xref: /linux/drivers/nvme/host/core.c (revision 737eb75a815f9c08dcbb6631db57f4f4b0540a5b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include "nvme.h"
27 #include "fabrics.h"
28 #include <linux/nvme-auth.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #define NVME_MINORS		(1U << MINORBITS)
34 
35 struct nvme_ns_info {
36 	struct nvme_ns_ids ids;
37 	u32 nsid;
38 	__le32 anagrpid;
39 	bool is_shared;
40 	bool is_readonly;
41 	bool is_ready;
42 	bool is_removed;
43 };
44 
45 unsigned int admin_timeout = 60;
46 module_param(admin_timeout, uint, 0644);
47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
48 EXPORT_SYMBOL_GPL(admin_timeout);
49 
50 unsigned int nvme_io_timeout = 30;
51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
53 EXPORT_SYMBOL_GPL(nvme_io_timeout);
54 
55 static unsigned char shutdown_timeout = 5;
56 module_param(shutdown_timeout, byte, 0644);
57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58 
59 static u8 nvme_max_retries = 5;
60 module_param_named(max_retries, nvme_max_retries, byte, 0644);
61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62 
63 static unsigned long default_ps_max_latency_us = 100000;
64 module_param(default_ps_max_latency_us, ulong, 0644);
65 MODULE_PARM_DESC(default_ps_max_latency_us,
66 		 "max power saving latency for new devices; use PM QOS to change per device");
67 
68 static bool force_apst;
69 module_param(force_apst, bool, 0644);
70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71 
72 static unsigned long apst_primary_timeout_ms = 100;
73 module_param(apst_primary_timeout_ms, ulong, 0644);
74 MODULE_PARM_DESC(apst_primary_timeout_ms,
75 	"primary APST timeout in ms");
76 
77 static unsigned long apst_secondary_timeout_ms = 2000;
78 module_param(apst_secondary_timeout_ms, ulong, 0644);
79 MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 	"secondary APST timeout in ms");
81 
82 static unsigned long apst_primary_latency_tol_us = 15000;
83 module_param(apst_primary_latency_tol_us, ulong, 0644);
84 MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 	"primary APST latency tolerance in us");
86 
87 static unsigned long apst_secondary_latency_tol_us = 100000;
88 module_param(apst_secondary_latency_tol_us, ulong, 0644);
89 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 	"secondary APST latency tolerance in us");
91 
92 /*
93  * nvme_wq - hosts nvme related works that are not reset or delete
94  * nvme_reset_wq - hosts nvme reset works
95  * nvme_delete_wq - hosts nvme delete works
96  *
97  * nvme_wq will host works such as scan, aen handling, fw activation,
98  * keep-alive, periodic reconnects etc. nvme_reset_wq
99  * runs reset works which also flush works hosted on nvme_wq for
100  * serialization purposes. nvme_delete_wq host controller deletion
101  * works which flush reset works for serialization.
102  */
103 struct workqueue_struct *nvme_wq;
104 EXPORT_SYMBOL_GPL(nvme_wq);
105 
106 struct workqueue_struct *nvme_reset_wq;
107 EXPORT_SYMBOL_GPL(nvme_reset_wq);
108 
109 struct workqueue_struct *nvme_delete_wq;
110 EXPORT_SYMBOL_GPL(nvme_delete_wq);
111 
112 static LIST_HEAD(nvme_subsystems);
113 static DEFINE_MUTEX(nvme_subsystems_lock);
114 
115 static DEFINE_IDA(nvme_instance_ida);
116 static dev_t nvme_ctrl_base_chr_devt;
117 static struct class *nvme_class;
118 static struct class *nvme_subsys_class;
119 
120 static DEFINE_IDA(nvme_ns_chr_minor_ida);
121 static dev_t nvme_ns_chr_devt;
122 static struct class *nvme_ns_chr_class;
123 
124 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
125 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
126 					   unsigned nsid);
127 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
128 				   struct nvme_command *cmd);
129 
130 void nvme_queue_scan(struct nvme_ctrl *ctrl)
131 {
132 	/*
133 	 * Only new queue scan work when admin and IO queues are both alive
134 	 */
135 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
136 		queue_work(nvme_wq, &ctrl->scan_work);
137 }
138 
139 /*
140  * Use this function to proceed with scheduling reset_work for a controller
141  * that had previously been set to the resetting state. This is intended for
142  * code paths that can't be interrupted by other reset attempts. A hot removal
143  * may prevent this from succeeding.
144  */
145 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
146 {
147 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
148 		return -EBUSY;
149 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
150 		return -EBUSY;
151 	return 0;
152 }
153 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
154 
155 static void nvme_failfast_work(struct work_struct *work)
156 {
157 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
158 			struct nvme_ctrl, failfast_work);
159 
160 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
161 		return;
162 
163 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
164 	dev_info(ctrl->device, "failfast expired\n");
165 	nvme_kick_requeue_lists(ctrl);
166 }
167 
168 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
169 {
170 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
171 		return;
172 
173 	schedule_delayed_work(&ctrl->failfast_work,
174 			      ctrl->opts->fast_io_fail_tmo * HZ);
175 }
176 
177 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 	if (!ctrl->opts)
180 		return;
181 
182 	cancel_delayed_work_sync(&ctrl->failfast_work);
183 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
184 }
185 
186 
187 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
188 {
189 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
190 		return -EBUSY;
191 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
192 		return -EBUSY;
193 	return 0;
194 }
195 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
196 
197 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
198 {
199 	int ret;
200 
201 	ret = nvme_reset_ctrl(ctrl);
202 	if (!ret) {
203 		flush_work(&ctrl->reset_work);
204 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
205 			ret = -ENETRESET;
206 	}
207 
208 	return ret;
209 }
210 
211 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
212 {
213 	dev_info(ctrl->device,
214 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
215 
216 	flush_work(&ctrl->reset_work);
217 	nvme_stop_ctrl(ctrl);
218 	nvme_remove_namespaces(ctrl);
219 	ctrl->ops->delete_ctrl(ctrl);
220 	nvme_uninit_ctrl(ctrl);
221 }
222 
223 static void nvme_delete_ctrl_work(struct work_struct *work)
224 {
225 	struct nvme_ctrl *ctrl =
226 		container_of(work, struct nvme_ctrl, delete_work);
227 
228 	nvme_do_delete_ctrl(ctrl);
229 }
230 
231 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
232 {
233 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
234 		return -EBUSY;
235 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
236 		return -EBUSY;
237 	return 0;
238 }
239 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
240 
241 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
242 {
243 	/*
244 	 * Keep a reference until nvme_do_delete_ctrl() complete,
245 	 * since ->delete_ctrl can free the controller.
246 	 */
247 	nvme_get_ctrl(ctrl);
248 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
249 		nvme_do_delete_ctrl(ctrl);
250 	nvme_put_ctrl(ctrl);
251 }
252 
253 static blk_status_t nvme_error_status(u16 status)
254 {
255 	switch (status & 0x7ff) {
256 	case NVME_SC_SUCCESS:
257 		return BLK_STS_OK;
258 	case NVME_SC_CAP_EXCEEDED:
259 		return BLK_STS_NOSPC;
260 	case NVME_SC_LBA_RANGE:
261 	case NVME_SC_CMD_INTERRUPTED:
262 	case NVME_SC_NS_NOT_READY:
263 		return BLK_STS_TARGET;
264 	case NVME_SC_BAD_ATTRIBUTES:
265 	case NVME_SC_ONCS_NOT_SUPPORTED:
266 	case NVME_SC_INVALID_OPCODE:
267 	case NVME_SC_INVALID_FIELD:
268 	case NVME_SC_INVALID_NS:
269 		return BLK_STS_NOTSUPP;
270 	case NVME_SC_WRITE_FAULT:
271 	case NVME_SC_READ_ERROR:
272 	case NVME_SC_UNWRITTEN_BLOCK:
273 	case NVME_SC_ACCESS_DENIED:
274 	case NVME_SC_READ_ONLY:
275 	case NVME_SC_COMPARE_FAILED:
276 		return BLK_STS_MEDIUM;
277 	case NVME_SC_GUARD_CHECK:
278 	case NVME_SC_APPTAG_CHECK:
279 	case NVME_SC_REFTAG_CHECK:
280 	case NVME_SC_INVALID_PI:
281 		return BLK_STS_PROTECTION;
282 	case NVME_SC_RESERVATION_CONFLICT:
283 		return BLK_STS_RESV_CONFLICT;
284 	case NVME_SC_HOST_PATH_ERROR:
285 		return BLK_STS_TRANSPORT;
286 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
287 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
288 	case NVME_SC_ZONE_TOO_MANY_OPEN:
289 		return BLK_STS_ZONE_OPEN_RESOURCE;
290 	default:
291 		return BLK_STS_IOERR;
292 	}
293 }
294 
295 static void nvme_retry_req(struct request *req)
296 {
297 	unsigned long delay = 0;
298 	u16 crd;
299 
300 	/* The mask and shift result must be <= 3 */
301 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
302 	if (crd)
303 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
304 
305 	nvme_req(req)->retries++;
306 	blk_mq_requeue_request(req, false);
307 	blk_mq_delay_kick_requeue_list(req->q, delay);
308 }
309 
310 static void nvme_log_error(struct request *req)
311 {
312 	struct nvme_ns *ns = req->q->queuedata;
313 	struct nvme_request *nr = nvme_req(req);
314 
315 	if (ns) {
316 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
317 		       ns->disk ? ns->disk->disk_name : "?",
318 		       nvme_get_opcode_str(nr->cmd->common.opcode),
319 		       nr->cmd->common.opcode,
320 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
321 		       blk_rq_bytes(req) >> ns->head->lba_shift,
322 		       nvme_get_error_status_str(nr->status),
323 		       nr->status >> 8 & 7,	/* Status Code Type */
324 		       nr->status & 0xff,	/* Status Code */
325 		       nr->status & NVME_SC_MORE ? "MORE " : "",
326 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
327 		return;
328 	}
329 
330 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
331 			   dev_name(nr->ctrl->device),
332 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
333 			   nr->cmd->common.opcode,
334 			   nvme_get_error_status_str(nr->status),
335 			   nr->status >> 8 & 7,	/* Status Code Type */
336 			   nr->status & 0xff,	/* Status Code */
337 			   nr->status & NVME_SC_MORE ? "MORE " : "",
338 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
339 }
340 
341 static void nvme_log_err_passthru(struct request *req)
342 {
343 	struct nvme_ns *ns = req->q->queuedata;
344 	struct nvme_request *nr = nvme_req(req);
345 
346 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
347 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
348 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
349 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
350 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
351 		nr->cmd->common.opcode,
352 		nvme_get_error_status_str(nr->status),
353 		nr->status >> 8 & 7,	/* Status Code Type */
354 		nr->status & 0xff,	/* Status Code */
355 		nr->status & NVME_SC_MORE ? "MORE " : "",
356 		nr->status & NVME_SC_DNR  ? "DNR "  : "",
357 		nr->cmd->common.cdw10,
358 		nr->cmd->common.cdw11,
359 		nr->cmd->common.cdw12,
360 		nr->cmd->common.cdw13,
361 		nr->cmd->common.cdw14,
362 		nr->cmd->common.cdw14);
363 }
364 
365 enum nvme_disposition {
366 	COMPLETE,
367 	RETRY,
368 	FAILOVER,
369 	AUTHENTICATE,
370 };
371 
372 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
373 {
374 	if (likely(nvme_req(req)->status == 0))
375 		return COMPLETE;
376 
377 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
378 		return AUTHENTICATE;
379 
380 	if (blk_noretry_request(req) ||
381 	    (nvme_req(req)->status & NVME_SC_DNR) ||
382 	    nvme_req(req)->retries >= nvme_max_retries)
383 		return COMPLETE;
384 
385 	if (req->cmd_flags & REQ_NVME_MPATH) {
386 		if (nvme_is_path_error(nvme_req(req)->status) ||
387 		    blk_queue_dying(req->q))
388 			return FAILOVER;
389 	} else {
390 		if (blk_queue_dying(req->q))
391 			return COMPLETE;
392 	}
393 
394 	return RETRY;
395 }
396 
397 static inline void nvme_end_req_zoned(struct request *req)
398 {
399 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
400 	    req_op(req) == REQ_OP_ZONE_APPEND) {
401 		struct nvme_ns *ns = req->q->queuedata;
402 
403 		req->__sector = nvme_lba_to_sect(ns->head,
404 			le64_to_cpu(nvme_req(req)->result.u64));
405 	}
406 }
407 
408 static inline void nvme_end_req(struct request *req)
409 {
410 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
411 
412 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
413 		if (blk_rq_is_passthrough(req))
414 			nvme_log_err_passthru(req);
415 		else
416 			nvme_log_error(req);
417 	}
418 	nvme_end_req_zoned(req);
419 	nvme_trace_bio_complete(req);
420 	if (req->cmd_flags & REQ_NVME_MPATH)
421 		nvme_mpath_end_request(req);
422 	blk_mq_end_request(req, status);
423 }
424 
425 void nvme_complete_rq(struct request *req)
426 {
427 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
428 
429 	trace_nvme_complete_rq(req);
430 	nvme_cleanup_cmd(req);
431 
432 	/*
433 	 * Completions of long-running commands should not be able to
434 	 * defer sending of periodic keep alives, since the controller
435 	 * may have completed processing such commands a long time ago
436 	 * (arbitrarily close to command submission time).
437 	 * req->deadline - req->timeout is the command submission time
438 	 * in jiffies.
439 	 */
440 	if (ctrl->kas &&
441 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
442 		ctrl->comp_seen = true;
443 
444 	switch (nvme_decide_disposition(req)) {
445 	case COMPLETE:
446 		nvme_end_req(req);
447 		return;
448 	case RETRY:
449 		nvme_retry_req(req);
450 		return;
451 	case FAILOVER:
452 		nvme_failover_req(req);
453 		return;
454 	case AUTHENTICATE:
455 #ifdef CONFIG_NVME_HOST_AUTH
456 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
457 		nvme_retry_req(req);
458 #else
459 		nvme_end_req(req);
460 #endif
461 		return;
462 	}
463 }
464 EXPORT_SYMBOL_GPL(nvme_complete_rq);
465 
466 void nvme_complete_batch_req(struct request *req)
467 {
468 	trace_nvme_complete_rq(req);
469 	nvme_cleanup_cmd(req);
470 	nvme_end_req_zoned(req);
471 }
472 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
473 
474 /*
475  * Called to unwind from ->queue_rq on a failed command submission so that the
476  * multipathing code gets called to potentially failover to another path.
477  * The caller needs to unwind all transport specific resource allocations and
478  * must return propagate the return value.
479  */
480 blk_status_t nvme_host_path_error(struct request *req)
481 {
482 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
483 	blk_mq_set_request_complete(req);
484 	nvme_complete_rq(req);
485 	return BLK_STS_OK;
486 }
487 EXPORT_SYMBOL_GPL(nvme_host_path_error);
488 
489 bool nvme_cancel_request(struct request *req, void *data)
490 {
491 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
492 				"Cancelling I/O %d", req->tag);
493 
494 	/* don't abort one completed or idle request */
495 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
496 		return true;
497 
498 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
499 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
500 	blk_mq_complete_request(req);
501 	return true;
502 }
503 EXPORT_SYMBOL_GPL(nvme_cancel_request);
504 
505 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
506 {
507 	if (ctrl->tagset) {
508 		blk_mq_tagset_busy_iter(ctrl->tagset,
509 				nvme_cancel_request, ctrl);
510 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
511 	}
512 }
513 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
514 
515 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
516 {
517 	if (ctrl->admin_tagset) {
518 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
519 				nvme_cancel_request, ctrl);
520 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
521 	}
522 }
523 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
524 
525 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
526 		enum nvme_ctrl_state new_state)
527 {
528 	enum nvme_ctrl_state old_state;
529 	unsigned long flags;
530 	bool changed = false;
531 
532 	spin_lock_irqsave(&ctrl->lock, flags);
533 
534 	old_state = nvme_ctrl_state(ctrl);
535 	switch (new_state) {
536 	case NVME_CTRL_LIVE:
537 		switch (old_state) {
538 		case NVME_CTRL_NEW:
539 		case NVME_CTRL_RESETTING:
540 		case NVME_CTRL_CONNECTING:
541 			changed = true;
542 			fallthrough;
543 		default:
544 			break;
545 		}
546 		break;
547 	case NVME_CTRL_RESETTING:
548 		switch (old_state) {
549 		case NVME_CTRL_NEW:
550 		case NVME_CTRL_LIVE:
551 			changed = true;
552 			fallthrough;
553 		default:
554 			break;
555 		}
556 		break;
557 	case NVME_CTRL_CONNECTING:
558 		switch (old_state) {
559 		case NVME_CTRL_NEW:
560 		case NVME_CTRL_RESETTING:
561 			changed = true;
562 			fallthrough;
563 		default:
564 			break;
565 		}
566 		break;
567 	case NVME_CTRL_DELETING:
568 		switch (old_state) {
569 		case NVME_CTRL_LIVE:
570 		case NVME_CTRL_RESETTING:
571 		case NVME_CTRL_CONNECTING:
572 			changed = true;
573 			fallthrough;
574 		default:
575 			break;
576 		}
577 		break;
578 	case NVME_CTRL_DELETING_NOIO:
579 		switch (old_state) {
580 		case NVME_CTRL_DELETING:
581 		case NVME_CTRL_DEAD:
582 			changed = true;
583 			fallthrough;
584 		default:
585 			break;
586 		}
587 		break;
588 	case NVME_CTRL_DEAD:
589 		switch (old_state) {
590 		case NVME_CTRL_DELETING:
591 			changed = true;
592 			fallthrough;
593 		default:
594 			break;
595 		}
596 		break;
597 	default:
598 		break;
599 	}
600 
601 	if (changed) {
602 		WRITE_ONCE(ctrl->state, new_state);
603 		wake_up_all(&ctrl->state_wq);
604 	}
605 
606 	spin_unlock_irqrestore(&ctrl->lock, flags);
607 	if (!changed)
608 		return false;
609 
610 	if (new_state == NVME_CTRL_LIVE) {
611 		if (old_state == NVME_CTRL_CONNECTING)
612 			nvme_stop_failfast_work(ctrl);
613 		nvme_kick_requeue_lists(ctrl);
614 	} else if (new_state == NVME_CTRL_CONNECTING &&
615 		old_state == NVME_CTRL_RESETTING) {
616 		nvme_start_failfast_work(ctrl);
617 	}
618 	return changed;
619 }
620 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
621 
622 /*
623  * Returns true for sink states that can't ever transition back to live.
624  */
625 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
626 {
627 	switch (nvme_ctrl_state(ctrl)) {
628 	case NVME_CTRL_NEW:
629 	case NVME_CTRL_LIVE:
630 	case NVME_CTRL_RESETTING:
631 	case NVME_CTRL_CONNECTING:
632 		return false;
633 	case NVME_CTRL_DELETING:
634 	case NVME_CTRL_DELETING_NOIO:
635 	case NVME_CTRL_DEAD:
636 		return true;
637 	default:
638 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
639 		return true;
640 	}
641 }
642 
643 /*
644  * Waits for the controller state to be resetting, or returns false if it is
645  * not possible to ever transition to that state.
646  */
647 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
648 {
649 	wait_event(ctrl->state_wq,
650 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
651 		   nvme_state_terminal(ctrl));
652 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
653 }
654 EXPORT_SYMBOL_GPL(nvme_wait_reset);
655 
656 static void nvme_free_ns_head(struct kref *ref)
657 {
658 	struct nvme_ns_head *head =
659 		container_of(ref, struct nvme_ns_head, ref);
660 
661 	nvme_mpath_remove_disk(head);
662 	ida_free(&head->subsys->ns_ida, head->instance);
663 	cleanup_srcu_struct(&head->srcu);
664 	nvme_put_subsystem(head->subsys);
665 	kfree(head);
666 }
667 
668 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
669 {
670 	return kref_get_unless_zero(&head->ref);
671 }
672 
673 void nvme_put_ns_head(struct nvme_ns_head *head)
674 {
675 	kref_put(&head->ref, nvme_free_ns_head);
676 }
677 
678 static void nvme_free_ns(struct kref *kref)
679 {
680 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
681 
682 	put_disk(ns->disk);
683 	nvme_put_ns_head(ns->head);
684 	nvme_put_ctrl(ns->ctrl);
685 	kfree(ns);
686 }
687 
688 static inline bool nvme_get_ns(struct nvme_ns *ns)
689 {
690 	return kref_get_unless_zero(&ns->kref);
691 }
692 
693 void nvme_put_ns(struct nvme_ns *ns)
694 {
695 	kref_put(&ns->kref, nvme_free_ns);
696 }
697 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
698 
699 static inline void nvme_clear_nvme_request(struct request *req)
700 {
701 	nvme_req(req)->status = 0;
702 	nvme_req(req)->retries = 0;
703 	nvme_req(req)->flags = 0;
704 	req->rq_flags |= RQF_DONTPREP;
705 }
706 
707 /* initialize a passthrough request */
708 void nvme_init_request(struct request *req, struct nvme_command *cmd)
709 {
710 	struct nvme_request *nr = nvme_req(req);
711 	bool logging_enabled;
712 
713 	if (req->q->queuedata) {
714 		struct nvme_ns *ns = req->q->disk->private_data;
715 
716 		logging_enabled = ns->passthru_err_log_enabled;
717 		req->timeout = NVME_IO_TIMEOUT;
718 	} else { /* no queuedata implies admin queue */
719 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
720 		req->timeout = NVME_ADMIN_TIMEOUT;
721 	}
722 
723 	if (!logging_enabled)
724 		req->rq_flags |= RQF_QUIET;
725 
726 	/* passthru commands should let the driver set the SGL flags */
727 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
728 
729 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
730 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
731 		req->cmd_flags |= REQ_POLLED;
732 	nvme_clear_nvme_request(req);
733 	memcpy(nr->cmd, cmd, sizeof(*cmd));
734 }
735 EXPORT_SYMBOL_GPL(nvme_init_request);
736 
737 /*
738  * For something we're not in a state to send to the device the default action
739  * is to busy it and retry it after the controller state is recovered.  However,
740  * if the controller is deleting or if anything is marked for failfast or
741  * nvme multipath it is immediately failed.
742  *
743  * Note: commands used to initialize the controller will be marked for failfast.
744  * Note: nvme cli/ioctl commands are marked for failfast.
745  */
746 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
747 		struct request *rq)
748 {
749 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
750 
751 	if (state != NVME_CTRL_DELETING_NOIO &&
752 	    state != NVME_CTRL_DELETING &&
753 	    state != NVME_CTRL_DEAD &&
754 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
755 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
756 		return BLK_STS_RESOURCE;
757 	return nvme_host_path_error(rq);
758 }
759 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
760 
761 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
762 		bool queue_live, enum nvme_ctrl_state state)
763 {
764 	struct nvme_request *req = nvme_req(rq);
765 
766 	/*
767 	 * currently we have a problem sending passthru commands
768 	 * on the admin_q if the controller is not LIVE because we can't
769 	 * make sure that they are going out after the admin connect,
770 	 * controller enable and/or other commands in the initialization
771 	 * sequence. until the controller will be LIVE, fail with
772 	 * BLK_STS_RESOURCE so that they will be rescheduled.
773 	 */
774 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
775 		return false;
776 
777 	if (ctrl->ops->flags & NVME_F_FABRICS) {
778 		/*
779 		 * Only allow commands on a live queue, except for the connect
780 		 * command, which is require to set the queue live in the
781 		 * appropinquate states.
782 		 */
783 		switch (state) {
784 		case NVME_CTRL_CONNECTING:
785 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
786 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
787 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
788 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
789 				return true;
790 			break;
791 		default:
792 			break;
793 		case NVME_CTRL_DEAD:
794 			return false;
795 		}
796 	}
797 
798 	return queue_live;
799 }
800 EXPORT_SYMBOL_GPL(__nvme_check_ready);
801 
802 static inline void nvme_setup_flush(struct nvme_ns *ns,
803 		struct nvme_command *cmnd)
804 {
805 	memset(cmnd, 0, sizeof(*cmnd));
806 	cmnd->common.opcode = nvme_cmd_flush;
807 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
808 }
809 
810 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
811 		struct nvme_command *cmnd)
812 {
813 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
814 	struct nvme_dsm_range *range;
815 	struct bio *bio;
816 
817 	/*
818 	 * Some devices do not consider the DSM 'Number of Ranges' field when
819 	 * determining how much data to DMA. Always allocate memory for maximum
820 	 * number of segments to prevent device reading beyond end of buffer.
821 	 */
822 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
823 
824 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
825 	if (!range) {
826 		/*
827 		 * If we fail allocation our range, fallback to the controller
828 		 * discard page. If that's also busy, it's safe to return
829 		 * busy, as we know we can make progress once that's freed.
830 		 */
831 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
832 			return BLK_STS_RESOURCE;
833 
834 		range = page_address(ns->ctrl->discard_page);
835 	}
836 
837 	if (queue_max_discard_segments(req->q) == 1) {
838 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
839 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
840 
841 		range[0].cattr = cpu_to_le32(0);
842 		range[0].nlb = cpu_to_le32(nlb);
843 		range[0].slba = cpu_to_le64(slba);
844 		n = 1;
845 	} else {
846 		__rq_for_each_bio(bio, req) {
847 			u64 slba = nvme_sect_to_lba(ns->head,
848 						    bio->bi_iter.bi_sector);
849 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
850 
851 			if (n < segments) {
852 				range[n].cattr = cpu_to_le32(0);
853 				range[n].nlb = cpu_to_le32(nlb);
854 				range[n].slba = cpu_to_le64(slba);
855 			}
856 			n++;
857 		}
858 	}
859 
860 	if (WARN_ON_ONCE(n != segments)) {
861 		if (virt_to_page(range) == ns->ctrl->discard_page)
862 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
863 		else
864 			kfree(range);
865 		return BLK_STS_IOERR;
866 	}
867 
868 	memset(cmnd, 0, sizeof(*cmnd));
869 	cmnd->dsm.opcode = nvme_cmd_dsm;
870 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
871 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
872 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
873 
874 	bvec_set_virt(&req->special_vec, range, alloc_size);
875 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
876 
877 	return BLK_STS_OK;
878 }
879 
880 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
881 			      struct request *req)
882 {
883 	u32 upper, lower;
884 	u64 ref48;
885 
886 	/* both rw and write zeroes share the same reftag format */
887 	switch (ns->head->guard_type) {
888 	case NVME_NVM_NS_16B_GUARD:
889 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
890 		break;
891 	case NVME_NVM_NS_64B_GUARD:
892 		ref48 = ext_pi_ref_tag(req);
893 		lower = lower_32_bits(ref48);
894 		upper = upper_32_bits(ref48);
895 
896 		cmnd->rw.reftag = cpu_to_le32(lower);
897 		cmnd->rw.cdw3 = cpu_to_le32(upper);
898 		break;
899 	default:
900 		break;
901 	}
902 }
903 
904 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
905 		struct request *req, struct nvme_command *cmnd)
906 {
907 	memset(cmnd, 0, sizeof(*cmnd));
908 
909 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
910 		return nvme_setup_discard(ns, req, cmnd);
911 
912 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
913 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
914 	cmnd->write_zeroes.slba =
915 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
916 	cmnd->write_zeroes.length =
917 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
918 
919 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
920 	    (ns->head->features & NVME_NS_DEAC))
921 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
922 
923 	if (nvme_ns_has_pi(ns->head)) {
924 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
925 
926 		switch (ns->head->pi_type) {
927 		case NVME_NS_DPS_PI_TYPE1:
928 		case NVME_NS_DPS_PI_TYPE2:
929 			nvme_set_ref_tag(ns, cmnd, req);
930 			break;
931 		}
932 	}
933 
934 	return BLK_STS_OK;
935 }
936 
937 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
938 		struct request *req, struct nvme_command *cmnd,
939 		enum nvme_opcode op)
940 {
941 	u16 control = 0;
942 	u32 dsmgmt = 0;
943 
944 	if (req->cmd_flags & REQ_FUA)
945 		control |= NVME_RW_FUA;
946 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
947 		control |= NVME_RW_LR;
948 
949 	if (req->cmd_flags & REQ_RAHEAD)
950 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
951 
952 	cmnd->rw.opcode = op;
953 	cmnd->rw.flags = 0;
954 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
955 	cmnd->rw.cdw2 = 0;
956 	cmnd->rw.cdw3 = 0;
957 	cmnd->rw.metadata = 0;
958 	cmnd->rw.slba =
959 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
960 	cmnd->rw.length =
961 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
962 	cmnd->rw.reftag = 0;
963 	cmnd->rw.apptag = 0;
964 	cmnd->rw.appmask = 0;
965 
966 	if (ns->head->ms) {
967 		/*
968 		 * If formated with metadata, the block layer always provides a
969 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
970 		 * we enable the PRACT bit for protection information or set the
971 		 * namespace capacity to zero to prevent any I/O.
972 		 */
973 		if (!blk_integrity_rq(req)) {
974 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
975 				return BLK_STS_NOTSUPP;
976 			control |= NVME_RW_PRINFO_PRACT;
977 		}
978 
979 		switch (ns->head->pi_type) {
980 		case NVME_NS_DPS_PI_TYPE3:
981 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
982 			break;
983 		case NVME_NS_DPS_PI_TYPE1:
984 		case NVME_NS_DPS_PI_TYPE2:
985 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
986 					NVME_RW_PRINFO_PRCHK_REF;
987 			if (op == nvme_cmd_zone_append)
988 				control |= NVME_RW_APPEND_PIREMAP;
989 			nvme_set_ref_tag(ns, cmnd, req);
990 			break;
991 		}
992 	}
993 
994 	cmnd->rw.control = cpu_to_le16(control);
995 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
996 	return 0;
997 }
998 
999 void nvme_cleanup_cmd(struct request *req)
1000 {
1001 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1002 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1003 
1004 		if (req->special_vec.bv_page == ctrl->discard_page)
1005 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1006 		else
1007 			kfree(bvec_virt(&req->special_vec));
1008 	}
1009 }
1010 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1011 
1012 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1013 {
1014 	struct nvme_command *cmd = nvme_req(req)->cmd;
1015 	blk_status_t ret = BLK_STS_OK;
1016 
1017 	if (!(req->rq_flags & RQF_DONTPREP))
1018 		nvme_clear_nvme_request(req);
1019 
1020 	switch (req_op(req)) {
1021 	case REQ_OP_DRV_IN:
1022 	case REQ_OP_DRV_OUT:
1023 		/* these are setup prior to execution in nvme_init_request() */
1024 		break;
1025 	case REQ_OP_FLUSH:
1026 		nvme_setup_flush(ns, cmd);
1027 		break;
1028 	case REQ_OP_ZONE_RESET_ALL:
1029 	case REQ_OP_ZONE_RESET:
1030 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1031 		break;
1032 	case REQ_OP_ZONE_OPEN:
1033 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1034 		break;
1035 	case REQ_OP_ZONE_CLOSE:
1036 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1037 		break;
1038 	case REQ_OP_ZONE_FINISH:
1039 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1040 		break;
1041 	case REQ_OP_WRITE_ZEROES:
1042 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1043 		break;
1044 	case REQ_OP_DISCARD:
1045 		ret = nvme_setup_discard(ns, req, cmd);
1046 		break;
1047 	case REQ_OP_READ:
1048 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1049 		break;
1050 	case REQ_OP_WRITE:
1051 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1052 		break;
1053 	case REQ_OP_ZONE_APPEND:
1054 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1055 		break;
1056 	default:
1057 		WARN_ON_ONCE(1);
1058 		return BLK_STS_IOERR;
1059 	}
1060 
1061 	cmd->common.command_id = nvme_cid(req);
1062 	trace_nvme_setup_cmd(req, cmd);
1063 	return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1066 
1067 /*
1068  * Return values:
1069  * 0:  success
1070  * >0: nvme controller's cqe status response
1071  * <0: kernel error in lieu of controller response
1072  */
1073 int nvme_execute_rq(struct request *rq, bool at_head)
1074 {
1075 	blk_status_t status;
1076 
1077 	status = blk_execute_rq(rq, at_head);
1078 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1079 		return -EINTR;
1080 	if (nvme_req(rq)->status)
1081 		return nvme_req(rq)->status;
1082 	return blk_status_to_errno(status);
1083 }
1084 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1085 
1086 /*
1087  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1088  * if the result is positive, it's an NVM Express status code
1089  */
1090 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1091 		union nvme_result *result, void *buffer, unsigned bufflen,
1092 		int qid, nvme_submit_flags_t flags)
1093 {
1094 	struct request *req;
1095 	int ret;
1096 	blk_mq_req_flags_t blk_flags = 0;
1097 
1098 	if (flags & NVME_SUBMIT_NOWAIT)
1099 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1100 	if (flags & NVME_SUBMIT_RESERVED)
1101 		blk_flags |= BLK_MQ_REQ_RESERVED;
1102 	if (qid == NVME_QID_ANY)
1103 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1104 	else
1105 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1106 						qid - 1);
1107 
1108 	if (IS_ERR(req))
1109 		return PTR_ERR(req);
1110 	nvme_init_request(req, cmd);
1111 	if (flags & NVME_SUBMIT_RETRY)
1112 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1113 
1114 	if (buffer && bufflen) {
1115 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1116 		if (ret)
1117 			goto out;
1118 	}
1119 
1120 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1121 	if (result && ret >= 0)
1122 		*result = nvme_req(req)->result;
1123  out:
1124 	blk_mq_free_request(req);
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1128 
1129 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1130 		void *buffer, unsigned bufflen)
1131 {
1132 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1133 			NVME_QID_ANY, 0);
1134 }
1135 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1136 
1137 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1138 {
1139 	u32 effects = 0;
1140 
1141 	if (ns) {
1142 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1143 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1144 			dev_warn_once(ctrl->device,
1145 				"IO command:%02x has unusual effects:%08x\n",
1146 				opcode, effects);
1147 
1148 		/*
1149 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1150 		 * which would deadlock when done on an I/O command.  Note that
1151 		 * We already warn about an unusual effect above.
1152 		 */
1153 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1154 	} else {
1155 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1156 	}
1157 
1158 	return effects;
1159 }
1160 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1161 
1162 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1163 {
1164 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1165 
1166 	/*
1167 	 * For simplicity, IO to all namespaces is quiesced even if the command
1168 	 * effects say only one namespace is affected.
1169 	 */
1170 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1171 		mutex_lock(&ctrl->scan_lock);
1172 		mutex_lock(&ctrl->subsys->lock);
1173 		nvme_mpath_start_freeze(ctrl->subsys);
1174 		nvme_mpath_wait_freeze(ctrl->subsys);
1175 		nvme_start_freeze(ctrl);
1176 		nvme_wait_freeze(ctrl);
1177 	}
1178 	return effects;
1179 }
1180 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1181 
1182 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1183 		       struct nvme_command *cmd, int status)
1184 {
1185 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1186 		nvme_unfreeze(ctrl);
1187 		nvme_mpath_unfreeze(ctrl->subsys);
1188 		mutex_unlock(&ctrl->subsys->lock);
1189 		mutex_unlock(&ctrl->scan_lock);
1190 	}
1191 	if (effects & NVME_CMD_EFFECTS_CCC) {
1192 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1193 				      &ctrl->flags)) {
1194 			dev_info(ctrl->device,
1195 "controller capabilities changed, reset may be required to take effect.\n");
1196 		}
1197 	}
1198 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1199 		nvme_queue_scan(ctrl);
1200 		flush_work(&ctrl->scan_work);
1201 	}
1202 	if (ns)
1203 		return;
1204 
1205 	switch (cmd->common.opcode) {
1206 	case nvme_admin_set_features:
1207 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1208 		case NVME_FEAT_KATO:
1209 			/*
1210 			 * Keep alive commands interval on the host should be
1211 			 * updated when KATO is modified by Set Features
1212 			 * commands.
1213 			 */
1214 			if (!status)
1215 				nvme_update_keep_alive(ctrl, cmd);
1216 			break;
1217 		default:
1218 			break;
1219 		}
1220 		break;
1221 	default:
1222 		break;
1223 	}
1224 }
1225 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1226 
1227 /*
1228  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1229  *
1230  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1231  *   accounting for transport roundtrip times [..].
1232  */
1233 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1234 {
1235 	unsigned long delay = ctrl->kato * HZ / 2;
1236 
1237 	/*
1238 	 * When using Traffic Based Keep Alive, we need to run
1239 	 * nvme_keep_alive_work at twice the normal frequency, as one
1240 	 * command completion can postpone sending a keep alive command
1241 	 * by up to twice the delay between runs.
1242 	 */
1243 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1244 		delay /= 2;
1245 	return delay;
1246 }
1247 
1248 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1249 {
1250 	unsigned long now = jiffies;
1251 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1252 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1253 
1254 	if (time_after(now, ka_next_check_tm))
1255 		delay = 0;
1256 	else
1257 		delay = ka_next_check_tm - now;
1258 
1259 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1260 }
1261 
1262 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1263 						 blk_status_t status)
1264 {
1265 	struct nvme_ctrl *ctrl = rq->end_io_data;
1266 	unsigned long flags;
1267 	bool startka = false;
1268 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1269 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1270 
1271 	/*
1272 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1273 	 * at the desired frequency.
1274 	 */
1275 	if (rtt <= delay) {
1276 		delay -= rtt;
1277 	} else {
1278 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1279 			 jiffies_to_msecs(rtt));
1280 		delay = 0;
1281 	}
1282 
1283 	blk_mq_free_request(rq);
1284 
1285 	if (status) {
1286 		dev_err(ctrl->device,
1287 			"failed nvme_keep_alive_end_io error=%d\n",
1288 				status);
1289 		return RQ_END_IO_NONE;
1290 	}
1291 
1292 	ctrl->ka_last_check_time = jiffies;
1293 	ctrl->comp_seen = false;
1294 	spin_lock_irqsave(&ctrl->lock, flags);
1295 	if (ctrl->state == NVME_CTRL_LIVE ||
1296 	    ctrl->state == NVME_CTRL_CONNECTING)
1297 		startka = true;
1298 	spin_unlock_irqrestore(&ctrl->lock, flags);
1299 	if (startka)
1300 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1301 	return RQ_END_IO_NONE;
1302 }
1303 
1304 static void nvme_keep_alive_work(struct work_struct *work)
1305 {
1306 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1307 			struct nvme_ctrl, ka_work);
1308 	bool comp_seen = ctrl->comp_seen;
1309 	struct request *rq;
1310 
1311 	ctrl->ka_last_check_time = jiffies;
1312 
1313 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1314 		dev_dbg(ctrl->device,
1315 			"reschedule traffic based keep-alive timer\n");
1316 		ctrl->comp_seen = false;
1317 		nvme_queue_keep_alive_work(ctrl);
1318 		return;
1319 	}
1320 
1321 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1322 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1323 	if (IS_ERR(rq)) {
1324 		/* allocation failure, reset the controller */
1325 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1326 		nvme_reset_ctrl(ctrl);
1327 		return;
1328 	}
1329 	nvme_init_request(rq, &ctrl->ka_cmd);
1330 
1331 	rq->timeout = ctrl->kato * HZ;
1332 	rq->end_io = nvme_keep_alive_end_io;
1333 	rq->end_io_data = ctrl;
1334 	blk_execute_rq_nowait(rq, false);
1335 }
1336 
1337 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1338 {
1339 	if (unlikely(ctrl->kato == 0))
1340 		return;
1341 
1342 	nvme_queue_keep_alive_work(ctrl);
1343 }
1344 
1345 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1346 {
1347 	if (unlikely(ctrl->kato == 0))
1348 		return;
1349 
1350 	cancel_delayed_work_sync(&ctrl->ka_work);
1351 }
1352 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1353 
1354 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1355 				   struct nvme_command *cmd)
1356 {
1357 	unsigned int new_kato =
1358 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1359 
1360 	dev_info(ctrl->device,
1361 		 "keep alive interval updated from %u ms to %u ms\n",
1362 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1363 
1364 	nvme_stop_keep_alive(ctrl);
1365 	ctrl->kato = new_kato;
1366 	nvme_start_keep_alive(ctrl);
1367 }
1368 
1369 /*
1370  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1371  * flag, thus sending any new CNS opcodes has a big chance of not working.
1372  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1373  * (but not for any later version).
1374  */
1375 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1376 {
1377 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1378 		return ctrl->vs < NVME_VS(1, 2, 0);
1379 	return ctrl->vs < NVME_VS(1, 1, 0);
1380 }
1381 
1382 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1383 {
1384 	struct nvme_command c = { };
1385 	int error;
1386 
1387 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1388 	c.identify.opcode = nvme_admin_identify;
1389 	c.identify.cns = NVME_ID_CNS_CTRL;
1390 
1391 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1392 	if (!*id)
1393 		return -ENOMEM;
1394 
1395 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1396 			sizeof(struct nvme_id_ctrl));
1397 	if (error)
1398 		kfree(*id);
1399 	return error;
1400 }
1401 
1402 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1403 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1404 {
1405 	const char *warn_str = "ctrl returned bogus length:";
1406 	void *data = cur;
1407 
1408 	switch (cur->nidt) {
1409 	case NVME_NIDT_EUI64:
1410 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1411 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1412 				 warn_str, cur->nidl);
1413 			return -1;
1414 		}
1415 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1416 			return NVME_NIDT_EUI64_LEN;
1417 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1418 		return NVME_NIDT_EUI64_LEN;
1419 	case NVME_NIDT_NGUID:
1420 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1421 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1422 				 warn_str, cur->nidl);
1423 			return -1;
1424 		}
1425 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1426 			return NVME_NIDT_NGUID_LEN;
1427 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1428 		return NVME_NIDT_NGUID_LEN;
1429 	case NVME_NIDT_UUID:
1430 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1431 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1432 				 warn_str, cur->nidl);
1433 			return -1;
1434 		}
1435 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1436 			return NVME_NIDT_UUID_LEN;
1437 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1438 		return NVME_NIDT_UUID_LEN;
1439 	case NVME_NIDT_CSI:
1440 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1441 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1442 				 warn_str, cur->nidl);
1443 			return -1;
1444 		}
1445 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1446 		*csi_seen = true;
1447 		return NVME_NIDT_CSI_LEN;
1448 	default:
1449 		/* Skip unknown types */
1450 		return cur->nidl;
1451 	}
1452 }
1453 
1454 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1455 		struct nvme_ns_info *info)
1456 {
1457 	struct nvme_command c = { };
1458 	bool csi_seen = false;
1459 	int status, pos, len;
1460 	void *data;
1461 
1462 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1463 		return 0;
1464 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1465 		return 0;
1466 
1467 	c.identify.opcode = nvme_admin_identify;
1468 	c.identify.nsid = cpu_to_le32(info->nsid);
1469 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1470 
1471 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1472 	if (!data)
1473 		return -ENOMEM;
1474 
1475 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1476 				      NVME_IDENTIFY_DATA_SIZE);
1477 	if (status) {
1478 		dev_warn(ctrl->device,
1479 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1480 			info->nsid, status);
1481 		goto free_data;
1482 	}
1483 
1484 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1485 		struct nvme_ns_id_desc *cur = data + pos;
1486 
1487 		if (cur->nidl == 0)
1488 			break;
1489 
1490 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1491 		if (len < 0)
1492 			break;
1493 
1494 		len += sizeof(*cur);
1495 	}
1496 
1497 	if (nvme_multi_css(ctrl) && !csi_seen) {
1498 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1499 			 info->nsid);
1500 		status = -EINVAL;
1501 	}
1502 
1503 free_data:
1504 	kfree(data);
1505 	return status;
1506 }
1507 
1508 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1509 			struct nvme_id_ns **id)
1510 {
1511 	struct nvme_command c = { };
1512 	int error;
1513 
1514 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1515 	c.identify.opcode = nvme_admin_identify;
1516 	c.identify.nsid = cpu_to_le32(nsid);
1517 	c.identify.cns = NVME_ID_CNS_NS;
1518 
1519 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1520 	if (!*id)
1521 		return -ENOMEM;
1522 
1523 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1524 	if (error) {
1525 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1526 		kfree(*id);
1527 	}
1528 	return error;
1529 }
1530 
1531 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1532 		struct nvme_ns_info *info)
1533 {
1534 	struct nvme_ns_ids *ids = &info->ids;
1535 	struct nvme_id_ns *id;
1536 	int ret;
1537 
1538 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1539 	if (ret)
1540 		return ret;
1541 
1542 	if (id->ncap == 0) {
1543 		/* namespace not allocated or attached */
1544 		info->is_removed = true;
1545 		ret = -ENODEV;
1546 		goto error;
1547 	}
1548 
1549 	info->anagrpid = id->anagrpid;
1550 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1551 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1552 	info->is_ready = true;
1553 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1554 		dev_info(ctrl->device,
1555 			 "Ignoring bogus Namespace Identifiers\n");
1556 	} else {
1557 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1558 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1559 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1560 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1561 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1562 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1563 	}
1564 
1565 error:
1566 	kfree(id);
1567 	return ret;
1568 }
1569 
1570 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1571 		struct nvme_ns_info *info)
1572 {
1573 	struct nvme_id_ns_cs_indep *id;
1574 	struct nvme_command c = {
1575 		.identify.opcode	= nvme_admin_identify,
1576 		.identify.nsid		= cpu_to_le32(info->nsid),
1577 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1578 	};
1579 	int ret;
1580 
1581 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1582 	if (!id)
1583 		return -ENOMEM;
1584 
1585 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1586 	if (!ret) {
1587 		info->anagrpid = id->anagrpid;
1588 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1589 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1590 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1591 	}
1592 	kfree(id);
1593 	return ret;
1594 }
1595 
1596 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1597 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1598 {
1599 	union nvme_result res = { 0 };
1600 	struct nvme_command c = { };
1601 	int ret;
1602 
1603 	c.features.opcode = op;
1604 	c.features.fid = cpu_to_le32(fid);
1605 	c.features.dword11 = cpu_to_le32(dword11);
1606 
1607 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1608 			buffer, buflen, NVME_QID_ANY, 0);
1609 	if (ret >= 0 && result)
1610 		*result = le32_to_cpu(res.u32);
1611 	return ret;
1612 }
1613 
1614 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1615 		      unsigned int dword11, void *buffer, size_t buflen,
1616 		      u32 *result)
1617 {
1618 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1619 			     buflen, result);
1620 }
1621 EXPORT_SYMBOL_GPL(nvme_set_features);
1622 
1623 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1624 		      unsigned int dword11, void *buffer, size_t buflen,
1625 		      u32 *result)
1626 {
1627 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1628 			     buflen, result);
1629 }
1630 EXPORT_SYMBOL_GPL(nvme_get_features);
1631 
1632 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1633 {
1634 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1635 	u32 result;
1636 	int status, nr_io_queues;
1637 
1638 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1639 			&result);
1640 	if (status < 0)
1641 		return status;
1642 
1643 	/*
1644 	 * Degraded controllers might return an error when setting the queue
1645 	 * count.  We still want to be able to bring them online and offer
1646 	 * access to the admin queue, as that might be only way to fix them up.
1647 	 */
1648 	if (status > 0) {
1649 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1650 		*count = 0;
1651 	} else {
1652 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1653 		*count = min(*count, nr_io_queues);
1654 	}
1655 
1656 	return 0;
1657 }
1658 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1659 
1660 #define NVME_AEN_SUPPORTED \
1661 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1662 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1663 
1664 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1665 {
1666 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1667 	int status;
1668 
1669 	if (!supported_aens)
1670 		return;
1671 
1672 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1673 			NULL, 0, &result);
1674 	if (status)
1675 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1676 			 supported_aens);
1677 
1678 	queue_work(nvme_wq, &ctrl->async_event_work);
1679 }
1680 
1681 static int nvme_ns_open(struct nvme_ns *ns)
1682 {
1683 
1684 	/* should never be called due to GENHD_FL_HIDDEN */
1685 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1686 		goto fail;
1687 	if (!nvme_get_ns(ns))
1688 		goto fail;
1689 	if (!try_module_get(ns->ctrl->ops->module))
1690 		goto fail_put_ns;
1691 
1692 	return 0;
1693 
1694 fail_put_ns:
1695 	nvme_put_ns(ns);
1696 fail:
1697 	return -ENXIO;
1698 }
1699 
1700 static void nvme_ns_release(struct nvme_ns *ns)
1701 {
1702 
1703 	module_put(ns->ctrl->ops->module);
1704 	nvme_put_ns(ns);
1705 }
1706 
1707 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1708 {
1709 	return nvme_ns_open(disk->private_data);
1710 }
1711 
1712 static void nvme_release(struct gendisk *disk)
1713 {
1714 	nvme_ns_release(disk->private_data);
1715 }
1716 
1717 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1718 {
1719 	/* some standard values */
1720 	geo->heads = 1 << 6;
1721 	geo->sectors = 1 << 5;
1722 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1723 	return 0;
1724 }
1725 
1726 #ifdef CONFIG_BLK_DEV_INTEGRITY
1727 static void nvme_init_integrity(struct gendisk *disk,
1728 		struct nvme_ns_head *head, u32 max_integrity_segments)
1729 {
1730 	struct blk_integrity integrity = { };
1731 
1732 	switch (head->pi_type) {
1733 	case NVME_NS_DPS_PI_TYPE3:
1734 		switch (head->guard_type) {
1735 		case NVME_NVM_NS_16B_GUARD:
1736 			integrity.profile = &t10_pi_type3_crc;
1737 			integrity.tag_size = sizeof(u16) + sizeof(u32);
1738 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1739 			break;
1740 		case NVME_NVM_NS_64B_GUARD:
1741 			integrity.profile = &ext_pi_type3_crc64;
1742 			integrity.tag_size = sizeof(u16) + 6;
1743 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1744 			break;
1745 		default:
1746 			integrity.profile = NULL;
1747 			break;
1748 		}
1749 		break;
1750 	case NVME_NS_DPS_PI_TYPE1:
1751 	case NVME_NS_DPS_PI_TYPE2:
1752 		switch (head->guard_type) {
1753 		case NVME_NVM_NS_16B_GUARD:
1754 			integrity.profile = &t10_pi_type1_crc;
1755 			integrity.tag_size = sizeof(u16);
1756 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1757 			break;
1758 		case NVME_NVM_NS_64B_GUARD:
1759 			integrity.profile = &ext_pi_type1_crc64;
1760 			integrity.tag_size = sizeof(u16);
1761 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1762 			break;
1763 		default:
1764 			integrity.profile = NULL;
1765 			break;
1766 		}
1767 		break;
1768 	default:
1769 		integrity.profile = NULL;
1770 		break;
1771 	}
1772 
1773 	integrity.tuple_size = head->ms;
1774 	blk_integrity_register(disk, &integrity);
1775 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1776 }
1777 #else
1778 static void nvme_init_integrity(struct gendisk *disk,
1779 		struct nvme_ns_head *head, u32 max_integrity_segments)
1780 {
1781 }
1782 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1783 
1784 static void nvme_config_discard(struct nvme_ctrl *ctrl, struct gendisk *disk,
1785 		struct nvme_ns_head *head)
1786 {
1787 	struct request_queue *queue = disk->queue;
1788 	u32 max_discard_sectors;
1789 
1790 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(head, UINT_MAX)) {
1791 		max_discard_sectors = nvme_lba_to_sect(head, ctrl->dmrsl);
1792 	} else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
1793 		max_discard_sectors = UINT_MAX;
1794 	} else {
1795 		blk_queue_max_discard_sectors(queue, 0);
1796 		return;
1797 	}
1798 
1799 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1800 			NVME_DSM_MAX_RANGES);
1801 
1802 	/*
1803 	 * If discard is already enabled, don't reset queue limits.
1804 	 *
1805 	 * This works around the fact that the block layer can't cope well with
1806 	 * updating the hardware limits when overridden through sysfs.  This is
1807 	 * harmless because discard limits in NVMe are purely advisory.
1808 	 */
1809 	if (queue->limits.max_discard_sectors)
1810 		return;
1811 
1812 	blk_queue_max_discard_sectors(queue, max_discard_sectors);
1813 	if (ctrl->dmrl)
1814 		blk_queue_max_discard_segments(queue, ctrl->dmrl);
1815 	else
1816 		blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1817 	queue->limits.discard_granularity = queue_logical_block_size(queue);
1818 
1819 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1820 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1821 }
1822 
1823 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1824 {
1825 	return uuid_equal(&a->uuid, &b->uuid) &&
1826 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1827 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1828 		a->csi == b->csi;
1829 }
1830 
1831 static int nvme_init_ms(struct nvme_ctrl *ctrl, struct nvme_ns_head *head,
1832 		struct nvme_id_ns *id)
1833 {
1834 	bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1835 	unsigned lbaf = nvme_lbaf_index(id->flbas);
1836 	struct nvme_command c = { };
1837 	struct nvme_id_ns_nvm *nvm;
1838 	int ret = 0;
1839 	u32 elbaf;
1840 
1841 	head->pi_size = 0;
1842 	head->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1843 	if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1844 		head->pi_size = sizeof(struct t10_pi_tuple);
1845 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1846 		goto set_pi;
1847 	}
1848 
1849 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1850 	if (!nvm)
1851 		return -ENOMEM;
1852 
1853 	c.identify.opcode = nvme_admin_identify;
1854 	c.identify.nsid = cpu_to_le32(head->ns_id);
1855 	c.identify.cns = NVME_ID_CNS_CS_NS;
1856 	c.identify.csi = NVME_CSI_NVM;
1857 
1858 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1859 	if (ret)
1860 		goto free_data;
1861 
1862 	elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1863 
1864 	/* no support for storage tag formats right now */
1865 	if (nvme_elbaf_sts(elbaf))
1866 		goto free_data;
1867 
1868 	head->guard_type = nvme_elbaf_guard_type(elbaf);
1869 	switch (head->guard_type) {
1870 	case NVME_NVM_NS_64B_GUARD:
1871 		head->pi_size = sizeof(struct crc64_pi_tuple);
1872 		break;
1873 	case NVME_NVM_NS_16B_GUARD:
1874 		head->pi_size = sizeof(struct t10_pi_tuple);
1875 		break;
1876 	default:
1877 		break;
1878 	}
1879 
1880 free_data:
1881 	kfree(nvm);
1882 set_pi:
1883 	if (head->pi_size && (first || head->ms == head->pi_size))
1884 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1885 	else
1886 		head->pi_type = 0;
1887 
1888 	return ret;
1889 }
1890 
1891 static int nvme_configure_metadata(struct nvme_ctrl *ctrl,
1892 		struct nvme_ns_head *head, struct nvme_id_ns *id)
1893 {
1894 	int ret;
1895 
1896 	ret = nvme_init_ms(ctrl, head, id);
1897 	if (ret)
1898 		return ret;
1899 
1900 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1901 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1902 		return 0;
1903 
1904 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1905 		/*
1906 		 * The NVMe over Fabrics specification only supports metadata as
1907 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1908 		 * remap the separate metadata buffer from the block layer.
1909 		 */
1910 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1911 			return 0;
1912 
1913 		head->features |= NVME_NS_EXT_LBAS;
1914 
1915 		/*
1916 		 * The current fabrics transport drivers support namespace
1917 		 * metadata formats only if nvme_ns_has_pi() returns true.
1918 		 * Suppress support for all other formats so the namespace will
1919 		 * have a 0 capacity and not be usable through the block stack.
1920 		 *
1921 		 * Note, this check will need to be modified if any drivers
1922 		 * gain the ability to use other metadata formats.
1923 		 */
1924 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1925 			head->features |= NVME_NS_METADATA_SUPPORTED;
1926 	} else {
1927 		/*
1928 		 * For PCIe controllers, we can't easily remap the separate
1929 		 * metadata buffer from the block layer and thus require a
1930 		 * separate metadata buffer for block layer metadata/PI support.
1931 		 * We allow extended LBAs for the passthrough interface, though.
1932 		 */
1933 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1934 			head->features |= NVME_NS_EXT_LBAS;
1935 		else
1936 			head->features |= NVME_NS_METADATA_SUPPORTED;
1937 	}
1938 	return 0;
1939 }
1940 
1941 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1942 		struct request_queue *q)
1943 {
1944 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1945 
1946 	if (ctrl->max_hw_sectors) {
1947 		u32 max_segments =
1948 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1949 
1950 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1951 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1952 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1953 	}
1954 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1955 	blk_queue_dma_alignment(q, 3);
1956 	blk_queue_write_cache(q, vwc, vwc);
1957 }
1958 
1959 static void nvme_update_disk_info(struct nvme_ctrl *ctrl, struct gendisk *disk,
1960 		struct nvme_ns_head *head, struct nvme_id_ns *id)
1961 {
1962 	sector_t capacity = nvme_lba_to_sect(head, le64_to_cpu(id->nsze));
1963 	u32 bs = 1U << head->lba_shift;
1964 	u32 atomic_bs, phys_bs, io_opt = 0;
1965 
1966 	/*
1967 	 * The block layer can't support LBA sizes larger than the page size
1968 	 * or smaller than a sector size yet, so catch this early and don't
1969 	 * allow block I/O.
1970 	 */
1971 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
1972 		capacity = 0;
1973 		bs = (1 << 9);
1974 	}
1975 
1976 	blk_integrity_unregister(disk);
1977 
1978 	atomic_bs = phys_bs = bs;
1979 	if (id->nabo == 0) {
1980 		/*
1981 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1982 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1983 		 * 0 then AWUPF must be used instead.
1984 		 */
1985 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1986 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1987 		else
1988 			atomic_bs = (1 + ctrl->subsys->awupf) * bs;
1989 	}
1990 
1991 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1992 		/* NPWG = Namespace Preferred Write Granularity */
1993 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1994 		/* NOWS = Namespace Optimal Write Size */
1995 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1996 	}
1997 
1998 	blk_queue_logical_block_size(disk->queue, bs);
1999 	/*
2000 	 * Linux filesystems assume writing a single physical block is
2001 	 * an atomic operation. Hence limit the physical block size to the
2002 	 * value of the Atomic Write Unit Power Fail parameter.
2003 	 */
2004 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2005 	blk_queue_io_min(disk->queue, phys_bs);
2006 	blk_queue_io_opt(disk->queue, io_opt);
2007 
2008 	/*
2009 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2010 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2011 	 * I/O to namespaces with metadata except when the namespace supports
2012 	 * PI, as it can strip/insert in that case.
2013 	 */
2014 	if (head->ms) {
2015 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2016 		    (head->features & NVME_NS_METADATA_SUPPORTED))
2017 			nvme_init_integrity(disk, head,
2018 					    ctrl->max_integrity_segments);
2019 		else if (!nvme_ns_has_pi(head))
2020 			capacity = 0;
2021 	}
2022 
2023 	set_capacity_and_notify(disk, capacity);
2024 
2025 	nvme_config_discard(ctrl, disk, head);
2026 	blk_queue_max_write_zeroes_sectors(disk->queue,
2027 					   ctrl->max_zeroes_sectors);
2028 }
2029 
2030 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2031 {
2032 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2033 }
2034 
2035 static inline bool nvme_first_scan(struct gendisk *disk)
2036 {
2037 	/* nvme_alloc_ns() scans the disk prior to adding it */
2038 	return !disk_live(disk);
2039 }
2040 
2041 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2042 {
2043 	struct nvme_ctrl *ctrl = ns->ctrl;
2044 	u32 iob;
2045 
2046 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2047 	    is_power_of_2(ctrl->max_hw_sectors))
2048 		iob = ctrl->max_hw_sectors;
2049 	else
2050 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2051 
2052 	if (!iob)
2053 		return;
2054 
2055 	if (!is_power_of_2(iob)) {
2056 		if (nvme_first_scan(ns->disk))
2057 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2058 				ns->disk->disk_name, iob);
2059 		return;
2060 	}
2061 
2062 	if (blk_queue_is_zoned(ns->disk->queue)) {
2063 		if (nvme_first_scan(ns->disk))
2064 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2065 				ns->disk->disk_name);
2066 		return;
2067 	}
2068 
2069 	blk_queue_chunk_sectors(ns->queue, iob);
2070 }
2071 
2072 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2073 		struct nvme_ns_info *info)
2074 {
2075 	blk_mq_freeze_queue(ns->disk->queue);
2076 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2077 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2078 	blk_mq_unfreeze_queue(ns->disk->queue);
2079 
2080 	if (nvme_ns_head_multipath(ns->head)) {
2081 		blk_mq_freeze_queue(ns->head->disk->queue);
2082 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2083 		nvme_mpath_revalidate_paths(ns);
2084 		blk_stack_limits(&ns->head->disk->queue->limits,
2085 				 &ns->queue->limits, 0);
2086 		ns->head->disk->flags |= GENHD_FL_HIDDEN;
2087 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2088 	}
2089 
2090 	/* Hide the block-interface for these devices */
2091 	ns->disk->flags |= GENHD_FL_HIDDEN;
2092 	set_bit(NVME_NS_READY, &ns->flags);
2093 
2094 	return 0;
2095 }
2096 
2097 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2098 		struct nvme_ns_info *info)
2099 {
2100 	struct nvme_id_ns *id;
2101 	unsigned lbaf;
2102 	int ret;
2103 
2104 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2105 	if (ret)
2106 		return ret;
2107 
2108 	if (id->ncap == 0) {
2109 		/* namespace not allocated or attached */
2110 		info->is_removed = true;
2111 		ret = -ENODEV;
2112 		goto error;
2113 	}
2114 
2115 	blk_mq_freeze_queue(ns->disk->queue);
2116 	lbaf = nvme_lbaf_index(id->flbas);
2117 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2118 	ns->head->nuse = le64_to_cpu(id->nuse);
2119 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2120 
2121 	ret = nvme_configure_metadata(ns->ctrl, ns->head, id);
2122 	if (ret < 0) {
2123 		blk_mq_unfreeze_queue(ns->disk->queue);
2124 		goto out;
2125 	}
2126 	nvme_set_chunk_sectors(ns, id);
2127 	nvme_update_disk_info(ns->ctrl, ns->disk, ns->head, id);
2128 
2129 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2130 		ret = nvme_update_zone_info(ns, lbaf);
2131 		if (ret) {
2132 			blk_mq_unfreeze_queue(ns->disk->queue);
2133 			goto out;
2134 		}
2135 	}
2136 
2137 	/*
2138 	 * Only set the DEAC bit if the device guarantees that reads from
2139 	 * deallocated data return zeroes.  While the DEAC bit does not
2140 	 * require that, it must be a no-op if reads from deallocated data
2141 	 * do not return zeroes.
2142 	 */
2143 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2144 		ns->head->features |= NVME_NS_DEAC;
2145 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2146 	set_bit(NVME_NS_READY, &ns->flags);
2147 	blk_mq_unfreeze_queue(ns->disk->queue);
2148 
2149 	if (blk_queue_is_zoned(ns->queue)) {
2150 		ret = nvme_revalidate_zones(ns);
2151 		if (ret && !nvme_first_scan(ns->disk))
2152 			goto out;
2153 	}
2154 
2155 	if (nvme_ns_head_multipath(ns->head)) {
2156 		blk_mq_freeze_queue(ns->head->disk->queue);
2157 		nvme_update_disk_info(ns->ctrl, ns->head->disk, ns->head, id);
2158 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2159 		nvme_mpath_revalidate_paths(ns);
2160 		blk_stack_limits(&ns->head->disk->queue->limits,
2161 				 &ns->queue->limits, 0);
2162 		disk_update_readahead(ns->head->disk);
2163 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2164 	}
2165 
2166 	ret = 0;
2167 out:
2168 	/*
2169 	 * If probing fails due an unsupported feature, hide the block device,
2170 	 * but still allow other access.
2171 	 */
2172 	if (ret == -ENODEV) {
2173 		ns->disk->flags |= GENHD_FL_HIDDEN;
2174 		set_bit(NVME_NS_READY, &ns->flags);
2175 		ret = 0;
2176 	}
2177 
2178 error:
2179 	kfree(id);
2180 	return ret;
2181 }
2182 
2183 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2184 {
2185 	switch (info->ids.csi) {
2186 	case NVME_CSI_ZNS:
2187 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2188 			dev_info(ns->ctrl->device,
2189 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2190 				info->nsid);
2191 			return nvme_update_ns_info_generic(ns, info);
2192 		}
2193 		return nvme_update_ns_info_block(ns, info);
2194 	case NVME_CSI_NVM:
2195 		return nvme_update_ns_info_block(ns, info);
2196 	default:
2197 		dev_info(ns->ctrl->device,
2198 			"block device for nsid %u not supported (csi %u)\n",
2199 			info->nsid, info->ids.csi);
2200 		return nvme_update_ns_info_generic(ns, info);
2201 	}
2202 }
2203 
2204 #ifdef CONFIG_BLK_SED_OPAL
2205 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2206 		bool send)
2207 {
2208 	struct nvme_ctrl *ctrl = data;
2209 	struct nvme_command cmd = { };
2210 
2211 	if (send)
2212 		cmd.common.opcode = nvme_admin_security_send;
2213 	else
2214 		cmd.common.opcode = nvme_admin_security_recv;
2215 	cmd.common.nsid = 0;
2216 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2217 	cmd.common.cdw11 = cpu_to_le32(len);
2218 
2219 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2220 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2221 }
2222 
2223 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2224 {
2225 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2226 		if (!ctrl->opal_dev)
2227 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2228 		else if (was_suspended)
2229 			opal_unlock_from_suspend(ctrl->opal_dev);
2230 	} else {
2231 		free_opal_dev(ctrl->opal_dev);
2232 		ctrl->opal_dev = NULL;
2233 	}
2234 }
2235 #else
2236 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2237 {
2238 }
2239 #endif /* CONFIG_BLK_SED_OPAL */
2240 
2241 #ifdef CONFIG_BLK_DEV_ZONED
2242 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2243 		unsigned int nr_zones, report_zones_cb cb, void *data)
2244 {
2245 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2246 			data);
2247 }
2248 #else
2249 #define nvme_report_zones	NULL
2250 #endif /* CONFIG_BLK_DEV_ZONED */
2251 
2252 const struct block_device_operations nvme_bdev_ops = {
2253 	.owner		= THIS_MODULE,
2254 	.ioctl		= nvme_ioctl,
2255 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2256 	.open		= nvme_open,
2257 	.release	= nvme_release,
2258 	.getgeo		= nvme_getgeo,
2259 	.report_zones	= nvme_report_zones,
2260 	.pr_ops		= &nvme_pr_ops,
2261 };
2262 
2263 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2264 		u32 timeout, const char *op)
2265 {
2266 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2267 	u32 csts;
2268 	int ret;
2269 
2270 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2271 		if (csts == ~0)
2272 			return -ENODEV;
2273 		if ((csts & mask) == val)
2274 			break;
2275 
2276 		usleep_range(1000, 2000);
2277 		if (fatal_signal_pending(current))
2278 			return -EINTR;
2279 		if (time_after(jiffies, timeout_jiffies)) {
2280 			dev_err(ctrl->device,
2281 				"Device not ready; aborting %s, CSTS=0x%x\n",
2282 				op, csts);
2283 			return -ENODEV;
2284 		}
2285 	}
2286 
2287 	return ret;
2288 }
2289 
2290 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2291 {
2292 	int ret;
2293 
2294 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2295 	if (shutdown)
2296 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2297 	else
2298 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2299 
2300 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2301 	if (ret)
2302 		return ret;
2303 
2304 	if (shutdown) {
2305 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2306 				       NVME_CSTS_SHST_CMPLT,
2307 				       ctrl->shutdown_timeout, "shutdown");
2308 	}
2309 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2310 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2311 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2312 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2313 }
2314 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2315 
2316 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2317 {
2318 	unsigned dev_page_min;
2319 	u32 timeout;
2320 	int ret;
2321 
2322 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2323 	if (ret) {
2324 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2325 		return ret;
2326 	}
2327 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2328 
2329 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2330 		dev_err(ctrl->device,
2331 			"Minimum device page size %u too large for host (%u)\n",
2332 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2333 		return -ENODEV;
2334 	}
2335 
2336 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2337 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2338 	else
2339 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2340 
2341 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2342 		ctrl->ctrl_config |= NVME_CC_CRIME;
2343 
2344 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2345 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2346 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2347 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2348 	if (ret)
2349 		return ret;
2350 
2351 	/* Flush write to device (required if transport is PCI) */
2352 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2353 	if (ret)
2354 		return ret;
2355 
2356 	/* CAP value may change after initial CC write */
2357 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2358 	if (ret)
2359 		return ret;
2360 
2361 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2362 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2363 		u32 crto, ready_timeout;
2364 
2365 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2366 		if (ret) {
2367 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2368 				ret);
2369 			return ret;
2370 		}
2371 
2372 		/*
2373 		 * CRTO should always be greater or equal to CAP.TO, but some
2374 		 * devices are known to get this wrong. Use the larger of the
2375 		 * two values.
2376 		 */
2377 		if (ctrl->ctrl_config & NVME_CC_CRIME)
2378 			ready_timeout = NVME_CRTO_CRIMT(crto);
2379 		else
2380 			ready_timeout = NVME_CRTO_CRWMT(crto);
2381 
2382 		if (ready_timeout < timeout)
2383 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2384 				      crto, ctrl->cap);
2385 		else
2386 			timeout = ready_timeout;
2387 	}
2388 
2389 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2390 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2391 	if (ret)
2392 		return ret;
2393 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2394 			       (timeout + 1) / 2, "initialisation");
2395 }
2396 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2397 
2398 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2399 {
2400 	__le64 ts;
2401 	int ret;
2402 
2403 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2404 		return 0;
2405 
2406 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2407 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2408 			NULL);
2409 	if (ret)
2410 		dev_warn_once(ctrl->device,
2411 			"could not set timestamp (%d)\n", ret);
2412 	return ret;
2413 }
2414 
2415 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2416 {
2417 	struct nvme_feat_host_behavior *host;
2418 	u8 acre = 0, lbafee = 0;
2419 	int ret;
2420 
2421 	/* Don't bother enabling the feature if retry delay is not reported */
2422 	if (ctrl->crdt[0])
2423 		acre = NVME_ENABLE_ACRE;
2424 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2425 		lbafee = NVME_ENABLE_LBAFEE;
2426 
2427 	if (!acre && !lbafee)
2428 		return 0;
2429 
2430 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2431 	if (!host)
2432 		return 0;
2433 
2434 	host->acre = acre;
2435 	host->lbafee = lbafee;
2436 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2437 				host, sizeof(*host), NULL);
2438 	kfree(host);
2439 	return ret;
2440 }
2441 
2442 /*
2443  * The function checks whether the given total (exlat + enlat) latency of
2444  * a power state allows the latter to be used as an APST transition target.
2445  * It does so by comparing the latency to the primary and secondary latency
2446  * tolerances defined by module params. If there's a match, the corresponding
2447  * timeout value is returned and the matching tolerance index (1 or 2) is
2448  * reported.
2449  */
2450 static bool nvme_apst_get_transition_time(u64 total_latency,
2451 		u64 *transition_time, unsigned *last_index)
2452 {
2453 	if (total_latency <= apst_primary_latency_tol_us) {
2454 		if (*last_index == 1)
2455 			return false;
2456 		*last_index = 1;
2457 		*transition_time = apst_primary_timeout_ms;
2458 		return true;
2459 	}
2460 	if (apst_secondary_timeout_ms &&
2461 		total_latency <= apst_secondary_latency_tol_us) {
2462 		if (*last_index <= 2)
2463 			return false;
2464 		*last_index = 2;
2465 		*transition_time = apst_secondary_timeout_ms;
2466 		return true;
2467 	}
2468 	return false;
2469 }
2470 
2471 /*
2472  * APST (Autonomous Power State Transition) lets us program a table of power
2473  * state transitions that the controller will perform automatically.
2474  *
2475  * Depending on module params, one of the two supported techniques will be used:
2476  *
2477  * - If the parameters provide explicit timeouts and tolerances, they will be
2478  *   used to build a table with up to 2 non-operational states to transition to.
2479  *   The default parameter values were selected based on the values used by
2480  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2481  *   regeneration of the APST table in the event of switching between external
2482  *   and battery power, the timeouts and tolerances reflect a compromise
2483  *   between values used by Microsoft for AC and battery scenarios.
2484  * - If not, we'll configure the table with a simple heuristic: we are willing
2485  *   to spend at most 2% of the time transitioning between power states.
2486  *   Therefore, when running in any given state, we will enter the next
2487  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2488  *   microseconds, as long as that state's exit latency is under the requested
2489  *   maximum latency.
2490  *
2491  * We will not autonomously enter any non-operational state for which the total
2492  * latency exceeds ps_max_latency_us.
2493  *
2494  * Users can set ps_max_latency_us to zero to turn off APST.
2495  */
2496 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2497 {
2498 	struct nvme_feat_auto_pst *table;
2499 	unsigned apste = 0;
2500 	u64 max_lat_us = 0;
2501 	__le64 target = 0;
2502 	int max_ps = -1;
2503 	int state;
2504 	int ret;
2505 	unsigned last_lt_index = UINT_MAX;
2506 
2507 	/*
2508 	 * If APST isn't supported or if we haven't been initialized yet,
2509 	 * then don't do anything.
2510 	 */
2511 	if (!ctrl->apsta)
2512 		return 0;
2513 
2514 	if (ctrl->npss > 31) {
2515 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2516 		return 0;
2517 	}
2518 
2519 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2520 	if (!table)
2521 		return 0;
2522 
2523 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2524 		/* Turn off APST. */
2525 		dev_dbg(ctrl->device, "APST disabled\n");
2526 		goto done;
2527 	}
2528 
2529 	/*
2530 	 * Walk through all states from lowest- to highest-power.
2531 	 * According to the spec, lower-numbered states use more power.  NPSS,
2532 	 * despite the name, is the index of the lowest-power state, not the
2533 	 * number of states.
2534 	 */
2535 	for (state = (int)ctrl->npss; state >= 0; state--) {
2536 		u64 total_latency_us, exit_latency_us, transition_ms;
2537 
2538 		if (target)
2539 			table->entries[state] = target;
2540 
2541 		/*
2542 		 * Don't allow transitions to the deepest state if it's quirked
2543 		 * off.
2544 		 */
2545 		if (state == ctrl->npss &&
2546 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2547 			continue;
2548 
2549 		/*
2550 		 * Is this state a useful non-operational state for higher-power
2551 		 * states to autonomously transition to?
2552 		 */
2553 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2554 			continue;
2555 
2556 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2557 		if (exit_latency_us > ctrl->ps_max_latency_us)
2558 			continue;
2559 
2560 		total_latency_us = exit_latency_us +
2561 			le32_to_cpu(ctrl->psd[state].entry_lat);
2562 
2563 		/*
2564 		 * This state is good. It can be used as the APST idle target
2565 		 * for higher power states.
2566 		 */
2567 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2568 			if (!nvme_apst_get_transition_time(total_latency_us,
2569 					&transition_ms, &last_lt_index))
2570 				continue;
2571 		} else {
2572 			transition_ms = total_latency_us + 19;
2573 			do_div(transition_ms, 20);
2574 			if (transition_ms > (1 << 24) - 1)
2575 				transition_ms = (1 << 24) - 1;
2576 		}
2577 
2578 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2579 		if (max_ps == -1)
2580 			max_ps = state;
2581 		if (total_latency_us > max_lat_us)
2582 			max_lat_us = total_latency_us;
2583 	}
2584 
2585 	if (max_ps == -1)
2586 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2587 	else
2588 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2589 			max_ps, max_lat_us, (int)sizeof(*table), table);
2590 	apste = 1;
2591 
2592 done:
2593 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2594 				table, sizeof(*table), NULL);
2595 	if (ret)
2596 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2597 	kfree(table);
2598 	return ret;
2599 }
2600 
2601 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2602 {
2603 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2604 	u64 latency;
2605 
2606 	switch (val) {
2607 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2608 	case PM_QOS_LATENCY_ANY:
2609 		latency = U64_MAX;
2610 		break;
2611 
2612 	default:
2613 		latency = val;
2614 	}
2615 
2616 	if (ctrl->ps_max_latency_us != latency) {
2617 		ctrl->ps_max_latency_us = latency;
2618 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2619 			nvme_configure_apst(ctrl);
2620 	}
2621 }
2622 
2623 struct nvme_core_quirk_entry {
2624 	/*
2625 	 * NVMe model and firmware strings are padded with spaces.  For
2626 	 * simplicity, strings in the quirk table are padded with NULLs
2627 	 * instead.
2628 	 */
2629 	u16 vid;
2630 	const char *mn;
2631 	const char *fr;
2632 	unsigned long quirks;
2633 };
2634 
2635 static const struct nvme_core_quirk_entry core_quirks[] = {
2636 	{
2637 		/*
2638 		 * This Toshiba device seems to die using any APST states.  See:
2639 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2640 		 */
2641 		.vid = 0x1179,
2642 		.mn = "THNSF5256GPUK TOSHIBA",
2643 		.quirks = NVME_QUIRK_NO_APST,
2644 	},
2645 	{
2646 		/*
2647 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2648 		 * condition associated with actions related to suspend to idle
2649 		 * LiteON has resolved the problem in future firmware
2650 		 */
2651 		.vid = 0x14a4,
2652 		.fr = "22301111",
2653 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2654 	},
2655 	{
2656 		/*
2657 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2658 		 * aborts I/O during any load, but more easily reproducible
2659 		 * with discards (fstrim).
2660 		 *
2661 		 * The device is left in a state where it is also not possible
2662 		 * to use "nvme set-feature" to disable APST, but booting with
2663 		 * nvme_core.default_ps_max_latency=0 works.
2664 		 */
2665 		.vid = 0x1e0f,
2666 		.mn = "KCD6XVUL6T40",
2667 		.quirks = NVME_QUIRK_NO_APST,
2668 	},
2669 	{
2670 		/*
2671 		 * The external Samsung X5 SSD fails initialization without a
2672 		 * delay before checking if it is ready and has a whole set of
2673 		 * other problems.  To make this even more interesting, it
2674 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2675 		 * does not need or want these quirks.
2676 		 */
2677 		.vid = 0x144d,
2678 		.mn = "Samsung Portable SSD X5",
2679 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2680 			  NVME_QUIRK_NO_DEEPEST_PS |
2681 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2682 	}
2683 };
2684 
2685 /* match is null-terminated but idstr is space-padded. */
2686 static bool string_matches(const char *idstr, const char *match, size_t len)
2687 {
2688 	size_t matchlen;
2689 
2690 	if (!match)
2691 		return true;
2692 
2693 	matchlen = strlen(match);
2694 	WARN_ON_ONCE(matchlen > len);
2695 
2696 	if (memcmp(idstr, match, matchlen))
2697 		return false;
2698 
2699 	for (; matchlen < len; matchlen++)
2700 		if (idstr[matchlen] != ' ')
2701 			return false;
2702 
2703 	return true;
2704 }
2705 
2706 static bool quirk_matches(const struct nvme_id_ctrl *id,
2707 			  const struct nvme_core_quirk_entry *q)
2708 {
2709 	return q->vid == le16_to_cpu(id->vid) &&
2710 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2711 		string_matches(id->fr, q->fr, sizeof(id->fr));
2712 }
2713 
2714 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2715 		struct nvme_id_ctrl *id)
2716 {
2717 	size_t nqnlen;
2718 	int off;
2719 
2720 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2721 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2722 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2723 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2724 			return;
2725 		}
2726 
2727 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2728 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2729 	}
2730 
2731 	/*
2732 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2733 	 * Base Specification 2.0.  It is slightly different from the format
2734 	 * specified there due to historic reasons, and we can't change it now.
2735 	 */
2736 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2737 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2738 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2739 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2740 	off += sizeof(id->sn);
2741 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2742 	off += sizeof(id->mn);
2743 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2744 }
2745 
2746 static void nvme_release_subsystem(struct device *dev)
2747 {
2748 	struct nvme_subsystem *subsys =
2749 		container_of(dev, struct nvme_subsystem, dev);
2750 
2751 	if (subsys->instance >= 0)
2752 		ida_free(&nvme_instance_ida, subsys->instance);
2753 	kfree(subsys);
2754 }
2755 
2756 static void nvme_destroy_subsystem(struct kref *ref)
2757 {
2758 	struct nvme_subsystem *subsys =
2759 			container_of(ref, struct nvme_subsystem, ref);
2760 
2761 	mutex_lock(&nvme_subsystems_lock);
2762 	list_del(&subsys->entry);
2763 	mutex_unlock(&nvme_subsystems_lock);
2764 
2765 	ida_destroy(&subsys->ns_ida);
2766 	device_del(&subsys->dev);
2767 	put_device(&subsys->dev);
2768 }
2769 
2770 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2771 {
2772 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2773 }
2774 
2775 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2776 {
2777 	struct nvme_subsystem *subsys;
2778 
2779 	lockdep_assert_held(&nvme_subsystems_lock);
2780 
2781 	/*
2782 	 * Fail matches for discovery subsystems. This results
2783 	 * in each discovery controller bound to a unique subsystem.
2784 	 * This avoids issues with validating controller values
2785 	 * that can only be true when there is a single unique subsystem.
2786 	 * There may be multiple and completely independent entities
2787 	 * that provide discovery controllers.
2788 	 */
2789 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2790 		return NULL;
2791 
2792 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2793 		if (strcmp(subsys->subnqn, subsysnqn))
2794 			continue;
2795 		if (!kref_get_unless_zero(&subsys->ref))
2796 			continue;
2797 		return subsys;
2798 	}
2799 
2800 	return NULL;
2801 }
2802 
2803 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2804 {
2805 	return ctrl->opts && ctrl->opts->discovery_nqn;
2806 }
2807 
2808 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2809 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2810 {
2811 	struct nvme_ctrl *tmp;
2812 
2813 	lockdep_assert_held(&nvme_subsystems_lock);
2814 
2815 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2816 		if (nvme_state_terminal(tmp))
2817 			continue;
2818 
2819 		if (tmp->cntlid == ctrl->cntlid) {
2820 			dev_err(ctrl->device,
2821 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2822 				ctrl->cntlid, dev_name(tmp->device),
2823 				subsys->subnqn);
2824 			return false;
2825 		}
2826 
2827 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2828 		    nvme_discovery_ctrl(ctrl))
2829 			continue;
2830 
2831 		dev_err(ctrl->device,
2832 			"Subsystem does not support multiple controllers\n");
2833 		return false;
2834 	}
2835 
2836 	return true;
2837 }
2838 
2839 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2840 {
2841 	struct nvme_subsystem *subsys, *found;
2842 	int ret;
2843 
2844 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2845 	if (!subsys)
2846 		return -ENOMEM;
2847 
2848 	subsys->instance = -1;
2849 	mutex_init(&subsys->lock);
2850 	kref_init(&subsys->ref);
2851 	INIT_LIST_HEAD(&subsys->ctrls);
2852 	INIT_LIST_HEAD(&subsys->nsheads);
2853 	nvme_init_subnqn(subsys, ctrl, id);
2854 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2855 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2856 	subsys->vendor_id = le16_to_cpu(id->vid);
2857 	subsys->cmic = id->cmic;
2858 
2859 	/* Versions prior to 1.4 don't necessarily report a valid type */
2860 	if (id->cntrltype == NVME_CTRL_DISC ||
2861 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2862 		subsys->subtype = NVME_NQN_DISC;
2863 	else
2864 		subsys->subtype = NVME_NQN_NVME;
2865 
2866 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2867 		dev_err(ctrl->device,
2868 			"Subsystem %s is not a discovery controller",
2869 			subsys->subnqn);
2870 		kfree(subsys);
2871 		return -EINVAL;
2872 	}
2873 	subsys->awupf = le16_to_cpu(id->awupf);
2874 	nvme_mpath_default_iopolicy(subsys);
2875 
2876 	subsys->dev.class = nvme_subsys_class;
2877 	subsys->dev.release = nvme_release_subsystem;
2878 	subsys->dev.groups = nvme_subsys_attrs_groups;
2879 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2880 	device_initialize(&subsys->dev);
2881 
2882 	mutex_lock(&nvme_subsystems_lock);
2883 	found = __nvme_find_get_subsystem(subsys->subnqn);
2884 	if (found) {
2885 		put_device(&subsys->dev);
2886 		subsys = found;
2887 
2888 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2889 			ret = -EINVAL;
2890 			goto out_put_subsystem;
2891 		}
2892 	} else {
2893 		ret = device_add(&subsys->dev);
2894 		if (ret) {
2895 			dev_err(ctrl->device,
2896 				"failed to register subsystem device.\n");
2897 			put_device(&subsys->dev);
2898 			goto out_unlock;
2899 		}
2900 		ida_init(&subsys->ns_ida);
2901 		list_add_tail(&subsys->entry, &nvme_subsystems);
2902 	}
2903 
2904 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2905 				dev_name(ctrl->device));
2906 	if (ret) {
2907 		dev_err(ctrl->device,
2908 			"failed to create sysfs link from subsystem.\n");
2909 		goto out_put_subsystem;
2910 	}
2911 
2912 	if (!found)
2913 		subsys->instance = ctrl->instance;
2914 	ctrl->subsys = subsys;
2915 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2916 	mutex_unlock(&nvme_subsystems_lock);
2917 	return 0;
2918 
2919 out_put_subsystem:
2920 	nvme_put_subsystem(subsys);
2921 out_unlock:
2922 	mutex_unlock(&nvme_subsystems_lock);
2923 	return ret;
2924 }
2925 
2926 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2927 		void *log, size_t size, u64 offset)
2928 {
2929 	struct nvme_command c = { };
2930 	u32 dwlen = nvme_bytes_to_numd(size);
2931 
2932 	c.get_log_page.opcode = nvme_admin_get_log_page;
2933 	c.get_log_page.nsid = cpu_to_le32(nsid);
2934 	c.get_log_page.lid = log_page;
2935 	c.get_log_page.lsp = lsp;
2936 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2937 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2938 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2939 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2940 	c.get_log_page.csi = csi;
2941 
2942 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2943 }
2944 
2945 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2946 				struct nvme_effects_log **log)
2947 {
2948 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2949 	int ret;
2950 
2951 	if (cel)
2952 		goto out;
2953 
2954 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2955 	if (!cel)
2956 		return -ENOMEM;
2957 
2958 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2959 			cel, sizeof(*cel), 0);
2960 	if (ret) {
2961 		kfree(cel);
2962 		return ret;
2963 	}
2964 
2965 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2966 out:
2967 	*log = cel;
2968 	return 0;
2969 }
2970 
2971 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2972 {
2973 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2974 
2975 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2976 		return UINT_MAX;
2977 	return val;
2978 }
2979 
2980 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2981 {
2982 	struct nvme_command c = { };
2983 	struct nvme_id_ctrl_nvm *id;
2984 	int ret;
2985 
2986 	/*
2987 	 * Even though NVMe spec explicitly states that MDTS is not applicable
2988 	 * to the write-zeroes, we are cautious and limit the size to the
2989 	 * controllers max_hw_sectors value, which is based on the MDTS field
2990 	 * and possibly other limiting factors.
2991 	 */
2992 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2993 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2994 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2995 	else
2996 		ctrl->max_zeroes_sectors = 0;
2997 
2998 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2999 	    nvme_ctrl_limited_cns(ctrl) ||
3000 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3001 		return 0;
3002 
3003 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3004 	if (!id)
3005 		return -ENOMEM;
3006 
3007 	c.identify.opcode = nvme_admin_identify;
3008 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3009 	c.identify.csi = NVME_CSI_NVM;
3010 
3011 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3012 	if (ret)
3013 		goto free_data;
3014 
3015 	ctrl->dmrl = id->dmrl;
3016 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3017 	if (id->wzsl)
3018 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3019 
3020 free_data:
3021 	if (ret > 0)
3022 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3023 	kfree(id);
3024 	return ret;
3025 }
3026 
3027 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3028 {
3029 	struct nvme_effects_log	*log = ctrl->effects;
3030 
3031 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3032 						NVME_CMD_EFFECTS_NCC |
3033 						NVME_CMD_EFFECTS_CSE_MASK);
3034 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3035 						NVME_CMD_EFFECTS_CSE_MASK);
3036 
3037 	/*
3038 	 * The spec says the result of a security receive command depends on
3039 	 * the previous security send command. As such, many vendors log this
3040 	 * command as one to submitted only when no other commands to the same
3041 	 * namespace are outstanding. The intention is to tell the host to
3042 	 * prevent mixing security send and receive.
3043 	 *
3044 	 * This driver can only enforce such exclusive access against IO
3045 	 * queues, though. We are not readily able to enforce such a rule for
3046 	 * two commands to the admin queue, which is the only queue that
3047 	 * matters for this command.
3048 	 *
3049 	 * Rather than blindly freezing the IO queues for this effect that
3050 	 * doesn't even apply to IO, mask it off.
3051 	 */
3052 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3053 
3054 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3055 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3056 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3057 }
3058 
3059 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3060 {
3061 	int ret = 0;
3062 
3063 	if (ctrl->effects)
3064 		return 0;
3065 
3066 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3067 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3068 		if (ret < 0)
3069 			return ret;
3070 	}
3071 
3072 	if (!ctrl->effects) {
3073 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3074 		if (!ctrl->effects)
3075 			return -ENOMEM;
3076 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3077 	}
3078 
3079 	nvme_init_known_nvm_effects(ctrl);
3080 	return 0;
3081 }
3082 
3083 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3084 {
3085 	/*
3086 	 * In fabrics we need to verify the cntlid matches the
3087 	 * admin connect
3088 	 */
3089 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3090 		dev_err(ctrl->device,
3091 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3092 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3093 		return -EINVAL;
3094 	}
3095 
3096 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3097 		dev_err(ctrl->device,
3098 			"keep-alive support is mandatory for fabrics\n");
3099 		return -EINVAL;
3100 	}
3101 
3102 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3103 		dev_err(ctrl->device,
3104 			"I/O queue command capsule supported size %d < 4\n",
3105 			ctrl->ioccsz);
3106 		return -EINVAL;
3107 	}
3108 
3109 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3110 		dev_err(ctrl->device,
3111 			"I/O queue response capsule supported size %d < 1\n",
3112 			ctrl->iorcsz);
3113 		return -EINVAL;
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3120 {
3121 	struct nvme_id_ctrl *id;
3122 	u32 max_hw_sectors;
3123 	bool prev_apst_enabled;
3124 	int ret;
3125 
3126 	ret = nvme_identify_ctrl(ctrl, &id);
3127 	if (ret) {
3128 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3129 		return -EIO;
3130 	}
3131 
3132 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3133 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3134 
3135 	if (!ctrl->identified) {
3136 		unsigned int i;
3137 
3138 		/*
3139 		 * Check for quirks.  Quirk can depend on firmware version,
3140 		 * so, in principle, the set of quirks present can change
3141 		 * across a reset.  As a possible future enhancement, we
3142 		 * could re-scan for quirks every time we reinitialize
3143 		 * the device, but we'd have to make sure that the driver
3144 		 * behaves intelligently if the quirks change.
3145 		 */
3146 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3147 			if (quirk_matches(id, &core_quirks[i]))
3148 				ctrl->quirks |= core_quirks[i].quirks;
3149 		}
3150 
3151 		ret = nvme_init_subsystem(ctrl, id);
3152 		if (ret)
3153 			goto out_free;
3154 
3155 		ret = nvme_init_effects(ctrl, id);
3156 		if (ret)
3157 			goto out_free;
3158 	}
3159 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3160 	       sizeof(ctrl->subsys->firmware_rev));
3161 
3162 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3163 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3164 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3165 	}
3166 
3167 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3168 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3169 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3170 
3171 	ctrl->oacs = le16_to_cpu(id->oacs);
3172 	ctrl->oncs = le16_to_cpu(id->oncs);
3173 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3174 	ctrl->oaes = le32_to_cpu(id->oaes);
3175 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3176 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3177 
3178 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3179 	ctrl->vwc = id->vwc;
3180 	if (id->mdts)
3181 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3182 	else
3183 		max_hw_sectors = UINT_MAX;
3184 	ctrl->max_hw_sectors =
3185 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3186 
3187 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3188 	ctrl->sgls = le32_to_cpu(id->sgls);
3189 	ctrl->kas = le16_to_cpu(id->kas);
3190 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3191 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3192 
3193 	ctrl->cntrltype = id->cntrltype;
3194 	ctrl->dctype = id->dctype;
3195 
3196 	if (id->rtd3e) {
3197 		/* us -> s */
3198 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3199 
3200 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3201 						 shutdown_timeout, 60);
3202 
3203 		if (ctrl->shutdown_timeout != shutdown_timeout)
3204 			dev_info(ctrl->device,
3205 				 "Shutdown timeout set to %u seconds\n",
3206 				 ctrl->shutdown_timeout);
3207 	} else
3208 		ctrl->shutdown_timeout = shutdown_timeout;
3209 
3210 	ctrl->npss = id->npss;
3211 	ctrl->apsta = id->apsta;
3212 	prev_apst_enabled = ctrl->apst_enabled;
3213 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3214 		if (force_apst && id->apsta) {
3215 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3216 			ctrl->apst_enabled = true;
3217 		} else {
3218 			ctrl->apst_enabled = false;
3219 		}
3220 	} else {
3221 		ctrl->apst_enabled = id->apsta;
3222 	}
3223 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3224 
3225 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3226 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3227 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3228 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3229 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3230 
3231 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3232 		if (ret)
3233 			goto out_free;
3234 	} else {
3235 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3236 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3237 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3238 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3239 	}
3240 
3241 	ret = nvme_mpath_init_identify(ctrl, id);
3242 	if (ret < 0)
3243 		goto out_free;
3244 
3245 	if (ctrl->apst_enabled && !prev_apst_enabled)
3246 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3247 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3248 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3249 
3250 out_free:
3251 	kfree(id);
3252 	return ret;
3253 }
3254 
3255 /*
3256  * Initialize the cached copies of the Identify data and various controller
3257  * register in our nvme_ctrl structure.  This should be called as soon as
3258  * the admin queue is fully up and running.
3259  */
3260 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3261 {
3262 	int ret;
3263 
3264 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3265 	if (ret) {
3266 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3267 		return ret;
3268 	}
3269 
3270 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3271 
3272 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3273 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3274 
3275 	ret = nvme_init_identify(ctrl);
3276 	if (ret)
3277 		return ret;
3278 
3279 	ret = nvme_configure_apst(ctrl);
3280 	if (ret < 0)
3281 		return ret;
3282 
3283 	ret = nvme_configure_timestamp(ctrl);
3284 	if (ret < 0)
3285 		return ret;
3286 
3287 	ret = nvme_configure_host_options(ctrl);
3288 	if (ret < 0)
3289 		return ret;
3290 
3291 	nvme_configure_opal(ctrl, was_suspended);
3292 
3293 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3294 		/*
3295 		 * Do not return errors unless we are in a controller reset,
3296 		 * the controller works perfectly fine without hwmon.
3297 		 */
3298 		ret = nvme_hwmon_init(ctrl);
3299 		if (ret == -EINTR)
3300 			return ret;
3301 	}
3302 
3303 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3304 	ctrl->identified = true;
3305 
3306 	nvme_start_keep_alive(ctrl);
3307 
3308 	return 0;
3309 }
3310 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3311 
3312 static int nvme_dev_open(struct inode *inode, struct file *file)
3313 {
3314 	struct nvme_ctrl *ctrl =
3315 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3316 
3317 	switch (nvme_ctrl_state(ctrl)) {
3318 	case NVME_CTRL_LIVE:
3319 		break;
3320 	default:
3321 		return -EWOULDBLOCK;
3322 	}
3323 
3324 	nvme_get_ctrl(ctrl);
3325 	if (!try_module_get(ctrl->ops->module)) {
3326 		nvme_put_ctrl(ctrl);
3327 		return -EINVAL;
3328 	}
3329 
3330 	file->private_data = ctrl;
3331 	return 0;
3332 }
3333 
3334 static int nvme_dev_release(struct inode *inode, struct file *file)
3335 {
3336 	struct nvme_ctrl *ctrl =
3337 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3338 
3339 	module_put(ctrl->ops->module);
3340 	nvme_put_ctrl(ctrl);
3341 	return 0;
3342 }
3343 
3344 static const struct file_operations nvme_dev_fops = {
3345 	.owner		= THIS_MODULE,
3346 	.open		= nvme_dev_open,
3347 	.release	= nvme_dev_release,
3348 	.unlocked_ioctl	= nvme_dev_ioctl,
3349 	.compat_ioctl	= compat_ptr_ioctl,
3350 	.uring_cmd	= nvme_dev_uring_cmd,
3351 };
3352 
3353 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3354 		unsigned nsid)
3355 {
3356 	struct nvme_ns_head *h;
3357 
3358 	lockdep_assert_held(&ctrl->subsys->lock);
3359 
3360 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3361 		/*
3362 		 * Private namespaces can share NSIDs under some conditions.
3363 		 * In that case we can't use the same ns_head for namespaces
3364 		 * with the same NSID.
3365 		 */
3366 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3367 			continue;
3368 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3369 			return h;
3370 	}
3371 
3372 	return NULL;
3373 }
3374 
3375 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3376 		struct nvme_ns_ids *ids)
3377 {
3378 	bool has_uuid = !uuid_is_null(&ids->uuid);
3379 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3380 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3381 	struct nvme_ns_head *h;
3382 
3383 	lockdep_assert_held(&subsys->lock);
3384 
3385 	list_for_each_entry(h, &subsys->nsheads, entry) {
3386 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3387 			return -EINVAL;
3388 		if (has_nguid &&
3389 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3390 			return -EINVAL;
3391 		if (has_eui64 &&
3392 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3393 			return -EINVAL;
3394 	}
3395 
3396 	return 0;
3397 }
3398 
3399 static void nvme_cdev_rel(struct device *dev)
3400 {
3401 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3402 }
3403 
3404 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3405 {
3406 	cdev_device_del(cdev, cdev_device);
3407 	put_device(cdev_device);
3408 }
3409 
3410 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3411 		const struct file_operations *fops, struct module *owner)
3412 {
3413 	int minor, ret;
3414 
3415 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3416 	if (minor < 0)
3417 		return minor;
3418 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3419 	cdev_device->class = nvme_ns_chr_class;
3420 	cdev_device->release = nvme_cdev_rel;
3421 	device_initialize(cdev_device);
3422 	cdev_init(cdev, fops);
3423 	cdev->owner = owner;
3424 	ret = cdev_device_add(cdev, cdev_device);
3425 	if (ret)
3426 		put_device(cdev_device);
3427 
3428 	return ret;
3429 }
3430 
3431 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3432 {
3433 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3434 }
3435 
3436 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3437 {
3438 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3439 	return 0;
3440 }
3441 
3442 static const struct file_operations nvme_ns_chr_fops = {
3443 	.owner		= THIS_MODULE,
3444 	.open		= nvme_ns_chr_open,
3445 	.release	= nvme_ns_chr_release,
3446 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3447 	.compat_ioctl	= compat_ptr_ioctl,
3448 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3449 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3450 };
3451 
3452 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3453 {
3454 	int ret;
3455 
3456 	ns->cdev_device.parent = ns->ctrl->device;
3457 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3458 			   ns->ctrl->instance, ns->head->instance);
3459 	if (ret)
3460 		return ret;
3461 
3462 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3463 			     ns->ctrl->ops->module);
3464 }
3465 
3466 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3467 		struct nvme_ns_info *info)
3468 {
3469 	struct nvme_ns_head *head;
3470 	size_t size = sizeof(*head);
3471 	int ret = -ENOMEM;
3472 
3473 #ifdef CONFIG_NVME_MULTIPATH
3474 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3475 #endif
3476 
3477 	head = kzalloc(size, GFP_KERNEL);
3478 	if (!head)
3479 		goto out;
3480 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3481 	if (ret < 0)
3482 		goto out_free_head;
3483 	head->instance = ret;
3484 	INIT_LIST_HEAD(&head->list);
3485 	ret = init_srcu_struct(&head->srcu);
3486 	if (ret)
3487 		goto out_ida_remove;
3488 	head->subsys = ctrl->subsys;
3489 	head->ns_id = info->nsid;
3490 	head->ids = info->ids;
3491 	head->shared = info->is_shared;
3492 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3493 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3494 	kref_init(&head->ref);
3495 
3496 	if (head->ids.csi) {
3497 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3498 		if (ret)
3499 			goto out_cleanup_srcu;
3500 	} else
3501 		head->effects = ctrl->effects;
3502 
3503 	ret = nvme_mpath_alloc_disk(ctrl, head);
3504 	if (ret)
3505 		goto out_cleanup_srcu;
3506 
3507 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3508 
3509 	kref_get(&ctrl->subsys->ref);
3510 
3511 	return head;
3512 out_cleanup_srcu:
3513 	cleanup_srcu_struct(&head->srcu);
3514 out_ida_remove:
3515 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3516 out_free_head:
3517 	kfree(head);
3518 out:
3519 	if (ret > 0)
3520 		ret = blk_status_to_errno(nvme_error_status(ret));
3521 	return ERR_PTR(ret);
3522 }
3523 
3524 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3525 		struct nvme_ns_ids *ids)
3526 {
3527 	struct nvme_subsystem *s;
3528 	int ret = 0;
3529 
3530 	/*
3531 	 * Note that this check is racy as we try to avoid holding the global
3532 	 * lock over the whole ns_head creation.  But it is only intended as
3533 	 * a sanity check anyway.
3534 	 */
3535 	mutex_lock(&nvme_subsystems_lock);
3536 	list_for_each_entry(s, &nvme_subsystems, entry) {
3537 		if (s == this)
3538 			continue;
3539 		mutex_lock(&s->lock);
3540 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3541 		mutex_unlock(&s->lock);
3542 		if (ret)
3543 			break;
3544 	}
3545 	mutex_unlock(&nvme_subsystems_lock);
3546 
3547 	return ret;
3548 }
3549 
3550 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3551 {
3552 	struct nvme_ctrl *ctrl = ns->ctrl;
3553 	struct nvme_ns_head *head = NULL;
3554 	int ret;
3555 
3556 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3557 	if (ret) {
3558 		/*
3559 		 * We've found two different namespaces on two different
3560 		 * subsystems that report the same ID.  This is pretty nasty
3561 		 * for anything that actually requires unique device
3562 		 * identification.  In the kernel we need this for multipathing,
3563 		 * and in user space the /dev/disk/by-id/ links rely on it.
3564 		 *
3565 		 * If the device also claims to be multi-path capable back off
3566 		 * here now and refuse the probe the second device as this is a
3567 		 * recipe for data corruption.  If not this is probably a
3568 		 * cheap consumer device if on the PCIe bus, so let the user
3569 		 * proceed and use the shiny toy, but warn that with changing
3570 		 * probing order (which due to our async probing could just be
3571 		 * device taking longer to startup) the other device could show
3572 		 * up at any time.
3573 		 */
3574 		nvme_print_device_info(ctrl);
3575 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3576 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3577 		     info->is_shared)) {
3578 			dev_err(ctrl->device,
3579 				"ignoring nsid %d because of duplicate IDs\n",
3580 				info->nsid);
3581 			return ret;
3582 		}
3583 
3584 		dev_err(ctrl->device,
3585 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3586 		dev_err(ctrl->device,
3587 			"use of /dev/disk/by-id/ may cause data corruption\n");
3588 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3589 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3590 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3591 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3592 	}
3593 
3594 	mutex_lock(&ctrl->subsys->lock);
3595 	head = nvme_find_ns_head(ctrl, info->nsid);
3596 	if (!head) {
3597 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3598 		if (ret) {
3599 			dev_err(ctrl->device,
3600 				"duplicate IDs in subsystem for nsid %d\n",
3601 				info->nsid);
3602 			goto out_unlock;
3603 		}
3604 		head = nvme_alloc_ns_head(ctrl, info);
3605 		if (IS_ERR(head)) {
3606 			ret = PTR_ERR(head);
3607 			goto out_unlock;
3608 		}
3609 	} else {
3610 		ret = -EINVAL;
3611 		if (!info->is_shared || !head->shared) {
3612 			dev_err(ctrl->device,
3613 				"Duplicate unshared namespace %d\n",
3614 				info->nsid);
3615 			goto out_put_ns_head;
3616 		}
3617 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3618 			dev_err(ctrl->device,
3619 				"IDs don't match for shared namespace %d\n",
3620 					info->nsid);
3621 			goto out_put_ns_head;
3622 		}
3623 
3624 		if (!multipath) {
3625 			dev_warn(ctrl->device,
3626 				"Found shared namespace %d, but multipathing not supported.\n",
3627 				info->nsid);
3628 			dev_warn_once(ctrl->device,
3629 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3630 		}
3631 	}
3632 
3633 	list_add_tail_rcu(&ns->siblings, &head->list);
3634 	ns->head = head;
3635 	mutex_unlock(&ctrl->subsys->lock);
3636 	return 0;
3637 
3638 out_put_ns_head:
3639 	nvme_put_ns_head(head);
3640 out_unlock:
3641 	mutex_unlock(&ctrl->subsys->lock);
3642 	return ret;
3643 }
3644 
3645 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3646 {
3647 	struct nvme_ns *ns, *ret = NULL;
3648 
3649 	down_read(&ctrl->namespaces_rwsem);
3650 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3651 		if (ns->head->ns_id == nsid) {
3652 			if (!nvme_get_ns(ns))
3653 				continue;
3654 			ret = ns;
3655 			break;
3656 		}
3657 		if (ns->head->ns_id > nsid)
3658 			break;
3659 	}
3660 	up_read(&ctrl->namespaces_rwsem);
3661 	return ret;
3662 }
3663 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3664 
3665 /*
3666  * Add the namespace to the controller list while keeping the list ordered.
3667  */
3668 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3669 {
3670 	struct nvme_ns *tmp;
3671 
3672 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3673 		if (tmp->head->ns_id < ns->head->ns_id) {
3674 			list_add(&ns->list, &tmp->list);
3675 			return;
3676 		}
3677 	}
3678 	list_add(&ns->list, &ns->ctrl->namespaces);
3679 }
3680 
3681 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3682 {
3683 	struct nvme_ns *ns;
3684 	struct gendisk *disk;
3685 	int node = ctrl->numa_node;
3686 
3687 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3688 	if (!ns)
3689 		return;
3690 
3691 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3692 	if (IS_ERR(disk))
3693 		goto out_free_ns;
3694 	disk->fops = &nvme_bdev_ops;
3695 	disk->private_data = ns;
3696 
3697 	ns->disk = disk;
3698 	ns->queue = disk->queue;
3699 	ns->passthru_err_log_enabled = false;
3700 
3701 	if (ctrl->opts && ctrl->opts->data_digest)
3702 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3703 
3704 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3705 	if (ctrl->ops->supports_pci_p2pdma &&
3706 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3707 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3708 
3709 	ns->ctrl = ctrl;
3710 	kref_init(&ns->kref);
3711 
3712 	if (nvme_init_ns_head(ns, info))
3713 		goto out_cleanup_disk;
3714 
3715 	/*
3716 	 * If multipathing is enabled, the device name for all disks and not
3717 	 * just those that represent shared namespaces needs to be based on the
3718 	 * subsystem instance.  Using the controller instance for private
3719 	 * namespaces could lead to naming collisions between shared and private
3720 	 * namespaces if they don't use a common numbering scheme.
3721 	 *
3722 	 * If multipathing is not enabled, disk names must use the controller
3723 	 * instance as shared namespaces will show up as multiple block
3724 	 * devices.
3725 	 */
3726 	if (nvme_ns_head_multipath(ns->head)) {
3727 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3728 			ctrl->instance, ns->head->instance);
3729 		disk->flags |= GENHD_FL_HIDDEN;
3730 	} else if (multipath) {
3731 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3732 			ns->head->instance);
3733 	} else {
3734 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3735 			ns->head->instance);
3736 	}
3737 
3738 	if (nvme_update_ns_info(ns, info))
3739 		goto out_unlink_ns;
3740 
3741 	down_write(&ctrl->namespaces_rwsem);
3742 	/*
3743 	 * Ensure that no namespaces are added to the ctrl list after the queues
3744 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3745 	 */
3746 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3747 		up_write(&ctrl->namespaces_rwsem);
3748 		goto out_unlink_ns;
3749 	}
3750 	nvme_ns_add_to_ctrl_list(ns);
3751 	up_write(&ctrl->namespaces_rwsem);
3752 	nvme_get_ctrl(ctrl);
3753 
3754 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3755 		goto out_cleanup_ns_from_list;
3756 
3757 	if (!nvme_ns_head_multipath(ns->head))
3758 		nvme_add_ns_cdev(ns);
3759 
3760 	nvme_mpath_add_disk(ns, info->anagrpid);
3761 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3762 
3763 	/*
3764 	 * Set ns->disk->device->driver_data to ns so we can access
3765 	 * ns->logging_enabled in nvme_passthru_err_log_enabled_store() and
3766 	 * nvme_passthru_err_log_enabled_show().
3767 	 */
3768 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3769 
3770 	return;
3771 
3772  out_cleanup_ns_from_list:
3773 	nvme_put_ctrl(ctrl);
3774 	down_write(&ctrl->namespaces_rwsem);
3775 	list_del_init(&ns->list);
3776 	up_write(&ctrl->namespaces_rwsem);
3777  out_unlink_ns:
3778 	mutex_lock(&ctrl->subsys->lock);
3779 	list_del_rcu(&ns->siblings);
3780 	if (list_empty(&ns->head->list))
3781 		list_del_init(&ns->head->entry);
3782 	mutex_unlock(&ctrl->subsys->lock);
3783 	nvme_put_ns_head(ns->head);
3784  out_cleanup_disk:
3785 	put_disk(disk);
3786  out_free_ns:
3787 	kfree(ns);
3788 }
3789 
3790 static void nvme_ns_remove(struct nvme_ns *ns)
3791 {
3792 	bool last_path = false;
3793 
3794 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3795 		return;
3796 
3797 	clear_bit(NVME_NS_READY, &ns->flags);
3798 	set_capacity(ns->disk, 0);
3799 	nvme_fault_inject_fini(&ns->fault_inject);
3800 
3801 	/*
3802 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3803 	 * this ns going back into current_path.
3804 	 */
3805 	synchronize_srcu(&ns->head->srcu);
3806 
3807 	/* wait for concurrent submissions */
3808 	if (nvme_mpath_clear_current_path(ns))
3809 		synchronize_srcu(&ns->head->srcu);
3810 
3811 	mutex_lock(&ns->ctrl->subsys->lock);
3812 	list_del_rcu(&ns->siblings);
3813 	if (list_empty(&ns->head->list)) {
3814 		list_del_init(&ns->head->entry);
3815 		last_path = true;
3816 	}
3817 	mutex_unlock(&ns->ctrl->subsys->lock);
3818 
3819 	/* guarantee not available in head->list */
3820 	synchronize_srcu(&ns->head->srcu);
3821 
3822 	if (!nvme_ns_head_multipath(ns->head))
3823 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3824 	del_gendisk(ns->disk);
3825 
3826 	down_write(&ns->ctrl->namespaces_rwsem);
3827 	list_del_init(&ns->list);
3828 	up_write(&ns->ctrl->namespaces_rwsem);
3829 
3830 	if (last_path)
3831 		nvme_mpath_shutdown_disk(ns->head);
3832 	nvme_put_ns(ns);
3833 }
3834 
3835 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3836 {
3837 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3838 
3839 	if (ns) {
3840 		nvme_ns_remove(ns);
3841 		nvme_put_ns(ns);
3842 	}
3843 }
3844 
3845 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3846 {
3847 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3848 
3849 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3850 		dev_err(ns->ctrl->device,
3851 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3852 		goto out;
3853 	}
3854 
3855 	ret = nvme_update_ns_info(ns, info);
3856 out:
3857 	/*
3858 	 * Only remove the namespace if we got a fatal error back from the
3859 	 * device, otherwise ignore the error and just move on.
3860 	 *
3861 	 * TODO: we should probably schedule a delayed retry here.
3862 	 */
3863 	if (ret > 0 && (ret & NVME_SC_DNR))
3864 		nvme_ns_remove(ns);
3865 }
3866 
3867 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3868 {
3869 	struct nvme_ns_info info = { .nsid = nsid };
3870 	struct nvme_ns *ns;
3871 	int ret;
3872 
3873 	if (nvme_identify_ns_descs(ctrl, &info))
3874 		return;
3875 
3876 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3877 		dev_warn(ctrl->device,
3878 			"command set not reported for nsid: %d\n", nsid);
3879 		return;
3880 	}
3881 
3882 	/*
3883 	 * If available try to use the Command Set Idependent Identify Namespace
3884 	 * data structure to find all the generic information that is needed to
3885 	 * set up a namespace.  If not fall back to the legacy version.
3886 	 */
3887 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3888 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3889 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3890 	else
3891 		ret = nvme_ns_info_from_identify(ctrl, &info);
3892 
3893 	if (info.is_removed)
3894 		nvme_ns_remove_by_nsid(ctrl, nsid);
3895 
3896 	/*
3897 	 * Ignore the namespace if it is not ready. We will get an AEN once it
3898 	 * becomes ready and restart the scan.
3899 	 */
3900 	if (ret || !info.is_ready)
3901 		return;
3902 
3903 	ns = nvme_find_get_ns(ctrl, nsid);
3904 	if (ns) {
3905 		nvme_validate_ns(ns, &info);
3906 		nvme_put_ns(ns);
3907 	} else {
3908 		nvme_alloc_ns(ctrl, &info);
3909 	}
3910 }
3911 
3912 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3913 					unsigned nsid)
3914 {
3915 	struct nvme_ns *ns, *next;
3916 	LIST_HEAD(rm_list);
3917 
3918 	down_write(&ctrl->namespaces_rwsem);
3919 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3920 		if (ns->head->ns_id > nsid)
3921 			list_move_tail(&ns->list, &rm_list);
3922 	}
3923 	up_write(&ctrl->namespaces_rwsem);
3924 
3925 	list_for_each_entry_safe(ns, next, &rm_list, list)
3926 		nvme_ns_remove(ns);
3927 
3928 }
3929 
3930 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3931 {
3932 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3933 	__le32 *ns_list;
3934 	u32 prev = 0;
3935 	int ret = 0, i;
3936 
3937 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3938 	if (!ns_list)
3939 		return -ENOMEM;
3940 
3941 	for (;;) {
3942 		struct nvme_command cmd = {
3943 			.identify.opcode	= nvme_admin_identify,
3944 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3945 			.identify.nsid		= cpu_to_le32(prev),
3946 		};
3947 
3948 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3949 					    NVME_IDENTIFY_DATA_SIZE);
3950 		if (ret) {
3951 			dev_warn(ctrl->device,
3952 				"Identify NS List failed (status=0x%x)\n", ret);
3953 			goto free;
3954 		}
3955 
3956 		for (i = 0; i < nr_entries; i++) {
3957 			u32 nsid = le32_to_cpu(ns_list[i]);
3958 
3959 			if (!nsid)	/* end of the list? */
3960 				goto out;
3961 			nvme_scan_ns(ctrl, nsid);
3962 			while (++prev < nsid)
3963 				nvme_ns_remove_by_nsid(ctrl, prev);
3964 		}
3965 	}
3966  out:
3967 	nvme_remove_invalid_namespaces(ctrl, prev);
3968  free:
3969 	kfree(ns_list);
3970 	return ret;
3971 }
3972 
3973 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3974 {
3975 	struct nvme_id_ctrl *id;
3976 	u32 nn, i;
3977 
3978 	if (nvme_identify_ctrl(ctrl, &id))
3979 		return;
3980 	nn = le32_to_cpu(id->nn);
3981 	kfree(id);
3982 
3983 	for (i = 1; i <= nn; i++)
3984 		nvme_scan_ns(ctrl, i);
3985 
3986 	nvme_remove_invalid_namespaces(ctrl, nn);
3987 }
3988 
3989 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3990 {
3991 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3992 	__le32 *log;
3993 	int error;
3994 
3995 	log = kzalloc(log_size, GFP_KERNEL);
3996 	if (!log)
3997 		return;
3998 
3999 	/*
4000 	 * We need to read the log to clear the AEN, but we don't want to rely
4001 	 * on it for the changed namespace information as userspace could have
4002 	 * raced with us in reading the log page, which could cause us to miss
4003 	 * updates.
4004 	 */
4005 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4006 			NVME_CSI_NVM, log, log_size, 0);
4007 	if (error)
4008 		dev_warn(ctrl->device,
4009 			"reading changed ns log failed: %d\n", error);
4010 
4011 	kfree(log);
4012 }
4013 
4014 static void nvme_scan_work(struct work_struct *work)
4015 {
4016 	struct nvme_ctrl *ctrl =
4017 		container_of(work, struct nvme_ctrl, scan_work);
4018 	int ret;
4019 
4020 	/* No tagset on a live ctrl means IO queues could not created */
4021 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4022 		return;
4023 
4024 	/*
4025 	 * Identify controller limits can change at controller reset due to
4026 	 * new firmware download, even though it is not common we cannot ignore
4027 	 * such scenario. Controller's non-mdts limits are reported in the unit
4028 	 * of logical blocks that is dependent on the format of attached
4029 	 * namespace. Hence re-read the limits at the time of ns allocation.
4030 	 */
4031 	ret = nvme_init_non_mdts_limits(ctrl);
4032 	if (ret < 0) {
4033 		dev_warn(ctrl->device,
4034 			"reading non-mdts-limits failed: %d\n", ret);
4035 		return;
4036 	}
4037 
4038 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4039 		dev_info(ctrl->device, "rescanning namespaces.\n");
4040 		nvme_clear_changed_ns_log(ctrl);
4041 	}
4042 
4043 	mutex_lock(&ctrl->scan_lock);
4044 	if (nvme_ctrl_limited_cns(ctrl)) {
4045 		nvme_scan_ns_sequential(ctrl);
4046 	} else {
4047 		/*
4048 		 * Fall back to sequential scan if DNR is set to handle broken
4049 		 * devices which should support Identify NS List (as per the VS
4050 		 * they report) but don't actually support it.
4051 		 */
4052 		ret = nvme_scan_ns_list(ctrl);
4053 		if (ret > 0 && ret & NVME_SC_DNR)
4054 			nvme_scan_ns_sequential(ctrl);
4055 	}
4056 	mutex_unlock(&ctrl->scan_lock);
4057 }
4058 
4059 /*
4060  * This function iterates the namespace list unlocked to allow recovery from
4061  * controller failure. It is up to the caller to ensure the namespace list is
4062  * not modified by scan work while this function is executing.
4063  */
4064 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4065 {
4066 	struct nvme_ns *ns, *next;
4067 	LIST_HEAD(ns_list);
4068 
4069 	/*
4070 	 * make sure to requeue I/O to all namespaces as these
4071 	 * might result from the scan itself and must complete
4072 	 * for the scan_work to make progress
4073 	 */
4074 	nvme_mpath_clear_ctrl_paths(ctrl);
4075 
4076 	/*
4077 	 * Unquiesce io queues so any pending IO won't hang, especially
4078 	 * those submitted from scan work
4079 	 */
4080 	nvme_unquiesce_io_queues(ctrl);
4081 
4082 	/* prevent racing with ns scanning */
4083 	flush_work(&ctrl->scan_work);
4084 
4085 	/*
4086 	 * The dead states indicates the controller was not gracefully
4087 	 * disconnected. In that case, we won't be able to flush any data while
4088 	 * removing the namespaces' disks; fail all the queues now to avoid
4089 	 * potentially having to clean up the failed sync later.
4090 	 */
4091 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4092 		nvme_mark_namespaces_dead(ctrl);
4093 
4094 	/* this is a no-op when called from the controller reset handler */
4095 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4096 
4097 	down_write(&ctrl->namespaces_rwsem);
4098 	list_splice_init(&ctrl->namespaces, &ns_list);
4099 	up_write(&ctrl->namespaces_rwsem);
4100 
4101 	list_for_each_entry_safe(ns, next, &ns_list, list)
4102 		nvme_ns_remove(ns);
4103 }
4104 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4105 
4106 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4107 {
4108 	const struct nvme_ctrl *ctrl =
4109 		container_of(dev, struct nvme_ctrl, ctrl_device);
4110 	struct nvmf_ctrl_options *opts = ctrl->opts;
4111 	int ret;
4112 
4113 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4114 	if (ret)
4115 		return ret;
4116 
4117 	if (opts) {
4118 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4119 		if (ret)
4120 			return ret;
4121 
4122 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4123 				opts->trsvcid ?: "none");
4124 		if (ret)
4125 			return ret;
4126 
4127 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4128 				opts->host_traddr ?: "none");
4129 		if (ret)
4130 			return ret;
4131 
4132 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4133 				opts->host_iface ?: "none");
4134 	}
4135 	return ret;
4136 }
4137 
4138 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4139 {
4140 	char *envp[2] = { envdata, NULL };
4141 
4142 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4143 }
4144 
4145 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4146 {
4147 	char *envp[2] = { NULL, NULL };
4148 	u32 aen_result = ctrl->aen_result;
4149 
4150 	ctrl->aen_result = 0;
4151 	if (!aen_result)
4152 		return;
4153 
4154 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4155 	if (!envp[0])
4156 		return;
4157 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4158 	kfree(envp[0]);
4159 }
4160 
4161 static void nvme_async_event_work(struct work_struct *work)
4162 {
4163 	struct nvme_ctrl *ctrl =
4164 		container_of(work, struct nvme_ctrl, async_event_work);
4165 
4166 	nvme_aen_uevent(ctrl);
4167 
4168 	/*
4169 	 * The transport drivers must guarantee AER submission here is safe by
4170 	 * flushing ctrl async_event_work after changing the controller state
4171 	 * from LIVE and before freeing the admin queue.
4172 	*/
4173 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4174 		ctrl->ops->submit_async_event(ctrl);
4175 }
4176 
4177 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4178 {
4179 
4180 	u32 csts;
4181 
4182 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4183 		return false;
4184 
4185 	if (csts == ~0)
4186 		return false;
4187 
4188 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4189 }
4190 
4191 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4192 {
4193 	struct nvme_fw_slot_info_log *log;
4194 
4195 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4196 	if (!log)
4197 		return;
4198 
4199 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4200 			 log, sizeof(*log), 0)) {
4201 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4202 		goto out_free_log;
4203 	}
4204 
4205 	if (log->afi & 0x70 || !(log->afi & 0x7)) {
4206 		dev_info(ctrl->device,
4207 			 "Firmware is activated after next Controller Level Reset\n");
4208 		goto out_free_log;
4209 	}
4210 
4211 	memcpy(ctrl->subsys->firmware_rev, &log->frs[(log->afi & 0x7) - 1],
4212 		sizeof(ctrl->subsys->firmware_rev));
4213 
4214 out_free_log:
4215 	kfree(log);
4216 }
4217 
4218 static void nvme_fw_act_work(struct work_struct *work)
4219 {
4220 	struct nvme_ctrl *ctrl = container_of(work,
4221 				struct nvme_ctrl, fw_act_work);
4222 	unsigned long fw_act_timeout;
4223 
4224 	nvme_auth_stop(ctrl);
4225 
4226 	if (ctrl->mtfa)
4227 		fw_act_timeout = jiffies +
4228 				msecs_to_jiffies(ctrl->mtfa * 100);
4229 	else
4230 		fw_act_timeout = jiffies +
4231 				msecs_to_jiffies(admin_timeout * 1000);
4232 
4233 	nvme_quiesce_io_queues(ctrl);
4234 	while (nvme_ctrl_pp_status(ctrl)) {
4235 		if (time_after(jiffies, fw_act_timeout)) {
4236 			dev_warn(ctrl->device,
4237 				"Fw activation timeout, reset controller\n");
4238 			nvme_try_sched_reset(ctrl);
4239 			return;
4240 		}
4241 		msleep(100);
4242 	}
4243 
4244 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4245 		return;
4246 
4247 	nvme_unquiesce_io_queues(ctrl);
4248 	/* read FW slot information to clear the AER */
4249 	nvme_get_fw_slot_info(ctrl);
4250 
4251 	queue_work(nvme_wq, &ctrl->async_event_work);
4252 }
4253 
4254 static u32 nvme_aer_type(u32 result)
4255 {
4256 	return result & 0x7;
4257 }
4258 
4259 static u32 nvme_aer_subtype(u32 result)
4260 {
4261 	return (result & 0xff00) >> 8;
4262 }
4263 
4264 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4265 {
4266 	u32 aer_notice_type = nvme_aer_subtype(result);
4267 	bool requeue = true;
4268 
4269 	switch (aer_notice_type) {
4270 	case NVME_AER_NOTICE_NS_CHANGED:
4271 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4272 		nvme_queue_scan(ctrl);
4273 		break;
4274 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4275 		/*
4276 		 * We are (ab)using the RESETTING state to prevent subsequent
4277 		 * recovery actions from interfering with the controller's
4278 		 * firmware activation.
4279 		 */
4280 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4281 			requeue = false;
4282 			queue_work(nvme_wq, &ctrl->fw_act_work);
4283 		}
4284 		break;
4285 #ifdef CONFIG_NVME_MULTIPATH
4286 	case NVME_AER_NOTICE_ANA:
4287 		if (!ctrl->ana_log_buf)
4288 			break;
4289 		queue_work(nvme_wq, &ctrl->ana_work);
4290 		break;
4291 #endif
4292 	case NVME_AER_NOTICE_DISC_CHANGED:
4293 		ctrl->aen_result = result;
4294 		break;
4295 	default:
4296 		dev_warn(ctrl->device, "async event result %08x\n", result);
4297 	}
4298 	return requeue;
4299 }
4300 
4301 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4302 {
4303 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4304 	nvme_reset_ctrl(ctrl);
4305 }
4306 
4307 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4308 		volatile union nvme_result *res)
4309 {
4310 	u32 result = le32_to_cpu(res->u32);
4311 	u32 aer_type = nvme_aer_type(result);
4312 	u32 aer_subtype = nvme_aer_subtype(result);
4313 	bool requeue = true;
4314 
4315 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4316 		return;
4317 
4318 	trace_nvme_async_event(ctrl, result);
4319 	switch (aer_type) {
4320 	case NVME_AER_NOTICE:
4321 		requeue = nvme_handle_aen_notice(ctrl, result);
4322 		break;
4323 	case NVME_AER_ERROR:
4324 		/*
4325 		 * For a persistent internal error, don't run async_event_work
4326 		 * to submit a new AER. The controller reset will do it.
4327 		 */
4328 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4329 			nvme_handle_aer_persistent_error(ctrl);
4330 			return;
4331 		}
4332 		fallthrough;
4333 	case NVME_AER_SMART:
4334 	case NVME_AER_CSS:
4335 	case NVME_AER_VS:
4336 		ctrl->aen_result = result;
4337 		break;
4338 	default:
4339 		break;
4340 	}
4341 
4342 	if (requeue)
4343 		queue_work(nvme_wq, &ctrl->async_event_work);
4344 }
4345 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4346 
4347 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4348 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4349 {
4350 	int ret;
4351 
4352 	memset(set, 0, sizeof(*set));
4353 	set->ops = ops;
4354 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4355 	if (ctrl->ops->flags & NVME_F_FABRICS)
4356 		set->reserved_tags = NVMF_RESERVED_TAGS;
4357 	set->numa_node = ctrl->numa_node;
4358 	set->flags = BLK_MQ_F_NO_SCHED;
4359 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4360 		set->flags |= BLK_MQ_F_BLOCKING;
4361 	set->cmd_size = cmd_size;
4362 	set->driver_data = ctrl;
4363 	set->nr_hw_queues = 1;
4364 	set->timeout = NVME_ADMIN_TIMEOUT;
4365 	ret = blk_mq_alloc_tag_set(set);
4366 	if (ret)
4367 		return ret;
4368 
4369 	ctrl->admin_q = blk_mq_init_queue(set);
4370 	if (IS_ERR(ctrl->admin_q)) {
4371 		ret = PTR_ERR(ctrl->admin_q);
4372 		goto out_free_tagset;
4373 	}
4374 
4375 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4376 		ctrl->fabrics_q = blk_mq_init_queue(set);
4377 		if (IS_ERR(ctrl->fabrics_q)) {
4378 			ret = PTR_ERR(ctrl->fabrics_q);
4379 			goto out_cleanup_admin_q;
4380 		}
4381 	}
4382 
4383 	ctrl->admin_tagset = set;
4384 	return 0;
4385 
4386 out_cleanup_admin_q:
4387 	blk_mq_destroy_queue(ctrl->admin_q);
4388 	blk_put_queue(ctrl->admin_q);
4389 out_free_tagset:
4390 	blk_mq_free_tag_set(set);
4391 	ctrl->admin_q = NULL;
4392 	ctrl->fabrics_q = NULL;
4393 	return ret;
4394 }
4395 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4396 
4397 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4398 {
4399 	blk_mq_destroy_queue(ctrl->admin_q);
4400 	blk_put_queue(ctrl->admin_q);
4401 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4402 		blk_mq_destroy_queue(ctrl->fabrics_q);
4403 		blk_put_queue(ctrl->fabrics_q);
4404 	}
4405 	blk_mq_free_tag_set(ctrl->admin_tagset);
4406 }
4407 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4408 
4409 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4410 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4411 		unsigned int cmd_size)
4412 {
4413 	int ret;
4414 
4415 	memset(set, 0, sizeof(*set));
4416 	set->ops = ops;
4417 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4418 	/*
4419 	 * Some Apple controllers requires tags to be unique across admin and
4420 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4421 	 */
4422 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4423 		set->reserved_tags = NVME_AQ_DEPTH;
4424 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4425 		set->reserved_tags = NVMF_RESERVED_TAGS;
4426 	set->numa_node = ctrl->numa_node;
4427 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4428 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4429 		set->flags |= BLK_MQ_F_BLOCKING;
4430 	set->cmd_size = cmd_size,
4431 	set->driver_data = ctrl;
4432 	set->nr_hw_queues = ctrl->queue_count - 1;
4433 	set->timeout = NVME_IO_TIMEOUT;
4434 	set->nr_maps = nr_maps;
4435 	ret = blk_mq_alloc_tag_set(set);
4436 	if (ret)
4437 		return ret;
4438 
4439 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4440 		ctrl->connect_q = blk_mq_init_queue(set);
4441         	if (IS_ERR(ctrl->connect_q)) {
4442 			ret = PTR_ERR(ctrl->connect_q);
4443 			goto out_free_tag_set;
4444 		}
4445 		blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4446 				   ctrl->connect_q);
4447 	}
4448 
4449 	ctrl->tagset = set;
4450 	return 0;
4451 
4452 out_free_tag_set:
4453 	blk_mq_free_tag_set(set);
4454 	ctrl->connect_q = NULL;
4455 	return ret;
4456 }
4457 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4458 
4459 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4460 {
4461 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4462 		blk_mq_destroy_queue(ctrl->connect_q);
4463 		blk_put_queue(ctrl->connect_q);
4464 	}
4465 	blk_mq_free_tag_set(ctrl->tagset);
4466 }
4467 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4468 
4469 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4470 {
4471 	nvme_mpath_stop(ctrl);
4472 	nvme_auth_stop(ctrl);
4473 	nvme_stop_keep_alive(ctrl);
4474 	nvme_stop_failfast_work(ctrl);
4475 	flush_work(&ctrl->async_event_work);
4476 	cancel_work_sync(&ctrl->fw_act_work);
4477 	if (ctrl->ops->stop_ctrl)
4478 		ctrl->ops->stop_ctrl(ctrl);
4479 }
4480 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4481 
4482 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4483 {
4484 	nvme_enable_aen(ctrl);
4485 
4486 	/*
4487 	 * persistent discovery controllers need to send indication to userspace
4488 	 * to re-read the discovery log page to learn about possible changes
4489 	 * that were missed. We identify persistent discovery controllers by
4490 	 * checking that they started once before, hence are reconnecting back.
4491 	 */
4492 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4493 	    nvme_discovery_ctrl(ctrl))
4494 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4495 
4496 	if (ctrl->queue_count > 1) {
4497 		nvme_queue_scan(ctrl);
4498 		nvme_unquiesce_io_queues(ctrl);
4499 		nvme_mpath_update(ctrl);
4500 	}
4501 
4502 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4503 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4504 }
4505 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4506 
4507 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4508 {
4509 	nvme_hwmon_exit(ctrl);
4510 	nvme_fault_inject_fini(&ctrl->fault_inject);
4511 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4512 	cdev_device_del(&ctrl->cdev, ctrl->device);
4513 	nvme_put_ctrl(ctrl);
4514 }
4515 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4516 
4517 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4518 {
4519 	struct nvme_effects_log	*cel;
4520 	unsigned long i;
4521 
4522 	xa_for_each(&ctrl->cels, i, cel) {
4523 		xa_erase(&ctrl->cels, i);
4524 		kfree(cel);
4525 	}
4526 
4527 	xa_destroy(&ctrl->cels);
4528 }
4529 
4530 static void nvme_free_ctrl(struct device *dev)
4531 {
4532 	struct nvme_ctrl *ctrl =
4533 		container_of(dev, struct nvme_ctrl, ctrl_device);
4534 	struct nvme_subsystem *subsys = ctrl->subsys;
4535 
4536 	if (!subsys || ctrl->instance != subsys->instance)
4537 		ida_free(&nvme_instance_ida, ctrl->instance);
4538 	key_put(ctrl->tls_key);
4539 	nvme_free_cels(ctrl);
4540 	nvme_mpath_uninit(ctrl);
4541 	nvme_auth_stop(ctrl);
4542 	nvme_auth_free(ctrl);
4543 	__free_page(ctrl->discard_page);
4544 	free_opal_dev(ctrl->opal_dev);
4545 
4546 	if (subsys) {
4547 		mutex_lock(&nvme_subsystems_lock);
4548 		list_del(&ctrl->subsys_entry);
4549 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4550 		mutex_unlock(&nvme_subsystems_lock);
4551 	}
4552 
4553 	ctrl->ops->free_ctrl(ctrl);
4554 
4555 	if (subsys)
4556 		nvme_put_subsystem(subsys);
4557 }
4558 
4559 /*
4560  * Initialize a NVMe controller structures.  This needs to be called during
4561  * earliest initialization so that we have the initialized structured around
4562  * during probing.
4563  */
4564 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4565 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4566 {
4567 	int ret;
4568 
4569 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4570 	ctrl->passthru_err_log_enabled = false;
4571 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4572 	spin_lock_init(&ctrl->lock);
4573 	mutex_init(&ctrl->scan_lock);
4574 	INIT_LIST_HEAD(&ctrl->namespaces);
4575 	xa_init(&ctrl->cels);
4576 	init_rwsem(&ctrl->namespaces_rwsem);
4577 	ctrl->dev = dev;
4578 	ctrl->ops = ops;
4579 	ctrl->quirks = quirks;
4580 	ctrl->numa_node = NUMA_NO_NODE;
4581 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4582 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4583 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4584 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4585 	init_waitqueue_head(&ctrl->state_wq);
4586 
4587 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4588 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4589 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4590 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4591 	ctrl->ka_last_check_time = jiffies;
4592 
4593 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4594 			PAGE_SIZE);
4595 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4596 	if (!ctrl->discard_page) {
4597 		ret = -ENOMEM;
4598 		goto out;
4599 	}
4600 
4601 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4602 	if (ret < 0)
4603 		goto out;
4604 	ctrl->instance = ret;
4605 
4606 	device_initialize(&ctrl->ctrl_device);
4607 	ctrl->device = &ctrl->ctrl_device;
4608 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4609 			ctrl->instance);
4610 	ctrl->device->class = nvme_class;
4611 	ctrl->device->parent = ctrl->dev;
4612 	if (ops->dev_attr_groups)
4613 		ctrl->device->groups = ops->dev_attr_groups;
4614 	else
4615 		ctrl->device->groups = nvme_dev_attr_groups;
4616 	ctrl->device->release = nvme_free_ctrl;
4617 	dev_set_drvdata(ctrl->device, ctrl);
4618 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4619 	if (ret)
4620 		goto out_release_instance;
4621 
4622 	nvme_get_ctrl(ctrl);
4623 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4624 	ctrl->cdev.owner = ops->module;
4625 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4626 	if (ret)
4627 		goto out_free_name;
4628 
4629 	/*
4630 	 * Initialize latency tolerance controls.  The sysfs files won't
4631 	 * be visible to userspace unless the device actually supports APST.
4632 	 */
4633 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4634 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4635 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4636 
4637 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4638 	nvme_mpath_init_ctrl(ctrl);
4639 	ret = nvme_auth_init_ctrl(ctrl);
4640 	if (ret)
4641 		goto out_free_cdev;
4642 
4643 	return 0;
4644 out_free_cdev:
4645 	nvme_fault_inject_fini(&ctrl->fault_inject);
4646 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4647 	cdev_device_del(&ctrl->cdev, ctrl->device);
4648 out_free_name:
4649 	nvme_put_ctrl(ctrl);
4650 	kfree_const(ctrl->device->kobj.name);
4651 out_release_instance:
4652 	ida_free(&nvme_instance_ida, ctrl->instance);
4653 out:
4654 	if (ctrl->discard_page)
4655 		__free_page(ctrl->discard_page);
4656 	return ret;
4657 }
4658 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4659 
4660 /* let I/O to all namespaces fail in preparation for surprise removal */
4661 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4662 {
4663 	struct nvme_ns *ns;
4664 
4665 	down_read(&ctrl->namespaces_rwsem);
4666 	list_for_each_entry(ns, &ctrl->namespaces, list)
4667 		blk_mark_disk_dead(ns->disk);
4668 	up_read(&ctrl->namespaces_rwsem);
4669 }
4670 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4671 
4672 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4673 {
4674 	struct nvme_ns *ns;
4675 
4676 	down_read(&ctrl->namespaces_rwsem);
4677 	list_for_each_entry(ns, &ctrl->namespaces, list)
4678 		blk_mq_unfreeze_queue(ns->queue);
4679 	up_read(&ctrl->namespaces_rwsem);
4680 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4681 }
4682 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4683 
4684 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4685 {
4686 	struct nvme_ns *ns;
4687 
4688 	down_read(&ctrl->namespaces_rwsem);
4689 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4690 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4691 		if (timeout <= 0)
4692 			break;
4693 	}
4694 	up_read(&ctrl->namespaces_rwsem);
4695 	return timeout;
4696 }
4697 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4698 
4699 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4700 {
4701 	struct nvme_ns *ns;
4702 
4703 	down_read(&ctrl->namespaces_rwsem);
4704 	list_for_each_entry(ns, &ctrl->namespaces, list)
4705 		blk_mq_freeze_queue_wait(ns->queue);
4706 	up_read(&ctrl->namespaces_rwsem);
4707 }
4708 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4709 
4710 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4711 {
4712 	struct nvme_ns *ns;
4713 
4714 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4715 	down_read(&ctrl->namespaces_rwsem);
4716 	list_for_each_entry(ns, &ctrl->namespaces, list)
4717 		blk_freeze_queue_start(ns->queue);
4718 	up_read(&ctrl->namespaces_rwsem);
4719 }
4720 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4721 
4722 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4723 {
4724 	if (!ctrl->tagset)
4725 		return;
4726 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4727 		blk_mq_quiesce_tagset(ctrl->tagset);
4728 	else
4729 		blk_mq_wait_quiesce_done(ctrl->tagset);
4730 }
4731 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4732 
4733 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4734 {
4735 	if (!ctrl->tagset)
4736 		return;
4737 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4738 		blk_mq_unquiesce_tagset(ctrl->tagset);
4739 }
4740 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4741 
4742 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4743 {
4744 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4745 		blk_mq_quiesce_queue(ctrl->admin_q);
4746 	else
4747 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4748 }
4749 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4750 
4751 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4752 {
4753 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4754 		blk_mq_unquiesce_queue(ctrl->admin_q);
4755 }
4756 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4757 
4758 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4759 {
4760 	struct nvme_ns *ns;
4761 
4762 	down_read(&ctrl->namespaces_rwsem);
4763 	list_for_each_entry(ns, &ctrl->namespaces, list)
4764 		blk_sync_queue(ns->queue);
4765 	up_read(&ctrl->namespaces_rwsem);
4766 }
4767 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4768 
4769 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4770 {
4771 	nvme_sync_io_queues(ctrl);
4772 	if (ctrl->admin_q)
4773 		blk_sync_queue(ctrl->admin_q);
4774 }
4775 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4776 
4777 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4778 {
4779 	if (file->f_op != &nvme_dev_fops)
4780 		return NULL;
4781 	return file->private_data;
4782 }
4783 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4784 
4785 /*
4786  * Check we didn't inadvertently grow the command structure sizes:
4787  */
4788 static inline void _nvme_check_size(void)
4789 {
4790 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4791 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4792 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4793 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4794 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4795 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4796 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4797 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4798 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4799 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4800 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4801 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4802 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4803 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4804 			NVME_IDENTIFY_DATA_SIZE);
4805 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4806 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4807 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4808 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4809 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4810 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4811 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4812 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4813 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4814 }
4815 
4816 
4817 static int __init nvme_core_init(void)
4818 {
4819 	int result = -ENOMEM;
4820 
4821 	_nvme_check_size();
4822 
4823 	nvme_wq = alloc_workqueue("nvme-wq",
4824 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4825 	if (!nvme_wq)
4826 		goto out;
4827 
4828 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4829 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4830 	if (!nvme_reset_wq)
4831 		goto destroy_wq;
4832 
4833 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4834 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4835 	if (!nvme_delete_wq)
4836 		goto destroy_reset_wq;
4837 
4838 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4839 			NVME_MINORS, "nvme");
4840 	if (result < 0)
4841 		goto destroy_delete_wq;
4842 
4843 	nvme_class = class_create("nvme");
4844 	if (IS_ERR(nvme_class)) {
4845 		result = PTR_ERR(nvme_class);
4846 		goto unregister_chrdev;
4847 	}
4848 	nvme_class->dev_uevent = nvme_class_uevent;
4849 
4850 	nvme_subsys_class = class_create("nvme-subsystem");
4851 	if (IS_ERR(nvme_subsys_class)) {
4852 		result = PTR_ERR(nvme_subsys_class);
4853 		goto destroy_class;
4854 	}
4855 
4856 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4857 				     "nvme-generic");
4858 	if (result < 0)
4859 		goto destroy_subsys_class;
4860 
4861 	nvme_ns_chr_class = class_create("nvme-generic");
4862 	if (IS_ERR(nvme_ns_chr_class)) {
4863 		result = PTR_ERR(nvme_ns_chr_class);
4864 		goto unregister_generic_ns;
4865 	}
4866 	result = nvme_init_auth();
4867 	if (result)
4868 		goto destroy_ns_chr;
4869 	return 0;
4870 
4871 destroy_ns_chr:
4872 	class_destroy(nvme_ns_chr_class);
4873 unregister_generic_ns:
4874 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4875 destroy_subsys_class:
4876 	class_destroy(nvme_subsys_class);
4877 destroy_class:
4878 	class_destroy(nvme_class);
4879 unregister_chrdev:
4880 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4881 destroy_delete_wq:
4882 	destroy_workqueue(nvme_delete_wq);
4883 destroy_reset_wq:
4884 	destroy_workqueue(nvme_reset_wq);
4885 destroy_wq:
4886 	destroy_workqueue(nvme_wq);
4887 out:
4888 	return result;
4889 }
4890 
4891 static void __exit nvme_core_exit(void)
4892 {
4893 	nvme_exit_auth();
4894 	class_destroy(nvme_ns_chr_class);
4895 	class_destroy(nvme_subsys_class);
4896 	class_destroy(nvme_class);
4897 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4898 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4899 	destroy_workqueue(nvme_delete_wq);
4900 	destroy_workqueue(nvme_reset_wq);
4901 	destroy_workqueue(nvme_wq);
4902 	ida_destroy(&nvme_ns_chr_minor_ida);
4903 	ida_destroy(&nvme_instance_ida);
4904 }
4905 
4906 MODULE_LICENSE("GPL");
4907 MODULE_VERSION("1.0");
4908 MODULE_DESCRIPTION("NVMe host core framework");
4909 module_init(nvme_core_init);
4910 module_exit(nvme_core_exit);
4911