1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include "nvme.h" 27 #include "fabrics.h" 28 #include <linux/nvme-auth.h> 29 30 #define CREATE_TRACE_POINTS 31 #include "trace.h" 32 33 #define NVME_MINORS (1U << MINORBITS) 34 35 struct nvme_ns_info { 36 struct nvme_ns_ids ids; 37 u32 nsid; 38 __le32 anagrpid; 39 bool is_shared; 40 bool is_readonly; 41 bool is_ready; 42 bool is_removed; 43 }; 44 45 unsigned int admin_timeout = 60; 46 module_param(admin_timeout, uint, 0644); 47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 48 EXPORT_SYMBOL_GPL(admin_timeout); 49 50 unsigned int nvme_io_timeout = 30; 51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 53 EXPORT_SYMBOL_GPL(nvme_io_timeout); 54 55 static unsigned char shutdown_timeout = 5; 56 module_param(shutdown_timeout, byte, 0644); 57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 58 59 static u8 nvme_max_retries = 5; 60 module_param_named(max_retries, nvme_max_retries, byte, 0644); 61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 62 63 static unsigned long default_ps_max_latency_us = 100000; 64 module_param(default_ps_max_latency_us, ulong, 0644); 65 MODULE_PARM_DESC(default_ps_max_latency_us, 66 "max power saving latency for new devices; use PM QOS to change per device"); 67 68 static bool force_apst; 69 module_param(force_apst, bool, 0644); 70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 71 72 static unsigned long apst_primary_timeout_ms = 100; 73 module_param(apst_primary_timeout_ms, ulong, 0644); 74 MODULE_PARM_DESC(apst_primary_timeout_ms, 75 "primary APST timeout in ms"); 76 77 static unsigned long apst_secondary_timeout_ms = 2000; 78 module_param(apst_secondary_timeout_ms, ulong, 0644); 79 MODULE_PARM_DESC(apst_secondary_timeout_ms, 80 "secondary APST timeout in ms"); 81 82 static unsigned long apst_primary_latency_tol_us = 15000; 83 module_param(apst_primary_latency_tol_us, ulong, 0644); 84 MODULE_PARM_DESC(apst_primary_latency_tol_us, 85 "primary APST latency tolerance in us"); 86 87 static unsigned long apst_secondary_latency_tol_us = 100000; 88 module_param(apst_secondary_latency_tol_us, ulong, 0644); 89 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 90 "secondary APST latency tolerance in us"); 91 92 /* 93 * nvme_wq - hosts nvme related works that are not reset or delete 94 * nvme_reset_wq - hosts nvme reset works 95 * nvme_delete_wq - hosts nvme delete works 96 * 97 * nvme_wq will host works such as scan, aen handling, fw activation, 98 * keep-alive, periodic reconnects etc. nvme_reset_wq 99 * runs reset works which also flush works hosted on nvme_wq for 100 * serialization purposes. nvme_delete_wq host controller deletion 101 * works which flush reset works for serialization. 102 */ 103 struct workqueue_struct *nvme_wq; 104 EXPORT_SYMBOL_GPL(nvme_wq); 105 106 struct workqueue_struct *nvme_reset_wq; 107 EXPORT_SYMBOL_GPL(nvme_reset_wq); 108 109 struct workqueue_struct *nvme_delete_wq; 110 EXPORT_SYMBOL_GPL(nvme_delete_wq); 111 112 static LIST_HEAD(nvme_subsystems); 113 static DEFINE_MUTEX(nvme_subsystems_lock); 114 115 static DEFINE_IDA(nvme_instance_ida); 116 static dev_t nvme_ctrl_base_chr_devt; 117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 118 static const struct class nvme_class = { 119 .name = "nvme", 120 .dev_uevent = nvme_class_uevent, 121 }; 122 123 static const struct class nvme_subsys_class = { 124 .name = "nvme-subsystem", 125 }; 126 127 static DEFINE_IDA(nvme_ns_chr_minor_ida); 128 static dev_t nvme_ns_chr_devt; 129 static const struct class nvme_ns_chr_class = { 130 .name = "nvme-generic", 131 }; 132 133 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 135 unsigned nsid); 136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 137 struct nvme_command *cmd); 138 139 void nvme_queue_scan(struct nvme_ctrl *ctrl) 140 { 141 /* 142 * Only new queue scan work when admin and IO queues are both alive 143 */ 144 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 145 queue_work(nvme_wq, &ctrl->scan_work); 146 } 147 148 /* 149 * Use this function to proceed with scheduling reset_work for a controller 150 * that had previously been set to the resetting state. This is intended for 151 * code paths that can't be interrupted by other reset attempts. A hot removal 152 * may prevent this from succeeding. 153 */ 154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 155 { 156 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 157 return -EBUSY; 158 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 159 return -EBUSY; 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 163 164 static void nvme_failfast_work(struct work_struct *work) 165 { 166 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 167 struct nvme_ctrl, failfast_work); 168 169 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 170 return; 171 172 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 173 dev_info(ctrl->device, "failfast expired\n"); 174 nvme_kick_requeue_lists(ctrl); 175 } 176 177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 178 { 179 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 180 return; 181 182 schedule_delayed_work(&ctrl->failfast_work, 183 ctrl->opts->fast_io_fail_tmo * HZ); 184 } 185 186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 187 { 188 if (!ctrl->opts) 189 return; 190 191 cancel_delayed_work_sync(&ctrl->failfast_work); 192 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 193 } 194 195 196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 197 { 198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 199 return -EBUSY; 200 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 201 return -EBUSY; 202 return 0; 203 } 204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 205 206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 207 { 208 int ret; 209 210 ret = nvme_reset_ctrl(ctrl); 211 if (!ret) { 212 flush_work(&ctrl->reset_work); 213 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 214 ret = -ENETRESET; 215 } 216 217 return ret; 218 } 219 220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 221 { 222 dev_info(ctrl->device, 223 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 224 225 flush_work(&ctrl->reset_work); 226 nvme_stop_ctrl(ctrl); 227 nvme_remove_namespaces(ctrl); 228 ctrl->ops->delete_ctrl(ctrl); 229 nvme_uninit_ctrl(ctrl); 230 } 231 232 static void nvme_delete_ctrl_work(struct work_struct *work) 233 { 234 struct nvme_ctrl *ctrl = 235 container_of(work, struct nvme_ctrl, delete_work); 236 237 nvme_do_delete_ctrl(ctrl); 238 } 239 240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 241 { 242 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 243 return -EBUSY; 244 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 245 return -EBUSY; 246 return 0; 247 } 248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 249 250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 251 { 252 /* 253 * Keep a reference until nvme_do_delete_ctrl() complete, 254 * since ->delete_ctrl can free the controller. 255 */ 256 nvme_get_ctrl(ctrl); 257 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 258 nvme_do_delete_ctrl(ctrl); 259 nvme_put_ctrl(ctrl); 260 } 261 262 static blk_status_t nvme_error_status(u16 status) 263 { 264 switch (status & 0x7ff) { 265 case NVME_SC_SUCCESS: 266 return BLK_STS_OK; 267 case NVME_SC_CAP_EXCEEDED: 268 return BLK_STS_NOSPC; 269 case NVME_SC_LBA_RANGE: 270 case NVME_SC_CMD_INTERRUPTED: 271 case NVME_SC_NS_NOT_READY: 272 return BLK_STS_TARGET; 273 case NVME_SC_BAD_ATTRIBUTES: 274 case NVME_SC_ONCS_NOT_SUPPORTED: 275 case NVME_SC_INVALID_OPCODE: 276 case NVME_SC_INVALID_FIELD: 277 case NVME_SC_INVALID_NS: 278 return BLK_STS_NOTSUPP; 279 case NVME_SC_WRITE_FAULT: 280 case NVME_SC_READ_ERROR: 281 case NVME_SC_UNWRITTEN_BLOCK: 282 case NVME_SC_ACCESS_DENIED: 283 case NVME_SC_READ_ONLY: 284 case NVME_SC_COMPARE_FAILED: 285 return BLK_STS_MEDIUM; 286 case NVME_SC_GUARD_CHECK: 287 case NVME_SC_APPTAG_CHECK: 288 case NVME_SC_REFTAG_CHECK: 289 case NVME_SC_INVALID_PI: 290 return BLK_STS_PROTECTION; 291 case NVME_SC_RESERVATION_CONFLICT: 292 return BLK_STS_RESV_CONFLICT; 293 case NVME_SC_HOST_PATH_ERROR: 294 return BLK_STS_TRANSPORT; 295 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 296 return BLK_STS_ZONE_ACTIVE_RESOURCE; 297 case NVME_SC_ZONE_TOO_MANY_OPEN: 298 return BLK_STS_ZONE_OPEN_RESOURCE; 299 default: 300 return BLK_STS_IOERR; 301 } 302 } 303 304 static void nvme_retry_req(struct request *req) 305 { 306 unsigned long delay = 0; 307 u16 crd; 308 309 /* The mask and shift result must be <= 3 */ 310 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 311 if (crd) 312 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 313 314 nvme_req(req)->retries++; 315 blk_mq_requeue_request(req, false); 316 blk_mq_delay_kick_requeue_list(req->q, delay); 317 } 318 319 static void nvme_log_error(struct request *req) 320 { 321 struct nvme_ns *ns = req->q->queuedata; 322 struct nvme_request *nr = nvme_req(req); 323 324 if (ns) { 325 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 326 ns->disk ? ns->disk->disk_name : "?", 327 nvme_get_opcode_str(nr->cmd->common.opcode), 328 nr->cmd->common.opcode, 329 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 330 blk_rq_bytes(req) >> ns->head->lba_shift, 331 nvme_get_error_status_str(nr->status), 332 nr->status >> 8 & 7, /* Status Code Type */ 333 nr->status & 0xff, /* Status Code */ 334 nr->status & NVME_SC_MORE ? "MORE " : "", 335 nr->status & NVME_SC_DNR ? "DNR " : ""); 336 return; 337 } 338 339 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 340 dev_name(nr->ctrl->device), 341 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 342 nr->cmd->common.opcode, 343 nvme_get_error_status_str(nr->status), 344 nr->status >> 8 & 7, /* Status Code Type */ 345 nr->status & 0xff, /* Status Code */ 346 nr->status & NVME_SC_MORE ? "MORE " : "", 347 nr->status & NVME_SC_DNR ? "DNR " : ""); 348 } 349 350 static void nvme_log_err_passthru(struct request *req) 351 { 352 struct nvme_ns *ns = req->q->queuedata; 353 struct nvme_request *nr = nvme_req(req); 354 355 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 356 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 357 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 358 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 359 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 360 nr->cmd->common.opcode, 361 nvme_get_error_status_str(nr->status), 362 nr->status >> 8 & 7, /* Status Code Type */ 363 nr->status & 0xff, /* Status Code */ 364 nr->status & NVME_SC_MORE ? "MORE " : "", 365 nr->status & NVME_SC_DNR ? "DNR " : "", 366 nr->cmd->common.cdw10, 367 nr->cmd->common.cdw11, 368 nr->cmd->common.cdw12, 369 nr->cmd->common.cdw13, 370 nr->cmd->common.cdw14, 371 nr->cmd->common.cdw14); 372 } 373 374 enum nvme_disposition { 375 COMPLETE, 376 RETRY, 377 FAILOVER, 378 AUTHENTICATE, 379 }; 380 381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 382 { 383 if (likely(nvme_req(req)->status == 0)) 384 return COMPLETE; 385 386 if (blk_noretry_request(req) || 387 (nvme_req(req)->status & NVME_SC_DNR) || 388 nvme_req(req)->retries >= nvme_max_retries) 389 return COMPLETE; 390 391 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) 392 return AUTHENTICATE; 393 394 if (req->cmd_flags & REQ_NVME_MPATH) { 395 if (nvme_is_path_error(nvme_req(req)->status) || 396 blk_queue_dying(req->q)) 397 return FAILOVER; 398 } else { 399 if (blk_queue_dying(req->q)) 400 return COMPLETE; 401 } 402 403 return RETRY; 404 } 405 406 static inline void nvme_end_req_zoned(struct request *req) 407 { 408 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 409 req_op(req) == REQ_OP_ZONE_APPEND) { 410 struct nvme_ns *ns = req->q->queuedata; 411 412 req->__sector = nvme_lba_to_sect(ns->head, 413 le64_to_cpu(nvme_req(req)->result.u64)); 414 } 415 } 416 417 static inline void __nvme_end_req(struct request *req) 418 { 419 nvme_end_req_zoned(req); 420 nvme_trace_bio_complete(req); 421 if (req->cmd_flags & REQ_NVME_MPATH) 422 nvme_mpath_end_request(req); 423 } 424 425 void nvme_end_req(struct request *req) 426 { 427 blk_status_t status = nvme_error_status(nvme_req(req)->status); 428 429 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 430 if (blk_rq_is_passthrough(req)) 431 nvme_log_err_passthru(req); 432 else 433 nvme_log_error(req); 434 } 435 __nvme_end_req(req); 436 blk_mq_end_request(req, status); 437 } 438 439 void nvme_complete_rq(struct request *req) 440 { 441 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 442 443 trace_nvme_complete_rq(req); 444 nvme_cleanup_cmd(req); 445 446 /* 447 * Completions of long-running commands should not be able to 448 * defer sending of periodic keep alives, since the controller 449 * may have completed processing such commands a long time ago 450 * (arbitrarily close to command submission time). 451 * req->deadline - req->timeout is the command submission time 452 * in jiffies. 453 */ 454 if (ctrl->kas && 455 req->deadline - req->timeout >= ctrl->ka_last_check_time) 456 ctrl->comp_seen = true; 457 458 switch (nvme_decide_disposition(req)) { 459 case COMPLETE: 460 nvme_end_req(req); 461 return; 462 case RETRY: 463 nvme_retry_req(req); 464 return; 465 case FAILOVER: 466 nvme_failover_req(req); 467 return; 468 case AUTHENTICATE: 469 #ifdef CONFIG_NVME_HOST_AUTH 470 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 471 nvme_retry_req(req); 472 #else 473 nvme_end_req(req); 474 #endif 475 return; 476 } 477 } 478 EXPORT_SYMBOL_GPL(nvme_complete_rq); 479 480 void nvme_complete_batch_req(struct request *req) 481 { 482 trace_nvme_complete_rq(req); 483 nvme_cleanup_cmd(req); 484 __nvme_end_req(req); 485 } 486 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 487 488 /* 489 * Called to unwind from ->queue_rq on a failed command submission so that the 490 * multipathing code gets called to potentially failover to another path. 491 * The caller needs to unwind all transport specific resource allocations and 492 * must return propagate the return value. 493 */ 494 blk_status_t nvme_host_path_error(struct request *req) 495 { 496 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 497 blk_mq_set_request_complete(req); 498 nvme_complete_rq(req); 499 return BLK_STS_OK; 500 } 501 EXPORT_SYMBOL_GPL(nvme_host_path_error); 502 503 bool nvme_cancel_request(struct request *req, void *data) 504 { 505 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 506 "Cancelling I/O %d", req->tag); 507 508 /* don't abort one completed or idle request */ 509 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 510 return true; 511 512 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 513 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 514 blk_mq_complete_request(req); 515 return true; 516 } 517 EXPORT_SYMBOL_GPL(nvme_cancel_request); 518 519 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 520 { 521 if (ctrl->tagset) { 522 blk_mq_tagset_busy_iter(ctrl->tagset, 523 nvme_cancel_request, ctrl); 524 blk_mq_tagset_wait_completed_request(ctrl->tagset); 525 } 526 } 527 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 528 529 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 530 { 531 if (ctrl->admin_tagset) { 532 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 533 nvme_cancel_request, ctrl); 534 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 535 } 536 } 537 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 538 539 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 540 enum nvme_ctrl_state new_state) 541 { 542 enum nvme_ctrl_state old_state; 543 unsigned long flags; 544 bool changed = false; 545 546 spin_lock_irqsave(&ctrl->lock, flags); 547 548 old_state = nvme_ctrl_state(ctrl); 549 switch (new_state) { 550 case NVME_CTRL_LIVE: 551 switch (old_state) { 552 case NVME_CTRL_NEW: 553 case NVME_CTRL_RESETTING: 554 case NVME_CTRL_CONNECTING: 555 changed = true; 556 fallthrough; 557 default: 558 break; 559 } 560 break; 561 case NVME_CTRL_RESETTING: 562 switch (old_state) { 563 case NVME_CTRL_NEW: 564 case NVME_CTRL_LIVE: 565 changed = true; 566 fallthrough; 567 default: 568 break; 569 } 570 break; 571 case NVME_CTRL_CONNECTING: 572 switch (old_state) { 573 case NVME_CTRL_NEW: 574 case NVME_CTRL_RESETTING: 575 changed = true; 576 fallthrough; 577 default: 578 break; 579 } 580 break; 581 case NVME_CTRL_DELETING: 582 switch (old_state) { 583 case NVME_CTRL_LIVE: 584 case NVME_CTRL_RESETTING: 585 case NVME_CTRL_CONNECTING: 586 changed = true; 587 fallthrough; 588 default: 589 break; 590 } 591 break; 592 case NVME_CTRL_DELETING_NOIO: 593 switch (old_state) { 594 case NVME_CTRL_DELETING: 595 case NVME_CTRL_DEAD: 596 changed = true; 597 fallthrough; 598 default: 599 break; 600 } 601 break; 602 case NVME_CTRL_DEAD: 603 switch (old_state) { 604 case NVME_CTRL_DELETING: 605 changed = true; 606 fallthrough; 607 default: 608 break; 609 } 610 break; 611 default: 612 break; 613 } 614 615 if (changed) { 616 WRITE_ONCE(ctrl->state, new_state); 617 wake_up_all(&ctrl->state_wq); 618 } 619 620 spin_unlock_irqrestore(&ctrl->lock, flags); 621 if (!changed) 622 return false; 623 624 if (new_state == NVME_CTRL_LIVE) { 625 if (old_state == NVME_CTRL_CONNECTING) 626 nvme_stop_failfast_work(ctrl); 627 nvme_kick_requeue_lists(ctrl); 628 } else if (new_state == NVME_CTRL_CONNECTING && 629 old_state == NVME_CTRL_RESETTING) { 630 nvme_start_failfast_work(ctrl); 631 } 632 return changed; 633 } 634 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 635 636 /* 637 * Waits for the controller state to be resetting, or returns false if it is 638 * not possible to ever transition to that state. 639 */ 640 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 641 { 642 wait_event(ctrl->state_wq, 643 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 644 nvme_state_terminal(ctrl)); 645 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 646 } 647 EXPORT_SYMBOL_GPL(nvme_wait_reset); 648 649 static void nvme_free_ns_head(struct kref *ref) 650 { 651 struct nvme_ns_head *head = 652 container_of(ref, struct nvme_ns_head, ref); 653 654 nvme_mpath_remove_disk(head); 655 ida_free(&head->subsys->ns_ida, head->instance); 656 cleanup_srcu_struct(&head->srcu); 657 nvme_put_subsystem(head->subsys); 658 kfree(head); 659 } 660 661 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 662 { 663 return kref_get_unless_zero(&head->ref); 664 } 665 666 void nvme_put_ns_head(struct nvme_ns_head *head) 667 { 668 kref_put(&head->ref, nvme_free_ns_head); 669 } 670 671 static void nvme_free_ns(struct kref *kref) 672 { 673 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 674 675 put_disk(ns->disk); 676 nvme_put_ns_head(ns->head); 677 nvme_put_ctrl(ns->ctrl); 678 kfree(ns); 679 } 680 681 bool nvme_get_ns(struct nvme_ns *ns) 682 { 683 return kref_get_unless_zero(&ns->kref); 684 } 685 686 void nvme_put_ns(struct nvme_ns *ns) 687 { 688 kref_put(&ns->kref, nvme_free_ns); 689 } 690 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 691 692 static inline void nvme_clear_nvme_request(struct request *req) 693 { 694 nvme_req(req)->status = 0; 695 nvme_req(req)->retries = 0; 696 nvme_req(req)->flags = 0; 697 req->rq_flags |= RQF_DONTPREP; 698 } 699 700 /* initialize a passthrough request */ 701 void nvme_init_request(struct request *req, struct nvme_command *cmd) 702 { 703 struct nvme_request *nr = nvme_req(req); 704 bool logging_enabled; 705 706 if (req->q->queuedata) { 707 struct nvme_ns *ns = req->q->disk->private_data; 708 709 logging_enabled = ns->head->passthru_err_log_enabled; 710 req->timeout = NVME_IO_TIMEOUT; 711 } else { /* no queuedata implies admin queue */ 712 logging_enabled = nr->ctrl->passthru_err_log_enabled; 713 req->timeout = NVME_ADMIN_TIMEOUT; 714 } 715 716 if (!logging_enabled) 717 req->rq_flags |= RQF_QUIET; 718 719 /* passthru commands should let the driver set the SGL flags */ 720 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 721 722 req->cmd_flags |= REQ_FAILFAST_DRIVER; 723 if (req->mq_hctx->type == HCTX_TYPE_POLL) 724 req->cmd_flags |= REQ_POLLED; 725 nvme_clear_nvme_request(req); 726 memcpy(nr->cmd, cmd, sizeof(*cmd)); 727 } 728 EXPORT_SYMBOL_GPL(nvme_init_request); 729 730 /* 731 * For something we're not in a state to send to the device the default action 732 * is to busy it and retry it after the controller state is recovered. However, 733 * if the controller is deleting or if anything is marked for failfast or 734 * nvme multipath it is immediately failed. 735 * 736 * Note: commands used to initialize the controller will be marked for failfast. 737 * Note: nvme cli/ioctl commands are marked for failfast. 738 */ 739 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 740 struct request *rq) 741 { 742 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 743 744 if (state != NVME_CTRL_DELETING_NOIO && 745 state != NVME_CTRL_DELETING && 746 state != NVME_CTRL_DEAD && 747 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 748 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 749 return BLK_STS_RESOURCE; 750 return nvme_host_path_error(rq); 751 } 752 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 753 754 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 755 bool queue_live, enum nvme_ctrl_state state) 756 { 757 struct nvme_request *req = nvme_req(rq); 758 759 /* 760 * currently we have a problem sending passthru commands 761 * on the admin_q if the controller is not LIVE because we can't 762 * make sure that they are going out after the admin connect, 763 * controller enable and/or other commands in the initialization 764 * sequence. until the controller will be LIVE, fail with 765 * BLK_STS_RESOURCE so that they will be rescheduled. 766 */ 767 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 768 return false; 769 770 if (ctrl->ops->flags & NVME_F_FABRICS) { 771 /* 772 * Only allow commands on a live queue, except for the connect 773 * command, which is require to set the queue live in the 774 * appropinquate states. 775 */ 776 switch (state) { 777 case NVME_CTRL_CONNECTING: 778 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 779 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 780 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 781 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 782 return true; 783 break; 784 default: 785 break; 786 case NVME_CTRL_DEAD: 787 return false; 788 } 789 } 790 791 return queue_live; 792 } 793 EXPORT_SYMBOL_GPL(__nvme_check_ready); 794 795 static inline void nvme_setup_flush(struct nvme_ns *ns, 796 struct nvme_command *cmnd) 797 { 798 memset(cmnd, 0, sizeof(*cmnd)); 799 cmnd->common.opcode = nvme_cmd_flush; 800 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 801 } 802 803 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 804 struct nvme_command *cmnd) 805 { 806 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 807 struct nvme_dsm_range *range; 808 struct bio *bio; 809 810 /* 811 * Some devices do not consider the DSM 'Number of Ranges' field when 812 * determining how much data to DMA. Always allocate memory for maximum 813 * number of segments to prevent device reading beyond end of buffer. 814 */ 815 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 816 817 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 818 if (!range) { 819 /* 820 * If we fail allocation our range, fallback to the controller 821 * discard page. If that's also busy, it's safe to return 822 * busy, as we know we can make progress once that's freed. 823 */ 824 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 825 return BLK_STS_RESOURCE; 826 827 range = page_address(ns->ctrl->discard_page); 828 } 829 830 if (queue_max_discard_segments(req->q) == 1) { 831 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 832 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 833 834 range[0].cattr = cpu_to_le32(0); 835 range[0].nlb = cpu_to_le32(nlb); 836 range[0].slba = cpu_to_le64(slba); 837 n = 1; 838 } else { 839 __rq_for_each_bio(bio, req) { 840 u64 slba = nvme_sect_to_lba(ns->head, 841 bio->bi_iter.bi_sector); 842 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 843 844 if (n < segments) { 845 range[n].cattr = cpu_to_le32(0); 846 range[n].nlb = cpu_to_le32(nlb); 847 range[n].slba = cpu_to_le64(slba); 848 } 849 n++; 850 } 851 } 852 853 if (WARN_ON_ONCE(n != segments)) { 854 if (virt_to_page(range) == ns->ctrl->discard_page) 855 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 856 else 857 kfree(range); 858 return BLK_STS_IOERR; 859 } 860 861 memset(cmnd, 0, sizeof(*cmnd)); 862 cmnd->dsm.opcode = nvme_cmd_dsm; 863 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 864 cmnd->dsm.nr = cpu_to_le32(segments - 1); 865 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 866 867 bvec_set_virt(&req->special_vec, range, alloc_size); 868 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 869 870 return BLK_STS_OK; 871 } 872 873 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 874 struct request *req) 875 { 876 u32 upper, lower; 877 u64 ref48; 878 879 /* both rw and write zeroes share the same reftag format */ 880 switch (ns->head->guard_type) { 881 case NVME_NVM_NS_16B_GUARD: 882 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 883 break; 884 case NVME_NVM_NS_64B_GUARD: 885 ref48 = ext_pi_ref_tag(req); 886 lower = lower_32_bits(ref48); 887 upper = upper_32_bits(ref48); 888 889 cmnd->rw.reftag = cpu_to_le32(lower); 890 cmnd->rw.cdw3 = cpu_to_le32(upper); 891 break; 892 default: 893 break; 894 } 895 } 896 897 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 898 struct request *req, struct nvme_command *cmnd) 899 { 900 memset(cmnd, 0, sizeof(*cmnd)); 901 902 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 903 return nvme_setup_discard(ns, req, cmnd); 904 905 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 906 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 907 cmnd->write_zeroes.slba = 908 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 909 cmnd->write_zeroes.length = 910 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 911 912 if (!(req->cmd_flags & REQ_NOUNMAP) && 913 (ns->head->features & NVME_NS_DEAC)) 914 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 915 916 if (nvme_ns_has_pi(ns->head)) { 917 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 918 919 switch (ns->head->pi_type) { 920 case NVME_NS_DPS_PI_TYPE1: 921 case NVME_NS_DPS_PI_TYPE2: 922 nvme_set_ref_tag(ns, cmnd, req); 923 break; 924 } 925 } 926 927 return BLK_STS_OK; 928 } 929 930 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 931 struct request *req, struct nvme_command *cmnd, 932 enum nvme_opcode op) 933 { 934 u16 control = 0; 935 u32 dsmgmt = 0; 936 937 if (req->cmd_flags & REQ_FUA) 938 control |= NVME_RW_FUA; 939 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 940 control |= NVME_RW_LR; 941 942 if (req->cmd_flags & REQ_RAHEAD) 943 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 944 945 cmnd->rw.opcode = op; 946 cmnd->rw.flags = 0; 947 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 948 cmnd->rw.cdw2 = 0; 949 cmnd->rw.cdw3 = 0; 950 cmnd->rw.metadata = 0; 951 cmnd->rw.slba = 952 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 953 cmnd->rw.length = 954 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 955 cmnd->rw.reftag = 0; 956 cmnd->rw.apptag = 0; 957 cmnd->rw.appmask = 0; 958 959 if (ns->head->ms) { 960 /* 961 * If formated with metadata, the block layer always provides a 962 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 963 * we enable the PRACT bit for protection information or set the 964 * namespace capacity to zero to prevent any I/O. 965 */ 966 if (!blk_integrity_rq(req)) { 967 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 968 return BLK_STS_NOTSUPP; 969 control |= NVME_RW_PRINFO_PRACT; 970 } 971 972 switch (ns->head->pi_type) { 973 case NVME_NS_DPS_PI_TYPE3: 974 control |= NVME_RW_PRINFO_PRCHK_GUARD; 975 break; 976 case NVME_NS_DPS_PI_TYPE1: 977 case NVME_NS_DPS_PI_TYPE2: 978 control |= NVME_RW_PRINFO_PRCHK_GUARD | 979 NVME_RW_PRINFO_PRCHK_REF; 980 if (op == nvme_cmd_zone_append) 981 control |= NVME_RW_APPEND_PIREMAP; 982 nvme_set_ref_tag(ns, cmnd, req); 983 break; 984 } 985 } 986 987 cmnd->rw.control = cpu_to_le16(control); 988 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 989 return 0; 990 } 991 992 void nvme_cleanup_cmd(struct request *req) 993 { 994 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 995 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 996 997 if (req->special_vec.bv_page == ctrl->discard_page) 998 clear_bit_unlock(0, &ctrl->discard_page_busy); 999 else 1000 kfree(bvec_virt(&req->special_vec)); 1001 } 1002 } 1003 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1004 1005 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1006 { 1007 struct nvme_command *cmd = nvme_req(req)->cmd; 1008 blk_status_t ret = BLK_STS_OK; 1009 1010 if (!(req->rq_flags & RQF_DONTPREP)) 1011 nvme_clear_nvme_request(req); 1012 1013 switch (req_op(req)) { 1014 case REQ_OP_DRV_IN: 1015 case REQ_OP_DRV_OUT: 1016 /* these are setup prior to execution in nvme_init_request() */ 1017 break; 1018 case REQ_OP_FLUSH: 1019 nvme_setup_flush(ns, cmd); 1020 break; 1021 case REQ_OP_ZONE_RESET_ALL: 1022 case REQ_OP_ZONE_RESET: 1023 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1024 break; 1025 case REQ_OP_ZONE_OPEN: 1026 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1027 break; 1028 case REQ_OP_ZONE_CLOSE: 1029 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1030 break; 1031 case REQ_OP_ZONE_FINISH: 1032 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1033 break; 1034 case REQ_OP_WRITE_ZEROES: 1035 ret = nvme_setup_write_zeroes(ns, req, cmd); 1036 break; 1037 case REQ_OP_DISCARD: 1038 ret = nvme_setup_discard(ns, req, cmd); 1039 break; 1040 case REQ_OP_READ: 1041 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1042 break; 1043 case REQ_OP_WRITE: 1044 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1045 break; 1046 case REQ_OP_ZONE_APPEND: 1047 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1048 break; 1049 default: 1050 WARN_ON_ONCE(1); 1051 return BLK_STS_IOERR; 1052 } 1053 1054 cmd->common.command_id = nvme_cid(req); 1055 trace_nvme_setup_cmd(req, cmd); 1056 return ret; 1057 } 1058 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1059 1060 /* 1061 * Return values: 1062 * 0: success 1063 * >0: nvme controller's cqe status response 1064 * <0: kernel error in lieu of controller response 1065 */ 1066 int nvme_execute_rq(struct request *rq, bool at_head) 1067 { 1068 blk_status_t status; 1069 1070 status = blk_execute_rq(rq, at_head); 1071 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1072 return -EINTR; 1073 if (nvme_req(rq)->status) 1074 return nvme_req(rq)->status; 1075 return blk_status_to_errno(status); 1076 } 1077 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1078 1079 /* 1080 * Returns 0 on success. If the result is negative, it's a Linux error code; 1081 * if the result is positive, it's an NVM Express status code 1082 */ 1083 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1084 union nvme_result *result, void *buffer, unsigned bufflen, 1085 int qid, nvme_submit_flags_t flags) 1086 { 1087 struct request *req; 1088 int ret; 1089 blk_mq_req_flags_t blk_flags = 0; 1090 1091 if (flags & NVME_SUBMIT_NOWAIT) 1092 blk_flags |= BLK_MQ_REQ_NOWAIT; 1093 if (flags & NVME_SUBMIT_RESERVED) 1094 blk_flags |= BLK_MQ_REQ_RESERVED; 1095 if (qid == NVME_QID_ANY) 1096 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1097 else 1098 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1099 qid - 1); 1100 1101 if (IS_ERR(req)) 1102 return PTR_ERR(req); 1103 nvme_init_request(req, cmd); 1104 if (flags & NVME_SUBMIT_RETRY) 1105 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1106 1107 if (buffer && bufflen) { 1108 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1109 if (ret) 1110 goto out; 1111 } 1112 1113 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1114 if (result && ret >= 0) 1115 *result = nvme_req(req)->result; 1116 out: 1117 blk_mq_free_request(req); 1118 return ret; 1119 } 1120 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1121 1122 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1123 void *buffer, unsigned bufflen) 1124 { 1125 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1126 NVME_QID_ANY, 0); 1127 } 1128 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1129 1130 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1131 { 1132 u32 effects = 0; 1133 1134 if (ns) { 1135 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1136 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1137 dev_warn_once(ctrl->device, 1138 "IO command:%02x has unusual effects:%08x\n", 1139 opcode, effects); 1140 1141 /* 1142 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1143 * which would deadlock when done on an I/O command. Note that 1144 * We already warn about an unusual effect above. 1145 */ 1146 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1147 } else { 1148 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1149 1150 /* Ignore execution restrictions if any relaxation bits are set */ 1151 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1152 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1153 } 1154 1155 return effects; 1156 } 1157 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1158 1159 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1160 { 1161 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1162 1163 /* 1164 * For simplicity, IO to all namespaces is quiesced even if the command 1165 * effects say only one namespace is affected. 1166 */ 1167 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1168 mutex_lock(&ctrl->scan_lock); 1169 mutex_lock(&ctrl->subsys->lock); 1170 nvme_mpath_start_freeze(ctrl->subsys); 1171 nvme_mpath_wait_freeze(ctrl->subsys); 1172 nvme_start_freeze(ctrl); 1173 nvme_wait_freeze(ctrl); 1174 } 1175 return effects; 1176 } 1177 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1178 1179 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1180 struct nvme_command *cmd, int status) 1181 { 1182 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1183 nvme_unfreeze(ctrl); 1184 nvme_mpath_unfreeze(ctrl->subsys); 1185 mutex_unlock(&ctrl->subsys->lock); 1186 mutex_unlock(&ctrl->scan_lock); 1187 } 1188 if (effects & NVME_CMD_EFFECTS_CCC) { 1189 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1190 &ctrl->flags)) { 1191 dev_info(ctrl->device, 1192 "controller capabilities changed, reset may be required to take effect.\n"); 1193 } 1194 } 1195 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1196 nvme_queue_scan(ctrl); 1197 flush_work(&ctrl->scan_work); 1198 } 1199 if (ns) 1200 return; 1201 1202 switch (cmd->common.opcode) { 1203 case nvme_admin_set_features: 1204 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1205 case NVME_FEAT_KATO: 1206 /* 1207 * Keep alive commands interval on the host should be 1208 * updated when KATO is modified by Set Features 1209 * commands. 1210 */ 1211 if (!status) 1212 nvme_update_keep_alive(ctrl, cmd); 1213 break; 1214 default: 1215 break; 1216 } 1217 break; 1218 default: 1219 break; 1220 } 1221 } 1222 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1223 1224 /* 1225 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1226 * 1227 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1228 * accounting for transport roundtrip times [..]. 1229 */ 1230 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1231 { 1232 unsigned long delay = ctrl->kato * HZ / 2; 1233 1234 /* 1235 * When using Traffic Based Keep Alive, we need to run 1236 * nvme_keep_alive_work at twice the normal frequency, as one 1237 * command completion can postpone sending a keep alive command 1238 * by up to twice the delay between runs. 1239 */ 1240 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1241 delay /= 2; 1242 return delay; 1243 } 1244 1245 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1246 { 1247 unsigned long now = jiffies; 1248 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1249 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1250 1251 if (time_after(now, ka_next_check_tm)) 1252 delay = 0; 1253 else 1254 delay = ka_next_check_tm - now; 1255 1256 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1257 } 1258 1259 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1260 blk_status_t status) 1261 { 1262 struct nvme_ctrl *ctrl = rq->end_io_data; 1263 unsigned long flags; 1264 bool startka = false; 1265 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1266 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1267 1268 /* 1269 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1270 * at the desired frequency. 1271 */ 1272 if (rtt <= delay) { 1273 delay -= rtt; 1274 } else { 1275 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1276 jiffies_to_msecs(rtt)); 1277 delay = 0; 1278 } 1279 1280 blk_mq_free_request(rq); 1281 1282 if (status) { 1283 dev_err(ctrl->device, 1284 "failed nvme_keep_alive_end_io error=%d\n", 1285 status); 1286 return RQ_END_IO_NONE; 1287 } 1288 1289 ctrl->ka_last_check_time = jiffies; 1290 ctrl->comp_seen = false; 1291 spin_lock_irqsave(&ctrl->lock, flags); 1292 if (ctrl->state == NVME_CTRL_LIVE || 1293 ctrl->state == NVME_CTRL_CONNECTING) 1294 startka = true; 1295 spin_unlock_irqrestore(&ctrl->lock, flags); 1296 if (startka) 1297 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1298 return RQ_END_IO_NONE; 1299 } 1300 1301 static void nvme_keep_alive_work(struct work_struct *work) 1302 { 1303 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1304 struct nvme_ctrl, ka_work); 1305 bool comp_seen = ctrl->comp_seen; 1306 struct request *rq; 1307 1308 ctrl->ka_last_check_time = jiffies; 1309 1310 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1311 dev_dbg(ctrl->device, 1312 "reschedule traffic based keep-alive timer\n"); 1313 ctrl->comp_seen = false; 1314 nvme_queue_keep_alive_work(ctrl); 1315 return; 1316 } 1317 1318 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1319 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1320 if (IS_ERR(rq)) { 1321 /* allocation failure, reset the controller */ 1322 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1323 nvme_reset_ctrl(ctrl); 1324 return; 1325 } 1326 nvme_init_request(rq, &ctrl->ka_cmd); 1327 1328 rq->timeout = ctrl->kato * HZ; 1329 rq->end_io = nvme_keep_alive_end_io; 1330 rq->end_io_data = ctrl; 1331 blk_execute_rq_nowait(rq, false); 1332 } 1333 1334 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1335 { 1336 if (unlikely(ctrl->kato == 0)) 1337 return; 1338 1339 nvme_queue_keep_alive_work(ctrl); 1340 } 1341 1342 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1343 { 1344 if (unlikely(ctrl->kato == 0)) 1345 return; 1346 1347 cancel_delayed_work_sync(&ctrl->ka_work); 1348 } 1349 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1350 1351 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1352 struct nvme_command *cmd) 1353 { 1354 unsigned int new_kato = 1355 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1356 1357 dev_info(ctrl->device, 1358 "keep alive interval updated from %u ms to %u ms\n", 1359 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1360 1361 nvme_stop_keep_alive(ctrl); 1362 ctrl->kato = new_kato; 1363 nvme_start_keep_alive(ctrl); 1364 } 1365 1366 /* 1367 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1368 * flag, thus sending any new CNS opcodes has a big chance of not working. 1369 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1370 * (but not for any later version). 1371 */ 1372 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1373 { 1374 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1375 return ctrl->vs < NVME_VS(1, 2, 0); 1376 return ctrl->vs < NVME_VS(1, 1, 0); 1377 } 1378 1379 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1380 { 1381 struct nvme_command c = { }; 1382 int error; 1383 1384 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1385 c.identify.opcode = nvme_admin_identify; 1386 c.identify.cns = NVME_ID_CNS_CTRL; 1387 1388 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1389 if (!*id) 1390 return -ENOMEM; 1391 1392 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1393 sizeof(struct nvme_id_ctrl)); 1394 if (error) { 1395 kfree(*id); 1396 *id = NULL; 1397 } 1398 return error; 1399 } 1400 1401 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1402 struct nvme_ns_id_desc *cur, bool *csi_seen) 1403 { 1404 const char *warn_str = "ctrl returned bogus length:"; 1405 void *data = cur; 1406 1407 switch (cur->nidt) { 1408 case NVME_NIDT_EUI64: 1409 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1410 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1411 warn_str, cur->nidl); 1412 return -1; 1413 } 1414 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1415 return NVME_NIDT_EUI64_LEN; 1416 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1417 return NVME_NIDT_EUI64_LEN; 1418 case NVME_NIDT_NGUID: 1419 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1420 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1421 warn_str, cur->nidl); 1422 return -1; 1423 } 1424 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1425 return NVME_NIDT_NGUID_LEN; 1426 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1427 return NVME_NIDT_NGUID_LEN; 1428 case NVME_NIDT_UUID: 1429 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1430 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1431 warn_str, cur->nidl); 1432 return -1; 1433 } 1434 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1435 return NVME_NIDT_UUID_LEN; 1436 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1437 return NVME_NIDT_UUID_LEN; 1438 case NVME_NIDT_CSI: 1439 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1440 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1441 warn_str, cur->nidl); 1442 return -1; 1443 } 1444 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1445 *csi_seen = true; 1446 return NVME_NIDT_CSI_LEN; 1447 default: 1448 /* Skip unknown types */ 1449 return cur->nidl; 1450 } 1451 } 1452 1453 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1454 struct nvme_ns_info *info) 1455 { 1456 struct nvme_command c = { }; 1457 bool csi_seen = false; 1458 int status, pos, len; 1459 void *data; 1460 1461 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1462 return 0; 1463 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1464 return 0; 1465 1466 c.identify.opcode = nvme_admin_identify; 1467 c.identify.nsid = cpu_to_le32(info->nsid); 1468 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1469 1470 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1471 if (!data) 1472 return -ENOMEM; 1473 1474 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1475 NVME_IDENTIFY_DATA_SIZE); 1476 if (status) { 1477 dev_warn(ctrl->device, 1478 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1479 info->nsid, status); 1480 goto free_data; 1481 } 1482 1483 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1484 struct nvme_ns_id_desc *cur = data + pos; 1485 1486 if (cur->nidl == 0) 1487 break; 1488 1489 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1490 if (len < 0) 1491 break; 1492 1493 len += sizeof(*cur); 1494 } 1495 1496 if (nvme_multi_css(ctrl) && !csi_seen) { 1497 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1498 info->nsid); 1499 status = -EINVAL; 1500 } 1501 1502 free_data: 1503 kfree(data); 1504 return status; 1505 } 1506 1507 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1508 struct nvme_id_ns **id) 1509 { 1510 struct nvme_command c = { }; 1511 int error; 1512 1513 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1514 c.identify.opcode = nvme_admin_identify; 1515 c.identify.nsid = cpu_to_le32(nsid); 1516 c.identify.cns = NVME_ID_CNS_NS; 1517 1518 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1519 if (!*id) 1520 return -ENOMEM; 1521 1522 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1523 if (error) { 1524 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1525 kfree(*id); 1526 *id = NULL; 1527 } 1528 return error; 1529 } 1530 1531 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1532 struct nvme_ns_info *info) 1533 { 1534 struct nvme_ns_ids *ids = &info->ids; 1535 struct nvme_id_ns *id; 1536 int ret; 1537 1538 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1539 if (ret) 1540 return ret; 1541 1542 if (id->ncap == 0) { 1543 /* namespace not allocated or attached */ 1544 info->is_removed = true; 1545 ret = -ENODEV; 1546 goto error; 1547 } 1548 1549 info->anagrpid = id->anagrpid; 1550 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1551 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1552 info->is_ready = true; 1553 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1554 dev_info(ctrl->device, 1555 "Ignoring bogus Namespace Identifiers\n"); 1556 } else { 1557 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1558 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1559 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1560 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1561 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1562 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1563 } 1564 1565 error: 1566 kfree(id); 1567 return ret; 1568 } 1569 1570 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1571 struct nvme_ns_info *info) 1572 { 1573 struct nvme_id_ns_cs_indep *id; 1574 struct nvme_command c = { 1575 .identify.opcode = nvme_admin_identify, 1576 .identify.nsid = cpu_to_le32(info->nsid), 1577 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1578 }; 1579 int ret; 1580 1581 id = kmalloc(sizeof(*id), GFP_KERNEL); 1582 if (!id) 1583 return -ENOMEM; 1584 1585 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1586 if (!ret) { 1587 info->anagrpid = id->anagrpid; 1588 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1589 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1590 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1591 } 1592 kfree(id); 1593 return ret; 1594 } 1595 1596 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1597 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1598 { 1599 union nvme_result res = { 0 }; 1600 struct nvme_command c = { }; 1601 int ret; 1602 1603 c.features.opcode = op; 1604 c.features.fid = cpu_to_le32(fid); 1605 c.features.dword11 = cpu_to_le32(dword11); 1606 1607 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1608 buffer, buflen, NVME_QID_ANY, 0); 1609 if (ret >= 0 && result) 1610 *result = le32_to_cpu(res.u32); 1611 return ret; 1612 } 1613 1614 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1615 unsigned int dword11, void *buffer, size_t buflen, 1616 u32 *result) 1617 { 1618 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1619 buflen, result); 1620 } 1621 EXPORT_SYMBOL_GPL(nvme_set_features); 1622 1623 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1624 unsigned int dword11, void *buffer, size_t buflen, 1625 u32 *result) 1626 { 1627 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1628 buflen, result); 1629 } 1630 EXPORT_SYMBOL_GPL(nvme_get_features); 1631 1632 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1633 { 1634 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1635 u32 result; 1636 int status, nr_io_queues; 1637 1638 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1639 &result); 1640 if (status < 0) 1641 return status; 1642 1643 /* 1644 * Degraded controllers might return an error when setting the queue 1645 * count. We still want to be able to bring them online and offer 1646 * access to the admin queue, as that might be only way to fix them up. 1647 */ 1648 if (status > 0) { 1649 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1650 *count = 0; 1651 } else { 1652 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1653 *count = min(*count, nr_io_queues); 1654 } 1655 1656 return 0; 1657 } 1658 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1659 1660 #define NVME_AEN_SUPPORTED \ 1661 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1662 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1663 1664 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1665 { 1666 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1667 int status; 1668 1669 if (!supported_aens) 1670 return; 1671 1672 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1673 NULL, 0, &result); 1674 if (status) 1675 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1676 supported_aens); 1677 1678 queue_work(nvme_wq, &ctrl->async_event_work); 1679 } 1680 1681 static int nvme_ns_open(struct nvme_ns *ns) 1682 { 1683 1684 /* should never be called due to GENHD_FL_HIDDEN */ 1685 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1686 goto fail; 1687 if (!nvme_get_ns(ns)) 1688 goto fail; 1689 if (!try_module_get(ns->ctrl->ops->module)) 1690 goto fail_put_ns; 1691 1692 return 0; 1693 1694 fail_put_ns: 1695 nvme_put_ns(ns); 1696 fail: 1697 return -ENXIO; 1698 } 1699 1700 static void nvme_ns_release(struct nvme_ns *ns) 1701 { 1702 1703 module_put(ns->ctrl->ops->module); 1704 nvme_put_ns(ns); 1705 } 1706 1707 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1708 { 1709 return nvme_ns_open(disk->private_data); 1710 } 1711 1712 static void nvme_release(struct gendisk *disk) 1713 { 1714 nvme_ns_release(disk->private_data); 1715 } 1716 1717 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1718 { 1719 /* some standard values */ 1720 geo->heads = 1 << 6; 1721 geo->sectors = 1 << 5; 1722 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1723 return 0; 1724 } 1725 1726 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head, 1727 struct queue_limits *lim) 1728 { 1729 struct blk_integrity *bi = &lim->integrity; 1730 1731 memset(bi, 0, sizeof(*bi)); 1732 1733 if (!head->ms) 1734 return true; 1735 1736 /* 1737 * PI can always be supported as we can ask the controller to simply 1738 * insert/strip it, which is not possible for other kinds of metadata. 1739 */ 1740 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1741 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1742 return nvme_ns_has_pi(head); 1743 1744 switch (head->pi_type) { 1745 case NVME_NS_DPS_PI_TYPE3: 1746 switch (head->guard_type) { 1747 case NVME_NVM_NS_16B_GUARD: 1748 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1749 bi->tag_size = sizeof(u16) + sizeof(u32); 1750 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1751 break; 1752 case NVME_NVM_NS_64B_GUARD: 1753 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1754 bi->tag_size = sizeof(u16) + 6; 1755 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1756 break; 1757 default: 1758 break; 1759 } 1760 break; 1761 case NVME_NS_DPS_PI_TYPE1: 1762 case NVME_NS_DPS_PI_TYPE2: 1763 switch (head->guard_type) { 1764 case NVME_NVM_NS_16B_GUARD: 1765 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1766 bi->tag_size = sizeof(u16); 1767 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1768 BLK_INTEGRITY_REF_TAG; 1769 break; 1770 case NVME_NVM_NS_64B_GUARD: 1771 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1772 bi->tag_size = sizeof(u16); 1773 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1774 BLK_INTEGRITY_REF_TAG; 1775 break; 1776 default: 1777 break; 1778 } 1779 break; 1780 default: 1781 break; 1782 } 1783 1784 bi->tuple_size = head->ms; 1785 bi->pi_offset = head->pi_offset; 1786 return true; 1787 } 1788 1789 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1790 { 1791 struct nvme_ctrl *ctrl = ns->ctrl; 1792 1793 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1794 lim->max_hw_discard_sectors = 1795 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1796 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1797 lim->max_hw_discard_sectors = UINT_MAX; 1798 else 1799 lim->max_hw_discard_sectors = 0; 1800 1801 lim->discard_granularity = lim->logical_block_size; 1802 1803 if (ctrl->dmrl) 1804 lim->max_discard_segments = ctrl->dmrl; 1805 else 1806 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1807 } 1808 1809 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1810 { 1811 return uuid_equal(&a->uuid, &b->uuid) && 1812 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1813 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1814 a->csi == b->csi; 1815 } 1816 1817 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1818 struct nvme_id_ns_nvm **nvmp) 1819 { 1820 struct nvme_command c = { 1821 .identify.opcode = nvme_admin_identify, 1822 .identify.nsid = cpu_to_le32(nsid), 1823 .identify.cns = NVME_ID_CNS_CS_NS, 1824 .identify.csi = NVME_CSI_NVM, 1825 }; 1826 struct nvme_id_ns_nvm *nvm; 1827 int ret; 1828 1829 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1830 if (!nvm) 1831 return -ENOMEM; 1832 1833 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1834 if (ret) 1835 kfree(nvm); 1836 else 1837 *nvmp = nvm; 1838 return ret; 1839 } 1840 1841 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1842 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1843 { 1844 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1845 1846 /* no support for storage tag formats right now */ 1847 if (nvme_elbaf_sts(elbaf)) 1848 return; 1849 1850 head->guard_type = nvme_elbaf_guard_type(elbaf); 1851 switch (head->guard_type) { 1852 case NVME_NVM_NS_64B_GUARD: 1853 head->pi_size = sizeof(struct crc64_pi_tuple); 1854 break; 1855 case NVME_NVM_NS_16B_GUARD: 1856 head->pi_size = sizeof(struct t10_pi_tuple); 1857 break; 1858 default: 1859 break; 1860 } 1861 } 1862 1863 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1864 struct nvme_ns_head *head, struct nvme_id_ns *id, 1865 struct nvme_id_ns_nvm *nvm) 1866 { 1867 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1868 head->pi_type = 0; 1869 head->pi_size = 0; 1870 head->pi_offset = 0; 1871 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1872 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1873 return; 1874 1875 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1876 nvme_configure_pi_elbas(head, id, nvm); 1877 } else { 1878 head->pi_size = sizeof(struct t10_pi_tuple); 1879 head->guard_type = NVME_NVM_NS_16B_GUARD; 1880 } 1881 1882 if (head->pi_size && head->ms >= head->pi_size) 1883 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1884 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) 1885 head->pi_offset = head->ms - head->pi_size; 1886 1887 if (ctrl->ops->flags & NVME_F_FABRICS) { 1888 /* 1889 * The NVMe over Fabrics specification only supports metadata as 1890 * part of the extended data LBA. We rely on HCA/HBA support to 1891 * remap the separate metadata buffer from the block layer. 1892 */ 1893 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1894 return; 1895 1896 head->features |= NVME_NS_EXT_LBAS; 1897 1898 /* 1899 * The current fabrics transport drivers support namespace 1900 * metadata formats only if nvme_ns_has_pi() returns true. 1901 * Suppress support for all other formats so the namespace will 1902 * have a 0 capacity and not be usable through the block stack. 1903 * 1904 * Note, this check will need to be modified if any drivers 1905 * gain the ability to use other metadata formats. 1906 */ 1907 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1908 head->features |= NVME_NS_METADATA_SUPPORTED; 1909 } else { 1910 /* 1911 * For PCIe controllers, we can't easily remap the separate 1912 * metadata buffer from the block layer and thus require a 1913 * separate metadata buffer for block layer metadata/PI support. 1914 * We allow extended LBAs for the passthrough interface, though. 1915 */ 1916 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1917 head->features |= NVME_NS_EXT_LBAS; 1918 else 1919 head->features |= NVME_NS_METADATA_SUPPORTED; 1920 } 1921 } 1922 1923 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 1924 { 1925 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 1926 } 1927 1928 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 1929 struct queue_limits *lim) 1930 { 1931 lim->max_hw_sectors = ctrl->max_hw_sectors; 1932 lim->max_segments = min_t(u32, USHRT_MAX, 1933 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 1934 lim->max_integrity_segments = ctrl->max_integrity_segments; 1935 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 1936 lim->max_segment_size = UINT_MAX; 1937 lim->dma_alignment = 3; 1938 } 1939 1940 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 1941 struct queue_limits *lim) 1942 { 1943 struct nvme_ns_head *head = ns->head; 1944 u32 bs = 1U << head->lba_shift; 1945 u32 atomic_bs, phys_bs, io_opt = 0; 1946 bool valid = true; 1947 1948 /* 1949 * The block layer can't support LBA sizes larger than the page size 1950 * or smaller than a sector size yet, so catch this early and don't 1951 * allow block I/O. 1952 */ 1953 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { 1954 bs = (1 << 9); 1955 valid = false; 1956 } 1957 1958 atomic_bs = phys_bs = bs; 1959 if (id->nabo == 0) { 1960 /* 1961 * Bit 1 indicates whether NAWUPF is defined for this namespace 1962 * and whether it should be used instead of AWUPF. If NAWUPF == 1963 * 0 then AWUPF must be used instead. 1964 */ 1965 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1966 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1967 else 1968 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1969 } 1970 1971 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1972 /* NPWG = Namespace Preferred Write Granularity */ 1973 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1974 /* NOWS = Namespace Optimal Write Size */ 1975 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1976 } 1977 1978 /* 1979 * Linux filesystems assume writing a single physical block is 1980 * an atomic operation. Hence limit the physical block size to the 1981 * value of the Atomic Write Unit Power Fail parameter. 1982 */ 1983 lim->logical_block_size = bs; 1984 lim->physical_block_size = min(phys_bs, atomic_bs); 1985 lim->io_min = phys_bs; 1986 lim->io_opt = io_opt; 1987 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1988 lim->max_write_zeroes_sectors = UINT_MAX; 1989 else 1990 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 1991 return valid; 1992 } 1993 1994 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 1995 { 1996 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 1997 } 1998 1999 static inline bool nvme_first_scan(struct gendisk *disk) 2000 { 2001 /* nvme_alloc_ns() scans the disk prior to adding it */ 2002 return !disk_live(disk); 2003 } 2004 2005 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2006 struct queue_limits *lim) 2007 { 2008 struct nvme_ctrl *ctrl = ns->ctrl; 2009 u32 iob; 2010 2011 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2012 is_power_of_2(ctrl->max_hw_sectors)) 2013 iob = ctrl->max_hw_sectors; 2014 else 2015 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2016 2017 if (!iob) 2018 return; 2019 2020 if (!is_power_of_2(iob)) { 2021 if (nvme_first_scan(ns->disk)) 2022 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2023 ns->disk->disk_name, iob); 2024 return; 2025 } 2026 2027 if (blk_queue_is_zoned(ns->disk->queue)) { 2028 if (nvme_first_scan(ns->disk)) 2029 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2030 ns->disk->disk_name); 2031 return; 2032 } 2033 2034 lim->chunk_sectors = iob; 2035 } 2036 2037 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2038 struct nvme_ns_info *info) 2039 { 2040 struct queue_limits lim; 2041 int ret; 2042 2043 blk_mq_freeze_queue(ns->disk->queue); 2044 lim = queue_limits_start_update(ns->disk->queue); 2045 nvme_set_ctrl_limits(ns->ctrl, &lim); 2046 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2047 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2048 blk_mq_unfreeze_queue(ns->disk->queue); 2049 2050 /* Hide the block-interface for these devices */ 2051 if (!ret) 2052 ret = -ENODEV; 2053 return ret; 2054 } 2055 2056 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2057 struct nvme_ns_info *info) 2058 { 2059 bool vwc = ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT; 2060 struct queue_limits lim; 2061 struct nvme_id_ns_nvm *nvm = NULL; 2062 struct nvme_zone_info zi = {}; 2063 struct nvme_id_ns *id; 2064 sector_t capacity; 2065 unsigned lbaf; 2066 int ret; 2067 2068 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2069 if (ret) 2070 return ret; 2071 2072 if (id->ncap == 0) { 2073 /* namespace not allocated or attached */ 2074 info->is_removed = true; 2075 ret = -ENXIO; 2076 goto out; 2077 } 2078 lbaf = nvme_lbaf_index(id->flbas); 2079 2080 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2081 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2082 if (ret < 0) 2083 goto out; 2084 } 2085 2086 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2087 ns->head->ids.csi == NVME_CSI_ZNS) { 2088 ret = nvme_query_zone_info(ns, lbaf, &zi); 2089 if (ret < 0) 2090 goto out; 2091 } 2092 2093 blk_mq_freeze_queue(ns->disk->queue); 2094 ns->head->lba_shift = id->lbaf[lbaf].ds; 2095 ns->head->nuse = le64_to_cpu(id->nuse); 2096 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2097 2098 lim = queue_limits_start_update(ns->disk->queue); 2099 nvme_set_ctrl_limits(ns->ctrl, &lim); 2100 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm); 2101 nvme_set_chunk_sectors(ns, id, &lim); 2102 if (!nvme_update_disk_info(ns, id, &lim)) 2103 capacity = 0; 2104 nvme_config_discard(ns, &lim); 2105 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2106 ns->head->ids.csi == NVME_CSI_ZNS) 2107 nvme_update_zone_info(ns, &lim, &zi); 2108 2109 /* 2110 * Register a metadata profile for PI, or the plain non-integrity NVMe 2111 * metadata masquerading as Type 0 if supported, otherwise reject block 2112 * I/O to namespaces with metadata except when the namespace supports 2113 * PI, as it can strip/insert in that case. 2114 */ 2115 if (!nvme_init_integrity(ns->disk, ns->head, &lim)) 2116 capacity = 0; 2117 2118 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2119 if (ret) { 2120 blk_mq_unfreeze_queue(ns->disk->queue); 2121 goto out; 2122 } 2123 2124 set_capacity_and_notify(ns->disk, capacity); 2125 2126 /* 2127 * Only set the DEAC bit if the device guarantees that reads from 2128 * deallocated data return zeroes. While the DEAC bit does not 2129 * require that, it must be a no-op if reads from deallocated data 2130 * do not return zeroes. 2131 */ 2132 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2133 ns->head->features |= NVME_NS_DEAC; 2134 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2135 blk_queue_write_cache(ns->disk->queue, vwc, vwc); 2136 set_bit(NVME_NS_READY, &ns->flags); 2137 blk_mq_unfreeze_queue(ns->disk->queue); 2138 2139 if (blk_queue_is_zoned(ns->queue)) { 2140 ret = blk_revalidate_disk_zones(ns->disk); 2141 if (ret && !nvme_first_scan(ns->disk)) 2142 goto out; 2143 } 2144 2145 ret = 0; 2146 out: 2147 kfree(nvm); 2148 kfree(id); 2149 return ret; 2150 } 2151 2152 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2153 { 2154 bool unsupported = false; 2155 int ret; 2156 2157 switch (info->ids.csi) { 2158 case NVME_CSI_ZNS: 2159 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2160 dev_info(ns->ctrl->device, 2161 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2162 info->nsid); 2163 ret = nvme_update_ns_info_generic(ns, info); 2164 break; 2165 } 2166 ret = nvme_update_ns_info_block(ns, info); 2167 break; 2168 case NVME_CSI_NVM: 2169 ret = nvme_update_ns_info_block(ns, info); 2170 break; 2171 default: 2172 dev_info(ns->ctrl->device, 2173 "block device for nsid %u not supported (csi %u)\n", 2174 info->nsid, info->ids.csi); 2175 ret = nvme_update_ns_info_generic(ns, info); 2176 break; 2177 } 2178 2179 /* 2180 * If probing fails due an unsupported feature, hide the block device, 2181 * but still allow other access. 2182 */ 2183 if (ret == -ENODEV) { 2184 ns->disk->flags |= GENHD_FL_HIDDEN; 2185 set_bit(NVME_NS_READY, &ns->flags); 2186 unsupported = true; 2187 ret = 0; 2188 } 2189 2190 if (!ret && nvme_ns_head_multipath(ns->head)) { 2191 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2192 struct queue_limits lim; 2193 2194 blk_mq_freeze_queue(ns->head->disk->queue); 2195 /* 2196 * queue_limits mixes values that are the hardware limitations 2197 * for bio splitting with what is the device configuration. 2198 * 2199 * For NVMe the device configuration can change after e.g. a 2200 * Format command, and we really want to pick up the new format 2201 * value here. But we must still stack the queue limits to the 2202 * least common denominator for multipathing to split the bios 2203 * properly. 2204 * 2205 * To work around this, we explicitly set the device 2206 * configuration to those that we just queried, but only stack 2207 * the splitting limits in to make sure we still obey possibly 2208 * lower limitations of other controllers. 2209 */ 2210 lim = queue_limits_start_update(ns->head->disk->queue); 2211 lim.logical_block_size = ns_lim->logical_block_size; 2212 lim.physical_block_size = ns_lim->physical_block_size; 2213 lim.io_min = ns_lim->io_min; 2214 lim.io_opt = ns_lim->io_opt; 2215 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2216 ns->head->disk->disk_name); 2217 if (unsupported) 2218 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2219 else 2220 nvme_init_integrity(ns->head->disk, ns->head, &lim); 2221 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2222 2223 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2224 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2225 nvme_mpath_revalidate_paths(ns); 2226 2227 blk_mq_unfreeze_queue(ns->head->disk->queue); 2228 } 2229 2230 return ret; 2231 } 2232 2233 #ifdef CONFIG_BLK_SED_OPAL 2234 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2235 bool send) 2236 { 2237 struct nvme_ctrl *ctrl = data; 2238 struct nvme_command cmd = { }; 2239 2240 if (send) 2241 cmd.common.opcode = nvme_admin_security_send; 2242 else 2243 cmd.common.opcode = nvme_admin_security_recv; 2244 cmd.common.nsid = 0; 2245 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2246 cmd.common.cdw11 = cpu_to_le32(len); 2247 2248 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2249 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2250 } 2251 2252 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2253 { 2254 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2255 if (!ctrl->opal_dev) 2256 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2257 else if (was_suspended) 2258 opal_unlock_from_suspend(ctrl->opal_dev); 2259 } else { 2260 free_opal_dev(ctrl->opal_dev); 2261 ctrl->opal_dev = NULL; 2262 } 2263 } 2264 #else 2265 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2266 { 2267 } 2268 #endif /* CONFIG_BLK_SED_OPAL */ 2269 2270 #ifdef CONFIG_BLK_DEV_ZONED 2271 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2272 unsigned int nr_zones, report_zones_cb cb, void *data) 2273 { 2274 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2275 data); 2276 } 2277 #else 2278 #define nvme_report_zones NULL 2279 #endif /* CONFIG_BLK_DEV_ZONED */ 2280 2281 const struct block_device_operations nvme_bdev_ops = { 2282 .owner = THIS_MODULE, 2283 .ioctl = nvme_ioctl, 2284 .compat_ioctl = blkdev_compat_ptr_ioctl, 2285 .open = nvme_open, 2286 .release = nvme_release, 2287 .getgeo = nvme_getgeo, 2288 .report_zones = nvme_report_zones, 2289 .pr_ops = &nvme_pr_ops, 2290 }; 2291 2292 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2293 u32 timeout, const char *op) 2294 { 2295 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2296 u32 csts; 2297 int ret; 2298 2299 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2300 if (csts == ~0) 2301 return -ENODEV; 2302 if ((csts & mask) == val) 2303 break; 2304 2305 usleep_range(1000, 2000); 2306 if (fatal_signal_pending(current)) 2307 return -EINTR; 2308 if (time_after(jiffies, timeout_jiffies)) { 2309 dev_err(ctrl->device, 2310 "Device not ready; aborting %s, CSTS=0x%x\n", 2311 op, csts); 2312 return -ENODEV; 2313 } 2314 } 2315 2316 return ret; 2317 } 2318 2319 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2320 { 2321 int ret; 2322 2323 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2324 if (shutdown) 2325 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2326 else 2327 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2328 2329 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2330 if (ret) 2331 return ret; 2332 2333 if (shutdown) { 2334 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2335 NVME_CSTS_SHST_CMPLT, 2336 ctrl->shutdown_timeout, "shutdown"); 2337 } 2338 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2339 msleep(NVME_QUIRK_DELAY_AMOUNT); 2340 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2341 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2342 } 2343 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2344 2345 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2346 { 2347 unsigned dev_page_min; 2348 u32 timeout; 2349 int ret; 2350 2351 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2352 if (ret) { 2353 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2354 return ret; 2355 } 2356 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2357 2358 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2359 dev_err(ctrl->device, 2360 "Minimum device page size %u too large for host (%u)\n", 2361 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2362 return -ENODEV; 2363 } 2364 2365 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2366 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2367 else 2368 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2369 2370 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) 2371 ctrl->ctrl_config |= NVME_CC_CRIME; 2372 2373 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2374 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2375 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2376 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2377 if (ret) 2378 return ret; 2379 2380 /* Flush write to device (required if transport is PCI) */ 2381 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2382 if (ret) 2383 return ret; 2384 2385 /* CAP value may change after initial CC write */ 2386 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2387 if (ret) 2388 return ret; 2389 2390 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2391 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2392 u32 crto, ready_timeout; 2393 2394 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2395 if (ret) { 2396 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2397 ret); 2398 return ret; 2399 } 2400 2401 /* 2402 * CRTO should always be greater or equal to CAP.TO, but some 2403 * devices are known to get this wrong. Use the larger of the 2404 * two values. 2405 */ 2406 if (ctrl->ctrl_config & NVME_CC_CRIME) 2407 ready_timeout = NVME_CRTO_CRIMT(crto); 2408 else 2409 ready_timeout = NVME_CRTO_CRWMT(crto); 2410 2411 if (ready_timeout < timeout) 2412 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2413 crto, ctrl->cap); 2414 else 2415 timeout = ready_timeout; 2416 } 2417 2418 ctrl->ctrl_config |= NVME_CC_ENABLE; 2419 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2420 if (ret) 2421 return ret; 2422 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2423 (timeout + 1) / 2, "initialisation"); 2424 } 2425 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2426 2427 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2428 { 2429 __le64 ts; 2430 int ret; 2431 2432 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2433 return 0; 2434 2435 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2436 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2437 NULL); 2438 if (ret) 2439 dev_warn_once(ctrl->device, 2440 "could not set timestamp (%d)\n", ret); 2441 return ret; 2442 } 2443 2444 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2445 { 2446 struct nvme_feat_host_behavior *host; 2447 u8 acre = 0, lbafee = 0; 2448 int ret; 2449 2450 /* Don't bother enabling the feature if retry delay is not reported */ 2451 if (ctrl->crdt[0]) 2452 acre = NVME_ENABLE_ACRE; 2453 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2454 lbafee = NVME_ENABLE_LBAFEE; 2455 2456 if (!acre && !lbafee) 2457 return 0; 2458 2459 host = kzalloc(sizeof(*host), GFP_KERNEL); 2460 if (!host) 2461 return 0; 2462 2463 host->acre = acre; 2464 host->lbafee = lbafee; 2465 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2466 host, sizeof(*host), NULL); 2467 kfree(host); 2468 return ret; 2469 } 2470 2471 /* 2472 * The function checks whether the given total (exlat + enlat) latency of 2473 * a power state allows the latter to be used as an APST transition target. 2474 * It does so by comparing the latency to the primary and secondary latency 2475 * tolerances defined by module params. If there's a match, the corresponding 2476 * timeout value is returned and the matching tolerance index (1 or 2) is 2477 * reported. 2478 */ 2479 static bool nvme_apst_get_transition_time(u64 total_latency, 2480 u64 *transition_time, unsigned *last_index) 2481 { 2482 if (total_latency <= apst_primary_latency_tol_us) { 2483 if (*last_index == 1) 2484 return false; 2485 *last_index = 1; 2486 *transition_time = apst_primary_timeout_ms; 2487 return true; 2488 } 2489 if (apst_secondary_timeout_ms && 2490 total_latency <= apst_secondary_latency_tol_us) { 2491 if (*last_index <= 2) 2492 return false; 2493 *last_index = 2; 2494 *transition_time = apst_secondary_timeout_ms; 2495 return true; 2496 } 2497 return false; 2498 } 2499 2500 /* 2501 * APST (Autonomous Power State Transition) lets us program a table of power 2502 * state transitions that the controller will perform automatically. 2503 * 2504 * Depending on module params, one of the two supported techniques will be used: 2505 * 2506 * - If the parameters provide explicit timeouts and tolerances, they will be 2507 * used to build a table with up to 2 non-operational states to transition to. 2508 * The default parameter values were selected based on the values used by 2509 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2510 * regeneration of the APST table in the event of switching between external 2511 * and battery power, the timeouts and tolerances reflect a compromise 2512 * between values used by Microsoft for AC and battery scenarios. 2513 * - If not, we'll configure the table with a simple heuristic: we are willing 2514 * to spend at most 2% of the time transitioning between power states. 2515 * Therefore, when running in any given state, we will enter the next 2516 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2517 * microseconds, as long as that state's exit latency is under the requested 2518 * maximum latency. 2519 * 2520 * We will not autonomously enter any non-operational state for which the total 2521 * latency exceeds ps_max_latency_us. 2522 * 2523 * Users can set ps_max_latency_us to zero to turn off APST. 2524 */ 2525 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2526 { 2527 struct nvme_feat_auto_pst *table; 2528 unsigned apste = 0; 2529 u64 max_lat_us = 0; 2530 __le64 target = 0; 2531 int max_ps = -1; 2532 int state; 2533 int ret; 2534 unsigned last_lt_index = UINT_MAX; 2535 2536 /* 2537 * If APST isn't supported or if we haven't been initialized yet, 2538 * then don't do anything. 2539 */ 2540 if (!ctrl->apsta) 2541 return 0; 2542 2543 if (ctrl->npss > 31) { 2544 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2545 return 0; 2546 } 2547 2548 table = kzalloc(sizeof(*table), GFP_KERNEL); 2549 if (!table) 2550 return 0; 2551 2552 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2553 /* Turn off APST. */ 2554 dev_dbg(ctrl->device, "APST disabled\n"); 2555 goto done; 2556 } 2557 2558 /* 2559 * Walk through all states from lowest- to highest-power. 2560 * According to the spec, lower-numbered states use more power. NPSS, 2561 * despite the name, is the index of the lowest-power state, not the 2562 * number of states. 2563 */ 2564 for (state = (int)ctrl->npss; state >= 0; state--) { 2565 u64 total_latency_us, exit_latency_us, transition_ms; 2566 2567 if (target) 2568 table->entries[state] = target; 2569 2570 /* 2571 * Don't allow transitions to the deepest state if it's quirked 2572 * off. 2573 */ 2574 if (state == ctrl->npss && 2575 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2576 continue; 2577 2578 /* 2579 * Is this state a useful non-operational state for higher-power 2580 * states to autonomously transition to? 2581 */ 2582 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2583 continue; 2584 2585 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2586 if (exit_latency_us > ctrl->ps_max_latency_us) 2587 continue; 2588 2589 total_latency_us = exit_latency_us + 2590 le32_to_cpu(ctrl->psd[state].entry_lat); 2591 2592 /* 2593 * This state is good. It can be used as the APST idle target 2594 * for higher power states. 2595 */ 2596 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2597 if (!nvme_apst_get_transition_time(total_latency_us, 2598 &transition_ms, &last_lt_index)) 2599 continue; 2600 } else { 2601 transition_ms = total_latency_us + 19; 2602 do_div(transition_ms, 20); 2603 if (transition_ms > (1 << 24) - 1) 2604 transition_ms = (1 << 24) - 1; 2605 } 2606 2607 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2608 if (max_ps == -1) 2609 max_ps = state; 2610 if (total_latency_us > max_lat_us) 2611 max_lat_us = total_latency_us; 2612 } 2613 2614 if (max_ps == -1) 2615 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2616 else 2617 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2618 max_ps, max_lat_us, (int)sizeof(*table), table); 2619 apste = 1; 2620 2621 done: 2622 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2623 table, sizeof(*table), NULL); 2624 if (ret) 2625 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2626 kfree(table); 2627 return ret; 2628 } 2629 2630 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2631 { 2632 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2633 u64 latency; 2634 2635 switch (val) { 2636 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2637 case PM_QOS_LATENCY_ANY: 2638 latency = U64_MAX; 2639 break; 2640 2641 default: 2642 latency = val; 2643 } 2644 2645 if (ctrl->ps_max_latency_us != latency) { 2646 ctrl->ps_max_latency_us = latency; 2647 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2648 nvme_configure_apst(ctrl); 2649 } 2650 } 2651 2652 struct nvme_core_quirk_entry { 2653 /* 2654 * NVMe model and firmware strings are padded with spaces. For 2655 * simplicity, strings in the quirk table are padded with NULLs 2656 * instead. 2657 */ 2658 u16 vid; 2659 const char *mn; 2660 const char *fr; 2661 unsigned long quirks; 2662 }; 2663 2664 static const struct nvme_core_quirk_entry core_quirks[] = { 2665 { 2666 /* 2667 * This Toshiba device seems to die using any APST states. See: 2668 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2669 */ 2670 .vid = 0x1179, 2671 .mn = "THNSF5256GPUK TOSHIBA", 2672 .quirks = NVME_QUIRK_NO_APST, 2673 }, 2674 { 2675 /* 2676 * This LiteON CL1-3D*-Q11 firmware version has a race 2677 * condition associated with actions related to suspend to idle 2678 * LiteON has resolved the problem in future firmware 2679 */ 2680 .vid = 0x14a4, 2681 .fr = "22301111", 2682 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2683 }, 2684 { 2685 /* 2686 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2687 * aborts I/O during any load, but more easily reproducible 2688 * with discards (fstrim). 2689 * 2690 * The device is left in a state where it is also not possible 2691 * to use "nvme set-feature" to disable APST, but booting with 2692 * nvme_core.default_ps_max_latency=0 works. 2693 */ 2694 .vid = 0x1e0f, 2695 .mn = "KCD6XVUL6T40", 2696 .quirks = NVME_QUIRK_NO_APST, 2697 }, 2698 { 2699 /* 2700 * The external Samsung X5 SSD fails initialization without a 2701 * delay before checking if it is ready and has a whole set of 2702 * other problems. To make this even more interesting, it 2703 * shares the PCI ID with internal Samsung 970 Evo Plus that 2704 * does not need or want these quirks. 2705 */ 2706 .vid = 0x144d, 2707 .mn = "Samsung Portable SSD X5", 2708 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2709 NVME_QUIRK_NO_DEEPEST_PS | 2710 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2711 } 2712 }; 2713 2714 /* match is null-terminated but idstr is space-padded. */ 2715 static bool string_matches(const char *idstr, const char *match, size_t len) 2716 { 2717 size_t matchlen; 2718 2719 if (!match) 2720 return true; 2721 2722 matchlen = strlen(match); 2723 WARN_ON_ONCE(matchlen > len); 2724 2725 if (memcmp(idstr, match, matchlen)) 2726 return false; 2727 2728 for (; matchlen < len; matchlen++) 2729 if (idstr[matchlen] != ' ') 2730 return false; 2731 2732 return true; 2733 } 2734 2735 static bool quirk_matches(const struct nvme_id_ctrl *id, 2736 const struct nvme_core_quirk_entry *q) 2737 { 2738 return q->vid == le16_to_cpu(id->vid) && 2739 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2740 string_matches(id->fr, q->fr, sizeof(id->fr)); 2741 } 2742 2743 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2744 struct nvme_id_ctrl *id) 2745 { 2746 size_t nqnlen; 2747 int off; 2748 2749 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2750 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2751 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2752 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2753 return; 2754 } 2755 2756 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2757 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2758 } 2759 2760 /* 2761 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2762 * Base Specification 2.0. It is slightly different from the format 2763 * specified there due to historic reasons, and we can't change it now. 2764 */ 2765 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2766 "nqn.2014.08.org.nvmexpress:%04x%04x", 2767 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2768 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2769 off += sizeof(id->sn); 2770 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2771 off += sizeof(id->mn); 2772 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2773 } 2774 2775 static void nvme_release_subsystem(struct device *dev) 2776 { 2777 struct nvme_subsystem *subsys = 2778 container_of(dev, struct nvme_subsystem, dev); 2779 2780 if (subsys->instance >= 0) 2781 ida_free(&nvme_instance_ida, subsys->instance); 2782 kfree(subsys); 2783 } 2784 2785 static void nvme_destroy_subsystem(struct kref *ref) 2786 { 2787 struct nvme_subsystem *subsys = 2788 container_of(ref, struct nvme_subsystem, ref); 2789 2790 mutex_lock(&nvme_subsystems_lock); 2791 list_del(&subsys->entry); 2792 mutex_unlock(&nvme_subsystems_lock); 2793 2794 ida_destroy(&subsys->ns_ida); 2795 device_del(&subsys->dev); 2796 put_device(&subsys->dev); 2797 } 2798 2799 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2800 { 2801 kref_put(&subsys->ref, nvme_destroy_subsystem); 2802 } 2803 2804 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2805 { 2806 struct nvme_subsystem *subsys; 2807 2808 lockdep_assert_held(&nvme_subsystems_lock); 2809 2810 /* 2811 * Fail matches for discovery subsystems. This results 2812 * in each discovery controller bound to a unique subsystem. 2813 * This avoids issues with validating controller values 2814 * that can only be true when there is a single unique subsystem. 2815 * There may be multiple and completely independent entities 2816 * that provide discovery controllers. 2817 */ 2818 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2819 return NULL; 2820 2821 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2822 if (strcmp(subsys->subnqn, subsysnqn)) 2823 continue; 2824 if (!kref_get_unless_zero(&subsys->ref)) 2825 continue; 2826 return subsys; 2827 } 2828 2829 return NULL; 2830 } 2831 2832 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2833 { 2834 return ctrl->opts && ctrl->opts->discovery_nqn; 2835 } 2836 2837 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2838 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2839 { 2840 struct nvme_ctrl *tmp; 2841 2842 lockdep_assert_held(&nvme_subsystems_lock); 2843 2844 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2845 if (nvme_state_terminal(tmp)) 2846 continue; 2847 2848 if (tmp->cntlid == ctrl->cntlid) { 2849 dev_err(ctrl->device, 2850 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2851 ctrl->cntlid, dev_name(tmp->device), 2852 subsys->subnqn); 2853 return false; 2854 } 2855 2856 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2857 nvme_discovery_ctrl(ctrl)) 2858 continue; 2859 2860 dev_err(ctrl->device, 2861 "Subsystem does not support multiple controllers\n"); 2862 return false; 2863 } 2864 2865 return true; 2866 } 2867 2868 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2869 { 2870 struct nvme_subsystem *subsys, *found; 2871 int ret; 2872 2873 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2874 if (!subsys) 2875 return -ENOMEM; 2876 2877 subsys->instance = -1; 2878 mutex_init(&subsys->lock); 2879 kref_init(&subsys->ref); 2880 INIT_LIST_HEAD(&subsys->ctrls); 2881 INIT_LIST_HEAD(&subsys->nsheads); 2882 nvme_init_subnqn(subsys, ctrl, id); 2883 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2884 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2885 subsys->vendor_id = le16_to_cpu(id->vid); 2886 subsys->cmic = id->cmic; 2887 2888 /* Versions prior to 1.4 don't necessarily report a valid type */ 2889 if (id->cntrltype == NVME_CTRL_DISC || 2890 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2891 subsys->subtype = NVME_NQN_DISC; 2892 else 2893 subsys->subtype = NVME_NQN_NVME; 2894 2895 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2896 dev_err(ctrl->device, 2897 "Subsystem %s is not a discovery controller", 2898 subsys->subnqn); 2899 kfree(subsys); 2900 return -EINVAL; 2901 } 2902 subsys->awupf = le16_to_cpu(id->awupf); 2903 nvme_mpath_default_iopolicy(subsys); 2904 2905 subsys->dev.class = &nvme_subsys_class; 2906 subsys->dev.release = nvme_release_subsystem; 2907 subsys->dev.groups = nvme_subsys_attrs_groups; 2908 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2909 device_initialize(&subsys->dev); 2910 2911 mutex_lock(&nvme_subsystems_lock); 2912 found = __nvme_find_get_subsystem(subsys->subnqn); 2913 if (found) { 2914 put_device(&subsys->dev); 2915 subsys = found; 2916 2917 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2918 ret = -EINVAL; 2919 goto out_put_subsystem; 2920 } 2921 } else { 2922 ret = device_add(&subsys->dev); 2923 if (ret) { 2924 dev_err(ctrl->device, 2925 "failed to register subsystem device.\n"); 2926 put_device(&subsys->dev); 2927 goto out_unlock; 2928 } 2929 ida_init(&subsys->ns_ida); 2930 list_add_tail(&subsys->entry, &nvme_subsystems); 2931 } 2932 2933 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2934 dev_name(ctrl->device)); 2935 if (ret) { 2936 dev_err(ctrl->device, 2937 "failed to create sysfs link from subsystem.\n"); 2938 goto out_put_subsystem; 2939 } 2940 2941 if (!found) 2942 subsys->instance = ctrl->instance; 2943 ctrl->subsys = subsys; 2944 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2945 mutex_unlock(&nvme_subsystems_lock); 2946 return 0; 2947 2948 out_put_subsystem: 2949 nvme_put_subsystem(subsys); 2950 out_unlock: 2951 mutex_unlock(&nvme_subsystems_lock); 2952 return ret; 2953 } 2954 2955 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2956 void *log, size_t size, u64 offset) 2957 { 2958 struct nvme_command c = { }; 2959 u32 dwlen = nvme_bytes_to_numd(size); 2960 2961 c.get_log_page.opcode = nvme_admin_get_log_page; 2962 c.get_log_page.nsid = cpu_to_le32(nsid); 2963 c.get_log_page.lid = log_page; 2964 c.get_log_page.lsp = lsp; 2965 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2966 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2967 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2968 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2969 c.get_log_page.csi = csi; 2970 2971 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2972 } 2973 2974 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2975 struct nvme_effects_log **log) 2976 { 2977 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2978 int ret; 2979 2980 if (cel) 2981 goto out; 2982 2983 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2984 if (!cel) 2985 return -ENOMEM; 2986 2987 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2988 cel, sizeof(*cel), 0); 2989 if (ret) { 2990 kfree(cel); 2991 return ret; 2992 } 2993 2994 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2995 out: 2996 *log = cel; 2997 return 0; 2998 } 2999 3000 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3001 { 3002 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3003 3004 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3005 return UINT_MAX; 3006 return val; 3007 } 3008 3009 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3010 { 3011 struct nvme_command c = { }; 3012 struct nvme_id_ctrl_nvm *id; 3013 int ret; 3014 3015 /* 3016 * Even though NVMe spec explicitly states that MDTS is not applicable 3017 * to the write-zeroes, we are cautious and limit the size to the 3018 * controllers max_hw_sectors value, which is based on the MDTS field 3019 * and possibly other limiting factors. 3020 */ 3021 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3022 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3023 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3024 else 3025 ctrl->max_zeroes_sectors = 0; 3026 3027 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3028 nvme_ctrl_limited_cns(ctrl) || 3029 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3030 return 0; 3031 3032 id = kzalloc(sizeof(*id), GFP_KERNEL); 3033 if (!id) 3034 return -ENOMEM; 3035 3036 c.identify.opcode = nvme_admin_identify; 3037 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3038 c.identify.csi = NVME_CSI_NVM; 3039 3040 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3041 if (ret) 3042 goto free_data; 3043 3044 ctrl->dmrl = id->dmrl; 3045 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3046 if (id->wzsl) 3047 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3048 3049 free_data: 3050 if (ret > 0) 3051 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3052 kfree(id); 3053 return ret; 3054 } 3055 3056 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3057 { 3058 struct nvme_effects_log *log = ctrl->effects; 3059 3060 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3061 NVME_CMD_EFFECTS_NCC | 3062 NVME_CMD_EFFECTS_CSE_MASK); 3063 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3064 NVME_CMD_EFFECTS_CSE_MASK); 3065 3066 /* 3067 * The spec says the result of a security receive command depends on 3068 * the previous security send command. As such, many vendors log this 3069 * command as one to submitted only when no other commands to the same 3070 * namespace are outstanding. The intention is to tell the host to 3071 * prevent mixing security send and receive. 3072 * 3073 * This driver can only enforce such exclusive access against IO 3074 * queues, though. We are not readily able to enforce such a rule for 3075 * two commands to the admin queue, which is the only queue that 3076 * matters for this command. 3077 * 3078 * Rather than blindly freezing the IO queues for this effect that 3079 * doesn't even apply to IO, mask it off. 3080 */ 3081 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3082 3083 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3084 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3085 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3086 } 3087 3088 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3089 { 3090 int ret = 0; 3091 3092 if (ctrl->effects) 3093 return 0; 3094 3095 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3096 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3097 if (ret < 0) 3098 return ret; 3099 } 3100 3101 if (!ctrl->effects) { 3102 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3103 if (!ctrl->effects) 3104 return -ENOMEM; 3105 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3106 } 3107 3108 nvme_init_known_nvm_effects(ctrl); 3109 return 0; 3110 } 3111 3112 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3113 { 3114 /* 3115 * In fabrics we need to verify the cntlid matches the 3116 * admin connect 3117 */ 3118 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3119 dev_err(ctrl->device, 3120 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3121 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3122 return -EINVAL; 3123 } 3124 3125 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3126 dev_err(ctrl->device, 3127 "keep-alive support is mandatory for fabrics\n"); 3128 return -EINVAL; 3129 } 3130 3131 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3132 dev_err(ctrl->device, 3133 "I/O queue command capsule supported size %d < 4\n", 3134 ctrl->ioccsz); 3135 return -EINVAL; 3136 } 3137 3138 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3139 dev_err(ctrl->device, 3140 "I/O queue response capsule supported size %d < 1\n", 3141 ctrl->iorcsz); 3142 return -EINVAL; 3143 } 3144 3145 if (!ctrl->maxcmd) { 3146 dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); 3147 return -EINVAL; 3148 } 3149 3150 return 0; 3151 } 3152 3153 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3154 { 3155 struct queue_limits lim; 3156 struct nvme_id_ctrl *id; 3157 u32 max_hw_sectors; 3158 bool prev_apst_enabled; 3159 int ret; 3160 3161 ret = nvme_identify_ctrl(ctrl, &id); 3162 if (ret) { 3163 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3164 return -EIO; 3165 } 3166 3167 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3168 ctrl->cntlid = le16_to_cpu(id->cntlid); 3169 3170 if (!ctrl->identified) { 3171 unsigned int i; 3172 3173 /* 3174 * Check for quirks. Quirk can depend on firmware version, 3175 * so, in principle, the set of quirks present can change 3176 * across a reset. As a possible future enhancement, we 3177 * could re-scan for quirks every time we reinitialize 3178 * the device, but we'd have to make sure that the driver 3179 * behaves intelligently if the quirks change. 3180 */ 3181 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3182 if (quirk_matches(id, &core_quirks[i])) 3183 ctrl->quirks |= core_quirks[i].quirks; 3184 } 3185 3186 ret = nvme_init_subsystem(ctrl, id); 3187 if (ret) 3188 goto out_free; 3189 3190 ret = nvme_init_effects(ctrl, id); 3191 if (ret) 3192 goto out_free; 3193 } 3194 memcpy(ctrl->subsys->firmware_rev, id->fr, 3195 sizeof(ctrl->subsys->firmware_rev)); 3196 3197 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3198 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3199 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3200 } 3201 3202 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3203 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3204 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3205 3206 ctrl->oacs = le16_to_cpu(id->oacs); 3207 ctrl->oncs = le16_to_cpu(id->oncs); 3208 ctrl->mtfa = le16_to_cpu(id->mtfa); 3209 ctrl->oaes = le32_to_cpu(id->oaes); 3210 ctrl->wctemp = le16_to_cpu(id->wctemp); 3211 ctrl->cctemp = le16_to_cpu(id->cctemp); 3212 3213 atomic_set(&ctrl->abort_limit, id->acl + 1); 3214 ctrl->vwc = id->vwc; 3215 if (id->mdts) 3216 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3217 else 3218 max_hw_sectors = UINT_MAX; 3219 ctrl->max_hw_sectors = 3220 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3221 3222 lim = queue_limits_start_update(ctrl->admin_q); 3223 nvme_set_ctrl_limits(ctrl, &lim); 3224 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3225 if (ret) 3226 goto out_free; 3227 3228 ctrl->sgls = le32_to_cpu(id->sgls); 3229 ctrl->kas = le16_to_cpu(id->kas); 3230 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3231 ctrl->ctratt = le32_to_cpu(id->ctratt); 3232 3233 ctrl->cntrltype = id->cntrltype; 3234 ctrl->dctype = id->dctype; 3235 3236 if (id->rtd3e) { 3237 /* us -> s */ 3238 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3239 3240 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3241 shutdown_timeout, 60); 3242 3243 if (ctrl->shutdown_timeout != shutdown_timeout) 3244 dev_info(ctrl->device, 3245 "D3 entry latency set to %u seconds\n", 3246 ctrl->shutdown_timeout); 3247 } else 3248 ctrl->shutdown_timeout = shutdown_timeout; 3249 3250 ctrl->npss = id->npss; 3251 ctrl->apsta = id->apsta; 3252 prev_apst_enabled = ctrl->apst_enabled; 3253 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3254 if (force_apst && id->apsta) { 3255 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3256 ctrl->apst_enabled = true; 3257 } else { 3258 ctrl->apst_enabled = false; 3259 } 3260 } else { 3261 ctrl->apst_enabled = id->apsta; 3262 } 3263 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3264 3265 if (ctrl->ops->flags & NVME_F_FABRICS) { 3266 ctrl->icdoff = le16_to_cpu(id->icdoff); 3267 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3268 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3269 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3270 3271 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3272 if (ret) 3273 goto out_free; 3274 } else { 3275 ctrl->hmpre = le32_to_cpu(id->hmpre); 3276 ctrl->hmmin = le32_to_cpu(id->hmmin); 3277 ctrl->hmminds = le32_to_cpu(id->hmminds); 3278 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3279 } 3280 3281 ret = nvme_mpath_init_identify(ctrl, id); 3282 if (ret < 0) 3283 goto out_free; 3284 3285 if (ctrl->apst_enabled && !prev_apst_enabled) 3286 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3287 else if (!ctrl->apst_enabled && prev_apst_enabled) 3288 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3289 3290 out_free: 3291 kfree(id); 3292 return ret; 3293 } 3294 3295 /* 3296 * Initialize the cached copies of the Identify data and various controller 3297 * register in our nvme_ctrl structure. This should be called as soon as 3298 * the admin queue is fully up and running. 3299 */ 3300 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3301 { 3302 int ret; 3303 3304 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3305 if (ret) { 3306 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3307 return ret; 3308 } 3309 3310 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3311 3312 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3313 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3314 3315 ret = nvme_init_identify(ctrl); 3316 if (ret) 3317 return ret; 3318 3319 ret = nvme_configure_apst(ctrl); 3320 if (ret < 0) 3321 return ret; 3322 3323 ret = nvme_configure_timestamp(ctrl); 3324 if (ret < 0) 3325 return ret; 3326 3327 ret = nvme_configure_host_options(ctrl); 3328 if (ret < 0) 3329 return ret; 3330 3331 nvme_configure_opal(ctrl, was_suspended); 3332 3333 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3334 /* 3335 * Do not return errors unless we are in a controller reset, 3336 * the controller works perfectly fine without hwmon. 3337 */ 3338 ret = nvme_hwmon_init(ctrl); 3339 if (ret == -EINTR) 3340 return ret; 3341 } 3342 3343 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3344 ctrl->identified = true; 3345 3346 nvme_start_keep_alive(ctrl); 3347 3348 return 0; 3349 } 3350 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3351 3352 static int nvme_dev_open(struct inode *inode, struct file *file) 3353 { 3354 struct nvme_ctrl *ctrl = 3355 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3356 3357 switch (nvme_ctrl_state(ctrl)) { 3358 case NVME_CTRL_LIVE: 3359 break; 3360 default: 3361 return -EWOULDBLOCK; 3362 } 3363 3364 nvme_get_ctrl(ctrl); 3365 if (!try_module_get(ctrl->ops->module)) { 3366 nvme_put_ctrl(ctrl); 3367 return -EINVAL; 3368 } 3369 3370 file->private_data = ctrl; 3371 return 0; 3372 } 3373 3374 static int nvme_dev_release(struct inode *inode, struct file *file) 3375 { 3376 struct nvme_ctrl *ctrl = 3377 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3378 3379 module_put(ctrl->ops->module); 3380 nvme_put_ctrl(ctrl); 3381 return 0; 3382 } 3383 3384 static const struct file_operations nvme_dev_fops = { 3385 .owner = THIS_MODULE, 3386 .open = nvme_dev_open, 3387 .release = nvme_dev_release, 3388 .unlocked_ioctl = nvme_dev_ioctl, 3389 .compat_ioctl = compat_ptr_ioctl, 3390 .uring_cmd = nvme_dev_uring_cmd, 3391 }; 3392 3393 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3394 unsigned nsid) 3395 { 3396 struct nvme_ns_head *h; 3397 3398 lockdep_assert_held(&ctrl->subsys->lock); 3399 3400 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3401 /* 3402 * Private namespaces can share NSIDs under some conditions. 3403 * In that case we can't use the same ns_head for namespaces 3404 * with the same NSID. 3405 */ 3406 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3407 continue; 3408 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3409 return h; 3410 } 3411 3412 return NULL; 3413 } 3414 3415 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3416 struct nvme_ns_ids *ids) 3417 { 3418 bool has_uuid = !uuid_is_null(&ids->uuid); 3419 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3420 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3421 struct nvme_ns_head *h; 3422 3423 lockdep_assert_held(&subsys->lock); 3424 3425 list_for_each_entry(h, &subsys->nsheads, entry) { 3426 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3427 return -EINVAL; 3428 if (has_nguid && 3429 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3430 return -EINVAL; 3431 if (has_eui64 && 3432 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3433 return -EINVAL; 3434 } 3435 3436 return 0; 3437 } 3438 3439 static void nvme_cdev_rel(struct device *dev) 3440 { 3441 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3442 } 3443 3444 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3445 { 3446 cdev_device_del(cdev, cdev_device); 3447 put_device(cdev_device); 3448 } 3449 3450 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3451 const struct file_operations *fops, struct module *owner) 3452 { 3453 int minor, ret; 3454 3455 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3456 if (minor < 0) 3457 return minor; 3458 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3459 cdev_device->class = &nvme_ns_chr_class; 3460 cdev_device->release = nvme_cdev_rel; 3461 device_initialize(cdev_device); 3462 cdev_init(cdev, fops); 3463 cdev->owner = owner; 3464 ret = cdev_device_add(cdev, cdev_device); 3465 if (ret) 3466 put_device(cdev_device); 3467 3468 return ret; 3469 } 3470 3471 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3472 { 3473 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3474 } 3475 3476 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3477 { 3478 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3479 return 0; 3480 } 3481 3482 static const struct file_operations nvme_ns_chr_fops = { 3483 .owner = THIS_MODULE, 3484 .open = nvme_ns_chr_open, 3485 .release = nvme_ns_chr_release, 3486 .unlocked_ioctl = nvme_ns_chr_ioctl, 3487 .compat_ioctl = compat_ptr_ioctl, 3488 .uring_cmd = nvme_ns_chr_uring_cmd, 3489 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3490 }; 3491 3492 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3493 { 3494 int ret; 3495 3496 ns->cdev_device.parent = ns->ctrl->device; 3497 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3498 ns->ctrl->instance, ns->head->instance); 3499 if (ret) 3500 return ret; 3501 3502 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3503 ns->ctrl->ops->module); 3504 } 3505 3506 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3507 struct nvme_ns_info *info) 3508 { 3509 struct nvme_ns_head *head; 3510 size_t size = sizeof(*head); 3511 int ret = -ENOMEM; 3512 3513 #ifdef CONFIG_NVME_MULTIPATH 3514 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3515 #endif 3516 3517 head = kzalloc(size, GFP_KERNEL); 3518 if (!head) 3519 goto out; 3520 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3521 if (ret < 0) 3522 goto out_free_head; 3523 head->instance = ret; 3524 INIT_LIST_HEAD(&head->list); 3525 ret = init_srcu_struct(&head->srcu); 3526 if (ret) 3527 goto out_ida_remove; 3528 head->subsys = ctrl->subsys; 3529 head->ns_id = info->nsid; 3530 head->ids = info->ids; 3531 head->shared = info->is_shared; 3532 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3533 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3534 kref_init(&head->ref); 3535 3536 if (head->ids.csi) { 3537 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3538 if (ret) 3539 goto out_cleanup_srcu; 3540 } else 3541 head->effects = ctrl->effects; 3542 3543 ret = nvme_mpath_alloc_disk(ctrl, head); 3544 if (ret) 3545 goto out_cleanup_srcu; 3546 3547 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3548 3549 kref_get(&ctrl->subsys->ref); 3550 3551 return head; 3552 out_cleanup_srcu: 3553 cleanup_srcu_struct(&head->srcu); 3554 out_ida_remove: 3555 ida_free(&ctrl->subsys->ns_ida, head->instance); 3556 out_free_head: 3557 kfree(head); 3558 out: 3559 if (ret > 0) 3560 ret = blk_status_to_errno(nvme_error_status(ret)); 3561 return ERR_PTR(ret); 3562 } 3563 3564 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3565 struct nvme_ns_ids *ids) 3566 { 3567 struct nvme_subsystem *s; 3568 int ret = 0; 3569 3570 /* 3571 * Note that this check is racy as we try to avoid holding the global 3572 * lock over the whole ns_head creation. But it is only intended as 3573 * a sanity check anyway. 3574 */ 3575 mutex_lock(&nvme_subsystems_lock); 3576 list_for_each_entry(s, &nvme_subsystems, entry) { 3577 if (s == this) 3578 continue; 3579 mutex_lock(&s->lock); 3580 ret = nvme_subsys_check_duplicate_ids(s, ids); 3581 mutex_unlock(&s->lock); 3582 if (ret) 3583 break; 3584 } 3585 mutex_unlock(&nvme_subsystems_lock); 3586 3587 return ret; 3588 } 3589 3590 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3591 { 3592 struct nvme_ctrl *ctrl = ns->ctrl; 3593 struct nvme_ns_head *head = NULL; 3594 int ret; 3595 3596 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3597 if (ret) { 3598 /* 3599 * We've found two different namespaces on two different 3600 * subsystems that report the same ID. This is pretty nasty 3601 * for anything that actually requires unique device 3602 * identification. In the kernel we need this for multipathing, 3603 * and in user space the /dev/disk/by-id/ links rely on it. 3604 * 3605 * If the device also claims to be multi-path capable back off 3606 * here now and refuse the probe the second device as this is a 3607 * recipe for data corruption. If not this is probably a 3608 * cheap consumer device if on the PCIe bus, so let the user 3609 * proceed and use the shiny toy, but warn that with changing 3610 * probing order (which due to our async probing could just be 3611 * device taking longer to startup) the other device could show 3612 * up at any time. 3613 */ 3614 nvme_print_device_info(ctrl); 3615 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3616 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3617 info->is_shared)) { 3618 dev_err(ctrl->device, 3619 "ignoring nsid %d because of duplicate IDs\n", 3620 info->nsid); 3621 return ret; 3622 } 3623 3624 dev_err(ctrl->device, 3625 "clearing duplicate IDs for nsid %d\n", info->nsid); 3626 dev_err(ctrl->device, 3627 "use of /dev/disk/by-id/ may cause data corruption\n"); 3628 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3629 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3630 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3631 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3632 } 3633 3634 mutex_lock(&ctrl->subsys->lock); 3635 head = nvme_find_ns_head(ctrl, info->nsid); 3636 if (!head) { 3637 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3638 if (ret) { 3639 dev_err(ctrl->device, 3640 "duplicate IDs in subsystem for nsid %d\n", 3641 info->nsid); 3642 goto out_unlock; 3643 } 3644 head = nvme_alloc_ns_head(ctrl, info); 3645 if (IS_ERR(head)) { 3646 ret = PTR_ERR(head); 3647 goto out_unlock; 3648 } 3649 } else { 3650 ret = -EINVAL; 3651 if (!info->is_shared || !head->shared) { 3652 dev_err(ctrl->device, 3653 "Duplicate unshared namespace %d\n", 3654 info->nsid); 3655 goto out_put_ns_head; 3656 } 3657 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3658 dev_err(ctrl->device, 3659 "IDs don't match for shared namespace %d\n", 3660 info->nsid); 3661 goto out_put_ns_head; 3662 } 3663 3664 if (!multipath) { 3665 dev_warn(ctrl->device, 3666 "Found shared namespace %d, but multipathing not supported.\n", 3667 info->nsid); 3668 dev_warn_once(ctrl->device, 3669 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3670 } 3671 } 3672 3673 list_add_tail_rcu(&ns->siblings, &head->list); 3674 ns->head = head; 3675 mutex_unlock(&ctrl->subsys->lock); 3676 return 0; 3677 3678 out_put_ns_head: 3679 nvme_put_ns_head(head); 3680 out_unlock: 3681 mutex_unlock(&ctrl->subsys->lock); 3682 return ret; 3683 } 3684 3685 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3686 { 3687 struct nvme_ns *ns, *ret = NULL; 3688 int srcu_idx; 3689 3690 srcu_idx = srcu_read_lock(&ctrl->srcu); 3691 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 3692 if (ns->head->ns_id == nsid) { 3693 if (!nvme_get_ns(ns)) 3694 continue; 3695 ret = ns; 3696 break; 3697 } 3698 if (ns->head->ns_id > nsid) 3699 break; 3700 } 3701 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3702 return ret; 3703 } 3704 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3705 3706 /* 3707 * Add the namespace to the controller list while keeping the list ordered. 3708 */ 3709 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3710 { 3711 struct nvme_ns *tmp; 3712 3713 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3714 if (tmp->head->ns_id < ns->head->ns_id) { 3715 list_add_rcu(&ns->list, &tmp->list); 3716 return; 3717 } 3718 } 3719 list_add(&ns->list, &ns->ctrl->namespaces); 3720 } 3721 3722 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3723 { 3724 struct nvme_ns *ns; 3725 struct gendisk *disk; 3726 int node = ctrl->numa_node; 3727 3728 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3729 if (!ns) 3730 return; 3731 3732 disk = blk_mq_alloc_disk(ctrl->tagset, NULL, ns); 3733 if (IS_ERR(disk)) 3734 goto out_free_ns; 3735 disk->fops = &nvme_bdev_ops; 3736 disk->private_data = ns; 3737 3738 ns->disk = disk; 3739 ns->queue = disk->queue; 3740 3741 if (ctrl->opts && ctrl->opts->data_digest) 3742 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3743 3744 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3745 if (ctrl->ops->supports_pci_p2pdma && 3746 ctrl->ops->supports_pci_p2pdma(ctrl)) 3747 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3748 3749 ns->ctrl = ctrl; 3750 kref_init(&ns->kref); 3751 3752 if (nvme_init_ns_head(ns, info)) 3753 goto out_cleanup_disk; 3754 3755 /* 3756 * If multipathing is enabled, the device name for all disks and not 3757 * just those that represent shared namespaces needs to be based on the 3758 * subsystem instance. Using the controller instance for private 3759 * namespaces could lead to naming collisions between shared and private 3760 * namespaces if they don't use a common numbering scheme. 3761 * 3762 * If multipathing is not enabled, disk names must use the controller 3763 * instance as shared namespaces will show up as multiple block 3764 * devices. 3765 */ 3766 if (nvme_ns_head_multipath(ns->head)) { 3767 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3768 ctrl->instance, ns->head->instance); 3769 disk->flags |= GENHD_FL_HIDDEN; 3770 } else if (multipath) { 3771 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3772 ns->head->instance); 3773 } else { 3774 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3775 ns->head->instance); 3776 } 3777 3778 if (nvme_update_ns_info(ns, info)) 3779 goto out_unlink_ns; 3780 3781 mutex_lock(&ctrl->namespaces_lock); 3782 /* 3783 * Ensure that no namespaces are added to the ctrl list after the queues 3784 * are frozen, thereby avoiding a deadlock between scan and reset. 3785 */ 3786 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3787 mutex_unlock(&ctrl->namespaces_lock); 3788 goto out_unlink_ns; 3789 } 3790 nvme_ns_add_to_ctrl_list(ns); 3791 mutex_unlock(&ctrl->namespaces_lock); 3792 synchronize_srcu(&ctrl->srcu); 3793 nvme_get_ctrl(ctrl); 3794 3795 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3796 goto out_cleanup_ns_from_list; 3797 3798 if (!nvme_ns_head_multipath(ns->head)) 3799 nvme_add_ns_cdev(ns); 3800 3801 nvme_mpath_add_disk(ns, info->anagrpid); 3802 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3803 3804 /* 3805 * Set ns->disk->device->driver_data to ns so we can access 3806 * ns->head->passthru_err_log_enabled in 3807 * nvme_io_passthru_err_log_enabled_[store | show](). 3808 */ 3809 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3810 3811 return; 3812 3813 out_cleanup_ns_from_list: 3814 nvme_put_ctrl(ctrl); 3815 mutex_lock(&ctrl->namespaces_lock); 3816 list_del_rcu(&ns->list); 3817 mutex_unlock(&ctrl->namespaces_lock); 3818 synchronize_srcu(&ctrl->srcu); 3819 out_unlink_ns: 3820 mutex_lock(&ctrl->subsys->lock); 3821 list_del_rcu(&ns->siblings); 3822 if (list_empty(&ns->head->list)) 3823 list_del_init(&ns->head->entry); 3824 mutex_unlock(&ctrl->subsys->lock); 3825 nvme_put_ns_head(ns->head); 3826 out_cleanup_disk: 3827 put_disk(disk); 3828 out_free_ns: 3829 kfree(ns); 3830 } 3831 3832 static void nvme_ns_remove(struct nvme_ns *ns) 3833 { 3834 bool last_path = false; 3835 3836 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3837 return; 3838 3839 clear_bit(NVME_NS_READY, &ns->flags); 3840 set_capacity(ns->disk, 0); 3841 nvme_fault_inject_fini(&ns->fault_inject); 3842 3843 /* 3844 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3845 * this ns going back into current_path. 3846 */ 3847 synchronize_srcu(&ns->head->srcu); 3848 3849 /* wait for concurrent submissions */ 3850 if (nvme_mpath_clear_current_path(ns)) 3851 synchronize_srcu(&ns->head->srcu); 3852 3853 mutex_lock(&ns->ctrl->subsys->lock); 3854 list_del_rcu(&ns->siblings); 3855 if (list_empty(&ns->head->list)) { 3856 list_del_init(&ns->head->entry); 3857 last_path = true; 3858 } 3859 mutex_unlock(&ns->ctrl->subsys->lock); 3860 3861 /* guarantee not available in head->list */ 3862 synchronize_srcu(&ns->head->srcu); 3863 3864 if (!nvme_ns_head_multipath(ns->head)) 3865 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3866 del_gendisk(ns->disk); 3867 3868 mutex_lock(&ns->ctrl->namespaces_lock); 3869 list_del_rcu(&ns->list); 3870 mutex_unlock(&ns->ctrl->namespaces_lock); 3871 synchronize_srcu(&ns->ctrl->srcu); 3872 3873 if (last_path) 3874 nvme_mpath_shutdown_disk(ns->head); 3875 nvme_put_ns(ns); 3876 } 3877 3878 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3879 { 3880 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3881 3882 if (ns) { 3883 nvme_ns_remove(ns); 3884 nvme_put_ns(ns); 3885 } 3886 } 3887 3888 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3889 { 3890 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3891 3892 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3893 dev_err(ns->ctrl->device, 3894 "identifiers changed for nsid %d\n", ns->head->ns_id); 3895 goto out; 3896 } 3897 3898 ret = nvme_update_ns_info(ns, info); 3899 out: 3900 /* 3901 * Only remove the namespace if we got a fatal error back from the 3902 * device, otherwise ignore the error and just move on. 3903 * 3904 * TODO: we should probably schedule a delayed retry here. 3905 */ 3906 if (ret > 0 && (ret & NVME_SC_DNR)) 3907 nvme_ns_remove(ns); 3908 } 3909 3910 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3911 { 3912 struct nvme_ns_info info = { .nsid = nsid }; 3913 struct nvme_ns *ns; 3914 int ret; 3915 3916 if (nvme_identify_ns_descs(ctrl, &info)) 3917 return; 3918 3919 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 3920 dev_warn(ctrl->device, 3921 "command set not reported for nsid: %d\n", nsid); 3922 return; 3923 } 3924 3925 /* 3926 * If available try to use the Command Set Idependent Identify Namespace 3927 * data structure to find all the generic information that is needed to 3928 * set up a namespace. If not fall back to the legacy version. 3929 */ 3930 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 3931 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 3932 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 3933 else 3934 ret = nvme_ns_info_from_identify(ctrl, &info); 3935 3936 if (info.is_removed) 3937 nvme_ns_remove_by_nsid(ctrl, nsid); 3938 3939 /* 3940 * Ignore the namespace if it is not ready. We will get an AEN once it 3941 * becomes ready and restart the scan. 3942 */ 3943 if (ret || !info.is_ready) 3944 return; 3945 3946 ns = nvme_find_get_ns(ctrl, nsid); 3947 if (ns) { 3948 nvme_validate_ns(ns, &info); 3949 nvme_put_ns(ns); 3950 } else { 3951 nvme_alloc_ns(ctrl, &info); 3952 } 3953 } 3954 3955 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3956 unsigned nsid) 3957 { 3958 struct nvme_ns *ns, *next; 3959 LIST_HEAD(rm_list); 3960 3961 mutex_lock(&ctrl->namespaces_lock); 3962 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3963 if (ns->head->ns_id > nsid) 3964 list_splice_init_rcu(&ns->list, &rm_list, 3965 synchronize_rcu); 3966 } 3967 mutex_unlock(&ctrl->namespaces_lock); 3968 synchronize_srcu(&ctrl->srcu); 3969 3970 list_for_each_entry_safe(ns, next, &rm_list, list) 3971 nvme_ns_remove(ns); 3972 } 3973 3974 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3975 { 3976 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3977 __le32 *ns_list; 3978 u32 prev = 0; 3979 int ret = 0, i; 3980 3981 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3982 if (!ns_list) 3983 return -ENOMEM; 3984 3985 for (;;) { 3986 struct nvme_command cmd = { 3987 .identify.opcode = nvme_admin_identify, 3988 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 3989 .identify.nsid = cpu_to_le32(prev), 3990 }; 3991 3992 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 3993 NVME_IDENTIFY_DATA_SIZE); 3994 if (ret) { 3995 dev_warn(ctrl->device, 3996 "Identify NS List failed (status=0x%x)\n", ret); 3997 goto free; 3998 } 3999 4000 for (i = 0; i < nr_entries; i++) { 4001 u32 nsid = le32_to_cpu(ns_list[i]); 4002 4003 if (!nsid) /* end of the list? */ 4004 goto out; 4005 nvme_scan_ns(ctrl, nsid); 4006 while (++prev < nsid) 4007 nvme_ns_remove_by_nsid(ctrl, prev); 4008 } 4009 } 4010 out: 4011 nvme_remove_invalid_namespaces(ctrl, prev); 4012 free: 4013 kfree(ns_list); 4014 return ret; 4015 } 4016 4017 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4018 { 4019 struct nvme_id_ctrl *id; 4020 u32 nn, i; 4021 4022 if (nvme_identify_ctrl(ctrl, &id)) 4023 return; 4024 nn = le32_to_cpu(id->nn); 4025 kfree(id); 4026 4027 for (i = 1; i <= nn; i++) 4028 nvme_scan_ns(ctrl, i); 4029 4030 nvme_remove_invalid_namespaces(ctrl, nn); 4031 } 4032 4033 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4034 { 4035 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4036 __le32 *log; 4037 int error; 4038 4039 log = kzalloc(log_size, GFP_KERNEL); 4040 if (!log) 4041 return; 4042 4043 /* 4044 * We need to read the log to clear the AEN, but we don't want to rely 4045 * on it for the changed namespace information as userspace could have 4046 * raced with us in reading the log page, which could cause us to miss 4047 * updates. 4048 */ 4049 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4050 NVME_CSI_NVM, log, log_size, 0); 4051 if (error) 4052 dev_warn(ctrl->device, 4053 "reading changed ns log failed: %d\n", error); 4054 4055 kfree(log); 4056 } 4057 4058 static void nvme_scan_work(struct work_struct *work) 4059 { 4060 struct nvme_ctrl *ctrl = 4061 container_of(work, struct nvme_ctrl, scan_work); 4062 int ret; 4063 4064 /* No tagset on a live ctrl means IO queues could not created */ 4065 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4066 return; 4067 4068 /* 4069 * Identify controller limits can change at controller reset due to 4070 * new firmware download, even though it is not common we cannot ignore 4071 * such scenario. Controller's non-mdts limits are reported in the unit 4072 * of logical blocks that is dependent on the format of attached 4073 * namespace. Hence re-read the limits at the time of ns allocation. 4074 */ 4075 ret = nvme_init_non_mdts_limits(ctrl); 4076 if (ret < 0) { 4077 dev_warn(ctrl->device, 4078 "reading non-mdts-limits failed: %d\n", ret); 4079 return; 4080 } 4081 4082 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4083 dev_info(ctrl->device, "rescanning namespaces.\n"); 4084 nvme_clear_changed_ns_log(ctrl); 4085 } 4086 4087 mutex_lock(&ctrl->scan_lock); 4088 if (nvme_ctrl_limited_cns(ctrl)) { 4089 nvme_scan_ns_sequential(ctrl); 4090 } else { 4091 /* 4092 * Fall back to sequential scan if DNR is set to handle broken 4093 * devices which should support Identify NS List (as per the VS 4094 * they report) but don't actually support it. 4095 */ 4096 ret = nvme_scan_ns_list(ctrl); 4097 if (ret > 0 && ret & NVME_SC_DNR) 4098 nvme_scan_ns_sequential(ctrl); 4099 } 4100 mutex_unlock(&ctrl->scan_lock); 4101 } 4102 4103 /* 4104 * This function iterates the namespace list unlocked to allow recovery from 4105 * controller failure. It is up to the caller to ensure the namespace list is 4106 * not modified by scan work while this function is executing. 4107 */ 4108 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4109 { 4110 struct nvme_ns *ns, *next; 4111 LIST_HEAD(ns_list); 4112 4113 /* 4114 * make sure to requeue I/O to all namespaces as these 4115 * might result from the scan itself and must complete 4116 * for the scan_work to make progress 4117 */ 4118 nvme_mpath_clear_ctrl_paths(ctrl); 4119 4120 /* 4121 * Unquiesce io queues so any pending IO won't hang, especially 4122 * those submitted from scan work 4123 */ 4124 nvme_unquiesce_io_queues(ctrl); 4125 4126 /* prevent racing with ns scanning */ 4127 flush_work(&ctrl->scan_work); 4128 4129 /* 4130 * The dead states indicates the controller was not gracefully 4131 * disconnected. In that case, we won't be able to flush any data while 4132 * removing the namespaces' disks; fail all the queues now to avoid 4133 * potentially having to clean up the failed sync later. 4134 */ 4135 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4136 nvme_mark_namespaces_dead(ctrl); 4137 4138 /* this is a no-op when called from the controller reset handler */ 4139 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4140 4141 mutex_lock(&ctrl->namespaces_lock); 4142 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4143 mutex_unlock(&ctrl->namespaces_lock); 4144 synchronize_srcu(&ctrl->srcu); 4145 4146 list_for_each_entry_safe(ns, next, &ns_list, list) 4147 nvme_ns_remove(ns); 4148 } 4149 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4150 4151 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4152 { 4153 const struct nvme_ctrl *ctrl = 4154 container_of(dev, struct nvme_ctrl, ctrl_device); 4155 struct nvmf_ctrl_options *opts = ctrl->opts; 4156 int ret; 4157 4158 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4159 if (ret) 4160 return ret; 4161 4162 if (opts) { 4163 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4164 if (ret) 4165 return ret; 4166 4167 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4168 opts->trsvcid ?: "none"); 4169 if (ret) 4170 return ret; 4171 4172 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4173 opts->host_traddr ?: "none"); 4174 if (ret) 4175 return ret; 4176 4177 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4178 opts->host_iface ?: "none"); 4179 } 4180 return ret; 4181 } 4182 4183 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4184 { 4185 char *envp[2] = { envdata, NULL }; 4186 4187 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4188 } 4189 4190 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4191 { 4192 char *envp[2] = { NULL, NULL }; 4193 u32 aen_result = ctrl->aen_result; 4194 4195 ctrl->aen_result = 0; 4196 if (!aen_result) 4197 return; 4198 4199 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4200 if (!envp[0]) 4201 return; 4202 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4203 kfree(envp[0]); 4204 } 4205 4206 static void nvme_async_event_work(struct work_struct *work) 4207 { 4208 struct nvme_ctrl *ctrl = 4209 container_of(work, struct nvme_ctrl, async_event_work); 4210 4211 nvme_aen_uevent(ctrl); 4212 4213 /* 4214 * The transport drivers must guarantee AER submission here is safe by 4215 * flushing ctrl async_event_work after changing the controller state 4216 * from LIVE and before freeing the admin queue. 4217 */ 4218 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4219 ctrl->ops->submit_async_event(ctrl); 4220 } 4221 4222 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4223 { 4224 4225 u32 csts; 4226 4227 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4228 return false; 4229 4230 if (csts == ~0) 4231 return false; 4232 4233 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4234 } 4235 4236 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4237 { 4238 struct nvme_fw_slot_info_log *log; 4239 u8 next_fw_slot, cur_fw_slot; 4240 4241 log = kmalloc(sizeof(*log), GFP_KERNEL); 4242 if (!log) 4243 return; 4244 4245 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4246 log, sizeof(*log), 0)) { 4247 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4248 goto out_free_log; 4249 } 4250 4251 cur_fw_slot = log->afi & 0x7; 4252 next_fw_slot = (log->afi & 0x70) >> 4; 4253 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4254 dev_info(ctrl->device, 4255 "Firmware is activated after next Controller Level Reset\n"); 4256 goto out_free_log; 4257 } 4258 4259 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4260 sizeof(ctrl->subsys->firmware_rev)); 4261 4262 out_free_log: 4263 kfree(log); 4264 } 4265 4266 static void nvme_fw_act_work(struct work_struct *work) 4267 { 4268 struct nvme_ctrl *ctrl = container_of(work, 4269 struct nvme_ctrl, fw_act_work); 4270 unsigned long fw_act_timeout; 4271 4272 nvme_auth_stop(ctrl); 4273 4274 if (ctrl->mtfa) 4275 fw_act_timeout = jiffies + 4276 msecs_to_jiffies(ctrl->mtfa * 100); 4277 else 4278 fw_act_timeout = jiffies + 4279 msecs_to_jiffies(admin_timeout * 1000); 4280 4281 nvme_quiesce_io_queues(ctrl); 4282 while (nvme_ctrl_pp_status(ctrl)) { 4283 if (time_after(jiffies, fw_act_timeout)) { 4284 dev_warn(ctrl->device, 4285 "Fw activation timeout, reset controller\n"); 4286 nvme_try_sched_reset(ctrl); 4287 return; 4288 } 4289 msleep(100); 4290 } 4291 4292 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4293 return; 4294 4295 nvme_unquiesce_io_queues(ctrl); 4296 /* read FW slot information to clear the AER */ 4297 nvme_get_fw_slot_info(ctrl); 4298 4299 queue_work(nvme_wq, &ctrl->async_event_work); 4300 } 4301 4302 static u32 nvme_aer_type(u32 result) 4303 { 4304 return result & 0x7; 4305 } 4306 4307 static u32 nvme_aer_subtype(u32 result) 4308 { 4309 return (result & 0xff00) >> 8; 4310 } 4311 4312 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4313 { 4314 u32 aer_notice_type = nvme_aer_subtype(result); 4315 bool requeue = true; 4316 4317 switch (aer_notice_type) { 4318 case NVME_AER_NOTICE_NS_CHANGED: 4319 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4320 nvme_queue_scan(ctrl); 4321 break; 4322 case NVME_AER_NOTICE_FW_ACT_STARTING: 4323 /* 4324 * We are (ab)using the RESETTING state to prevent subsequent 4325 * recovery actions from interfering with the controller's 4326 * firmware activation. 4327 */ 4328 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4329 requeue = false; 4330 queue_work(nvme_wq, &ctrl->fw_act_work); 4331 } 4332 break; 4333 #ifdef CONFIG_NVME_MULTIPATH 4334 case NVME_AER_NOTICE_ANA: 4335 if (!ctrl->ana_log_buf) 4336 break; 4337 queue_work(nvme_wq, &ctrl->ana_work); 4338 break; 4339 #endif 4340 case NVME_AER_NOTICE_DISC_CHANGED: 4341 ctrl->aen_result = result; 4342 break; 4343 default: 4344 dev_warn(ctrl->device, "async event result %08x\n", result); 4345 } 4346 return requeue; 4347 } 4348 4349 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4350 { 4351 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4352 nvme_reset_ctrl(ctrl); 4353 } 4354 4355 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4356 volatile union nvme_result *res) 4357 { 4358 u32 result = le32_to_cpu(res->u32); 4359 u32 aer_type = nvme_aer_type(result); 4360 u32 aer_subtype = nvme_aer_subtype(result); 4361 bool requeue = true; 4362 4363 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4364 return; 4365 4366 trace_nvme_async_event(ctrl, result); 4367 switch (aer_type) { 4368 case NVME_AER_NOTICE: 4369 requeue = nvme_handle_aen_notice(ctrl, result); 4370 break; 4371 case NVME_AER_ERROR: 4372 /* 4373 * For a persistent internal error, don't run async_event_work 4374 * to submit a new AER. The controller reset will do it. 4375 */ 4376 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4377 nvme_handle_aer_persistent_error(ctrl); 4378 return; 4379 } 4380 fallthrough; 4381 case NVME_AER_SMART: 4382 case NVME_AER_CSS: 4383 case NVME_AER_VS: 4384 ctrl->aen_result = result; 4385 break; 4386 default: 4387 break; 4388 } 4389 4390 if (requeue) 4391 queue_work(nvme_wq, &ctrl->async_event_work); 4392 } 4393 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4394 4395 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4396 const struct blk_mq_ops *ops, unsigned int cmd_size) 4397 { 4398 struct queue_limits lim = {}; 4399 int ret; 4400 4401 memset(set, 0, sizeof(*set)); 4402 set->ops = ops; 4403 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4404 if (ctrl->ops->flags & NVME_F_FABRICS) 4405 /* Reserved for fabric connect and keep alive */ 4406 set->reserved_tags = 2; 4407 set->numa_node = ctrl->numa_node; 4408 set->flags = BLK_MQ_F_NO_SCHED; 4409 if (ctrl->ops->flags & NVME_F_BLOCKING) 4410 set->flags |= BLK_MQ_F_BLOCKING; 4411 set->cmd_size = cmd_size; 4412 set->driver_data = ctrl; 4413 set->nr_hw_queues = 1; 4414 set->timeout = NVME_ADMIN_TIMEOUT; 4415 ret = blk_mq_alloc_tag_set(set); 4416 if (ret) 4417 return ret; 4418 4419 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4420 if (IS_ERR(ctrl->admin_q)) { 4421 ret = PTR_ERR(ctrl->admin_q); 4422 goto out_free_tagset; 4423 } 4424 4425 if (ctrl->ops->flags & NVME_F_FABRICS) { 4426 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4427 if (IS_ERR(ctrl->fabrics_q)) { 4428 ret = PTR_ERR(ctrl->fabrics_q); 4429 goto out_cleanup_admin_q; 4430 } 4431 } 4432 4433 ctrl->admin_tagset = set; 4434 return 0; 4435 4436 out_cleanup_admin_q: 4437 blk_mq_destroy_queue(ctrl->admin_q); 4438 blk_put_queue(ctrl->admin_q); 4439 out_free_tagset: 4440 blk_mq_free_tag_set(set); 4441 ctrl->admin_q = NULL; 4442 ctrl->fabrics_q = NULL; 4443 return ret; 4444 } 4445 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4446 4447 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4448 { 4449 blk_mq_destroy_queue(ctrl->admin_q); 4450 blk_put_queue(ctrl->admin_q); 4451 if (ctrl->ops->flags & NVME_F_FABRICS) { 4452 blk_mq_destroy_queue(ctrl->fabrics_q); 4453 blk_put_queue(ctrl->fabrics_q); 4454 } 4455 blk_mq_free_tag_set(ctrl->admin_tagset); 4456 } 4457 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4458 4459 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4460 const struct blk_mq_ops *ops, unsigned int nr_maps, 4461 unsigned int cmd_size) 4462 { 4463 int ret; 4464 4465 memset(set, 0, sizeof(*set)); 4466 set->ops = ops; 4467 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4468 /* 4469 * Some Apple controllers requires tags to be unique across admin and 4470 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4471 */ 4472 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4473 set->reserved_tags = NVME_AQ_DEPTH; 4474 else if (ctrl->ops->flags & NVME_F_FABRICS) 4475 /* Reserved for fabric connect */ 4476 set->reserved_tags = 1; 4477 set->numa_node = ctrl->numa_node; 4478 set->flags = BLK_MQ_F_SHOULD_MERGE; 4479 if (ctrl->ops->flags & NVME_F_BLOCKING) 4480 set->flags |= BLK_MQ_F_BLOCKING; 4481 set->cmd_size = cmd_size, 4482 set->driver_data = ctrl; 4483 set->nr_hw_queues = ctrl->queue_count - 1; 4484 set->timeout = NVME_IO_TIMEOUT; 4485 set->nr_maps = nr_maps; 4486 ret = blk_mq_alloc_tag_set(set); 4487 if (ret) 4488 return ret; 4489 4490 if (ctrl->ops->flags & NVME_F_FABRICS) { 4491 ctrl->connect_q = blk_mq_alloc_queue(set, NULL, NULL); 4492 if (IS_ERR(ctrl->connect_q)) { 4493 ret = PTR_ERR(ctrl->connect_q); 4494 goto out_free_tag_set; 4495 } 4496 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, 4497 ctrl->connect_q); 4498 } 4499 4500 ctrl->tagset = set; 4501 return 0; 4502 4503 out_free_tag_set: 4504 blk_mq_free_tag_set(set); 4505 ctrl->connect_q = NULL; 4506 return ret; 4507 } 4508 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4509 4510 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4511 { 4512 if (ctrl->ops->flags & NVME_F_FABRICS) { 4513 blk_mq_destroy_queue(ctrl->connect_q); 4514 blk_put_queue(ctrl->connect_q); 4515 } 4516 blk_mq_free_tag_set(ctrl->tagset); 4517 } 4518 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4519 4520 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4521 { 4522 nvme_mpath_stop(ctrl); 4523 nvme_auth_stop(ctrl); 4524 nvme_stop_keep_alive(ctrl); 4525 nvme_stop_failfast_work(ctrl); 4526 flush_work(&ctrl->async_event_work); 4527 cancel_work_sync(&ctrl->fw_act_work); 4528 if (ctrl->ops->stop_ctrl) 4529 ctrl->ops->stop_ctrl(ctrl); 4530 } 4531 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4532 4533 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4534 { 4535 nvme_enable_aen(ctrl); 4536 4537 /* 4538 * persistent discovery controllers need to send indication to userspace 4539 * to re-read the discovery log page to learn about possible changes 4540 * that were missed. We identify persistent discovery controllers by 4541 * checking that they started once before, hence are reconnecting back. 4542 */ 4543 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4544 nvme_discovery_ctrl(ctrl)) 4545 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4546 4547 if (ctrl->queue_count > 1) { 4548 nvme_queue_scan(ctrl); 4549 nvme_unquiesce_io_queues(ctrl); 4550 nvme_mpath_update(ctrl); 4551 } 4552 4553 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4554 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4555 } 4556 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4557 4558 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4559 { 4560 nvme_hwmon_exit(ctrl); 4561 nvme_fault_inject_fini(&ctrl->fault_inject); 4562 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4563 cdev_device_del(&ctrl->cdev, ctrl->device); 4564 nvme_put_ctrl(ctrl); 4565 } 4566 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4567 4568 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4569 { 4570 struct nvme_effects_log *cel; 4571 unsigned long i; 4572 4573 xa_for_each(&ctrl->cels, i, cel) { 4574 xa_erase(&ctrl->cels, i); 4575 kfree(cel); 4576 } 4577 4578 xa_destroy(&ctrl->cels); 4579 } 4580 4581 static void nvme_free_ctrl(struct device *dev) 4582 { 4583 struct nvme_ctrl *ctrl = 4584 container_of(dev, struct nvme_ctrl, ctrl_device); 4585 struct nvme_subsystem *subsys = ctrl->subsys; 4586 4587 if (!subsys || ctrl->instance != subsys->instance) 4588 ida_free(&nvme_instance_ida, ctrl->instance); 4589 key_put(ctrl->tls_key); 4590 nvme_free_cels(ctrl); 4591 nvme_mpath_uninit(ctrl); 4592 cleanup_srcu_struct(&ctrl->srcu); 4593 nvme_auth_stop(ctrl); 4594 nvme_auth_free(ctrl); 4595 __free_page(ctrl->discard_page); 4596 free_opal_dev(ctrl->opal_dev); 4597 4598 if (subsys) { 4599 mutex_lock(&nvme_subsystems_lock); 4600 list_del(&ctrl->subsys_entry); 4601 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4602 mutex_unlock(&nvme_subsystems_lock); 4603 } 4604 4605 ctrl->ops->free_ctrl(ctrl); 4606 4607 if (subsys) 4608 nvme_put_subsystem(subsys); 4609 } 4610 4611 /* 4612 * Initialize a NVMe controller structures. This needs to be called during 4613 * earliest initialization so that we have the initialized structured around 4614 * during probing. 4615 */ 4616 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4617 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4618 { 4619 int ret; 4620 4621 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4622 ctrl->passthru_err_log_enabled = false; 4623 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4624 spin_lock_init(&ctrl->lock); 4625 mutex_init(&ctrl->namespaces_lock); 4626 4627 ret = init_srcu_struct(&ctrl->srcu); 4628 if (ret) 4629 return ret; 4630 4631 mutex_init(&ctrl->scan_lock); 4632 INIT_LIST_HEAD(&ctrl->namespaces); 4633 xa_init(&ctrl->cels); 4634 ctrl->dev = dev; 4635 ctrl->ops = ops; 4636 ctrl->quirks = quirks; 4637 ctrl->numa_node = NUMA_NO_NODE; 4638 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4639 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4640 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4641 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4642 init_waitqueue_head(&ctrl->state_wq); 4643 4644 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4645 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4646 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4647 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4648 ctrl->ka_last_check_time = jiffies; 4649 4650 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4651 PAGE_SIZE); 4652 ctrl->discard_page = alloc_page(GFP_KERNEL); 4653 if (!ctrl->discard_page) { 4654 ret = -ENOMEM; 4655 goto out; 4656 } 4657 4658 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4659 if (ret < 0) 4660 goto out; 4661 ctrl->instance = ret; 4662 4663 device_initialize(&ctrl->ctrl_device); 4664 ctrl->device = &ctrl->ctrl_device; 4665 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4666 ctrl->instance); 4667 ctrl->device->class = &nvme_class; 4668 ctrl->device->parent = ctrl->dev; 4669 if (ops->dev_attr_groups) 4670 ctrl->device->groups = ops->dev_attr_groups; 4671 else 4672 ctrl->device->groups = nvme_dev_attr_groups; 4673 ctrl->device->release = nvme_free_ctrl; 4674 dev_set_drvdata(ctrl->device, ctrl); 4675 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4676 if (ret) 4677 goto out_release_instance; 4678 4679 nvme_get_ctrl(ctrl); 4680 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4681 ctrl->cdev.owner = ops->module; 4682 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4683 if (ret) 4684 goto out_free_name; 4685 4686 /* 4687 * Initialize latency tolerance controls. The sysfs files won't 4688 * be visible to userspace unless the device actually supports APST. 4689 */ 4690 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4691 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4692 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4693 4694 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4695 nvme_mpath_init_ctrl(ctrl); 4696 ret = nvme_auth_init_ctrl(ctrl); 4697 if (ret) 4698 goto out_free_cdev; 4699 4700 return 0; 4701 out_free_cdev: 4702 nvme_fault_inject_fini(&ctrl->fault_inject); 4703 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4704 cdev_device_del(&ctrl->cdev, ctrl->device); 4705 out_free_name: 4706 nvme_put_ctrl(ctrl); 4707 kfree_const(ctrl->device->kobj.name); 4708 out_release_instance: 4709 ida_free(&nvme_instance_ida, ctrl->instance); 4710 out: 4711 if (ctrl->discard_page) 4712 __free_page(ctrl->discard_page); 4713 cleanup_srcu_struct(&ctrl->srcu); 4714 return ret; 4715 } 4716 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4717 4718 /* let I/O to all namespaces fail in preparation for surprise removal */ 4719 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4720 { 4721 struct nvme_ns *ns; 4722 int srcu_idx; 4723 4724 srcu_idx = srcu_read_lock(&ctrl->srcu); 4725 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4726 blk_mark_disk_dead(ns->disk); 4727 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4728 } 4729 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4730 4731 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4732 { 4733 struct nvme_ns *ns; 4734 int srcu_idx; 4735 4736 srcu_idx = srcu_read_lock(&ctrl->srcu); 4737 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4738 blk_mq_unfreeze_queue(ns->queue); 4739 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4740 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4741 } 4742 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4743 4744 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4745 { 4746 struct nvme_ns *ns; 4747 int srcu_idx; 4748 4749 srcu_idx = srcu_read_lock(&ctrl->srcu); 4750 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 4751 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4752 if (timeout <= 0) 4753 break; 4754 } 4755 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4756 return timeout; 4757 } 4758 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4759 4760 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4761 { 4762 struct nvme_ns *ns; 4763 int srcu_idx; 4764 4765 srcu_idx = srcu_read_lock(&ctrl->srcu); 4766 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4767 blk_mq_freeze_queue_wait(ns->queue); 4768 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4769 } 4770 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4771 4772 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4773 { 4774 struct nvme_ns *ns; 4775 int srcu_idx; 4776 4777 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4778 srcu_idx = srcu_read_lock(&ctrl->srcu); 4779 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4780 blk_freeze_queue_start(ns->queue); 4781 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4782 } 4783 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4784 4785 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4786 { 4787 if (!ctrl->tagset) 4788 return; 4789 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4790 blk_mq_quiesce_tagset(ctrl->tagset); 4791 else 4792 blk_mq_wait_quiesce_done(ctrl->tagset); 4793 } 4794 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4795 4796 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4797 { 4798 if (!ctrl->tagset) 4799 return; 4800 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4801 blk_mq_unquiesce_tagset(ctrl->tagset); 4802 } 4803 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4804 4805 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4806 { 4807 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4808 blk_mq_quiesce_queue(ctrl->admin_q); 4809 else 4810 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4811 } 4812 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4813 4814 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4815 { 4816 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4817 blk_mq_unquiesce_queue(ctrl->admin_q); 4818 } 4819 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4820 4821 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4822 { 4823 struct nvme_ns *ns; 4824 int srcu_idx; 4825 4826 srcu_idx = srcu_read_lock(&ctrl->srcu); 4827 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4828 blk_sync_queue(ns->queue); 4829 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4830 } 4831 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4832 4833 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4834 { 4835 nvme_sync_io_queues(ctrl); 4836 if (ctrl->admin_q) 4837 blk_sync_queue(ctrl->admin_q); 4838 } 4839 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4840 4841 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4842 { 4843 if (file->f_op != &nvme_dev_fops) 4844 return NULL; 4845 return file->private_data; 4846 } 4847 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4848 4849 /* 4850 * Check we didn't inadvertently grow the command structure sizes: 4851 */ 4852 static inline void _nvme_check_size(void) 4853 { 4854 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4855 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4856 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4857 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4858 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4859 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4860 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4861 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4862 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4863 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4864 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4865 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4866 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4867 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4868 NVME_IDENTIFY_DATA_SIZE); 4869 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4870 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4871 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4872 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4873 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4874 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4875 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4876 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4877 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4878 } 4879 4880 4881 static int __init nvme_core_init(void) 4882 { 4883 int result = -ENOMEM; 4884 4885 _nvme_check_size(); 4886 4887 nvme_wq = alloc_workqueue("nvme-wq", 4888 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4889 if (!nvme_wq) 4890 goto out; 4891 4892 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4893 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4894 if (!nvme_reset_wq) 4895 goto destroy_wq; 4896 4897 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4898 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4899 if (!nvme_delete_wq) 4900 goto destroy_reset_wq; 4901 4902 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4903 NVME_MINORS, "nvme"); 4904 if (result < 0) 4905 goto destroy_delete_wq; 4906 4907 result = class_register(&nvme_class); 4908 if (result) 4909 goto unregister_chrdev; 4910 4911 result = class_register(&nvme_subsys_class); 4912 if (result) 4913 goto destroy_class; 4914 4915 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4916 "nvme-generic"); 4917 if (result < 0) 4918 goto destroy_subsys_class; 4919 4920 result = class_register(&nvme_ns_chr_class); 4921 if (result) 4922 goto unregister_generic_ns; 4923 4924 result = nvme_init_auth(); 4925 if (result) 4926 goto destroy_ns_chr; 4927 return 0; 4928 4929 destroy_ns_chr: 4930 class_unregister(&nvme_ns_chr_class); 4931 unregister_generic_ns: 4932 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4933 destroy_subsys_class: 4934 class_unregister(&nvme_subsys_class); 4935 destroy_class: 4936 class_unregister(&nvme_class); 4937 unregister_chrdev: 4938 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4939 destroy_delete_wq: 4940 destroy_workqueue(nvme_delete_wq); 4941 destroy_reset_wq: 4942 destroy_workqueue(nvme_reset_wq); 4943 destroy_wq: 4944 destroy_workqueue(nvme_wq); 4945 out: 4946 return result; 4947 } 4948 4949 static void __exit nvme_core_exit(void) 4950 { 4951 nvme_exit_auth(); 4952 class_unregister(&nvme_ns_chr_class); 4953 class_unregister(&nvme_subsys_class); 4954 class_unregister(&nvme_class); 4955 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4956 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4957 destroy_workqueue(nvme_delete_wq); 4958 destroy_workqueue(nvme_reset_wq); 4959 destroy_workqueue(nvme_wq); 4960 ida_destroy(&nvme_ns_chr_minor_ida); 4961 ida_destroy(&nvme_instance_ida); 4962 } 4963 4964 MODULE_LICENSE("GPL"); 4965 MODULE_VERSION("1.0"); 4966 MODULE_DESCRIPTION("NVMe host core framework"); 4967 module_init(nvme_core_init); 4968 module_exit(nvme_core_exit); 4969