue)) { 2247 ret = blk_revalidate_disk_zones(ns->disk); 2248 if (ret && !nvme_first_scan(ns->disk)) 2249 goto out; 2250 } 2251 2252 ret = 0; 2253 out: 2254 kfree(nvm); 2255 kfree(id); 2256 return ret; 2257 } 2258 2259 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2260 { 2261 bool unsupported = false; 2262 int ret; 2263 2264 switch (info->ids.csi) { 2265 case NVME_CSI_ZNS: 2266 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2267 dev_info(ns->ctrl->device, 2268 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2269 info->nsid); 2270 ret = nvme_update_ns_info_generic(ns, info); 2271 break; 2272 } 2273 ret = nvme_update_ns_info_block(ns, info); 2274 break; 2275 case NVME_CSI_NVM: 2276 ret = nvme_update_ns_info_block(ns, info); 2277 break; 2278 default: 2279 dev_info(ns->ctrl->device, 2280 "block device for nsid %u not supported (csi %u)\n", 2281 info->nsid, info->ids.csi); 2282 ret = nvme_update_ns_info_generic(ns, info); 2283 break; 2284 } 2285 2286 /* 2287 * If probing fails due an unsupported feature, hide the block device, 2288 * but still allow other access. 2289 */ 2290 if (ret == -ENODEV) { 2291 ns->disk->flags |= GENHD_FL_HIDDEN; 2292 set_bit(NVME_NS_READY, &ns->flags); 2293 unsupported = true; 2294 ret = 0; 2295 } 2296 2297 if (!ret && nvme_ns_head_multipath(ns->head)) { 2298 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2299 struct queue_limits lim; 2300 unsigned int memflags; 2301 2302 lim = queue_limits_start_update(ns->head->disk->queue); 2303 memflags = blk_mq_freeze_queue(ns->head->disk->queue); 2304 /* 2305 * queue_limits mixes values that are the hardware limitations 2306 * for bio splitting with what is the device configuration. 2307 * 2308 * For NVMe the device configuration can change after e.g. a 2309 * Format command, and we really want to pick up the new format 2310 * value here. But we must still stack the queue limits to the 2311 * least common denominator for multipathing to split the bios 2312 * properly. 2313 * 2314 * To work around this, we explicitly set the device 2315 * configuration to those that we just queried, but only stack 2316 * the splitting limits in to make sure we still obey possibly 2317 * lower limitations of other controllers. 2318 */ 2319 lim.logical_block_size = ns_lim->logical_block_size; 2320 lim.physical_block_size = ns_lim->physical_block_size; 2321 lim.io_min = ns_lim->io_min; 2322 lim.io_opt = ns_lim->io_opt; 2323 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2324 ns->head->disk->disk_name); 2325 if (unsupported) 2326 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2327 else 2328 nvme_init_integrity(ns->head, &lim, info); 2329 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2330 2331 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2332 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2333 nvme_mpath_revalidate_paths(ns); 2334 2335 blk_mq_unfreeze_queue(ns->head->disk->queue, memflags); 2336 } 2337 2338 return ret; 2339 } 2340 2341 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], 2342 enum blk_unique_id type) 2343 { 2344 struct nvme_ns_ids *ids = &ns->head->ids; 2345 2346 if (type != BLK_UID_EUI64) 2347 return -EINVAL; 2348 2349 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { 2350 memcpy(id, &ids->nguid, sizeof(ids->nguid)); 2351 return sizeof(ids->nguid); 2352 } 2353 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { 2354 memcpy(id, &ids->eui64, sizeof(ids->eui64)); 2355 return sizeof(ids->eui64); 2356 } 2357 2358 return -EINVAL; 2359 } 2360 2361 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], 2362 enum blk_unique_id type) 2363 { 2364 return nvme_ns_get_unique_id(disk->private_data, id, type); 2365 } 2366 2367 #ifdef CONFIG_BLK_SED_OPAL 2368 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2369 bool send) 2370 { 2371 struct nvme_ctrl *ctrl = data; 2372 struct nvme_command cmd = { }; 2373 2374 if (send) 2375 cmd.common.opcode = nvme_admin_security_send; 2376 else 2377 cmd.common.opcode = nvme_admin_security_recv; 2378 cmd.common.nsid = 0; 2379 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2380 cmd.common.cdw11 = cpu_to_le32(len); 2381 2382 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2383 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2384 } 2385 2386 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2387 { 2388 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2389 if (!ctrl->opal_dev) 2390 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2391 else if (was_suspended) 2392 opal_unlock_from_suspend(ctrl->opal_dev); 2393 } else { 2394 free_opal_dev(ctrl->opal_dev); 2395 ctrl->opal_dev = NULL; 2396 } 2397 } 2398 #else 2399 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2400 { 2401 } 2402 #endif /* CONFIG_BLK_SED_OPAL */ 2403 2404 #ifdef CONFIG_BLK_DEV_ZONED 2405 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2406 unsigned int nr_zones, report_zones_cb cb, void *data) 2407 { 2408 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2409 data); 2410 } 2411 #else 2412 #define nvme_report_zones NULL 2413 #endif /* CONFIG_BLK_DEV_ZONED */ 2414 2415 const struct block_device_operations nvme_bdev_ops = { 2416 .owner = THIS_MODULE, 2417 .ioctl = nvme_ioctl, 2418 .compat_ioctl = blkdev_compat_ptr_ioctl, 2419 .open = nvme_open, 2420 .release = nvme_release, 2421 .getgeo = nvme_getgeo, 2422 .get_unique_id = nvme_get_unique_id, 2423 .report_zones = nvme_report_zones, 2424 .pr_ops = &nvme_pr_ops, 2425 }; 2426 2427 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2428 u32 timeout, const char *op) 2429 { 2430 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2431 u32 csts; 2432 int ret; 2433 2434 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2435 if (csts == ~0) 2436 return -ENODEV; 2437 if ((csts & mask) == val) 2438 break; 2439 2440 usleep_range(1000, 2000); 2441 if (fatal_signal_pending(current)) 2442 return -EINTR; 2443 if (time_after(jiffies, timeout_jiffies)) { 2444 dev_err(ctrl->device, 2445 "Device not ready; aborting %s, CSTS=0x%x\n", 2446 op, csts); 2447 return -ENODEV; 2448 } 2449 } 2450 2451 return ret; 2452 } 2453 2454 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2455 { 2456 int ret; 2457 2458 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2459 if (shutdown) 2460 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2461 else 2462 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2463 2464 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2465 if (ret) 2466 return ret; 2467 2468 if (shutdown) { 2469 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2470 NVME_CSTS_SHST_CMPLT, 2471 ctrl->shutdown_timeout, "shutdown"); 2472 } 2473 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2474 msleep(NVME_QUIRK_DELAY_AMOUNT); 2475 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2476 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2477 } 2478 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2479 2480 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2481 { 2482 unsigned dev_page_min; 2483 u32 timeout; 2484 int ret; 2485 2486 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2487 if (ret) { 2488 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2489 return ret; 2490 } 2491 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2492 2493 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2494 dev_err(ctrl->device, 2495 "Minimum device page size %u too large for host (%u)\n", 2496 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2497 return -ENODEV; 2498 } 2499 2500 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2501 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2502 else 2503 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2504 2505 /* 2506 * Setting CRIME results in CSTS.RDY before the media is ready. This 2507 * makes it possible for media related commands to return the error 2508 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is 2509 * restructured to handle retries, disable CC.CRIME. 2510 */ 2511 ctrl->ctrl_config &= ~NVME_CC_CRIME; 2512 2513 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2514 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2515 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2516 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2517 if (ret) 2518 return ret; 2519 2520 /* CAP value may change after initial CC write */ 2521 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2522 if (ret) 2523 return ret; 2524 2525 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2526 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2527 u32 crto, ready_timeout; 2528 2529 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2530 if (ret) { 2531 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2532 ret); 2533 return ret; 2534 } 2535 2536 /* 2537 * CRTO should always be greater or equal to CAP.TO, but some 2538 * devices are known to get this wrong. Use the larger of the 2539 * two values. 2540 */ 2541 ready_timeout = NVME_CRTO_CRWMT(crto); 2542 2543 if (ready_timeout < timeout) 2544 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2545 crto, ctrl->cap); 2546 else 2547 timeout = ready_timeout; 2548 } 2549 2550 ctrl->ctrl_config |= NVME_CC_ENABLE; 2551 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2552 if (ret) 2553 return ret; 2554 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2555 (timeout + 1) / 2, "initialisation"); 2556 } 2557 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2558 2559 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2560 { 2561 __le64 ts; 2562 int ret; 2563 2564 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2565 return 0; 2566 2567 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2568 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2569 NULL); 2570 if (ret) 2571 dev_warn_once(ctrl->device, 2572 "could not set timestamp (%d)\n", ret); 2573 return ret; 2574 } 2575 2576 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2577 { 2578 struct nvme_feat_host_behavior *host; 2579 u8 acre = 0, lbafee = 0; 2580 int ret; 2581 2582 /* Don't bother enabling the feature if retry delay is not reported */ 2583 if (ctrl->crdt[0]) 2584 acre = NVME_ENABLE_ACRE; 2585 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2586 lbafee = NVME_ENABLE_LBAFEE; 2587 2588 if (!acre && !lbafee) 2589 return 0; 2590 2591 host = kzalloc(sizeof(*host), GFP_KERNEL); 2592 if (!host) 2593 return 0; 2594 2595 host->acre = acre; 2596 host->lbafee = lbafee; 2597 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2598 host, sizeof(*host), NULL); 2599 kfree(host); 2600 return ret; 2601 } 2602 2603 /* 2604 * The function checks whether the given total (exlat + enlat) latency of 2605 * a power state allows the latter to be used as an APST transition target. 2606 * It does so by comparing the latency to the primary and secondary latency 2607 * tolerances defined by module params. If there's a match, the corresponding 2608 * timeout value is returned and the matching tolerance index (1 or 2) is 2609 * reported. 2610 */ 2611 static bool nvme_apst_get_transition_time(u64 total_latency, 2612 u64 *transition_time, unsigned *last_index) 2613 { 2614 if (total_latency <= apst_primary_latency_tol_us) { 2615 if (*last_index == 1) 2616 return false; 2617 *last_index = 1; 2618 *transition_time = apst_primary_timeout_ms; 2619 return true; 2620 } 2621 if (apst_secondary_timeout_ms && 2622 total_latency <= apst_secondary_latency_tol_us) { 2623 if (*last_index <= 2) 2624 return false; 2625 *last_index = 2; 2626 *transition_time = apst_secondary_timeout_ms; 2627 return true; 2628 } 2629 return false; 2630 } 2631 2632 /* 2633 * APST (Autonomous Power State Transition) lets us program a table of power 2634 * state transitions that the controller will perform automatically. 2635 * 2636 * Depending on module params, one of the two supported techniques will be used: 2637 * 2638 * - If the parameters provide explicit timeouts and tolerances, they will be 2639 * used to build a table with up to 2 non-operational states to transition to. 2640 * The default parameter values were selected based on the values used by 2641 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2642 * regeneration of the APST table in the event of switching between external 2643 * and battery power, the timeouts and tolerances reflect a compromise 2644 * between values used by Microsoft for AC and battery scenarios. 2645 * - If not, we'll configure the table with a simple heuristic: we are willing 2646 * to spend at most 2% of the time transitioning between power states. 2647 * Therefore, when running in any given state, we will enter the next 2648 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2649 * microseconds, as long as that state's exit latency is under the requested 2650 * maximum latency. 2651 * 2652 * We will not autonomously enter any non-operational state for which the total 2653 * latency exceeds ps_max_latency_us. 2654 * 2655 * Users can set ps_max_latency_us to zero to turn off APST. 2656 */ 2657 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2658 { 2659 struct nvme_feat_auto_pst *table; 2660 unsigned apste = 0; 2661 u64 max_lat_us = 0; 2662 __le64 target = 0; 2663 int max_ps = -1; 2664 int state; 2665 int ret; 2666 unsigned last_lt_index = UINT_MAX; 2667 2668 /* 2669 * If APST isn't supported or if we haven't been initialized yet, 2670 * then don't do anything. 2671 */ 2672 if (!ctrl->apsta) 2673 return 0; 2674 2675 if (ctrl->npss > 31) { 2676 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2677 return 0; 2678 } 2679 2680 table = kzalloc(sizeof(*table), GFP_KERNEL); 2681 if (!table) 2682 return 0; 2683 2684 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2685 /* Turn off APST. */ 2686 dev_dbg(ctrl->device, "APST disabled\n"); 2687 goto done; 2688 } 2689 2690 /* 2691 * Walk through all states from lowest- to highest-power. 2692 * According to the spec, lower-numbered states use more power. NPSS, 2693 * despite the name, is the index of the lowest-power state, not the 2694 * number of states. 2695 */ 2696 for (state = (int)ctrl->npss; state >= 0; state--) { 2697 u64 total_latency_us, exit_latency_us, transition_ms; 2698 2699 if (target) 2700 table->entries[state] = target; 2701 2702 /* 2703 * Don't allow transitions to the deepest state if it's quirked 2704 * off. 2705 */ 2706 if (state == ctrl->npss && 2707 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2708 continue; 2709 2710 /* 2711 * Is this state a useful non-operational state for higher-power 2712 * states to autonomously transition to? 2713 */ 2714 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2715 continue; 2716 2717 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2718 if (exit_latency_us > ctrl->ps_max_latency_us) 2719 continue; 2720 2721 total_latency_us = exit_latency_us + 2722 le32_to_cpu(ctrl->psd[state].entry_lat); 2723 2724 /* 2725 * This state is good. It can be used as the APST idle target 2726 * for higher power states. 2727 */ 2728 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2729 if (!nvme_apst_get_transition_time(total_latency_us, 2730 &transition_ms, &last_lt_index)) 2731 continue; 2732 } else { 2733 transition_ms = total_latency_us + 19; 2734 do_div(transition_ms, 20); 2735 if (transition_ms > (1 << 24) - 1) 2736 transition_ms = (1 << 24) - 1; 2737 } 2738 2739 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2740 if (max_ps == -1) 2741 max_ps = state; 2742 if (total_latency_us > max_lat_us) 2743 max_lat_us = total_latency_us; 2744 } 2745 2746 if (max_ps == -1) 2747 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2748 else 2749 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2750 max_ps, max_lat_us, (int)sizeof(*table), table); 2751 apste = 1; 2752 2753 done: 2754 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2755 table, sizeof(*table), NULL); 2756 if (ret) 2757 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2758 kfree(table); 2759 return ret; 2760 } 2761 2762 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2763 { 2764 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2765 u64 latency; 2766 2767 switch (val) { 2768 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2769 case PM_QOS_LATENCY_ANY: 2770 latency = U64_MAX; 2771 break; 2772 2773 default: 2774 latency = val; 2775 } 2776 2777 if (ctrl->ps_max_latency_us != latency) { 2778 ctrl->ps_max_latency_us = latency; 2779 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2780 nvme_configure_apst(ctrl); 2781 } 2782 } 2783 2784 struct nvme_core_quirk_entry { 2785 /* 2786 * NVMe model and firmware strings are padded with spaces. For 2787 * simplicity, strings in the quirk table are padded with NULLs 2788 * instead. 2789 */ 2790 u16 vid; 2791 const char *mn; 2792 const char *fr; 2793 unsigned long quirks; 2794 }; 2795 2796 static const struct nvme_core_quirk_entry core_quirks[] = { 2797 { 2798 /* 2799 * This Toshiba device seems to die using any APST states. See: 2800 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2801 */ 2802 .vid = 0x1179, 2803 .mn = "THNSF5256GPUK TOSHIBA", 2804 .quirks = NVME_QUIRK_NO_APST, 2805 }, 2806 { 2807 /* 2808 * This LiteON CL1-3D*-Q11 firmware version has a race 2809 * condition associated with actions related to suspend to idle 2810 * LiteON has resolved the problem in future firmware 2811 */ 2812 .vid = 0x14a4, 2813 .fr = "22301111", 2814 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2815 }, 2816 { 2817 /* 2818 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2819 * aborts I/O during any load, but more easily reproducible 2820 * with discards (fstrim). 2821 * 2822 * The device is left in a state where it is also not possible 2823 * to use "nvme set-feature" to disable APST, but booting with 2824 * nvme_core.default_ps_max_latency=0 works. 2825 */ 2826 .vid = 0x1e0f, 2827 .mn = "KCD6XVUL6T40", 2828 .quirks = NVME_QUIRK_NO_APST, 2829 }, 2830 { 2831 /* 2832 * The external Samsung X5 SSD fails initialization without a 2833 * delay before checking if it is ready and has a whole set of 2834 * other problems. To make this even more interesting, it 2835 * shares the PCI ID with internal Samsung 970 Evo Plus that 2836 * does not need or want these quirks. 2837 */ 2838 .vid = 0x144d, 2839 .mn = "Samsung Portable SSD X5", 2840 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2841 NVME_QUIRK_NO_DEEPEST_PS | 2842 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2843 } 2844 }; 2845 2846 /* match is null-terminated but idstr is space-padded. */ 2847 static bool string_matches(const char *idstr, const char *match, size_t len) 2848 { 2849 size_t matchlen; 2850 2851 if (!match) 2852 return true; 2853 2854 matchlen = strlen(match); 2855 WARN_ON_ONCE(matchlen > len); 2856 2857 if (memcmp(idstr, match, matchlen)) 2858 return false; 2859 2860 for (; matchlen < len; matchlen++) 2861 if (idstr[matchlen] != ' ') 2862 return false; 2863 2864 return true; 2865 } 2866 2867 static bool quirk_matches(const struct nvme_id_ctrl *id, 2868 const struct nvme_core_quirk_entry *q) 2869 { 2870 return q->vid == le16_to_cpu(id->vid) && 2871 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2872 string_matches(id->fr, q->fr, sizeof(id->fr)); 2873 } 2874 2875 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2876 struct nvme_id_ctrl *id) 2877 { 2878 size_t nqnlen; 2879 int off; 2880 2881 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2882 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2883 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2884 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2885 return; 2886 } 2887 2888 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2889 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2890 } 2891 2892 /* 2893 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2894 * Base Specification 2.0. It is slightly different from the format 2895 * specified there due to historic reasons, and we can't change it now. 2896 */ 2897 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2898 "nqn.2014.08.org.nvmexpress:%04x%04x", 2899 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2900 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2901 off += sizeof(id->sn); 2902 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2903 off += sizeof(id->mn); 2904 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2905 } 2906 2907 static void nvme_release_subsystem(struct device *dev) 2908 { 2909 struct nvme_subsystem *subsys = 2910 container_of(dev, struct nvme_subsystem, dev); 2911 2912 if (subsys->instance >= 0) 2913 ida_free(&nvme_instance_ida, subsys->instance); 2914 kfree(subsys); 2915 } 2916 2917 static void nvme_destroy_subsystem(struct kref *ref) 2918 { 2919 struct nvme_subsystem *subsys = 2920 container_of(ref, struct nvme_subsystem, ref); 2921 2922 mutex_lock(&nvme_subsystems_lock); 2923 list_del(&subsys->entry); 2924 mutex_unlock(&nvme_subsystems_lock); 2925 2926 ida_destroy(&subsys->ns_ida); 2927 device_del(&subsys->dev); 2928 put_device(&subsys->dev); 2929 } 2930 2931 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2932 { 2933 kref_put(&subsys->ref, nvme_destroy_subsystem); 2934 } 2935 2936 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2937 { 2938 struct nvme_subsystem *subsys; 2939 2940 lockdep_assert_held(&nvme_subsystems_lock); 2941 2942 /* 2943 * Fail matches for discovery subsystems. This results 2944 * in each discovery controller bound to a unique subsystem. 2945 * This avoids issues with validating controller values 2946 * that can only be true when there is a single unique subsystem. 2947 * There may be multiple and completely independent entities 2948 * that provide discovery controllers. 2949 */ 2950 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2951 return NULL; 2952 2953 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2954 if (strcmp(subsys->subnqn, subsysnqn)) 2955 continue; 2956 if (!kref_get_unless_zero(&subsys->ref)) 2957 continue; 2958 return subsys; 2959 } 2960 2961 return NULL; 2962 } 2963 2964 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2965 { 2966 return ctrl->opts && ctrl->opts->discovery_nqn; 2967 } 2968 2969 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2970 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2971 { 2972 struct nvme_ctrl *tmp; 2973 2974 lockdep_assert_held(&nvme_subsystems_lock); 2975 2976 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2977 if (nvme_state_terminal(tmp)) 2978 continue; 2979 2980 if (tmp->cntlid == ctrl->cntlid) { 2981 dev_err(ctrl->device, 2982 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2983 ctrl->cntlid, dev_name(tmp->device), 2984 subsys->subnqn); 2985 return false; 2986 } 2987 2988 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2989 nvme_discovery_ctrl(ctrl)) 2990 continue; 2991 2992 dev_err(ctrl->device, 2993 "Subsystem does not support multiple controllers\n"); 2994 return false; 2995 } 2996 2997 return true; 2998 } 2999 3000 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3001 { 3002 struct nvme_subsystem *subsys, *found; 3003 int ret; 3004 3005 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 3006 if (!subsys) 3007 return -ENOMEM; 3008 3009 subsys->instance = -1; 3010 mutex_init(&subsys->lock); 3011 kref_init(&subsys->ref); 3012 INIT_LIST_HEAD(&subsys->ctrls); 3013 INIT_LIST_HEAD(&subsys->nsheads); 3014 nvme_init_subnqn(subsys, ctrl, id); 3015 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 3016 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 3017 subsys->vendor_id = le16_to_cpu(id->vid); 3018 subsys->cmic = id->cmic; 3019 3020 /* Versions prior to 1.4 don't necessarily report a valid type */ 3021 if (id->cntrltype == NVME_CTRL_DISC || 3022 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 3023 subsys->subtype = NVME_NQN_DISC; 3024 else 3025 subsys->subtype = NVME_NQN_NVME; 3026 3027 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 3028 dev_err(ctrl->device, 3029 "Subsystem %s is not a discovery controller", 3030 subsys->subnqn); 3031 kfree(subsys); 3032 return -EINVAL; 3033 } 3034 subsys->awupf = le16_to_cpu(id->awupf); 3035 nvme_mpath_default_iopolicy(subsys); 3036 3037 subsys->dev.class = &nvme_subsys_class; 3038 subsys->dev.release = nvme_release_subsystem; 3039 subsys->dev.groups = nvme_subsys_attrs_groups; 3040 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 3041 device_initialize(&subsys->dev); 3042 3043 mutex_lock(&nvme_subsystems_lock); 3044 found = __nvme_find_get_subsystem(subsys->subnqn); 3045 if (found) { 3046 put_device(&subsys->dev); 3047 subsys = found; 3048 3049 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 3050 ret = -EINVAL; 3051 goto out_put_subsystem; 3052 } 3053 } else { 3054 ret = device_add(&subsys->dev); 3055 if (ret) { 3056 dev_err(ctrl->device, 3057 "failed to register subsystem device.\n"); 3058 put_device(&subsys->dev); 3059 goto out_unlock; 3060 } 3061 ida_init(&subsys->ns_ida); 3062 list_add_tail(&subsys->entry, &nvme_subsystems); 3063 } 3064 3065 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 3066 dev_name(ctrl->device)); 3067 if (ret) { 3068 dev_err(ctrl->device, 3069 "failed to create sysfs link from subsystem.\n"); 3070 goto out_put_subsystem; 3071 } 3072 3073 if (!found) 3074 subsys->instance = ctrl->instance; 3075 ctrl->subsys = subsys; 3076 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3077 mutex_unlock(&nvme_subsystems_lock); 3078 return 0; 3079 3080 out_put_subsystem: 3081 nvme_put_subsystem(subsys); 3082 out_unlock: 3083 mutex_unlock(&nvme_subsystems_lock); 3084 return ret; 3085 } 3086 3087 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3088 void *log, size_t size, u64 offset) 3089 { 3090 struct nvme_command c = { }; 3091 u32 dwlen = nvme_bytes_to_numd(size); 3092 3093 c.get_log_page.opcode = nvme_admin_get_log_page; 3094 c.get_log_page.nsid = cpu_to_le32(nsid); 3095 c.get_log_page.lid = log_page; 3096 c.get_log_page.lsp = lsp; 3097 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3098 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3099 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3100 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3101 c.get_log_page.csi = csi; 3102 3103 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3104 } 3105 3106 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3107 struct nvme_effects_log **log) 3108 { 3109 struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi); 3110 int ret; 3111 3112 if (cel) 3113 goto out; 3114 3115 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3116 if (!cel) 3117 return -ENOMEM; 3118 3119 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3120 cel, sizeof(*cel), 0); 3121 if (ret) { 3122 kfree(cel); 3123 return ret; 3124 } 3125 3126 old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3127 if (xa_is_err(old)) { 3128 kfree(cel); 3129 return xa_err(old); 3130 } 3131 out: 3132 *log = cel; 3133 return 0; 3134 } 3135 3136 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3137 { 3138 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3139 3140 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3141 return UINT_MAX; 3142 return val; 3143 } 3144 3145 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3146 { 3147 struct nvme_command c = { }; 3148 struct nvme_id_ctrl_nvm *id; 3149 int ret; 3150 3151 /* 3152 * Even though NVMe spec explicitly states that MDTS is not applicable 3153 * to the write-zeroes, we are cautious and limit the size to the 3154 * controllers max_hw_sectors value, which is based on the MDTS field 3155 * and possibly other limiting factors. 3156 */ 3157 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3158 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3159 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3160 else 3161 ctrl->max_zeroes_sectors = 0; 3162 3163 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3164 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) || 3165 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3166 return 0; 3167 3168 id = kzalloc(sizeof(*id), GFP_KERNEL); 3169 if (!id) 3170 return -ENOMEM; 3171 3172 c.identify.opcode = nvme_admin_identify; 3173 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3174 c.identify.csi = NVME_CSI_NVM; 3175 3176 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3177 if (ret) 3178 goto free_data; 3179 3180 ctrl->dmrl = id->dmrl; 3181 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3182 if (id->wzsl) 3183 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3184 3185 free_data: 3186 if (ret > 0) 3187 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3188 kfree(id); 3189 return ret; 3190 } 3191 3192 static int nvme_init_effects_log(struct nvme_ctrl *ctrl, 3193 u8 csi, struct nvme_effects_log **log) 3194 { 3195 struct nvme_effects_log *effects, *old; 3196 3197 effects = kzalloc(sizeof(*effects), GFP_KERNEL); 3198 if (!effects) 3199 return -ENOMEM; 3200 3201 old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL); 3202 if (xa_is_err(old)) { 3203 kfree(effects); 3204 return xa_err(old); 3205 } 3206 3207 *log = effects; 3208 return 0; 3209 } 3210 3211 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3212 { 3213 struct nvme_effects_log *log = ctrl->effects; 3214 3215 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3216 NVME_CMD_EFFECTS_NCC | 3217 NVME_CMD_EFFECTS_CSE_MASK); 3218 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3219 NVME_CMD_EFFECTS_CSE_MASK); 3220 3221 /* 3222 * The spec says the result of a security receive command depends on 3223 * the previous security send command. As such, many vendors log this 3224 * command as one to submitted only when no other commands to the same 3225 * namespace are outstanding. The intention is to tell the host to 3226 * prevent mixing security send and receive. 3227 * 3228 * This driver can only enforce such exclusive access against IO 3229 * queues, though. We are not readily able to enforce such a rule for 3230 * two commands to the admin queue, which is the only queue that 3231 * matters for this command. 3232 * 3233 * Rather than blindly freezing the IO queues for this effect that 3234 * doesn't even apply to IO, mask it off. 3235 */ 3236 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3237 3238 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3239 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3240 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3241 } 3242 3243 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3244 { 3245 int ret = 0; 3246 3247 if (ctrl->effects) 3248 return 0; 3249 3250 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3251 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3252 if (ret < 0) 3253 return ret; 3254 } 3255 3256 if (!ctrl->effects) { 3257 ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3258 if (ret < 0) 3259 return ret; 3260 } 3261 3262 nvme_init_known_nvm_effects(ctrl); 3263 return 0; 3264 } 3265 3266 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3267 { 3268 /* 3269 * In fabrics we need to verify the cntlid matches the 3270 * admin connect 3271 */ 3272 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3273 dev_err(ctrl->device, 3274 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3275 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3276 return -EINVAL; 3277 } 3278 3279 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3280 dev_err(ctrl->device, 3281 "keep-alive support is mandatory for fabrics\n"); 3282 return -EINVAL; 3283 } 3284 3285 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3286 dev_err(ctrl->device, 3287 "I/O queue command capsule supported size %d < 4\n", 3288 ctrl->ioccsz); 3289 return -EINVAL; 3290 } 3291 3292 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3293 dev_err(ctrl->device, 3294 "I/O queue response capsule supported size %d < 1\n", 3295 ctrl->iorcsz); 3296 return -EINVAL; 3297 } 3298 3299 if (!ctrl->maxcmd) { 3300 dev_warn(ctrl->device, 3301 "Firmware bug: maximum outstanding commands is 0\n"); 3302 ctrl->maxcmd = ctrl->sqsize + 1; 3303 } 3304 3305 return 0; 3306 } 3307 3308 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3309 { 3310 struct queue_limits lim; 3311 struct nvme_id_ctrl *id; 3312 u32 max_hw_sectors; 3313 bool prev_apst_enabled; 3314 int ret; 3315 3316 ret = nvme_identify_ctrl(ctrl, &id); 3317 if (ret) { 3318 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3319 return -EIO; 3320 } 3321 3322 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3323 ctrl->cntlid = le16_to_cpu(id->cntlid); 3324 3325 if (!ctrl->identified) { 3326 unsigned int i; 3327 3328 /* 3329 * Check for quirks. Quirk can depend on firmware version, 3330 * so, in principle, the set of quirks present can change 3331 * across a reset. As a possible future enhancement, we 3332 * could re-scan for quirks every time we reinitialize 3333 * the device, but we'd have to make sure that the driver 3334 * behaves intelligently if the quirks change. 3335 */ 3336 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3337 if (quirk_matches(id, &core_quirks[i])) 3338 ctrl->quirks |= core_quirks[i].quirks; 3339 } 3340 3341 ret = nvme_init_subsystem(ctrl, id); 3342 if (ret) 3343 goto out_free; 3344 3345 ret = nvme_init_effects(ctrl, id); 3346 if (ret) 3347 goto out_free; 3348 } 3349 memcpy(ctrl->subsys->firmware_rev, id->fr, 3350 sizeof(ctrl->subsys->firmware_rev)); 3351 3352 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3353 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3354 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3355 } 3356 3357 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3358 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3359 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3360 3361 ctrl->oacs = le16_to_cpu(id->oacs); 3362 ctrl->oncs = le16_to_cpu(id->oncs); 3363 ctrl->mtfa = le16_to_cpu(id->mtfa); 3364 ctrl->oaes = le32_to_cpu(id->oaes); 3365 ctrl->wctemp = le16_to_cpu(id->wctemp); 3366 ctrl->cctemp = le16_to_cpu(id->cctemp); 3367 3368 atomic_set(&ctrl->abort_limit, id->acl + 1); 3369 ctrl->vwc = id->vwc; 3370 if (id->mdts) 3371 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3372 else 3373 max_hw_sectors = UINT_MAX; 3374 ctrl->max_hw_sectors = 3375 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3376 3377 lim = queue_limits_start_update(ctrl->admin_q); 3378 nvme_set_ctrl_limits(ctrl, &lim); 3379 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3380 if (ret) 3381 goto out_free; 3382 3383 ctrl->sgls = le32_to_cpu(id->sgls); 3384 ctrl->kas = le16_to_cpu(id->kas); 3385 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3386 ctrl->ctratt = le32_to_cpu(id->ctratt); 3387 3388 ctrl->cntrltype = id->cntrltype; 3389 ctrl->dctype = id->dctype; 3390 3391 if (id->rtd3e) { 3392 /* us -> s */ 3393 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3394 3395 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3396 shutdown_timeout, 60); 3397 3398 if (ctrl->shutdown_timeout != shutdown_timeout) 3399 dev_info(ctrl->device, 3400 "D3 entry latency set to %u seconds\n", 3401 ctrl->shutdown_timeout); 3402 } else 3403 ctrl->shutdown_timeout = shutdown_timeout; 3404 3405 ctrl->npss = id->npss; 3406 ctrl->apsta = id->apsta; 3407 prev_apst_enabled = ctrl->apst_enabled; 3408 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3409 if (force_apst && id->apsta) { 3410 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3411 ctrl->apst_enabled = true; 3412 } else { 3413 ctrl->apst_enabled = false; 3414 } 3415 } else { 3416 ctrl->apst_enabled = id->apsta; 3417 } 3418 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3419 3420 if (ctrl->ops->flags & NVME_F_FABRICS) { 3421 ctrl->icdoff = le16_to_cpu(id->icdoff); 3422 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3423 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3424 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3425 3426 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3427 if (ret) 3428 goto out_free; 3429 } else { 3430 ctrl->hmpre = le32_to_cpu(id->hmpre); 3431 ctrl->hmmin = le32_to_cpu(id->hmmin); 3432 ctrl->hmminds = le32_to_cpu(id->hmminds); 3433 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3434 } 3435 3436 ret = nvme_mpath_init_identify(ctrl, id); 3437 if (ret < 0) 3438 goto out_free; 3439 3440 if (ctrl->apst_enabled && !prev_apst_enabled) 3441 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3442 else if (!ctrl->apst_enabled && prev_apst_enabled) 3443 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3444 3445 out_free: 3446 kfree(id); 3447 return ret; 3448 } 3449 3450 /* 3451 * Initialize the cached copies of the Identify data and various controller 3452 * register in our nvme_ctrl structure. This should be called as soon as 3453 * the admin queue is fully up and running. 3454 */ 3455 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3456 { 3457 int ret; 3458 3459 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3460 if (ret) { 3461 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3462 return ret; 3463 } 3464 3465 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3466 3467 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3468 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3469 3470 ret = nvme_init_identify(ctrl); 3471 if (ret) 3472 return ret; 3473 3474 ret = nvme_configure_apst(ctrl); 3475 if (ret < 0) 3476 return ret; 3477 3478 ret = nvme_configure_timestamp(ctrl); 3479 if (ret < 0) 3480 return ret; 3481 3482 ret = nvme_configure_host_options(ctrl); 3483 if (ret < 0) 3484 return ret; 3485 3486 nvme_configure_opal(ctrl, was_suspended); 3487 3488 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3489 /* 3490 * Do not return errors unless we are in a controller reset, 3491 * the controller works perfectly fine without hwmon. 3492 */ 3493 ret = nvme_hwmon_init(ctrl); 3494 if (ret == -EINTR) 3495 return ret; 3496 } 3497 3498 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3499 ctrl->identified = true; 3500 3501 nvme_start_keep_alive(ctrl); 3502 3503 return 0; 3504 } 3505 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3506 3507 static int nvme_dev_open(struct inode *inode, struct file *file) 3508 { 3509 struct nvme_ctrl *ctrl = 3510 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3511 3512 switch (nvme_ctrl_state(ctrl)) { 3513 case NVME_CTRL_LIVE: 3514 break; 3515 default: 3516 return -EWOULDBLOCK; 3517 } 3518 3519 nvme_get_ctrl(ctrl); 3520 if (!try_module_get(ctrl->ops->module)) { 3521 nvme_put_ctrl(ctrl); 3522 return -EINVAL; 3523 } 3524 3525 file->private_data = ctrl; 3526 return 0; 3527 } 3528 3529 static int nvme_dev_release(struct inode *inode, struct file *file) 3530 { 3531 struct nvme_ctrl *ctrl = 3532 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3533 3534 module_put(ctrl->ops->module); 3535 nvme_put_ctrl(ctrl); 3536 return 0; 3537 } 3538 3539 static const struct file_operations nvme_dev_fops = { 3540 .owner = THIS_MODULE, 3541 .open = nvme_dev_open, 3542 .release = nvme_dev_release, 3543 .unlocked_ioctl = nvme_dev_ioctl, 3544 .compat_ioctl = compat_ptr_ioctl, 3545 .uring_cmd = nvme_dev_uring_cmd, 3546 }; 3547 3548 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3549 unsigned nsid) 3550 { 3551 struct nvme_ns_head *h; 3552 3553 lockdep_assert_held(&ctrl->subsys->lock); 3554 3555 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3556 /* 3557 * Private namespaces can share NSIDs under some conditions. 3558 * In that case we can't use the same ns_head for namespaces 3559 * with the same NSID. 3560 */ 3561 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3562 continue; 3563 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3564 return h; 3565 } 3566 3567 return NULL; 3568 } 3569 3570 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3571 struct nvme_ns_ids *ids) 3572 { 3573 bool has_uuid = !uuid_is_null(&ids->uuid); 3574 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3575 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3576 struct nvme_ns_head *h; 3577 3578 lockdep_assert_held(&subsys->lock); 3579 3580 list_for_each_entry(h, &subsys->nsheads, entry) { 3581 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3582 return -EINVAL; 3583 if (has_nguid && 3584 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3585 return -EINVAL; 3586 if (has_eui64 && 3587 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3588 return -EINVAL; 3589 } 3590 3591 return 0; 3592 } 3593 3594 static void nvme_cdev_rel(struct device *dev) 3595 { 3596 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3597 } 3598 3599 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3600 { 3601 cdev_device_del(cdev, cdev_device); 3602 put_device(cdev_device); 3603 } 3604 3605 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3606 const struct file_operations *fops, struct module *owner) 3607 { 3608 int minor, ret; 3609 3610 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3611 if (minor < 0) 3612 return minor; 3613 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3614 cdev_device->class = &nvme_ns_chr_class; 3615 cdev_device->release = nvme_cdev_rel; 3616 device_initialize(cdev_device); 3617 cdev_init(cdev, fops); 3618 cdev->owner = owner; 3619 ret = cdev_device_add(cdev, cdev_device); 3620 if (ret) 3621 put_device(cdev_device); 3622 3623 return ret; 3624 } 3625 3626 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3627 { 3628 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3629 } 3630 3631 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3632 { 3633 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3634 return 0; 3635 } 3636 3637 static const struct file_operations nvme_ns_chr_fops = { 3638 .owner = THIS_MODULE, 3639 .open = nvme_ns_chr_open, 3640 .release = nvme_ns_chr_release, 3641 .unlocked_ioctl = nvme_ns_chr_ioctl, 3642 .compat_ioctl = compat_ptr_ioctl, 3643 .uring_cmd = nvme_ns_chr_uring_cmd, 3644 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3645 }; 3646 3647 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3648 { 3649 int ret; 3650 3651 ns->cdev_device.parent = ns->ctrl->device; 3652 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3653 ns->ctrl->instance, ns->head->instance); 3654 if (ret) 3655 return ret; 3656 3657 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3658 ns->ctrl->ops->module); 3659 } 3660 3661 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3662 struct nvme_ns_info *info) 3663 { 3664 struct nvme_ns_head *head; 3665 size_t size = sizeof(*head); 3666 int ret = -ENOMEM; 3667 3668 #ifdef CONFIG_NVME_MULTIPATH 3669 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3670 #endif 3671 3672 head = kzalloc(size, GFP_KERNEL); 3673 if (!head) 3674 goto out; 3675 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3676 if (ret < 0) 3677 goto out_free_head; 3678 head->instance = ret; 3679 INIT_LIST_HEAD(&head->list); 3680 ret = init_srcu_struct(&head->srcu); 3681 if (ret) 3682 goto out_ida_remove; 3683 head->subsys = ctrl->subsys; 3684 head->ns_id = info->nsid; 3685 head->ids = info->ids; 3686 head->shared = info->is_shared; 3687 head->rotational = info->is_rotational; 3688 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3689 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3690 kref_init(&head->ref); 3691 3692 if (head->ids.csi) { 3693 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3694 if (ret) 3695 goto out_cleanup_srcu; 3696 } else 3697 head->effects = ctrl->effects; 3698 3699 ret = nvme_mpath_alloc_disk(ctrl, head); 3700 if (ret) 3701 goto out_cleanup_srcu; 3702 3703 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3704 3705 kref_get(&ctrl->subsys->ref); 3706 3707 return head; 3708 out_cleanup_srcu: 3709 cleanup_srcu_struct(&head->srcu); 3710 out_ida_remove: 3711 ida_free(&ctrl->subsys->ns_ida, head->instance); 3712 out_free_head: 3713 kfree(head); 3714 out: 3715 if (ret > 0) 3716 ret = blk_status_to_errno(nvme_error_status(ret)); 3717 return ERR_PTR(ret); 3718 } 3719 3720 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3721 struct nvme_ns_ids *ids) 3722 { 3723 struct nvme_subsystem *s; 3724 int ret = 0; 3725 3726 /* 3727 * Note that this check is racy as we try to avoid holding the global 3728 * lock over the whole ns_head creation. But it is only intended as 3729 * a sanity check anyway. 3730 */ 3731 mutex_lock(&nvme_subsystems_lock); 3732 list_for_each_entry(s, &nvme_subsystems, entry) { 3733 if (s == this) 3734 continue; 3735 mutex_lock(&s->lock); 3736 ret = nvme_subsys_check_duplicate_ids(s, ids); 3737 mutex_unlock(&s->lock); 3738 if (ret) 3739 break; 3740 } 3741 mutex_unlock(&nvme_subsystems_lock); 3742 3743 return ret; 3744 } 3745 3746 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3747 { 3748 struct nvme_ctrl *ctrl = ns->ctrl; 3749 struct nvme_ns_head *head = NULL; 3750 int ret; 3751 3752 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3753 if (ret) { 3754 /* 3755 * We've found two different namespaces on two different 3756 * subsystems that report the same ID. This is pretty nasty 3757 * for anything that actually requires unique device 3758 * identification. In the kernel we need this for multipathing, 3759 * and in user space the /dev/disk/by-id/ links rely on it. 3760 * 3761 * If the device also claims to be multi-path capable back off 3762 * here now and refuse the probe the second device as this is a 3763 * recipe for data corruption. If not this is probably a 3764 * cheap consumer device if on the PCIe bus, so let the user 3765 * proceed and use the shiny toy, but warn that with changing 3766 * probing order (which due to our async probing could just be 3767 * device taking longer to startup) the other device could show 3768 * up at any time. 3769 */ 3770 nvme_print_device_info(ctrl); 3771 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3772 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3773 info->is_shared)) { 3774 dev_err(ctrl->device, 3775 "ignoring nsid %d because of duplicate IDs\n", 3776 info->nsid); 3777 return ret; 3778 } 3779 3780 dev_err(ctrl->device, 3781 "clearing duplicate IDs for nsid %d\n", info->nsid); 3782 dev_err(ctrl->device, 3783 "use of /dev/disk/by-id/ may cause data corruption\n"); 3784 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3785 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3786 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3787 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3788 } 3789 3790 mutex_lock(&ctrl->subsys->lock); 3791 head = nvme_find_ns_head(ctrl, info->nsid); 3792 if (!head) { 3793 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3794 if (ret) { 3795 dev_err(ctrl->device, 3796 "duplicate IDs in subsystem for nsid %d\n", 3797 info->nsid); 3798 goto out_unlock; 3799 } 3800 head = nvme_alloc_ns_head(ctrl, info); 3801 if (IS_ERR(head)) { 3802 ret = PTR_ERR(head); 3803 goto out_unlock; 3804 } 3805 } else { 3806 ret = -EINVAL; 3807 if (!info->is_shared || !head->shared) { 3808 dev_err(ctrl->device, 3809 "Duplicate unshared namespace %d\n", 3810 info->nsid); 3811 goto out_put_ns_head; 3812 } 3813 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3814 dev_err(ctrl->device, 3815 "IDs don't match for shared namespace %d\n", 3816 info->nsid); 3817 goto out_put_ns_head; 3818 } 3819 3820 if (!multipath) { 3821 dev_warn(ctrl->device, 3822 "Found shared namespace %d, but multipathing not supported.\n", 3823 info->nsid); 3824 dev_warn_once(ctrl->device, 3825 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3826 } 3827 } 3828 3829 list_add_tail_rcu(&ns->siblings, &head->list); 3830 ns->head = head; 3831 mutex_unlock(&ctrl->subsys->lock); 3832 return 0; 3833 3834 out_put_ns_head: 3835 nvme_put_ns_head(head); 3836 out_unlock: 3837 mutex_unlock(&ctrl->subsys->lock); 3838 return ret; 3839 } 3840 3841 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3842 { 3843 struct nvme_ns *ns, *ret = NULL; 3844 int srcu_idx; 3845 3846 srcu_idx = srcu_read_lock(&ctrl->srcu); 3847 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 3848 srcu_read_lock_held(&ctrl->srcu)) { 3849 if (ns->head->ns_id == nsid) { 3850 if (!nvme_get_ns(ns)) 3851 continue; 3852 ret = ns; 3853 break; 3854 } 3855 if (ns->head->ns_id > nsid) 3856 break; 3857 } 3858 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3859 return ret; 3860 } 3861 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU"); 3862 3863 /* 3864 * Add the namespace to the controller list while keeping the list ordered. 3865 */ 3866 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3867 { 3868 struct nvme_ns *tmp; 3869 3870 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3871 if (tmp->head->ns_id < ns->head->ns_id) { 3872 list_add_rcu(&ns->list, &tmp->list); 3873 return; 3874 } 3875 } 3876 list_add(&ns->list, &ns->ctrl->namespaces); 3877 } 3878 3879 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3880 { 3881 struct queue_limits lim = { }; 3882 struct nvme_ns *ns; 3883 struct gendisk *disk; 3884 int node = ctrl->numa_node; 3885 3886 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3887 if (!ns) 3888 return; 3889 3890 if (ctrl->opts && ctrl->opts->data_digest) 3891 lim.features |= BLK_FEAT_STABLE_WRITES; 3892 if (ctrl->ops->supports_pci_p2pdma && 3893 ctrl->ops->supports_pci_p2pdma(ctrl)) 3894 lim.features |= BLK_FEAT_PCI_P2PDMA; 3895 3896 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); 3897 if (IS_ERR(disk)) 3898 goto out_free_ns; 3899 disk->fops = &nvme_bdev_ops; 3900 disk->private_data = ns; 3901 3902 ns->disk = disk; 3903 ns->queue = disk->queue; 3904 ns->ctrl = ctrl; 3905 kref_init(&ns->kref); 3906 3907 if (nvme_init_ns_head(ns, info)) 3908 goto out_cleanup_disk; 3909 3910 /* 3911 * If multipathing is enabled, the device name for all disks and not 3912 * just those that represent shared namespaces needs to be based on the 3913 * subsystem instance. Using the controller instance for private 3914 * namespaces could lead to naming collisions between shared and private 3915 * namespaces if they don't use a common numbering scheme. 3916 * 3917 * If multipathing is not enabled, disk names must use the controller 3918 * instance as shared namespaces will show up as multiple block 3919 * devices. 3920 */ 3921 if (nvme_ns_head_multipath(ns->head)) { 3922 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3923 ctrl->instance, ns->head->instance); 3924 disk->flags |= GENHD_FL_HIDDEN; 3925 } else if (multipath) { 3926 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3927 ns->head->instance); 3928 } else { 3929 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3930 ns->head->instance); 3931 } 3932 3933 if (nvme_update_ns_info(ns, info)) 3934 goto out_unlink_ns; 3935 3936 mutex_lock(&ctrl->namespaces_lock); 3937 /* 3938 * Ensure that no namespaces are added to the ctrl list after the queues 3939 * are frozen, thereby avoiding a deadlock between scan and reset. 3940 */ 3941 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3942 mutex_unlock(&ctrl->namespaces_lock); 3943 goto out_unlink_ns; 3944 } 3945 nvme_ns_add_to_ctrl_list(ns); 3946 mutex_unlock(&ctrl->namespaces_lock); 3947 synchronize_srcu(&ctrl->srcu); 3948 nvme_get_ctrl(ctrl); 3949 3950 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3951 goto out_cleanup_ns_from_list; 3952 3953 if (!nvme_ns_head_multipath(ns->head)) 3954 nvme_add_ns_cdev(ns); 3955 3956 nvme_mpath_add_disk(ns, info->anagrpid); 3957 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3958 3959 /* 3960 * Set ns->disk->device->driver_data to ns so we can access 3961 * ns->head->passthru_err_log_enabled in 3962 * nvme_io_passthru_err_log_enabled_[store | show](). 3963 */ 3964 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3965 3966 return; 3967 3968 out_cleanup_ns_from_list: 3969 nvme_put_ctrl(ctrl); 3970 mutex_lock(&ctrl->namespaces_lock); 3971 list_del_rcu(&ns->list); 3972 mutex_unlock(&ctrl->namespaces_lock); 3973 synchronize_srcu(&ctrl->srcu); 3974 out_unlink_ns: 3975 mutex_lock(&ctrl->subsys->lock); 3976 list_del_rcu(&ns->siblings); 3977 if (list_empty(&ns->head->list)) 3978 list_del_init(&ns->head->entry); 3979 mutex_unlock(&ctrl->subsys->lock); 3980 nvme_put_ns_head(ns->head); 3981 out_cleanup_disk: 3982 put_disk(disk); 3983 out_free_ns: 3984 kfree(ns); 3985 } 3986 3987 static void nvme_ns_remove(struct nvme_ns *ns) 3988 { 3989 bool last_path = false; 3990 3991 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3992 return; 3993 3994 clear_bit(NVME_NS_READY, &ns->flags); 3995 set_capacity(ns->disk, 0); 3996 nvme_fault_inject_fini(&ns->fault_inject); 3997 3998 /* 3999 * Ensure that !NVME_NS_READY is seen by other threads to prevent 4000 * this ns going back into current_path. 4001 */ 4002 synchronize_srcu(&ns->head->srcu); 4003 4004 /* wait for concurrent submissions */ 4005 if (nvme_mpath_clear_current_path(ns)) 4006 synchronize_srcu(&ns->head->srcu); 4007 4008 mutex_lock(&ns->ctrl->subsys->lock); 4009 list_del_rcu(&ns->siblings); 4010 if (list_empty(&ns->head->list)) { 4011 list_del_init(&ns->head->entry); 4012 last_path = true; 4013 } 4014 mutex_unlock(&ns->ctrl->subsys->lock); 4015 4016 /* guarantee not available in head->list */ 4017 synchronize_srcu(&ns->head->srcu); 4018 4019 if (!nvme_ns_head_multipath(ns->head)) 4020 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4021 del_gendisk(ns->disk); 4022 4023 mutex_lock(&ns->ctrl->namespaces_lock); 4024 list_del_rcu(&ns->list); 4025 mutex_unlock(&ns->ctrl->namespaces_lock); 4026 synchronize_srcu(&ns->ctrl->srcu); 4027 4028 if (last_path) 4029 nvme_mpath_shutdown_disk(ns->head); 4030 nvme_put_ns(ns); 4031 } 4032 4033 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4034 { 4035 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4036 4037 if (ns) { 4038 nvme_ns_remove(ns); 4039 nvme_put_ns(ns); 4040 } 4041 } 4042 4043 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 4044 { 4045 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; 4046 4047 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 4048 dev_err(ns->ctrl->device, 4049 "identifiers changed for nsid %d\n", ns->head->ns_id); 4050 goto out; 4051 } 4052 4053 ret = nvme_update_ns_info(ns, info); 4054 out: 4055 /* 4056 * Only remove the namespace if we got a fatal error back from the 4057 * device, otherwise ignore the error and just move on. 4058 * 4059 * TODO: we should probably schedule a delayed retry here. 4060 */ 4061 if (ret > 0 && (ret & NVME_STATUS_DNR)) 4062 nvme_ns_remove(ns); 4063 } 4064 4065 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4066 { 4067 struct nvme_ns_info info = { .nsid = nsid }; 4068 struct nvme_ns *ns; 4069 int ret = 1; 4070 4071 if (nvme_identify_ns_descs(ctrl, &info)) 4072 return; 4073 4074 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4075 dev_warn(ctrl->device, 4076 "command set not reported for nsid: %d\n", nsid); 4077 return; 4078 } 4079 4080 /* 4081 * If available try to use the Command Set Idependent Identify Namespace 4082 * data structure to find all the generic information that is needed to 4083 * set up a namespace. If not fall back to the legacy version. 4084 */ 4085 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4086 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) || 4087 ctrl->vs >= NVME_VS(2, 0, 0)) 4088 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 4089 if (ret > 0) 4090 ret = nvme_ns_info_from_identify(ctrl, &info); 4091 4092 if (info.is_removed) 4093 nvme_ns_remove_by_nsid(ctrl, nsid); 4094 4095 /* 4096 * Ignore the namespace if it is not ready. We will get an AEN once it 4097 * becomes ready and restart the scan. 4098 */ 4099 if (ret || !info.is_ready) 4100 return; 4101 4102 ns = nvme_find_get_ns(ctrl, nsid); 4103 if (ns) { 4104 nvme_validate_ns(ns, &info); 4105 nvme_put_ns(ns); 4106 } else { 4107 nvme_alloc_ns(ctrl, &info); 4108 } 4109 } 4110 4111 /** 4112 * struct async_scan_info - keeps track of controller & NSIDs to scan 4113 * @ctrl: Controller on which namespaces are being scanned 4114 * @next_nsid: Index of next NSID to scan in ns_list 4115 * @ns_list: Pointer to list of NSIDs to scan 4116 * 4117 * Note: There is a single async_scan_info structure shared by all instances 4118 * of nvme_scan_ns_async() scanning a given controller, so the atomic 4119 * operations on next_nsid are critical to ensure each instance scans a unique 4120 * NSID. 4121 */ 4122 struct async_scan_info { 4123 struct nvme_ctrl *ctrl; 4124 atomic_t next_nsid; 4125 __le32 *ns_list; 4126 }; 4127 4128 static void nvme_scan_ns_async(void *data, async_cookie_t cookie) 4129 { 4130 struct async_scan_info *scan_info = data; 4131 int idx; 4132 u32 nsid; 4133 4134 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid); 4135 nsid = le32_to_cpu(scan_info->ns_list[idx]); 4136 4137 nvme_scan_ns(scan_info->ctrl, nsid); 4138 } 4139 4140 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4141 unsigned nsid) 4142 { 4143 struct nvme_ns *ns, *next; 4144 LIST_HEAD(rm_list); 4145 4146 mutex_lock(&ctrl->namespaces_lock); 4147 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4148 if (ns->head->ns_id > nsid) { 4149 list_del_rcu(&ns->list); 4150 synchronize_srcu(&ctrl->srcu); 4151 list_add_tail_rcu(&ns->list, &rm_list); 4152 } 4153 } 4154 mutex_unlock(&ctrl->namespaces_lock); 4155 4156 list_for_each_entry_safe(ns, next, &rm_list, list) 4157 nvme_ns_remove(ns); 4158 } 4159 4160 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4161 { 4162 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4163 __le32 *ns_list; 4164 u32 prev = 0; 4165 int ret = 0, i; 4166 ASYNC_DOMAIN(domain); 4167 struct async_scan_info scan_info; 4168 4169 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4170 if (!ns_list) 4171 return -ENOMEM; 4172 4173 scan_info.ctrl = ctrl; 4174 scan_info.ns_list = ns_list; 4175 for (;;) { 4176 struct nvme_command cmd = { 4177 .identify.opcode = nvme_admin_identify, 4178 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4179 .identify.nsid = cpu_to_le32(prev), 4180 }; 4181 4182 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4183 NVME_IDENTIFY_DATA_SIZE); 4184 if (ret) { 4185 dev_warn(ctrl->device, 4186 "Identify NS List failed (status=0x%x)\n", ret); 4187 goto free; 4188 } 4189 4190 atomic_set(&scan_info.next_nsid, 0); 4191 for (i = 0; i < nr_entries; i++) { 4192 u32 nsid = le32_to_cpu(ns_list[i]); 4193 4194 if (!nsid) /* end of the list? */ 4195 goto out; 4196 async_schedule_domain(nvme_scan_ns_async, &scan_info, 4197 &domain); 4198 while (++prev < nsid) 4199 nvme_ns_remove_by_nsid(ctrl, prev); 4200 } 4201 async_synchronize_full_domain(&domain); 4202 } 4203 out: 4204 nvme_remove_invalid_namespaces(ctrl, prev); 4205 free: 4206 async_synchronize_full_domain(&domain); 4207 kfree(ns_list); 4208 return ret; 4209 } 4210 4211 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4212 { 4213 struct nvme_id_ctrl *id; 4214 u32 nn, i; 4215 4216 if (nvme_identify_ctrl(ctrl, &id)) 4217 return; 4218 nn = le32_to_cpu(id->nn); 4219 kfree(id); 4220 4221 for (i = 1; i <= nn; i++) 4222 nvme_scan_ns(ctrl, i); 4223 4224 nvme_remove_invalid_namespaces(ctrl, nn); 4225 } 4226 4227 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4228 { 4229 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4230 __le32 *log; 4231 int error; 4232 4233 log = kzalloc(log_size, GFP_KERNEL); 4234 if (!log) 4235 return; 4236 4237 /* 4238 * We need to read the log to clear the AEN, but we don't want to rely 4239 * on it for the changed namespace information as userspace could have 4240 * raced with us in reading the log page, which could cause us to miss 4241 * updates. 4242 */ 4243 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4244 NVME_CSI_NVM, log, log_size, 0); 4245 if (error) 4246 dev_warn(ctrl->device, 4247 "reading changed ns log failed: %d\n", error); 4248 4249 kfree(log); 4250 } 4251 4252 static void nvme_scan_work(struct work_struct *work) 4253 { 4254 struct nvme_ctrl *ctrl = 4255 container_of(work, struct nvme_ctrl, scan_work); 4256 int ret; 4257 4258 /* No tagset on a live ctrl means IO queues could not created */ 4259 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4260 return; 4261 4262 /* 4263 * Identify controller limits can change at controller reset due to 4264 * new firmware download, even though it is not common we cannot ignore 4265 * such scenario. Controller's non-mdts limits are reported in the unit 4266 * of logical blocks that is dependent on the format of attached 4267 * namespace. Hence re-read the limits at the time of ns allocation. 4268 */ 4269 ret = nvme_init_non_mdts_limits(ctrl); 4270 if (ret < 0) { 4271 dev_warn(ctrl->device, 4272 "reading non-mdts-limits failed: %d\n", ret); 4273 return; 4274 } 4275 4276 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4277 dev_info(ctrl->device, "rescanning namespaces.\n"); 4278 nvme_clear_changed_ns_log(ctrl); 4279 } 4280 4281 mutex_lock(&ctrl->scan_lock); 4282 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) { 4283 nvme_scan_ns_sequential(ctrl); 4284 } else { 4285 /* 4286 * Fall back to sequential scan if DNR is set to handle broken 4287 * devices which should support Identify NS List (as per the VS 4288 * they report) but don't actually support it. 4289 */ 4290 ret = nvme_scan_ns_list(ctrl); 4291 if (ret > 0 && ret & NVME_STATUS_DNR) 4292 nvme_scan_ns_sequential(ctrl); 4293 } 4294 mutex_unlock(&ctrl->scan_lock); 4295 } 4296 4297 /* 4298 * This function iterates the namespace list unlocked to allow recovery from 4299 * controller failure. It is up to the caller to ensure the namespace list is 4300 * not modified by scan work while this function is executing. 4301 */ 4302 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4303 { 4304 struct nvme_ns *ns, *next; 4305 LIST_HEAD(ns_list); 4306 4307 /* 4308 * make sure to requeue I/O to all namespaces as these 4309 * might result from the scan itself and must complete 4310 * for the scan_work to make progress 4311 */ 4312 nvme_mpath_clear_ctrl_paths(ctrl); 4313 4314 /* 4315 * Unquiesce io queues so any pending IO won't hang, especially 4316 * those submitted from scan work 4317 */ 4318 nvme_unquiesce_io_queues(ctrl); 4319 4320 /* prevent racing with ns scanning */ 4321 flush_work(&ctrl->scan_work); 4322 4323 /* 4324 * The dead states indicates the controller was not gracefully 4325 * disconnected. In that case, we won't be able to flush any data while 4326 * removing the namespaces' disks; fail all the queues now to avoid 4327 * potentially having to clean up the failed sync later. 4328 */ 4329 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4330 nvme_mark_namespaces_dead(ctrl); 4331 4332 /* this is a no-op when called from the controller reset handler */ 4333 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4334 4335 mutex_lock(&ctrl->namespaces_lock); 4336 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4337 mutex_unlock(&ctrl->namespaces_lock); 4338 synchronize_srcu(&ctrl->srcu); 4339 4340 list_for_each_entry_safe(ns, next, &ns_list, list) 4341 nvme_ns_remove(ns); 4342 } 4343 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4344 4345 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4346 { 4347 const struct nvme_ctrl *ctrl = 4348 container_of(dev, struct nvme_ctrl, ctrl_device); 4349 struct nvmf_ctrl_options *opts = ctrl->opts; 4350 int ret; 4351 4352 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4353 if (ret) 4354 return ret; 4355 4356 if (opts) { 4357 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4358 if (ret) 4359 return ret; 4360 4361 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4362 opts->trsvcid ?: "none"); 4363 if (ret) 4364 return ret; 4365 4366 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4367 opts->host_traddr ?: "none"); 4368 if (ret) 4369 return ret; 4370 4371 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4372 opts->host_iface ?: "none"); 4373 } 4374 return ret; 4375 } 4376 4377 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4378 { 4379 char *envp[2] = { envdata, NULL }; 4380 4381 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4382 } 4383 4384 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4385 { 4386 char *envp[2] = { NULL, NULL }; 4387 u32 aen_result = ctrl->aen_result; 4388 4389 ctrl->aen_result = 0; 4390 if (!aen_result) 4391 return; 4392 4393 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4394 if (!envp[0]) 4395 return; 4396 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4397 kfree(envp[0]); 4398 } 4399 4400 static void nvme_async_event_work(struct work_struct *work) 4401 { 4402 struct nvme_ctrl *ctrl = 4403 container_of(work, struct nvme_ctrl, async_event_work); 4404 4405 nvme_aen_uevent(ctrl); 4406 4407 /* 4408 * The transport drivers must guarantee AER submission here is safe by 4409 * flushing ctrl async_event_work after changing the controller state 4410 * from LIVE and before freeing the admin queue. 4411 */ 4412 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4413 ctrl->ops->submit_async_event(ctrl); 4414 } 4415 4416 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4417 { 4418 4419 u32 csts; 4420 4421 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4422 return false; 4423 4424 if (csts == ~0) 4425 return false; 4426 4427 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4428 } 4429 4430 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4431 { 4432 struct nvme_fw_slot_info_log *log; 4433 u8 next_fw_slot, cur_fw_slot; 4434 4435 log = kmalloc(sizeof(*log), GFP_KERNEL); 4436 if (!log) 4437 return; 4438 4439 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4440 log, sizeof(*log), 0)) { 4441 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4442 goto out_free_log; 4443 } 4444 4445 cur_fw_slot = log->afi & 0x7; 4446 next_fw_slot = (log->afi & 0x70) >> 4; 4447 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4448 dev_info(ctrl->device, 4449 "Firmware is activated after next Controller Level Reset\n"); 4450 goto out_free_log; 4451 } 4452 4453 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4454 sizeof(ctrl->subsys->firmware_rev)); 4455 4456 out_free_log: 4457 kfree(log); 4458 } 4459 4460 static void nvme_fw_act_work(struct work_struct *work) 4461 { 4462 struct nvme_ctrl *ctrl = container_of(work, 4463 struct nvme_ctrl, fw_act_work); 4464 unsigned long fw_act_timeout; 4465 4466 nvme_auth_stop(ctrl); 4467 4468 if (ctrl->mtfa) 4469 fw_act_timeout = jiffies + 4470 msecs_to_jiffies(ctrl->mtfa * 100); 4471 else 4472 fw_act_timeout = jiffies + 4473 msecs_to_jiffies(admin_timeout * 1000); 4474 4475 nvme_quiesce_io_queues(ctrl); 4476 while (nvme_ctrl_pp_status(ctrl)) { 4477 if (time_after(jiffies, fw_act_timeout)) { 4478 dev_warn(ctrl->device, 4479 "Fw activation timeout, reset controller\n"); 4480 nvme_try_sched_reset(ctrl); 4481 return; 4482 } 4483 msleep(100); 4484 } 4485 4486 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4487 return; 4488 4489 nvme_unquiesce_io_queues(ctrl); 4490 /* read FW slot information to clear the AER */ 4491 nvme_get_fw_slot_info(ctrl); 4492 4493 queue_work(nvme_wq, &ctrl->async_event_work); 4494 } 4495 4496 static u32 nvme_aer_type(u32 result) 4497 { 4498 return result & 0x7; 4499 } 4500 4501 static u32 nvme_aer_subtype(u32 result) 4502 { 4503 return (result & 0xff00) >> 8; 4504 } 4505 4506 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4507 { 4508 u32 aer_notice_type = nvme_aer_subtype(result); 4509 bool requeue = true; 4510 4511 switch (aer_notice_type) { 4512 case NVME_AER_NOTICE_NS_CHANGED: 4513 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4514 nvme_queue_scan(ctrl); 4515 break; 4516 case NVME_AER_NOTICE_FW_ACT_STARTING: 4517 /* 4518 * We are (ab)using the RESETTING state to prevent subsequent 4519 * recovery actions from interfering with the controller's 4520 * firmware activation. 4521 */ 4522 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4523 requeue = false; 4524 queue_work(nvme_wq, &ctrl->fw_act_work); 4525 } 4526 break; 4527 #ifdef CONFIG_NVME_MULTIPATH 4528 case NVME_AER_NOTICE_ANA: 4529 if (!ctrl->ana_log_buf) 4530 break; 4531 queue_work(nvme_wq, &ctrl->ana_work); 4532 break; 4533 #endif 4534 case NVME_AER_NOTICE_DISC_CHANGED: 4535 ctrl->aen_result = result; 4536 break; 4537 default: 4538 dev_warn(ctrl->device, "async event result %08x\n", result); 4539 } 4540 return requeue; 4541 } 4542 4543 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4544 { 4545 dev_warn(ctrl->device, 4546 "resetting controller due to persistent internal error\n"); 4547 nvme_reset_ctrl(ctrl); 4548 } 4549 4550 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4551 volatile union nvme_result *res) 4552 { 4553 u32 result = le32_to_cpu(res->u32); 4554 u32 aer_type = nvme_aer_type(result); 4555 u32 aer_subtype = nvme_aer_subtype(result); 4556 bool requeue = true; 4557 4558 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4559 return; 4560 4561 trace_nvme_async_event(ctrl, result); 4562 switch (aer_type) { 4563 case NVME_AER_NOTICE: 4564 requeue = nvme_handle_aen_notice(ctrl, result); 4565 break; 4566 case NVME_AER_ERROR: 4567 /* 4568 * For a persistent internal error, don't run async_event_work 4569 * to submit a new AER. The controller reset will do it. 4570 */ 4571 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4572 nvme_handle_aer_persistent_error(ctrl); 4573 return; 4574 } 4575 fallthrough; 4576 case NVME_AER_SMART: 4577 case NVME_AER_CSS: 4578 case NVME_AER_VS: 4579 ctrl->aen_result = result; 4580 break; 4581 default: 4582 break; 4583 } 4584 4585 if (requeue) 4586 queue_work(nvme_wq, &ctrl->async_event_work); 4587 } 4588 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4589 4590 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4591 const struct blk_mq_ops *ops, unsigned int cmd_size) 4592 { 4593 struct queue_limits lim = {}; 4594 int ret; 4595 4596 memset(set, 0, sizeof(*set)); 4597 set->ops = ops; 4598 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4599 if (ctrl->ops->flags & NVME_F_FABRICS) 4600 /* Reserved for fabric connect and keep alive */ 4601 set->reserved_tags = 2; 4602 set->numa_node = ctrl->numa_node; 4603 if (ctrl->ops->flags & NVME_F_BLOCKING) 4604 set->flags |= BLK_MQ_F_BLOCKING; 4605 set->cmd_size = cmd_size; 4606 set->driver_data = ctrl; 4607 set->nr_hw_queues = 1; 4608 set->timeout = NVME_ADMIN_TIMEOUT; 4609 ret = blk_mq_alloc_tag_set(set); 4610 if (ret) 4611 return ret; 4612 4613 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4614 if (IS_ERR(ctrl->admin_q)) { 4615 ret = PTR_ERR(ctrl->admin_q); 4616 goto out_free_tagset; 4617 } 4618 4619 if (ctrl->ops->flags & NVME_F_FABRICS) { 4620 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4621 if (IS_ERR(ctrl->fabrics_q)) { 4622 ret = PTR_ERR(ctrl->fabrics_q); 4623 goto out_cleanup_admin_q; 4624 } 4625 } 4626 4627 ctrl->admin_tagset = set; 4628 return 0; 4629 4630 out_cleanup_admin_q: 4631 blk_mq_destroy_queue(ctrl->admin_q); 4632 blk_put_queue(ctrl->admin_q); 4633 out_free_tagset: 4634 blk_mq_free_tag_set(set); 4635 ctrl->admin_q = NULL; 4636 ctrl->fabrics_q = NULL; 4637 return ret; 4638 } 4639 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4640 4641 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4642 { 4643 /* 4644 * As we're about to destroy the queue and free tagset 4645 * we can not have keep-alive work running. 4646 */ 4647 nvme_stop_keep_alive(ctrl); 4648 blk_mq_destroy_queue(ctrl->admin_q); 4649 blk_put_queue(ctrl->admin_q); 4650 if (ctrl->ops->flags & NVME_F_FABRICS) { 4651 blk_mq_destroy_queue(ctrl->fabrics_q); 4652 blk_put_queue(ctrl->fabrics_q); 4653 } 4654 blk_mq_free_tag_set(ctrl->admin_tagset); 4655 } 4656 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4657 4658 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4659 const struct blk_mq_ops *ops, unsigned int nr_maps, 4660 unsigned int cmd_size) 4661 { 4662 int ret; 4663 4664 memset(set, 0, sizeof(*set)); 4665 set->ops = ops; 4666 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4667 /* 4668 * Some Apple controllers requires tags to be unique across admin and 4669 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4670 */ 4671 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4672 set->reserved_tags = NVME_AQ_DEPTH; 4673 else if (ctrl->ops->flags & NVME_F_FABRICS) 4674 /* Reserved for fabric connect */ 4675 set->reserved_tags = 1; 4676 set->numa_node = ctrl->numa_node; 4677 if (ctrl->ops->flags & NVME_F_BLOCKING) 4678 set->flags |= BLK_MQ_F_BLOCKING; 4679 set->cmd_size = cmd_size; 4680 set->driver_data = ctrl; 4681 set->nr_hw_queues = ctrl->queue_count - 1; 4682 set->timeout = NVME_IO_TIMEOUT; 4683 set->nr_maps = nr_maps; 4684 ret = blk_mq_alloc_tag_set(set); 4685 if (ret) 4686 return ret; 4687 4688 if (ctrl->ops->flags & NVME_F_FABRICS) { 4689 struct queue_limits lim = { 4690 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, 4691 }; 4692 4693 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); 4694 if (IS_ERR(ctrl->connect_q)) { 4695 ret = PTR_ERR(ctrl->connect_q); 4696 goto out_free_tag_set; 4697 } 4698 } 4699 4700 ctrl->tagset = set; 4701 return 0; 4702 4703 out_free_tag_set: 4704 blk_mq_free_tag_set(set); 4705 ctrl->connect_q = NULL; 4706 return ret; 4707 } 4708 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4709 4710 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4711 { 4712 if (ctrl->ops->flags & NVME_F_FABRICS) { 4713 blk_mq_destroy_queue(ctrl->connect_q); 4714 blk_put_queue(ctrl->connect_q); 4715 } 4716 blk_mq_free_tag_set(ctrl->tagset); 4717 } 4718 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4719 4720 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4721 { 4722 nvme_mpath_stop(ctrl); 4723 nvme_auth_stop(ctrl); 4724 nvme_stop_failfast_work(ctrl); 4725 flush_work(&ctrl->async_event_work); 4726 cancel_work_sync(&ctrl->fw_act_work); 4727 if (ctrl->ops->stop_ctrl) 4728 ctrl->ops->stop_ctrl(ctrl); 4729 } 4730 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4731 4732 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4733 { 4734 nvme_enable_aen(ctrl); 4735 4736 /* 4737 * persistent discovery controllers need to send indication to userspace 4738 * to re-read the discovery log page to learn about possible changes 4739 * that were missed. We identify persistent discovery controllers by 4740 * checking that they started once before, hence are reconnecting back. 4741 */ 4742 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4743 nvme_discovery_ctrl(ctrl)) 4744 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4745 4746 if (ctrl->queue_count > 1) { 4747 nvme_queue_scan(ctrl); 4748 nvme_unquiesce_io_queues(ctrl); 4749 nvme_mpath_update(ctrl); 4750 } 4751 4752 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4753 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4754 } 4755 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4756 4757 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4758 { 4759 nvme_stop_keep_alive(ctrl); 4760 nvme_hwmon_exit(ctrl); 4761 nvme_fault_inject_fini(&ctrl->fault_inject); 4762 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4763 cdev_device_del(&ctrl->cdev, ctrl->device); 4764 nvme_put_ctrl(ctrl); 4765 } 4766 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4767 4768 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4769 { 4770 struct nvme_effects_log *cel; 4771 unsigned long i; 4772 4773 xa_for_each(&ctrl->cels, i, cel) { 4774 xa_erase(&ctrl->cels, i); 4775 kfree(cel); 4776 } 4777 4778 xa_destroy(&ctrl->cels); 4779 } 4780 4781 static void nvme_free_ctrl(struct device *dev) 4782 { 4783 struct nvme_ctrl *ctrl = 4784 container_of(dev, struct nvme_ctrl, ctrl_device); 4785 struct nvme_subsystem *subsys = ctrl->subsys; 4786 4787 if (!subsys || ctrl->instance != subsys->instance) 4788 ida_free(&nvme_instance_ida, ctrl->instance); 4789 nvme_free_cels(ctrl); 4790 nvme_mpath_uninit(ctrl); 4791 cleanup_srcu_struct(&ctrl->srcu); 4792 nvme_auth_stop(ctrl); 4793 nvme_auth_free(ctrl); 4794 __free_page(ctrl->discard_page); 4795 free_opal_dev(ctrl->opal_dev); 4796 4797 if (subsys) { 4798 mutex_lock(&nvme_subsystems_lock); 4799 list_del(&ctrl->subsys_entry); 4800 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4801 mutex_unlock(&nvme_subsystems_lock); 4802 } 4803 4804 ctrl->ops->free_ctrl(ctrl); 4805 4806 if (subsys) 4807 nvme_put_subsystem(subsys); 4808 } 4809 4810 /* 4811 * Initialize a NVMe controller structures. This needs to be called during 4812 * earliest initialization so that we have the initialized structured around 4813 * during probing. 4814 * 4815 * On success, the caller must use the nvme_put_ctrl() to release this when 4816 * needed, which also invokes the ops->free_ctrl() callback. 4817 */ 4818 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4819 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4820 { 4821 int ret; 4822 4823 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4824 ctrl->passthru_err_log_enabled = false; 4825 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4826 spin_lock_init(&ctrl->lock); 4827 mutex_init(&ctrl->namespaces_lock); 4828 4829 ret = init_srcu_struct(&ctrl->srcu); 4830 if (ret) 4831 return ret; 4832 4833 mutex_init(&ctrl->scan_lock); 4834 INIT_LIST_HEAD(&ctrl->namespaces); 4835 xa_init(&ctrl->cels); 4836 ctrl->dev = dev; 4837 ctrl->ops = ops; 4838 ctrl->quirks = quirks; 4839 ctrl->numa_node = NUMA_NO_NODE; 4840 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4841 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4842 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4843 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4844 init_waitqueue_head(&ctrl->state_wq); 4845 4846 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4847 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4848 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4849 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4850 ctrl->ka_last_check_time = jiffies; 4851 4852 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4853 PAGE_SIZE); 4854 ctrl->discard_page = alloc_page(GFP_KERNEL); 4855 if (!ctrl->discard_page) { 4856 ret = -ENOMEM; 4857 goto out; 4858 } 4859 4860 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4861 if (ret < 0) 4862 goto out; 4863 ctrl->instance = ret; 4864 4865 ret = nvme_auth_init_ctrl(ctrl); 4866 if (ret) 4867 goto out_release_instance; 4868 4869 nvme_mpath_init_ctrl(ctrl); 4870 4871 device_initialize(&ctrl->ctrl_device); 4872 ctrl->device = &ctrl->ctrl_device; 4873 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4874 ctrl->instance); 4875 ctrl->device->class = &nvme_class; 4876 ctrl->device->parent = ctrl->dev; 4877 if (ops->dev_attr_groups) 4878 ctrl->device->groups = ops->dev_attr_groups; 4879 else 4880 ctrl->device->groups = nvme_dev_attr_groups; 4881 ctrl->device->release = nvme_free_ctrl; 4882 dev_set_drvdata(ctrl->device, ctrl); 4883 4884 return ret; 4885 4886 out_release_instance: 4887 ida_free(&nvme_instance_ida, ctrl->instance); 4888 out: 4889 if (ctrl->discard_page) 4890 __free_page(ctrl->discard_page); 4891 cleanup_srcu_struct(&ctrl->srcu); 4892 return ret; 4893 } 4894 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4895 4896 /* 4897 * On success, returns with an elevated controller reference and caller must 4898 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. 4899 */ 4900 int nvme_add_ctrl(struct nvme_ctrl *ctrl) 4901 { 4902 int ret; 4903 4904 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4905 if (ret) 4906 return ret; 4907 4908 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4909 ctrl->cdev.owner = ctrl->ops->module; 4910 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4911 if (ret) 4912 return ret; 4913 4914 /* 4915 * Initialize latency tolerance controls. The sysfs files won't 4916 * be visible to userspace unless the device actually supports APST. 4917 */ 4918 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4919 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4920 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4921 4922 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4923 nvme_get_ctrl(ctrl); 4924 4925 return 0; 4926 } 4927 EXPORT_SYMBOL_GPL(nvme_add_ctrl); 4928 4929 /* let I/O to all namespaces fail in preparation for surprise removal */ 4930 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4931 { 4932 struct nvme_ns *ns; 4933 int srcu_idx; 4934 4935 srcu_idx = srcu_read_lock(&ctrl->srcu); 4936 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4937 srcu_read_lock_held(&ctrl->srcu)) 4938 blk_mark_disk_dead(ns->disk); 4939 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4940 } 4941 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4942 4943 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4944 { 4945 struct nvme_ns *ns; 4946 int srcu_idx; 4947 4948 srcu_idx = srcu_read_lock(&ctrl->srcu); 4949 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4950 srcu_read_lock_held(&ctrl->srcu)) 4951 blk_mq_unfreeze_queue_non_owner(ns->queue); 4952 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4953 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4954 } 4955 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4956 4957 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4958 { 4959 struct nvme_ns *ns; 4960 int srcu_idx; 4961 4962 srcu_idx = srcu_read_lock(&ctrl->srcu); 4963 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4964 srcu_read_lock_held(&ctrl->srcu)) { 4965 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4966 if (timeout <= 0) 4967 break; 4968 } 4969 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4970 return timeout; 4971 } 4972 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4973 4974 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4975 { 4976 struct nvme_ns *ns; 4977 int srcu_idx; 4978 4979 srcu_idx = srcu_read_lock(&ctrl->srcu); 4980 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4981 srcu_read_lock_held(&ctrl->srcu)) 4982 blk_mq_freeze_queue_wait(ns->queue); 4983 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4984 } 4985 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4986 4987 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4988 { 4989 struct nvme_ns *ns; 4990 int srcu_idx; 4991 4992 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4993 srcu_idx = srcu_read_lock(&ctrl->srcu); 4994 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4995 srcu_read_lock_held(&ctrl->srcu)) 4996 /* 4997 * Typical non_owner use case is from pci driver, in which 4998 * start_freeze is called from timeout work function, but 4999 * unfreeze is done in reset work context 5000 */ 5001 blk_freeze_queue_start_non_owner(ns->queue); 5002 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5003 } 5004 EXPORT_SYMBOL_GPL(nvme_start_freeze); 5005 5006 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 5007 { 5008 if (!ctrl->tagset) 5009 return; 5010 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5011 blk_mq_quiesce_tagset(ctrl->tagset); 5012 else 5013 blk_mq_wait_quiesce_done(ctrl->tagset); 5014 } 5015 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 5016 5017 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 5018 { 5019 if (!ctrl->tagset) 5020 return; 5021 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5022 blk_mq_unquiesce_tagset(ctrl->tagset); 5023 } 5024 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 5025 5026 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 5027 { 5028 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5029 blk_mq_quiesce_queue(ctrl->admin_q); 5030 else 5031 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 5032 } 5033 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 5034 5035 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 5036 { 5037 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5038 blk_mq_unquiesce_queue(ctrl->admin_q); 5039 } 5040 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 5041 5042 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 5043 { 5044 struct nvme_ns *ns; 5045 int srcu_idx; 5046 5047 srcu_idx = srcu_read_lock(&ctrl->srcu); 5048 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 5049 srcu_read_lock_held(&ctrl->srcu)) 5050 blk_sync_queue(ns->queue); 5051 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5052 } 5053 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 5054 5055 void nvme_sync_queues(struct nvme_ctrl *ctrl) 5056 { 5057 nvme_sync_io_queues(ctrl); 5058 if (ctrl->admin_q) 5059 blk_sync_queue(ctrl->admin_q); 5060 } 5061 EXPORT_SYMBOL_GPL(nvme_sync_queues); 5062 5063 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 5064 { 5065 if (file->f_op != &nvme_dev_fops) 5066 return NULL; 5067 return file->private_data; 5068 } 5069 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU"); 5070 5071 /* 5072 * Check we didn't inadvertently grow the command structure sizes: 5073 */ 5074 static inline void _nvme_check_size(void) 5075 { 5076 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 5077 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 5078 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 5079 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 5080 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 5081 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 5082 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 5083 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 5084 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 5085 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 5086 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 5087 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 5088 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 5089 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 5090 NVME_IDENTIFY_DATA_SIZE); 5091 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 5092 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 5093 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 5094 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 5095 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 5096 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 5097 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512); 5098 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512); 5099 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 5100 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 5101 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 5102 } 5103 5104 5105 static int __init nvme_core_init(void) 5106 { 5107 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS; 5108 int result = -ENOMEM; 5109 5110 _nvme_check_size(); 5111 5112 nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0); 5113 if (!nvme_wq) 5114 goto out; 5115 5116 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0); 5117 if (!nvme_reset_wq) 5118 goto destroy_wq; 5119 5120 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0); 5121 if (!nvme_delete_wq) 5122 goto destroy_reset_wq; 5123 5124 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5125 NVME_MINORS, "nvme"); 5126 if (result < 0) 5127 goto destroy_delete_wq; 5128 5129 result = class_register(&nvme_class); 5130 if (result) 5131 goto unregister_chrdev; 5132 5133 result = class_register(&nvme_subsys_class); 5134 if (result) 5135 goto destroy_class; 5136 5137 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5138 "nvme-generic"); 5139 if (result < 0) 5140 goto destroy_subsys_class; 5141 5142 result = class_register(&nvme_ns_chr_class); 5143 if (result) 5144 goto unregister_generic_ns; 5145 5146 result = nvme_init_auth(); 5147 if (result) 5148 goto destroy_ns_chr; 5149 return 0; 5150 5151 destroy_ns_chr: 5152 class_unregister(&nvme_ns_chr_class); 5153 unregister_generic_ns: 5154 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5155 destroy_subsys_class: 5156 class_unregister(&nvme_subsys_class); 5157 destroy_class: 5158 class_unregister(&nvme_class); 5159 unregister_chrdev: 5160 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5161 destroy_delete_wq: 5162 destroy_workqueue(nvme_delete_wq); 5163 destroy_reset_wq: 5164 destroy_workqueue(nvme_reset_wq); 5165 destroy_wq: 5166 destroy_workqueue(nvme_wq); 5167 out: 5168 return result; 5169 } 5170 5171 static void __exit nvme_core_exit(void) 5172 { 5173 nvme_exit_auth(); 5174 class_unregister(&nvme_ns_chr_class); 5175 class_unregister(&nvme_subsys_class); 5176 class_unregister(&nvme_class); 5177 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5178 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5179 destroy_workqueue(nvme_delete_wq); 5180 destroy_workqueue(nvme_reset_wq); 5181 destroy_workqueue(nvme_wq); 5182 ida_destroy(&nvme_ns_chr_minor_ida); 5183 ida_destroy(&nvme_instance_ida); 5184 } 5185 5186 MODULE_LICENSE("GPL"); 5187 MODULE_VERSION("1.0"); 5188 MODULE_DESCRIPTION("NVMe host core framework"); 5189 module_init(nvme_core_init); 5190 module_exit(nvme_core_exit); 5191