xref: /linux/drivers/nvme/host/core.c (revision 71dfa617ea9f18e4585fe78364217cd32b1fc382)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include "nvme.h"
27 #include "fabrics.h"
28 #include <linux/nvme-auth.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #define NVME_MINORS		(1U << MINORBITS)
34 
35 struct nvme_ns_info {
36 	struct nvme_ns_ids ids;
37 	u32 nsid;
38 	__le32 anagrpid;
39 	bool is_shared;
40 	bool is_readonly;
41 	bool is_ready;
42 	bool is_removed;
43 };
44 
45 unsigned int admin_timeout = 60;
46 module_param(admin_timeout, uint, 0644);
47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
48 EXPORT_SYMBOL_GPL(admin_timeout);
49 
50 unsigned int nvme_io_timeout = 30;
51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
53 EXPORT_SYMBOL_GPL(nvme_io_timeout);
54 
55 static unsigned char shutdown_timeout = 5;
56 module_param(shutdown_timeout, byte, 0644);
57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58 
59 static u8 nvme_max_retries = 5;
60 module_param_named(max_retries, nvme_max_retries, byte, 0644);
61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62 
63 static unsigned long default_ps_max_latency_us = 100000;
64 module_param(default_ps_max_latency_us, ulong, 0644);
65 MODULE_PARM_DESC(default_ps_max_latency_us,
66 		 "max power saving latency for new devices; use PM QOS to change per device");
67 
68 static bool force_apst;
69 module_param(force_apst, bool, 0644);
70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71 
72 static unsigned long apst_primary_timeout_ms = 100;
73 module_param(apst_primary_timeout_ms, ulong, 0644);
74 MODULE_PARM_DESC(apst_primary_timeout_ms,
75 	"primary APST timeout in ms");
76 
77 static unsigned long apst_secondary_timeout_ms = 2000;
78 module_param(apst_secondary_timeout_ms, ulong, 0644);
79 MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 	"secondary APST timeout in ms");
81 
82 static unsigned long apst_primary_latency_tol_us = 15000;
83 module_param(apst_primary_latency_tol_us, ulong, 0644);
84 MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 	"primary APST latency tolerance in us");
86 
87 static unsigned long apst_secondary_latency_tol_us = 100000;
88 module_param(apst_secondary_latency_tol_us, ulong, 0644);
89 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 	"secondary APST latency tolerance in us");
91 
92 /*
93  * nvme_wq - hosts nvme related works that are not reset or delete
94  * nvme_reset_wq - hosts nvme reset works
95  * nvme_delete_wq - hosts nvme delete works
96  *
97  * nvme_wq will host works such as scan, aen handling, fw activation,
98  * keep-alive, periodic reconnects etc. nvme_reset_wq
99  * runs reset works which also flush works hosted on nvme_wq for
100  * serialization purposes. nvme_delete_wq host controller deletion
101  * works which flush reset works for serialization.
102  */
103 struct workqueue_struct *nvme_wq;
104 EXPORT_SYMBOL_GPL(nvme_wq);
105 
106 struct workqueue_struct *nvme_reset_wq;
107 EXPORT_SYMBOL_GPL(nvme_reset_wq);
108 
109 struct workqueue_struct *nvme_delete_wq;
110 EXPORT_SYMBOL_GPL(nvme_delete_wq);
111 
112 static LIST_HEAD(nvme_subsystems);
113 static DEFINE_MUTEX(nvme_subsystems_lock);
114 
115 static DEFINE_IDA(nvme_instance_ida);
116 static dev_t nvme_ctrl_base_chr_devt;
117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
118 static const struct class nvme_class = {
119 	.name = "nvme",
120 	.dev_uevent = nvme_class_uevent,
121 };
122 
123 static const struct class nvme_subsys_class = {
124 	.name = "nvme-subsystem",
125 };
126 
127 static DEFINE_IDA(nvme_ns_chr_minor_ida);
128 static dev_t nvme_ns_chr_devt;
129 static const struct class nvme_ns_chr_class = {
130 	.name = "nvme-generic",
131 };
132 
133 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
135 					   unsigned nsid);
136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
137 				   struct nvme_command *cmd);
138 
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141 	/*
142 	 * Only new queue scan work when admin and IO queues are both alive
143 	 */
144 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
145 		queue_work(nvme_wq, &ctrl->scan_work);
146 }
147 
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
157 		return -EBUSY;
158 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 		return -EBUSY;
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163 
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 			struct nvme_ctrl, failfast_work);
168 
169 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
170 		return;
171 
172 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 	dev_info(ctrl->device, "failfast expired\n");
174 	nvme_kick_requeue_lists(ctrl);
175 }
176 
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 		return;
181 
182 	schedule_delayed_work(&ctrl->failfast_work,
183 			      ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185 
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188 	if (!ctrl->opts)
189 		return;
190 
191 	cancel_delayed_work_sync(&ctrl->failfast_work);
192 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194 
195 
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205 
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	int ret;
209 
210 	ret = nvme_reset_ctrl(ctrl);
211 	if (!ret) {
212 		flush_work(&ctrl->reset_work);
213 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
214 			ret = -ENETRESET;
215 	}
216 
217 	return ret;
218 }
219 
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	dev_info(ctrl->device,
223 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
224 
225 	flush_work(&ctrl->reset_work);
226 	nvme_stop_ctrl(ctrl);
227 	nvme_remove_namespaces(ctrl);
228 	ctrl->ops->delete_ctrl(ctrl);
229 	nvme_uninit_ctrl(ctrl);
230 }
231 
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234 	struct nvme_ctrl *ctrl =
235 		container_of(work, struct nvme_ctrl, delete_work);
236 
237 	nvme_do_delete_ctrl(ctrl);
238 }
239 
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 		return -EBUSY;
244 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245 		return -EBUSY;
246 	return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249 
250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252 	/*
253 	 * Keep a reference until nvme_do_delete_ctrl() complete,
254 	 * since ->delete_ctrl can free the controller.
255 	 */
256 	nvme_get_ctrl(ctrl);
257 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		nvme_do_delete_ctrl(ctrl);
259 	nvme_put_ctrl(ctrl);
260 }
261 
262 static blk_status_t nvme_error_status(u16 status)
263 {
264 	switch (status & 0x7ff) {
265 	case NVME_SC_SUCCESS:
266 		return BLK_STS_OK;
267 	case NVME_SC_CAP_EXCEEDED:
268 		return BLK_STS_NOSPC;
269 	case NVME_SC_LBA_RANGE:
270 	case NVME_SC_CMD_INTERRUPTED:
271 	case NVME_SC_NS_NOT_READY:
272 		return BLK_STS_TARGET;
273 	case NVME_SC_BAD_ATTRIBUTES:
274 	case NVME_SC_ONCS_NOT_SUPPORTED:
275 	case NVME_SC_INVALID_OPCODE:
276 	case NVME_SC_INVALID_FIELD:
277 	case NVME_SC_INVALID_NS:
278 		return BLK_STS_NOTSUPP;
279 	case NVME_SC_WRITE_FAULT:
280 	case NVME_SC_READ_ERROR:
281 	case NVME_SC_UNWRITTEN_BLOCK:
282 	case NVME_SC_ACCESS_DENIED:
283 	case NVME_SC_READ_ONLY:
284 	case NVME_SC_COMPARE_FAILED:
285 		return BLK_STS_MEDIUM;
286 	case NVME_SC_GUARD_CHECK:
287 	case NVME_SC_APPTAG_CHECK:
288 	case NVME_SC_REFTAG_CHECK:
289 	case NVME_SC_INVALID_PI:
290 		return BLK_STS_PROTECTION;
291 	case NVME_SC_RESERVATION_CONFLICT:
292 		return BLK_STS_RESV_CONFLICT;
293 	case NVME_SC_HOST_PATH_ERROR:
294 		return BLK_STS_TRANSPORT;
295 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 	case NVME_SC_ZONE_TOO_MANY_OPEN:
298 		return BLK_STS_ZONE_OPEN_RESOURCE;
299 	default:
300 		return BLK_STS_IOERR;
301 	}
302 }
303 
304 static void nvme_retry_req(struct request *req)
305 {
306 	unsigned long delay = 0;
307 	u16 crd;
308 
309 	/* The mask and shift result must be <= 3 */
310 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311 	if (crd)
312 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313 
314 	nvme_req(req)->retries++;
315 	blk_mq_requeue_request(req, false);
316 	blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318 
319 static void nvme_log_error(struct request *req)
320 {
321 	struct nvme_ns *ns = req->q->queuedata;
322 	struct nvme_request *nr = nvme_req(req);
323 
324 	if (ns) {
325 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
326 		       ns->disk ? ns->disk->disk_name : "?",
327 		       nvme_get_opcode_str(nr->cmd->common.opcode),
328 		       nr->cmd->common.opcode,
329 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
330 		       blk_rq_bytes(req) >> ns->head->lba_shift,
331 		       nvme_get_error_status_str(nr->status),
332 		       nr->status >> 8 & 7,	/* Status Code Type */
333 		       nr->status & 0xff,	/* Status Code */
334 		       nr->status & NVME_SC_MORE ? "MORE " : "",
335 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
336 		return;
337 	}
338 
339 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
340 			   dev_name(nr->ctrl->device),
341 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
342 			   nr->cmd->common.opcode,
343 			   nvme_get_error_status_str(nr->status),
344 			   nr->status >> 8 & 7,	/* Status Code Type */
345 			   nr->status & 0xff,	/* Status Code */
346 			   nr->status & NVME_SC_MORE ? "MORE " : "",
347 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
348 }
349 
350 static void nvme_log_err_passthru(struct request *req)
351 {
352 	struct nvme_ns *ns = req->q->queuedata;
353 	struct nvme_request *nr = nvme_req(req);
354 
355 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
356 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
357 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
358 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
359 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 		nr->cmd->common.opcode,
361 		nvme_get_error_status_str(nr->status),
362 		nr->status >> 8 & 7,	/* Status Code Type */
363 		nr->status & 0xff,	/* Status Code */
364 		nr->status & NVME_SC_MORE ? "MORE " : "",
365 		nr->status & NVME_SC_DNR  ? "DNR "  : "",
366 		nr->cmd->common.cdw10,
367 		nr->cmd->common.cdw11,
368 		nr->cmd->common.cdw12,
369 		nr->cmd->common.cdw13,
370 		nr->cmd->common.cdw14,
371 		nr->cmd->common.cdw14);
372 }
373 
374 enum nvme_disposition {
375 	COMPLETE,
376 	RETRY,
377 	FAILOVER,
378 	AUTHENTICATE,
379 };
380 
381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
382 {
383 	if (likely(nvme_req(req)->status == 0))
384 		return COMPLETE;
385 
386 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
387 		return AUTHENTICATE;
388 
389 	if (blk_noretry_request(req) ||
390 	    (nvme_req(req)->status & NVME_SC_DNR) ||
391 	    nvme_req(req)->retries >= nvme_max_retries)
392 		return COMPLETE;
393 
394 	if (req->cmd_flags & REQ_NVME_MPATH) {
395 		if (nvme_is_path_error(nvme_req(req)->status) ||
396 		    blk_queue_dying(req->q))
397 			return FAILOVER;
398 	} else {
399 		if (blk_queue_dying(req->q))
400 			return COMPLETE;
401 	}
402 
403 	return RETRY;
404 }
405 
406 static inline void nvme_end_req_zoned(struct request *req)
407 {
408 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
409 	    req_op(req) == REQ_OP_ZONE_APPEND) {
410 		struct nvme_ns *ns = req->q->queuedata;
411 
412 		req->__sector = nvme_lba_to_sect(ns->head,
413 			le64_to_cpu(nvme_req(req)->result.u64));
414 	}
415 }
416 
417 static inline void nvme_end_req(struct request *req)
418 {
419 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
420 
421 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
422 		if (blk_rq_is_passthrough(req))
423 			nvme_log_err_passthru(req);
424 		else
425 			nvme_log_error(req);
426 	}
427 	nvme_end_req_zoned(req);
428 	nvme_trace_bio_complete(req);
429 	if (req->cmd_flags & REQ_NVME_MPATH)
430 		nvme_mpath_end_request(req);
431 	blk_mq_end_request(req, status);
432 }
433 
434 void nvme_complete_rq(struct request *req)
435 {
436 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
437 
438 	trace_nvme_complete_rq(req);
439 	nvme_cleanup_cmd(req);
440 
441 	/*
442 	 * Completions of long-running commands should not be able to
443 	 * defer sending of periodic keep alives, since the controller
444 	 * may have completed processing such commands a long time ago
445 	 * (arbitrarily close to command submission time).
446 	 * req->deadline - req->timeout is the command submission time
447 	 * in jiffies.
448 	 */
449 	if (ctrl->kas &&
450 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
451 		ctrl->comp_seen = true;
452 
453 	switch (nvme_decide_disposition(req)) {
454 	case COMPLETE:
455 		nvme_end_req(req);
456 		return;
457 	case RETRY:
458 		nvme_retry_req(req);
459 		return;
460 	case FAILOVER:
461 		nvme_failover_req(req);
462 		return;
463 	case AUTHENTICATE:
464 #ifdef CONFIG_NVME_HOST_AUTH
465 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
466 		nvme_retry_req(req);
467 #else
468 		nvme_end_req(req);
469 #endif
470 		return;
471 	}
472 }
473 EXPORT_SYMBOL_GPL(nvme_complete_rq);
474 
475 void nvme_complete_batch_req(struct request *req)
476 {
477 	trace_nvme_complete_rq(req);
478 	nvme_cleanup_cmd(req);
479 	nvme_end_req_zoned(req);
480 }
481 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
482 
483 /*
484  * Called to unwind from ->queue_rq on a failed command submission so that the
485  * multipathing code gets called to potentially failover to another path.
486  * The caller needs to unwind all transport specific resource allocations and
487  * must return propagate the return value.
488  */
489 blk_status_t nvme_host_path_error(struct request *req)
490 {
491 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
492 	blk_mq_set_request_complete(req);
493 	nvme_complete_rq(req);
494 	return BLK_STS_OK;
495 }
496 EXPORT_SYMBOL_GPL(nvme_host_path_error);
497 
498 bool nvme_cancel_request(struct request *req, void *data)
499 {
500 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
501 				"Cancelling I/O %d", req->tag);
502 
503 	/* don't abort one completed or idle request */
504 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
505 		return true;
506 
507 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
508 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
509 	blk_mq_complete_request(req);
510 	return true;
511 }
512 EXPORT_SYMBOL_GPL(nvme_cancel_request);
513 
514 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
515 {
516 	if (ctrl->tagset) {
517 		blk_mq_tagset_busy_iter(ctrl->tagset,
518 				nvme_cancel_request, ctrl);
519 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
520 	}
521 }
522 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
523 
524 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
525 {
526 	if (ctrl->admin_tagset) {
527 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
528 				nvme_cancel_request, ctrl);
529 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
530 	}
531 }
532 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
533 
534 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
535 		enum nvme_ctrl_state new_state)
536 {
537 	enum nvme_ctrl_state old_state;
538 	unsigned long flags;
539 	bool changed = false;
540 
541 	spin_lock_irqsave(&ctrl->lock, flags);
542 
543 	old_state = nvme_ctrl_state(ctrl);
544 	switch (new_state) {
545 	case NVME_CTRL_LIVE:
546 		switch (old_state) {
547 		case NVME_CTRL_NEW:
548 		case NVME_CTRL_RESETTING:
549 		case NVME_CTRL_CONNECTING:
550 			changed = true;
551 			fallthrough;
552 		default:
553 			break;
554 		}
555 		break;
556 	case NVME_CTRL_RESETTING:
557 		switch (old_state) {
558 		case NVME_CTRL_NEW:
559 		case NVME_CTRL_LIVE:
560 			changed = true;
561 			fallthrough;
562 		default:
563 			break;
564 		}
565 		break;
566 	case NVME_CTRL_CONNECTING:
567 		switch (old_state) {
568 		case NVME_CTRL_NEW:
569 		case NVME_CTRL_RESETTING:
570 			changed = true;
571 			fallthrough;
572 		default:
573 			break;
574 		}
575 		break;
576 	case NVME_CTRL_DELETING:
577 		switch (old_state) {
578 		case NVME_CTRL_LIVE:
579 		case NVME_CTRL_RESETTING:
580 		case NVME_CTRL_CONNECTING:
581 			changed = true;
582 			fallthrough;
583 		default:
584 			break;
585 		}
586 		break;
587 	case NVME_CTRL_DELETING_NOIO:
588 		switch (old_state) {
589 		case NVME_CTRL_DELETING:
590 		case NVME_CTRL_DEAD:
591 			changed = true;
592 			fallthrough;
593 		default:
594 			break;
595 		}
596 		break;
597 	case NVME_CTRL_DEAD:
598 		switch (old_state) {
599 		case NVME_CTRL_DELETING:
600 			changed = true;
601 			fallthrough;
602 		default:
603 			break;
604 		}
605 		break;
606 	default:
607 		break;
608 	}
609 
610 	if (changed) {
611 		WRITE_ONCE(ctrl->state, new_state);
612 		wake_up_all(&ctrl->state_wq);
613 	}
614 
615 	spin_unlock_irqrestore(&ctrl->lock, flags);
616 	if (!changed)
617 		return false;
618 
619 	if (new_state == NVME_CTRL_LIVE) {
620 		if (old_state == NVME_CTRL_CONNECTING)
621 			nvme_stop_failfast_work(ctrl);
622 		nvme_kick_requeue_lists(ctrl);
623 	} else if (new_state == NVME_CTRL_CONNECTING &&
624 		old_state == NVME_CTRL_RESETTING) {
625 		nvme_start_failfast_work(ctrl);
626 	}
627 	return changed;
628 }
629 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
630 
631 /*
632  * Returns true for sink states that can't ever transition back to live.
633  */
634 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
635 {
636 	switch (nvme_ctrl_state(ctrl)) {
637 	case NVME_CTRL_NEW:
638 	case NVME_CTRL_LIVE:
639 	case NVME_CTRL_RESETTING:
640 	case NVME_CTRL_CONNECTING:
641 		return false;
642 	case NVME_CTRL_DELETING:
643 	case NVME_CTRL_DELETING_NOIO:
644 	case NVME_CTRL_DEAD:
645 		return true;
646 	default:
647 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
648 		return true;
649 	}
650 }
651 
652 /*
653  * Waits for the controller state to be resetting, or returns false if it is
654  * not possible to ever transition to that state.
655  */
656 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657 {
658 	wait_event(ctrl->state_wq,
659 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660 		   nvme_state_terminal(ctrl));
661 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
662 }
663 EXPORT_SYMBOL_GPL(nvme_wait_reset);
664 
665 static void nvme_free_ns_head(struct kref *ref)
666 {
667 	struct nvme_ns_head *head =
668 		container_of(ref, struct nvme_ns_head, ref);
669 
670 	nvme_mpath_remove_disk(head);
671 	ida_free(&head->subsys->ns_ida, head->instance);
672 	cleanup_srcu_struct(&head->srcu);
673 	nvme_put_subsystem(head->subsys);
674 	kfree(head);
675 }
676 
677 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
678 {
679 	return kref_get_unless_zero(&head->ref);
680 }
681 
682 void nvme_put_ns_head(struct nvme_ns_head *head)
683 {
684 	kref_put(&head->ref, nvme_free_ns_head);
685 }
686 
687 static void nvme_free_ns(struct kref *kref)
688 {
689 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
690 
691 	put_disk(ns->disk);
692 	nvme_put_ns_head(ns->head);
693 	nvme_put_ctrl(ns->ctrl);
694 	kfree(ns);
695 }
696 
697 static inline bool nvme_get_ns(struct nvme_ns *ns)
698 {
699 	return kref_get_unless_zero(&ns->kref);
700 }
701 
702 void nvme_put_ns(struct nvme_ns *ns)
703 {
704 	kref_put(&ns->kref, nvme_free_ns);
705 }
706 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
707 
708 static inline void nvme_clear_nvme_request(struct request *req)
709 {
710 	nvme_req(req)->status = 0;
711 	nvme_req(req)->retries = 0;
712 	nvme_req(req)->flags = 0;
713 	req->rq_flags |= RQF_DONTPREP;
714 }
715 
716 /* initialize a passthrough request */
717 void nvme_init_request(struct request *req, struct nvme_command *cmd)
718 {
719 	struct nvme_request *nr = nvme_req(req);
720 	bool logging_enabled;
721 
722 	if (req->q->queuedata) {
723 		struct nvme_ns *ns = req->q->disk->private_data;
724 
725 		logging_enabled = ns->head->passthru_err_log_enabled;
726 		req->timeout = NVME_IO_TIMEOUT;
727 	} else { /* no queuedata implies admin queue */
728 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
729 		req->timeout = NVME_ADMIN_TIMEOUT;
730 	}
731 
732 	if (!logging_enabled)
733 		req->rq_flags |= RQF_QUIET;
734 
735 	/* passthru commands should let the driver set the SGL flags */
736 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
737 
738 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
739 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
740 		req->cmd_flags |= REQ_POLLED;
741 	nvme_clear_nvme_request(req);
742 	memcpy(nr->cmd, cmd, sizeof(*cmd));
743 }
744 EXPORT_SYMBOL_GPL(nvme_init_request);
745 
746 /*
747  * For something we're not in a state to send to the device the default action
748  * is to busy it and retry it after the controller state is recovered.  However,
749  * if the controller is deleting or if anything is marked for failfast or
750  * nvme multipath it is immediately failed.
751  *
752  * Note: commands used to initialize the controller will be marked for failfast.
753  * Note: nvme cli/ioctl commands are marked for failfast.
754  */
755 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
756 		struct request *rq)
757 {
758 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
759 
760 	if (state != NVME_CTRL_DELETING_NOIO &&
761 	    state != NVME_CTRL_DELETING &&
762 	    state != NVME_CTRL_DEAD &&
763 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
764 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
765 		return BLK_STS_RESOURCE;
766 	return nvme_host_path_error(rq);
767 }
768 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
769 
770 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
771 		bool queue_live, enum nvme_ctrl_state state)
772 {
773 	struct nvme_request *req = nvme_req(rq);
774 
775 	/*
776 	 * currently we have a problem sending passthru commands
777 	 * on the admin_q if the controller is not LIVE because we can't
778 	 * make sure that they are going out after the admin connect,
779 	 * controller enable and/or other commands in the initialization
780 	 * sequence. until the controller will be LIVE, fail with
781 	 * BLK_STS_RESOURCE so that they will be rescheduled.
782 	 */
783 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
784 		return false;
785 
786 	if (ctrl->ops->flags & NVME_F_FABRICS) {
787 		/*
788 		 * Only allow commands on a live queue, except for the connect
789 		 * command, which is require to set the queue live in the
790 		 * appropinquate states.
791 		 */
792 		switch (state) {
793 		case NVME_CTRL_CONNECTING:
794 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
795 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
796 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
797 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
798 				return true;
799 			break;
800 		default:
801 			break;
802 		case NVME_CTRL_DEAD:
803 			return false;
804 		}
805 	}
806 
807 	return queue_live;
808 }
809 EXPORT_SYMBOL_GPL(__nvme_check_ready);
810 
811 static inline void nvme_setup_flush(struct nvme_ns *ns,
812 		struct nvme_command *cmnd)
813 {
814 	memset(cmnd, 0, sizeof(*cmnd));
815 	cmnd->common.opcode = nvme_cmd_flush;
816 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
817 }
818 
819 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
820 		struct nvme_command *cmnd)
821 {
822 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
823 	struct nvme_dsm_range *range;
824 	struct bio *bio;
825 
826 	/*
827 	 * Some devices do not consider the DSM 'Number of Ranges' field when
828 	 * determining how much data to DMA. Always allocate memory for maximum
829 	 * number of segments to prevent device reading beyond end of buffer.
830 	 */
831 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
832 
833 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
834 	if (!range) {
835 		/*
836 		 * If we fail allocation our range, fallback to the controller
837 		 * discard page. If that's also busy, it's safe to return
838 		 * busy, as we know we can make progress once that's freed.
839 		 */
840 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
841 			return BLK_STS_RESOURCE;
842 
843 		range = page_address(ns->ctrl->discard_page);
844 	}
845 
846 	if (queue_max_discard_segments(req->q) == 1) {
847 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
848 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
849 
850 		range[0].cattr = cpu_to_le32(0);
851 		range[0].nlb = cpu_to_le32(nlb);
852 		range[0].slba = cpu_to_le64(slba);
853 		n = 1;
854 	} else {
855 		__rq_for_each_bio(bio, req) {
856 			u64 slba = nvme_sect_to_lba(ns->head,
857 						    bio->bi_iter.bi_sector);
858 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
859 
860 			if (n < segments) {
861 				range[n].cattr = cpu_to_le32(0);
862 				range[n].nlb = cpu_to_le32(nlb);
863 				range[n].slba = cpu_to_le64(slba);
864 			}
865 			n++;
866 		}
867 	}
868 
869 	if (WARN_ON_ONCE(n != segments)) {
870 		if (virt_to_page(range) == ns->ctrl->discard_page)
871 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
872 		else
873 			kfree(range);
874 		return BLK_STS_IOERR;
875 	}
876 
877 	memset(cmnd, 0, sizeof(*cmnd));
878 	cmnd->dsm.opcode = nvme_cmd_dsm;
879 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
880 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
881 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
882 
883 	bvec_set_virt(&req->special_vec, range, alloc_size);
884 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
885 
886 	return BLK_STS_OK;
887 }
888 
889 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
890 			      struct request *req)
891 {
892 	u32 upper, lower;
893 	u64 ref48;
894 
895 	/* both rw and write zeroes share the same reftag format */
896 	switch (ns->head->guard_type) {
897 	case NVME_NVM_NS_16B_GUARD:
898 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
899 		break;
900 	case NVME_NVM_NS_64B_GUARD:
901 		ref48 = ext_pi_ref_tag(req);
902 		lower = lower_32_bits(ref48);
903 		upper = upper_32_bits(ref48);
904 
905 		cmnd->rw.reftag = cpu_to_le32(lower);
906 		cmnd->rw.cdw3 = cpu_to_le32(upper);
907 		break;
908 	default:
909 		break;
910 	}
911 }
912 
913 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
914 		struct request *req, struct nvme_command *cmnd)
915 {
916 	memset(cmnd, 0, sizeof(*cmnd));
917 
918 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
919 		return nvme_setup_discard(ns, req, cmnd);
920 
921 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
922 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
923 	cmnd->write_zeroes.slba =
924 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
925 	cmnd->write_zeroes.length =
926 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
927 
928 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
929 	    (ns->head->features & NVME_NS_DEAC))
930 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
931 
932 	if (nvme_ns_has_pi(ns->head)) {
933 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
934 
935 		switch (ns->head->pi_type) {
936 		case NVME_NS_DPS_PI_TYPE1:
937 		case NVME_NS_DPS_PI_TYPE2:
938 			nvme_set_ref_tag(ns, cmnd, req);
939 			break;
940 		}
941 	}
942 
943 	return BLK_STS_OK;
944 }
945 
946 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
947 		struct request *req, struct nvme_command *cmnd,
948 		enum nvme_opcode op)
949 {
950 	u16 control = 0;
951 	u32 dsmgmt = 0;
952 
953 	if (req->cmd_flags & REQ_FUA)
954 		control |= NVME_RW_FUA;
955 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
956 		control |= NVME_RW_LR;
957 
958 	if (req->cmd_flags & REQ_RAHEAD)
959 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
960 
961 	cmnd->rw.opcode = op;
962 	cmnd->rw.flags = 0;
963 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
964 	cmnd->rw.cdw2 = 0;
965 	cmnd->rw.cdw3 = 0;
966 	cmnd->rw.metadata = 0;
967 	cmnd->rw.slba =
968 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
969 	cmnd->rw.length =
970 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
971 	cmnd->rw.reftag = 0;
972 	cmnd->rw.apptag = 0;
973 	cmnd->rw.appmask = 0;
974 
975 	if (ns->head->ms) {
976 		/*
977 		 * If formated with metadata, the block layer always provides a
978 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
979 		 * we enable the PRACT bit for protection information or set the
980 		 * namespace capacity to zero to prevent any I/O.
981 		 */
982 		if (!blk_integrity_rq(req)) {
983 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
984 				return BLK_STS_NOTSUPP;
985 			control |= NVME_RW_PRINFO_PRACT;
986 		}
987 
988 		switch (ns->head->pi_type) {
989 		case NVME_NS_DPS_PI_TYPE3:
990 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
991 			break;
992 		case NVME_NS_DPS_PI_TYPE1:
993 		case NVME_NS_DPS_PI_TYPE2:
994 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
995 					NVME_RW_PRINFO_PRCHK_REF;
996 			if (op == nvme_cmd_zone_append)
997 				control |= NVME_RW_APPEND_PIREMAP;
998 			nvme_set_ref_tag(ns, cmnd, req);
999 			break;
1000 		}
1001 	}
1002 
1003 	cmnd->rw.control = cpu_to_le16(control);
1004 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1005 	return 0;
1006 }
1007 
1008 void nvme_cleanup_cmd(struct request *req)
1009 {
1010 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1011 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1012 
1013 		if (req->special_vec.bv_page == ctrl->discard_page)
1014 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1015 		else
1016 			kfree(bvec_virt(&req->special_vec));
1017 	}
1018 }
1019 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1020 
1021 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1022 {
1023 	struct nvme_command *cmd = nvme_req(req)->cmd;
1024 	blk_status_t ret = BLK_STS_OK;
1025 
1026 	if (!(req->rq_flags & RQF_DONTPREP))
1027 		nvme_clear_nvme_request(req);
1028 
1029 	switch (req_op(req)) {
1030 	case REQ_OP_DRV_IN:
1031 	case REQ_OP_DRV_OUT:
1032 		/* these are setup prior to execution in nvme_init_request() */
1033 		break;
1034 	case REQ_OP_FLUSH:
1035 		nvme_setup_flush(ns, cmd);
1036 		break;
1037 	case REQ_OP_ZONE_RESET_ALL:
1038 	case REQ_OP_ZONE_RESET:
1039 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1040 		break;
1041 	case REQ_OP_ZONE_OPEN:
1042 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1043 		break;
1044 	case REQ_OP_ZONE_CLOSE:
1045 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1046 		break;
1047 	case REQ_OP_ZONE_FINISH:
1048 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1049 		break;
1050 	case REQ_OP_WRITE_ZEROES:
1051 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1052 		break;
1053 	case REQ_OP_DISCARD:
1054 		ret = nvme_setup_discard(ns, req, cmd);
1055 		break;
1056 	case REQ_OP_READ:
1057 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1058 		break;
1059 	case REQ_OP_WRITE:
1060 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1061 		break;
1062 	case REQ_OP_ZONE_APPEND:
1063 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1064 		break;
1065 	default:
1066 		WARN_ON_ONCE(1);
1067 		return BLK_STS_IOERR;
1068 	}
1069 
1070 	cmd->common.command_id = nvme_cid(req);
1071 	trace_nvme_setup_cmd(req, cmd);
1072 	return ret;
1073 }
1074 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1075 
1076 /*
1077  * Return values:
1078  * 0:  success
1079  * >0: nvme controller's cqe status response
1080  * <0: kernel error in lieu of controller response
1081  */
1082 int nvme_execute_rq(struct request *rq, bool at_head)
1083 {
1084 	blk_status_t status;
1085 
1086 	status = blk_execute_rq(rq, at_head);
1087 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1088 		return -EINTR;
1089 	if (nvme_req(rq)->status)
1090 		return nvme_req(rq)->status;
1091 	return blk_status_to_errno(status);
1092 }
1093 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1094 
1095 /*
1096  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1097  * if the result is positive, it's an NVM Express status code
1098  */
1099 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1100 		union nvme_result *result, void *buffer, unsigned bufflen,
1101 		int qid, nvme_submit_flags_t flags)
1102 {
1103 	struct request *req;
1104 	int ret;
1105 	blk_mq_req_flags_t blk_flags = 0;
1106 
1107 	if (flags & NVME_SUBMIT_NOWAIT)
1108 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1109 	if (flags & NVME_SUBMIT_RESERVED)
1110 		blk_flags |= BLK_MQ_REQ_RESERVED;
1111 	if (qid == NVME_QID_ANY)
1112 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1113 	else
1114 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1115 						qid - 1);
1116 
1117 	if (IS_ERR(req))
1118 		return PTR_ERR(req);
1119 	nvme_init_request(req, cmd);
1120 	if (flags & NVME_SUBMIT_RETRY)
1121 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1122 
1123 	if (buffer && bufflen) {
1124 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1125 		if (ret)
1126 			goto out;
1127 	}
1128 
1129 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1130 	if (result && ret >= 0)
1131 		*result = nvme_req(req)->result;
1132  out:
1133 	blk_mq_free_request(req);
1134 	return ret;
1135 }
1136 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1137 
1138 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1139 		void *buffer, unsigned bufflen)
1140 {
1141 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1142 			NVME_QID_ANY, 0);
1143 }
1144 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1145 
1146 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1147 {
1148 	u32 effects = 0;
1149 
1150 	if (ns) {
1151 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1152 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1153 			dev_warn_once(ctrl->device,
1154 				"IO command:%02x has unusual effects:%08x\n",
1155 				opcode, effects);
1156 
1157 		/*
1158 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1159 		 * which would deadlock when done on an I/O command.  Note that
1160 		 * We already warn about an unusual effect above.
1161 		 */
1162 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1163 	} else {
1164 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1165 
1166 		/* Ignore execution restrictions if any relaxation bits are set */
1167 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1168 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1169 	}
1170 
1171 	return effects;
1172 }
1173 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1174 
1175 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1176 {
1177 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1178 
1179 	/*
1180 	 * For simplicity, IO to all namespaces is quiesced even if the command
1181 	 * effects say only one namespace is affected.
1182 	 */
1183 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1184 		mutex_lock(&ctrl->scan_lock);
1185 		mutex_lock(&ctrl->subsys->lock);
1186 		nvme_mpath_start_freeze(ctrl->subsys);
1187 		nvme_mpath_wait_freeze(ctrl->subsys);
1188 		nvme_start_freeze(ctrl);
1189 		nvme_wait_freeze(ctrl);
1190 	}
1191 	return effects;
1192 }
1193 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1194 
1195 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1196 		       struct nvme_command *cmd, int status)
1197 {
1198 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1199 		nvme_unfreeze(ctrl);
1200 		nvme_mpath_unfreeze(ctrl->subsys);
1201 		mutex_unlock(&ctrl->subsys->lock);
1202 		mutex_unlock(&ctrl->scan_lock);
1203 	}
1204 	if (effects & NVME_CMD_EFFECTS_CCC) {
1205 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1206 				      &ctrl->flags)) {
1207 			dev_info(ctrl->device,
1208 "controller capabilities changed, reset may be required to take effect.\n");
1209 		}
1210 	}
1211 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1212 		nvme_queue_scan(ctrl);
1213 		flush_work(&ctrl->scan_work);
1214 	}
1215 	if (ns)
1216 		return;
1217 
1218 	switch (cmd->common.opcode) {
1219 	case nvme_admin_set_features:
1220 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1221 		case NVME_FEAT_KATO:
1222 			/*
1223 			 * Keep alive commands interval on the host should be
1224 			 * updated when KATO is modified by Set Features
1225 			 * commands.
1226 			 */
1227 			if (!status)
1228 				nvme_update_keep_alive(ctrl, cmd);
1229 			break;
1230 		default:
1231 			break;
1232 		}
1233 		break;
1234 	default:
1235 		break;
1236 	}
1237 }
1238 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1239 
1240 /*
1241  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1242  *
1243  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1244  *   accounting for transport roundtrip times [..].
1245  */
1246 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1247 {
1248 	unsigned long delay = ctrl->kato * HZ / 2;
1249 
1250 	/*
1251 	 * When using Traffic Based Keep Alive, we need to run
1252 	 * nvme_keep_alive_work at twice the normal frequency, as one
1253 	 * command completion can postpone sending a keep alive command
1254 	 * by up to twice the delay between runs.
1255 	 */
1256 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1257 		delay /= 2;
1258 	return delay;
1259 }
1260 
1261 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1262 {
1263 	unsigned long now = jiffies;
1264 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1265 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1266 
1267 	if (time_after(now, ka_next_check_tm))
1268 		delay = 0;
1269 	else
1270 		delay = ka_next_check_tm - now;
1271 
1272 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1273 }
1274 
1275 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1276 						 blk_status_t status)
1277 {
1278 	struct nvme_ctrl *ctrl = rq->end_io_data;
1279 	unsigned long flags;
1280 	bool startka = false;
1281 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1282 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1283 
1284 	/*
1285 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1286 	 * at the desired frequency.
1287 	 */
1288 	if (rtt <= delay) {
1289 		delay -= rtt;
1290 	} else {
1291 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1292 			 jiffies_to_msecs(rtt));
1293 		delay = 0;
1294 	}
1295 
1296 	blk_mq_free_request(rq);
1297 
1298 	if (status) {
1299 		dev_err(ctrl->device,
1300 			"failed nvme_keep_alive_end_io error=%d\n",
1301 				status);
1302 		return RQ_END_IO_NONE;
1303 	}
1304 
1305 	ctrl->ka_last_check_time = jiffies;
1306 	ctrl->comp_seen = false;
1307 	spin_lock_irqsave(&ctrl->lock, flags);
1308 	if (ctrl->state == NVME_CTRL_LIVE ||
1309 	    ctrl->state == NVME_CTRL_CONNECTING)
1310 		startka = true;
1311 	spin_unlock_irqrestore(&ctrl->lock, flags);
1312 	if (startka)
1313 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1314 	return RQ_END_IO_NONE;
1315 }
1316 
1317 static void nvme_keep_alive_work(struct work_struct *work)
1318 {
1319 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1320 			struct nvme_ctrl, ka_work);
1321 	bool comp_seen = ctrl->comp_seen;
1322 	struct request *rq;
1323 
1324 	ctrl->ka_last_check_time = jiffies;
1325 
1326 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1327 		dev_dbg(ctrl->device,
1328 			"reschedule traffic based keep-alive timer\n");
1329 		ctrl->comp_seen = false;
1330 		nvme_queue_keep_alive_work(ctrl);
1331 		return;
1332 	}
1333 
1334 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1335 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1336 	if (IS_ERR(rq)) {
1337 		/* allocation failure, reset the controller */
1338 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1339 		nvme_reset_ctrl(ctrl);
1340 		return;
1341 	}
1342 	nvme_init_request(rq, &ctrl->ka_cmd);
1343 
1344 	rq->timeout = ctrl->kato * HZ;
1345 	rq->end_io = nvme_keep_alive_end_io;
1346 	rq->end_io_data = ctrl;
1347 	blk_execute_rq_nowait(rq, false);
1348 }
1349 
1350 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1351 {
1352 	if (unlikely(ctrl->kato == 0))
1353 		return;
1354 
1355 	nvme_queue_keep_alive_work(ctrl);
1356 }
1357 
1358 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1359 {
1360 	if (unlikely(ctrl->kato == 0))
1361 		return;
1362 
1363 	cancel_delayed_work_sync(&ctrl->ka_work);
1364 }
1365 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1366 
1367 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1368 				   struct nvme_command *cmd)
1369 {
1370 	unsigned int new_kato =
1371 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1372 
1373 	dev_info(ctrl->device,
1374 		 "keep alive interval updated from %u ms to %u ms\n",
1375 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1376 
1377 	nvme_stop_keep_alive(ctrl);
1378 	ctrl->kato = new_kato;
1379 	nvme_start_keep_alive(ctrl);
1380 }
1381 
1382 /*
1383  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1384  * flag, thus sending any new CNS opcodes has a big chance of not working.
1385  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1386  * (but not for any later version).
1387  */
1388 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1389 {
1390 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1391 		return ctrl->vs < NVME_VS(1, 2, 0);
1392 	return ctrl->vs < NVME_VS(1, 1, 0);
1393 }
1394 
1395 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1396 {
1397 	struct nvme_command c = { };
1398 	int error;
1399 
1400 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1401 	c.identify.opcode = nvme_admin_identify;
1402 	c.identify.cns = NVME_ID_CNS_CTRL;
1403 
1404 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1405 	if (!*id)
1406 		return -ENOMEM;
1407 
1408 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1409 			sizeof(struct nvme_id_ctrl));
1410 	if (error) {
1411 		kfree(*id);
1412 		*id = NULL;
1413 	}
1414 	return error;
1415 }
1416 
1417 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1418 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1419 {
1420 	const char *warn_str = "ctrl returned bogus length:";
1421 	void *data = cur;
1422 
1423 	switch (cur->nidt) {
1424 	case NVME_NIDT_EUI64:
1425 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1426 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1427 				 warn_str, cur->nidl);
1428 			return -1;
1429 		}
1430 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1431 			return NVME_NIDT_EUI64_LEN;
1432 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1433 		return NVME_NIDT_EUI64_LEN;
1434 	case NVME_NIDT_NGUID:
1435 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1436 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1437 				 warn_str, cur->nidl);
1438 			return -1;
1439 		}
1440 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1441 			return NVME_NIDT_NGUID_LEN;
1442 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1443 		return NVME_NIDT_NGUID_LEN;
1444 	case NVME_NIDT_UUID:
1445 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1446 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1447 				 warn_str, cur->nidl);
1448 			return -1;
1449 		}
1450 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1451 			return NVME_NIDT_UUID_LEN;
1452 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1453 		return NVME_NIDT_UUID_LEN;
1454 	case NVME_NIDT_CSI:
1455 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1456 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1457 				 warn_str, cur->nidl);
1458 			return -1;
1459 		}
1460 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1461 		*csi_seen = true;
1462 		return NVME_NIDT_CSI_LEN;
1463 	default:
1464 		/* Skip unknown types */
1465 		return cur->nidl;
1466 	}
1467 }
1468 
1469 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1470 		struct nvme_ns_info *info)
1471 {
1472 	struct nvme_command c = { };
1473 	bool csi_seen = false;
1474 	int status, pos, len;
1475 	void *data;
1476 
1477 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1478 		return 0;
1479 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1480 		return 0;
1481 
1482 	c.identify.opcode = nvme_admin_identify;
1483 	c.identify.nsid = cpu_to_le32(info->nsid);
1484 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1485 
1486 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1487 	if (!data)
1488 		return -ENOMEM;
1489 
1490 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1491 				      NVME_IDENTIFY_DATA_SIZE);
1492 	if (status) {
1493 		dev_warn(ctrl->device,
1494 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1495 			info->nsid, status);
1496 		goto free_data;
1497 	}
1498 
1499 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1500 		struct nvme_ns_id_desc *cur = data + pos;
1501 
1502 		if (cur->nidl == 0)
1503 			break;
1504 
1505 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1506 		if (len < 0)
1507 			break;
1508 
1509 		len += sizeof(*cur);
1510 	}
1511 
1512 	if (nvme_multi_css(ctrl) && !csi_seen) {
1513 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1514 			 info->nsid);
1515 		status = -EINVAL;
1516 	}
1517 
1518 free_data:
1519 	kfree(data);
1520 	return status;
1521 }
1522 
1523 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1524 			struct nvme_id_ns **id)
1525 {
1526 	struct nvme_command c = { };
1527 	int error;
1528 
1529 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1530 	c.identify.opcode = nvme_admin_identify;
1531 	c.identify.nsid = cpu_to_le32(nsid);
1532 	c.identify.cns = NVME_ID_CNS_NS;
1533 
1534 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1535 	if (!*id)
1536 		return -ENOMEM;
1537 
1538 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1539 	if (error) {
1540 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1541 		kfree(*id);
1542 		*id = NULL;
1543 	}
1544 	return error;
1545 }
1546 
1547 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1548 		struct nvme_ns_info *info)
1549 {
1550 	struct nvme_ns_ids *ids = &info->ids;
1551 	struct nvme_id_ns *id;
1552 	int ret;
1553 
1554 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1555 	if (ret)
1556 		return ret;
1557 
1558 	if (id->ncap == 0) {
1559 		/* namespace not allocated or attached */
1560 		info->is_removed = true;
1561 		ret = -ENODEV;
1562 		goto error;
1563 	}
1564 
1565 	info->anagrpid = id->anagrpid;
1566 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1567 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1568 	info->is_ready = true;
1569 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1570 		dev_info(ctrl->device,
1571 			 "Ignoring bogus Namespace Identifiers\n");
1572 	} else {
1573 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1574 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1575 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1576 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1577 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1578 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1579 	}
1580 
1581 error:
1582 	kfree(id);
1583 	return ret;
1584 }
1585 
1586 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1587 		struct nvme_ns_info *info)
1588 {
1589 	struct nvme_id_ns_cs_indep *id;
1590 	struct nvme_command c = {
1591 		.identify.opcode	= nvme_admin_identify,
1592 		.identify.nsid		= cpu_to_le32(info->nsid),
1593 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1594 	};
1595 	int ret;
1596 
1597 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1598 	if (!id)
1599 		return -ENOMEM;
1600 
1601 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1602 	if (!ret) {
1603 		info->anagrpid = id->anagrpid;
1604 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1605 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1606 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1607 	}
1608 	kfree(id);
1609 	return ret;
1610 }
1611 
1612 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1613 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1614 {
1615 	union nvme_result res = { 0 };
1616 	struct nvme_command c = { };
1617 	int ret;
1618 
1619 	c.features.opcode = op;
1620 	c.features.fid = cpu_to_le32(fid);
1621 	c.features.dword11 = cpu_to_le32(dword11);
1622 
1623 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1624 			buffer, buflen, NVME_QID_ANY, 0);
1625 	if (ret >= 0 && result)
1626 		*result = le32_to_cpu(res.u32);
1627 	return ret;
1628 }
1629 
1630 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1631 		      unsigned int dword11, void *buffer, size_t buflen,
1632 		      u32 *result)
1633 {
1634 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1635 			     buflen, result);
1636 }
1637 EXPORT_SYMBOL_GPL(nvme_set_features);
1638 
1639 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1640 		      unsigned int dword11, void *buffer, size_t buflen,
1641 		      u32 *result)
1642 {
1643 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1644 			     buflen, result);
1645 }
1646 EXPORT_SYMBOL_GPL(nvme_get_features);
1647 
1648 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1649 {
1650 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1651 	u32 result;
1652 	int status, nr_io_queues;
1653 
1654 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1655 			&result);
1656 	if (status < 0)
1657 		return status;
1658 
1659 	/*
1660 	 * Degraded controllers might return an error when setting the queue
1661 	 * count.  We still want to be able to bring them online and offer
1662 	 * access to the admin queue, as that might be only way to fix them up.
1663 	 */
1664 	if (status > 0) {
1665 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1666 		*count = 0;
1667 	} else {
1668 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1669 		*count = min(*count, nr_io_queues);
1670 	}
1671 
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1675 
1676 #define NVME_AEN_SUPPORTED \
1677 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1678 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1679 
1680 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1681 {
1682 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1683 	int status;
1684 
1685 	if (!supported_aens)
1686 		return;
1687 
1688 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1689 			NULL, 0, &result);
1690 	if (status)
1691 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1692 			 supported_aens);
1693 
1694 	queue_work(nvme_wq, &ctrl->async_event_work);
1695 }
1696 
1697 static int nvme_ns_open(struct nvme_ns *ns)
1698 {
1699 
1700 	/* should never be called due to GENHD_FL_HIDDEN */
1701 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1702 		goto fail;
1703 	if (!nvme_get_ns(ns))
1704 		goto fail;
1705 	if (!try_module_get(ns->ctrl->ops->module))
1706 		goto fail_put_ns;
1707 
1708 	return 0;
1709 
1710 fail_put_ns:
1711 	nvme_put_ns(ns);
1712 fail:
1713 	return -ENXIO;
1714 }
1715 
1716 static void nvme_ns_release(struct nvme_ns *ns)
1717 {
1718 
1719 	module_put(ns->ctrl->ops->module);
1720 	nvme_put_ns(ns);
1721 }
1722 
1723 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1724 {
1725 	return nvme_ns_open(disk->private_data);
1726 }
1727 
1728 static void nvme_release(struct gendisk *disk)
1729 {
1730 	nvme_ns_release(disk->private_data);
1731 }
1732 
1733 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1734 {
1735 	/* some standard values */
1736 	geo->heads = 1 << 6;
1737 	geo->sectors = 1 << 5;
1738 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1739 	return 0;
1740 }
1741 
1742 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head)
1743 {
1744 	struct blk_integrity integrity = { };
1745 
1746 	blk_integrity_unregister(disk);
1747 
1748 	if (!head->ms)
1749 		return true;
1750 
1751 	/*
1752 	 * PI can always be supported as we can ask the controller to simply
1753 	 * insert/strip it, which is not possible for other kinds of metadata.
1754 	 */
1755 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1756 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1757 		return nvme_ns_has_pi(head);
1758 
1759 	switch (head->pi_type) {
1760 	case NVME_NS_DPS_PI_TYPE3:
1761 		switch (head->guard_type) {
1762 		case NVME_NVM_NS_16B_GUARD:
1763 			integrity.profile = &t10_pi_type3_crc;
1764 			integrity.tag_size = sizeof(u16) + sizeof(u32);
1765 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1766 			break;
1767 		case NVME_NVM_NS_64B_GUARD:
1768 			integrity.profile = &ext_pi_type3_crc64;
1769 			integrity.tag_size = sizeof(u16) + 6;
1770 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1771 			break;
1772 		default:
1773 			integrity.profile = NULL;
1774 			break;
1775 		}
1776 		break;
1777 	case NVME_NS_DPS_PI_TYPE1:
1778 	case NVME_NS_DPS_PI_TYPE2:
1779 		switch (head->guard_type) {
1780 		case NVME_NVM_NS_16B_GUARD:
1781 			integrity.profile = &t10_pi_type1_crc;
1782 			integrity.tag_size = sizeof(u16);
1783 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1784 			break;
1785 		case NVME_NVM_NS_64B_GUARD:
1786 			integrity.profile = &ext_pi_type1_crc64;
1787 			integrity.tag_size = sizeof(u16);
1788 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1789 			break;
1790 		default:
1791 			integrity.profile = NULL;
1792 			break;
1793 		}
1794 		break;
1795 	default:
1796 		integrity.profile = NULL;
1797 		break;
1798 	}
1799 
1800 	integrity.tuple_size = head->ms;
1801 	integrity.pi_offset = head->pi_offset;
1802 	blk_integrity_register(disk, &integrity);
1803 	return true;
1804 }
1805 
1806 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1807 {
1808 	struct nvme_ctrl *ctrl = ns->ctrl;
1809 
1810 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1811 		lim->max_hw_discard_sectors =
1812 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1813 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1814 		lim->max_hw_discard_sectors = UINT_MAX;
1815 	else
1816 		lim->max_hw_discard_sectors = 0;
1817 
1818 	lim->discard_granularity = lim->logical_block_size;
1819 
1820 	if (ctrl->dmrl)
1821 		lim->max_discard_segments = ctrl->dmrl;
1822 	else
1823 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1824 }
1825 
1826 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1827 {
1828 	return uuid_equal(&a->uuid, &b->uuid) &&
1829 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1830 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1831 		a->csi == b->csi;
1832 }
1833 
1834 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1835 		struct nvme_id_ns_nvm **nvmp)
1836 {
1837 	struct nvme_command c = {
1838 		.identify.opcode	= nvme_admin_identify,
1839 		.identify.nsid		= cpu_to_le32(nsid),
1840 		.identify.cns		= NVME_ID_CNS_CS_NS,
1841 		.identify.csi		= NVME_CSI_NVM,
1842 	};
1843 	struct nvme_id_ns_nvm *nvm;
1844 	int ret;
1845 
1846 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1847 	if (!nvm)
1848 		return -ENOMEM;
1849 
1850 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1851 	if (ret)
1852 		kfree(nvm);
1853 	else
1854 		*nvmp = nvm;
1855 	return ret;
1856 }
1857 
1858 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1859 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1860 {
1861 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1862 
1863 	/* no support for storage tag formats right now */
1864 	if (nvme_elbaf_sts(elbaf))
1865 		return;
1866 
1867 	head->guard_type = nvme_elbaf_guard_type(elbaf);
1868 	switch (head->guard_type) {
1869 	case NVME_NVM_NS_64B_GUARD:
1870 		head->pi_size = sizeof(struct crc64_pi_tuple);
1871 		break;
1872 	case NVME_NVM_NS_16B_GUARD:
1873 		head->pi_size = sizeof(struct t10_pi_tuple);
1874 		break;
1875 	default:
1876 		break;
1877 	}
1878 }
1879 
1880 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1881 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1882 		struct nvme_id_ns_nvm *nvm)
1883 {
1884 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1885 	head->pi_type = 0;
1886 	head->pi_size = 0;
1887 	head->pi_offset = 0;
1888 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1889 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1890 		return;
1891 
1892 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1893 		nvme_configure_pi_elbas(head, id, nvm);
1894 	} else {
1895 		head->pi_size = sizeof(struct t10_pi_tuple);
1896 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1897 	}
1898 
1899 	if (head->pi_size && head->ms >= head->pi_size)
1900 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1901 	if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1902 		head->pi_offset = head->ms - head->pi_size;
1903 
1904 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1905 		/*
1906 		 * The NVMe over Fabrics specification only supports metadata as
1907 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1908 		 * remap the separate metadata buffer from the block layer.
1909 		 */
1910 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1911 			return;
1912 
1913 		head->features |= NVME_NS_EXT_LBAS;
1914 
1915 		/*
1916 		 * The current fabrics transport drivers support namespace
1917 		 * metadata formats only if nvme_ns_has_pi() returns true.
1918 		 * Suppress support for all other formats so the namespace will
1919 		 * have a 0 capacity and not be usable through the block stack.
1920 		 *
1921 		 * Note, this check will need to be modified if any drivers
1922 		 * gain the ability to use other metadata formats.
1923 		 */
1924 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1925 			head->features |= NVME_NS_METADATA_SUPPORTED;
1926 	} else {
1927 		/*
1928 		 * For PCIe controllers, we can't easily remap the separate
1929 		 * metadata buffer from the block layer and thus require a
1930 		 * separate metadata buffer for block layer metadata/PI support.
1931 		 * We allow extended LBAs for the passthrough interface, though.
1932 		 */
1933 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1934 			head->features |= NVME_NS_EXT_LBAS;
1935 		else
1936 			head->features |= NVME_NS_METADATA_SUPPORTED;
1937 	}
1938 }
1939 
1940 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1941 {
1942 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1943 }
1944 
1945 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1946 		struct queue_limits *lim)
1947 {
1948 	lim->max_hw_sectors = ctrl->max_hw_sectors;
1949 	lim->max_segments = min_t(u32, USHRT_MAX,
1950 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1951 	lim->max_integrity_segments = ctrl->max_integrity_segments;
1952 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1953 	lim->max_segment_size = UINT_MAX;
1954 	lim->dma_alignment = 3;
1955 }
1956 
1957 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1958 		struct queue_limits *lim)
1959 {
1960 	struct nvme_ns_head *head = ns->head;
1961 	u32 bs = 1U << head->lba_shift;
1962 	u32 atomic_bs, phys_bs, io_opt = 0;
1963 	bool valid = true;
1964 
1965 	/*
1966 	 * The block layer can't support LBA sizes larger than the page size
1967 	 * or smaller than a sector size yet, so catch this early and don't
1968 	 * allow block I/O.
1969 	 */
1970 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
1971 		bs = (1 << 9);
1972 		valid = false;
1973 	}
1974 
1975 	atomic_bs = phys_bs = bs;
1976 	if (id->nabo == 0) {
1977 		/*
1978 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1979 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1980 		 * 0 then AWUPF must be used instead.
1981 		 */
1982 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1983 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1984 		else
1985 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1986 	}
1987 
1988 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1989 		/* NPWG = Namespace Preferred Write Granularity */
1990 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1991 		/* NOWS = Namespace Optimal Write Size */
1992 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1993 	}
1994 
1995 	/*
1996 	 * Linux filesystems assume writing a single physical block is
1997 	 * an atomic operation. Hence limit the physical block size to the
1998 	 * value of the Atomic Write Unit Power Fail parameter.
1999 	 */
2000 	lim->logical_block_size = bs;
2001 	lim->physical_block_size = min(phys_bs, atomic_bs);
2002 	lim->io_min = phys_bs;
2003 	lim->io_opt = io_opt;
2004 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2005 		lim->max_write_zeroes_sectors = UINT_MAX;
2006 	else
2007 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2008 	return valid;
2009 }
2010 
2011 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2012 {
2013 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2014 }
2015 
2016 static inline bool nvme_first_scan(struct gendisk *disk)
2017 {
2018 	/* nvme_alloc_ns() scans the disk prior to adding it */
2019 	return !disk_live(disk);
2020 }
2021 
2022 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2023 		struct queue_limits *lim)
2024 {
2025 	struct nvme_ctrl *ctrl = ns->ctrl;
2026 	u32 iob;
2027 
2028 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2029 	    is_power_of_2(ctrl->max_hw_sectors))
2030 		iob = ctrl->max_hw_sectors;
2031 	else
2032 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2033 
2034 	if (!iob)
2035 		return;
2036 
2037 	if (!is_power_of_2(iob)) {
2038 		if (nvme_first_scan(ns->disk))
2039 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2040 				ns->disk->disk_name, iob);
2041 		return;
2042 	}
2043 
2044 	if (blk_queue_is_zoned(ns->disk->queue)) {
2045 		if (nvme_first_scan(ns->disk))
2046 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2047 				ns->disk->disk_name);
2048 		return;
2049 	}
2050 
2051 	lim->chunk_sectors = iob;
2052 }
2053 
2054 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2055 		struct nvme_ns_info *info)
2056 {
2057 	struct queue_limits lim;
2058 	int ret;
2059 
2060 	blk_mq_freeze_queue(ns->disk->queue);
2061 	lim = queue_limits_start_update(ns->disk->queue);
2062 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2063 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2064 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2065 	blk_mq_unfreeze_queue(ns->disk->queue);
2066 
2067 	/* Hide the block-interface for these devices */
2068 	if (!ret)
2069 		ret = -ENODEV;
2070 	return ret;
2071 }
2072 
2073 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2074 		struct nvme_ns_info *info)
2075 {
2076 	bool vwc = ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2077 	struct queue_limits lim;
2078 	struct nvme_id_ns_nvm *nvm = NULL;
2079 	struct nvme_zone_info zi = {};
2080 	struct nvme_id_ns *id;
2081 	sector_t capacity;
2082 	unsigned lbaf;
2083 	int ret;
2084 
2085 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2086 	if (ret)
2087 		return ret;
2088 
2089 	if (id->ncap == 0) {
2090 		/* namespace not allocated or attached */
2091 		info->is_removed = true;
2092 		ret = -ENXIO;
2093 		goto out;
2094 	}
2095 	lbaf = nvme_lbaf_index(id->flbas);
2096 
2097 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2098 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2099 		if (ret < 0)
2100 			goto out;
2101 	}
2102 
2103 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2104 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2105 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2106 		if (ret < 0)
2107 			goto out;
2108 	}
2109 
2110 	blk_mq_freeze_queue(ns->disk->queue);
2111 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2112 	ns->head->nuse = le64_to_cpu(id->nuse);
2113 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2114 
2115 	lim = queue_limits_start_update(ns->disk->queue);
2116 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2117 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm);
2118 	nvme_set_chunk_sectors(ns, id, &lim);
2119 	if (!nvme_update_disk_info(ns, id, &lim))
2120 		capacity = 0;
2121 	nvme_config_discard(ns, &lim);
2122 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2123 	    ns->head->ids.csi == NVME_CSI_ZNS)
2124 		nvme_update_zone_info(ns, &lim, &zi);
2125 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2126 	if (ret) {
2127 		blk_mq_unfreeze_queue(ns->disk->queue);
2128 		goto out;
2129 	}
2130 
2131 	/*
2132 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2133 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2134 	 * I/O to namespaces with metadata except when the namespace supports
2135 	 * PI, as it can strip/insert in that case.
2136 	 */
2137 	if (!nvme_init_integrity(ns->disk, ns->head))
2138 		capacity = 0;
2139 
2140 	set_capacity_and_notify(ns->disk, capacity);
2141 
2142 	/*
2143 	 * Only set the DEAC bit if the device guarantees that reads from
2144 	 * deallocated data return zeroes.  While the DEAC bit does not
2145 	 * require that, it must be a no-op if reads from deallocated data
2146 	 * do not return zeroes.
2147 	 */
2148 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2149 		ns->head->features |= NVME_NS_DEAC;
2150 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2151 	blk_queue_write_cache(ns->disk->queue, vwc, vwc);
2152 	set_bit(NVME_NS_READY, &ns->flags);
2153 	blk_mq_unfreeze_queue(ns->disk->queue);
2154 
2155 	if (blk_queue_is_zoned(ns->queue)) {
2156 		ret = blk_revalidate_disk_zones(ns->disk, NULL);
2157 		if (ret && !nvme_first_scan(ns->disk))
2158 			goto out;
2159 	}
2160 
2161 	ret = 0;
2162 out:
2163 	kfree(nvm);
2164 	kfree(id);
2165 	return ret;
2166 }
2167 
2168 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2169 {
2170 	bool unsupported = false;
2171 	int ret;
2172 
2173 	switch (info->ids.csi) {
2174 	case NVME_CSI_ZNS:
2175 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2176 			dev_info(ns->ctrl->device,
2177 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2178 				info->nsid);
2179 			ret = nvme_update_ns_info_generic(ns, info);
2180 			break;
2181 		}
2182 		ret = nvme_update_ns_info_block(ns, info);
2183 		break;
2184 	case NVME_CSI_NVM:
2185 		ret = nvme_update_ns_info_block(ns, info);
2186 		break;
2187 	default:
2188 		dev_info(ns->ctrl->device,
2189 			"block device for nsid %u not supported (csi %u)\n",
2190 			info->nsid, info->ids.csi);
2191 		ret = nvme_update_ns_info_generic(ns, info);
2192 		break;
2193 	}
2194 
2195 	/*
2196 	 * If probing fails due an unsupported feature, hide the block device,
2197 	 * but still allow other access.
2198 	 */
2199 	if (ret == -ENODEV) {
2200 		ns->disk->flags |= GENHD_FL_HIDDEN;
2201 		set_bit(NVME_NS_READY, &ns->flags);
2202 		unsupported = true;
2203 		ret = 0;
2204 	}
2205 
2206 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2207 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2208 		struct queue_limits lim;
2209 
2210 		blk_mq_freeze_queue(ns->head->disk->queue);
2211 		if (unsupported)
2212 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2213 		else
2214 			nvme_init_integrity(ns->head->disk, ns->head);
2215 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2216 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2217 		nvme_mpath_revalidate_paths(ns);
2218 
2219 		/*
2220 		 * queue_limits mixes values that are the hardware limitations
2221 		 * for bio splitting with what is the device configuration.
2222 		 *
2223 		 * For NVMe the device configuration can change after e.g. a
2224 		 * Format command, and we really want to pick up the new format
2225 		 * value here.  But we must still stack the queue limits to the
2226 		 * least common denominator for multipathing to split the bios
2227 		 * properly.
2228 		 *
2229 		 * To work around this, we explicitly set the device
2230 		 * configuration to those that we just queried, but only stack
2231 		 * the splitting limits in to make sure we still obey possibly
2232 		 * lower limitations of other controllers.
2233 		 */
2234 		lim = queue_limits_start_update(ns->head->disk->queue);
2235 		lim.logical_block_size = ns_lim->logical_block_size;
2236 		lim.physical_block_size = ns_lim->physical_block_size;
2237 		lim.io_min = ns_lim->io_min;
2238 		lim.io_opt = ns_lim->io_opt;
2239 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2240 					ns->head->disk->disk_name);
2241 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2242 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2243 	}
2244 
2245 	return ret;
2246 }
2247 
2248 #ifdef CONFIG_BLK_SED_OPAL
2249 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2250 		bool send)
2251 {
2252 	struct nvme_ctrl *ctrl = data;
2253 	struct nvme_command cmd = { };
2254 
2255 	if (send)
2256 		cmd.common.opcode = nvme_admin_security_send;
2257 	else
2258 		cmd.common.opcode = nvme_admin_security_recv;
2259 	cmd.common.nsid = 0;
2260 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2261 	cmd.common.cdw11 = cpu_to_le32(len);
2262 
2263 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2264 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2265 }
2266 
2267 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2268 {
2269 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2270 		if (!ctrl->opal_dev)
2271 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2272 		else if (was_suspended)
2273 			opal_unlock_from_suspend(ctrl->opal_dev);
2274 	} else {
2275 		free_opal_dev(ctrl->opal_dev);
2276 		ctrl->opal_dev = NULL;
2277 	}
2278 }
2279 #else
2280 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2281 {
2282 }
2283 #endif /* CONFIG_BLK_SED_OPAL */
2284 
2285 #ifdef CONFIG_BLK_DEV_ZONED
2286 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2287 		unsigned int nr_zones, report_zones_cb cb, void *data)
2288 {
2289 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2290 			data);
2291 }
2292 #else
2293 #define nvme_report_zones	NULL
2294 #endif /* CONFIG_BLK_DEV_ZONED */
2295 
2296 const struct block_device_operations nvme_bdev_ops = {
2297 	.owner		= THIS_MODULE,
2298 	.ioctl		= nvme_ioctl,
2299 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2300 	.open		= nvme_open,
2301 	.release	= nvme_release,
2302 	.getgeo		= nvme_getgeo,
2303 	.report_zones	= nvme_report_zones,
2304 	.pr_ops		= &nvme_pr_ops,
2305 };
2306 
2307 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2308 		u32 timeout, const char *op)
2309 {
2310 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2311 	u32 csts;
2312 	int ret;
2313 
2314 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2315 		if (csts == ~0)
2316 			return -ENODEV;
2317 		if ((csts & mask) == val)
2318 			break;
2319 
2320 		usleep_range(1000, 2000);
2321 		if (fatal_signal_pending(current))
2322 			return -EINTR;
2323 		if (time_after(jiffies, timeout_jiffies)) {
2324 			dev_err(ctrl->device,
2325 				"Device not ready; aborting %s, CSTS=0x%x\n",
2326 				op, csts);
2327 			return -ENODEV;
2328 		}
2329 	}
2330 
2331 	return ret;
2332 }
2333 
2334 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2335 {
2336 	int ret;
2337 
2338 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2339 	if (shutdown)
2340 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2341 	else
2342 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2343 
2344 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2345 	if (ret)
2346 		return ret;
2347 
2348 	if (shutdown) {
2349 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2350 				       NVME_CSTS_SHST_CMPLT,
2351 				       ctrl->shutdown_timeout, "shutdown");
2352 	}
2353 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2354 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2355 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2356 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2357 }
2358 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2359 
2360 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2361 {
2362 	unsigned dev_page_min;
2363 	u32 timeout;
2364 	int ret;
2365 
2366 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2367 	if (ret) {
2368 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2369 		return ret;
2370 	}
2371 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2372 
2373 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2374 		dev_err(ctrl->device,
2375 			"Minimum device page size %u too large for host (%u)\n",
2376 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2377 		return -ENODEV;
2378 	}
2379 
2380 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2381 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2382 	else
2383 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2384 
2385 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2386 		ctrl->ctrl_config |= NVME_CC_CRIME;
2387 
2388 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2389 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2390 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2391 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2392 	if (ret)
2393 		return ret;
2394 
2395 	/* Flush write to device (required if transport is PCI) */
2396 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2397 	if (ret)
2398 		return ret;
2399 
2400 	/* CAP value may change after initial CC write */
2401 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2402 	if (ret)
2403 		return ret;
2404 
2405 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2406 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2407 		u32 crto, ready_timeout;
2408 
2409 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2410 		if (ret) {
2411 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2412 				ret);
2413 			return ret;
2414 		}
2415 
2416 		/*
2417 		 * CRTO should always be greater or equal to CAP.TO, but some
2418 		 * devices are known to get this wrong. Use the larger of the
2419 		 * two values.
2420 		 */
2421 		if (ctrl->ctrl_config & NVME_CC_CRIME)
2422 			ready_timeout = NVME_CRTO_CRIMT(crto);
2423 		else
2424 			ready_timeout = NVME_CRTO_CRWMT(crto);
2425 
2426 		if (ready_timeout < timeout)
2427 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2428 				      crto, ctrl->cap);
2429 		else
2430 			timeout = ready_timeout;
2431 	}
2432 
2433 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2434 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2435 	if (ret)
2436 		return ret;
2437 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2438 			       (timeout + 1) / 2, "initialisation");
2439 }
2440 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2441 
2442 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2443 {
2444 	__le64 ts;
2445 	int ret;
2446 
2447 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2448 		return 0;
2449 
2450 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2451 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2452 			NULL);
2453 	if (ret)
2454 		dev_warn_once(ctrl->device,
2455 			"could not set timestamp (%d)\n", ret);
2456 	return ret;
2457 }
2458 
2459 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2460 {
2461 	struct nvme_feat_host_behavior *host;
2462 	u8 acre = 0, lbafee = 0;
2463 	int ret;
2464 
2465 	/* Don't bother enabling the feature if retry delay is not reported */
2466 	if (ctrl->crdt[0])
2467 		acre = NVME_ENABLE_ACRE;
2468 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2469 		lbafee = NVME_ENABLE_LBAFEE;
2470 
2471 	if (!acre && !lbafee)
2472 		return 0;
2473 
2474 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2475 	if (!host)
2476 		return 0;
2477 
2478 	host->acre = acre;
2479 	host->lbafee = lbafee;
2480 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2481 				host, sizeof(*host), NULL);
2482 	kfree(host);
2483 	return ret;
2484 }
2485 
2486 /*
2487  * The function checks whether the given total (exlat + enlat) latency of
2488  * a power state allows the latter to be used as an APST transition target.
2489  * It does so by comparing the latency to the primary and secondary latency
2490  * tolerances defined by module params. If there's a match, the corresponding
2491  * timeout value is returned and the matching tolerance index (1 or 2) is
2492  * reported.
2493  */
2494 static bool nvme_apst_get_transition_time(u64 total_latency,
2495 		u64 *transition_time, unsigned *last_index)
2496 {
2497 	if (total_latency <= apst_primary_latency_tol_us) {
2498 		if (*last_index == 1)
2499 			return false;
2500 		*last_index = 1;
2501 		*transition_time = apst_primary_timeout_ms;
2502 		return true;
2503 	}
2504 	if (apst_secondary_timeout_ms &&
2505 		total_latency <= apst_secondary_latency_tol_us) {
2506 		if (*last_index <= 2)
2507 			return false;
2508 		*last_index = 2;
2509 		*transition_time = apst_secondary_timeout_ms;
2510 		return true;
2511 	}
2512 	return false;
2513 }
2514 
2515 /*
2516  * APST (Autonomous Power State Transition) lets us program a table of power
2517  * state transitions that the controller will perform automatically.
2518  *
2519  * Depending on module params, one of the two supported techniques will be used:
2520  *
2521  * - If the parameters provide explicit timeouts and tolerances, they will be
2522  *   used to build a table with up to 2 non-operational states to transition to.
2523  *   The default parameter values were selected based on the values used by
2524  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2525  *   regeneration of the APST table in the event of switching between external
2526  *   and battery power, the timeouts and tolerances reflect a compromise
2527  *   between values used by Microsoft for AC and battery scenarios.
2528  * - If not, we'll configure the table with a simple heuristic: we are willing
2529  *   to spend at most 2% of the time transitioning between power states.
2530  *   Therefore, when running in any given state, we will enter the next
2531  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2532  *   microseconds, as long as that state's exit latency is under the requested
2533  *   maximum latency.
2534  *
2535  * We will not autonomously enter any non-operational state for which the total
2536  * latency exceeds ps_max_latency_us.
2537  *
2538  * Users can set ps_max_latency_us to zero to turn off APST.
2539  */
2540 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2541 {
2542 	struct nvme_feat_auto_pst *table;
2543 	unsigned apste = 0;
2544 	u64 max_lat_us = 0;
2545 	__le64 target = 0;
2546 	int max_ps = -1;
2547 	int state;
2548 	int ret;
2549 	unsigned last_lt_index = UINT_MAX;
2550 
2551 	/*
2552 	 * If APST isn't supported or if we haven't been initialized yet,
2553 	 * then don't do anything.
2554 	 */
2555 	if (!ctrl->apsta)
2556 		return 0;
2557 
2558 	if (ctrl->npss > 31) {
2559 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2560 		return 0;
2561 	}
2562 
2563 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2564 	if (!table)
2565 		return 0;
2566 
2567 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2568 		/* Turn off APST. */
2569 		dev_dbg(ctrl->device, "APST disabled\n");
2570 		goto done;
2571 	}
2572 
2573 	/*
2574 	 * Walk through all states from lowest- to highest-power.
2575 	 * According to the spec, lower-numbered states use more power.  NPSS,
2576 	 * despite the name, is the index of the lowest-power state, not the
2577 	 * number of states.
2578 	 */
2579 	for (state = (int)ctrl->npss; state >= 0; state--) {
2580 		u64 total_latency_us, exit_latency_us, transition_ms;
2581 
2582 		if (target)
2583 			table->entries[state] = target;
2584 
2585 		/*
2586 		 * Don't allow transitions to the deepest state if it's quirked
2587 		 * off.
2588 		 */
2589 		if (state == ctrl->npss &&
2590 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2591 			continue;
2592 
2593 		/*
2594 		 * Is this state a useful non-operational state for higher-power
2595 		 * states to autonomously transition to?
2596 		 */
2597 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2598 			continue;
2599 
2600 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2601 		if (exit_latency_us > ctrl->ps_max_latency_us)
2602 			continue;
2603 
2604 		total_latency_us = exit_latency_us +
2605 			le32_to_cpu(ctrl->psd[state].entry_lat);
2606 
2607 		/*
2608 		 * This state is good. It can be used as the APST idle target
2609 		 * for higher power states.
2610 		 */
2611 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2612 			if (!nvme_apst_get_transition_time(total_latency_us,
2613 					&transition_ms, &last_lt_index))
2614 				continue;
2615 		} else {
2616 			transition_ms = total_latency_us + 19;
2617 			do_div(transition_ms, 20);
2618 			if (transition_ms > (1 << 24) - 1)
2619 				transition_ms = (1 << 24) - 1;
2620 		}
2621 
2622 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2623 		if (max_ps == -1)
2624 			max_ps = state;
2625 		if (total_latency_us > max_lat_us)
2626 			max_lat_us = total_latency_us;
2627 	}
2628 
2629 	if (max_ps == -1)
2630 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2631 	else
2632 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2633 			max_ps, max_lat_us, (int)sizeof(*table), table);
2634 	apste = 1;
2635 
2636 done:
2637 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2638 				table, sizeof(*table), NULL);
2639 	if (ret)
2640 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2641 	kfree(table);
2642 	return ret;
2643 }
2644 
2645 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2646 {
2647 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2648 	u64 latency;
2649 
2650 	switch (val) {
2651 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2652 	case PM_QOS_LATENCY_ANY:
2653 		latency = U64_MAX;
2654 		break;
2655 
2656 	default:
2657 		latency = val;
2658 	}
2659 
2660 	if (ctrl->ps_max_latency_us != latency) {
2661 		ctrl->ps_max_latency_us = latency;
2662 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2663 			nvme_configure_apst(ctrl);
2664 	}
2665 }
2666 
2667 struct nvme_core_quirk_entry {
2668 	/*
2669 	 * NVMe model and firmware strings are padded with spaces.  For
2670 	 * simplicity, strings in the quirk table are padded with NULLs
2671 	 * instead.
2672 	 */
2673 	u16 vid;
2674 	const char *mn;
2675 	const char *fr;
2676 	unsigned long quirks;
2677 };
2678 
2679 static const struct nvme_core_quirk_entry core_quirks[] = {
2680 	{
2681 		/*
2682 		 * This Toshiba device seems to die using any APST states.  See:
2683 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2684 		 */
2685 		.vid = 0x1179,
2686 		.mn = "THNSF5256GPUK TOSHIBA",
2687 		.quirks = NVME_QUIRK_NO_APST,
2688 	},
2689 	{
2690 		/*
2691 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2692 		 * condition associated with actions related to suspend to idle
2693 		 * LiteON has resolved the problem in future firmware
2694 		 */
2695 		.vid = 0x14a4,
2696 		.fr = "22301111",
2697 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2698 	},
2699 	{
2700 		/*
2701 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2702 		 * aborts I/O during any load, but more easily reproducible
2703 		 * with discards (fstrim).
2704 		 *
2705 		 * The device is left in a state where it is also not possible
2706 		 * to use "nvme set-feature" to disable APST, but booting with
2707 		 * nvme_core.default_ps_max_latency=0 works.
2708 		 */
2709 		.vid = 0x1e0f,
2710 		.mn = "KCD6XVUL6T40",
2711 		.quirks = NVME_QUIRK_NO_APST,
2712 	},
2713 	{
2714 		/*
2715 		 * The external Samsung X5 SSD fails initialization without a
2716 		 * delay before checking if it is ready and has a whole set of
2717 		 * other problems.  To make this even more interesting, it
2718 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2719 		 * does not need or want these quirks.
2720 		 */
2721 		.vid = 0x144d,
2722 		.mn = "Samsung Portable SSD X5",
2723 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2724 			  NVME_QUIRK_NO_DEEPEST_PS |
2725 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2726 	}
2727 };
2728 
2729 /* match is null-terminated but idstr is space-padded. */
2730 static bool string_matches(const char *idstr, const char *match, size_t len)
2731 {
2732 	size_t matchlen;
2733 
2734 	if (!match)
2735 		return true;
2736 
2737 	matchlen = strlen(match);
2738 	WARN_ON_ONCE(matchlen > len);
2739 
2740 	if (memcmp(idstr, match, matchlen))
2741 		return false;
2742 
2743 	for (; matchlen < len; matchlen++)
2744 		if (idstr[matchlen] != ' ')
2745 			return false;
2746 
2747 	return true;
2748 }
2749 
2750 static bool quirk_matches(const struct nvme_id_ctrl *id,
2751 			  const struct nvme_core_quirk_entry *q)
2752 {
2753 	return q->vid == le16_to_cpu(id->vid) &&
2754 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2755 		string_matches(id->fr, q->fr, sizeof(id->fr));
2756 }
2757 
2758 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2759 		struct nvme_id_ctrl *id)
2760 {
2761 	size_t nqnlen;
2762 	int off;
2763 
2764 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2765 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2766 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2767 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2768 			return;
2769 		}
2770 
2771 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2772 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2773 	}
2774 
2775 	/*
2776 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2777 	 * Base Specification 2.0.  It is slightly different from the format
2778 	 * specified there due to historic reasons, and we can't change it now.
2779 	 */
2780 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2781 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2782 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2783 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2784 	off += sizeof(id->sn);
2785 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2786 	off += sizeof(id->mn);
2787 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2788 }
2789 
2790 static void nvme_release_subsystem(struct device *dev)
2791 {
2792 	struct nvme_subsystem *subsys =
2793 		container_of(dev, struct nvme_subsystem, dev);
2794 
2795 	if (subsys->instance >= 0)
2796 		ida_free(&nvme_instance_ida, subsys->instance);
2797 	kfree(subsys);
2798 }
2799 
2800 static void nvme_destroy_subsystem(struct kref *ref)
2801 {
2802 	struct nvme_subsystem *subsys =
2803 			container_of(ref, struct nvme_subsystem, ref);
2804 
2805 	mutex_lock(&nvme_subsystems_lock);
2806 	list_del(&subsys->entry);
2807 	mutex_unlock(&nvme_subsystems_lock);
2808 
2809 	ida_destroy(&subsys->ns_ida);
2810 	device_del(&subsys->dev);
2811 	put_device(&subsys->dev);
2812 }
2813 
2814 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2815 {
2816 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2817 }
2818 
2819 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2820 {
2821 	struct nvme_subsystem *subsys;
2822 
2823 	lockdep_assert_held(&nvme_subsystems_lock);
2824 
2825 	/*
2826 	 * Fail matches for discovery subsystems. This results
2827 	 * in each discovery controller bound to a unique subsystem.
2828 	 * This avoids issues with validating controller values
2829 	 * that can only be true when there is a single unique subsystem.
2830 	 * There may be multiple and completely independent entities
2831 	 * that provide discovery controllers.
2832 	 */
2833 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2834 		return NULL;
2835 
2836 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2837 		if (strcmp(subsys->subnqn, subsysnqn))
2838 			continue;
2839 		if (!kref_get_unless_zero(&subsys->ref))
2840 			continue;
2841 		return subsys;
2842 	}
2843 
2844 	return NULL;
2845 }
2846 
2847 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2848 {
2849 	return ctrl->opts && ctrl->opts->discovery_nqn;
2850 }
2851 
2852 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2853 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2854 {
2855 	struct nvme_ctrl *tmp;
2856 
2857 	lockdep_assert_held(&nvme_subsystems_lock);
2858 
2859 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2860 		if (nvme_state_terminal(tmp))
2861 			continue;
2862 
2863 		if (tmp->cntlid == ctrl->cntlid) {
2864 			dev_err(ctrl->device,
2865 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2866 				ctrl->cntlid, dev_name(tmp->device),
2867 				subsys->subnqn);
2868 			return false;
2869 		}
2870 
2871 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2872 		    nvme_discovery_ctrl(ctrl))
2873 			continue;
2874 
2875 		dev_err(ctrl->device,
2876 			"Subsystem does not support multiple controllers\n");
2877 		return false;
2878 	}
2879 
2880 	return true;
2881 }
2882 
2883 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2884 {
2885 	struct nvme_subsystem *subsys, *found;
2886 	int ret;
2887 
2888 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2889 	if (!subsys)
2890 		return -ENOMEM;
2891 
2892 	subsys->instance = -1;
2893 	mutex_init(&subsys->lock);
2894 	kref_init(&subsys->ref);
2895 	INIT_LIST_HEAD(&subsys->ctrls);
2896 	INIT_LIST_HEAD(&subsys->nsheads);
2897 	nvme_init_subnqn(subsys, ctrl, id);
2898 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2899 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2900 	subsys->vendor_id = le16_to_cpu(id->vid);
2901 	subsys->cmic = id->cmic;
2902 
2903 	/* Versions prior to 1.4 don't necessarily report a valid type */
2904 	if (id->cntrltype == NVME_CTRL_DISC ||
2905 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2906 		subsys->subtype = NVME_NQN_DISC;
2907 	else
2908 		subsys->subtype = NVME_NQN_NVME;
2909 
2910 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2911 		dev_err(ctrl->device,
2912 			"Subsystem %s is not a discovery controller",
2913 			subsys->subnqn);
2914 		kfree(subsys);
2915 		return -EINVAL;
2916 	}
2917 	subsys->awupf = le16_to_cpu(id->awupf);
2918 	nvme_mpath_default_iopolicy(subsys);
2919 
2920 	subsys->dev.class = &nvme_subsys_class;
2921 	subsys->dev.release = nvme_release_subsystem;
2922 	subsys->dev.groups = nvme_subsys_attrs_groups;
2923 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2924 	device_initialize(&subsys->dev);
2925 
2926 	mutex_lock(&nvme_subsystems_lock);
2927 	found = __nvme_find_get_subsystem(subsys->subnqn);
2928 	if (found) {
2929 		put_device(&subsys->dev);
2930 		subsys = found;
2931 
2932 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2933 			ret = -EINVAL;
2934 			goto out_put_subsystem;
2935 		}
2936 	} else {
2937 		ret = device_add(&subsys->dev);
2938 		if (ret) {
2939 			dev_err(ctrl->device,
2940 				"failed to register subsystem device.\n");
2941 			put_device(&subsys->dev);
2942 			goto out_unlock;
2943 		}
2944 		ida_init(&subsys->ns_ida);
2945 		list_add_tail(&subsys->entry, &nvme_subsystems);
2946 	}
2947 
2948 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2949 				dev_name(ctrl->device));
2950 	if (ret) {
2951 		dev_err(ctrl->device,
2952 			"failed to create sysfs link from subsystem.\n");
2953 		goto out_put_subsystem;
2954 	}
2955 
2956 	if (!found)
2957 		subsys->instance = ctrl->instance;
2958 	ctrl->subsys = subsys;
2959 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2960 	mutex_unlock(&nvme_subsystems_lock);
2961 	return 0;
2962 
2963 out_put_subsystem:
2964 	nvme_put_subsystem(subsys);
2965 out_unlock:
2966 	mutex_unlock(&nvme_subsystems_lock);
2967 	return ret;
2968 }
2969 
2970 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2971 		void *log, size_t size, u64 offset)
2972 {
2973 	struct nvme_command c = { };
2974 	u32 dwlen = nvme_bytes_to_numd(size);
2975 
2976 	c.get_log_page.opcode = nvme_admin_get_log_page;
2977 	c.get_log_page.nsid = cpu_to_le32(nsid);
2978 	c.get_log_page.lid = log_page;
2979 	c.get_log_page.lsp = lsp;
2980 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2981 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2982 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2983 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2984 	c.get_log_page.csi = csi;
2985 
2986 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2987 }
2988 
2989 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2990 				struct nvme_effects_log **log)
2991 {
2992 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2993 	int ret;
2994 
2995 	if (cel)
2996 		goto out;
2997 
2998 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2999 	if (!cel)
3000 		return -ENOMEM;
3001 
3002 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3003 			cel, sizeof(*cel), 0);
3004 	if (ret) {
3005 		kfree(cel);
3006 		return ret;
3007 	}
3008 
3009 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3010 out:
3011 	*log = cel;
3012 	return 0;
3013 }
3014 
3015 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3016 {
3017 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3018 
3019 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3020 		return UINT_MAX;
3021 	return val;
3022 }
3023 
3024 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3025 {
3026 	struct nvme_command c = { };
3027 	struct nvme_id_ctrl_nvm *id;
3028 	int ret;
3029 
3030 	/*
3031 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3032 	 * to the write-zeroes, we are cautious and limit the size to the
3033 	 * controllers max_hw_sectors value, which is based on the MDTS field
3034 	 * and possibly other limiting factors.
3035 	 */
3036 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3037 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3038 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3039 	else
3040 		ctrl->max_zeroes_sectors = 0;
3041 
3042 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3043 	    nvme_ctrl_limited_cns(ctrl) ||
3044 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3045 		return 0;
3046 
3047 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3048 	if (!id)
3049 		return -ENOMEM;
3050 
3051 	c.identify.opcode = nvme_admin_identify;
3052 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3053 	c.identify.csi = NVME_CSI_NVM;
3054 
3055 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3056 	if (ret)
3057 		goto free_data;
3058 
3059 	ctrl->dmrl = id->dmrl;
3060 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3061 	if (id->wzsl)
3062 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3063 
3064 free_data:
3065 	if (ret > 0)
3066 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3067 	kfree(id);
3068 	return ret;
3069 }
3070 
3071 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3072 {
3073 	struct nvme_effects_log	*log = ctrl->effects;
3074 
3075 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3076 						NVME_CMD_EFFECTS_NCC |
3077 						NVME_CMD_EFFECTS_CSE_MASK);
3078 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3079 						NVME_CMD_EFFECTS_CSE_MASK);
3080 
3081 	/*
3082 	 * The spec says the result of a security receive command depends on
3083 	 * the previous security send command. As such, many vendors log this
3084 	 * command as one to submitted only when no other commands to the same
3085 	 * namespace are outstanding. The intention is to tell the host to
3086 	 * prevent mixing security send and receive.
3087 	 *
3088 	 * This driver can only enforce such exclusive access against IO
3089 	 * queues, though. We are not readily able to enforce such a rule for
3090 	 * two commands to the admin queue, which is the only queue that
3091 	 * matters for this command.
3092 	 *
3093 	 * Rather than blindly freezing the IO queues for this effect that
3094 	 * doesn't even apply to IO, mask it off.
3095 	 */
3096 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3097 
3098 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3099 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3100 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3101 }
3102 
3103 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3104 {
3105 	int ret = 0;
3106 
3107 	if (ctrl->effects)
3108 		return 0;
3109 
3110 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3111 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3112 		if (ret < 0)
3113 			return ret;
3114 	}
3115 
3116 	if (!ctrl->effects) {
3117 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3118 		if (!ctrl->effects)
3119 			return -ENOMEM;
3120 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3121 	}
3122 
3123 	nvme_init_known_nvm_effects(ctrl);
3124 	return 0;
3125 }
3126 
3127 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3128 {
3129 	/*
3130 	 * In fabrics we need to verify the cntlid matches the
3131 	 * admin connect
3132 	 */
3133 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3134 		dev_err(ctrl->device,
3135 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3136 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3137 		return -EINVAL;
3138 	}
3139 
3140 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3141 		dev_err(ctrl->device,
3142 			"keep-alive support is mandatory for fabrics\n");
3143 		return -EINVAL;
3144 	}
3145 
3146 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3147 		dev_err(ctrl->device,
3148 			"I/O queue command capsule supported size %d < 4\n",
3149 			ctrl->ioccsz);
3150 		return -EINVAL;
3151 	}
3152 
3153 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3154 		dev_err(ctrl->device,
3155 			"I/O queue response capsule supported size %d < 1\n",
3156 			ctrl->iorcsz);
3157 		return -EINVAL;
3158 	}
3159 
3160 	if (!ctrl->maxcmd) {
3161 		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3162 		return -EINVAL;
3163 	}
3164 
3165 	return 0;
3166 }
3167 
3168 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3169 {
3170 	struct queue_limits lim;
3171 	struct nvme_id_ctrl *id;
3172 	u32 max_hw_sectors;
3173 	bool prev_apst_enabled;
3174 	int ret;
3175 
3176 	ret = nvme_identify_ctrl(ctrl, &id);
3177 	if (ret) {
3178 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3179 		return -EIO;
3180 	}
3181 
3182 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3183 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3184 
3185 	if (!ctrl->identified) {
3186 		unsigned int i;
3187 
3188 		/*
3189 		 * Check for quirks.  Quirk can depend on firmware version,
3190 		 * so, in principle, the set of quirks present can change
3191 		 * across a reset.  As a possible future enhancement, we
3192 		 * could re-scan for quirks every time we reinitialize
3193 		 * the device, but we'd have to make sure that the driver
3194 		 * behaves intelligently if the quirks change.
3195 		 */
3196 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3197 			if (quirk_matches(id, &core_quirks[i]))
3198 				ctrl->quirks |= core_quirks[i].quirks;
3199 		}
3200 
3201 		ret = nvme_init_subsystem(ctrl, id);
3202 		if (ret)
3203 			goto out_free;
3204 
3205 		ret = nvme_init_effects(ctrl, id);
3206 		if (ret)
3207 			goto out_free;
3208 	}
3209 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3210 	       sizeof(ctrl->subsys->firmware_rev));
3211 
3212 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3213 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3214 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3215 	}
3216 
3217 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3218 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3219 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3220 
3221 	ctrl->oacs = le16_to_cpu(id->oacs);
3222 	ctrl->oncs = le16_to_cpu(id->oncs);
3223 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3224 	ctrl->oaes = le32_to_cpu(id->oaes);
3225 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3226 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3227 
3228 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3229 	ctrl->vwc = id->vwc;
3230 	if (id->mdts)
3231 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3232 	else
3233 		max_hw_sectors = UINT_MAX;
3234 	ctrl->max_hw_sectors =
3235 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3236 
3237 	lim = queue_limits_start_update(ctrl->admin_q);
3238 	nvme_set_ctrl_limits(ctrl, &lim);
3239 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3240 	if (ret)
3241 		goto out_free;
3242 
3243 	ctrl->sgls = le32_to_cpu(id->sgls);
3244 	ctrl->kas = le16_to_cpu(id->kas);
3245 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3246 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3247 
3248 	ctrl->cntrltype = id->cntrltype;
3249 	ctrl->dctype = id->dctype;
3250 
3251 	if (id->rtd3e) {
3252 		/* us -> s */
3253 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3254 
3255 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3256 						 shutdown_timeout, 60);
3257 
3258 		if (ctrl->shutdown_timeout != shutdown_timeout)
3259 			dev_info(ctrl->device,
3260 				 "D3 entry latency set to %u seconds\n",
3261 				 ctrl->shutdown_timeout);
3262 	} else
3263 		ctrl->shutdown_timeout = shutdown_timeout;
3264 
3265 	ctrl->npss = id->npss;
3266 	ctrl->apsta = id->apsta;
3267 	prev_apst_enabled = ctrl->apst_enabled;
3268 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3269 		if (force_apst && id->apsta) {
3270 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3271 			ctrl->apst_enabled = true;
3272 		} else {
3273 			ctrl->apst_enabled = false;
3274 		}
3275 	} else {
3276 		ctrl->apst_enabled = id->apsta;
3277 	}
3278 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3279 
3280 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3281 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3282 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3283 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3284 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3285 
3286 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3287 		if (ret)
3288 			goto out_free;
3289 	} else {
3290 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3291 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3292 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3293 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3294 	}
3295 
3296 	ret = nvme_mpath_init_identify(ctrl, id);
3297 	if (ret < 0)
3298 		goto out_free;
3299 
3300 	if (ctrl->apst_enabled && !prev_apst_enabled)
3301 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3302 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3303 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3304 
3305 out_free:
3306 	kfree(id);
3307 	return ret;
3308 }
3309 
3310 /*
3311  * Initialize the cached copies of the Identify data and various controller
3312  * register in our nvme_ctrl structure.  This should be called as soon as
3313  * the admin queue is fully up and running.
3314  */
3315 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3316 {
3317 	int ret;
3318 
3319 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3320 	if (ret) {
3321 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3322 		return ret;
3323 	}
3324 
3325 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3326 
3327 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3328 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3329 
3330 	ret = nvme_init_identify(ctrl);
3331 	if (ret)
3332 		return ret;
3333 
3334 	ret = nvme_configure_apst(ctrl);
3335 	if (ret < 0)
3336 		return ret;
3337 
3338 	ret = nvme_configure_timestamp(ctrl);
3339 	if (ret < 0)
3340 		return ret;
3341 
3342 	ret = nvme_configure_host_options(ctrl);
3343 	if (ret < 0)
3344 		return ret;
3345 
3346 	nvme_configure_opal(ctrl, was_suspended);
3347 
3348 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3349 		/*
3350 		 * Do not return errors unless we are in a controller reset,
3351 		 * the controller works perfectly fine without hwmon.
3352 		 */
3353 		ret = nvme_hwmon_init(ctrl);
3354 		if (ret == -EINTR)
3355 			return ret;
3356 	}
3357 
3358 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3359 	ctrl->identified = true;
3360 
3361 	nvme_start_keep_alive(ctrl);
3362 
3363 	return 0;
3364 }
3365 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3366 
3367 static int nvme_dev_open(struct inode *inode, struct file *file)
3368 {
3369 	struct nvme_ctrl *ctrl =
3370 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3371 
3372 	switch (nvme_ctrl_state(ctrl)) {
3373 	case NVME_CTRL_LIVE:
3374 		break;
3375 	default:
3376 		return -EWOULDBLOCK;
3377 	}
3378 
3379 	nvme_get_ctrl(ctrl);
3380 	if (!try_module_get(ctrl->ops->module)) {
3381 		nvme_put_ctrl(ctrl);
3382 		return -EINVAL;
3383 	}
3384 
3385 	file->private_data = ctrl;
3386 	return 0;
3387 }
3388 
3389 static int nvme_dev_release(struct inode *inode, struct file *file)
3390 {
3391 	struct nvme_ctrl *ctrl =
3392 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3393 
3394 	module_put(ctrl->ops->module);
3395 	nvme_put_ctrl(ctrl);
3396 	return 0;
3397 }
3398 
3399 static const struct file_operations nvme_dev_fops = {
3400 	.owner		= THIS_MODULE,
3401 	.open		= nvme_dev_open,
3402 	.release	= nvme_dev_release,
3403 	.unlocked_ioctl	= nvme_dev_ioctl,
3404 	.compat_ioctl	= compat_ptr_ioctl,
3405 	.uring_cmd	= nvme_dev_uring_cmd,
3406 };
3407 
3408 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3409 		unsigned nsid)
3410 {
3411 	struct nvme_ns_head *h;
3412 
3413 	lockdep_assert_held(&ctrl->subsys->lock);
3414 
3415 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3416 		/*
3417 		 * Private namespaces can share NSIDs under some conditions.
3418 		 * In that case we can't use the same ns_head for namespaces
3419 		 * with the same NSID.
3420 		 */
3421 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3422 			continue;
3423 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3424 			return h;
3425 	}
3426 
3427 	return NULL;
3428 }
3429 
3430 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3431 		struct nvme_ns_ids *ids)
3432 {
3433 	bool has_uuid = !uuid_is_null(&ids->uuid);
3434 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3435 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3436 	struct nvme_ns_head *h;
3437 
3438 	lockdep_assert_held(&subsys->lock);
3439 
3440 	list_for_each_entry(h, &subsys->nsheads, entry) {
3441 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3442 			return -EINVAL;
3443 		if (has_nguid &&
3444 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3445 			return -EINVAL;
3446 		if (has_eui64 &&
3447 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3448 			return -EINVAL;
3449 	}
3450 
3451 	return 0;
3452 }
3453 
3454 static void nvme_cdev_rel(struct device *dev)
3455 {
3456 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3457 }
3458 
3459 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3460 {
3461 	cdev_device_del(cdev, cdev_device);
3462 	put_device(cdev_device);
3463 }
3464 
3465 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3466 		const struct file_operations *fops, struct module *owner)
3467 {
3468 	int minor, ret;
3469 
3470 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3471 	if (minor < 0)
3472 		return minor;
3473 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3474 	cdev_device->class = &nvme_ns_chr_class;
3475 	cdev_device->release = nvme_cdev_rel;
3476 	device_initialize(cdev_device);
3477 	cdev_init(cdev, fops);
3478 	cdev->owner = owner;
3479 	ret = cdev_device_add(cdev, cdev_device);
3480 	if (ret)
3481 		put_device(cdev_device);
3482 
3483 	return ret;
3484 }
3485 
3486 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3487 {
3488 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3489 }
3490 
3491 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3492 {
3493 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3494 	return 0;
3495 }
3496 
3497 static const struct file_operations nvme_ns_chr_fops = {
3498 	.owner		= THIS_MODULE,
3499 	.open		= nvme_ns_chr_open,
3500 	.release	= nvme_ns_chr_release,
3501 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3502 	.compat_ioctl	= compat_ptr_ioctl,
3503 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3504 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3505 };
3506 
3507 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3508 {
3509 	int ret;
3510 
3511 	ns->cdev_device.parent = ns->ctrl->device;
3512 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3513 			   ns->ctrl->instance, ns->head->instance);
3514 	if (ret)
3515 		return ret;
3516 
3517 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3518 			     ns->ctrl->ops->module);
3519 }
3520 
3521 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3522 		struct nvme_ns_info *info)
3523 {
3524 	struct nvme_ns_head *head;
3525 	size_t size = sizeof(*head);
3526 	int ret = -ENOMEM;
3527 
3528 #ifdef CONFIG_NVME_MULTIPATH
3529 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3530 #endif
3531 
3532 	head = kzalloc(size, GFP_KERNEL);
3533 	if (!head)
3534 		goto out;
3535 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3536 	if (ret < 0)
3537 		goto out_free_head;
3538 	head->instance = ret;
3539 	INIT_LIST_HEAD(&head->list);
3540 	ret = init_srcu_struct(&head->srcu);
3541 	if (ret)
3542 		goto out_ida_remove;
3543 	head->subsys = ctrl->subsys;
3544 	head->ns_id = info->nsid;
3545 	head->ids = info->ids;
3546 	head->shared = info->is_shared;
3547 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3548 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3549 	kref_init(&head->ref);
3550 
3551 	if (head->ids.csi) {
3552 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3553 		if (ret)
3554 			goto out_cleanup_srcu;
3555 	} else
3556 		head->effects = ctrl->effects;
3557 
3558 	ret = nvme_mpath_alloc_disk(ctrl, head);
3559 	if (ret)
3560 		goto out_cleanup_srcu;
3561 
3562 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3563 
3564 	kref_get(&ctrl->subsys->ref);
3565 
3566 	return head;
3567 out_cleanup_srcu:
3568 	cleanup_srcu_struct(&head->srcu);
3569 out_ida_remove:
3570 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3571 out_free_head:
3572 	kfree(head);
3573 out:
3574 	if (ret > 0)
3575 		ret = blk_status_to_errno(nvme_error_status(ret));
3576 	return ERR_PTR(ret);
3577 }
3578 
3579 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3580 		struct nvme_ns_ids *ids)
3581 {
3582 	struct nvme_subsystem *s;
3583 	int ret = 0;
3584 
3585 	/*
3586 	 * Note that this check is racy as we try to avoid holding the global
3587 	 * lock over the whole ns_head creation.  But it is only intended as
3588 	 * a sanity check anyway.
3589 	 */
3590 	mutex_lock(&nvme_subsystems_lock);
3591 	list_for_each_entry(s, &nvme_subsystems, entry) {
3592 		if (s == this)
3593 			continue;
3594 		mutex_lock(&s->lock);
3595 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3596 		mutex_unlock(&s->lock);
3597 		if (ret)
3598 			break;
3599 	}
3600 	mutex_unlock(&nvme_subsystems_lock);
3601 
3602 	return ret;
3603 }
3604 
3605 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3606 {
3607 	struct nvme_ctrl *ctrl = ns->ctrl;
3608 	struct nvme_ns_head *head = NULL;
3609 	int ret;
3610 
3611 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3612 	if (ret) {
3613 		/*
3614 		 * We've found two different namespaces on two different
3615 		 * subsystems that report the same ID.  This is pretty nasty
3616 		 * for anything that actually requires unique device
3617 		 * identification.  In the kernel we need this for multipathing,
3618 		 * and in user space the /dev/disk/by-id/ links rely on it.
3619 		 *
3620 		 * If the device also claims to be multi-path capable back off
3621 		 * here now and refuse the probe the second device as this is a
3622 		 * recipe for data corruption.  If not this is probably a
3623 		 * cheap consumer device if on the PCIe bus, so let the user
3624 		 * proceed and use the shiny toy, but warn that with changing
3625 		 * probing order (which due to our async probing could just be
3626 		 * device taking longer to startup) the other device could show
3627 		 * up at any time.
3628 		 */
3629 		nvme_print_device_info(ctrl);
3630 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3631 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3632 		     info->is_shared)) {
3633 			dev_err(ctrl->device,
3634 				"ignoring nsid %d because of duplicate IDs\n",
3635 				info->nsid);
3636 			return ret;
3637 		}
3638 
3639 		dev_err(ctrl->device,
3640 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3641 		dev_err(ctrl->device,
3642 			"use of /dev/disk/by-id/ may cause data corruption\n");
3643 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3644 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3645 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3646 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3647 	}
3648 
3649 	mutex_lock(&ctrl->subsys->lock);
3650 	head = nvme_find_ns_head(ctrl, info->nsid);
3651 	if (!head) {
3652 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3653 		if (ret) {
3654 			dev_err(ctrl->device,
3655 				"duplicate IDs in subsystem for nsid %d\n",
3656 				info->nsid);
3657 			goto out_unlock;
3658 		}
3659 		head = nvme_alloc_ns_head(ctrl, info);
3660 		if (IS_ERR(head)) {
3661 			ret = PTR_ERR(head);
3662 			goto out_unlock;
3663 		}
3664 	} else {
3665 		ret = -EINVAL;
3666 		if (!info->is_shared || !head->shared) {
3667 			dev_err(ctrl->device,
3668 				"Duplicate unshared namespace %d\n",
3669 				info->nsid);
3670 			goto out_put_ns_head;
3671 		}
3672 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3673 			dev_err(ctrl->device,
3674 				"IDs don't match for shared namespace %d\n",
3675 					info->nsid);
3676 			goto out_put_ns_head;
3677 		}
3678 
3679 		if (!multipath) {
3680 			dev_warn(ctrl->device,
3681 				"Found shared namespace %d, but multipathing not supported.\n",
3682 				info->nsid);
3683 			dev_warn_once(ctrl->device,
3684 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3685 		}
3686 	}
3687 
3688 	list_add_tail_rcu(&ns->siblings, &head->list);
3689 	ns->head = head;
3690 	mutex_unlock(&ctrl->subsys->lock);
3691 	return 0;
3692 
3693 out_put_ns_head:
3694 	nvme_put_ns_head(head);
3695 out_unlock:
3696 	mutex_unlock(&ctrl->subsys->lock);
3697 	return ret;
3698 }
3699 
3700 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3701 {
3702 	struct nvme_ns *ns, *ret = NULL;
3703 
3704 	down_read(&ctrl->namespaces_rwsem);
3705 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3706 		if (ns->head->ns_id == nsid) {
3707 			if (!nvme_get_ns(ns))
3708 				continue;
3709 			ret = ns;
3710 			break;
3711 		}
3712 		if (ns->head->ns_id > nsid)
3713 			break;
3714 	}
3715 	up_read(&ctrl->namespaces_rwsem);
3716 	return ret;
3717 }
3718 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3719 
3720 /*
3721  * Add the namespace to the controller list while keeping the list ordered.
3722  */
3723 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3724 {
3725 	struct nvme_ns *tmp;
3726 
3727 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3728 		if (tmp->head->ns_id < ns->head->ns_id) {
3729 			list_add(&ns->list, &tmp->list);
3730 			return;
3731 		}
3732 	}
3733 	list_add(&ns->list, &ns->ctrl->namespaces);
3734 }
3735 
3736 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3737 {
3738 	struct nvme_ns *ns;
3739 	struct gendisk *disk;
3740 	int node = ctrl->numa_node;
3741 
3742 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3743 	if (!ns)
3744 		return;
3745 
3746 	disk = blk_mq_alloc_disk(ctrl->tagset, NULL, ns);
3747 	if (IS_ERR(disk))
3748 		goto out_free_ns;
3749 	disk->fops = &nvme_bdev_ops;
3750 	disk->private_data = ns;
3751 
3752 	ns->disk = disk;
3753 	ns->queue = disk->queue;
3754 
3755 	if (ctrl->opts && ctrl->opts->data_digest)
3756 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3757 
3758 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3759 	if (ctrl->ops->supports_pci_p2pdma &&
3760 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3761 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3762 
3763 	ns->ctrl = ctrl;
3764 	kref_init(&ns->kref);
3765 
3766 	if (nvme_init_ns_head(ns, info))
3767 		goto out_cleanup_disk;
3768 
3769 	/*
3770 	 * If multipathing is enabled, the device name for all disks and not
3771 	 * just those that represent shared namespaces needs to be based on the
3772 	 * subsystem instance.  Using the controller instance for private
3773 	 * namespaces could lead to naming collisions between shared and private
3774 	 * namespaces if they don't use a common numbering scheme.
3775 	 *
3776 	 * If multipathing is not enabled, disk names must use the controller
3777 	 * instance as shared namespaces will show up as multiple block
3778 	 * devices.
3779 	 */
3780 	if (nvme_ns_head_multipath(ns->head)) {
3781 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3782 			ctrl->instance, ns->head->instance);
3783 		disk->flags |= GENHD_FL_HIDDEN;
3784 	} else if (multipath) {
3785 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3786 			ns->head->instance);
3787 	} else {
3788 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3789 			ns->head->instance);
3790 	}
3791 
3792 	if (nvme_update_ns_info(ns, info))
3793 		goto out_unlink_ns;
3794 
3795 	down_write(&ctrl->namespaces_rwsem);
3796 	/*
3797 	 * Ensure that no namespaces are added to the ctrl list after the queues
3798 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3799 	 */
3800 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3801 		up_write(&ctrl->namespaces_rwsem);
3802 		goto out_unlink_ns;
3803 	}
3804 	nvme_ns_add_to_ctrl_list(ns);
3805 	up_write(&ctrl->namespaces_rwsem);
3806 	nvme_get_ctrl(ctrl);
3807 
3808 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3809 		goto out_cleanup_ns_from_list;
3810 
3811 	if (!nvme_ns_head_multipath(ns->head))
3812 		nvme_add_ns_cdev(ns);
3813 
3814 	nvme_mpath_add_disk(ns, info->anagrpid);
3815 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3816 
3817 	/*
3818 	 * Set ns->disk->device->driver_data to ns so we can access
3819 	 * ns->head->passthru_err_log_enabled in
3820 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3821 	 */
3822 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3823 
3824 	return;
3825 
3826  out_cleanup_ns_from_list:
3827 	nvme_put_ctrl(ctrl);
3828 	down_write(&ctrl->namespaces_rwsem);
3829 	list_del_init(&ns->list);
3830 	up_write(&ctrl->namespaces_rwsem);
3831  out_unlink_ns:
3832 	mutex_lock(&ctrl->subsys->lock);
3833 	list_del_rcu(&ns->siblings);
3834 	if (list_empty(&ns->head->list))
3835 		list_del_init(&ns->head->entry);
3836 	mutex_unlock(&ctrl->subsys->lock);
3837 	nvme_put_ns_head(ns->head);
3838  out_cleanup_disk:
3839 	put_disk(disk);
3840  out_free_ns:
3841 	kfree(ns);
3842 }
3843 
3844 static void nvme_ns_remove(struct nvme_ns *ns)
3845 {
3846 	bool last_path = false;
3847 
3848 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3849 		return;
3850 
3851 	clear_bit(NVME_NS_READY, &ns->flags);
3852 	set_capacity(ns->disk, 0);
3853 	nvme_fault_inject_fini(&ns->fault_inject);
3854 
3855 	/*
3856 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3857 	 * this ns going back into current_path.
3858 	 */
3859 	synchronize_srcu(&ns->head->srcu);
3860 
3861 	/* wait for concurrent submissions */
3862 	if (nvme_mpath_clear_current_path(ns))
3863 		synchronize_srcu(&ns->head->srcu);
3864 
3865 	mutex_lock(&ns->ctrl->subsys->lock);
3866 	list_del_rcu(&ns->siblings);
3867 	if (list_empty(&ns->head->list)) {
3868 		list_del_init(&ns->head->entry);
3869 		last_path = true;
3870 	}
3871 	mutex_unlock(&ns->ctrl->subsys->lock);
3872 
3873 	/* guarantee not available in head->list */
3874 	synchronize_srcu(&ns->head->srcu);
3875 
3876 	if (!nvme_ns_head_multipath(ns->head))
3877 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3878 	del_gendisk(ns->disk);
3879 
3880 	down_write(&ns->ctrl->namespaces_rwsem);
3881 	list_del_init(&ns->list);
3882 	up_write(&ns->ctrl->namespaces_rwsem);
3883 
3884 	if (last_path)
3885 		nvme_mpath_shutdown_disk(ns->head);
3886 	nvme_put_ns(ns);
3887 }
3888 
3889 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3890 {
3891 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3892 
3893 	if (ns) {
3894 		nvme_ns_remove(ns);
3895 		nvme_put_ns(ns);
3896 	}
3897 }
3898 
3899 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3900 {
3901 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3902 
3903 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3904 		dev_err(ns->ctrl->device,
3905 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3906 		goto out;
3907 	}
3908 
3909 	ret = nvme_update_ns_info(ns, info);
3910 out:
3911 	/*
3912 	 * Only remove the namespace if we got a fatal error back from the
3913 	 * device, otherwise ignore the error and just move on.
3914 	 *
3915 	 * TODO: we should probably schedule a delayed retry here.
3916 	 */
3917 	if (ret > 0 && (ret & NVME_SC_DNR))
3918 		nvme_ns_remove(ns);
3919 }
3920 
3921 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3922 {
3923 	struct nvme_ns_info info = { .nsid = nsid };
3924 	struct nvme_ns *ns;
3925 	int ret;
3926 
3927 	if (nvme_identify_ns_descs(ctrl, &info))
3928 		return;
3929 
3930 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3931 		dev_warn(ctrl->device,
3932 			"command set not reported for nsid: %d\n", nsid);
3933 		return;
3934 	}
3935 
3936 	/*
3937 	 * If available try to use the Command Set Idependent Identify Namespace
3938 	 * data structure to find all the generic information that is needed to
3939 	 * set up a namespace.  If not fall back to the legacy version.
3940 	 */
3941 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3942 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3943 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3944 	else
3945 		ret = nvme_ns_info_from_identify(ctrl, &info);
3946 
3947 	if (info.is_removed)
3948 		nvme_ns_remove_by_nsid(ctrl, nsid);
3949 
3950 	/*
3951 	 * Ignore the namespace if it is not ready. We will get an AEN once it
3952 	 * becomes ready and restart the scan.
3953 	 */
3954 	if (ret || !info.is_ready)
3955 		return;
3956 
3957 	ns = nvme_find_get_ns(ctrl, nsid);
3958 	if (ns) {
3959 		nvme_validate_ns(ns, &info);
3960 		nvme_put_ns(ns);
3961 	} else {
3962 		nvme_alloc_ns(ctrl, &info);
3963 	}
3964 }
3965 
3966 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3967 					unsigned nsid)
3968 {
3969 	struct nvme_ns *ns, *next;
3970 	LIST_HEAD(rm_list);
3971 
3972 	down_write(&ctrl->namespaces_rwsem);
3973 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3974 		if (ns->head->ns_id > nsid)
3975 			list_move_tail(&ns->list, &rm_list);
3976 	}
3977 	up_write(&ctrl->namespaces_rwsem);
3978 
3979 	list_for_each_entry_safe(ns, next, &rm_list, list)
3980 		nvme_ns_remove(ns);
3981 
3982 }
3983 
3984 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3985 {
3986 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3987 	__le32 *ns_list;
3988 	u32 prev = 0;
3989 	int ret = 0, i;
3990 
3991 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3992 	if (!ns_list)
3993 		return -ENOMEM;
3994 
3995 	for (;;) {
3996 		struct nvme_command cmd = {
3997 			.identify.opcode	= nvme_admin_identify,
3998 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3999 			.identify.nsid		= cpu_to_le32(prev),
4000 		};
4001 
4002 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4003 					    NVME_IDENTIFY_DATA_SIZE);
4004 		if (ret) {
4005 			dev_warn(ctrl->device,
4006 				"Identify NS List failed (status=0x%x)\n", ret);
4007 			goto free;
4008 		}
4009 
4010 		for (i = 0; i < nr_entries; i++) {
4011 			u32 nsid = le32_to_cpu(ns_list[i]);
4012 
4013 			if (!nsid)	/* end of the list? */
4014 				goto out;
4015 			nvme_scan_ns(ctrl, nsid);
4016 			while (++prev < nsid)
4017 				nvme_ns_remove_by_nsid(ctrl, prev);
4018 		}
4019 	}
4020  out:
4021 	nvme_remove_invalid_namespaces(ctrl, prev);
4022  free:
4023 	kfree(ns_list);
4024 	return ret;
4025 }
4026 
4027 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4028 {
4029 	struct nvme_id_ctrl *id;
4030 	u32 nn, i;
4031 
4032 	if (nvme_identify_ctrl(ctrl, &id))
4033 		return;
4034 	nn = le32_to_cpu(id->nn);
4035 	kfree(id);
4036 
4037 	for (i = 1; i <= nn; i++)
4038 		nvme_scan_ns(ctrl, i);
4039 
4040 	nvme_remove_invalid_namespaces(ctrl, nn);
4041 }
4042 
4043 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4044 {
4045 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4046 	__le32 *log;
4047 	int error;
4048 
4049 	log = kzalloc(log_size, GFP_KERNEL);
4050 	if (!log)
4051 		return;
4052 
4053 	/*
4054 	 * We need to read the log to clear the AEN, but we don't want to rely
4055 	 * on it for the changed namespace information as userspace could have
4056 	 * raced with us in reading the log page, which could cause us to miss
4057 	 * updates.
4058 	 */
4059 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4060 			NVME_CSI_NVM, log, log_size, 0);
4061 	if (error)
4062 		dev_warn(ctrl->device,
4063 			"reading changed ns log failed: %d\n", error);
4064 
4065 	kfree(log);
4066 }
4067 
4068 static void nvme_scan_work(struct work_struct *work)
4069 {
4070 	struct nvme_ctrl *ctrl =
4071 		container_of(work, struct nvme_ctrl, scan_work);
4072 	int ret;
4073 
4074 	/* No tagset on a live ctrl means IO queues could not created */
4075 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4076 		return;
4077 
4078 	/*
4079 	 * Identify controller limits can change at controller reset due to
4080 	 * new firmware download, even though it is not common we cannot ignore
4081 	 * such scenario. Controller's non-mdts limits are reported in the unit
4082 	 * of logical blocks that is dependent on the format of attached
4083 	 * namespace. Hence re-read the limits at the time of ns allocation.
4084 	 */
4085 	ret = nvme_init_non_mdts_limits(ctrl);
4086 	if (ret < 0) {
4087 		dev_warn(ctrl->device,
4088 			"reading non-mdts-limits failed: %d\n", ret);
4089 		return;
4090 	}
4091 
4092 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4093 		dev_info(ctrl->device, "rescanning namespaces.\n");
4094 		nvme_clear_changed_ns_log(ctrl);
4095 	}
4096 
4097 	mutex_lock(&ctrl->scan_lock);
4098 	if (nvme_ctrl_limited_cns(ctrl)) {
4099 		nvme_scan_ns_sequential(ctrl);
4100 	} else {
4101 		/*
4102 		 * Fall back to sequential scan if DNR is set to handle broken
4103 		 * devices which should support Identify NS List (as per the VS
4104 		 * they report) but don't actually support it.
4105 		 */
4106 		ret = nvme_scan_ns_list(ctrl);
4107 		if (ret > 0 && ret & NVME_SC_DNR)
4108 			nvme_scan_ns_sequential(ctrl);
4109 	}
4110 	mutex_unlock(&ctrl->scan_lock);
4111 }
4112 
4113 /*
4114  * This function iterates the namespace list unlocked to allow recovery from
4115  * controller failure. It is up to the caller to ensure the namespace list is
4116  * not modified by scan work while this function is executing.
4117  */
4118 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4119 {
4120 	struct nvme_ns *ns, *next;
4121 	LIST_HEAD(ns_list);
4122 
4123 	/*
4124 	 * make sure to requeue I/O to all namespaces as these
4125 	 * might result from the scan itself and must complete
4126 	 * for the scan_work to make progress
4127 	 */
4128 	nvme_mpath_clear_ctrl_paths(ctrl);
4129 
4130 	/*
4131 	 * Unquiesce io queues so any pending IO won't hang, especially
4132 	 * those submitted from scan work
4133 	 */
4134 	nvme_unquiesce_io_queues(ctrl);
4135 
4136 	/* prevent racing with ns scanning */
4137 	flush_work(&ctrl->scan_work);
4138 
4139 	/*
4140 	 * The dead states indicates the controller was not gracefully
4141 	 * disconnected. In that case, we won't be able to flush any data while
4142 	 * removing the namespaces' disks; fail all the queues now to avoid
4143 	 * potentially having to clean up the failed sync later.
4144 	 */
4145 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4146 		nvme_mark_namespaces_dead(ctrl);
4147 
4148 	/* this is a no-op when called from the controller reset handler */
4149 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4150 
4151 	down_write(&ctrl->namespaces_rwsem);
4152 	list_splice_init(&ctrl->namespaces, &ns_list);
4153 	up_write(&ctrl->namespaces_rwsem);
4154 
4155 	list_for_each_entry_safe(ns, next, &ns_list, list)
4156 		nvme_ns_remove(ns);
4157 }
4158 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4159 
4160 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4161 {
4162 	const struct nvme_ctrl *ctrl =
4163 		container_of(dev, struct nvme_ctrl, ctrl_device);
4164 	struct nvmf_ctrl_options *opts = ctrl->opts;
4165 	int ret;
4166 
4167 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4168 	if (ret)
4169 		return ret;
4170 
4171 	if (opts) {
4172 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4173 		if (ret)
4174 			return ret;
4175 
4176 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4177 				opts->trsvcid ?: "none");
4178 		if (ret)
4179 			return ret;
4180 
4181 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4182 				opts->host_traddr ?: "none");
4183 		if (ret)
4184 			return ret;
4185 
4186 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4187 				opts->host_iface ?: "none");
4188 	}
4189 	return ret;
4190 }
4191 
4192 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4193 {
4194 	char *envp[2] = { envdata, NULL };
4195 
4196 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4197 }
4198 
4199 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4200 {
4201 	char *envp[2] = { NULL, NULL };
4202 	u32 aen_result = ctrl->aen_result;
4203 
4204 	ctrl->aen_result = 0;
4205 	if (!aen_result)
4206 		return;
4207 
4208 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4209 	if (!envp[0])
4210 		return;
4211 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4212 	kfree(envp[0]);
4213 }
4214 
4215 static void nvme_async_event_work(struct work_struct *work)
4216 {
4217 	struct nvme_ctrl *ctrl =
4218 		container_of(work, struct nvme_ctrl, async_event_work);
4219 
4220 	nvme_aen_uevent(ctrl);
4221 
4222 	/*
4223 	 * The transport drivers must guarantee AER submission here is safe by
4224 	 * flushing ctrl async_event_work after changing the controller state
4225 	 * from LIVE and before freeing the admin queue.
4226 	*/
4227 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4228 		ctrl->ops->submit_async_event(ctrl);
4229 }
4230 
4231 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4232 {
4233 
4234 	u32 csts;
4235 
4236 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4237 		return false;
4238 
4239 	if (csts == ~0)
4240 		return false;
4241 
4242 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4243 }
4244 
4245 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4246 {
4247 	struct nvme_fw_slot_info_log *log;
4248 	u8 next_fw_slot, cur_fw_slot;
4249 
4250 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4251 	if (!log)
4252 		return;
4253 
4254 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4255 			 log, sizeof(*log), 0)) {
4256 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4257 		goto out_free_log;
4258 	}
4259 
4260 	cur_fw_slot = log->afi & 0x7;
4261 	next_fw_slot = (log->afi & 0x70) >> 4;
4262 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4263 		dev_info(ctrl->device,
4264 			 "Firmware is activated after next Controller Level Reset\n");
4265 		goto out_free_log;
4266 	}
4267 
4268 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4269 		sizeof(ctrl->subsys->firmware_rev));
4270 
4271 out_free_log:
4272 	kfree(log);
4273 }
4274 
4275 static void nvme_fw_act_work(struct work_struct *work)
4276 {
4277 	struct nvme_ctrl *ctrl = container_of(work,
4278 				struct nvme_ctrl, fw_act_work);
4279 	unsigned long fw_act_timeout;
4280 
4281 	nvme_auth_stop(ctrl);
4282 
4283 	if (ctrl->mtfa)
4284 		fw_act_timeout = jiffies +
4285 				msecs_to_jiffies(ctrl->mtfa * 100);
4286 	else
4287 		fw_act_timeout = jiffies +
4288 				msecs_to_jiffies(admin_timeout * 1000);
4289 
4290 	nvme_quiesce_io_queues(ctrl);
4291 	while (nvme_ctrl_pp_status(ctrl)) {
4292 		if (time_after(jiffies, fw_act_timeout)) {
4293 			dev_warn(ctrl->device,
4294 				"Fw activation timeout, reset controller\n");
4295 			nvme_try_sched_reset(ctrl);
4296 			return;
4297 		}
4298 		msleep(100);
4299 	}
4300 
4301 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4302 		return;
4303 
4304 	nvme_unquiesce_io_queues(ctrl);
4305 	/* read FW slot information to clear the AER */
4306 	nvme_get_fw_slot_info(ctrl);
4307 
4308 	queue_work(nvme_wq, &ctrl->async_event_work);
4309 }
4310 
4311 static u32 nvme_aer_type(u32 result)
4312 {
4313 	return result & 0x7;
4314 }
4315 
4316 static u32 nvme_aer_subtype(u32 result)
4317 {
4318 	return (result & 0xff00) >> 8;
4319 }
4320 
4321 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4322 {
4323 	u32 aer_notice_type = nvme_aer_subtype(result);
4324 	bool requeue = true;
4325 
4326 	switch (aer_notice_type) {
4327 	case NVME_AER_NOTICE_NS_CHANGED:
4328 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4329 		nvme_queue_scan(ctrl);
4330 		break;
4331 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4332 		/*
4333 		 * We are (ab)using the RESETTING state to prevent subsequent
4334 		 * recovery actions from interfering with the controller's
4335 		 * firmware activation.
4336 		 */
4337 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4338 			requeue = false;
4339 			queue_work(nvme_wq, &ctrl->fw_act_work);
4340 		}
4341 		break;
4342 #ifdef CONFIG_NVME_MULTIPATH
4343 	case NVME_AER_NOTICE_ANA:
4344 		if (!ctrl->ana_log_buf)
4345 			break;
4346 		queue_work(nvme_wq, &ctrl->ana_work);
4347 		break;
4348 #endif
4349 	case NVME_AER_NOTICE_DISC_CHANGED:
4350 		ctrl->aen_result = result;
4351 		break;
4352 	default:
4353 		dev_warn(ctrl->device, "async event result %08x\n", result);
4354 	}
4355 	return requeue;
4356 }
4357 
4358 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4359 {
4360 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4361 	nvme_reset_ctrl(ctrl);
4362 }
4363 
4364 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4365 		volatile union nvme_result *res)
4366 {
4367 	u32 result = le32_to_cpu(res->u32);
4368 	u32 aer_type = nvme_aer_type(result);
4369 	u32 aer_subtype = nvme_aer_subtype(result);
4370 	bool requeue = true;
4371 
4372 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4373 		return;
4374 
4375 	trace_nvme_async_event(ctrl, result);
4376 	switch (aer_type) {
4377 	case NVME_AER_NOTICE:
4378 		requeue = nvme_handle_aen_notice(ctrl, result);
4379 		break;
4380 	case NVME_AER_ERROR:
4381 		/*
4382 		 * For a persistent internal error, don't run async_event_work
4383 		 * to submit a new AER. The controller reset will do it.
4384 		 */
4385 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4386 			nvme_handle_aer_persistent_error(ctrl);
4387 			return;
4388 		}
4389 		fallthrough;
4390 	case NVME_AER_SMART:
4391 	case NVME_AER_CSS:
4392 	case NVME_AER_VS:
4393 		ctrl->aen_result = result;
4394 		break;
4395 	default:
4396 		break;
4397 	}
4398 
4399 	if (requeue)
4400 		queue_work(nvme_wq, &ctrl->async_event_work);
4401 }
4402 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4403 
4404 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4405 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4406 {
4407 	struct queue_limits lim = {};
4408 	int ret;
4409 
4410 	memset(set, 0, sizeof(*set));
4411 	set->ops = ops;
4412 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4413 	if (ctrl->ops->flags & NVME_F_FABRICS)
4414 		/* Reserved for fabric connect and keep alive */
4415 		set->reserved_tags = 2;
4416 	set->numa_node = ctrl->numa_node;
4417 	set->flags = BLK_MQ_F_NO_SCHED;
4418 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4419 		set->flags |= BLK_MQ_F_BLOCKING;
4420 	set->cmd_size = cmd_size;
4421 	set->driver_data = ctrl;
4422 	set->nr_hw_queues = 1;
4423 	set->timeout = NVME_ADMIN_TIMEOUT;
4424 	ret = blk_mq_alloc_tag_set(set);
4425 	if (ret)
4426 		return ret;
4427 
4428 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4429 	if (IS_ERR(ctrl->admin_q)) {
4430 		ret = PTR_ERR(ctrl->admin_q);
4431 		goto out_free_tagset;
4432 	}
4433 
4434 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4435 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4436 		if (IS_ERR(ctrl->fabrics_q)) {
4437 			ret = PTR_ERR(ctrl->fabrics_q);
4438 			goto out_cleanup_admin_q;
4439 		}
4440 	}
4441 
4442 	ctrl->admin_tagset = set;
4443 	return 0;
4444 
4445 out_cleanup_admin_q:
4446 	blk_mq_destroy_queue(ctrl->admin_q);
4447 	blk_put_queue(ctrl->admin_q);
4448 out_free_tagset:
4449 	blk_mq_free_tag_set(set);
4450 	ctrl->admin_q = NULL;
4451 	ctrl->fabrics_q = NULL;
4452 	return ret;
4453 }
4454 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4455 
4456 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4457 {
4458 	blk_mq_destroy_queue(ctrl->admin_q);
4459 	blk_put_queue(ctrl->admin_q);
4460 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4461 		blk_mq_destroy_queue(ctrl->fabrics_q);
4462 		blk_put_queue(ctrl->fabrics_q);
4463 	}
4464 	blk_mq_free_tag_set(ctrl->admin_tagset);
4465 }
4466 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4467 
4468 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4469 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4470 		unsigned int cmd_size)
4471 {
4472 	int ret;
4473 
4474 	memset(set, 0, sizeof(*set));
4475 	set->ops = ops;
4476 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4477 	/*
4478 	 * Some Apple controllers requires tags to be unique across admin and
4479 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4480 	 */
4481 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4482 		set->reserved_tags = NVME_AQ_DEPTH;
4483 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4484 		/* Reserved for fabric connect */
4485 		set->reserved_tags = 1;
4486 	set->numa_node = ctrl->numa_node;
4487 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4488 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4489 		set->flags |= BLK_MQ_F_BLOCKING;
4490 	set->cmd_size = cmd_size,
4491 	set->driver_data = ctrl;
4492 	set->nr_hw_queues = ctrl->queue_count - 1;
4493 	set->timeout = NVME_IO_TIMEOUT;
4494 	set->nr_maps = nr_maps;
4495 	ret = blk_mq_alloc_tag_set(set);
4496 	if (ret)
4497 		return ret;
4498 
4499 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4500 		ctrl->connect_q = blk_mq_alloc_queue(set, NULL, NULL);
4501         	if (IS_ERR(ctrl->connect_q)) {
4502 			ret = PTR_ERR(ctrl->connect_q);
4503 			goto out_free_tag_set;
4504 		}
4505 		blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4506 				   ctrl->connect_q);
4507 	}
4508 
4509 	ctrl->tagset = set;
4510 	return 0;
4511 
4512 out_free_tag_set:
4513 	blk_mq_free_tag_set(set);
4514 	ctrl->connect_q = NULL;
4515 	return ret;
4516 }
4517 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4518 
4519 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4520 {
4521 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4522 		blk_mq_destroy_queue(ctrl->connect_q);
4523 		blk_put_queue(ctrl->connect_q);
4524 	}
4525 	blk_mq_free_tag_set(ctrl->tagset);
4526 }
4527 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4528 
4529 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4530 {
4531 	nvme_mpath_stop(ctrl);
4532 	nvme_auth_stop(ctrl);
4533 	nvme_stop_keep_alive(ctrl);
4534 	nvme_stop_failfast_work(ctrl);
4535 	flush_work(&ctrl->async_event_work);
4536 	cancel_work_sync(&ctrl->fw_act_work);
4537 	if (ctrl->ops->stop_ctrl)
4538 		ctrl->ops->stop_ctrl(ctrl);
4539 }
4540 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4541 
4542 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4543 {
4544 	nvme_enable_aen(ctrl);
4545 
4546 	/*
4547 	 * persistent discovery controllers need to send indication to userspace
4548 	 * to re-read the discovery log page to learn about possible changes
4549 	 * that were missed. We identify persistent discovery controllers by
4550 	 * checking that they started once before, hence are reconnecting back.
4551 	 */
4552 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4553 	    nvme_discovery_ctrl(ctrl))
4554 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4555 
4556 	if (ctrl->queue_count > 1) {
4557 		nvme_queue_scan(ctrl);
4558 		nvme_unquiesce_io_queues(ctrl);
4559 		nvme_mpath_update(ctrl);
4560 	}
4561 
4562 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4563 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4564 }
4565 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4566 
4567 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4568 {
4569 	nvme_hwmon_exit(ctrl);
4570 	nvme_fault_inject_fini(&ctrl->fault_inject);
4571 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4572 	cdev_device_del(&ctrl->cdev, ctrl->device);
4573 	nvme_put_ctrl(ctrl);
4574 }
4575 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4576 
4577 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4578 {
4579 	struct nvme_effects_log	*cel;
4580 	unsigned long i;
4581 
4582 	xa_for_each(&ctrl->cels, i, cel) {
4583 		xa_erase(&ctrl->cels, i);
4584 		kfree(cel);
4585 	}
4586 
4587 	xa_destroy(&ctrl->cels);
4588 }
4589 
4590 static void nvme_free_ctrl(struct device *dev)
4591 {
4592 	struct nvme_ctrl *ctrl =
4593 		container_of(dev, struct nvme_ctrl, ctrl_device);
4594 	struct nvme_subsystem *subsys = ctrl->subsys;
4595 
4596 	if (!subsys || ctrl->instance != subsys->instance)
4597 		ida_free(&nvme_instance_ida, ctrl->instance);
4598 	key_put(ctrl->tls_key);
4599 	nvme_free_cels(ctrl);
4600 	nvme_mpath_uninit(ctrl);
4601 	nvme_auth_stop(ctrl);
4602 	nvme_auth_free(ctrl);
4603 	__free_page(ctrl->discard_page);
4604 	free_opal_dev(ctrl->opal_dev);
4605 
4606 	if (subsys) {
4607 		mutex_lock(&nvme_subsystems_lock);
4608 		list_del(&ctrl->subsys_entry);
4609 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4610 		mutex_unlock(&nvme_subsystems_lock);
4611 	}
4612 
4613 	ctrl->ops->free_ctrl(ctrl);
4614 
4615 	if (subsys)
4616 		nvme_put_subsystem(subsys);
4617 }
4618 
4619 /*
4620  * Initialize a NVMe controller structures.  This needs to be called during
4621  * earliest initialization so that we have the initialized structured around
4622  * during probing.
4623  */
4624 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4625 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4626 {
4627 	int ret;
4628 
4629 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4630 	ctrl->passthru_err_log_enabled = false;
4631 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4632 	spin_lock_init(&ctrl->lock);
4633 	mutex_init(&ctrl->scan_lock);
4634 	INIT_LIST_HEAD(&ctrl->namespaces);
4635 	xa_init(&ctrl->cels);
4636 	init_rwsem(&ctrl->namespaces_rwsem);
4637 	ctrl->dev = dev;
4638 	ctrl->ops = ops;
4639 	ctrl->quirks = quirks;
4640 	ctrl->numa_node = NUMA_NO_NODE;
4641 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4642 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4643 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4644 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4645 	init_waitqueue_head(&ctrl->state_wq);
4646 
4647 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4648 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4649 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4650 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4651 	ctrl->ka_last_check_time = jiffies;
4652 
4653 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4654 			PAGE_SIZE);
4655 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4656 	if (!ctrl->discard_page) {
4657 		ret = -ENOMEM;
4658 		goto out;
4659 	}
4660 
4661 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4662 	if (ret < 0)
4663 		goto out;
4664 	ctrl->instance = ret;
4665 
4666 	device_initialize(&ctrl->ctrl_device);
4667 	ctrl->device = &ctrl->ctrl_device;
4668 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4669 			ctrl->instance);
4670 	ctrl->device->class = &nvme_class;
4671 	ctrl->device->parent = ctrl->dev;
4672 	if (ops->dev_attr_groups)
4673 		ctrl->device->groups = ops->dev_attr_groups;
4674 	else
4675 		ctrl->device->groups = nvme_dev_attr_groups;
4676 	ctrl->device->release = nvme_free_ctrl;
4677 	dev_set_drvdata(ctrl->device, ctrl);
4678 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4679 	if (ret)
4680 		goto out_release_instance;
4681 
4682 	nvme_get_ctrl(ctrl);
4683 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4684 	ctrl->cdev.owner = ops->module;
4685 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4686 	if (ret)
4687 		goto out_free_name;
4688 
4689 	/*
4690 	 * Initialize latency tolerance controls.  The sysfs files won't
4691 	 * be visible to userspace unless the device actually supports APST.
4692 	 */
4693 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4694 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4695 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4696 
4697 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4698 	nvme_mpath_init_ctrl(ctrl);
4699 	ret = nvme_auth_init_ctrl(ctrl);
4700 	if (ret)
4701 		goto out_free_cdev;
4702 
4703 	return 0;
4704 out_free_cdev:
4705 	nvme_fault_inject_fini(&ctrl->fault_inject);
4706 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4707 	cdev_device_del(&ctrl->cdev, ctrl->device);
4708 out_free_name:
4709 	nvme_put_ctrl(ctrl);
4710 	kfree_const(ctrl->device->kobj.name);
4711 out_release_instance:
4712 	ida_free(&nvme_instance_ida, ctrl->instance);
4713 out:
4714 	if (ctrl->discard_page)
4715 		__free_page(ctrl->discard_page);
4716 	return ret;
4717 }
4718 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4719 
4720 /* let I/O to all namespaces fail in preparation for surprise removal */
4721 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4722 {
4723 	struct nvme_ns *ns;
4724 
4725 	down_read(&ctrl->namespaces_rwsem);
4726 	list_for_each_entry(ns, &ctrl->namespaces, list)
4727 		blk_mark_disk_dead(ns->disk);
4728 	up_read(&ctrl->namespaces_rwsem);
4729 }
4730 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4731 
4732 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4733 {
4734 	struct nvme_ns *ns;
4735 
4736 	down_read(&ctrl->namespaces_rwsem);
4737 	list_for_each_entry(ns, &ctrl->namespaces, list)
4738 		blk_mq_unfreeze_queue(ns->queue);
4739 	up_read(&ctrl->namespaces_rwsem);
4740 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4741 }
4742 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4743 
4744 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4745 {
4746 	struct nvme_ns *ns;
4747 
4748 	down_read(&ctrl->namespaces_rwsem);
4749 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4750 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4751 		if (timeout <= 0)
4752 			break;
4753 	}
4754 	up_read(&ctrl->namespaces_rwsem);
4755 	return timeout;
4756 }
4757 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4758 
4759 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4760 {
4761 	struct nvme_ns *ns;
4762 
4763 	down_read(&ctrl->namespaces_rwsem);
4764 	list_for_each_entry(ns, &ctrl->namespaces, list)
4765 		blk_mq_freeze_queue_wait(ns->queue);
4766 	up_read(&ctrl->namespaces_rwsem);
4767 }
4768 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4769 
4770 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4771 {
4772 	struct nvme_ns *ns;
4773 
4774 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4775 	down_read(&ctrl->namespaces_rwsem);
4776 	list_for_each_entry(ns, &ctrl->namespaces, list)
4777 		blk_freeze_queue_start(ns->queue);
4778 	up_read(&ctrl->namespaces_rwsem);
4779 }
4780 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4781 
4782 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4783 {
4784 	if (!ctrl->tagset)
4785 		return;
4786 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4787 		blk_mq_quiesce_tagset(ctrl->tagset);
4788 	else
4789 		blk_mq_wait_quiesce_done(ctrl->tagset);
4790 }
4791 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4792 
4793 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4794 {
4795 	if (!ctrl->tagset)
4796 		return;
4797 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4798 		blk_mq_unquiesce_tagset(ctrl->tagset);
4799 }
4800 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4801 
4802 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4803 {
4804 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4805 		blk_mq_quiesce_queue(ctrl->admin_q);
4806 	else
4807 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4808 }
4809 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4810 
4811 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4812 {
4813 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4814 		blk_mq_unquiesce_queue(ctrl->admin_q);
4815 }
4816 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4817 
4818 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4819 {
4820 	struct nvme_ns *ns;
4821 
4822 	down_read(&ctrl->namespaces_rwsem);
4823 	list_for_each_entry(ns, &ctrl->namespaces, list)
4824 		blk_sync_queue(ns->queue);
4825 	up_read(&ctrl->namespaces_rwsem);
4826 }
4827 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4828 
4829 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4830 {
4831 	nvme_sync_io_queues(ctrl);
4832 	if (ctrl->admin_q)
4833 		blk_sync_queue(ctrl->admin_q);
4834 }
4835 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4836 
4837 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4838 {
4839 	if (file->f_op != &nvme_dev_fops)
4840 		return NULL;
4841 	return file->private_data;
4842 }
4843 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4844 
4845 /*
4846  * Check we didn't inadvertently grow the command structure sizes:
4847  */
4848 static inline void _nvme_check_size(void)
4849 {
4850 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4851 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4852 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4853 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4854 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4855 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4856 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4857 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4858 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4859 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4860 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4861 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4862 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4863 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4864 			NVME_IDENTIFY_DATA_SIZE);
4865 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4866 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4867 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4868 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4869 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4870 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4871 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4872 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4873 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4874 }
4875 
4876 
4877 static int __init nvme_core_init(void)
4878 {
4879 	int result = -ENOMEM;
4880 
4881 	_nvme_check_size();
4882 
4883 	nvme_wq = alloc_workqueue("nvme-wq",
4884 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4885 	if (!nvme_wq)
4886 		goto out;
4887 
4888 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4889 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4890 	if (!nvme_reset_wq)
4891 		goto destroy_wq;
4892 
4893 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4894 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4895 	if (!nvme_delete_wq)
4896 		goto destroy_reset_wq;
4897 
4898 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4899 			NVME_MINORS, "nvme");
4900 	if (result < 0)
4901 		goto destroy_delete_wq;
4902 
4903 	result = class_register(&nvme_class);
4904 	if (result)
4905 		goto unregister_chrdev;
4906 
4907 	result = class_register(&nvme_subsys_class);
4908 	if (result)
4909 		goto destroy_class;
4910 
4911 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4912 				     "nvme-generic");
4913 	if (result < 0)
4914 		goto destroy_subsys_class;
4915 
4916 	result = class_register(&nvme_ns_chr_class);
4917 	if (result)
4918 		goto unregister_generic_ns;
4919 
4920 	result = nvme_init_auth();
4921 	if (result)
4922 		goto destroy_ns_chr;
4923 	return 0;
4924 
4925 destroy_ns_chr:
4926 	class_unregister(&nvme_ns_chr_class);
4927 unregister_generic_ns:
4928 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4929 destroy_subsys_class:
4930 	class_unregister(&nvme_subsys_class);
4931 destroy_class:
4932 	class_unregister(&nvme_class);
4933 unregister_chrdev:
4934 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4935 destroy_delete_wq:
4936 	destroy_workqueue(nvme_delete_wq);
4937 destroy_reset_wq:
4938 	destroy_workqueue(nvme_reset_wq);
4939 destroy_wq:
4940 	destroy_workqueue(nvme_wq);
4941 out:
4942 	return result;
4943 }
4944 
4945 static void __exit nvme_core_exit(void)
4946 {
4947 	nvme_exit_auth();
4948 	class_unregister(&nvme_ns_chr_class);
4949 	class_unregister(&nvme_subsys_class);
4950 	class_unregister(&nvme_class);
4951 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4952 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4953 	destroy_workqueue(nvme_delete_wq);
4954 	destroy_workqueue(nvme_reset_wq);
4955 	destroy_workqueue(nvme_wq);
4956 	ida_destroy(&nvme_ns_chr_minor_ida);
4957 	ida_destroy(&nvme_instance_ida);
4958 }
4959 
4960 MODULE_LICENSE("GPL");
4961 MODULE_VERSION("1.0");
4962 MODULE_DESCRIPTION("NVMe host core framework");
4963 module_init(nvme_core_init);
4964 module_exit(nvme_core_exit);
4965