xref: /linux/drivers/nvme/host/core.c (revision 6ea76f33e9ab99c7888547e1acba2baf8e4b5b17)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31 
32 #include "nvme.h"
33 #include "fabrics.h"
34 
35 #define NVME_MINORS		(1U << MINORBITS)
36 
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41 
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46 
47 unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50 
51 unsigned int nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, uint, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 EXPORT_SYMBOL_GPL(nvme_max_retries);
55 
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58 
59 static LIST_HEAD(nvme_ctrl_list);
60 static DEFINE_SPINLOCK(dev_list_lock);
61 
62 static struct class *nvme_class;
63 
64 void nvme_cancel_request(struct request *req, void *data, bool reserved)
65 {
66 	int status;
67 
68 	if (!blk_mq_request_started(req))
69 		return;
70 
71 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
72 				"Cancelling I/O %d", req->tag);
73 
74 	status = NVME_SC_ABORT_REQ;
75 	if (blk_queue_dying(req->q))
76 		status |= NVME_SC_DNR;
77 	blk_mq_complete_request(req, status);
78 }
79 EXPORT_SYMBOL_GPL(nvme_cancel_request);
80 
81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
82 		enum nvme_ctrl_state new_state)
83 {
84 	enum nvme_ctrl_state old_state;
85 	bool changed = false;
86 
87 	spin_lock_irq(&ctrl->lock);
88 
89 	old_state = ctrl->state;
90 	switch (new_state) {
91 	case NVME_CTRL_LIVE:
92 		switch (old_state) {
93 		case NVME_CTRL_NEW:
94 		case NVME_CTRL_RESETTING:
95 		case NVME_CTRL_RECONNECTING:
96 			changed = true;
97 			/* FALLTHRU */
98 		default:
99 			break;
100 		}
101 		break;
102 	case NVME_CTRL_RESETTING:
103 		switch (old_state) {
104 		case NVME_CTRL_NEW:
105 		case NVME_CTRL_LIVE:
106 		case NVME_CTRL_RECONNECTING:
107 			changed = true;
108 			/* FALLTHRU */
109 		default:
110 			break;
111 		}
112 		break;
113 	case NVME_CTRL_RECONNECTING:
114 		switch (old_state) {
115 		case NVME_CTRL_LIVE:
116 			changed = true;
117 			/* FALLTHRU */
118 		default:
119 			break;
120 		}
121 		break;
122 	case NVME_CTRL_DELETING:
123 		switch (old_state) {
124 		case NVME_CTRL_LIVE:
125 		case NVME_CTRL_RESETTING:
126 		case NVME_CTRL_RECONNECTING:
127 			changed = true;
128 			/* FALLTHRU */
129 		default:
130 			break;
131 		}
132 		break;
133 	case NVME_CTRL_DEAD:
134 		switch (old_state) {
135 		case NVME_CTRL_DELETING:
136 			changed = true;
137 			/* FALLTHRU */
138 		default:
139 			break;
140 		}
141 		break;
142 	default:
143 		break;
144 	}
145 
146 	if (changed)
147 		ctrl->state = new_state;
148 
149 	spin_unlock_irq(&ctrl->lock);
150 
151 	return changed;
152 }
153 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
154 
155 static void nvme_free_ns(struct kref *kref)
156 {
157 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
158 
159 	if (ns->ndev)
160 		nvme_nvm_unregister(ns);
161 
162 	if (ns->disk) {
163 		spin_lock(&dev_list_lock);
164 		ns->disk->private_data = NULL;
165 		spin_unlock(&dev_list_lock);
166 	}
167 
168 	put_disk(ns->disk);
169 	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
170 	nvme_put_ctrl(ns->ctrl);
171 	kfree(ns);
172 }
173 
174 static void nvme_put_ns(struct nvme_ns *ns)
175 {
176 	kref_put(&ns->kref, nvme_free_ns);
177 }
178 
179 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
180 {
181 	struct nvme_ns *ns;
182 
183 	spin_lock(&dev_list_lock);
184 	ns = disk->private_data;
185 	if (ns) {
186 		if (!kref_get_unless_zero(&ns->kref))
187 			goto fail;
188 		if (!try_module_get(ns->ctrl->ops->module))
189 			goto fail_put_ns;
190 	}
191 	spin_unlock(&dev_list_lock);
192 
193 	return ns;
194 
195 fail_put_ns:
196 	kref_put(&ns->kref, nvme_free_ns);
197 fail:
198 	spin_unlock(&dev_list_lock);
199 	return NULL;
200 }
201 
202 void nvme_requeue_req(struct request *req)
203 {
204 	blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
205 }
206 EXPORT_SYMBOL_GPL(nvme_requeue_req);
207 
208 struct request *nvme_alloc_request(struct request_queue *q,
209 		struct nvme_command *cmd, unsigned int flags, int qid)
210 {
211 	struct request *req;
212 
213 	if (qid == NVME_QID_ANY) {
214 		req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
215 	} else {
216 		req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
217 				qid ? qid - 1 : 0);
218 	}
219 	if (IS_ERR(req))
220 		return req;
221 
222 	req->cmd_type = REQ_TYPE_DRV_PRIV;
223 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
224 	nvme_req(req)->cmd = cmd;
225 
226 	return req;
227 }
228 EXPORT_SYMBOL_GPL(nvme_alloc_request);
229 
230 static inline void nvme_setup_flush(struct nvme_ns *ns,
231 		struct nvme_command *cmnd)
232 {
233 	memset(cmnd, 0, sizeof(*cmnd));
234 	cmnd->common.opcode = nvme_cmd_flush;
235 	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
236 }
237 
238 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
239 		struct nvme_command *cmnd)
240 {
241 	struct nvme_dsm_range *range;
242 	struct page *page;
243 	int offset;
244 	unsigned int nr_bytes = blk_rq_bytes(req);
245 
246 	range = kmalloc(sizeof(*range), GFP_ATOMIC);
247 	if (!range)
248 		return BLK_MQ_RQ_QUEUE_BUSY;
249 
250 	range->cattr = cpu_to_le32(0);
251 	range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
252 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
253 
254 	memset(cmnd, 0, sizeof(*cmnd));
255 	cmnd->dsm.opcode = nvme_cmd_dsm;
256 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
257 	cmnd->dsm.nr = 0;
258 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
259 
260 	req->completion_data = range;
261 	page = virt_to_page(range);
262 	offset = offset_in_page(range);
263 	blk_add_request_payload(req, page, offset, sizeof(*range));
264 
265 	/*
266 	 * we set __data_len back to the size of the area to be discarded
267 	 * on disk. This allows us to report completion on the full amount
268 	 * of blocks described by the request.
269 	 */
270 	req->__data_len = nr_bytes;
271 
272 	return BLK_MQ_RQ_QUEUE_OK;
273 }
274 
275 static inline void nvme_setup_write_zeroes(struct nvme_ns *ns,
276 		struct request *req, struct nvme_command *cmnd)
277 {
278 	struct nvme_write_zeroes_cmd *write_zeroes = &cmnd->write_zeroes;
279 
280 	memset(cmnd, 0, sizeof(*cmnd));
281 	write_zeroes->opcode = nvme_cmd_write_zeroes;
282 	write_zeroes->nsid = cpu_to_le32(ns->ns_id);
283 	write_zeroes->slba =
284 		cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
285 	write_zeroes->length =
286 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
287 	write_zeroes->control = 0;
288 }
289 
290 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
291 		struct nvme_command *cmnd)
292 {
293 	u16 control = 0;
294 	u32 dsmgmt = 0;
295 
296 	if (req->cmd_flags & REQ_FUA)
297 		control |= NVME_RW_FUA;
298 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
299 		control |= NVME_RW_LR;
300 
301 	if (req->cmd_flags & REQ_RAHEAD)
302 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
303 
304 	memset(cmnd, 0, sizeof(*cmnd));
305 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
306 	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
307 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
308 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
309 
310 	if (ns->ms) {
311 		switch (ns->pi_type) {
312 		case NVME_NS_DPS_PI_TYPE3:
313 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
314 			break;
315 		case NVME_NS_DPS_PI_TYPE1:
316 		case NVME_NS_DPS_PI_TYPE2:
317 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
318 					NVME_RW_PRINFO_PRCHK_REF;
319 			cmnd->rw.reftag = cpu_to_le32(
320 					nvme_block_nr(ns, blk_rq_pos(req)));
321 			break;
322 		}
323 		if (!blk_integrity_rq(req))
324 			control |= NVME_RW_PRINFO_PRACT;
325 	}
326 
327 	cmnd->rw.control = cpu_to_le16(control);
328 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
329 }
330 
331 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
332 		struct nvme_command *cmd)
333 {
334 	int ret = BLK_MQ_RQ_QUEUE_OK;
335 
336 	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
337 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
338 	else if (req_op(req) == REQ_OP_FLUSH)
339 		nvme_setup_flush(ns, cmd);
340 	else if (req_op(req) == REQ_OP_DISCARD)
341 		ret = nvme_setup_discard(ns, req, cmd);
342 	else if (req_op(req) == REQ_OP_WRITE_ZEROES)
343 		nvme_setup_write_zeroes(ns, req, cmd);
344 	else
345 		nvme_setup_rw(ns, req, cmd);
346 
347 	cmd->common.command_id = req->tag;
348 
349 	return ret;
350 }
351 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
352 
353 /*
354  * Returns 0 on success.  If the result is negative, it's a Linux error code;
355  * if the result is positive, it's an NVM Express status code
356  */
357 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
358 		union nvme_result *result, void *buffer, unsigned bufflen,
359 		unsigned timeout, int qid, int at_head, int flags)
360 {
361 	struct request *req;
362 	int ret;
363 
364 	req = nvme_alloc_request(q, cmd, flags, qid);
365 	if (IS_ERR(req))
366 		return PTR_ERR(req);
367 
368 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
369 
370 	if (buffer && bufflen) {
371 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
372 		if (ret)
373 			goto out;
374 	}
375 
376 	blk_execute_rq(req->q, NULL, req, at_head);
377 	if (result)
378 		*result = nvme_req(req)->result;
379 	ret = req->errors;
380  out:
381 	blk_mq_free_request(req);
382 	return ret;
383 }
384 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
385 
386 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
387 		void *buffer, unsigned bufflen)
388 {
389 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
390 			NVME_QID_ANY, 0, 0);
391 }
392 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
393 
394 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
395 		void __user *ubuffer, unsigned bufflen,
396 		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
397 		u32 *result, unsigned timeout)
398 {
399 	bool write = nvme_is_write(cmd);
400 	struct nvme_ns *ns = q->queuedata;
401 	struct gendisk *disk = ns ? ns->disk : NULL;
402 	struct request *req;
403 	struct bio *bio = NULL;
404 	void *meta = NULL;
405 	int ret;
406 
407 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
408 	if (IS_ERR(req))
409 		return PTR_ERR(req);
410 
411 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
412 
413 	if (ubuffer && bufflen) {
414 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
415 				GFP_KERNEL);
416 		if (ret)
417 			goto out;
418 		bio = req->bio;
419 
420 		if (!disk)
421 			goto submit;
422 		bio->bi_bdev = bdget_disk(disk, 0);
423 		if (!bio->bi_bdev) {
424 			ret = -ENODEV;
425 			goto out_unmap;
426 		}
427 
428 		if (meta_buffer && meta_len) {
429 			struct bio_integrity_payload *bip;
430 
431 			meta = kmalloc(meta_len, GFP_KERNEL);
432 			if (!meta) {
433 				ret = -ENOMEM;
434 				goto out_unmap;
435 			}
436 
437 			if (write) {
438 				if (copy_from_user(meta, meta_buffer,
439 						meta_len)) {
440 					ret = -EFAULT;
441 					goto out_free_meta;
442 				}
443 			}
444 
445 			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
446 			if (IS_ERR(bip)) {
447 				ret = PTR_ERR(bip);
448 				goto out_free_meta;
449 			}
450 
451 			bip->bip_iter.bi_size = meta_len;
452 			bip->bip_iter.bi_sector = meta_seed;
453 
454 			ret = bio_integrity_add_page(bio, virt_to_page(meta),
455 					meta_len, offset_in_page(meta));
456 			if (ret != meta_len) {
457 				ret = -ENOMEM;
458 				goto out_free_meta;
459 			}
460 		}
461 	}
462  submit:
463 	blk_execute_rq(req->q, disk, req, 0);
464 	ret = req->errors;
465 	if (result)
466 		*result = le32_to_cpu(nvme_req(req)->result.u32);
467 	if (meta && !ret && !write) {
468 		if (copy_to_user(meta_buffer, meta, meta_len))
469 			ret = -EFAULT;
470 	}
471  out_free_meta:
472 	kfree(meta);
473  out_unmap:
474 	if (bio) {
475 		if (disk && bio->bi_bdev)
476 			bdput(bio->bi_bdev);
477 		blk_rq_unmap_user(bio);
478 	}
479  out:
480 	blk_mq_free_request(req);
481 	return ret;
482 }
483 
484 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
485 		void __user *ubuffer, unsigned bufflen, u32 *result,
486 		unsigned timeout)
487 {
488 	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
489 			result, timeout);
490 }
491 
492 static void nvme_keep_alive_end_io(struct request *rq, int error)
493 {
494 	struct nvme_ctrl *ctrl = rq->end_io_data;
495 
496 	blk_mq_free_request(rq);
497 
498 	if (error) {
499 		dev_err(ctrl->device,
500 			"failed nvme_keep_alive_end_io error=%d\n", error);
501 		return;
502 	}
503 
504 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
505 }
506 
507 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
508 {
509 	struct nvme_command c;
510 	struct request *rq;
511 
512 	memset(&c, 0, sizeof(c));
513 	c.common.opcode = nvme_admin_keep_alive;
514 
515 	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
516 			NVME_QID_ANY);
517 	if (IS_ERR(rq))
518 		return PTR_ERR(rq);
519 
520 	rq->timeout = ctrl->kato * HZ;
521 	rq->end_io_data = ctrl;
522 
523 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
524 
525 	return 0;
526 }
527 
528 static void nvme_keep_alive_work(struct work_struct *work)
529 {
530 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
531 			struct nvme_ctrl, ka_work);
532 
533 	if (nvme_keep_alive(ctrl)) {
534 		/* allocation failure, reset the controller */
535 		dev_err(ctrl->device, "keep-alive failed\n");
536 		ctrl->ops->reset_ctrl(ctrl);
537 		return;
538 	}
539 }
540 
541 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
542 {
543 	if (unlikely(ctrl->kato == 0))
544 		return;
545 
546 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
547 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
548 }
549 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
550 
551 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
552 {
553 	if (unlikely(ctrl->kato == 0))
554 		return;
555 
556 	cancel_delayed_work_sync(&ctrl->ka_work);
557 }
558 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
559 
560 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
561 {
562 	struct nvme_command c = { };
563 	int error;
564 
565 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
566 	c.identify.opcode = nvme_admin_identify;
567 	c.identify.cns = cpu_to_le32(1);
568 
569 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
570 	if (!*id)
571 		return -ENOMEM;
572 
573 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
574 			sizeof(struct nvme_id_ctrl));
575 	if (error)
576 		kfree(*id);
577 	return error;
578 }
579 
580 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
581 {
582 	struct nvme_command c = { };
583 
584 	c.identify.opcode = nvme_admin_identify;
585 	c.identify.cns = cpu_to_le32(2);
586 	c.identify.nsid = cpu_to_le32(nsid);
587 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
588 }
589 
590 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
591 		struct nvme_id_ns **id)
592 {
593 	struct nvme_command c = { };
594 	int error;
595 
596 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
597 	c.identify.opcode = nvme_admin_identify,
598 	c.identify.nsid = cpu_to_le32(nsid),
599 
600 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
601 	if (!*id)
602 		return -ENOMEM;
603 
604 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
605 			sizeof(struct nvme_id_ns));
606 	if (error)
607 		kfree(*id);
608 	return error;
609 }
610 
611 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
612 		      void *buffer, size_t buflen, u32 *result)
613 {
614 	struct nvme_command c;
615 	union nvme_result res;
616 	int ret;
617 
618 	memset(&c, 0, sizeof(c));
619 	c.features.opcode = nvme_admin_get_features;
620 	c.features.nsid = cpu_to_le32(nsid);
621 	c.features.fid = cpu_to_le32(fid);
622 
623 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
624 			NVME_QID_ANY, 0, 0);
625 	if (ret >= 0 && result)
626 		*result = le32_to_cpu(res.u32);
627 	return ret;
628 }
629 
630 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
631 		      void *buffer, size_t buflen, u32 *result)
632 {
633 	struct nvme_command c;
634 	union nvme_result res;
635 	int ret;
636 
637 	memset(&c, 0, sizeof(c));
638 	c.features.opcode = nvme_admin_set_features;
639 	c.features.fid = cpu_to_le32(fid);
640 	c.features.dword11 = cpu_to_le32(dword11);
641 
642 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
643 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
644 	if (ret >= 0 && result)
645 		*result = le32_to_cpu(res.u32);
646 	return ret;
647 }
648 
649 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
650 {
651 	struct nvme_command c = { };
652 	int error;
653 
654 	c.common.opcode = nvme_admin_get_log_page,
655 	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
656 	c.common.cdw10[0] = cpu_to_le32(
657 			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
658 			 NVME_LOG_SMART),
659 
660 	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
661 	if (!*log)
662 		return -ENOMEM;
663 
664 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
665 			sizeof(struct nvme_smart_log));
666 	if (error)
667 		kfree(*log);
668 	return error;
669 }
670 
671 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
672 {
673 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
674 	u32 result;
675 	int status, nr_io_queues;
676 
677 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
678 			&result);
679 	if (status < 0)
680 		return status;
681 
682 	/*
683 	 * Degraded controllers might return an error when setting the queue
684 	 * count.  We still want to be able to bring them online and offer
685 	 * access to the admin queue, as that might be only way to fix them up.
686 	 */
687 	if (status > 0) {
688 		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
689 		*count = 0;
690 	} else {
691 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
692 		*count = min(*count, nr_io_queues);
693 	}
694 
695 	return 0;
696 }
697 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
698 
699 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
700 {
701 	struct nvme_user_io io;
702 	struct nvme_command c;
703 	unsigned length, meta_len;
704 	void __user *metadata;
705 
706 	if (copy_from_user(&io, uio, sizeof(io)))
707 		return -EFAULT;
708 	if (io.flags)
709 		return -EINVAL;
710 
711 	switch (io.opcode) {
712 	case nvme_cmd_write:
713 	case nvme_cmd_read:
714 	case nvme_cmd_compare:
715 		break;
716 	default:
717 		return -EINVAL;
718 	}
719 
720 	length = (io.nblocks + 1) << ns->lba_shift;
721 	meta_len = (io.nblocks + 1) * ns->ms;
722 	metadata = (void __user *)(uintptr_t)io.metadata;
723 
724 	if (ns->ext) {
725 		length += meta_len;
726 		meta_len = 0;
727 	} else if (meta_len) {
728 		if ((io.metadata & 3) || !io.metadata)
729 			return -EINVAL;
730 	}
731 
732 	memset(&c, 0, sizeof(c));
733 	c.rw.opcode = io.opcode;
734 	c.rw.flags = io.flags;
735 	c.rw.nsid = cpu_to_le32(ns->ns_id);
736 	c.rw.slba = cpu_to_le64(io.slba);
737 	c.rw.length = cpu_to_le16(io.nblocks);
738 	c.rw.control = cpu_to_le16(io.control);
739 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
740 	c.rw.reftag = cpu_to_le32(io.reftag);
741 	c.rw.apptag = cpu_to_le16(io.apptag);
742 	c.rw.appmask = cpu_to_le16(io.appmask);
743 
744 	return __nvme_submit_user_cmd(ns->queue, &c,
745 			(void __user *)(uintptr_t)io.addr, length,
746 			metadata, meta_len, io.slba, NULL, 0);
747 }
748 
749 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
750 			struct nvme_passthru_cmd __user *ucmd)
751 {
752 	struct nvme_passthru_cmd cmd;
753 	struct nvme_command c;
754 	unsigned timeout = 0;
755 	int status;
756 
757 	if (!capable(CAP_SYS_ADMIN))
758 		return -EACCES;
759 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
760 		return -EFAULT;
761 	if (cmd.flags)
762 		return -EINVAL;
763 
764 	memset(&c, 0, sizeof(c));
765 	c.common.opcode = cmd.opcode;
766 	c.common.flags = cmd.flags;
767 	c.common.nsid = cpu_to_le32(cmd.nsid);
768 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
769 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
770 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
771 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
772 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
773 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
774 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
775 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
776 
777 	if (cmd.timeout_ms)
778 		timeout = msecs_to_jiffies(cmd.timeout_ms);
779 
780 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
781 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
782 			&cmd.result, timeout);
783 	if (status >= 0) {
784 		if (put_user(cmd.result, &ucmd->result))
785 			return -EFAULT;
786 	}
787 
788 	return status;
789 }
790 
791 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
792 		unsigned int cmd, unsigned long arg)
793 {
794 	struct nvme_ns *ns = bdev->bd_disk->private_data;
795 
796 	switch (cmd) {
797 	case NVME_IOCTL_ID:
798 		force_successful_syscall_return();
799 		return ns->ns_id;
800 	case NVME_IOCTL_ADMIN_CMD:
801 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
802 	case NVME_IOCTL_IO_CMD:
803 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
804 	case NVME_IOCTL_SUBMIT_IO:
805 		return nvme_submit_io(ns, (void __user *)arg);
806 #ifdef CONFIG_BLK_DEV_NVME_SCSI
807 	case SG_GET_VERSION_NUM:
808 		return nvme_sg_get_version_num((void __user *)arg);
809 	case SG_IO:
810 		return nvme_sg_io(ns, (void __user *)arg);
811 #endif
812 	default:
813 		return -ENOTTY;
814 	}
815 }
816 
817 #ifdef CONFIG_COMPAT
818 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
819 			unsigned int cmd, unsigned long arg)
820 {
821 	switch (cmd) {
822 	case SG_IO:
823 		return -ENOIOCTLCMD;
824 	}
825 	return nvme_ioctl(bdev, mode, cmd, arg);
826 }
827 #else
828 #define nvme_compat_ioctl	NULL
829 #endif
830 
831 static int nvme_open(struct block_device *bdev, fmode_t mode)
832 {
833 	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
834 }
835 
836 static void nvme_release(struct gendisk *disk, fmode_t mode)
837 {
838 	struct nvme_ns *ns = disk->private_data;
839 
840 	module_put(ns->ctrl->ops->module);
841 	nvme_put_ns(ns);
842 }
843 
844 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
845 {
846 	/* some standard values */
847 	geo->heads = 1 << 6;
848 	geo->sectors = 1 << 5;
849 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
850 	return 0;
851 }
852 
853 #ifdef CONFIG_BLK_DEV_INTEGRITY
854 static void nvme_init_integrity(struct nvme_ns *ns)
855 {
856 	struct blk_integrity integrity;
857 
858 	memset(&integrity, 0, sizeof(integrity));
859 	switch (ns->pi_type) {
860 	case NVME_NS_DPS_PI_TYPE3:
861 		integrity.profile = &t10_pi_type3_crc;
862 		integrity.tag_size = sizeof(u16) + sizeof(u32);
863 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
864 		break;
865 	case NVME_NS_DPS_PI_TYPE1:
866 	case NVME_NS_DPS_PI_TYPE2:
867 		integrity.profile = &t10_pi_type1_crc;
868 		integrity.tag_size = sizeof(u16);
869 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
870 		break;
871 	default:
872 		integrity.profile = NULL;
873 		break;
874 	}
875 	integrity.tuple_size = ns->ms;
876 	blk_integrity_register(ns->disk, &integrity);
877 	blk_queue_max_integrity_segments(ns->queue, 1);
878 }
879 #else
880 static void nvme_init_integrity(struct nvme_ns *ns)
881 {
882 }
883 #endif /* CONFIG_BLK_DEV_INTEGRITY */
884 
885 static void nvme_config_discard(struct nvme_ns *ns)
886 {
887 	struct nvme_ctrl *ctrl = ns->ctrl;
888 	u32 logical_block_size = queue_logical_block_size(ns->queue);
889 
890 	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
891 		ns->queue->limits.discard_zeroes_data = 1;
892 	else
893 		ns->queue->limits.discard_zeroes_data = 0;
894 
895 	ns->queue->limits.discard_alignment = logical_block_size;
896 	ns->queue->limits.discard_granularity = logical_block_size;
897 	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
898 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
899 }
900 
901 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
902 {
903 	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
904 		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
905 		return -ENODEV;
906 	}
907 
908 	if ((*id)->ncap == 0) {
909 		kfree(*id);
910 		return -ENODEV;
911 	}
912 
913 	if (ns->ctrl->vs >= NVME_VS(1, 1))
914 		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
915 	if (ns->ctrl->vs >= NVME_VS(1, 2))
916 		memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
917 
918 	return 0;
919 }
920 
921 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
922 {
923 	struct nvme_ns *ns = disk->private_data;
924 	u8 lbaf, pi_type;
925 	u16 old_ms;
926 	unsigned short bs;
927 
928 	old_ms = ns->ms;
929 	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
930 	ns->lba_shift = id->lbaf[lbaf].ds;
931 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
932 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
933 
934 	/*
935 	 * If identify namespace failed, use default 512 byte block size so
936 	 * block layer can use before failing read/write for 0 capacity.
937 	 */
938 	if (ns->lba_shift == 0)
939 		ns->lba_shift = 9;
940 	bs = 1 << ns->lba_shift;
941 	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
942 	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
943 					id->dps & NVME_NS_DPS_PI_MASK : 0;
944 
945 	blk_mq_freeze_queue(disk->queue);
946 	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
947 				ns->ms != old_ms ||
948 				bs != queue_logical_block_size(disk->queue) ||
949 				(ns->ms && ns->ext)))
950 		blk_integrity_unregister(disk);
951 
952 	ns->pi_type = pi_type;
953 	blk_queue_logical_block_size(ns->queue, bs);
954 
955 	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
956 		nvme_init_integrity(ns);
957 	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
958 		set_capacity(disk, 0);
959 	else
960 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
961 
962 	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
963 		nvme_config_discard(ns);
964 	if (ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES)
965 		blk_queue_max_write_zeroes_sectors(ns->queue,
966 				((u32)(USHRT_MAX + 1) * bs) >> 9);
967 
968 	blk_mq_unfreeze_queue(disk->queue);
969 }
970 
971 static int nvme_revalidate_disk(struct gendisk *disk)
972 {
973 	struct nvme_ns *ns = disk->private_data;
974 	struct nvme_id_ns *id = NULL;
975 	int ret;
976 
977 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
978 		set_capacity(disk, 0);
979 		return -ENODEV;
980 	}
981 
982 	ret = nvme_revalidate_ns(ns, &id);
983 	if (ret)
984 		return ret;
985 
986 	__nvme_revalidate_disk(disk, id);
987 	kfree(id);
988 
989 	return 0;
990 }
991 
992 static char nvme_pr_type(enum pr_type type)
993 {
994 	switch (type) {
995 	case PR_WRITE_EXCLUSIVE:
996 		return 1;
997 	case PR_EXCLUSIVE_ACCESS:
998 		return 2;
999 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1000 		return 3;
1001 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1002 		return 4;
1003 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1004 		return 5;
1005 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1006 		return 6;
1007 	default:
1008 		return 0;
1009 	}
1010 };
1011 
1012 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1013 				u64 key, u64 sa_key, u8 op)
1014 {
1015 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1016 	struct nvme_command c;
1017 	u8 data[16] = { 0, };
1018 
1019 	put_unaligned_le64(key, &data[0]);
1020 	put_unaligned_le64(sa_key, &data[8]);
1021 
1022 	memset(&c, 0, sizeof(c));
1023 	c.common.opcode = op;
1024 	c.common.nsid = cpu_to_le32(ns->ns_id);
1025 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1026 
1027 	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1028 }
1029 
1030 static int nvme_pr_register(struct block_device *bdev, u64 old,
1031 		u64 new, unsigned flags)
1032 {
1033 	u32 cdw10;
1034 
1035 	if (flags & ~PR_FL_IGNORE_KEY)
1036 		return -EOPNOTSUPP;
1037 
1038 	cdw10 = old ? 2 : 0;
1039 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1040 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1041 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1042 }
1043 
1044 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1045 		enum pr_type type, unsigned flags)
1046 {
1047 	u32 cdw10;
1048 
1049 	if (flags & ~PR_FL_IGNORE_KEY)
1050 		return -EOPNOTSUPP;
1051 
1052 	cdw10 = nvme_pr_type(type) << 8;
1053 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1054 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1055 }
1056 
1057 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1058 		enum pr_type type, bool abort)
1059 {
1060 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1061 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1062 }
1063 
1064 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1065 {
1066 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1067 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1068 }
1069 
1070 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1071 {
1072 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1073 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1074 }
1075 
1076 static const struct pr_ops nvme_pr_ops = {
1077 	.pr_register	= nvme_pr_register,
1078 	.pr_reserve	= nvme_pr_reserve,
1079 	.pr_release	= nvme_pr_release,
1080 	.pr_preempt	= nvme_pr_preempt,
1081 	.pr_clear	= nvme_pr_clear,
1082 };
1083 
1084 static const struct block_device_operations nvme_fops = {
1085 	.owner		= THIS_MODULE,
1086 	.ioctl		= nvme_ioctl,
1087 	.compat_ioctl	= nvme_compat_ioctl,
1088 	.open		= nvme_open,
1089 	.release	= nvme_release,
1090 	.getgeo		= nvme_getgeo,
1091 	.revalidate_disk= nvme_revalidate_disk,
1092 	.pr_ops		= &nvme_pr_ops,
1093 };
1094 
1095 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1096 {
1097 	unsigned long timeout =
1098 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1099 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1100 	int ret;
1101 
1102 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1103 		if ((csts & NVME_CSTS_RDY) == bit)
1104 			break;
1105 
1106 		msleep(100);
1107 		if (fatal_signal_pending(current))
1108 			return -EINTR;
1109 		if (time_after(jiffies, timeout)) {
1110 			dev_err(ctrl->device,
1111 				"Device not ready; aborting %s\n", enabled ?
1112 						"initialisation" : "reset");
1113 			return -ENODEV;
1114 		}
1115 	}
1116 
1117 	return ret;
1118 }
1119 
1120 /*
1121  * If the device has been passed off to us in an enabled state, just clear
1122  * the enabled bit.  The spec says we should set the 'shutdown notification
1123  * bits', but doing so may cause the device to complete commands to the
1124  * admin queue ... and we don't know what memory that might be pointing at!
1125  */
1126 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1127 {
1128 	int ret;
1129 
1130 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1131 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1132 
1133 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1134 	if (ret)
1135 		return ret;
1136 
1137 	/* Checking for ctrl->tagset is a trick to avoid sleeping on module
1138 	 * load, since we only need the quirk on reset_controller. Notice
1139 	 * that the HGST device needs this delay only in firmware activation
1140 	 * procedure; unfortunately we have no (easy) way to verify this.
1141 	 */
1142 	if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset)
1143 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1144 
1145 	return nvme_wait_ready(ctrl, cap, false);
1146 }
1147 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1148 
1149 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1150 {
1151 	/*
1152 	 * Default to a 4K page size, with the intention to update this
1153 	 * path in the future to accomodate architectures with differing
1154 	 * kernel and IO page sizes.
1155 	 */
1156 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1157 	int ret;
1158 
1159 	if (page_shift < dev_page_min) {
1160 		dev_err(ctrl->device,
1161 			"Minimum device page size %u too large for host (%u)\n",
1162 			1 << dev_page_min, 1 << page_shift);
1163 		return -ENODEV;
1164 	}
1165 
1166 	ctrl->page_size = 1 << page_shift;
1167 
1168 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1169 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1170 	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1171 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1172 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1173 
1174 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1175 	if (ret)
1176 		return ret;
1177 	return nvme_wait_ready(ctrl, cap, true);
1178 }
1179 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1180 
1181 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1182 {
1183 	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1184 	u32 csts;
1185 	int ret;
1186 
1187 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1188 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1189 
1190 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1191 	if (ret)
1192 		return ret;
1193 
1194 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1195 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1196 			break;
1197 
1198 		msleep(100);
1199 		if (fatal_signal_pending(current))
1200 			return -EINTR;
1201 		if (time_after(jiffies, timeout)) {
1202 			dev_err(ctrl->device,
1203 				"Device shutdown incomplete; abort shutdown\n");
1204 			return -ENODEV;
1205 		}
1206 	}
1207 
1208 	return ret;
1209 }
1210 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1211 
1212 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1213 		struct request_queue *q)
1214 {
1215 	bool vwc = false;
1216 
1217 	if (ctrl->max_hw_sectors) {
1218 		u32 max_segments =
1219 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1220 
1221 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1222 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1223 	}
1224 	if (ctrl->stripe_size)
1225 		blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1226 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1227 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1228 		vwc = true;
1229 	blk_queue_write_cache(q, vwc, vwc);
1230 }
1231 
1232 /*
1233  * Initialize the cached copies of the Identify data and various controller
1234  * register in our nvme_ctrl structure.  This should be called as soon as
1235  * the admin queue is fully up and running.
1236  */
1237 int nvme_init_identify(struct nvme_ctrl *ctrl)
1238 {
1239 	struct nvme_id_ctrl *id;
1240 	u64 cap;
1241 	int ret, page_shift;
1242 	u32 max_hw_sectors;
1243 
1244 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1245 	if (ret) {
1246 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1247 		return ret;
1248 	}
1249 
1250 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1251 	if (ret) {
1252 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1253 		return ret;
1254 	}
1255 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
1256 
1257 	if (ctrl->vs >= NVME_VS(1, 1))
1258 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
1259 
1260 	ret = nvme_identify_ctrl(ctrl, &id);
1261 	if (ret) {
1262 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1263 		return -EIO;
1264 	}
1265 
1266 	ctrl->vid = le16_to_cpu(id->vid);
1267 	ctrl->oncs = le16_to_cpup(&id->oncs);
1268 	atomic_set(&ctrl->abort_limit, id->acl + 1);
1269 	ctrl->vwc = id->vwc;
1270 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1271 	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1272 	memcpy(ctrl->model, id->mn, sizeof(id->mn));
1273 	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1274 	if (id->mdts)
1275 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1276 	else
1277 		max_hw_sectors = UINT_MAX;
1278 	ctrl->max_hw_sectors =
1279 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1280 
1281 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1282 		unsigned int max_hw_sectors;
1283 
1284 		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1285 		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1286 		if (ctrl->max_hw_sectors) {
1287 			ctrl->max_hw_sectors = min(max_hw_sectors,
1288 							ctrl->max_hw_sectors);
1289 		} else {
1290 			ctrl->max_hw_sectors = max_hw_sectors;
1291 		}
1292 	}
1293 
1294 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1295 	ctrl->sgls = le32_to_cpu(id->sgls);
1296 	ctrl->kas = le16_to_cpu(id->kas);
1297 
1298 	if (ctrl->ops->is_fabrics) {
1299 		ctrl->icdoff = le16_to_cpu(id->icdoff);
1300 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1301 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1302 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1303 
1304 		/*
1305 		 * In fabrics we need to verify the cntlid matches the
1306 		 * admin connect
1307 		 */
1308 		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1309 			ret = -EINVAL;
1310 
1311 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1312 			dev_err(ctrl->dev,
1313 				"keep-alive support is mandatory for fabrics\n");
1314 			ret = -EINVAL;
1315 		}
1316 	} else {
1317 		ctrl->cntlid = le16_to_cpu(id->cntlid);
1318 	}
1319 
1320 	kfree(id);
1321 	return ret;
1322 }
1323 EXPORT_SYMBOL_GPL(nvme_init_identify);
1324 
1325 static int nvme_dev_open(struct inode *inode, struct file *file)
1326 {
1327 	struct nvme_ctrl *ctrl;
1328 	int instance = iminor(inode);
1329 	int ret = -ENODEV;
1330 
1331 	spin_lock(&dev_list_lock);
1332 	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1333 		if (ctrl->instance != instance)
1334 			continue;
1335 
1336 		if (!ctrl->admin_q) {
1337 			ret = -EWOULDBLOCK;
1338 			break;
1339 		}
1340 		if (!kref_get_unless_zero(&ctrl->kref))
1341 			break;
1342 		file->private_data = ctrl;
1343 		ret = 0;
1344 		break;
1345 	}
1346 	spin_unlock(&dev_list_lock);
1347 
1348 	return ret;
1349 }
1350 
1351 static int nvme_dev_release(struct inode *inode, struct file *file)
1352 {
1353 	nvme_put_ctrl(file->private_data);
1354 	return 0;
1355 }
1356 
1357 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1358 {
1359 	struct nvme_ns *ns;
1360 	int ret;
1361 
1362 	mutex_lock(&ctrl->namespaces_mutex);
1363 	if (list_empty(&ctrl->namespaces)) {
1364 		ret = -ENOTTY;
1365 		goto out_unlock;
1366 	}
1367 
1368 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1369 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1370 		dev_warn(ctrl->device,
1371 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1372 		ret = -EINVAL;
1373 		goto out_unlock;
1374 	}
1375 
1376 	dev_warn(ctrl->device,
1377 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1378 	kref_get(&ns->kref);
1379 	mutex_unlock(&ctrl->namespaces_mutex);
1380 
1381 	ret = nvme_user_cmd(ctrl, ns, argp);
1382 	nvme_put_ns(ns);
1383 	return ret;
1384 
1385 out_unlock:
1386 	mutex_unlock(&ctrl->namespaces_mutex);
1387 	return ret;
1388 }
1389 
1390 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1391 		unsigned long arg)
1392 {
1393 	struct nvme_ctrl *ctrl = file->private_data;
1394 	void __user *argp = (void __user *)arg;
1395 
1396 	switch (cmd) {
1397 	case NVME_IOCTL_ADMIN_CMD:
1398 		return nvme_user_cmd(ctrl, NULL, argp);
1399 	case NVME_IOCTL_IO_CMD:
1400 		return nvme_dev_user_cmd(ctrl, argp);
1401 	case NVME_IOCTL_RESET:
1402 		dev_warn(ctrl->device, "resetting controller\n");
1403 		return ctrl->ops->reset_ctrl(ctrl);
1404 	case NVME_IOCTL_SUBSYS_RESET:
1405 		return nvme_reset_subsystem(ctrl);
1406 	case NVME_IOCTL_RESCAN:
1407 		nvme_queue_scan(ctrl);
1408 		return 0;
1409 	default:
1410 		return -ENOTTY;
1411 	}
1412 }
1413 
1414 static const struct file_operations nvme_dev_fops = {
1415 	.owner		= THIS_MODULE,
1416 	.open		= nvme_dev_open,
1417 	.release	= nvme_dev_release,
1418 	.unlocked_ioctl	= nvme_dev_ioctl,
1419 	.compat_ioctl	= nvme_dev_ioctl,
1420 };
1421 
1422 static ssize_t nvme_sysfs_reset(struct device *dev,
1423 				struct device_attribute *attr, const char *buf,
1424 				size_t count)
1425 {
1426 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1427 	int ret;
1428 
1429 	ret = ctrl->ops->reset_ctrl(ctrl);
1430 	if (ret < 0)
1431 		return ret;
1432 	return count;
1433 }
1434 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1435 
1436 static ssize_t nvme_sysfs_rescan(struct device *dev,
1437 				struct device_attribute *attr, const char *buf,
1438 				size_t count)
1439 {
1440 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1441 
1442 	nvme_queue_scan(ctrl);
1443 	return count;
1444 }
1445 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1446 
1447 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1448 								char *buf)
1449 {
1450 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1451 	struct nvme_ctrl *ctrl = ns->ctrl;
1452 	int serial_len = sizeof(ctrl->serial);
1453 	int model_len = sizeof(ctrl->model);
1454 
1455 	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1456 		return sprintf(buf, "eui.%16phN\n", ns->uuid);
1457 
1458 	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1459 		return sprintf(buf, "eui.%8phN\n", ns->eui);
1460 
1461 	while (ctrl->serial[serial_len - 1] == ' ')
1462 		serial_len--;
1463 	while (ctrl->model[model_len - 1] == ' ')
1464 		model_len--;
1465 
1466 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1467 		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1468 }
1469 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1470 
1471 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1472 								char *buf)
1473 {
1474 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1475 	return sprintf(buf, "%pU\n", ns->uuid);
1476 }
1477 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1478 
1479 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1480 								char *buf)
1481 {
1482 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1483 	return sprintf(buf, "%8phd\n", ns->eui);
1484 }
1485 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1486 
1487 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1488 								char *buf)
1489 {
1490 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1491 	return sprintf(buf, "%d\n", ns->ns_id);
1492 }
1493 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1494 
1495 static struct attribute *nvme_ns_attrs[] = {
1496 	&dev_attr_wwid.attr,
1497 	&dev_attr_uuid.attr,
1498 	&dev_attr_eui.attr,
1499 	&dev_attr_nsid.attr,
1500 	NULL,
1501 };
1502 
1503 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1504 		struct attribute *a, int n)
1505 {
1506 	struct device *dev = container_of(kobj, struct device, kobj);
1507 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1508 
1509 	if (a == &dev_attr_uuid.attr) {
1510 		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1511 			return 0;
1512 	}
1513 	if (a == &dev_attr_eui.attr) {
1514 		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1515 			return 0;
1516 	}
1517 	return a->mode;
1518 }
1519 
1520 static const struct attribute_group nvme_ns_attr_group = {
1521 	.attrs		= nvme_ns_attrs,
1522 	.is_visible	= nvme_ns_attrs_are_visible,
1523 };
1524 
1525 #define nvme_show_str_function(field)						\
1526 static ssize_t  field##_show(struct device *dev,				\
1527 			    struct device_attribute *attr, char *buf)		\
1528 {										\
1529         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1530         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
1531 }										\
1532 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1533 
1534 #define nvme_show_int_function(field)						\
1535 static ssize_t  field##_show(struct device *dev,				\
1536 			    struct device_attribute *attr, char *buf)		\
1537 {										\
1538         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1539         return sprintf(buf, "%d\n", ctrl->field);	\
1540 }										\
1541 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1542 
1543 nvme_show_str_function(model);
1544 nvme_show_str_function(serial);
1545 nvme_show_str_function(firmware_rev);
1546 nvme_show_int_function(cntlid);
1547 
1548 static ssize_t nvme_sysfs_delete(struct device *dev,
1549 				struct device_attribute *attr, const char *buf,
1550 				size_t count)
1551 {
1552 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1553 
1554 	if (device_remove_file_self(dev, attr))
1555 		ctrl->ops->delete_ctrl(ctrl);
1556 	return count;
1557 }
1558 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1559 
1560 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1561 					 struct device_attribute *attr,
1562 					 char *buf)
1563 {
1564 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1565 
1566 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1567 }
1568 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1569 
1570 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1571 					 struct device_attribute *attr,
1572 					 char *buf)
1573 {
1574 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1575 
1576 	return snprintf(buf, PAGE_SIZE, "%s\n",
1577 			ctrl->ops->get_subsysnqn(ctrl));
1578 }
1579 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1580 
1581 static ssize_t nvme_sysfs_show_address(struct device *dev,
1582 					 struct device_attribute *attr,
1583 					 char *buf)
1584 {
1585 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1586 
1587 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1588 }
1589 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1590 
1591 static struct attribute *nvme_dev_attrs[] = {
1592 	&dev_attr_reset_controller.attr,
1593 	&dev_attr_rescan_controller.attr,
1594 	&dev_attr_model.attr,
1595 	&dev_attr_serial.attr,
1596 	&dev_attr_firmware_rev.attr,
1597 	&dev_attr_cntlid.attr,
1598 	&dev_attr_delete_controller.attr,
1599 	&dev_attr_transport.attr,
1600 	&dev_attr_subsysnqn.attr,
1601 	&dev_attr_address.attr,
1602 	NULL
1603 };
1604 
1605 #define CHECK_ATTR(ctrl, a, name)		\
1606 	if ((a) == &dev_attr_##name.attr &&	\
1607 	    !(ctrl)->ops->get_##name)		\
1608 		return 0
1609 
1610 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1611 		struct attribute *a, int n)
1612 {
1613 	struct device *dev = container_of(kobj, struct device, kobj);
1614 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1615 
1616 	if (a == &dev_attr_delete_controller.attr) {
1617 		if (!ctrl->ops->delete_ctrl)
1618 			return 0;
1619 	}
1620 
1621 	CHECK_ATTR(ctrl, a, subsysnqn);
1622 	CHECK_ATTR(ctrl, a, address);
1623 
1624 	return a->mode;
1625 }
1626 
1627 static struct attribute_group nvme_dev_attrs_group = {
1628 	.attrs		= nvme_dev_attrs,
1629 	.is_visible	= nvme_dev_attrs_are_visible,
1630 };
1631 
1632 static const struct attribute_group *nvme_dev_attr_groups[] = {
1633 	&nvme_dev_attrs_group,
1634 	NULL,
1635 };
1636 
1637 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1638 {
1639 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1640 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1641 
1642 	return nsa->ns_id - nsb->ns_id;
1643 }
1644 
1645 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1646 {
1647 	struct nvme_ns *ns, *ret = NULL;
1648 
1649 	mutex_lock(&ctrl->namespaces_mutex);
1650 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1651 		if (ns->ns_id == nsid) {
1652 			kref_get(&ns->kref);
1653 			ret = ns;
1654 			break;
1655 		}
1656 		if (ns->ns_id > nsid)
1657 			break;
1658 	}
1659 	mutex_unlock(&ctrl->namespaces_mutex);
1660 	return ret;
1661 }
1662 
1663 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1664 {
1665 	struct nvme_ns *ns;
1666 	struct gendisk *disk;
1667 	struct nvme_id_ns *id;
1668 	char disk_name[DISK_NAME_LEN];
1669 	int node = dev_to_node(ctrl->dev);
1670 
1671 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1672 	if (!ns)
1673 		return;
1674 
1675 	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1676 	if (ns->instance < 0)
1677 		goto out_free_ns;
1678 
1679 	ns->queue = blk_mq_init_queue(ctrl->tagset);
1680 	if (IS_ERR(ns->queue))
1681 		goto out_release_instance;
1682 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1683 	ns->queue->queuedata = ns;
1684 	ns->ctrl = ctrl;
1685 
1686 	kref_init(&ns->kref);
1687 	ns->ns_id = nsid;
1688 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1689 
1690 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1691 	nvme_set_queue_limits(ctrl, ns->queue);
1692 
1693 	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1694 
1695 	if (nvme_revalidate_ns(ns, &id))
1696 		goto out_free_queue;
1697 
1698 	if (nvme_nvm_ns_supported(ns, id) &&
1699 				nvme_nvm_register(ns, disk_name, node)) {
1700 		dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
1701 		goto out_free_id;
1702 	}
1703 
1704 	disk = alloc_disk_node(0, node);
1705 	if (!disk)
1706 		goto out_free_id;
1707 
1708 	disk->fops = &nvme_fops;
1709 	disk->private_data = ns;
1710 	disk->queue = ns->queue;
1711 	disk->flags = GENHD_FL_EXT_DEVT;
1712 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
1713 	ns->disk = disk;
1714 
1715 	__nvme_revalidate_disk(disk, id);
1716 
1717 	mutex_lock(&ctrl->namespaces_mutex);
1718 	list_add_tail(&ns->list, &ctrl->namespaces);
1719 	mutex_unlock(&ctrl->namespaces_mutex);
1720 
1721 	kref_get(&ctrl->kref);
1722 
1723 	kfree(id);
1724 
1725 	device_add_disk(ctrl->device, ns->disk);
1726 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1727 					&nvme_ns_attr_group))
1728 		pr_warn("%s: failed to create sysfs group for identification\n",
1729 			ns->disk->disk_name);
1730 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
1731 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
1732 			ns->disk->disk_name);
1733 	return;
1734  out_free_id:
1735 	kfree(id);
1736  out_free_queue:
1737 	blk_cleanup_queue(ns->queue);
1738  out_release_instance:
1739 	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1740  out_free_ns:
1741 	kfree(ns);
1742 }
1743 
1744 static void nvme_ns_remove(struct nvme_ns *ns)
1745 {
1746 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1747 		return;
1748 
1749 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1750 		if (blk_get_integrity(ns->disk))
1751 			blk_integrity_unregister(ns->disk);
1752 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1753 					&nvme_ns_attr_group);
1754 		if (ns->ndev)
1755 			nvme_nvm_unregister_sysfs(ns);
1756 		del_gendisk(ns->disk);
1757 		blk_mq_abort_requeue_list(ns->queue);
1758 		blk_cleanup_queue(ns->queue);
1759 	}
1760 
1761 	mutex_lock(&ns->ctrl->namespaces_mutex);
1762 	list_del_init(&ns->list);
1763 	mutex_unlock(&ns->ctrl->namespaces_mutex);
1764 
1765 	nvme_put_ns(ns);
1766 }
1767 
1768 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1769 {
1770 	struct nvme_ns *ns;
1771 
1772 	ns = nvme_find_get_ns(ctrl, nsid);
1773 	if (ns) {
1774 		if (ns->disk && revalidate_disk(ns->disk))
1775 			nvme_ns_remove(ns);
1776 		nvme_put_ns(ns);
1777 	} else
1778 		nvme_alloc_ns(ctrl, nsid);
1779 }
1780 
1781 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1782 					unsigned nsid)
1783 {
1784 	struct nvme_ns *ns, *next;
1785 
1786 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1787 		if (ns->ns_id > nsid)
1788 			nvme_ns_remove(ns);
1789 	}
1790 }
1791 
1792 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1793 {
1794 	struct nvme_ns *ns;
1795 	__le32 *ns_list;
1796 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1797 	int ret = 0;
1798 
1799 	ns_list = kzalloc(0x1000, GFP_KERNEL);
1800 	if (!ns_list)
1801 		return -ENOMEM;
1802 
1803 	for (i = 0; i < num_lists; i++) {
1804 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1805 		if (ret)
1806 			goto free;
1807 
1808 		for (j = 0; j < min(nn, 1024U); j++) {
1809 			nsid = le32_to_cpu(ns_list[j]);
1810 			if (!nsid)
1811 				goto out;
1812 
1813 			nvme_validate_ns(ctrl, nsid);
1814 
1815 			while (++prev < nsid) {
1816 				ns = nvme_find_get_ns(ctrl, prev);
1817 				if (ns) {
1818 					nvme_ns_remove(ns);
1819 					nvme_put_ns(ns);
1820 				}
1821 			}
1822 		}
1823 		nn -= j;
1824 	}
1825  out:
1826 	nvme_remove_invalid_namespaces(ctrl, prev);
1827  free:
1828 	kfree(ns_list);
1829 	return ret;
1830 }
1831 
1832 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1833 {
1834 	unsigned i;
1835 
1836 	for (i = 1; i <= nn; i++)
1837 		nvme_validate_ns(ctrl, i);
1838 
1839 	nvme_remove_invalid_namespaces(ctrl, nn);
1840 }
1841 
1842 static void nvme_scan_work(struct work_struct *work)
1843 {
1844 	struct nvme_ctrl *ctrl =
1845 		container_of(work, struct nvme_ctrl, scan_work);
1846 	struct nvme_id_ctrl *id;
1847 	unsigned nn;
1848 
1849 	if (ctrl->state != NVME_CTRL_LIVE)
1850 		return;
1851 
1852 	if (nvme_identify_ctrl(ctrl, &id))
1853 		return;
1854 
1855 	nn = le32_to_cpu(id->nn);
1856 	if (ctrl->vs >= NVME_VS(1, 1) &&
1857 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1858 		if (!nvme_scan_ns_list(ctrl, nn))
1859 			goto done;
1860 	}
1861 	nvme_scan_ns_sequential(ctrl, nn);
1862  done:
1863 	mutex_lock(&ctrl->namespaces_mutex);
1864 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1865 	mutex_unlock(&ctrl->namespaces_mutex);
1866 	kfree(id);
1867 }
1868 
1869 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1870 {
1871 	/*
1872 	 * Do not queue new scan work when a controller is reset during
1873 	 * removal.
1874 	 */
1875 	if (ctrl->state == NVME_CTRL_LIVE)
1876 		schedule_work(&ctrl->scan_work);
1877 }
1878 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1879 
1880 /*
1881  * This function iterates the namespace list unlocked to allow recovery from
1882  * controller failure. It is up to the caller to ensure the namespace list is
1883  * not modified by scan work while this function is executing.
1884  */
1885 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1886 {
1887 	struct nvme_ns *ns, *next;
1888 
1889 	/*
1890 	 * The dead states indicates the controller was not gracefully
1891 	 * disconnected. In that case, we won't be able to flush any data while
1892 	 * removing the namespaces' disks; fail all the queues now to avoid
1893 	 * potentially having to clean up the failed sync later.
1894 	 */
1895 	if (ctrl->state == NVME_CTRL_DEAD)
1896 		nvme_kill_queues(ctrl);
1897 
1898 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1899 		nvme_ns_remove(ns);
1900 }
1901 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1902 
1903 static void nvme_async_event_work(struct work_struct *work)
1904 {
1905 	struct nvme_ctrl *ctrl =
1906 		container_of(work, struct nvme_ctrl, async_event_work);
1907 
1908 	spin_lock_irq(&ctrl->lock);
1909 	while (ctrl->event_limit > 0) {
1910 		int aer_idx = --ctrl->event_limit;
1911 
1912 		spin_unlock_irq(&ctrl->lock);
1913 		ctrl->ops->submit_async_event(ctrl, aer_idx);
1914 		spin_lock_irq(&ctrl->lock);
1915 	}
1916 	spin_unlock_irq(&ctrl->lock);
1917 }
1918 
1919 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
1920 		union nvme_result *res)
1921 {
1922 	u32 result = le32_to_cpu(res->u32);
1923 	bool done = true;
1924 
1925 	switch (le16_to_cpu(status) >> 1) {
1926 	case NVME_SC_SUCCESS:
1927 		done = false;
1928 		/*FALLTHRU*/
1929 	case NVME_SC_ABORT_REQ:
1930 		++ctrl->event_limit;
1931 		schedule_work(&ctrl->async_event_work);
1932 		break;
1933 	default:
1934 		break;
1935 	}
1936 
1937 	if (done)
1938 		return;
1939 
1940 	switch (result & 0xff07) {
1941 	case NVME_AER_NOTICE_NS_CHANGED:
1942 		dev_info(ctrl->device, "rescanning\n");
1943 		nvme_queue_scan(ctrl);
1944 		break;
1945 	default:
1946 		dev_warn(ctrl->device, "async event result %08x\n", result);
1947 	}
1948 }
1949 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1950 
1951 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1952 {
1953 	ctrl->event_limit = NVME_NR_AERS;
1954 	schedule_work(&ctrl->async_event_work);
1955 }
1956 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1957 
1958 static DEFINE_IDA(nvme_instance_ida);
1959 
1960 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1961 {
1962 	int instance, error;
1963 
1964 	do {
1965 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1966 			return -ENODEV;
1967 
1968 		spin_lock(&dev_list_lock);
1969 		error = ida_get_new(&nvme_instance_ida, &instance);
1970 		spin_unlock(&dev_list_lock);
1971 	} while (error == -EAGAIN);
1972 
1973 	if (error)
1974 		return -ENODEV;
1975 
1976 	ctrl->instance = instance;
1977 	return 0;
1978 }
1979 
1980 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1981 {
1982 	spin_lock(&dev_list_lock);
1983 	ida_remove(&nvme_instance_ida, ctrl->instance);
1984 	spin_unlock(&dev_list_lock);
1985 }
1986 
1987 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1988 {
1989 	flush_work(&ctrl->async_event_work);
1990 	flush_work(&ctrl->scan_work);
1991 	nvme_remove_namespaces(ctrl);
1992 
1993 	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1994 
1995 	spin_lock(&dev_list_lock);
1996 	list_del(&ctrl->node);
1997 	spin_unlock(&dev_list_lock);
1998 }
1999 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2000 
2001 static void nvme_free_ctrl(struct kref *kref)
2002 {
2003 	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2004 
2005 	put_device(ctrl->device);
2006 	nvme_release_instance(ctrl);
2007 	ida_destroy(&ctrl->ns_ida);
2008 
2009 	ctrl->ops->free_ctrl(ctrl);
2010 }
2011 
2012 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2013 {
2014 	kref_put(&ctrl->kref, nvme_free_ctrl);
2015 }
2016 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2017 
2018 /*
2019  * Initialize a NVMe controller structures.  This needs to be called during
2020  * earliest initialization so that we have the initialized structured around
2021  * during probing.
2022  */
2023 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2024 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
2025 {
2026 	int ret;
2027 
2028 	ctrl->state = NVME_CTRL_NEW;
2029 	spin_lock_init(&ctrl->lock);
2030 	INIT_LIST_HEAD(&ctrl->namespaces);
2031 	mutex_init(&ctrl->namespaces_mutex);
2032 	kref_init(&ctrl->kref);
2033 	ctrl->dev = dev;
2034 	ctrl->ops = ops;
2035 	ctrl->quirks = quirks;
2036 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2037 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2038 
2039 	ret = nvme_set_instance(ctrl);
2040 	if (ret)
2041 		goto out;
2042 
2043 	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2044 				MKDEV(nvme_char_major, ctrl->instance),
2045 				ctrl, nvme_dev_attr_groups,
2046 				"nvme%d", ctrl->instance);
2047 	if (IS_ERR(ctrl->device)) {
2048 		ret = PTR_ERR(ctrl->device);
2049 		goto out_release_instance;
2050 	}
2051 	get_device(ctrl->device);
2052 	ida_init(&ctrl->ns_ida);
2053 
2054 	spin_lock(&dev_list_lock);
2055 	list_add_tail(&ctrl->node, &nvme_ctrl_list);
2056 	spin_unlock(&dev_list_lock);
2057 
2058 	return 0;
2059 out_release_instance:
2060 	nvme_release_instance(ctrl);
2061 out:
2062 	return ret;
2063 }
2064 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2065 
2066 /**
2067  * nvme_kill_queues(): Ends all namespace queues
2068  * @ctrl: the dead controller that needs to end
2069  *
2070  * Call this function when the driver determines it is unable to get the
2071  * controller in a state capable of servicing IO.
2072  */
2073 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2074 {
2075 	struct nvme_ns *ns;
2076 
2077 	mutex_lock(&ctrl->namespaces_mutex);
2078 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2079 		/*
2080 		 * Revalidating a dead namespace sets capacity to 0. This will
2081 		 * end buffered writers dirtying pages that can't be synced.
2082 		 */
2083 		if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2084 			revalidate_disk(ns->disk);
2085 
2086 		blk_set_queue_dying(ns->queue);
2087 		blk_mq_abort_requeue_list(ns->queue);
2088 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2089 	}
2090 	mutex_unlock(&ctrl->namespaces_mutex);
2091 }
2092 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2093 
2094 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2095 {
2096 	struct nvme_ns *ns;
2097 
2098 	mutex_lock(&ctrl->namespaces_mutex);
2099 	list_for_each_entry(ns, &ctrl->namespaces, list)
2100 		blk_mq_quiesce_queue(ns->queue);
2101 	mutex_unlock(&ctrl->namespaces_mutex);
2102 }
2103 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2104 
2105 void nvme_start_queues(struct nvme_ctrl *ctrl)
2106 {
2107 	struct nvme_ns *ns;
2108 
2109 	mutex_lock(&ctrl->namespaces_mutex);
2110 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2111 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2112 		blk_mq_kick_requeue_list(ns->queue);
2113 	}
2114 	mutex_unlock(&ctrl->namespaces_mutex);
2115 }
2116 EXPORT_SYMBOL_GPL(nvme_start_queues);
2117 
2118 int __init nvme_core_init(void)
2119 {
2120 	int result;
2121 
2122 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2123 							&nvme_dev_fops);
2124 	if (result < 0)
2125 		return result;
2126 	else if (result > 0)
2127 		nvme_char_major = result;
2128 
2129 	nvme_class = class_create(THIS_MODULE, "nvme");
2130 	if (IS_ERR(nvme_class)) {
2131 		result = PTR_ERR(nvme_class);
2132 		goto unregister_chrdev;
2133 	}
2134 
2135 	return 0;
2136 
2137  unregister_chrdev:
2138 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2139 	return result;
2140 }
2141 
2142 void nvme_core_exit(void)
2143 {
2144 	class_destroy(nvme_class);
2145 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2146 }
2147 
2148 MODULE_LICENSE("GPL");
2149 MODULE_VERSION("1.0");
2150 module_init(nvme_core_init);
2151 module_exit(nvme_core_exit);
2152