1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/delay.h> 10 #include <linux/errno.h> 11 #include <linux/hdreg.h> 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/list_sort.h> 16 #include <linux/slab.h> 17 #include <linux/types.h> 18 #include <linux/pr.h> 19 #include <linux/ptrace.h> 20 #include <linux/nvme_ioctl.h> 21 #include <linux/t10-pi.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #define CREATE_TRACE_POINTS 26 #include "trace.h" 27 28 #include "nvme.h" 29 #include "fabrics.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static bool streams; 61 module_param(streams, bool, 0644); 62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 63 64 /* 65 * nvme_wq - hosts nvme related works that are not reset or delete 66 * nvme_reset_wq - hosts nvme reset works 67 * nvme_delete_wq - hosts nvme delete works 68 * 69 * nvme_wq will host works such are scan, aen handling, fw activation, 70 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq 71 * runs reset works which also flush works hosted on nvme_wq for 72 * serialization purposes. nvme_delete_wq host controller deletion 73 * works which flush reset works for serialization. 74 */ 75 struct workqueue_struct *nvme_wq; 76 EXPORT_SYMBOL_GPL(nvme_wq); 77 78 struct workqueue_struct *nvme_reset_wq; 79 EXPORT_SYMBOL_GPL(nvme_reset_wq); 80 81 struct workqueue_struct *nvme_delete_wq; 82 EXPORT_SYMBOL_GPL(nvme_delete_wq); 83 84 static DEFINE_IDA(nvme_subsystems_ida); 85 static LIST_HEAD(nvme_subsystems); 86 static DEFINE_MUTEX(nvme_subsystems_lock); 87 88 static DEFINE_IDA(nvme_instance_ida); 89 static dev_t nvme_chr_devt; 90 static struct class *nvme_class; 91 static struct class *nvme_subsys_class; 92 93 static int nvme_revalidate_disk(struct gendisk *disk); 94 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 95 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 96 unsigned nsid); 97 98 static void nvme_set_queue_dying(struct nvme_ns *ns) 99 { 100 /* 101 * Revalidating a dead namespace sets capacity to 0. This will end 102 * buffered writers dirtying pages that can't be synced. 103 */ 104 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 105 return; 106 revalidate_disk(ns->disk); 107 blk_set_queue_dying(ns->queue); 108 /* Forcibly unquiesce queues to avoid blocking dispatch */ 109 blk_mq_unquiesce_queue(ns->queue); 110 } 111 112 static void nvme_queue_scan(struct nvme_ctrl *ctrl) 113 { 114 /* 115 * Only new queue scan work when admin and IO queues are both alive 116 */ 117 if (ctrl->state == NVME_CTRL_LIVE) 118 queue_work(nvme_wq, &ctrl->scan_work); 119 } 120 121 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 122 { 123 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 124 return -EBUSY; 125 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 126 return -EBUSY; 127 return 0; 128 } 129 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 130 131 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 132 { 133 int ret; 134 135 ret = nvme_reset_ctrl(ctrl); 136 if (!ret) { 137 flush_work(&ctrl->reset_work); 138 if (ctrl->state != NVME_CTRL_LIVE && 139 ctrl->state != NVME_CTRL_ADMIN_ONLY) 140 ret = -ENETRESET; 141 } 142 143 return ret; 144 } 145 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync); 146 147 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 148 { 149 dev_info(ctrl->device, 150 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn); 151 152 flush_work(&ctrl->reset_work); 153 nvme_stop_ctrl(ctrl); 154 nvme_remove_namespaces(ctrl); 155 ctrl->ops->delete_ctrl(ctrl); 156 nvme_uninit_ctrl(ctrl); 157 nvme_put_ctrl(ctrl); 158 } 159 160 static void nvme_delete_ctrl_work(struct work_struct *work) 161 { 162 struct nvme_ctrl *ctrl = 163 container_of(work, struct nvme_ctrl, delete_work); 164 165 nvme_do_delete_ctrl(ctrl); 166 } 167 168 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 169 { 170 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 171 return -EBUSY; 172 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 173 return -EBUSY; 174 return 0; 175 } 176 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 177 178 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 179 { 180 int ret = 0; 181 182 /* 183 * Keep a reference until nvme_do_delete_ctrl() complete, 184 * since ->delete_ctrl can free the controller. 185 */ 186 nvme_get_ctrl(ctrl); 187 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 188 ret = -EBUSY; 189 if (!ret) 190 nvme_do_delete_ctrl(ctrl); 191 nvme_put_ctrl(ctrl); 192 return ret; 193 } 194 195 static inline bool nvme_ns_has_pi(struct nvme_ns *ns) 196 { 197 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple); 198 } 199 200 static blk_status_t nvme_error_status(struct request *req) 201 { 202 switch (nvme_req(req)->status & 0x7ff) { 203 case NVME_SC_SUCCESS: 204 return BLK_STS_OK; 205 case NVME_SC_CAP_EXCEEDED: 206 return BLK_STS_NOSPC; 207 case NVME_SC_LBA_RANGE: 208 return BLK_STS_TARGET; 209 case NVME_SC_BAD_ATTRIBUTES: 210 case NVME_SC_ONCS_NOT_SUPPORTED: 211 case NVME_SC_INVALID_OPCODE: 212 case NVME_SC_INVALID_FIELD: 213 case NVME_SC_INVALID_NS: 214 return BLK_STS_NOTSUPP; 215 case NVME_SC_WRITE_FAULT: 216 case NVME_SC_READ_ERROR: 217 case NVME_SC_UNWRITTEN_BLOCK: 218 case NVME_SC_ACCESS_DENIED: 219 case NVME_SC_READ_ONLY: 220 case NVME_SC_COMPARE_FAILED: 221 return BLK_STS_MEDIUM; 222 case NVME_SC_GUARD_CHECK: 223 case NVME_SC_APPTAG_CHECK: 224 case NVME_SC_REFTAG_CHECK: 225 case NVME_SC_INVALID_PI: 226 return BLK_STS_PROTECTION; 227 case NVME_SC_RESERVATION_CONFLICT: 228 return BLK_STS_NEXUS; 229 default: 230 return BLK_STS_IOERR; 231 } 232 } 233 234 static inline bool nvme_req_needs_retry(struct request *req) 235 { 236 if (blk_noretry_request(req)) 237 return false; 238 if (nvme_req(req)->status & NVME_SC_DNR) 239 return false; 240 if (nvme_req(req)->retries >= nvme_max_retries) 241 return false; 242 return true; 243 } 244 245 static void nvme_retry_req(struct request *req) 246 { 247 struct nvme_ns *ns = req->q->queuedata; 248 unsigned long delay = 0; 249 u16 crd; 250 251 /* The mask and shift result must be <= 3 */ 252 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 253 if (ns && crd) 254 delay = ns->ctrl->crdt[crd - 1] * 100; 255 256 nvme_req(req)->retries++; 257 blk_mq_requeue_request(req, false); 258 blk_mq_delay_kick_requeue_list(req->q, delay); 259 } 260 261 void nvme_complete_rq(struct request *req) 262 { 263 blk_status_t status = nvme_error_status(req); 264 265 trace_nvme_complete_rq(req); 266 267 if (nvme_req(req)->ctrl->kas) 268 nvme_req(req)->ctrl->comp_seen = true; 269 270 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) { 271 if ((req->cmd_flags & REQ_NVME_MPATH) && 272 blk_path_error(status)) { 273 nvme_failover_req(req); 274 return; 275 } 276 277 if (!blk_queue_dying(req->q)) { 278 nvme_retry_req(req); 279 return; 280 } 281 } 282 blk_mq_end_request(req, status); 283 } 284 EXPORT_SYMBOL_GPL(nvme_complete_rq); 285 286 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 287 { 288 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 289 "Cancelling I/O %d", req->tag); 290 291 nvme_req(req)->status = NVME_SC_ABORT_REQ; 292 blk_mq_complete_request_sync(req); 293 return true; 294 } 295 EXPORT_SYMBOL_GPL(nvme_cancel_request); 296 297 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 298 enum nvme_ctrl_state new_state) 299 { 300 enum nvme_ctrl_state old_state; 301 unsigned long flags; 302 bool changed = false; 303 304 spin_lock_irqsave(&ctrl->lock, flags); 305 306 old_state = ctrl->state; 307 switch (new_state) { 308 case NVME_CTRL_ADMIN_ONLY: 309 switch (old_state) { 310 case NVME_CTRL_CONNECTING: 311 changed = true; 312 /* FALLTHRU */ 313 default: 314 break; 315 } 316 break; 317 case NVME_CTRL_LIVE: 318 switch (old_state) { 319 case NVME_CTRL_NEW: 320 case NVME_CTRL_RESETTING: 321 case NVME_CTRL_CONNECTING: 322 changed = true; 323 /* FALLTHRU */ 324 default: 325 break; 326 } 327 break; 328 case NVME_CTRL_RESETTING: 329 switch (old_state) { 330 case NVME_CTRL_NEW: 331 case NVME_CTRL_LIVE: 332 case NVME_CTRL_ADMIN_ONLY: 333 changed = true; 334 /* FALLTHRU */ 335 default: 336 break; 337 } 338 break; 339 case NVME_CTRL_CONNECTING: 340 switch (old_state) { 341 case NVME_CTRL_NEW: 342 case NVME_CTRL_RESETTING: 343 changed = true; 344 /* FALLTHRU */ 345 default: 346 break; 347 } 348 break; 349 case NVME_CTRL_DELETING: 350 switch (old_state) { 351 case NVME_CTRL_LIVE: 352 case NVME_CTRL_ADMIN_ONLY: 353 case NVME_CTRL_RESETTING: 354 case NVME_CTRL_CONNECTING: 355 changed = true; 356 /* FALLTHRU */ 357 default: 358 break; 359 } 360 break; 361 case NVME_CTRL_DEAD: 362 switch (old_state) { 363 case NVME_CTRL_DELETING: 364 changed = true; 365 /* FALLTHRU */ 366 default: 367 break; 368 } 369 break; 370 default: 371 break; 372 } 373 374 if (changed) 375 ctrl->state = new_state; 376 377 spin_unlock_irqrestore(&ctrl->lock, flags); 378 if (changed && ctrl->state == NVME_CTRL_LIVE) 379 nvme_kick_requeue_lists(ctrl); 380 return changed; 381 } 382 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 383 384 static void nvme_free_ns_head(struct kref *ref) 385 { 386 struct nvme_ns_head *head = 387 container_of(ref, struct nvme_ns_head, ref); 388 389 nvme_mpath_remove_disk(head); 390 ida_simple_remove(&head->subsys->ns_ida, head->instance); 391 list_del_init(&head->entry); 392 cleanup_srcu_struct(&head->srcu); 393 nvme_put_subsystem(head->subsys); 394 kfree(head); 395 } 396 397 static void nvme_put_ns_head(struct nvme_ns_head *head) 398 { 399 kref_put(&head->ref, nvme_free_ns_head); 400 } 401 402 static void nvme_free_ns(struct kref *kref) 403 { 404 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 405 406 if (ns->ndev) 407 nvme_nvm_unregister(ns); 408 409 put_disk(ns->disk); 410 nvme_put_ns_head(ns->head); 411 nvme_put_ctrl(ns->ctrl); 412 kfree(ns); 413 } 414 415 static void nvme_put_ns(struct nvme_ns *ns) 416 { 417 kref_put(&ns->kref, nvme_free_ns); 418 } 419 420 static inline void nvme_clear_nvme_request(struct request *req) 421 { 422 if (!(req->rq_flags & RQF_DONTPREP)) { 423 nvme_req(req)->retries = 0; 424 nvme_req(req)->flags = 0; 425 req->rq_flags |= RQF_DONTPREP; 426 } 427 } 428 429 struct request *nvme_alloc_request(struct request_queue *q, 430 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 431 { 432 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 433 struct request *req; 434 435 if (qid == NVME_QID_ANY) { 436 req = blk_mq_alloc_request(q, op, flags); 437 } else { 438 req = blk_mq_alloc_request_hctx(q, op, flags, 439 qid ? qid - 1 : 0); 440 } 441 if (IS_ERR(req)) 442 return req; 443 444 req->cmd_flags |= REQ_FAILFAST_DRIVER; 445 nvme_clear_nvme_request(req); 446 nvme_req(req)->cmd = cmd; 447 448 return req; 449 } 450 EXPORT_SYMBOL_GPL(nvme_alloc_request); 451 452 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 453 { 454 struct nvme_command c; 455 456 memset(&c, 0, sizeof(c)); 457 458 c.directive.opcode = nvme_admin_directive_send; 459 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 460 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 461 c.directive.dtype = NVME_DIR_IDENTIFY; 462 c.directive.tdtype = NVME_DIR_STREAMS; 463 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 464 465 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 466 } 467 468 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 469 { 470 return nvme_toggle_streams(ctrl, false); 471 } 472 473 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 474 { 475 return nvme_toggle_streams(ctrl, true); 476 } 477 478 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 479 struct streams_directive_params *s, u32 nsid) 480 { 481 struct nvme_command c; 482 483 memset(&c, 0, sizeof(c)); 484 memset(s, 0, sizeof(*s)); 485 486 c.directive.opcode = nvme_admin_directive_recv; 487 c.directive.nsid = cpu_to_le32(nsid); 488 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1); 489 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 490 c.directive.dtype = NVME_DIR_STREAMS; 491 492 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 493 } 494 495 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 496 { 497 struct streams_directive_params s; 498 int ret; 499 500 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 501 return 0; 502 if (!streams) 503 return 0; 504 505 ret = nvme_enable_streams(ctrl); 506 if (ret) 507 return ret; 508 509 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 510 if (ret) 511 return ret; 512 513 ctrl->nssa = le16_to_cpu(s.nssa); 514 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 515 dev_info(ctrl->device, "too few streams (%u) available\n", 516 ctrl->nssa); 517 nvme_disable_streams(ctrl); 518 return 0; 519 } 520 521 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 522 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 523 return 0; 524 } 525 526 /* 527 * Check if 'req' has a write hint associated with it. If it does, assign 528 * a valid namespace stream to the write. 529 */ 530 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 531 struct request *req, u16 *control, 532 u32 *dsmgmt) 533 { 534 enum rw_hint streamid = req->write_hint; 535 536 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 537 streamid = 0; 538 else { 539 streamid--; 540 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 541 return; 542 543 *control |= NVME_RW_DTYPE_STREAMS; 544 *dsmgmt |= streamid << 16; 545 } 546 547 if (streamid < ARRAY_SIZE(req->q->write_hints)) 548 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 549 } 550 551 static inline void nvme_setup_flush(struct nvme_ns *ns, 552 struct nvme_command *cmnd) 553 { 554 cmnd->common.opcode = nvme_cmd_flush; 555 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 556 } 557 558 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 559 struct nvme_command *cmnd) 560 { 561 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 562 struct nvme_dsm_range *range; 563 struct bio *bio; 564 565 range = kmalloc_array(segments, sizeof(*range), 566 GFP_ATOMIC | __GFP_NOWARN); 567 if (!range) { 568 /* 569 * If we fail allocation our range, fallback to the controller 570 * discard page. If that's also busy, it's safe to return 571 * busy, as we know we can make progress once that's freed. 572 */ 573 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 574 return BLK_STS_RESOURCE; 575 576 range = page_address(ns->ctrl->discard_page); 577 } 578 579 __rq_for_each_bio(bio, req) { 580 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); 581 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 582 583 if (n < segments) { 584 range[n].cattr = cpu_to_le32(0); 585 range[n].nlb = cpu_to_le32(nlb); 586 range[n].slba = cpu_to_le64(slba); 587 } 588 n++; 589 } 590 591 if (WARN_ON_ONCE(n != segments)) { 592 if (virt_to_page(range) == ns->ctrl->discard_page) 593 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 594 else 595 kfree(range); 596 return BLK_STS_IOERR; 597 } 598 599 cmnd->dsm.opcode = nvme_cmd_dsm; 600 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 601 cmnd->dsm.nr = cpu_to_le32(segments - 1); 602 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 603 604 req->special_vec.bv_page = virt_to_page(range); 605 req->special_vec.bv_offset = offset_in_page(range); 606 req->special_vec.bv_len = sizeof(*range) * segments; 607 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 608 609 return BLK_STS_OK; 610 } 611 612 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 613 struct request *req, struct nvme_command *cmnd) 614 { 615 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 616 return nvme_setup_discard(ns, req, cmnd); 617 618 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 619 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 620 cmnd->write_zeroes.slba = 621 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 622 cmnd->write_zeroes.length = 623 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 624 cmnd->write_zeroes.control = 0; 625 return BLK_STS_OK; 626 } 627 628 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 629 struct request *req, struct nvme_command *cmnd) 630 { 631 struct nvme_ctrl *ctrl = ns->ctrl; 632 u16 control = 0; 633 u32 dsmgmt = 0; 634 635 if (req->cmd_flags & REQ_FUA) 636 control |= NVME_RW_FUA; 637 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 638 control |= NVME_RW_LR; 639 640 if (req->cmd_flags & REQ_RAHEAD) 641 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 642 643 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); 644 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 645 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); 646 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 647 648 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 649 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 650 651 if (ns->ms) { 652 /* 653 * If formated with metadata, the block layer always provides a 654 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 655 * we enable the PRACT bit for protection information or set the 656 * namespace capacity to zero to prevent any I/O. 657 */ 658 if (!blk_integrity_rq(req)) { 659 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 660 return BLK_STS_NOTSUPP; 661 control |= NVME_RW_PRINFO_PRACT; 662 } else if (req_op(req) == REQ_OP_WRITE) { 663 t10_pi_prepare(req, ns->pi_type); 664 } 665 666 switch (ns->pi_type) { 667 case NVME_NS_DPS_PI_TYPE3: 668 control |= NVME_RW_PRINFO_PRCHK_GUARD; 669 break; 670 case NVME_NS_DPS_PI_TYPE1: 671 case NVME_NS_DPS_PI_TYPE2: 672 control |= NVME_RW_PRINFO_PRCHK_GUARD | 673 NVME_RW_PRINFO_PRCHK_REF; 674 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 675 break; 676 } 677 } 678 679 cmnd->rw.control = cpu_to_le16(control); 680 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 681 return 0; 682 } 683 684 void nvme_cleanup_cmd(struct request *req) 685 { 686 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 687 nvme_req(req)->status == 0) { 688 struct nvme_ns *ns = req->rq_disk->private_data; 689 690 t10_pi_complete(req, ns->pi_type, 691 blk_rq_bytes(req) >> ns->lba_shift); 692 } 693 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 694 struct nvme_ns *ns = req->rq_disk->private_data; 695 struct page *page = req->special_vec.bv_page; 696 697 if (page == ns->ctrl->discard_page) 698 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 699 else 700 kfree(page_address(page) + req->special_vec.bv_offset); 701 } 702 } 703 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 704 705 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, 706 struct nvme_command *cmd) 707 { 708 blk_status_t ret = BLK_STS_OK; 709 710 nvme_clear_nvme_request(req); 711 712 memset(cmd, 0, sizeof(*cmd)); 713 switch (req_op(req)) { 714 case REQ_OP_DRV_IN: 715 case REQ_OP_DRV_OUT: 716 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); 717 break; 718 case REQ_OP_FLUSH: 719 nvme_setup_flush(ns, cmd); 720 break; 721 case REQ_OP_WRITE_ZEROES: 722 ret = nvme_setup_write_zeroes(ns, req, cmd); 723 break; 724 case REQ_OP_DISCARD: 725 ret = nvme_setup_discard(ns, req, cmd); 726 break; 727 case REQ_OP_READ: 728 case REQ_OP_WRITE: 729 ret = nvme_setup_rw(ns, req, cmd); 730 break; 731 default: 732 WARN_ON_ONCE(1); 733 return BLK_STS_IOERR; 734 } 735 736 cmd->common.command_id = req->tag; 737 trace_nvme_setup_cmd(req, cmd); 738 return ret; 739 } 740 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 741 742 static void nvme_end_sync_rq(struct request *rq, blk_status_t error) 743 { 744 struct completion *waiting = rq->end_io_data; 745 746 rq->end_io_data = NULL; 747 complete(waiting); 748 } 749 750 static void nvme_execute_rq_polled(struct request_queue *q, 751 struct gendisk *bd_disk, struct request *rq, int at_head) 752 { 753 DECLARE_COMPLETION_ONSTACK(wait); 754 755 WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)); 756 757 rq->cmd_flags |= REQ_HIPRI; 758 rq->end_io_data = &wait; 759 blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq); 760 761 while (!completion_done(&wait)) { 762 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true); 763 cond_resched(); 764 } 765 } 766 767 /* 768 * Returns 0 on success. If the result is negative, it's a Linux error code; 769 * if the result is positive, it's an NVM Express status code 770 */ 771 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 772 union nvme_result *result, void *buffer, unsigned bufflen, 773 unsigned timeout, int qid, int at_head, 774 blk_mq_req_flags_t flags, bool poll) 775 { 776 struct request *req; 777 int ret; 778 779 req = nvme_alloc_request(q, cmd, flags, qid); 780 if (IS_ERR(req)) 781 return PTR_ERR(req); 782 783 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 784 785 if (buffer && bufflen) { 786 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 787 if (ret) 788 goto out; 789 } 790 791 if (poll) 792 nvme_execute_rq_polled(req->q, NULL, req, at_head); 793 else 794 blk_execute_rq(req->q, NULL, req, at_head); 795 if (result) 796 *result = nvme_req(req)->result; 797 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 798 ret = -EINTR; 799 else 800 ret = nvme_req(req)->status; 801 out: 802 blk_mq_free_request(req); 803 return ret; 804 } 805 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 806 807 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 808 void *buffer, unsigned bufflen) 809 { 810 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 811 NVME_QID_ANY, 0, 0, false); 812 } 813 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 814 815 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf, 816 unsigned len, u32 seed, bool write) 817 { 818 struct bio_integrity_payload *bip; 819 int ret = -ENOMEM; 820 void *buf; 821 822 buf = kmalloc(len, GFP_KERNEL); 823 if (!buf) 824 goto out; 825 826 ret = -EFAULT; 827 if (write && copy_from_user(buf, ubuf, len)) 828 goto out_free_meta; 829 830 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); 831 if (IS_ERR(bip)) { 832 ret = PTR_ERR(bip); 833 goto out_free_meta; 834 } 835 836 bip->bip_iter.bi_size = len; 837 bip->bip_iter.bi_sector = seed; 838 ret = bio_integrity_add_page(bio, virt_to_page(buf), len, 839 offset_in_page(buf)); 840 if (ret == len) 841 return buf; 842 ret = -ENOMEM; 843 out_free_meta: 844 kfree(buf); 845 out: 846 return ERR_PTR(ret); 847 } 848 849 static int nvme_submit_user_cmd(struct request_queue *q, 850 struct nvme_command *cmd, void __user *ubuffer, 851 unsigned bufflen, void __user *meta_buffer, unsigned meta_len, 852 u32 meta_seed, u32 *result, unsigned timeout) 853 { 854 bool write = nvme_is_write(cmd); 855 struct nvme_ns *ns = q->queuedata; 856 struct gendisk *disk = ns ? ns->disk : NULL; 857 struct request *req; 858 struct bio *bio = NULL; 859 void *meta = NULL; 860 int ret; 861 862 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); 863 if (IS_ERR(req)) 864 return PTR_ERR(req); 865 866 req->timeout = timeout ? timeout : ADMIN_TIMEOUT; 867 nvme_req(req)->flags |= NVME_REQ_USERCMD; 868 869 if (ubuffer && bufflen) { 870 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, 871 GFP_KERNEL); 872 if (ret) 873 goto out; 874 bio = req->bio; 875 bio->bi_disk = disk; 876 if (disk && meta_buffer && meta_len) { 877 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len, 878 meta_seed, write); 879 if (IS_ERR(meta)) { 880 ret = PTR_ERR(meta); 881 goto out_unmap; 882 } 883 req->cmd_flags |= REQ_INTEGRITY; 884 } 885 } 886 887 blk_execute_rq(req->q, disk, req, 0); 888 if (nvme_req(req)->flags & NVME_REQ_CANCELLED) 889 ret = -EINTR; 890 else 891 ret = nvme_req(req)->status; 892 if (result) 893 *result = le32_to_cpu(nvme_req(req)->result.u32); 894 if (meta && !ret && !write) { 895 if (copy_to_user(meta_buffer, meta, meta_len)) 896 ret = -EFAULT; 897 } 898 kfree(meta); 899 out_unmap: 900 if (bio) 901 blk_rq_unmap_user(bio); 902 out: 903 blk_mq_free_request(req); 904 return ret; 905 } 906 907 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 908 { 909 struct nvme_ctrl *ctrl = rq->end_io_data; 910 unsigned long flags; 911 bool startka = false; 912 913 blk_mq_free_request(rq); 914 915 if (status) { 916 dev_err(ctrl->device, 917 "failed nvme_keep_alive_end_io error=%d\n", 918 status); 919 return; 920 } 921 922 ctrl->comp_seen = false; 923 spin_lock_irqsave(&ctrl->lock, flags); 924 if (ctrl->state == NVME_CTRL_LIVE || 925 ctrl->state == NVME_CTRL_CONNECTING) 926 startka = true; 927 spin_unlock_irqrestore(&ctrl->lock, flags); 928 if (startka) 929 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 930 } 931 932 static int nvme_keep_alive(struct nvme_ctrl *ctrl) 933 { 934 struct request *rq; 935 936 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED, 937 NVME_QID_ANY); 938 if (IS_ERR(rq)) 939 return PTR_ERR(rq); 940 941 rq->timeout = ctrl->kato * HZ; 942 rq->end_io_data = ctrl; 943 944 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); 945 946 return 0; 947 } 948 949 static void nvme_keep_alive_work(struct work_struct *work) 950 { 951 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 952 struct nvme_ctrl, ka_work); 953 bool comp_seen = ctrl->comp_seen; 954 955 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 956 dev_dbg(ctrl->device, 957 "reschedule traffic based keep-alive timer\n"); 958 ctrl->comp_seen = false; 959 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 960 return; 961 } 962 963 if (nvme_keep_alive(ctrl)) { 964 /* allocation failure, reset the controller */ 965 dev_err(ctrl->device, "keep-alive failed\n"); 966 nvme_reset_ctrl(ctrl); 967 return; 968 } 969 } 970 971 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 972 { 973 if (unlikely(ctrl->kato == 0)) 974 return; 975 976 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); 977 } 978 979 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 980 { 981 if (unlikely(ctrl->kato == 0)) 982 return; 983 984 cancel_delayed_work_sync(&ctrl->ka_work); 985 } 986 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 987 988 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 989 { 990 struct nvme_command c = { }; 991 int error; 992 993 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 994 c.identify.opcode = nvme_admin_identify; 995 c.identify.cns = NVME_ID_CNS_CTRL; 996 997 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 998 if (!*id) 999 return -ENOMEM; 1000 1001 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1002 sizeof(struct nvme_id_ctrl)); 1003 if (error) 1004 kfree(*id); 1005 return error; 1006 } 1007 1008 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1009 struct nvme_ns_ids *ids) 1010 { 1011 struct nvme_command c = { }; 1012 int status; 1013 void *data; 1014 int pos; 1015 int len; 1016 1017 c.identify.opcode = nvme_admin_identify; 1018 c.identify.nsid = cpu_to_le32(nsid); 1019 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1020 1021 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1022 if (!data) 1023 return -ENOMEM; 1024 1025 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1026 NVME_IDENTIFY_DATA_SIZE); 1027 if (status) 1028 goto free_data; 1029 1030 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1031 struct nvme_ns_id_desc *cur = data + pos; 1032 1033 if (cur->nidl == 0) 1034 break; 1035 1036 switch (cur->nidt) { 1037 case NVME_NIDT_EUI64: 1038 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1039 dev_warn(ctrl->device, 1040 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", 1041 cur->nidl); 1042 goto free_data; 1043 } 1044 len = NVME_NIDT_EUI64_LEN; 1045 memcpy(ids->eui64, data + pos + sizeof(*cur), len); 1046 break; 1047 case NVME_NIDT_NGUID: 1048 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1049 dev_warn(ctrl->device, 1050 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", 1051 cur->nidl); 1052 goto free_data; 1053 } 1054 len = NVME_NIDT_NGUID_LEN; 1055 memcpy(ids->nguid, data + pos + sizeof(*cur), len); 1056 break; 1057 case NVME_NIDT_UUID: 1058 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1059 dev_warn(ctrl->device, 1060 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", 1061 cur->nidl); 1062 goto free_data; 1063 } 1064 len = NVME_NIDT_UUID_LEN; 1065 uuid_copy(&ids->uuid, data + pos + sizeof(*cur)); 1066 break; 1067 default: 1068 /* Skip unknown types */ 1069 len = cur->nidl; 1070 break; 1071 } 1072 1073 len += sizeof(*cur); 1074 } 1075 free_data: 1076 kfree(data); 1077 return status; 1078 } 1079 1080 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) 1081 { 1082 struct nvme_command c = { }; 1083 1084 c.identify.opcode = nvme_admin_identify; 1085 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; 1086 c.identify.nsid = cpu_to_le32(nsid); 1087 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 1088 NVME_IDENTIFY_DATA_SIZE); 1089 } 1090 1091 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl, 1092 unsigned nsid) 1093 { 1094 struct nvme_id_ns *id; 1095 struct nvme_command c = { }; 1096 int error; 1097 1098 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1099 c.identify.opcode = nvme_admin_identify; 1100 c.identify.nsid = cpu_to_le32(nsid); 1101 c.identify.cns = NVME_ID_CNS_NS; 1102 1103 id = kmalloc(sizeof(*id), GFP_KERNEL); 1104 if (!id) 1105 return NULL; 1106 1107 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1108 if (error) { 1109 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1110 kfree(id); 1111 return NULL; 1112 } 1113 1114 return id; 1115 } 1116 1117 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1118 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1119 { 1120 struct nvme_command c; 1121 union nvme_result res; 1122 int ret; 1123 1124 memset(&c, 0, sizeof(c)); 1125 c.features.opcode = op; 1126 c.features.fid = cpu_to_le32(fid); 1127 c.features.dword11 = cpu_to_le32(dword11); 1128 1129 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1130 buffer, buflen, 0, NVME_QID_ANY, 0, 0, false); 1131 if (ret >= 0 && result) 1132 *result = le32_to_cpu(res.u32); 1133 return ret; 1134 } 1135 1136 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1137 unsigned int dword11, void *buffer, size_t buflen, 1138 u32 *result) 1139 { 1140 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1141 buflen, result); 1142 } 1143 EXPORT_SYMBOL_GPL(nvme_set_features); 1144 1145 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1146 unsigned int dword11, void *buffer, size_t buflen, 1147 u32 *result) 1148 { 1149 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1150 buflen, result); 1151 } 1152 EXPORT_SYMBOL_GPL(nvme_get_features); 1153 1154 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1155 { 1156 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1157 u32 result; 1158 int status, nr_io_queues; 1159 1160 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1161 &result); 1162 if (status < 0) 1163 return status; 1164 1165 /* 1166 * Degraded controllers might return an error when setting the queue 1167 * count. We still want to be able to bring them online and offer 1168 * access to the admin queue, as that might be only way to fix them up. 1169 */ 1170 if (status > 0) { 1171 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1172 *count = 0; 1173 } else { 1174 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1175 *count = min(*count, nr_io_queues); 1176 } 1177 1178 return 0; 1179 } 1180 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1181 1182 #define NVME_AEN_SUPPORTED \ 1183 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE) 1184 1185 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1186 { 1187 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1188 int status; 1189 1190 if (!supported_aens) 1191 return; 1192 1193 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1194 NULL, 0, &result); 1195 if (status) 1196 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1197 supported_aens); 1198 } 1199 1200 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) 1201 { 1202 struct nvme_user_io io; 1203 struct nvme_command c; 1204 unsigned length, meta_len; 1205 void __user *metadata; 1206 1207 if (copy_from_user(&io, uio, sizeof(io))) 1208 return -EFAULT; 1209 if (io.flags) 1210 return -EINVAL; 1211 1212 switch (io.opcode) { 1213 case nvme_cmd_write: 1214 case nvme_cmd_read: 1215 case nvme_cmd_compare: 1216 break; 1217 default: 1218 return -EINVAL; 1219 } 1220 1221 length = (io.nblocks + 1) << ns->lba_shift; 1222 meta_len = (io.nblocks + 1) * ns->ms; 1223 metadata = (void __user *)(uintptr_t)io.metadata; 1224 1225 if (ns->ext) { 1226 length += meta_len; 1227 meta_len = 0; 1228 } else if (meta_len) { 1229 if ((io.metadata & 3) || !io.metadata) 1230 return -EINVAL; 1231 } 1232 1233 memset(&c, 0, sizeof(c)); 1234 c.rw.opcode = io.opcode; 1235 c.rw.flags = io.flags; 1236 c.rw.nsid = cpu_to_le32(ns->head->ns_id); 1237 c.rw.slba = cpu_to_le64(io.slba); 1238 c.rw.length = cpu_to_le16(io.nblocks); 1239 c.rw.control = cpu_to_le16(io.control); 1240 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); 1241 c.rw.reftag = cpu_to_le32(io.reftag); 1242 c.rw.apptag = cpu_to_le16(io.apptag); 1243 c.rw.appmask = cpu_to_le16(io.appmask); 1244 1245 return nvme_submit_user_cmd(ns->queue, &c, 1246 (void __user *)(uintptr_t)io.addr, length, 1247 metadata, meta_len, lower_32_bits(io.slba), NULL, 0); 1248 } 1249 1250 static u32 nvme_known_admin_effects(u8 opcode) 1251 { 1252 switch (opcode) { 1253 case nvme_admin_format_nvm: 1254 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC | 1255 NVME_CMD_EFFECTS_CSE_MASK; 1256 case nvme_admin_sanitize_nvm: 1257 return NVME_CMD_EFFECTS_CSE_MASK; 1258 default: 1259 break; 1260 } 1261 return 0; 1262 } 1263 1264 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1265 u8 opcode) 1266 { 1267 u32 effects = 0; 1268 1269 if (ns) { 1270 if (ctrl->effects) 1271 effects = le32_to_cpu(ctrl->effects->iocs[opcode]); 1272 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1273 dev_warn(ctrl->device, 1274 "IO command:%02x has unhandled effects:%08x\n", 1275 opcode, effects); 1276 return 0; 1277 } 1278 1279 if (ctrl->effects) 1280 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1281 effects |= nvme_known_admin_effects(opcode); 1282 1283 /* 1284 * For simplicity, IO to all namespaces is quiesced even if the command 1285 * effects say only one namespace is affected. 1286 */ 1287 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1288 mutex_lock(&ctrl->scan_lock); 1289 mutex_lock(&ctrl->subsys->lock); 1290 nvme_mpath_start_freeze(ctrl->subsys); 1291 nvme_mpath_wait_freeze(ctrl->subsys); 1292 nvme_start_freeze(ctrl); 1293 nvme_wait_freeze(ctrl); 1294 } 1295 return effects; 1296 } 1297 1298 static void nvme_update_formats(struct nvme_ctrl *ctrl) 1299 { 1300 struct nvme_ns *ns; 1301 1302 down_read(&ctrl->namespaces_rwsem); 1303 list_for_each_entry(ns, &ctrl->namespaces, list) 1304 if (ns->disk && nvme_revalidate_disk(ns->disk)) 1305 nvme_set_queue_dying(ns); 1306 up_read(&ctrl->namespaces_rwsem); 1307 1308 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1309 } 1310 1311 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects) 1312 { 1313 /* 1314 * Revalidate LBA changes prior to unfreezing. This is necessary to 1315 * prevent memory corruption if a logical block size was changed by 1316 * this command. 1317 */ 1318 if (effects & NVME_CMD_EFFECTS_LBCC) 1319 nvme_update_formats(ctrl); 1320 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) { 1321 nvme_unfreeze(ctrl); 1322 nvme_mpath_unfreeze(ctrl->subsys); 1323 mutex_unlock(&ctrl->subsys->lock); 1324 mutex_unlock(&ctrl->scan_lock); 1325 } 1326 if (effects & NVME_CMD_EFFECTS_CCC) 1327 nvme_init_identify(ctrl); 1328 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) 1329 nvme_queue_scan(ctrl); 1330 } 1331 1332 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1333 struct nvme_passthru_cmd __user *ucmd) 1334 { 1335 struct nvme_passthru_cmd cmd; 1336 struct nvme_command c; 1337 unsigned timeout = 0; 1338 u32 effects; 1339 int status; 1340 1341 if (!capable(CAP_SYS_ADMIN)) 1342 return -EACCES; 1343 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) 1344 return -EFAULT; 1345 if (cmd.flags) 1346 return -EINVAL; 1347 1348 memset(&c, 0, sizeof(c)); 1349 c.common.opcode = cmd.opcode; 1350 c.common.flags = cmd.flags; 1351 c.common.nsid = cpu_to_le32(cmd.nsid); 1352 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); 1353 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); 1354 c.common.cdw10 = cpu_to_le32(cmd.cdw10); 1355 c.common.cdw11 = cpu_to_le32(cmd.cdw11); 1356 c.common.cdw12 = cpu_to_le32(cmd.cdw12); 1357 c.common.cdw13 = cpu_to_le32(cmd.cdw13); 1358 c.common.cdw14 = cpu_to_le32(cmd.cdw14); 1359 c.common.cdw15 = cpu_to_le32(cmd.cdw15); 1360 1361 if (cmd.timeout_ms) 1362 timeout = msecs_to_jiffies(cmd.timeout_ms); 1363 1364 effects = nvme_passthru_start(ctrl, ns, cmd.opcode); 1365 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, 1366 (void __user *)(uintptr_t)cmd.addr, cmd.data_len, 1367 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len, 1368 0, &cmd.result, timeout); 1369 nvme_passthru_end(ctrl, effects); 1370 1371 if (status >= 0) { 1372 if (put_user(cmd.result, &ucmd->result)) 1373 return -EFAULT; 1374 } 1375 1376 return status; 1377 } 1378 1379 /* 1380 * Issue ioctl requests on the first available path. Note that unlike normal 1381 * block layer requests we will not retry failed request on another controller. 1382 */ 1383 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk, 1384 struct nvme_ns_head **head, int *srcu_idx) 1385 { 1386 #ifdef CONFIG_NVME_MULTIPATH 1387 if (disk->fops == &nvme_ns_head_ops) { 1388 struct nvme_ns *ns; 1389 1390 *head = disk->private_data; 1391 *srcu_idx = srcu_read_lock(&(*head)->srcu); 1392 ns = nvme_find_path(*head); 1393 if (!ns) 1394 srcu_read_unlock(&(*head)->srcu, *srcu_idx); 1395 return ns; 1396 } 1397 #endif 1398 *head = NULL; 1399 *srcu_idx = -1; 1400 return disk->private_data; 1401 } 1402 1403 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx) 1404 { 1405 if (head) 1406 srcu_read_unlock(&head->srcu, idx); 1407 } 1408 1409 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, 1410 unsigned int cmd, unsigned long arg) 1411 { 1412 struct nvme_ns_head *head = NULL; 1413 void __user *argp = (void __user *)arg; 1414 struct nvme_ns *ns; 1415 int srcu_idx, ret; 1416 1417 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1418 if (unlikely(!ns)) 1419 return -EWOULDBLOCK; 1420 1421 /* 1422 * Handle ioctls that apply to the controller instead of the namespace 1423 * seperately and drop the ns SRCU reference early. This avoids a 1424 * deadlock when deleting namespaces using the passthrough interface. 1425 */ 1426 if (cmd == NVME_IOCTL_ADMIN_CMD || is_sed_ioctl(cmd)) { 1427 struct nvme_ctrl *ctrl = ns->ctrl; 1428 1429 nvme_get_ctrl(ns->ctrl); 1430 nvme_put_ns_from_disk(head, srcu_idx); 1431 1432 if (cmd == NVME_IOCTL_ADMIN_CMD) 1433 ret = nvme_user_cmd(ctrl, NULL, argp); 1434 else 1435 ret = sed_ioctl(ctrl->opal_dev, cmd, argp); 1436 1437 nvme_put_ctrl(ctrl); 1438 return ret; 1439 } 1440 1441 switch (cmd) { 1442 case NVME_IOCTL_ID: 1443 force_successful_syscall_return(); 1444 ret = ns->head->ns_id; 1445 break; 1446 case NVME_IOCTL_IO_CMD: 1447 ret = nvme_user_cmd(ns->ctrl, ns, argp); 1448 break; 1449 case NVME_IOCTL_SUBMIT_IO: 1450 ret = nvme_submit_io(ns, argp); 1451 break; 1452 default: 1453 if (ns->ndev) 1454 ret = nvme_nvm_ioctl(ns, cmd, arg); 1455 else 1456 ret = -ENOTTY; 1457 } 1458 1459 nvme_put_ns_from_disk(head, srcu_idx); 1460 return ret; 1461 } 1462 1463 static int nvme_open(struct block_device *bdev, fmode_t mode) 1464 { 1465 struct nvme_ns *ns = bdev->bd_disk->private_data; 1466 1467 #ifdef CONFIG_NVME_MULTIPATH 1468 /* should never be called due to GENHD_FL_HIDDEN */ 1469 if (WARN_ON_ONCE(ns->head->disk)) 1470 goto fail; 1471 #endif 1472 if (!kref_get_unless_zero(&ns->kref)) 1473 goto fail; 1474 if (!try_module_get(ns->ctrl->ops->module)) 1475 goto fail_put_ns; 1476 1477 return 0; 1478 1479 fail_put_ns: 1480 nvme_put_ns(ns); 1481 fail: 1482 return -ENXIO; 1483 } 1484 1485 static void nvme_release(struct gendisk *disk, fmode_t mode) 1486 { 1487 struct nvme_ns *ns = disk->private_data; 1488 1489 module_put(ns->ctrl->ops->module); 1490 nvme_put_ns(ns); 1491 } 1492 1493 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1494 { 1495 /* some standard values */ 1496 geo->heads = 1 << 6; 1497 geo->sectors = 1 << 5; 1498 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1499 return 0; 1500 } 1501 1502 #ifdef CONFIG_BLK_DEV_INTEGRITY 1503 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1504 { 1505 struct blk_integrity integrity; 1506 1507 memset(&integrity, 0, sizeof(integrity)); 1508 switch (pi_type) { 1509 case NVME_NS_DPS_PI_TYPE3: 1510 integrity.profile = &t10_pi_type3_crc; 1511 integrity.tag_size = sizeof(u16) + sizeof(u32); 1512 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1513 break; 1514 case NVME_NS_DPS_PI_TYPE1: 1515 case NVME_NS_DPS_PI_TYPE2: 1516 integrity.profile = &t10_pi_type1_crc; 1517 integrity.tag_size = sizeof(u16); 1518 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1519 break; 1520 default: 1521 integrity.profile = NULL; 1522 break; 1523 } 1524 integrity.tuple_size = ms; 1525 blk_integrity_register(disk, &integrity); 1526 blk_queue_max_integrity_segments(disk->queue, 1); 1527 } 1528 #else 1529 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type) 1530 { 1531 } 1532 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1533 1534 static void nvme_set_chunk_size(struct nvme_ns *ns) 1535 { 1536 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9)); 1537 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size)); 1538 } 1539 1540 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1541 { 1542 struct nvme_ctrl *ctrl = ns->ctrl; 1543 struct request_queue *queue = disk->queue; 1544 u32 size = queue_logical_block_size(queue); 1545 1546 if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) { 1547 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1548 return; 1549 } 1550 1551 if (ctrl->nr_streams && ns->sws && ns->sgs) 1552 size *= ns->sws * ns->sgs; 1553 1554 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1555 NVME_DSM_MAX_RANGES); 1556 1557 queue->limits.discard_alignment = 0; 1558 queue->limits.discard_granularity = size; 1559 1560 /* If discard is already enabled, don't reset queue limits */ 1561 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1562 return; 1563 1564 blk_queue_max_discard_sectors(queue, UINT_MAX); 1565 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES); 1566 1567 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1568 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1569 } 1570 1571 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns) 1572 { 1573 u32 max_sectors; 1574 unsigned short bs = 1 << ns->lba_shift; 1575 1576 if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) || 1577 (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 1578 return; 1579 /* 1580 * Even though NVMe spec explicitly states that MDTS is not 1581 * applicable to the write-zeroes:- "The restriction does not apply to 1582 * commands that do not transfer data between the host and the 1583 * controller (e.g., Write Uncorrectable ro Write Zeroes command).". 1584 * In order to be more cautious use controller's max_hw_sectors value 1585 * to configure the maximum sectors for the write-zeroes which is 1586 * configured based on the controller's MDTS field in the 1587 * nvme_init_identify() if available. 1588 */ 1589 if (ns->ctrl->max_hw_sectors == UINT_MAX) 1590 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9; 1591 else 1592 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9; 1593 1594 blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors); 1595 } 1596 1597 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid, 1598 struct nvme_id_ns *id, struct nvme_ns_ids *ids) 1599 { 1600 memset(ids, 0, sizeof(*ids)); 1601 1602 if (ctrl->vs >= NVME_VS(1, 1, 0)) 1603 memcpy(ids->eui64, id->eui64, sizeof(id->eui64)); 1604 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1605 memcpy(ids->nguid, id->nguid, sizeof(id->nguid)); 1606 if (ctrl->vs >= NVME_VS(1, 3, 0)) { 1607 /* Don't treat error as fatal we potentially 1608 * already have a NGUID or EUI-64 1609 */ 1610 if (nvme_identify_ns_descs(ctrl, nsid, ids)) 1611 dev_warn(ctrl->device, 1612 "%s: Identify Descriptors failed\n", __func__); 1613 } 1614 } 1615 1616 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1617 { 1618 return !uuid_is_null(&ids->uuid) || 1619 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1620 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1621 } 1622 1623 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1624 { 1625 return uuid_equal(&a->uuid, &b->uuid) && 1626 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1627 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0; 1628 } 1629 1630 static void nvme_update_disk_info(struct gendisk *disk, 1631 struct nvme_ns *ns, struct nvme_id_ns *id) 1632 { 1633 sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9); 1634 unsigned short bs = 1 << ns->lba_shift; 1635 u32 atomic_bs, phys_bs, io_opt; 1636 1637 if (ns->lba_shift > PAGE_SHIFT) { 1638 /* unsupported block size, set capacity to 0 later */ 1639 bs = (1 << 9); 1640 } 1641 blk_mq_freeze_queue(disk->queue); 1642 blk_integrity_unregister(disk); 1643 1644 if (id->nabo == 0) { 1645 /* 1646 * Bit 1 indicates whether NAWUPF is defined for this namespace 1647 * and whether it should be used instead of AWUPF. If NAWUPF == 1648 * 0 then AWUPF must be used instead. 1649 */ 1650 if (id->nsfeat & (1 << 1) && id->nawupf) 1651 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1652 else 1653 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1654 } else { 1655 atomic_bs = bs; 1656 } 1657 phys_bs = bs; 1658 io_opt = bs; 1659 if (id->nsfeat & (1 << 4)) { 1660 /* NPWG = Namespace Preferred Write Granularity */ 1661 phys_bs *= 1 + le16_to_cpu(id->npwg); 1662 /* NOWS = Namespace Optimal Write Size */ 1663 io_opt *= 1 + le16_to_cpu(id->nows); 1664 } 1665 1666 blk_queue_logical_block_size(disk->queue, bs); 1667 /* 1668 * Linux filesystems assume writing a single physical block is 1669 * an atomic operation. Hence limit the physical block size to the 1670 * value of the Atomic Write Unit Power Fail parameter. 1671 */ 1672 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1673 blk_queue_io_min(disk->queue, phys_bs); 1674 blk_queue_io_opt(disk->queue, io_opt); 1675 1676 if (ns->ms && !ns->ext && 1677 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1678 nvme_init_integrity(disk, ns->ms, ns->pi_type); 1679 if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) || 1680 ns->lba_shift > PAGE_SHIFT) 1681 capacity = 0; 1682 1683 set_capacity(disk, capacity); 1684 1685 nvme_config_discard(disk, ns); 1686 nvme_config_write_zeroes(disk, ns); 1687 1688 if (id->nsattr & (1 << 0)) 1689 set_disk_ro(disk, true); 1690 else 1691 set_disk_ro(disk, false); 1692 1693 blk_mq_unfreeze_queue(disk->queue); 1694 } 1695 1696 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) 1697 { 1698 struct nvme_ns *ns = disk->private_data; 1699 1700 /* 1701 * If identify namespace failed, use default 512 byte block size so 1702 * block layer can use before failing read/write for 0 capacity. 1703 */ 1704 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; 1705 if (ns->lba_shift == 0) 1706 ns->lba_shift = 9; 1707 ns->noiob = le16_to_cpu(id->noiob); 1708 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1709 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); 1710 /* the PI implementation requires metadata equal t10 pi tuple size */ 1711 if (ns->ms == sizeof(struct t10_pi_tuple)) 1712 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1713 else 1714 ns->pi_type = 0; 1715 1716 if (ns->noiob) 1717 nvme_set_chunk_size(ns); 1718 nvme_update_disk_info(disk, ns, id); 1719 #ifdef CONFIG_NVME_MULTIPATH 1720 if (ns->head->disk) { 1721 nvme_update_disk_info(ns->head->disk, ns, id); 1722 blk_queue_stack_limits(ns->head->disk->queue, ns->queue); 1723 revalidate_disk(ns->head->disk); 1724 } 1725 #endif 1726 } 1727 1728 static int nvme_revalidate_disk(struct gendisk *disk) 1729 { 1730 struct nvme_ns *ns = disk->private_data; 1731 struct nvme_ctrl *ctrl = ns->ctrl; 1732 struct nvme_id_ns *id; 1733 struct nvme_ns_ids ids; 1734 int ret = 0; 1735 1736 if (test_bit(NVME_NS_DEAD, &ns->flags)) { 1737 set_capacity(disk, 0); 1738 return -ENODEV; 1739 } 1740 1741 id = nvme_identify_ns(ctrl, ns->head->ns_id); 1742 if (!id) 1743 return -ENODEV; 1744 1745 if (id->ncap == 0) { 1746 ret = -ENODEV; 1747 goto out; 1748 } 1749 1750 __nvme_revalidate_disk(disk, id); 1751 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids); 1752 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) { 1753 dev_err(ctrl->device, 1754 "identifiers changed for nsid %d\n", ns->head->ns_id); 1755 ret = -ENODEV; 1756 } 1757 1758 out: 1759 kfree(id); 1760 return ret; 1761 } 1762 1763 static char nvme_pr_type(enum pr_type type) 1764 { 1765 switch (type) { 1766 case PR_WRITE_EXCLUSIVE: 1767 return 1; 1768 case PR_EXCLUSIVE_ACCESS: 1769 return 2; 1770 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1771 return 3; 1772 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1773 return 4; 1774 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1775 return 5; 1776 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1777 return 6; 1778 default: 1779 return 0; 1780 } 1781 }; 1782 1783 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 1784 u64 key, u64 sa_key, u8 op) 1785 { 1786 struct nvme_ns_head *head = NULL; 1787 struct nvme_ns *ns; 1788 struct nvme_command c; 1789 int srcu_idx, ret; 1790 u8 data[16] = { 0, }; 1791 1792 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx); 1793 if (unlikely(!ns)) 1794 return -EWOULDBLOCK; 1795 1796 put_unaligned_le64(key, &data[0]); 1797 put_unaligned_le64(sa_key, &data[8]); 1798 1799 memset(&c, 0, sizeof(c)); 1800 c.common.opcode = op; 1801 c.common.nsid = cpu_to_le32(ns->head->ns_id); 1802 c.common.cdw10 = cpu_to_le32(cdw10); 1803 1804 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16); 1805 nvme_put_ns_from_disk(head, srcu_idx); 1806 return ret; 1807 } 1808 1809 static int nvme_pr_register(struct block_device *bdev, u64 old, 1810 u64 new, unsigned flags) 1811 { 1812 u32 cdw10; 1813 1814 if (flags & ~PR_FL_IGNORE_KEY) 1815 return -EOPNOTSUPP; 1816 1817 cdw10 = old ? 2 : 0; 1818 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 1819 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 1820 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 1821 } 1822 1823 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 1824 enum pr_type type, unsigned flags) 1825 { 1826 u32 cdw10; 1827 1828 if (flags & ~PR_FL_IGNORE_KEY) 1829 return -EOPNOTSUPP; 1830 1831 cdw10 = nvme_pr_type(type) << 8; 1832 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 1833 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 1834 } 1835 1836 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 1837 enum pr_type type, bool abort) 1838 { 1839 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 1840 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 1841 } 1842 1843 static int nvme_pr_clear(struct block_device *bdev, u64 key) 1844 { 1845 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 1846 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 1847 } 1848 1849 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1850 { 1851 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 1852 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 1853 } 1854 1855 static const struct pr_ops nvme_pr_ops = { 1856 .pr_register = nvme_pr_register, 1857 .pr_reserve = nvme_pr_reserve, 1858 .pr_release = nvme_pr_release, 1859 .pr_preempt = nvme_pr_preempt, 1860 .pr_clear = nvme_pr_clear, 1861 }; 1862 1863 #ifdef CONFIG_BLK_SED_OPAL 1864 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 1865 bool send) 1866 { 1867 struct nvme_ctrl *ctrl = data; 1868 struct nvme_command cmd; 1869 1870 memset(&cmd, 0, sizeof(cmd)); 1871 if (send) 1872 cmd.common.opcode = nvme_admin_security_send; 1873 else 1874 cmd.common.opcode = nvme_admin_security_recv; 1875 cmd.common.nsid = 0; 1876 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 1877 cmd.common.cdw11 = cpu_to_le32(len); 1878 1879 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 1880 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false); 1881 } 1882 EXPORT_SYMBOL_GPL(nvme_sec_submit); 1883 #endif /* CONFIG_BLK_SED_OPAL */ 1884 1885 static const struct block_device_operations nvme_fops = { 1886 .owner = THIS_MODULE, 1887 .ioctl = nvme_ioctl, 1888 .compat_ioctl = nvme_ioctl, 1889 .open = nvme_open, 1890 .release = nvme_release, 1891 .getgeo = nvme_getgeo, 1892 .revalidate_disk= nvme_revalidate_disk, 1893 .pr_ops = &nvme_pr_ops, 1894 }; 1895 1896 #ifdef CONFIG_NVME_MULTIPATH 1897 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode) 1898 { 1899 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1900 1901 if (!kref_get_unless_zero(&head->ref)) 1902 return -ENXIO; 1903 return 0; 1904 } 1905 1906 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode) 1907 { 1908 nvme_put_ns_head(disk->private_data); 1909 } 1910 1911 const struct block_device_operations nvme_ns_head_ops = { 1912 .owner = THIS_MODULE, 1913 .open = nvme_ns_head_open, 1914 .release = nvme_ns_head_release, 1915 .ioctl = nvme_ioctl, 1916 .compat_ioctl = nvme_ioctl, 1917 .getgeo = nvme_getgeo, 1918 .pr_ops = &nvme_pr_ops, 1919 }; 1920 #endif /* CONFIG_NVME_MULTIPATH */ 1921 1922 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 1923 { 1924 unsigned long timeout = 1925 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 1926 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 1927 int ret; 1928 1929 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 1930 if (csts == ~0) 1931 return -ENODEV; 1932 if ((csts & NVME_CSTS_RDY) == bit) 1933 break; 1934 1935 msleep(100); 1936 if (fatal_signal_pending(current)) 1937 return -EINTR; 1938 if (time_after(jiffies, timeout)) { 1939 dev_err(ctrl->device, 1940 "Device not ready; aborting %s\n", enabled ? 1941 "initialisation" : "reset"); 1942 return -ENODEV; 1943 } 1944 } 1945 1946 return ret; 1947 } 1948 1949 /* 1950 * If the device has been passed off to us in an enabled state, just clear 1951 * the enabled bit. The spec says we should set the 'shutdown notification 1952 * bits', but doing so may cause the device to complete commands to the 1953 * admin queue ... and we don't know what memory that might be pointing at! 1954 */ 1955 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1956 { 1957 int ret; 1958 1959 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 1960 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 1961 1962 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1963 if (ret) 1964 return ret; 1965 1966 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 1967 msleep(NVME_QUIRK_DELAY_AMOUNT); 1968 1969 return nvme_wait_ready(ctrl, cap, false); 1970 } 1971 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 1972 1973 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) 1974 { 1975 /* 1976 * Default to a 4K page size, with the intention to update this 1977 * path in the future to accomodate architectures with differing 1978 * kernel and IO page sizes. 1979 */ 1980 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; 1981 int ret; 1982 1983 if (page_shift < dev_page_min) { 1984 dev_err(ctrl->device, 1985 "Minimum device page size %u too large for host (%u)\n", 1986 1 << dev_page_min, 1 << page_shift); 1987 return -ENODEV; 1988 } 1989 1990 ctrl->page_size = 1 << page_shift; 1991 1992 ctrl->ctrl_config = NVME_CC_CSS_NVM; 1993 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; 1994 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 1995 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 1996 ctrl->ctrl_config |= NVME_CC_ENABLE; 1997 1998 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 1999 if (ret) 2000 return ret; 2001 return nvme_wait_ready(ctrl, cap, true); 2002 } 2003 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2004 2005 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2006 { 2007 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2008 u32 csts; 2009 int ret; 2010 2011 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2012 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2013 2014 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2015 if (ret) 2016 return ret; 2017 2018 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2019 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2020 break; 2021 2022 msleep(100); 2023 if (fatal_signal_pending(current)) 2024 return -EINTR; 2025 if (time_after(jiffies, timeout)) { 2026 dev_err(ctrl->device, 2027 "Device shutdown incomplete; abort shutdown\n"); 2028 return -ENODEV; 2029 } 2030 } 2031 2032 return ret; 2033 } 2034 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2035 2036 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 2037 struct request_queue *q) 2038 { 2039 bool vwc = false; 2040 2041 if (ctrl->max_hw_sectors) { 2042 u32 max_segments = 2043 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; 2044 2045 max_segments = min_not_zero(max_segments, ctrl->max_segments); 2046 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 2047 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 2048 } 2049 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2050 is_power_of_2(ctrl->max_hw_sectors)) 2051 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); 2052 blk_queue_virt_boundary(q, ctrl->page_size - 1); 2053 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2054 vwc = true; 2055 blk_queue_write_cache(q, vwc, vwc); 2056 } 2057 2058 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2059 { 2060 __le64 ts; 2061 int ret; 2062 2063 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2064 return 0; 2065 2066 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2067 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2068 NULL); 2069 if (ret) 2070 dev_warn_once(ctrl->device, 2071 "could not set timestamp (%d)\n", ret); 2072 return ret; 2073 } 2074 2075 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2076 { 2077 struct nvme_feat_host_behavior *host; 2078 int ret; 2079 2080 /* Don't bother enabling the feature if retry delay is not reported */ 2081 if (!ctrl->crdt[0]) 2082 return 0; 2083 2084 host = kzalloc(sizeof(*host), GFP_KERNEL); 2085 if (!host) 2086 return 0; 2087 2088 host->acre = NVME_ENABLE_ACRE; 2089 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2090 host, sizeof(*host), NULL); 2091 kfree(host); 2092 return ret; 2093 } 2094 2095 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2096 { 2097 /* 2098 * APST (Autonomous Power State Transition) lets us program a 2099 * table of power state transitions that the controller will 2100 * perform automatically. We configure it with a simple 2101 * heuristic: we are willing to spend at most 2% of the time 2102 * transitioning between power states. Therefore, when running 2103 * in any given state, we will enter the next lower-power 2104 * non-operational state after waiting 50 * (enlat + exlat) 2105 * microseconds, as long as that state's exit latency is under 2106 * the requested maximum latency. 2107 * 2108 * We will not autonomously enter any non-operational state for 2109 * which the total latency exceeds ps_max_latency_us. Users 2110 * can set ps_max_latency_us to zero to turn off APST. 2111 */ 2112 2113 unsigned apste; 2114 struct nvme_feat_auto_pst *table; 2115 u64 max_lat_us = 0; 2116 int max_ps = -1; 2117 int ret; 2118 2119 /* 2120 * If APST isn't supported or if we haven't been initialized yet, 2121 * then don't do anything. 2122 */ 2123 if (!ctrl->apsta) 2124 return 0; 2125 2126 if (ctrl->npss > 31) { 2127 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2128 return 0; 2129 } 2130 2131 table = kzalloc(sizeof(*table), GFP_KERNEL); 2132 if (!table) 2133 return 0; 2134 2135 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2136 /* Turn off APST. */ 2137 apste = 0; 2138 dev_dbg(ctrl->device, "APST disabled\n"); 2139 } else { 2140 __le64 target = cpu_to_le64(0); 2141 int state; 2142 2143 /* 2144 * Walk through all states from lowest- to highest-power. 2145 * According to the spec, lower-numbered states use more 2146 * power. NPSS, despite the name, is the index of the 2147 * lowest-power state, not the number of states. 2148 */ 2149 for (state = (int)ctrl->npss; state >= 0; state--) { 2150 u64 total_latency_us, exit_latency_us, transition_ms; 2151 2152 if (target) 2153 table->entries[state] = target; 2154 2155 /* 2156 * Don't allow transitions to the deepest state 2157 * if it's quirked off. 2158 */ 2159 if (state == ctrl->npss && 2160 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2161 continue; 2162 2163 /* 2164 * Is this state a useful non-operational state for 2165 * higher-power states to autonomously transition to? 2166 */ 2167 if (!(ctrl->psd[state].flags & 2168 NVME_PS_FLAGS_NON_OP_STATE)) 2169 continue; 2170 2171 exit_latency_us = 2172 (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2173 if (exit_latency_us > ctrl->ps_max_latency_us) 2174 continue; 2175 2176 total_latency_us = 2177 exit_latency_us + 2178 le32_to_cpu(ctrl->psd[state].entry_lat); 2179 2180 /* 2181 * This state is good. Use it as the APST idle 2182 * target for higher power states. 2183 */ 2184 transition_ms = total_latency_us + 19; 2185 do_div(transition_ms, 20); 2186 if (transition_ms > (1 << 24) - 1) 2187 transition_ms = (1 << 24) - 1; 2188 2189 target = cpu_to_le64((state << 3) | 2190 (transition_ms << 8)); 2191 2192 if (max_ps == -1) 2193 max_ps = state; 2194 2195 if (total_latency_us > max_lat_us) 2196 max_lat_us = total_latency_us; 2197 } 2198 2199 apste = 1; 2200 2201 if (max_ps == -1) { 2202 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2203 } else { 2204 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2205 max_ps, max_lat_us, (int)sizeof(*table), table); 2206 } 2207 } 2208 2209 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2210 table, sizeof(*table), NULL); 2211 if (ret) 2212 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2213 2214 kfree(table); 2215 return ret; 2216 } 2217 2218 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2219 { 2220 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2221 u64 latency; 2222 2223 switch (val) { 2224 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2225 case PM_QOS_LATENCY_ANY: 2226 latency = U64_MAX; 2227 break; 2228 2229 default: 2230 latency = val; 2231 } 2232 2233 if (ctrl->ps_max_latency_us != latency) { 2234 ctrl->ps_max_latency_us = latency; 2235 nvme_configure_apst(ctrl); 2236 } 2237 } 2238 2239 struct nvme_core_quirk_entry { 2240 /* 2241 * NVMe model and firmware strings are padded with spaces. For 2242 * simplicity, strings in the quirk table are padded with NULLs 2243 * instead. 2244 */ 2245 u16 vid; 2246 const char *mn; 2247 const char *fr; 2248 unsigned long quirks; 2249 }; 2250 2251 static const struct nvme_core_quirk_entry core_quirks[] = { 2252 { 2253 /* 2254 * This Toshiba device seems to die using any APST states. See: 2255 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2256 */ 2257 .vid = 0x1179, 2258 .mn = "THNSF5256GPUK TOSHIBA", 2259 .quirks = NVME_QUIRK_NO_APST, 2260 } 2261 }; 2262 2263 /* match is null-terminated but idstr is space-padded. */ 2264 static bool string_matches(const char *idstr, const char *match, size_t len) 2265 { 2266 size_t matchlen; 2267 2268 if (!match) 2269 return true; 2270 2271 matchlen = strlen(match); 2272 WARN_ON_ONCE(matchlen > len); 2273 2274 if (memcmp(idstr, match, matchlen)) 2275 return false; 2276 2277 for (; matchlen < len; matchlen++) 2278 if (idstr[matchlen] != ' ') 2279 return false; 2280 2281 return true; 2282 } 2283 2284 static bool quirk_matches(const struct nvme_id_ctrl *id, 2285 const struct nvme_core_quirk_entry *q) 2286 { 2287 return q->vid == le16_to_cpu(id->vid) && 2288 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2289 string_matches(id->fr, q->fr, sizeof(id->fr)); 2290 } 2291 2292 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2293 struct nvme_id_ctrl *id) 2294 { 2295 size_t nqnlen; 2296 int off; 2297 2298 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2299 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2300 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2301 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2302 return; 2303 } 2304 2305 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2306 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2307 } 2308 2309 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2310 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2311 "nqn.2014.08.org.nvmexpress:%04x%04x", 2312 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2313 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2314 off += sizeof(id->sn); 2315 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2316 off += sizeof(id->mn); 2317 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2318 } 2319 2320 static void nvme_release_subsystem(struct device *dev) 2321 { 2322 struct nvme_subsystem *subsys = 2323 container_of(dev, struct nvme_subsystem, dev); 2324 2325 ida_simple_remove(&nvme_subsystems_ida, subsys->instance); 2326 kfree(subsys); 2327 } 2328 2329 static void nvme_destroy_subsystem(struct kref *ref) 2330 { 2331 struct nvme_subsystem *subsys = 2332 container_of(ref, struct nvme_subsystem, ref); 2333 2334 mutex_lock(&nvme_subsystems_lock); 2335 list_del(&subsys->entry); 2336 mutex_unlock(&nvme_subsystems_lock); 2337 2338 ida_destroy(&subsys->ns_ida); 2339 device_del(&subsys->dev); 2340 put_device(&subsys->dev); 2341 } 2342 2343 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2344 { 2345 kref_put(&subsys->ref, nvme_destroy_subsystem); 2346 } 2347 2348 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2349 { 2350 struct nvme_subsystem *subsys; 2351 2352 lockdep_assert_held(&nvme_subsystems_lock); 2353 2354 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2355 if (strcmp(subsys->subnqn, subsysnqn)) 2356 continue; 2357 if (!kref_get_unless_zero(&subsys->ref)) 2358 continue; 2359 return subsys; 2360 } 2361 2362 return NULL; 2363 } 2364 2365 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2366 struct device_attribute subsys_attr_##_name = \ 2367 __ATTR(_name, _mode, _show, NULL) 2368 2369 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2370 struct device_attribute *attr, 2371 char *buf) 2372 { 2373 struct nvme_subsystem *subsys = 2374 container_of(dev, struct nvme_subsystem, dev); 2375 2376 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn); 2377 } 2378 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2379 2380 #define nvme_subsys_show_str_function(field) \ 2381 static ssize_t subsys_##field##_show(struct device *dev, \ 2382 struct device_attribute *attr, char *buf) \ 2383 { \ 2384 struct nvme_subsystem *subsys = \ 2385 container_of(dev, struct nvme_subsystem, dev); \ 2386 return sprintf(buf, "%.*s\n", \ 2387 (int)sizeof(subsys->field), subsys->field); \ 2388 } \ 2389 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2390 2391 nvme_subsys_show_str_function(model); 2392 nvme_subsys_show_str_function(serial); 2393 nvme_subsys_show_str_function(firmware_rev); 2394 2395 static struct attribute *nvme_subsys_attrs[] = { 2396 &subsys_attr_model.attr, 2397 &subsys_attr_serial.attr, 2398 &subsys_attr_firmware_rev.attr, 2399 &subsys_attr_subsysnqn.attr, 2400 #ifdef CONFIG_NVME_MULTIPATH 2401 &subsys_attr_iopolicy.attr, 2402 #endif 2403 NULL, 2404 }; 2405 2406 static struct attribute_group nvme_subsys_attrs_group = { 2407 .attrs = nvme_subsys_attrs, 2408 }; 2409 2410 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2411 &nvme_subsys_attrs_group, 2412 NULL, 2413 }; 2414 2415 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2416 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2417 { 2418 struct nvme_ctrl *tmp; 2419 2420 lockdep_assert_held(&nvme_subsystems_lock); 2421 2422 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2423 if (tmp->state == NVME_CTRL_DELETING || 2424 tmp->state == NVME_CTRL_DEAD) 2425 continue; 2426 2427 if (tmp->cntlid == ctrl->cntlid) { 2428 dev_err(ctrl->device, 2429 "Duplicate cntlid %u with %s, rejecting\n", 2430 ctrl->cntlid, dev_name(tmp->device)); 2431 return false; 2432 } 2433 2434 if ((id->cmic & (1 << 1)) || 2435 (ctrl->opts && ctrl->opts->discovery_nqn)) 2436 continue; 2437 2438 dev_err(ctrl->device, 2439 "Subsystem does not support multiple controllers\n"); 2440 return false; 2441 } 2442 2443 return true; 2444 } 2445 2446 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2447 { 2448 struct nvme_subsystem *subsys, *found; 2449 int ret; 2450 2451 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2452 if (!subsys) 2453 return -ENOMEM; 2454 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL); 2455 if (ret < 0) { 2456 kfree(subsys); 2457 return ret; 2458 } 2459 subsys->instance = ret; 2460 mutex_init(&subsys->lock); 2461 kref_init(&subsys->ref); 2462 INIT_LIST_HEAD(&subsys->ctrls); 2463 INIT_LIST_HEAD(&subsys->nsheads); 2464 nvme_init_subnqn(subsys, ctrl, id); 2465 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2466 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2467 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2468 subsys->vendor_id = le16_to_cpu(id->vid); 2469 subsys->cmic = id->cmic; 2470 subsys->awupf = le16_to_cpu(id->awupf); 2471 #ifdef CONFIG_NVME_MULTIPATH 2472 subsys->iopolicy = NVME_IOPOLICY_NUMA; 2473 #endif 2474 2475 subsys->dev.class = nvme_subsys_class; 2476 subsys->dev.release = nvme_release_subsystem; 2477 subsys->dev.groups = nvme_subsys_attrs_groups; 2478 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance); 2479 device_initialize(&subsys->dev); 2480 2481 mutex_lock(&nvme_subsystems_lock); 2482 found = __nvme_find_get_subsystem(subsys->subnqn); 2483 if (found) { 2484 put_device(&subsys->dev); 2485 subsys = found; 2486 2487 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2488 ret = -EINVAL; 2489 goto out_put_subsystem; 2490 } 2491 } else { 2492 ret = device_add(&subsys->dev); 2493 if (ret) { 2494 dev_err(ctrl->device, 2495 "failed to register subsystem device.\n"); 2496 put_device(&subsys->dev); 2497 goto out_unlock; 2498 } 2499 ida_init(&subsys->ns_ida); 2500 list_add_tail(&subsys->entry, &nvme_subsystems); 2501 } 2502 2503 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2504 dev_name(ctrl->device))) { 2505 dev_err(ctrl->device, 2506 "failed to create sysfs link from subsystem.\n"); 2507 goto out_put_subsystem; 2508 } 2509 2510 ctrl->subsys = subsys; 2511 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2512 mutex_unlock(&nvme_subsystems_lock); 2513 return 0; 2514 2515 out_put_subsystem: 2516 nvme_put_subsystem(subsys); 2517 out_unlock: 2518 mutex_unlock(&nvme_subsystems_lock); 2519 return ret; 2520 } 2521 2522 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, 2523 void *log, size_t size, u64 offset) 2524 { 2525 struct nvme_command c = { }; 2526 unsigned long dwlen = size / 4 - 1; 2527 2528 c.get_log_page.opcode = nvme_admin_get_log_page; 2529 c.get_log_page.nsid = cpu_to_le32(nsid); 2530 c.get_log_page.lid = log_page; 2531 c.get_log_page.lsp = lsp; 2532 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2533 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2534 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2535 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2536 2537 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2538 } 2539 2540 static int nvme_get_effects_log(struct nvme_ctrl *ctrl) 2541 { 2542 int ret; 2543 2544 if (!ctrl->effects) 2545 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2546 2547 if (!ctrl->effects) 2548 return 0; 2549 2550 ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0, 2551 ctrl->effects, sizeof(*ctrl->effects), 0); 2552 if (ret) { 2553 kfree(ctrl->effects); 2554 ctrl->effects = NULL; 2555 } 2556 return ret; 2557 } 2558 2559 /* 2560 * Initialize the cached copies of the Identify data and various controller 2561 * register in our nvme_ctrl structure. This should be called as soon as 2562 * the admin queue is fully up and running. 2563 */ 2564 int nvme_init_identify(struct nvme_ctrl *ctrl) 2565 { 2566 struct nvme_id_ctrl *id; 2567 u64 cap; 2568 int ret, page_shift; 2569 u32 max_hw_sectors; 2570 bool prev_apst_enabled; 2571 2572 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 2573 if (ret) { 2574 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 2575 return ret; 2576 } 2577 2578 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); 2579 if (ret) { 2580 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2581 return ret; 2582 } 2583 page_shift = NVME_CAP_MPSMIN(cap) + 12; 2584 2585 if (ctrl->vs >= NVME_VS(1, 1, 0)) 2586 ctrl->subsystem = NVME_CAP_NSSRC(cap); 2587 2588 ret = nvme_identify_ctrl(ctrl, &id); 2589 if (ret) { 2590 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2591 return -EIO; 2592 } 2593 2594 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2595 ret = nvme_get_effects_log(ctrl); 2596 if (ret < 0) 2597 goto out_free; 2598 } 2599 2600 if (!ctrl->identified) { 2601 int i; 2602 2603 ret = nvme_init_subsystem(ctrl, id); 2604 if (ret) 2605 goto out_free; 2606 2607 /* 2608 * Check for quirks. Quirk can depend on firmware version, 2609 * so, in principle, the set of quirks present can change 2610 * across a reset. As a possible future enhancement, we 2611 * could re-scan for quirks every time we reinitialize 2612 * the device, but we'd have to make sure that the driver 2613 * behaves intelligently if the quirks change. 2614 */ 2615 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2616 if (quirk_matches(id, &core_quirks[i])) 2617 ctrl->quirks |= core_quirks[i].quirks; 2618 } 2619 } 2620 2621 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2622 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2623 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2624 } 2625 2626 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2627 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2628 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2629 2630 ctrl->oacs = le16_to_cpu(id->oacs); 2631 ctrl->oncs = le16_to_cpu(id->oncs); 2632 ctrl->mtfa = le16_to_cpu(id->mtfa); 2633 ctrl->oaes = le32_to_cpu(id->oaes); 2634 atomic_set(&ctrl->abort_limit, id->acl + 1); 2635 ctrl->vwc = id->vwc; 2636 if (id->mdts) 2637 max_hw_sectors = 1 << (id->mdts + page_shift - 9); 2638 else 2639 max_hw_sectors = UINT_MAX; 2640 ctrl->max_hw_sectors = 2641 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2642 2643 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2644 ctrl->sgls = le32_to_cpu(id->sgls); 2645 ctrl->kas = le16_to_cpu(id->kas); 2646 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2647 ctrl->ctratt = le32_to_cpu(id->ctratt); 2648 2649 if (id->rtd3e) { 2650 /* us -> s */ 2651 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000; 2652 2653 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 2654 shutdown_timeout, 60); 2655 2656 if (ctrl->shutdown_timeout != shutdown_timeout) 2657 dev_info(ctrl->device, 2658 "Shutdown timeout set to %u seconds\n", 2659 ctrl->shutdown_timeout); 2660 } else 2661 ctrl->shutdown_timeout = shutdown_timeout; 2662 2663 ctrl->npss = id->npss; 2664 ctrl->apsta = id->apsta; 2665 prev_apst_enabled = ctrl->apst_enabled; 2666 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 2667 if (force_apst && id->apsta) { 2668 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 2669 ctrl->apst_enabled = true; 2670 } else { 2671 ctrl->apst_enabled = false; 2672 } 2673 } else { 2674 ctrl->apst_enabled = id->apsta; 2675 } 2676 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 2677 2678 if (ctrl->ops->flags & NVME_F_FABRICS) { 2679 ctrl->icdoff = le16_to_cpu(id->icdoff); 2680 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 2681 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 2682 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 2683 2684 /* 2685 * In fabrics we need to verify the cntlid matches the 2686 * admin connect 2687 */ 2688 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 2689 ret = -EINVAL; 2690 goto out_free; 2691 } 2692 2693 if (!ctrl->opts->discovery_nqn && !ctrl->kas) { 2694 dev_err(ctrl->device, 2695 "keep-alive support is mandatory for fabrics\n"); 2696 ret = -EINVAL; 2697 goto out_free; 2698 } 2699 } else { 2700 ctrl->cntlid = le16_to_cpu(id->cntlid); 2701 ctrl->hmpre = le32_to_cpu(id->hmpre); 2702 ctrl->hmmin = le32_to_cpu(id->hmmin); 2703 ctrl->hmminds = le32_to_cpu(id->hmminds); 2704 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 2705 } 2706 2707 ret = nvme_mpath_init(ctrl, id); 2708 kfree(id); 2709 2710 if (ret < 0) 2711 return ret; 2712 2713 if (ctrl->apst_enabled && !prev_apst_enabled) 2714 dev_pm_qos_expose_latency_tolerance(ctrl->device); 2715 else if (!ctrl->apst_enabled && prev_apst_enabled) 2716 dev_pm_qos_hide_latency_tolerance(ctrl->device); 2717 2718 ret = nvme_configure_apst(ctrl); 2719 if (ret < 0) 2720 return ret; 2721 2722 ret = nvme_configure_timestamp(ctrl); 2723 if (ret < 0) 2724 return ret; 2725 2726 ret = nvme_configure_directives(ctrl); 2727 if (ret < 0) 2728 return ret; 2729 2730 ret = nvme_configure_acre(ctrl); 2731 if (ret < 0) 2732 return ret; 2733 2734 ctrl->identified = true; 2735 2736 return 0; 2737 2738 out_free: 2739 kfree(id); 2740 return ret; 2741 } 2742 EXPORT_SYMBOL_GPL(nvme_init_identify); 2743 2744 static int nvme_dev_open(struct inode *inode, struct file *file) 2745 { 2746 struct nvme_ctrl *ctrl = 2747 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 2748 2749 switch (ctrl->state) { 2750 case NVME_CTRL_LIVE: 2751 case NVME_CTRL_ADMIN_ONLY: 2752 break; 2753 default: 2754 return -EWOULDBLOCK; 2755 } 2756 2757 file->private_data = ctrl; 2758 return 0; 2759 } 2760 2761 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) 2762 { 2763 struct nvme_ns *ns; 2764 int ret; 2765 2766 down_read(&ctrl->namespaces_rwsem); 2767 if (list_empty(&ctrl->namespaces)) { 2768 ret = -ENOTTY; 2769 goto out_unlock; 2770 } 2771 2772 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); 2773 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { 2774 dev_warn(ctrl->device, 2775 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); 2776 ret = -EINVAL; 2777 goto out_unlock; 2778 } 2779 2780 dev_warn(ctrl->device, 2781 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); 2782 kref_get(&ns->kref); 2783 up_read(&ctrl->namespaces_rwsem); 2784 2785 ret = nvme_user_cmd(ctrl, ns, argp); 2786 nvme_put_ns(ns); 2787 return ret; 2788 2789 out_unlock: 2790 up_read(&ctrl->namespaces_rwsem); 2791 return ret; 2792 } 2793 2794 static long nvme_dev_ioctl(struct file *file, unsigned int cmd, 2795 unsigned long arg) 2796 { 2797 struct nvme_ctrl *ctrl = file->private_data; 2798 void __user *argp = (void __user *)arg; 2799 2800 switch (cmd) { 2801 case NVME_IOCTL_ADMIN_CMD: 2802 return nvme_user_cmd(ctrl, NULL, argp); 2803 case NVME_IOCTL_IO_CMD: 2804 return nvme_dev_user_cmd(ctrl, argp); 2805 case NVME_IOCTL_RESET: 2806 dev_warn(ctrl->device, "resetting controller\n"); 2807 return nvme_reset_ctrl_sync(ctrl); 2808 case NVME_IOCTL_SUBSYS_RESET: 2809 return nvme_reset_subsystem(ctrl); 2810 case NVME_IOCTL_RESCAN: 2811 nvme_queue_scan(ctrl); 2812 return 0; 2813 default: 2814 return -ENOTTY; 2815 } 2816 } 2817 2818 static const struct file_operations nvme_dev_fops = { 2819 .owner = THIS_MODULE, 2820 .open = nvme_dev_open, 2821 .unlocked_ioctl = nvme_dev_ioctl, 2822 .compat_ioctl = nvme_dev_ioctl, 2823 }; 2824 2825 static ssize_t nvme_sysfs_reset(struct device *dev, 2826 struct device_attribute *attr, const char *buf, 2827 size_t count) 2828 { 2829 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2830 int ret; 2831 2832 ret = nvme_reset_ctrl_sync(ctrl); 2833 if (ret < 0) 2834 return ret; 2835 return count; 2836 } 2837 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 2838 2839 static ssize_t nvme_sysfs_rescan(struct device *dev, 2840 struct device_attribute *attr, const char *buf, 2841 size_t count) 2842 { 2843 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2844 2845 nvme_queue_scan(ctrl); 2846 return count; 2847 } 2848 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 2849 2850 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 2851 { 2852 struct gendisk *disk = dev_to_disk(dev); 2853 2854 if (disk->fops == &nvme_fops) 2855 return nvme_get_ns_from_dev(dev)->head; 2856 else 2857 return disk->private_data; 2858 } 2859 2860 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 2861 char *buf) 2862 { 2863 struct nvme_ns_head *head = dev_to_ns_head(dev); 2864 struct nvme_ns_ids *ids = &head->ids; 2865 struct nvme_subsystem *subsys = head->subsys; 2866 int serial_len = sizeof(subsys->serial); 2867 int model_len = sizeof(subsys->model); 2868 2869 if (!uuid_is_null(&ids->uuid)) 2870 return sprintf(buf, "uuid.%pU\n", &ids->uuid); 2871 2872 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2873 return sprintf(buf, "eui.%16phN\n", ids->nguid); 2874 2875 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2876 return sprintf(buf, "eui.%8phN\n", ids->eui64); 2877 2878 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 2879 subsys->serial[serial_len - 1] == '\0')) 2880 serial_len--; 2881 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 2882 subsys->model[model_len - 1] == '\0')) 2883 model_len--; 2884 2885 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 2886 serial_len, subsys->serial, model_len, subsys->model, 2887 head->ns_id); 2888 } 2889 static DEVICE_ATTR_RO(wwid); 2890 2891 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 2892 char *buf) 2893 { 2894 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 2895 } 2896 static DEVICE_ATTR_RO(nguid); 2897 2898 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 2899 char *buf) 2900 { 2901 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2902 2903 /* For backward compatibility expose the NGUID to userspace if 2904 * we have no UUID set 2905 */ 2906 if (uuid_is_null(&ids->uuid)) { 2907 printk_ratelimited(KERN_WARNING 2908 "No UUID available providing old NGUID\n"); 2909 return sprintf(buf, "%pU\n", ids->nguid); 2910 } 2911 return sprintf(buf, "%pU\n", &ids->uuid); 2912 } 2913 static DEVICE_ATTR_RO(uuid); 2914 2915 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 2916 char *buf) 2917 { 2918 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 2919 } 2920 static DEVICE_ATTR_RO(eui); 2921 2922 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 2923 char *buf) 2924 { 2925 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 2926 } 2927 static DEVICE_ATTR_RO(nsid); 2928 2929 static struct attribute *nvme_ns_id_attrs[] = { 2930 &dev_attr_wwid.attr, 2931 &dev_attr_uuid.attr, 2932 &dev_attr_nguid.attr, 2933 &dev_attr_eui.attr, 2934 &dev_attr_nsid.attr, 2935 #ifdef CONFIG_NVME_MULTIPATH 2936 &dev_attr_ana_grpid.attr, 2937 &dev_attr_ana_state.attr, 2938 #endif 2939 NULL, 2940 }; 2941 2942 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 2943 struct attribute *a, int n) 2944 { 2945 struct device *dev = container_of(kobj, struct device, kobj); 2946 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 2947 2948 if (a == &dev_attr_uuid.attr) { 2949 if (uuid_is_null(&ids->uuid) && 2950 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2951 return 0; 2952 } 2953 if (a == &dev_attr_nguid.attr) { 2954 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 2955 return 0; 2956 } 2957 if (a == &dev_attr_eui.attr) { 2958 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 2959 return 0; 2960 } 2961 #ifdef CONFIG_NVME_MULTIPATH 2962 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 2963 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */ 2964 return 0; 2965 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 2966 return 0; 2967 } 2968 #endif 2969 return a->mode; 2970 } 2971 2972 static const struct attribute_group nvme_ns_id_attr_group = { 2973 .attrs = nvme_ns_id_attrs, 2974 .is_visible = nvme_ns_id_attrs_are_visible, 2975 }; 2976 2977 const struct attribute_group *nvme_ns_id_attr_groups[] = { 2978 &nvme_ns_id_attr_group, 2979 #ifdef CONFIG_NVM 2980 &nvme_nvm_attr_group, 2981 #endif 2982 NULL, 2983 }; 2984 2985 #define nvme_show_str_function(field) \ 2986 static ssize_t field##_show(struct device *dev, \ 2987 struct device_attribute *attr, char *buf) \ 2988 { \ 2989 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 2990 return sprintf(buf, "%.*s\n", \ 2991 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 2992 } \ 2993 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 2994 2995 nvme_show_str_function(model); 2996 nvme_show_str_function(serial); 2997 nvme_show_str_function(firmware_rev); 2998 2999 #define nvme_show_int_function(field) \ 3000 static ssize_t field##_show(struct device *dev, \ 3001 struct device_attribute *attr, char *buf) \ 3002 { \ 3003 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3004 return sprintf(buf, "%d\n", ctrl->field); \ 3005 } \ 3006 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3007 3008 nvme_show_int_function(cntlid); 3009 nvme_show_int_function(numa_node); 3010 3011 static ssize_t nvme_sysfs_delete(struct device *dev, 3012 struct device_attribute *attr, const char *buf, 3013 size_t count) 3014 { 3015 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3016 3017 if (device_remove_file_self(dev, attr)) 3018 nvme_delete_ctrl_sync(ctrl); 3019 return count; 3020 } 3021 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3022 3023 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3024 struct device_attribute *attr, 3025 char *buf) 3026 { 3027 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3028 3029 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); 3030 } 3031 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3032 3033 static ssize_t nvme_sysfs_show_state(struct device *dev, 3034 struct device_attribute *attr, 3035 char *buf) 3036 { 3037 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3038 static const char *const state_name[] = { 3039 [NVME_CTRL_NEW] = "new", 3040 [NVME_CTRL_LIVE] = "live", 3041 [NVME_CTRL_ADMIN_ONLY] = "only-admin", 3042 [NVME_CTRL_RESETTING] = "resetting", 3043 [NVME_CTRL_CONNECTING] = "connecting", 3044 [NVME_CTRL_DELETING] = "deleting", 3045 [NVME_CTRL_DEAD] = "dead", 3046 }; 3047 3048 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3049 state_name[ctrl->state]) 3050 return sprintf(buf, "%s\n", state_name[ctrl->state]); 3051 3052 return sprintf(buf, "unknown state\n"); 3053 } 3054 3055 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3056 3057 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3058 struct device_attribute *attr, 3059 char *buf) 3060 { 3061 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3062 3063 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn); 3064 } 3065 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3066 3067 static ssize_t nvme_sysfs_show_address(struct device *dev, 3068 struct device_attribute *attr, 3069 char *buf) 3070 { 3071 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3072 3073 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3074 } 3075 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3076 3077 static struct attribute *nvme_dev_attrs[] = { 3078 &dev_attr_reset_controller.attr, 3079 &dev_attr_rescan_controller.attr, 3080 &dev_attr_model.attr, 3081 &dev_attr_serial.attr, 3082 &dev_attr_firmware_rev.attr, 3083 &dev_attr_cntlid.attr, 3084 &dev_attr_delete_controller.attr, 3085 &dev_attr_transport.attr, 3086 &dev_attr_subsysnqn.attr, 3087 &dev_attr_address.attr, 3088 &dev_attr_state.attr, 3089 &dev_attr_numa_node.attr, 3090 NULL 3091 }; 3092 3093 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3094 struct attribute *a, int n) 3095 { 3096 struct device *dev = container_of(kobj, struct device, kobj); 3097 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3098 3099 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3100 return 0; 3101 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3102 return 0; 3103 3104 return a->mode; 3105 } 3106 3107 static struct attribute_group nvme_dev_attrs_group = { 3108 .attrs = nvme_dev_attrs, 3109 .is_visible = nvme_dev_attrs_are_visible, 3110 }; 3111 3112 static const struct attribute_group *nvme_dev_attr_groups[] = { 3113 &nvme_dev_attrs_group, 3114 NULL, 3115 }; 3116 3117 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys, 3118 unsigned nsid) 3119 { 3120 struct nvme_ns_head *h; 3121 3122 lockdep_assert_held(&subsys->lock); 3123 3124 list_for_each_entry(h, &subsys->nsheads, entry) { 3125 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref)) 3126 return h; 3127 } 3128 3129 return NULL; 3130 } 3131 3132 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3133 struct nvme_ns_head *new) 3134 { 3135 struct nvme_ns_head *h; 3136 3137 lockdep_assert_held(&subsys->lock); 3138 3139 list_for_each_entry(h, &subsys->nsheads, entry) { 3140 if (nvme_ns_ids_valid(&new->ids) && 3141 !list_empty(&h->list) && 3142 nvme_ns_ids_equal(&new->ids, &h->ids)) 3143 return -EINVAL; 3144 } 3145 3146 return 0; 3147 } 3148 3149 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3150 unsigned nsid, struct nvme_id_ns *id) 3151 { 3152 struct nvme_ns_head *head; 3153 size_t size = sizeof(*head); 3154 int ret = -ENOMEM; 3155 3156 #ifdef CONFIG_NVME_MULTIPATH 3157 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3158 #endif 3159 3160 head = kzalloc(size, GFP_KERNEL); 3161 if (!head) 3162 goto out; 3163 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3164 if (ret < 0) 3165 goto out_free_head; 3166 head->instance = ret; 3167 INIT_LIST_HEAD(&head->list); 3168 ret = init_srcu_struct(&head->srcu); 3169 if (ret) 3170 goto out_ida_remove; 3171 head->subsys = ctrl->subsys; 3172 head->ns_id = nsid; 3173 kref_init(&head->ref); 3174 3175 nvme_report_ns_ids(ctrl, nsid, id, &head->ids); 3176 3177 ret = __nvme_check_ids(ctrl->subsys, head); 3178 if (ret) { 3179 dev_err(ctrl->device, 3180 "duplicate IDs for nsid %d\n", nsid); 3181 goto out_cleanup_srcu; 3182 } 3183 3184 ret = nvme_mpath_alloc_disk(ctrl, head); 3185 if (ret) 3186 goto out_cleanup_srcu; 3187 3188 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3189 3190 kref_get(&ctrl->subsys->ref); 3191 3192 return head; 3193 out_cleanup_srcu: 3194 cleanup_srcu_struct(&head->srcu); 3195 out_ida_remove: 3196 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3197 out_free_head: 3198 kfree(head); 3199 out: 3200 return ERR_PTR(ret); 3201 } 3202 3203 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3204 struct nvme_id_ns *id) 3205 { 3206 struct nvme_ctrl *ctrl = ns->ctrl; 3207 bool is_shared = id->nmic & (1 << 0); 3208 struct nvme_ns_head *head = NULL; 3209 int ret = 0; 3210 3211 mutex_lock(&ctrl->subsys->lock); 3212 if (is_shared) 3213 head = __nvme_find_ns_head(ctrl->subsys, nsid); 3214 if (!head) { 3215 head = nvme_alloc_ns_head(ctrl, nsid, id); 3216 if (IS_ERR(head)) { 3217 ret = PTR_ERR(head); 3218 goto out_unlock; 3219 } 3220 } else { 3221 struct nvme_ns_ids ids; 3222 3223 nvme_report_ns_ids(ctrl, nsid, id, &ids); 3224 if (!nvme_ns_ids_equal(&head->ids, &ids)) { 3225 dev_err(ctrl->device, 3226 "IDs don't match for shared namespace %d\n", 3227 nsid); 3228 ret = -EINVAL; 3229 goto out_unlock; 3230 } 3231 } 3232 3233 list_add_tail(&ns->siblings, &head->list); 3234 ns->head = head; 3235 3236 out_unlock: 3237 mutex_unlock(&ctrl->subsys->lock); 3238 return ret; 3239 } 3240 3241 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) 3242 { 3243 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); 3244 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); 3245 3246 return nsa->head->ns_id - nsb->head->ns_id; 3247 } 3248 3249 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3250 { 3251 struct nvme_ns *ns, *ret = NULL; 3252 3253 down_read(&ctrl->namespaces_rwsem); 3254 list_for_each_entry(ns, &ctrl->namespaces, list) { 3255 if (ns->head->ns_id == nsid) { 3256 if (!kref_get_unless_zero(&ns->kref)) 3257 continue; 3258 ret = ns; 3259 break; 3260 } 3261 if (ns->head->ns_id > nsid) 3262 break; 3263 } 3264 up_read(&ctrl->namespaces_rwsem); 3265 return ret; 3266 } 3267 3268 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns) 3269 { 3270 struct streams_directive_params s; 3271 int ret; 3272 3273 if (!ctrl->nr_streams) 3274 return 0; 3275 3276 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 3277 if (ret) 3278 return ret; 3279 3280 ns->sws = le32_to_cpu(s.sws); 3281 ns->sgs = le16_to_cpu(s.sgs); 3282 3283 if (ns->sws) { 3284 unsigned int bs = 1 << ns->lba_shift; 3285 3286 blk_queue_io_min(ns->queue, bs * ns->sws); 3287 if (ns->sgs) 3288 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs); 3289 } 3290 3291 return 0; 3292 } 3293 3294 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3295 { 3296 struct nvme_ns *ns; 3297 struct gendisk *disk; 3298 struct nvme_id_ns *id; 3299 char disk_name[DISK_NAME_LEN]; 3300 int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret; 3301 3302 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3303 if (!ns) 3304 return -ENOMEM; 3305 3306 ns->queue = blk_mq_init_queue(ctrl->tagset); 3307 if (IS_ERR(ns->queue)) { 3308 ret = PTR_ERR(ns->queue); 3309 goto out_free_ns; 3310 } 3311 3312 if (ctrl->opts && ctrl->opts->data_digest) 3313 ns->queue->backing_dev_info->capabilities 3314 |= BDI_CAP_STABLE_WRITES; 3315 3316 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3317 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3318 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3319 3320 ns->queue->queuedata = ns; 3321 ns->ctrl = ctrl; 3322 3323 kref_init(&ns->kref); 3324 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ 3325 3326 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); 3327 nvme_set_queue_limits(ctrl, ns->queue); 3328 3329 id = nvme_identify_ns(ctrl, nsid); 3330 if (!id) { 3331 ret = -EIO; 3332 goto out_free_queue; 3333 } 3334 3335 if (id->ncap == 0) { 3336 ret = -EINVAL; 3337 goto out_free_id; 3338 } 3339 3340 ret = nvme_init_ns_head(ns, nsid, id); 3341 if (ret) 3342 goto out_free_id; 3343 nvme_setup_streams_ns(ctrl, ns); 3344 nvme_set_disk_name(disk_name, ns, ctrl, &flags); 3345 3346 disk = alloc_disk_node(0, node); 3347 if (!disk) { 3348 ret = -ENOMEM; 3349 goto out_unlink_ns; 3350 } 3351 3352 disk->fops = &nvme_fops; 3353 disk->private_data = ns; 3354 disk->queue = ns->queue; 3355 disk->flags = flags; 3356 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); 3357 ns->disk = disk; 3358 3359 __nvme_revalidate_disk(disk, id); 3360 3361 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) { 3362 ret = nvme_nvm_register(ns, disk_name, node); 3363 if (ret) { 3364 dev_warn(ctrl->device, "LightNVM init failure\n"); 3365 goto out_put_disk; 3366 } 3367 } 3368 3369 down_write(&ctrl->namespaces_rwsem); 3370 list_add_tail(&ns->list, &ctrl->namespaces); 3371 up_write(&ctrl->namespaces_rwsem); 3372 3373 nvme_get_ctrl(ctrl); 3374 3375 device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups); 3376 3377 nvme_mpath_add_disk(ns, id); 3378 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3379 kfree(id); 3380 3381 return 0; 3382 out_put_disk: 3383 put_disk(ns->disk); 3384 out_unlink_ns: 3385 mutex_lock(&ctrl->subsys->lock); 3386 list_del_rcu(&ns->siblings); 3387 mutex_unlock(&ctrl->subsys->lock); 3388 nvme_put_ns_head(ns->head); 3389 out_free_id: 3390 kfree(id); 3391 out_free_queue: 3392 blk_cleanup_queue(ns->queue); 3393 out_free_ns: 3394 kfree(ns); 3395 return ret; 3396 } 3397 3398 static void nvme_ns_remove(struct nvme_ns *ns) 3399 { 3400 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3401 return; 3402 3403 nvme_fault_inject_fini(&ns->fault_inject); 3404 3405 mutex_lock(&ns->ctrl->subsys->lock); 3406 list_del_rcu(&ns->siblings); 3407 mutex_unlock(&ns->ctrl->subsys->lock); 3408 synchronize_rcu(); /* guarantee not available in head->list */ 3409 nvme_mpath_clear_current_path(ns); 3410 synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */ 3411 3412 if (ns->disk && ns->disk->flags & GENHD_FL_UP) { 3413 del_gendisk(ns->disk); 3414 blk_cleanup_queue(ns->queue); 3415 if (blk_get_integrity(ns->disk)) 3416 blk_integrity_unregister(ns->disk); 3417 } 3418 3419 down_write(&ns->ctrl->namespaces_rwsem); 3420 list_del_init(&ns->list); 3421 up_write(&ns->ctrl->namespaces_rwsem); 3422 3423 nvme_mpath_check_last_path(ns); 3424 nvme_put_ns(ns); 3425 } 3426 3427 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3428 { 3429 struct nvme_ns *ns; 3430 3431 ns = nvme_find_get_ns(ctrl, nsid); 3432 if (ns) { 3433 if (ns->disk && revalidate_disk(ns->disk)) 3434 nvme_ns_remove(ns); 3435 nvme_put_ns(ns); 3436 } else 3437 nvme_alloc_ns(ctrl, nsid); 3438 } 3439 3440 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3441 unsigned nsid) 3442 { 3443 struct nvme_ns *ns, *next; 3444 LIST_HEAD(rm_list); 3445 3446 down_write(&ctrl->namespaces_rwsem); 3447 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3448 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 3449 list_move_tail(&ns->list, &rm_list); 3450 } 3451 up_write(&ctrl->namespaces_rwsem); 3452 3453 list_for_each_entry_safe(ns, next, &rm_list, list) 3454 nvme_ns_remove(ns); 3455 3456 } 3457 3458 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) 3459 { 3460 struct nvme_ns *ns; 3461 __le32 *ns_list; 3462 unsigned i, j, nsid, prev = 0; 3463 unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024); 3464 int ret = 0; 3465 3466 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3467 if (!ns_list) 3468 return -ENOMEM; 3469 3470 for (i = 0; i < num_lists; i++) { 3471 ret = nvme_identify_ns_list(ctrl, prev, ns_list); 3472 if (ret) 3473 goto free; 3474 3475 for (j = 0; j < min(nn, 1024U); j++) { 3476 nsid = le32_to_cpu(ns_list[j]); 3477 if (!nsid) 3478 goto out; 3479 3480 nvme_validate_ns(ctrl, nsid); 3481 3482 while (++prev < nsid) { 3483 ns = nvme_find_get_ns(ctrl, prev); 3484 if (ns) { 3485 nvme_ns_remove(ns); 3486 nvme_put_ns(ns); 3487 } 3488 } 3489 } 3490 nn -= j; 3491 } 3492 out: 3493 nvme_remove_invalid_namespaces(ctrl, prev); 3494 free: 3495 kfree(ns_list); 3496 return ret; 3497 } 3498 3499 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) 3500 { 3501 unsigned i; 3502 3503 for (i = 1; i <= nn; i++) 3504 nvme_validate_ns(ctrl, i); 3505 3506 nvme_remove_invalid_namespaces(ctrl, nn); 3507 } 3508 3509 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3510 { 3511 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3512 __le32 *log; 3513 int error; 3514 3515 log = kzalloc(log_size, GFP_KERNEL); 3516 if (!log) 3517 return; 3518 3519 /* 3520 * We need to read the log to clear the AEN, but we don't want to rely 3521 * on it for the changed namespace information as userspace could have 3522 * raced with us in reading the log page, which could cause us to miss 3523 * updates. 3524 */ 3525 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log, 3526 log_size, 0); 3527 if (error) 3528 dev_warn(ctrl->device, 3529 "reading changed ns log failed: %d\n", error); 3530 3531 kfree(log); 3532 } 3533 3534 static void nvme_scan_work(struct work_struct *work) 3535 { 3536 struct nvme_ctrl *ctrl = 3537 container_of(work, struct nvme_ctrl, scan_work); 3538 struct nvme_id_ctrl *id; 3539 unsigned nn; 3540 3541 if (ctrl->state != NVME_CTRL_LIVE) 3542 return; 3543 3544 WARN_ON_ONCE(!ctrl->tagset); 3545 3546 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3547 dev_info(ctrl->device, "rescanning namespaces.\n"); 3548 nvme_clear_changed_ns_log(ctrl); 3549 } 3550 3551 if (nvme_identify_ctrl(ctrl, &id)) 3552 return; 3553 3554 mutex_lock(&ctrl->scan_lock); 3555 nn = le32_to_cpu(id->nn); 3556 if (ctrl->vs >= NVME_VS(1, 1, 0) && 3557 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { 3558 if (!nvme_scan_ns_list(ctrl, nn)) 3559 goto out_free_id; 3560 } 3561 nvme_scan_ns_sequential(ctrl, nn); 3562 out_free_id: 3563 mutex_unlock(&ctrl->scan_lock); 3564 kfree(id); 3565 down_write(&ctrl->namespaces_rwsem); 3566 list_sort(NULL, &ctrl->namespaces, ns_cmp); 3567 up_write(&ctrl->namespaces_rwsem); 3568 } 3569 3570 /* 3571 * This function iterates the namespace list unlocked to allow recovery from 3572 * controller failure. It is up to the caller to ensure the namespace list is 3573 * not modified by scan work while this function is executing. 3574 */ 3575 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3576 { 3577 struct nvme_ns *ns, *next; 3578 LIST_HEAD(ns_list); 3579 3580 /* 3581 * make sure to requeue I/O to all namespaces as these 3582 * might result from the scan itself and must complete 3583 * for the scan_work to make progress 3584 */ 3585 nvme_mpath_clear_ctrl_paths(ctrl); 3586 3587 /* prevent racing with ns scanning */ 3588 flush_work(&ctrl->scan_work); 3589 3590 /* 3591 * The dead states indicates the controller was not gracefully 3592 * disconnected. In that case, we won't be able to flush any data while 3593 * removing the namespaces' disks; fail all the queues now to avoid 3594 * potentially having to clean up the failed sync later. 3595 */ 3596 if (ctrl->state == NVME_CTRL_DEAD) 3597 nvme_kill_queues(ctrl); 3598 3599 down_write(&ctrl->namespaces_rwsem); 3600 list_splice_init(&ctrl->namespaces, &ns_list); 3601 up_write(&ctrl->namespaces_rwsem); 3602 3603 list_for_each_entry_safe(ns, next, &ns_list, list) 3604 nvme_ns_remove(ns); 3605 } 3606 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3607 3608 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 3609 { 3610 char *envp[2] = { NULL, NULL }; 3611 u32 aen_result = ctrl->aen_result; 3612 3613 ctrl->aen_result = 0; 3614 if (!aen_result) 3615 return; 3616 3617 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 3618 if (!envp[0]) 3619 return; 3620 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 3621 kfree(envp[0]); 3622 } 3623 3624 static void nvme_async_event_work(struct work_struct *work) 3625 { 3626 struct nvme_ctrl *ctrl = 3627 container_of(work, struct nvme_ctrl, async_event_work); 3628 3629 nvme_aen_uevent(ctrl); 3630 ctrl->ops->submit_async_event(ctrl); 3631 } 3632 3633 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 3634 { 3635 3636 u32 csts; 3637 3638 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 3639 return false; 3640 3641 if (csts == ~0) 3642 return false; 3643 3644 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 3645 } 3646 3647 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 3648 { 3649 struct nvme_fw_slot_info_log *log; 3650 3651 log = kmalloc(sizeof(*log), GFP_KERNEL); 3652 if (!log) 3653 return; 3654 3655 if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log, 3656 sizeof(*log), 0)) 3657 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 3658 kfree(log); 3659 } 3660 3661 static void nvme_fw_act_work(struct work_struct *work) 3662 { 3663 struct nvme_ctrl *ctrl = container_of(work, 3664 struct nvme_ctrl, fw_act_work); 3665 unsigned long fw_act_timeout; 3666 3667 if (ctrl->mtfa) 3668 fw_act_timeout = jiffies + 3669 msecs_to_jiffies(ctrl->mtfa * 100); 3670 else 3671 fw_act_timeout = jiffies + 3672 msecs_to_jiffies(admin_timeout * 1000); 3673 3674 nvme_stop_queues(ctrl); 3675 while (nvme_ctrl_pp_status(ctrl)) { 3676 if (time_after(jiffies, fw_act_timeout)) { 3677 dev_warn(ctrl->device, 3678 "Fw activation timeout, reset controller\n"); 3679 nvme_reset_ctrl(ctrl); 3680 break; 3681 } 3682 msleep(100); 3683 } 3684 3685 if (ctrl->state != NVME_CTRL_LIVE) 3686 return; 3687 3688 nvme_start_queues(ctrl); 3689 /* read FW slot information to clear the AER */ 3690 nvme_get_fw_slot_info(ctrl); 3691 } 3692 3693 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 3694 { 3695 u32 aer_notice_type = (result & 0xff00) >> 8; 3696 3697 trace_nvme_async_event(ctrl, aer_notice_type); 3698 3699 switch (aer_notice_type) { 3700 case NVME_AER_NOTICE_NS_CHANGED: 3701 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 3702 nvme_queue_scan(ctrl); 3703 break; 3704 case NVME_AER_NOTICE_FW_ACT_STARTING: 3705 queue_work(nvme_wq, &ctrl->fw_act_work); 3706 break; 3707 #ifdef CONFIG_NVME_MULTIPATH 3708 case NVME_AER_NOTICE_ANA: 3709 if (!ctrl->ana_log_buf) 3710 break; 3711 queue_work(nvme_wq, &ctrl->ana_work); 3712 break; 3713 #endif 3714 default: 3715 dev_warn(ctrl->device, "async event result %08x\n", result); 3716 } 3717 } 3718 3719 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 3720 volatile union nvme_result *res) 3721 { 3722 u32 result = le32_to_cpu(res->u32); 3723 u32 aer_type = result & 0x07; 3724 3725 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 3726 return; 3727 3728 switch (aer_type) { 3729 case NVME_AER_NOTICE: 3730 nvme_handle_aen_notice(ctrl, result); 3731 break; 3732 case NVME_AER_ERROR: 3733 case NVME_AER_SMART: 3734 case NVME_AER_CSS: 3735 case NVME_AER_VS: 3736 trace_nvme_async_event(ctrl, aer_type); 3737 ctrl->aen_result = result; 3738 break; 3739 default: 3740 break; 3741 } 3742 queue_work(nvme_wq, &ctrl->async_event_work); 3743 } 3744 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 3745 3746 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 3747 { 3748 nvme_mpath_stop(ctrl); 3749 nvme_stop_keep_alive(ctrl); 3750 flush_work(&ctrl->async_event_work); 3751 cancel_work_sync(&ctrl->fw_act_work); 3752 } 3753 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 3754 3755 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 3756 { 3757 if (ctrl->kato) 3758 nvme_start_keep_alive(ctrl); 3759 3760 if (ctrl->queue_count > 1) { 3761 nvme_queue_scan(ctrl); 3762 nvme_enable_aen(ctrl); 3763 queue_work(nvme_wq, &ctrl->async_event_work); 3764 nvme_start_queues(ctrl); 3765 } 3766 } 3767 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 3768 3769 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 3770 { 3771 nvme_fault_inject_fini(&ctrl->fault_inject); 3772 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3773 cdev_device_del(&ctrl->cdev, ctrl->device); 3774 } 3775 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 3776 3777 static void nvme_free_ctrl(struct device *dev) 3778 { 3779 struct nvme_ctrl *ctrl = 3780 container_of(dev, struct nvme_ctrl, ctrl_device); 3781 struct nvme_subsystem *subsys = ctrl->subsys; 3782 3783 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3784 kfree(ctrl->effects); 3785 nvme_mpath_uninit(ctrl); 3786 __free_page(ctrl->discard_page); 3787 3788 if (subsys) { 3789 mutex_lock(&nvme_subsystems_lock); 3790 list_del(&ctrl->subsys_entry); 3791 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 3792 mutex_unlock(&nvme_subsystems_lock); 3793 } 3794 3795 ctrl->ops->free_ctrl(ctrl); 3796 3797 if (subsys) 3798 nvme_put_subsystem(subsys); 3799 } 3800 3801 /* 3802 * Initialize a NVMe controller structures. This needs to be called during 3803 * earliest initialization so that we have the initialized structured around 3804 * during probing. 3805 */ 3806 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 3807 const struct nvme_ctrl_ops *ops, unsigned long quirks) 3808 { 3809 int ret; 3810 3811 ctrl->state = NVME_CTRL_NEW; 3812 spin_lock_init(&ctrl->lock); 3813 mutex_init(&ctrl->scan_lock); 3814 INIT_LIST_HEAD(&ctrl->namespaces); 3815 init_rwsem(&ctrl->namespaces_rwsem); 3816 ctrl->dev = dev; 3817 ctrl->ops = ops; 3818 ctrl->quirks = quirks; 3819 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 3820 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 3821 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 3822 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 3823 3824 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 3825 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 3826 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 3827 3828 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 3829 PAGE_SIZE); 3830 ctrl->discard_page = alloc_page(GFP_KERNEL); 3831 if (!ctrl->discard_page) { 3832 ret = -ENOMEM; 3833 goto out; 3834 } 3835 3836 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 3837 if (ret < 0) 3838 goto out; 3839 ctrl->instance = ret; 3840 3841 device_initialize(&ctrl->ctrl_device); 3842 ctrl->device = &ctrl->ctrl_device; 3843 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance); 3844 ctrl->device->class = nvme_class; 3845 ctrl->device->parent = ctrl->dev; 3846 ctrl->device->groups = nvme_dev_attr_groups; 3847 ctrl->device->release = nvme_free_ctrl; 3848 dev_set_drvdata(ctrl->device, ctrl); 3849 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 3850 if (ret) 3851 goto out_release_instance; 3852 3853 cdev_init(&ctrl->cdev, &nvme_dev_fops); 3854 ctrl->cdev.owner = ops->module; 3855 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 3856 if (ret) 3857 goto out_free_name; 3858 3859 /* 3860 * Initialize latency tolerance controls. The sysfs files won't 3861 * be visible to userspace unless the device actually supports APST. 3862 */ 3863 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 3864 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 3865 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 3866 3867 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 3868 3869 return 0; 3870 out_free_name: 3871 kfree_const(ctrl->device->kobj.name); 3872 out_release_instance: 3873 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 3874 out: 3875 if (ctrl->discard_page) 3876 __free_page(ctrl->discard_page); 3877 return ret; 3878 } 3879 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 3880 3881 /** 3882 * nvme_kill_queues(): Ends all namespace queues 3883 * @ctrl: the dead controller that needs to end 3884 * 3885 * Call this function when the driver determines it is unable to get the 3886 * controller in a state capable of servicing IO. 3887 */ 3888 void nvme_kill_queues(struct nvme_ctrl *ctrl) 3889 { 3890 struct nvme_ns *ns; 3891 3892 down_read(&ctrl->namespaces_rwsem); 3893 3894 /* Forcibly unquiesce queues to avoid blocking dispatch */ 3895 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 3896 blk_mq_unquiesce_queue(ctrl->admin_q); 3897 3898 list_for_each_entry(ns, &ctrl->namespaces, list) 3899 nvme_set_queue_dying(ns); 3900 3901 up_read(&ctrl->namespaces_rwsem); 3902 } 3903 EXPORT_SYMBOL_GPL(nvme_kill_queues); 3904 3905 void nvme_unfreeze(struct nvme_ctrl *ctrl) 3906 { 3907 struct nvme_ns *ns; 3908 3909 down_read(&ctrl->namespaces_rwsem); 3910 list_for_each_entry(ns, &ctrl->namespaces, list) 3911 blk_mq_unfreeze_queue(ns->queue); 3912 up_read(&ctrl->namespaces_rwsem); 3913 } 3914 EXPORT_SYMBOL_GPL(nvme_unfreeze); 3915 3916 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 3917 { 3918 struct nvme_ns *ns; 3919 3920 down_read(&ctrl->namespaces_rwsem); 3921 list_for_each_entry(ns, &ctrl->namespaces, list) { 3922 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 3923 if (timeout <= 0) 3924 break; 3925 } 3926 up_read(&ctrl->namespaces_rwsem); 3927 } 3928 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 3929 3930 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 3931 { 3932 struct nvme_ns *ns; 3933 3934 down_read(&ctrl->namespaces_rwsem); 3935 list_for_each_entry(ns, &ctrl->namespaces, list) 3936 blk_mq_freeze_queue_wait(ns->queue); 3937 up_read(&ctrl->namespaces_rwsem); 3938 } 3939 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 3940 3941 void nvme_start_freeze(struct nvme_ctrl *ctrl) 3942 { 3943 struct nvme_ns *ns; 3944 3945 down_read(&ctrl->namespaces_rwsem); 3946 list_for_each_entry(ns, &ctrl->namespaces, list) 3947 blk_freeze_queue_start(ns->queue); 3948 up_read(&ctrl->namespaces_rwsem); 3949 } 3950 EXPORT_SYMBOL_GPL(nvme_start_freeze); 3951 3952 void nvme_stop_queues(struct nvme_ctrl *ctrl) 3953 { 3954 struct nvme_ns *ns; 3955 3956 down_read(&ctrl->namespaces_rwsem); 3957 list_for_each_entry(ns, &ctrl->namespaces, list) 3958 blk_mq_quiesce_queue(ns->queue); 3959 up_read(&ctrl->namespaces_rwsem); 3960 } 3961 EXPORT_SYMBOL_GPL(nvme_stop_queues); 3962 3963 void nvme_start_queues(struct nvme_ctrl *ctrl) 3964 { 3965 struct nvme_ns *ns; 3966 3967 down_read(&ctrl->namespaces_rwsem); 3968 list_for_each_entry(ns, &ctrl->namespaces, list) 3969 blk_mq_unquiesce_queue(ns->queue); 3970 up_read(&ctrl->namespaces_rwsem); 3971 } 3972 EXPORT_SYMBOL_GPL(nvme_start_queues); 3973 3974 3975 void nvme_sync_queues(struct nvme_ctrl *ctrl) 3976 { 3977 struct nvme_ns *ns; 3978 3979 down_read(&ctrl->namespaces_rwsem); 3980 list_for_each_entry(ns, &ctrl->namespaces, list) 3981 blk_sync_queue(ns->queue); 3982 up_read(&ctrl->namespaces_rwsem); 3983 } 3984 EXPORT_SYMBOL_GPL(nvme_sync_queues); 3985 3986 /* 3987 * Check we didn't inadvertently grow the command structure sizes: 3988 */ 3989 static inline void _nvme_check_size(void) 3990 { 3991 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 3992 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 3993 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 3994 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 3995 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 3996 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 3997 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 3998 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 3999 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4000 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4001 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4002 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4003 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4004 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4005 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4006 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4007 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4008 } 4009 4010 4011 static int __init nvme_core_init(void) 4012 { 4013 int result = -ENOMEM; 4014 4015 _nvme_check_size(); 4016 4017 nvme_wq = alloc_workqueue("nvme-wq", 4018 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4019 if (!nvme_wq) 4020 goto out; 4021 4022 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4023 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4024 if (!nvme_reset_wq) 4025 goto destroy_wq; 4026 4027 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4028 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4029 if (!nvme_delete_wq) 4030 goto destroy_reset_wq; 4031 4032 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme"); 4033 if (result < 0) 4034 goto destroy_delete_wq; 4035 4036 nvme_class = class_create(THIS_MODULE, "nvme"); 4037 if (IS_ERR(nvme_class)) { 4038 result = PTR_ERR(nvme_class); 4039 goto unregister_chrdev; 4040 } 4041 4042 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4043 if (IS_ERR(nvme_subsys_class)) { 4044 result = PTR_ERR(nvme_subsys_class); 4045 goto destroy_class; 4046 } 4047 return 0; 4048 4049 destroy_class: 4050 class_destroy(nvme_class); 4051 unregister_chrdev: 4052 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4053 destroy_delete_wq: 4054 destroy_workqueue(nvme_delete_wq); 4055 destroy_reset_wq: 4056 destroy_workqueue(nvme_reset_wq); 4057 destroy_wq: 4058 destroy_workqueue(nvme_wq); 4059 out: 4060 return result; 4061 } 4062 4063 static void __exit nvme_core_exit(void) 4064 { 4065 ida_destroy(&nvme_subsystems_ida); 4066 class_destroy(nvme_subsys_class); 4067 class_destroy(nvme_class); 4068 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS); 4069 destroy_workqueue(nvme_delete_wq); 4070 destroy_workqueue(nvme_reset_wq); 4071 destroy_workqueue(nvme_wq); 4072 } 4073 4074 MODULE_LICENSE("GPL"); 4075 MODULE_VERSION("1.0"); 4076 module_init(nvme_core_init); 4077 module_exit(nvme_core_exit); 4078