xref: /linux/drivers/nvme/host/core.c (revision 5ddb88f22eb97218d9295e69c39e0ff7cc64e09c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include "nvme.h"
27 #include "fabrics.h"
28 #include <linux/nvme-auth.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #define NVME_MINORS		(1U << MINORBITS)
34 
35 struct nvme_ns_info {
36 	struct nvme_ns_ids ids;
37 	u32 nsid;
38 	__le32 anagrpid;
39 	bool is_shared;
40 	bool is_readonly;
41 	bool is_ready;
42 	bool is_removed;
43 };
44 
45 unsigned int admin_timeout = 60;
46 module_param(admin_timeout, uint, 0644);
47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
48 EXPORT_SYMBOL_GPL(admin_timeout);
49 
50 unsigned int nvme_io_timeout = 30;
51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
53 EXPORT_SYMBOL_GPL(nvme_io_timeout);
54 
55 static unsigned char shutdown_timeout = 5;
56 module_param(shutdown_timeout, byte, 0644);
57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58 
59 static u8 nvme_max_retries = 5;
60 module_param_named(max_retries, nvme_max_retries, byte, 0644);
61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62 
63 static unsigned long default_ps_max_latency_us = 100000;
64 module_param(default_ps_max_latency_us, ulong, 0644);
65 MODULE_PARM_DESC(default_ps_max_latency_us,
66 		 "max power saving latency for new devices; use PM QOS to change per device");
67 
68 static bool force_apst;
69 module_param(force_apst, bool, 0644);
70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71 
72 static unsigned long apst_primary_timeout_ms = 100;
73 module_param(apst_primary_timeout_ms, ulong, 0644);
74 MODULE_PARM_DESC(apst_primary_timeout_ms,
75 	"primary APST timeout in ms");
76 
77 static unsigned long apst_secondary_timeout_ms = 2000;
78 module_param(apst_secondary_timeout_ms, ulong, 0644);
79 MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 	"secondary APST timeout in ms");
81 
82 static unsigned long apst_primary_latency_tol_us = 15000;
83 module_param(apst_primary_latency_tol_us, ulong, 0644);
84 MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 	"primary APST latency tolerance in us");
86 
87 static unsigned long apst_secondary_latency_tol_us = 100000;
88 module_param(apst_secondary_latency_tol_us, ulong, 0644);
89 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 	"secondary APST latency tolerance in us");
91 
92 /*
93  * nvme_wq - hosts nvme related works that are not reset or delete
94  * nvme_reset_wq - hosts nvme reset works
95  * nvme_delete_wq - hosts nvme delete works
96  *
97  * nvme_wq will host works such as scan, aen handling, fw activation,
98  * keep-alive, periodic reconnects etc. nvme_reset_wq
99  * runs reset works which also flush works hosted on nvme_wq for
100  * serialization purposes. nvme_delete_wq host controller deletion
101  * works which flush reset works for serialization.
102  */
103 struct workqueue_struct *nvme_wq;
104 EXPORT_SYMBOL_GPL(nvme_wq);
105 
106 struct workqueue_struct *nvme_reset_wq;
107 EXPORT_SYMBOL_GPL(nvme_reset_wq);
108 
109 struct workqueue_struct *nvme_delete_wq;
110 EXPORT_SYMBOL_GPL(nvme_delete_wq);
111 
112 static LIST_HEAD(nvme_subsystems);
113 static DEFINE_MUTEX(nvme_subsystems_lock);
114 
115 static DEFINE_IDA(nvme_instance_ida);
116 static dev_t nvme_ctrl_base_chr_devt;
117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
118 static const struct class nvme_class = {
119 	.name = "nvme",
120 	.dev_uevent = nvme_class_uevent,
121 };
122 
123 static const struct class nvme_subsys_class = {
124 	.name = "nvme-subsystem",
125 };
126 
127 static DEFINE_IDA(nvme_ns_chr_minor_ida);
128 static dev_t nvme_ns_chr_devt;
129 static const struct class nvme_ns_chr_class = {
130 	.name = "nvme-generic",
131 };
132 
133 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
135 					   unsigned nsid);
136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
137 				   struct nvme_command *cmd);
138 
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141 	/*
142 	 * Only new queue scan work when admin and IO queues are both alive
143 	 */
144 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
145 		queue_work(nvme_wq, &ctrl->scan_work);
146 }
147 
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
157 		return -EBUSY;
158 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 		return -EBUSY;
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163 
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 			struct nvme_ctrl, failfast_work);
168 
169 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
170 		return;
171 
172 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 	dev_info(ctrl->device, "failfast expired\n");
174 	nvme_kick_requeue_lists(ctrl);
175 }
176 
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 		return;
181 
182 	schedule_delayed_work(&ctrl->failfast_work,
183 			      ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185 
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188 	if (!ctrl->opts)
189 		return;
190 
191 	cancel_delayed_work_sync(&ctrl->failfast_work);
192 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194 
195 
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205 
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	int ret;
209 
210 	ret = nvme_reset_ctrl(ctrl);
211 	if (!ret) {
212 		flush_work(&ctrl->reset_work);
213 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
214 			ret = -ENETRESET;
215 	}
216 
217 	return ret;
218 }
219 
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	dev_info(ctrl->device,
223 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
224 
225 	flush_work(&ctrl->reset_work);
226 	nvme_stop_ctrl(ctrl);
227 	nvme_remove_namespaces(ctrl);
228 	ctrl->ops->delete_ctrl(ctrl);
229 	nvme_uninit_ctrl(ctrl);
230 }
231 
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234 	struct nvme_ctrl *ctrl =
235 		container_of(work, struct nvme_ctrl, delete_work);
236 
237 	nvme_do_delete_ctrl(ctrl);
238 }
239 
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 		return -EBUSY;
244 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245 		return -EBUSY;
246 	return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249 
250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252 	/*
253 	 * Keep a reference until nvme_do_delete_ctrl() complete,
254 	 * since ->delete_ctrl can free the controller.
255 	 */
256 	nvme_get_ctrl(ctrl);
257 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		nvme_do_delete_ctrl(ctrl);
259 	nvme_put_ctrl(ctrl);
260 }
261 
262 static blk_status_t nvme_error_status(u16 status)
263 {
264 	switch (status & 0x7ff) {
265 	case NVME_SC_SUCCESS:
266 		return BLK_STS_OK;
267 	case NVME_SC_CAP_EXCEEDED:
268 		return BLK_STS_NOSPC;
269 	case NVME_SC_LBA_RANGE:
270 	case NVME_SC_CMD_INTERRUPTED:
271 	case NVME_SC_NS_NOT_READY:
272 		return BLK_STS_TARGET;
273 	case NVME_SC_BAD_ATTRIBUTES:
274 	case NVME_SC_ONCS_NOT_SUPPORTED:
275 	case NVME_SC_INVALID_OPCODE:
276 	case NVME_SC_INVALID_FIELD:
277 	case NVME_SC_INVALID_NS:
278 		return BLK_STS_NOTSUPP;
279 	case NVME_SC_WRITE_FAULT:
280 	case NVME_SC_READ_ERROR:
281 	case NVME_SC_UNWRITTEN_BLOCK:
282 	case NVME_SC_ACCESS_DENIED:
283 	case NVME_SC_READ_ONLY:
284 	case NVME_SC_COMPARE_FAILED:
285 		return BLK_STS_MEDIUM;
286 	case NVME_SC_GUARD_CHECK:
287 	case NVME_SC_APPTAG_CHECK:
288 	case NVME_SC_REFTAG_CHECK:
289 	case NVME_SC_INVALID_PI:
290 		return BLK_STS_PROTECTION;
291 	case NVME_SC_RESERVATION_CONFLICT:
292 		return BLK_STS_RESV_CONFLICT;
293 	case NVME_SC_HOST_PATH_ERROR:
294 		return BLK_STS_TRANSPORT;
295 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 	case NVME_SC_ZONE_TOO_MANY_OPEN:
298 		return BLK_STS_ZONE_OPEN_RESOURCE;
299 	default:
300 		return BLK_STS_IOERR;
301 	}
302 }
303 
304 static void nvme_retry_req(struct request *req)
305 {
306 	unsigned long delay = 0;
307 	u16 crd;
308 
309 	/* The mask and shift result must be <= 3 */
310 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311 	if (crd)
312 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313 
314 	nvme_req(req)->retries++;
315 	blk_mq_requeue_request(req, false);
316 	blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318 
319 static void nvme_log_error(struct request *req)
320 {
321 	struct nvme_ns *ns = req->q->queuedata;
322 	struct nvme_request *nr = nvme_req(req);
323 
324 	if (ns) {
325 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
326 		       ns->disk ? ns->disk->disk_name : "?",
327 		       nvme_get_opcode_str(nr->cmd->common.opcode),
328 		       nr->cmd->common.opcode,
329 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
330 		       blk_rq_bytes(req) >> ns->head->lba_shift,
331 		       nvme_get_error_status_str(nr->status),
332 		       nr->status >> 8 & 7,	/* Status Code Type */
333 		       nr->status & 0xff,	/* Status Code */
334 		       nr->status & NVME_SC_MORE ? "MORE " : "",
335 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
336 		return;
337 	}
338 
339 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
340 			   dev_name(nr->ctrl->device),
341 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
342 			   nr->cmd->common.opcode,
343 			   nvme_get_error_status_str(nr->status),
344 			   nr->status >> 8 & 7,	/* Status Code Type */
345 			   nr->status & 0xff,	/* Status Code */
346 			   nr->status & NVME_SC_MORE ? "MORE " : "",
347 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
348 }
349 
350 static void nvme_log_err_passthru(struct request *req)
351 {
352 	struct nvme_ns *ns = req->q->queuedata;
353 	struct nvme_request *nr = nvme_req(req);
354 
355 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
356 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
357 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
358 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
359 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 		nr->cmd->common.opcode,
361 		nvme_get_error_status_str(nr->status),
362 		nr->status >> 8 & 7,	/* Status Code Type */
363 		nr->status & 0xff,	/* Status Code */
364 		nr->status & NVME_SC_MORE ? "MORE " : "",
365 		nr->status & NVME_SC_DNR  ? "DNR "  : "",
366 		nr->cmd->common.cdw10,
367 		nr->cmd->common.cdw11,
368 		nr->cmd->common.cdw12,
369 		nr->cmd->common.cdw13,
370 		nr->cmd->common.cdw14,
371 		nr->cmd->common.cdw14);
372 }
373 
374 enum nvme_disposition {
375 	COMPLETE,
376 	RETRY,
377 	FAILOVER,
378 	AUTHENTICATE,
379 };
380 
381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
382 {
383 	if (likely(nvme_req(req)->status == 0))
384 		return COMPLETE;
385 
386 	if (blk_noretry_request(req) ||
387 	    (nvme_req(req)->status & NVME_SC_DNR) ||
388 	    nvme_req(req)->retries >= nvme_max_retries)
389 		return COMPLETE;
390 
391 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
392 		return AUTHENTICATE;
393 
394 	if (req->cmd_flags & REQ_NVME_MPATH) {
395 		if (nvme_is_path_error(nvme_req(req)->status) ||
396 		    blk_queue_dying(req->q))
397 			return FAILOVER;
398 	} else {
399 		if (blk_queue_dying(req->q))
400 			return COMPLETE;
401 	}
402 
403 	return RETRY;
404 }
405 
406 static inline void nvme_end_req_zoned(struct request *req)
407 {
408 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
409 	    req_op(req) == REQ_OP_ZONE_APPEND) {
410 		struct nvme_ns *ns = req->q->queuedata;
411 
412 		req->__sector = nvme_lba_to_sect(ns->head,
413 			le64_to_cpu(nvme_req(req)->result.u64));
414 	}
415 }
416 
417 static inline void __nvme_end_req(struct request *req)
418 {
419 	nvme_end_req_zoned(req);
420 	nvme_trace_bio_complete(req);
421 	if (req->cmd_flags & REQ_NVME_MPATH)
422 		nvme_mpath_end_request(req);
423 }
424 
425 void nvme_end_req(struct request *req)
426 {
427 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
428 
429 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
430 		if (blk_rq_is_passthrough(req))
431 			nvme_log_err_passthru(req);
432 		else
433 			nvme_log_error(req);
434 	}
435 	__nvme_end_req(req);
436 	blk_mq_end_request(req, status);
437 }
438 
439 void nvme_complete_rq(struct request *req)
440 {
441 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
442 
443 	trace_nvme_complete_rq(req);
444 	nvme_cleanup_cmd(req);
445 
446 	/*
447 	 * Completions of long-running commands should not be able to
448 	 * defer sending of periodic keep alives, since the controller
449 	 * may have completed processing such commands a long time ago
450 	 * (arbitrarily close to command submission time).
451 	 * req->deadline - req->timeout is the command submission time
452 	 * in jiffies.
453 	 */
454 	if (ctrl->kas &&
455 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
456 		ctrl->comp_seen = true;
457 
458 	switch (nvme_decide_disposition(req)) {
459 	case COMPLETE:
460 		nvme_end_req(req);
461 		return;
462 	case RETRY:
463 		nvme_retry_req(req);
464 		return;
465 	case FAILOVER:
466 		nvme_failover_req(req);
467 		return;
468 	case AUTHENTICATE:
469 #ifdef CONFIG_NVME_HOST_AUTH
470 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
471 		nvme_retry_req(req);
472 #else
473 		nvme_end_req(req);
474 #endif
475 		return;
476 	}
477 }
478 EXPORT_SYMBOL_GPL(nvme_complete_rq);
479 
480 void nvme_complete_batch_req(struct request *req)
481 {
482 	trace_nvme_complete_rq(req);
483 	nvme_cleanup_cmd(req);
484 	__nvme_end_req(req);
485 }
486 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
487 
488 /*
489  * Called to unwind from ->queue_rq on a failed command submission so that the
490  * multipathing code gets called to potentially failover to another path.
491  * The caller needs to unwind all transport specific resource allocations and
492  * must return propagate the return value.
493  */
494 blk_status_t nvme_host_path_error(struct request *req)
495 {
496 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
497 	blk_mq_set_request_complete(req);
498 	nvme_complete_rq(req);
499 	return BLK_STS_OK;
500 }
501 EXPORT_SYMBOL_GPL(nvme_host_path_error);
502 
503 bool nvme_cancel_request(struct request *req, void *data)
504 {
505 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
506 				"Cancelling I/O %d", req->tag);
507 
508 	/* don't abort one completed or idle request */
509 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
510 		return true;
511 
512 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
513 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
514 	blk_mq_complete_request(req);
515 	return true;
516 }
517 EXPORT_SYMBOL_GPL(nvme_cancel_request);
518 
519 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
520 {
521 	if (ctrl->tagset) {
522 		blk_mq_tagset_busy_iter(ctrl->tagset,
523 				nvme_cancel_request, ctrl);
524 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
525 	}
526 }
527 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
528 
529 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
530 {
531 	if (ctrl->admin_tagset) {
532 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
533 				nvme_cancel_request, ctrl);
534 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
535 	}
536 }
537 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
538 
539 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
540 		enum nvme_ctrl_state new_state)
541 {
542 	enum nvme_ctrl_state old_state;
543 	unsigned long flags;
544 	bool changed = false;
545 
546 	spin_lock_irqsave(&ctrl->lock, flags);
547 
548 	old_state = nvme_ctrl_state(ctrl);
549 	switch (new_state) {
550 	case NVME_CTRL_LIVE:
551 		switch (old_state) {
552 		case NVME_CTRL_NEW:
553 		case NVME_CTRL_RESETTING:
554 		case NVME_CTRL_CONNECTING:
555 			changed = true;
556 			fallthrough;
557 		default:
558 			break;
559 		}
560 		break;
561 	case NVME_CTRL_RESETTING:
562 		switch (old_state) {
563 		case NVME_CTRL_NEW:
564 		case NVME_CTRL_LIVE:
565 			changed = true;
566 			fallthrough;
567 		default:
568 			break;
569 		}
570 		break;
571 	case NVME_CTRL_CONNECTING:
572 		switch (old_state) {
573 		case NVME_CTRL_NEW:
574 		case NVME_CTRL_RESETTING:
575 			changed = true;
576 			fallthrough;
577 		default:
578 			break;
579 		}
580 		break;
581 	case NVME_CTRL_DELETING:
582 		switch (old_state) {
583 		case NVME_CTRL_LIVE:
584 		case NVME_CTRL_RESETTING:
585 		case NVME_CTRL_CONNECTING:
586 			changed = true;
587 			fallthrough;
588 		default:
589 			break;
590 		}
591 		break;
592 	case NVME_CTRL_DELETING_NOIO:
593 		switch (old_state) {
594 		case NVME_CTRL_DELETING:
595 		case NVME_CTRL_DEAD:
596 			changed = true;
597 			fallthrough;
598 		default:
599 			break;
600 		}
601 		break;
602 	case NVME_CTRL_DEAD:
603 		switch (old_state) {
604 		case NVME_CTRL_DELETING:
605 			changed = true;
606 			fallthrough;
607 		default:
608 			break;
609 		}
610 		break;
611 	default:
612 		break;
613 	}
614 
615 	if (changed) {
616 		WRITE_ONCE(ctrl->state, new_state);
617 		wake_up_all(&ctrl->state_wq);
618 	}
619 
620 	spin_unlock_irqrestore(&ctrl->lock, flags);
621 	if (!changed)
622 		return false;
623 
624 	if (new_state == NVME_CTRL_LIVE) {
625 		if (old_state == NVME_CTRL_CONNECTING)
626 			nvme_stop_failfast_work(ctrl);
627 		nvme_kick_requeue_lists(ctrl);
628 	} else if (new_state == NVME_CTRL_CONNECTING &&
629 		old_state == NVME_CTRL_RESETTING) {
630 		nvme_start_failfast_work(ctrl);
631 	}
632 	return changed;
633 }
634 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
635 
636 /*
637  * Waits for the controller state to be resetting, or returns false if it is
638  * not possible to ever transition to that state.
639  */
640 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
641 {
642 	wait_event(ctrl->state_wq,
643 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
644 		   nvme_state_terminal(ctrl));
645 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
646 }
647 EXPORT_SYMBOL_GPL(nvme_wait_reset);
648 
649 static void nvme_free_ns_head(struct kref *ref)
650 {
651 	struct nvme_ns_head *head =
652 		container_of(ref, struct nvme_ns_head, ref);
653 
654 	nvme_mpath_remove_disk(head);
655 	ida_free(&head->subsys->ns_ida, head->instance);
656 	cleanup_srcu_struct(&head->srcu);
657 	nvme_put_subsystem(head->subsys);
658 	kfree(head);
659 }
660 
661 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
662 {
663 	return kref_get_unless_zero(&head->ref);
664 }
665 
666 void nvme_put_ns_head(struct nvme_ns_head *head)
667 {
668 	kref_put(&head->ref, nvme_free_ns_head);
669 }
670 
671 static void nvme_free_ns(struct kref *kref)
672 {
673 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
674 
675 	put_disk(ns->disk);
676 	nvme_put_ns_head(ns->head);
677 	nvme_put_ctrl(ns->ctrl);
678 	kfree(ns);
679 }
680 
681 bool nvme_get_ns(struct nvme_ns *ns)
682 {
683 	return kref_get_unless_zero(&ns->kref);
684 }
685 
686 void nvme_put_ns(struct nvme_ns *ns)
687 {
688 	kref_put(&ns->kref, nvme_free_ns);
689 }
690 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
691 
692 static inline void nvme_clear_nvme_request(struct request *req)
693 {
694 	nvme_req(req)->status = 0;
695 	nvme_req(req)->retries = 0;
696 	nvme_req(req)->flags = 0;
697 	req->rq_flags |= RQF_DONTPREP;
698 }
699 
700 /* initialize a passthrough request */
701 void nvme_init_request(struct request *req, struct nvme_command *cmd)
702 {
703 	struct nvme_request *nr = nvme_req(req);
704 	bool logging_enabled;
705 
706 	if (req->q->queuedata) {
707 		struct nvme_ns *ns = req->q->disk->private_data;
708 
709 		logging_enabled = ns->head->passthru_err_log_enabled;
710 		req->timeout = NVME_IO_TIMEOUT;
711 	} else { /* no queuedata implies admin queue */
712 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
713 		req->timeout = NVME_ADMIN_TIMEOUT;
714 	}
715 
716 	if (!logging_enabled)
717 		req->rq_flags |= RQF_QUIET;
718 
719 	/* passthru commands should let the driver set the SGL flags */
720 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
721 
722 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
723 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
724 		req->cmd_flags |= REQ_POLLED;
725 	nvme_clear_nvme_request(req);
726 	memcpy(nr->cmd, cmd, sizeof(*cmd));
727 }
728 EXPORT_SYMBOL_GPL(nvme_init_request);
729 
730 /*
731  * For something we're not in a state to send to the device the default action
732  * is to busy it and retry it after the controller state is recovered.  However,
733  * if the controller is deleting or if anything is marked for failfast or
734  * nvme multipath it is immediately failed.
735  *
736  * Note: commands used to initialize the controller will be marked for failfast.
737  * Note: nvme cli/ioctl commands are marked for failfast.
738  */
739 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
740 		struct request *rq)
741 {
742 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
743 
744 	if (state != NVME_CTRL_DELETING_NOIO &&
745 	    state != NVME_CTRL_DELETING &&
746 	    state != NVME_CTRL_DEAD &&
747 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
748 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
749 		return BLK_STS_RESOURCE;
750 	return nvme_host_path_error(rq);
751 }
752 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
753 
754 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
755 		bool queue_live, enum nvme_ctrl_state state)
756 {
757 	struct nvme_request *req = nvme_req(rq);
758 
759 	/*
760 	 * currently we have a problem sending passthru commands
761 	 * on the admin_q if the controller is not LIVE because we can't
762 	 * make sure that they are going out after the admin connect,
763 	 * controller enable and/or other commands in the initialization
764 	 * sequence. until the controller will be LIVE, fail with
765 	 * BLK_STS_RESOURCE so that they will be rescheduled.
766 	 */
767 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
768 		return false;
769 
770 	if (ctrl->ops->flags & NVME_F_FABRICS) {
771 		/*
772 		 * Only allow commands on a live queue, except for the connect
773 		 * command, which is require to set the queue live in the
774 		 * appropinquate states.
775 		 */
776 		switch (state) {
777 		case NVME_CTRL_CONNECTING:
778 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
779 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
780 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
781 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
782 				return true;
783 			break;
784 		default:
785 			break;
786 		case NVME_CTRL_DEAD:
787 			return false;
788 		}
789 	}
790 
791 	return queue_live;
792 }
793 EXPORT_SYMBOL_GPL(__nvme_check_ready);
794 
795 static inline void nvme_setup_flush(struct nvme_ns *ns,
796 		struct nvme_command *cmnd)
797 {
798 	memset(cmnd, 0, sizeof(*cmnd));
799 	cmnd->common.opcode = nvme_cmd_flush;
800 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
801 }
802 
803 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
804 		struct nvme_command *cmnd)
805 {
806 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
807 	struct nvme_dsm_range *range;
808 	struct bio *bio;
809 
810 	/*
811 	 * Some devices do not consider the DSM 'Number of Ranges' field when
812 	 * determining how much data to DMA. Always allocate memory for maximum
813 	 * number of segments to prevent device reading beyond end of buffer.
814 	 */
815 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
816 
817 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
818 	if (!range) {
819 		/*
820 		 * If we fail allocation our range, fallback to the controller
821 		 * discard page. If that's also busy, it's safe to return
822 		 * busy, as we know we can make progress once that's freed.
823 		 */
824 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
825 			return BLK_STS_RESOURCE;
826 
827 		range = page_address(ns->ctrl->discard_page);
828 	}
829 
830 	if (queue_max_discard_segments(req->q) == 1) {
831 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
832 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
833 
834 		range[0].cattr = cpu_to_le32(0);
835 		range[0].nlb = cpu_to_le32(nlb);
836 		range[0].slba = cpu_to_le64(slba);
837 		n = 1;
838 	} else {
839 		__rq_for_each_bio(bio, req) {
840 			u64 slba = nvme_sect_to_lba(ns->head,
841 						    bio->bi_iter.bi_sector);
842 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
843 
844 			if (n < segments) {
845 				range[n].cattr = cpu_to_le32(0);
846 				range[n].nlb = cpu_to_le32(nlb);
847 				range[n].slba = cpu_to_le64(slba);
848 			}
849 			n++;
850 		}
851 	}
852 
853 	if (WARN_ON_ONCE(n != segments)) {
854 		if (virt_to_page(range) == ns->ctrl->discard_page)
855 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
856 		else
857 			kfree(range);
858 		return BLK_STS_IOERR;
859 	}
860 
861 	memset(cmnd, 0, sizeof(*cmnd));
862 	cmnd->dsm.opcode = nvme_cmd_dsm;
863 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
864 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
865 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
866 
867 	bvec_set_virt(&req->special_vec, range, alloc_size);
868 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
869 
870 	return BLK_STS_OK;
871 }
872 
873 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
874 			      struct request *req)
875 {
876 	u32 upper, lower;
877 	u64 ref48;
878 
879 	/* both rw and write zeroes share the same reftag format */
880 	switch (ns->head->guard_type) {
881 	case NVME_NVM_NS_16B_GUARD:
882 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
883 		break;
884 	case NVME_NVM_NS_64B_GUARD:
885 		ref48 = ext_pi_ref_tag(req);
886 		lower = lower_32_bits(ref48);
887 		upper = upper_32_bits(ref48);
888 
889 		cmnd->rw.reftag = cpu_to_le32(lower);
890 		cmnd->rw.cdw3 = cpu_to_le32(upper);
891 		break;
892 	default:
893 		break;
894 	}
895 }
896 
897 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
898 		struct request *req, struct nvme_command *cmnd)
899 {
900 	memset(cmnd, 0, sizeof(*cmnd));
901 
902 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
903 		return nvme_setup_discard(ns, req, cmnd);
904 
905 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
906 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
907 	cmnd->write_zeroes.slba =
908 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
909 	cmnd->write_zeroes.length =
910 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
911 
912 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
913 	    (ns->head->features & NVME_NS_DEAC))
914 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
915 
916 	if (nvme_ns_has_pi(ns->head)) {
917 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
918 
919 		switch (ns->head->pi_type) {
920 		case NVME_NS_DPS_PI_TYPE1:
921 		case NVME_NS_DPS_PI_TYPE2:
922 			nvme_set_ref_tag(ns, cmnd, req);
923 			break;
924 		}
925 	}
926 
927 	return BLK_STS_OK;
928 }
929 
930 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
931 		struct request *req, struct nvme_command *cmnd,
932 		enum nvme_opcode op)
933 {
934 	u16 control = 0;
935 	u32 dsmgmt = 0;
936 
937 	if (req->cmd_flags & REQ_FUA)
938 		control |= NVME_RW_FUA;
939 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
940 		control |= NVME_RW_LR;
941 
942 	if (req->cmd_flags & REQ_RAHEAD)
943 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
944 
945 	cmnd->rw.opcode = op;
946 	cmnd->rw.flags = 0;
947 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
948 	cmnd->rw.cdw2 = 0;
949 	cmnd->rw.cdw3 = 0;
950 	cmnd->rw.metadata = 0;
951 	cmnd->rw.slba =
952 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
953 	cmnd->rw.length =
954 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
955 	cmnd->rw.reftag = 0;
956 	cmnd->rw.apptag = 0;
957 	cmnd->rw.appmask = 0;
958 
959 	if (ns->head->ms) {
960 		/*
961 		 * If formated with metadata, the block layer always provides a
962 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
963 		 * we enable the PRACT bit for protection information or set the
964 		 * namespace capacity to zero to prevent any I/O.
965 		 */
966 		if (!blk_integrity_rq(req)) {
967 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
968 				return BLK_STS_NOTSUPP;
969 			control |= NVME_RW_PRINFO_PRACT;
970 		}
971 
972 		switch (ns->head->pi_type) {
973 		case NVME_NS_DPS_PI_TYPE3:
974 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
975 			break;
976 		case NVME_NS_DPS_PI_TYPE1:
977 		case NVME_NS_DPS_PI_TYPE2:
978 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
979 					NVME_RW_PRINFO_PRCHK_REF;
980 			if (op == nvme_cmd_zone_append)
981 				control |= NVME_RW_APPEND_PIREMAP;
982 			nvme_set_ref_tag(ns, cmnd, req);
983 			break;
984 		}
985 	}
986 
987 	cmnd->rw.control = cpu_to_le16(control);
988 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
989 	return 0;
990 }
991 
992 void nvme_cleanup_cmd(struct request *req)
993 {
994 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
995 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
996 
997 		if (req->special_vec.bv_page == ctrl->discard_page)
998 			clear_bit_unlock(0, &ctrl->discard_page_busy);
999 		else
1000 			kfree(bvec_virt(&req->special_vec));
1001 	}
1002 }
1003 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1004 
1005 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1006 {
1007 	struct nvme_command *cmd = nvme_req(req)->cmd;
1008 	blk_status_t ret = BLK_STS_OK;
1009 
1010 	if (!(req->rq_flags & RQF_DONTPREP))
1011 		nvme_clear_nvme_request(req);
1012 
1013 	switch (req_op(req)) {
1014 	case REQ_OP_DRV_IN:
1015 	case REQ_OP_DRV_OUT:
1016 		/* these are setup prior to execution in nvme_init_request() */
1017 		break;
1018 	case REQ_OP_FLUSH:
1019 		nvme_setup_flush(ns, cmd);
1020 		break;
1021 	case REQ_OP_ZONE_RESET_ALL:
1022 	case REQ_OP_ZONE_RESET:
1023 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1024 		break;
1025 	case REQ_OP_ZONE_OPEN:
1026 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1027 		break;
1028 	case REQ_OP_ZONE_CLOSE:
1029 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1030 		break;
1031 	case REQ_OP_ZONE_FINISH:
1032 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1033 		break;
1034 	case REQ_OP_WRITE_ZEROES:
1035 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1036 		break;
1037 	case REQ_OP_DISCARD:
1038 		ret = nvme_setup_discard(ns, req, cmd);
1039 		break;
1040 	case REQ_OP_READ:
1041 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1042 		break;
1043 	case REQ_OP_WRITE:
1044 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1045 		break;
1046 	case REQ_OP_ZONE_APPEND:
1047 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1048 		break;
1049 	default:
1050 		WARN_ON_ONCE(1);
1051 		return BLK_STS_IOERR;
1052 	}
1053 
1054 	cmd->common.command_id = nvme_cid(req);
1055 	trace_nvme_setup_cmd(req, cmd);
1056 	return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1059 
1060 /*
1061  * Return values:
1062  * 0:  success
1063  * >0: nvme controller's cqe status response
1064  * <0: kernel error in lieu of controller response
1065  */
1066 int nvme_execute_rq(struct request *rq, bool at_head)
1067 {
1068 	blk_status_t status;
1069 
1070 	status = blk_execute_rq(rq, at_head);
1071 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1072 		return -EINTR;
1073 	if (nvme_req(rq)->status)
1074 		return nvme_req(rq)->status;
1075 	return blk_status_to_errno(status);
1076 }
1077 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1078 
1079 /*
1080  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1081  * if the result is positive, it's an NVM Express status code
1082  */
1083 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1084 		union nvme_result *result, void *buffer, unsigned bufflen,
1085 		int qid, nvme_submit_flags_t flags)
1086 {
1087 	struct request *req;
1088 	int ret;
1089 	blk_mq_req_flags_t blk_flags = 0;
1090 
1091 	if (flags & NVME_SUBMIT_NOWAIT)
1092 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1093 	if (flags & NVME_SUBMIT_RESERVED)
1094 		blk_flags |= BLK_MQ_REQ_RESERVED;
1095 	if (qid == NVME_QID_ANY)
1096 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1097 	else
1098 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1099 						qid - 1);
1100 
1101 	if (IS_ERR(req))
1102 		return PTR_ERR(req);
1103 	nvme_init_request(req, cmd);
1104 	if (flags & NVME_SUBMIT_RETRY)
1105 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1106 
1107 	if (buffer && bufflen) {
1108 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1109 		if (ret)
1110 			goto out;
1111 	}
1112 
1113 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1114 	if (result && ret >= 0)
1115 		*result = nvme_req(req)->result;
1116  out:
1117 	blk_mq_free_request(req);
1118 	return ret;
1119 }
1120 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1121 
1122 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1123 		void *buffer, unsigned bufflen)
1124 {
1125 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1126 			NVME_QID_ANY, 0);
1127 }
1128 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1129 
1130 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1131 {
1132 	u32 effects = 0;
1133 
1134 	if (ns) {
1135 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1136 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1137 			dev_warn_once(ctrl->device,
1138 				"IO command:%02x has unusual effects:%08x\n",
1139 				opcode, effects);
1140 
1141 		/*
1142 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1143 		 * which would deadlock when done on an I/O command.  Note that
1144 		 * We already warn about an unusual effect above.
1145 		 */
1146 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1147 	} else {
1148 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1149 
1150 		/* Ignore execution restrictions if any relaxation bits are set */
1151 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1152 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1153 	}
1154 
1155 	return effects;
1156 }
1157 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1158 
1159 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1160 {
1161 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1162 
1163 	/*
1164 	 * For simplicity, IO to all namespaces is quiesced even if the command
1165 	 * effects say only one namespace is affected.
1166 	 */
1167 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1168 		mutex_lock(&ctrl->scan_lock);
1169 		mutex_lock(&ctrl->subsys->lock);
1170 		nvme_mpath_start_freeze(ctrl->subsys);
1171 		nvme_mpath_wait_freeze(ctrl->subsys);
1172 		nvme_start_freeze(ctrl);
1173 		nvme_wait_freeze(ctrl);
1174 	}
1175 	return effects;
1176 }
1177 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1178 
1179 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1180 		       struct nvme_command *cmd, int status)
1181 {
1182 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1183 		nvme_unfreeze(ctrl);
1184 		nvme_mpath_unfreeze(ctrl->subsys);
1185 		mutex_unlock(&ctrl->subsys->lock);
1186 		mutex_unlock(&ctrl->scan_lock);
1187 	}
1188 	if (effects & NVME_CMD_EFFECTS_CCC) {
1189 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1190 				      &ctrl->flags)) {
1191 			dev_info(ctrl->device,
1192 "controller capabilities changed, reset may be required to take effect.\n");
1193 		}
1194 	}
1195 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1196 		nvme_queue_scan(ctrl);
1197 		flush_work(&ctrl->scan_work);
1198 	}
1199 	if (ns)
1200 		return;
1201 
1202 	switch (cmd->common.opcode) {
1203 	case nvme_admin_set_features:
1204 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1205 		case NVME_FEAT_KATO:
1206 			/*
1207 			 * Keep alive commands interval on the host should be
1208 			 * updated when KATO is modified by Set Features
1209 			 * commands.
1210 			 */
1211 			if (!status)
1212 				nvme_update_keep_alive(ctrl, cmd);
1213 			break;
1214 		default:
1215 			break;
1216 		}
1217 		break;
1218 	default:
1219 		break;
1220 	}
1221 }
1222 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1223 
1224 /*
1225  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1226  *
1227  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1228  *   accounting for transport roundtrip times [..].
1229  */
1230 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1231 {
1232 	unsigned long delay = ctrl->kato * HZ / 2;
1233 
1234 	/*
1235 	 * When using Traffic Based Keep Alive, we need to run
1236 	 * nvme_keep_alive_work at twice the normal frequency, as one
1237 	 * command completion can postpone sending a keep alive command
1238 	 * by up to twice the delay between runs.
1239 	 */
1240 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1241 		delay /= 2;
1242 	return delay;
1243 }
1244 
1245 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1246 {
1247 	unsigned long now = jiffies;
1248 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1249 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1250 
1251 	if (time_after(now, ka_next_check_tm))
1252 		delay = 0;
1253 	else
1254 		delay = ka_next_check_tm - now;
1255 
1256 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1257 }
1258 
1259 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1260 						 blk_status_t status)
1261 {
1262 	struct nvme_ctrl *ctrl = rq->end_io_data;
1263 	unsigned long flags;
1264 	bool startka = false;
1265 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1266 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1267 
1268 	/*
1269 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1270 	 * at the desired frequency.
1271 	 */
1272 	if (rtt <= delay) {
1273 		delay -= rtt;
1274 	} else {
1275 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1276 			 jiffies_to_msecs(rtt));
1277 		delay = 0;
1278 	}
1279 
1280 	blk_mq_free_request(rq);
1281 
1282 	if (status) {
1283 		dev_err(ctrl->device,
1284 			"failed nvme_keep_alive_end_io error=%d\n",
1285 				status);
1286 		return RQ_END_IO_NONE;
1287 	}
1288 
1289 	ctrl->ka_last_check_time = jiffies;
1290 	ctrl->comp_seen = false;
1291 	spin_lock_irqsave(&ctrl->lock, flags);
1292 	if (ctrl->state == NVME_CTRL_LIVE ||
1293 	    ctrl->state == NVME_CTRL_CONNECTING)
1294 		startka = true;
1295 	spin_unlock_irqrestore(&ctrl->lock, flags);
1296 	if (startka)
1297 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1298 	return RQ_END_IO_NONE;
1299 }
1300 
1301 static void nvme_keep_alive_work(struct work_struct *work)
1302 {
1303 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1304 			struct nvme_ctrl, ka_work);
1305 	bool comp_seen = ctrl->comp_seen;
1306 	struct request *rq;
1307 
1308 	ctrl->ka_last_check_time = jiffies;
1309 
1310 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1311 		dev_dbg(ctrl->device,
1312 			"reschedule traffic based keep-alive timer\n");
1313 		ctrl->comp_seen = false;
1314 		nvme_queue_keep_alive_work(ctrl);
1315 		return;
1316 	}
1317 
1318 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1319 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1320 	if (IS_ERR(rq)) {
1321 		/* allocation failure, reset the controller */
1322 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1323 		nvme_reset_ctrl(ctrl);
1324 		return;
1325 	}
1326 	nvme_init_request(rq, &ctrl->ka_cmd);
1327 
1328 	rq->timeout = ctrl->kato * HZ;
1329 	rq->end_io = nvme_keep_alive_end_io;
1330 	rq->end_io_data = ctrl;
1331 	blk_execute_rq_nowait(rq, false);
1332 }
1333 
1334 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1335 {
1336 	if (unlikely(ctrl->kato == 0))
1337 		return;
1338 
1339 	nvme_queue_keep_alive_work(ctrl);
1340 }
1341 
1342 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1343 {
1344 	if (unlikely(ctrl->kato == 0))
1345 		return;
1346 
1347 	cancel_delayed_work_sync(&ctrl->ka_work);
1348 }
1349 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1350 
1351 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1352 				   struct nvme_command *cmd)
1353 {
1354 	unsigned int new_kato =
1355 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1356 
1357 	dev_info(ctrl->device,
1358 		 "keep alive interval updated from %u ms to %u ms\n",
1359 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1360 
1361 	nvme_stop_keep_alive(ctrl);
1362 	ctrl->kato = new_kato;
1363 	nvme_start_keep_alive(ctrl);
1364 }
1365 
1366 /*
1367  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1368  * flag, thus sending any new CNS opcodes has a big chance of not working.
1369  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1370  * (but not for any later version).
1371  */
1372 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1373 {
1374 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1375 		return ctrl->vs < NVME_VS(1, 2, 0);
1376 	return ctrl->vs < NVME_VS(1, 1, 0);
1377 }
1378 
1379 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1380 {
1381 	struct nvme_command c = { };
1382 	int error;
1383 
1384 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1385 	c.identify.opcode = nvme_admin_identify;
1386 	c.identify.cns = NVME_ID_CNS_CTRL;
1387 
1388 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1389 	if (!*id)
1390 		return -ENOMEM;
1391 
1392 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1393 			sizeof(struct nvme_id_ctrl));
1394 	if (error) {
1395 		kfree(*id);
1396 		*id = NULL;
1397 	}
1398 	return error;
1399 }
1400 
1401 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1402 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1403 {
1404 	const char *warn_str = "ctrl returned bogus length:";
1405 	void *data = cur;
1406 
1407 	switch (cur->nidt) {
1408 	case NVME_NIDT_EUI64:
1409 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1410 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1411 				 warn_str, cur->nidl);
1412 			return -1;
1413 		}
1414 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1415 			return NVME_NIDT_EUI64_LEN;
1416 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1417 		return NVME_NIDT_EUI64_LEN;
1418 	case NVME_NIDT_NGUID:
1419 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1420 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1421 				 warn_str, cur->nidl);
1422 			return -1;
1423 		}
1424 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1425 			return NVME_NIDT_NGUID_LEN;
1426 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1427 		return NVME_NIDT_NGUID_LEN;
1428 	case NVME_NIDT_UUID:
1429 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1430 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1431 				 warn_str, cur->nidl);
1432 			return -1;
1433 		}
1434 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1435 			return NVME_NIDT_UUID_LEN;
1436 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1437 		return NVME_NIDT_UUID_LEN;
1438 	case NVME_NIDT_CSI:
1439 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1440 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1441 				 warn_str, cur->nidl);
1442 			return -1;
1443 		}
1444 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1445 		*csi_seen = true;
1446 		return NVME_NIDT_CSI_LEN;
1447 	default:
1448 		/* Skip unknown types */
1449 		return cur->nidl;
1450 	}
1451 }
1452 
1453 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1454 		struct nvme_ns_info *info)
1455 {
1456 	struct nvme_command c = { };
1457 	bool csi_seen = false;
1458 	int status, pos, len;
1459 	void *data;
1460 
1461 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1462 		return 0;
1463 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1464 		return 0;
1465 
1466 	c.identify.opcode = nvme_admin_identify;
1467 	c.identify.nsid = cpu_to_le32(info->nsid);
1468 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1469 
1470 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1471 	if (!data)
1472 		return -ENOMEM;
1473 
1474 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1475 				      NVME_IDENTIFY_DATA_SIZE);
1476 	if (status) {
1477 		dev_warn(ctrl->device,
1478 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1479 			info->nsid, status);
1480 		goto free_data;
1481 	}
1482 
1483 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1484 		struct nvme_ns_id_desc *cur = data + pos;
1485 
1486 		if (cur->nidl == 0)
1487 			break;
1488 
1489 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1490 		if (len < 0)
1491 			break;
1492 
1493 		len += sizeof(*cur);
1494 	}
1495 
1496 	if (nvme_multi_css(ctrl) && !csi_seen) {
1497 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1498 			 info->nsid);
1499 		status = -EINVAL;
1500 	}
1501 
1502 free_data:
1503 	kfree(data);
1504 	return status;
1505 }
1506 
1507 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1508 			struct nvme_id_ns **id)
1509 {
1510 	struct nvme_command c = { };
1511 	int error;
1512 
1513 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1514 	c.identify.opcode = nvme_admin_identify;
1515 	c.identify.nsid = cpu_to_le32(nsid);
1516 	c.identify.cns = NVME_ID_CNS_NS;
1517 
1518 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1519 	if (!*id)
1520 		return -ENOMEM;
1521 
1522 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1523 	if (error) {
1524 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1525 		kfree(*id);
1526 		*id = NULL;
1527 	}
1528 	return error;
1529 }
1530 
1531 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1532 		struct nvme_ns_info *info)
1533 {
1534 	struct nvme_ns_ids *ids = &info->ids;
1535 	struct nvme_id_ns *id;
1536 	int ret;
1537 
1538 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1539 	if (ret)
1540 		return ret;
1541 
1542 	if (id->ncap == 0) {
1543 		/* namespace not allocated or attached */
1544 		info->is_removed = true;
1545 		ret = -ENODEV;
1546 		goto error;
1547 	}
1548 
1549 	info->anagrpid = id->anagrpid;
1550 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1551 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1552 	info->is_ready = true;
1553 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1554 		dev_info(ctrl->device,
1555 			 "Ignoring bogus Namespace Identifiers\n");
1556 	} else {
1557 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1558 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1559 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1560 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1561 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1562 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1563 	}
1564 
1565 error:
1566 	kfree(id);
1567 	return ret;
1568 }
1569 
1570 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1571 		struct nvme_ns_info *info)
1572 {
1573 	struct nvme_id_ns_cs_indep *id;
1574 	struct nvme_command c = {
1575 		.identify.opcode	= nvme_admin_identify,
1576 		.identify.nsid		= cpu_to_le32(info->nsid),
1577 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1578 	};
1579 	int ret;
1580 
1581 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1582 	if (!id)
1583 		return -ENOMEM;
1584 
1585 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1586 	if (!ret) {
1587 		info->anagrpid = id->anagrpid;
1588 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1589 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1590 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1591 	}
1592 	kfree(id);
1593 	return ret;
1594 }
1595 
1596 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1597 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1598 {
1599 	union nvme_result res = { 0 };
1600 	struct nvme_command c = { };
1601 	int ret;
1602 
1603 	c.features.opcode = op;
1604 	c.features.fid = cpu_to_le32(fid);
1605 	c.features.dword11 = cpu_to_le32(dword11);
1606 
1607 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1608 			buffer, buflen, NVME_QID_ANY, 0);
1609 	if (ret >= 0 && result)
1610 		*result = le32_to_cpu(res.u32);
1611 	return ret;
1612 }
1613 
1614 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1615 		      unsigned int dword11, void *buffer, size_t buflen,
1616 		      u32 *result)
1617 {
1618 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1619 			     buflen, result);
1620 }
1621 EXPORT_SYMBOL_GPL(nvme_set_features);
1622 
1623 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1624 		      unsigned int dword11, void *buffer, size_t buflen,
1625 		      u32 *result)
1626 {
1627 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1628 			     buflen, result);
1629 }
1630 EXPORT_SYMBOL_GPL(nvme_get_features);
1631 
1632 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1633 {
1634 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1635 	u32 result;
1636 	int status, nr_io_queues;
1637 
1638 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1639 			&result);
1640 	if (status < 0)
1641 		return status;
1642 
1643 	/*
1644 	 * Degraded controllers might return an error when setting the queue
1645 	 * count.  We still want to be able to bring them online and offer
1646 	 * access to the admin queue, as that might be only way to fix them up.
1647 	 */
1648 	if (status > 0) {
1649 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1650 		*count = 0;
1651 	} else {
1652 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1653 		*count = min(*count, nr_io_queues);
1654 	}
1655 
1656 	return 0;
1657 }
1658 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1659 
1660 #define NVME_AEN_SUPPORTED \
1661 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1662 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1663 
1664 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1665 {
1666 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1667 	int status;
1668 
1669 	if (!supported_aens)
1670 		return;
1671 
1672 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1673 			NULL, 0, &result);
1674 	if (status)
1675 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1676 			 supported_aens);
1677 
1678 	queue_work(nvme_wq, &ctrl->async_event_work);
1679 }
1680 
1681 static int nvme_ns_open(struct nvme_ns *ns)
1682 {
1683 
1684 	/* should never be called due to GENHD_FL_HIDDEN */
1685 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1686 		goto fail;
1687 	if (!nvme_get_ns(ns))
1688 		goto fail;
1689 	if (!try_module_get(ns->ctrl->ops->module))
1690 		goto fail_put_ns;
1691 
1692 	return 0;
1693 
1694 fail_put_ns:
1695 	nvme_put_ns(ns);
1696 fail:
1697 	return -ENXIO;
1698 }
1699 
1700 static void nvme_ns_release(struct nvme_ns *ns)
1701 {
1702 
1703 	module_put(ns->ctrl->ops->module);
1704 	nvme_put_ns(ns);
1705 }
1706 
1707 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1708 {
1709 	return nvme_ns_open(disk->private_data);
1710 }
1711 
1712 static void nvme_release(struct gendisk *disk)
1713 {
1714 	nvme_ns_release(disk->private_data);
1715 }
1716 
1717 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1718 {
1719 	/* some standard values */
1720 	geo->heads = 1 << 6;
1721 	geo->sectors = 1 << 5;
1722 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1723 	return 0;
1724 }
1725 
1726 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head,
1727 		struct queue_limits *lim)
1728 {
1729 	struct blk_integrity *bi = &lim->integrity;
1730 
1731 	memset(bi, 0, sizeof(*bi));
1732 
1733 	if (!head->ms)
1734 		return true;
1735 
1736 	/*
1737 	 * PI can always be supported as we can ask the controller to simply
1738 	 * insert/strip it, which is not possible for other kinds of metadata.
1739 	 */
1740 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1741 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1742 		return nvme_ns_has_pi(head);
1743 
1744 	switch (head->pi_type) {
1745 	case NVME_NS_DPS_PI_TYPE3:
1746 		switch (head->guard_type) {
1747 		case NVME_NVM_NS_16B_GUARD:
1748 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1749 			bi->tag_size = sizeof(u16) + sizeof(u32);
1750 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1751 			break;
1752 		case NVME_NVM_NS_64B_GUARD:
1753 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1754 			bi->tag_size = sizeof(u16) + 6;
1755 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1756 			break;
1757 		default:
1758 			break;
1759 		}
1760 		break;
1761 	case NVME_NS_DPS_PI_TYPE1:
1762 	case NVME_NS_DPS_PI_TYPE2:
1763 		switch (head->guard_type) {
1764 		case NVME_NVM_NS_16B_GUARD:
1765 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1766 			bi->tag_size = sizeof(u16);
1767 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1768 				     BLK_INTEGRITY_REF_TAG;
1769 			break;
1770 		case NVME_NVM_NS_64B_GUARD:
1771 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1772 			bi->tag_size = sizeof(u16);
1773 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1774 				     BLK_INTEGRITY_REF_TAG;
1775 			break;
1776 		default:
1777 			break;
1778 		}
1779 		break;
1780 	default:
1781 		break;
1782 	}
1783 
1784 	bi->tuple_size = head->ms;
1785 	bi->pi_offset = head->pi_offset;
1786 	return true;
1787 }
1788 
1789 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1790 {
1791 	struct nvme_ctrl *ctrl = ns->ctrl;
1792 
1793 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1794 		lim->max_hw_discard_sectors =
1795 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1796 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1797 		lim->max_hw_discard_sectors = UINT_MAX;
1798 	else
1799 		lim->max_hw_discard_sectors = 0;
1800 
1801 	lim->discard_granularity = lim->logical_block_size;
1802 
1803 	if (ctrl->dmrl)
1804 		lim->max_discard_segments = ctrl->dmrl;
1805 	else
1806 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1807 }
1808 
1809 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1810 {
1811 	return uuid_equal(&a->uuid, &b->uuid) &&
1812 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1813 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1814 		a->csi == b->csi;
1815 }
1816 
1817 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1818 		struct nvme_id_ns_nvm **nvmp)
1819 {
1820 	struct nvme_command c = {
1821 		.identify.opcode	= nvme_admin_identify,
1822 		.identify.nsid		= cpu_to_le32(nsid),
1823 		.identify.cns		= NVME_ID_CNS_CS_NS,
1824 		.identify.csi		= NVME_CSI_NVM,
1825 	};
1826 	struct nvme_id_ns_nvm *nvm;
1827 	int ret;
1828 
1829 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1830 	if (!nvm)
1831 		return -ENOMEM;
1832 
1833 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1834 	if (ret)
1835 		kfree(nvm);
1836 	else
1837 		*nvmp = nvm;
1838 	return ret;
1839 }
1840 
1841 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1842 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1843 {
1844 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1845 
1846 	/* no support for storage tag formats right now */
1847 	if (nvme_elbaf_sts(elbaf))
1848 		return;
1849 
1850 	head->guard_type = nvme_elbaf_guard_type(elbaf);
1851 	switch (head->guard_type) {
1852 	case NVME_NVM_NS_64B_GUARD:
1853 		head->pi_size = sizeof(struct crc64_pi_tuple);
1854 		break;
1855 	case NVME_NVM_NS_16B_GUARD:
1856 		head->pi_size = sizeof(struct t10_pi_tuple);
1857 		break;
1858 	default:
1859 		break;
1860 	}
1861 }
1862 
1863 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1864 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1865 		struct nvme_id_ns_nvm *nvm)
1866 {
1867 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1868 	head->pi_type = 0;
1869 	head->pi_size = 0;
1870 	head->pi_offset = 0;
1871 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1872 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1873 		return;
1874 
1875 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1876 		nvme_configure_pi_elbas(head, id, nvm);
1877 	} else {
1878 		head->pi_size = sizeof(struct t10_pi_tuple);
1879 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1880 	}
1881 
1882 	if (head->pi_size && head->ms >= head->pi_size)
1883 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1884 	if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1885 		head->pi_offset = head->ms - head->pi_size;
1886 
1887 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1888 		/*
1889 		 * The NVMe over Fabrics specification only supports metadata as
1890 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1891 		 * remap the separate metadata buffer from the block layer.
1892 		 */
1893 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1894 			return;
1895 
1896 		head->features |= NVME_NS_EXT_LBAS;
1897 
1898 		/*
1899 		 * The current fabrics transport drivers support namespace
1900 		 * metadata formats only if nvme_ns_has_pi() returns true.
1901 		 * Suppress support for all other formats so the namespace will
1902 		 * have a 0 capacity and not be usable through the block stack.
1903 		 *
1904 		 * Note, this check will need to be modified if any drivers
1905 		 * gain the ability to use other metadata formats.
1906 		 */
1907 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1908 			head->features |= NVME_NS_METADATA_SUPPORTED;
1909 	} else {
1910 		/*
1911 		 * For PCIe controllers, we can't easily remap the separate
1912 		 * metadata buffer from the block layer and thus require a
1913 		 * separate metadata buffer for block layer metadata/PI support.
1914 		 * We allow extended LBAs for the passthrough interface, though.
1915 		 */
1916 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1917 			head->features |= NVME_NS_EXT_LBAS;
1918 		else
1919 			head->features |= NVME_NS_METADATA_SUPPORTED;
1920 	}
1921 }
1922 
1923 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1924 {
1925 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1926 }
1927 
1928 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1929 		struct queue_limits *lim)
1930 {
1931 	lim->max_hw_sectors = ctrl->max_hw_sectors;
1932 	lim->max_segments = min_t(u32, USHRT_MAX,
1933 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1934 	lim->max_integrity_segments = ctrl->max_integrity_segments;
1935 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1936 	lim->max_segment_size = UINT_MAX;
1937 	lim->dma_alignment = 3;
1938 }
1939 
1940 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1941 		struct queue_limits *lim)
1942 {
1943 	struct nvme_ns_head *head = ns->head;
1944 	u32 bs = 1U << head->lba_shift;
1945 	u32 atomic_bs, phys_bs, io_opt = 0;
1946 	bool valid = true;
1947 
1948 	/*
1949 	 * The block layer can't support LBA sizes larger than the page size
1950 	 * or smaller than a sector size yet, so catch this early and don't
1951 	 * allow block I/O.
1952 	 */
1953 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
1954 		bs = (1 << 9);
1955 		valid = false;
1956 	}
1957 
1958 	atomic_bs = phys_bs = bs;
1959 	if (id->nabo == 0) {
1960 		/*
1961 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1962 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1963 		 * 0 then AWUPF must be used instead.
1964 		 */
1965 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1966 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1967 		else
1968 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1969 	}
1970 
1971 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1972 		/* NPWG = Namespace Preferred Write Granularity */
1973 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1974 		/* NOWS = Namespace Optimal Write Size */
1975 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1976 	}
1977 
1978 	/*
1979 	 * Linux filesystems assume writing a single physical block is
1980 	 * an atomic operation. Hence limit the physical block size to the
1981 	 * value of the Atomic Write Unit Power Fail parameter.
1982 	 */
1983 	lim->logical_block_size = bs;
1984 	lim->physical_block_size = min(phys_bs, atomic_bs);
1985 	lim->io_min = phys_bs;
1986 	lim->io_opt = io_opt;
1987 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1988 		lim->max_write_zeroes_sectors = UINT_MAX;
1989 	else
1990 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
1991 	return valid;
1992 }
1993 
1994 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1995 {
1996 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1997 }
1998 
1999 static inline bool nvme_first_scan(struct gendisk *disk)
2000 {
2001 	/* nvme_alloc_ns() scans the disk prior to adding it */
2002 	return !disk_live(disk);
2003 }
2004 
2005 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2006 		struct queue_limits *lim)
2007 {
2008 	struct nvme_ctrl *ctrl = ns->ctrl;
2009 	u32 iob;
2010 
2011 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2012 	    is_power_of_2(ctrl->max_hw_sectors))
2013 		iob = ctrl->max_hw_sectors;
2014 	else
2015 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2016 
2017 	if (!iob)
2018 		return;
2019 
2020 	if (!is_power_of_2(iob)) {
2021 		if (nvme_first_scan(ns->disk))
2022 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2023 				ns->disk->disk_name, iob);
2024 		return;
2025 	}
2026 
2027 	if (blk_queue_is_zoned(ns->disk->queue)) {
2028 		if (nvme_first_scan(ns->disk))
2029 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2030 				ns->disk->disk_name);
2031 		return;
2032 	}
2033 
2034 	lim->chunk_sectors = iob;
2035 }
2036 
2037 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2038 		struct nvme_ns_info *info)
2039 {
2040 	struct queue_limits lim;
2041 	int ret;
2042 
2043 	blk_mq_freeze_queue(ns->disk->queue);
2044 	lim = queue_limits_start_update(ns->disk->queue);
2045 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2046 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2047 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2048 	blk_mq_unfreeze_queue(ns->disk->queue);
2049 
2050 	/* Hide the block-interface for these devices */
2051 	if (!ret)
2052 		ret = -ENODEV;
2053 	return ret;
2054 }
2055 
2056 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2057 		struct nvme_ns_info *info)
2058 {
2059 	struct queue_limits lim;
2060 	struct nvme_id_ns_nvm *nvm = NULL;
2061 	struct nvme_zone_info zi = {};
2062 	struct nvme_id_ns *id;
2063 	sector_t capacity;
2064 	unsigned lbaf;
2065 	int ret;
2066 
2067 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2068 	if (ret)
2069 		return ret;
2070 
2071 	if (id->ncap == 0) {
2072 		/* namespace not allocated or attached */
2073 		info->is_removed = true;
2074 		ret = -ENXIO;
2075 		goto out;
2076 	}
2077 	lbaf = nvme_lbaf_index(id->flbas);
2078 
2079 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2080 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2081 		if (ret < 0)
2082 			goto out;
2083 	}
2084 
2085 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2086 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2087 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2088 		if (ret < 0)
2089 			goto out;
2090 	}
2091 
2092 	blk_mq_freeze_queue(ns->disk->queue);
2093 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2094 	ns->head->nuse = le64_to_cpu(id->nuse);
2095 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2096 
2097 	lim = queue_limits_start_update(ns->disk->queue);
2098 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2099 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm);
2100 	nvme_set_chunk_sectors(ns, id, &lim);
2101 	if (!nvme_update_disk_info(ns, id, &lim))
2102 		capacity = 0;
2103 	nvme_config_discard(ns, &lim);
2104 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2105 	    ns->head->ids.csi == NVME_CSI_ZNS)
2106 		nvme_update_zone_info(ns, &lim, &zi);
2107 
2108 	if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2109 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2110 	else
2111 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2112 
2113 	/*
2114 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2115 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2116 	 * I/O to namespaces with metadata except when the namespace supports
2117 	 * PI, as it can strip/insert in that case.
2118 	 */
2119 	if (!nvme_init_integrity(ns->disk, ns->head, &lim))
2120 		capacity = 0;
2121 
2122 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2123 	if (ret) {
2124 		blk_mq_unfreeze_queue(ns->disk->queue);
2125 		goto out;
2126 	}
2127 
2128 	set_capacity_and_notify(ns->disk, capacity);
2129 
2130 	/*
2131 	 * Only set the DEAC bit if the device guarantees that reads from
2132 	 * deallocated data return zeroes.  While the DEAC bit does not
2133 	 * require that, it must be a no-op if reads from deallocated data
2134 	 * do not return zeroes.
2135 	 */
2136 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2137 		ns->head->features |= NVME_NS_DEAC;
2138 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2139 	set_bit(NVME_NS_READY, &ns->flags);
2140 	blk_mq_unfreeze_queue(ns->disk->queue);
2141 
2142 	if (blk_queue_is_zoned(ns->queue)) {
2143 		ret = blk_revalidate_disk_zones(ns->disk);
2144 		if (ret && !nvme_first_scan(ns->disk))
2145 			goto out;
2146 	}
2147 
2148 	ret = 0;
2149 out:
2150 	kfree(nvm);
2151 	kfree(id);
2152 	return ret;
2153 }
2154 
2155 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2156 {
2157 	bool unsupported = false;
2158 	int ret;
2159 
2160 	switch (info->ids.csi) {
2161 	case NVME_CSI_ZNS:
2162 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2163 			dev_info(ns->ctrl->device,
2164 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2165 				info->nsid);
2166 			ret = nvme_update_ns_info_generic(ns, info);
2167 			break;
2168 		}
2169 		ret = nvme_update_ns_info_block(ns, info);
2170 		break;
2171 	case NVME_CSI_NVM:
2172 		ret = nvme_update_ns_info_block(ns, info);
2173 		break;
2174 	default:
2175 		dev_info(ns->ctrl->device,
2176 			"block device for nsid %u not supported (csi %u)\n",
2177 			info->nsid, info->ids.csi);
2178 		ret = nvme_update_ns_info_generic(ns, info);
2179 		break;
2180 	}
2181 
2182 	/*
2183 	 * If probing fails due an unsupported feature, hide the block device,
2184 	 * but still allow other access.
2185 	 */
2186 	if (ret == -ENODEV) {
2187 		ns->disk->flags |= GENHD_FL_HIDDEN;
2188 		set_bit(NVME_NS_READY, &ns->flags);
2189 		unsupported = true;
2190 		ret = 0;
2191 	}
2192 
2193 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2194 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2195 		struct queue_limits lim;
2196 
2197 		blk_mq_freeze_queue(ns->head->disk->queue);
2198 		/*
2199 		 * queue_limits mixes values that are the hardware limitations
2200 		 * for bio splitting with what is the device configuration.
2201 		 *
2202 		 * For NVMe the device configuration can change after e.g. a
2203 		 * Format command, and we really want to pick up the new format
2204 		 * value here.  But we must still stack the queue limits to the
2205 		 * least common denominator for multipathing to split the bios
2206 		 * properly.
2207 		 *
2208 		 * To work around this, we explicitly set the device
2209 		 * configuration to those that we just queried, but only stack
2210 		 * the splitting limits in to make sure we still obey possibly
2211 		 * lower limitations of other controllers.
2212 		 */
2213 		lim = queue_limits_start_update(ns->head->disk->queue);
2214 		lim.logical_block_size = ns_lim->logical_block_size;
2215 		lim.physical_block_size = ns_lim->physical_block_size;
2216 		lim.io_min = ns_lim->io_min;
2217 		lim.io_opt = ns_lim->io_opt;
2218 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2219 					ns->head->disk->disk_name);
2220 		if (unsupported)
2221 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2222 		else
2223 			nvme_init_integrity(ns->head->disk, ns->head, &lim);
2224 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2225 
2226 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2227 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2228 		nvme_mpath_revalidate_paths(ns);
2229 
2230 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2231 	}
2232 
2233 	return ret;
2234 }
2235 
2236 #ifdef CONFIG_BLK_SED_OPAL
2237 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2238 		bool send)
2239 {
2240 	struct nvme_ctrl *ctrl = data;
2241 	struct nvme_command cmd = { };
2242 
2243 	if (send)
2244 		cmd.common.opcode = nvme_admin_security_send;
2245 	else
2246 		cmd.common.opcode = nvme_admin_security_recv;
2247 	cmd.common.nsid = 0;
2248 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2249 	cmd.common.cdw11 = cpu_to_le32(len);
2250 
2251 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2252 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2253 }
2254 
2255 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2256 {
2257 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2258 		if (!ctrl->opal_dev)
2259 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2260 		else if (was_suspended)
2261 			opal_unlock_from_suspend(ctrl->opal_dev);
2262 	} else {
2263 		free_opal_dev(ctrl->opal_dev);
2264 		ctrl->opal_dev = NULL;
2265 	}
2266 }
2267 #else
2268 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2269 {
2270 }
2271 #endif /* CONFIG_BLK_SED_OPAL */
2272 
2273 #ifdef CONFIG_BLK_DEV_ZONED
2274 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2275 		unsigned int nr_zones, report_zones_cb cb, void *data)
2276 {
2277 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2278 			data);
2279 }
2280 #else
2281 #define nvme_report_zones	NULL
2282 #endif /* CONFIG_BLK_DEV_ZONED */
2283 
2284 const struct block_device_operations nvme_bdev_ops = {
2285 	.owner		= THIS_MODULE,
2286 	.ioctl		= nvme_ioctl,
2287 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2288 	.open		= nvme_open,
2289 	.release	= nvme_release,
2290 	.getgeo		= nvme_getgeo,
2291 	.report_zones	= nvme_report_zones,
2292 	.pr_ops		= &nvme_pr_ops,
2293 };
2294 
2295 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2296 		u32 timeout, const char *op)
2297 {
2298 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2299 	u32 csts;
2300 	int ret;
2301 
2302 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2303 		if (csts == ~0)
2304 			return -ENODEV;
2305 		if ((csts & mask) == val)
2306 			break;
2307 
2308 		usleep_range(1000, 2000);
2309 		if (fatal_signal_pending(current))
2310 			return -EINTR;
2311 		if (time_after(jiffies, timeout_jiffies)) {
2312 			dev_err(ctrl->device,
2313 				"Device not ready; aborting %s, CSTS=0x%x\n",
2314 				op, csts);
2315 			return -ENODEV;
2316 		}
2317 	}
2318 
2319 	return ret;
2320 }
2321 
2322 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2323 {
2324 	int ret;
2325 
2326 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2327 	if (shutdown)
2328 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2329 	else
2330 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2331 
2332 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2333 	if (ret)
2334 		return ret;
2335 
2336 	if (shutdown) {
2337 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2338 				       NVME_CSTS_SHST_CMPLT,
2339 				       ctrl->shutdown_timeout, "shutdown");
2340 	}
2341 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2342 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2343 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2344 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2345 }
2346 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2347 
2348 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2349 {
2350 	unsigned dev_page_min;
2351 	u32 timeout;
2352 	int ret;
2353 
2354 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2355 	if (ret) {
2356 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2357 		return ret;
2358 	}
2359 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2360 
2361 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2362 		dev_err(ctrl->device,
2363 			"Minimum device page size %u too large for host (%u)\n",
2364 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2365 		return -ENODEV;
2366 	}
2367 
2368 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2369 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2370 	else
2371 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2372 
2373 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2374 		ctrl->ctrl_config |= NVME_CC_CRIME;
2375 
2376 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2377 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2378 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2379 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2380 	if (ret)
2381 		return ret;
2382 
2383 	/* Flush write to device (required if transport is PCI) */
2384 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2385 	if (ret)
2386 		return ret;
2387 
2388 	/* CAP value may change after initial CC write */
2389 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2390 	if (ret)
2391 		return ret;
2392 
2393 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2394 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2395 		u32 crto, ready_timeout;
2396 
2397 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2398 		if (ret) {
2399 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2400 				ret);
2401 			return ret;
2402 		}
2403 
2404 		/*
2405 		 * CRTO should always be greater or equal to CAP.TO, but some
2406 		 * devices are known to get this wrong. Use the larger of the
2407 		 * two values.
2408 		 */
2409 		if (ctrl->ctrl_config & NVME_CC_CRIME)
2410 			ready_timeout = NVME_CRTO_CRIMT(crto);
2411 		else
2412 			ready_timeout = NVME_CRTO_CRWMT(crto);
2413 
2414 		if (ready_timeout < timeout)
2415 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2416 				      crto, ctrl->cap);
2417 		else
2418 			timeout = ready_timeout;
2419 	}
2420 
2421 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2422 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2423 	if (ret)
2424 		return ret;
2425 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2426 			       (timeout + 1) / 2, "initialisation");
2427 }
2428 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2429 
2430 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2431 {
2432 	__le64 ts;
2433 	int ret;
2434 
2435 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2436 		return 0;
2437 
2438 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2439 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2440 			NULL);
2441 	if (ret)
2442 		dev_warn_once(ctrl->device,
2443 			"could not set timestamp (%d)\n", ret);
2444 	return ret;
2445 }
2446 
2447 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2448 {
2449 	struct nvme_feat_host_behavior *host;
2450 	u8 acre = 0, lbafee = 0;
2451 	int ret;
2452 
2453 	/* Don't bother enabling the feature if retry delay is not reported */
2454 	if (ctrl->crdt[0])
2455 		acre = NVME_ENABLE_ACRE;
2456 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2457 		lbafee = NVME_ENABLE_LBAFEE;
2458 
2459 	if (!acre && !lbafee)
2460 		return 0;
2461 
2462 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2463 	if (!host)
2464 		return 0;
2465 
2466 	host->acre = acre;
2467 	host->lbafee = lbafee;
2468 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2469 				host, sizeof(*host), NULL);
2470 	kfree(host);
2471 	return ret;
2472 }
2473 
2474 /*
2475  * The function checks whether the given total (exlat + enlat) latency of
2476  * a power state allows the latter to be used as an APST transition target.
2477  * It does so by comparing the latency to the primary and secondary latency
2478  * tolerances defined by module params. If there's a match, the corresponding
2479  * timeout value is returned and the matching tolerance index (1 or 2) is
2480  * reported.
2481  */
2482 static bool nvme_apst_get_transition_time(u64 total_latency,
2483 		u64 *transition_time, unsigned *last_index)
2484 {
2485 	if (total_latency <= apst_primary_latency_tol_us) {
2486 		if (*last_index == 1)
2487 			return false;
2488 		*last_index = 1;
2489 		*transition_time = apst_primary_timeout_ms;
2490 		return true;
2491 	}
2492 	if (apst_secondary_timeout_ms &&
2493 		total_latency <= apst_secondary_latency_tol_us) {
2494 		if (*last_index <= 2)
2495 			return false;
2496 		*last_index = 2;
2497 		*transition_time = apst_secondary_timeout_ms;
2498 		return true;
2499 	}
2500 	return false;
2501 }
2502 
2503 /*
2504  * APST (Autonomous Power State Transition) lets us program a table of power
2505  * state transitions that the controller will perform automatically.
2506  *
2507  * Depending on module params, one of the two supported techniques will be used:
2508  *
2509  * - If the parameters provide explicit timeouts and tolerances, they will be
2510  *   used to build a table with up to 2 non-operational states to transition to.
2511  *   The default parameter values were selected based on the values used by
2512  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2513  *   regeneration of the APST table in the event of switching between external
2514  *   and battery power, the timeouts and tolerances reflect a compromise
2515  *   between values used by Microsoft for AC and battery scenarios.
2516  * - If not, we'll configure the table with a simple heuristic: we are willing
2517  *   to spend at most 2% of the time transitioning between power states.
2518  *   Therefore, when running in any given state, we will enter the next
2519  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2520  *   microseconds, as long as that state's exit latency is under the requested
2521  *   maximum latency.
2522  *
2523  * We will not autonomously enter any non-operational state for which the total
2524  * latency exceeds ps_max_latency_us.
2525  *
2526  * Users can set ps_max_latency_us to zero to turn off APST.
2527  */
2528 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2529 {
2530 	struct nvme_feat_auto_pst *table;
2531 	unsigned apste = 0;
2532 	u64 max_lat_us = 0;
2533 	__le64 target = 0;
2534 	int max_ps = -1;
2535 	int state;
2536 	int ret;
2537 	unsigned last_lt_index = UINT_MAX;
2538 
2539 	/*
2540 	 * If APST isn't supported or if we haven't been initialized yet,
2541 	 * then don't do anything.
2542 	 */
2543 	if (!ctrl->apsta)
2544 		return 0;
2545 
2546 	if (ctrl->npss > 31) {
2547 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2548 		return 0;
2549 	}
2550 
2551 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2552 	if (!table)
2553 		return 0;
2554 
2555 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2556 		/* Turn off APST. */
2557 		dev_dbg(ctrl->device, "APST disabled\n");
2558 		goto done;
2559 	}
2560 
2561 	/*
2562 	 * Walk through all states from lowest- to highest-power.
2563 	 * According to the spec, lower-numbered states use more power.  NPSS,
2564 	 * despite the name, is the index of the lowest-power state, not the
2565 	 * number of states.
2566 	 */
2567 	for (state = (int)ctrl->npss; state >= 0; state--) {
2568 		u64 total_latency_us, exit_latency_us, transition_ms;
2569 
2570 		if (target)
2571 			table->entries[state] = target;
2572 
2573 		/*
2574 		 * Don't allow transitions to the deepest state if it's quirked
2575 		 * off.
2576 		 */
2577 		if (state == ctrl->npss &&
2578 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2579 			continue;
2580 
2581 		/*
2582 		 * Is this state a useful non-operational state for higher-power
2583 		 * states to autonomously transition to?
2584 		 */
2585 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2586 			continue;
2587 
2588 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2589 		if (exit_latency_us > ctrl->ps_max_latency_us)
2590 			continue;
2591 
2592 		total_latency_us = exit_latency_us +
2593 			le32_to_cpu(ctrl->psd[state].entry_lat);
2594 
2595 		/*
2596 		 * This state is good. It can be used as the APST idle target
2597 		 * for higher power states.
2598 		 */
2599 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2600 			if (!nvme_apst_get_transition_time(total_latency_us,
2601 					&transition_ms, &last_lt_index))
2602 				continue;
2603 		} else {
2604 			transition_ms = total_latency_us + 19;
2605 			do_div(transition_ms, 20);
2606 			if (transition_ms > (1 << 24) - 1)
2607 				transition_ms = (1 << 24) - 1;
2608 		}
2609 
2610 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2611 		if (max_ps == -1)
2612 			max_ps = state;
2613 		if (total_latency_us > max_lat_us)
2614 			max_lat_us = total_latency_us;
2615 	}
2616 
2617 	if (max_ps == -1)
2618 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2619 	else
2620 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2621 			max_ps, max_lat_us, (int)sizeof(*table), table);
2622 	apste = 1;
2623 
2624 done:
2625 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2626 				table, sizeof(*table), NULL);
2627 	if (ret)
2628 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2629 	kfree(table);
2630 	return ret;
2631 }
2632 
2633 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2634 {
2635 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2636 	u64 latency;
2637 
2638 	switch (val) {
2639 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2640 	case PM_QOS_LATENCY_ANY:
2641 		latency = U64_MAX;
2642 		break;
2643 
2644 	default:
2645 		latency = val;
2646 	}
2647 
2648 	if (ctrl->ps_max_latency_us != latency) {
2649 		ctrl->ps_max_latency_us = latency;
2650 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2651 			nvme_configure_apst(ctrl);
2652 	}
2653 }
2654 
2655 struct nvme_core_quirk_entry {
2656 	/*
2657 	 * NVMe model and firmware strings are padded with spaces.  For
2658 	 * simplicity, strings in the quirk table are padded with NULLs
2659 	 * instead.
2660 	 */
2661 	u16 vid;
2662 	const char *mn;
2663 	const char *fr;
2664 	unsigned long quirks;
2665 };
2666 
2667 static const struct nvme_core_quirk_entry core_quirks[] = {
2668 	{
2669 		/*
2670 		 * This Toshiba device seems to die using any APST states.  See:
2671 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2672 		 */
2673 		.vid = 0x1179,
2674 		.mn = "THNSF5256GPUK TOSHIBA",
2675 		.quirks = NVME_QUIRK_NO_APST,
2676 	},
2677 	{
2678 		/*
2679 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2680 		 * condition associated with actions related to suspend to idle
2681 		 * LiteON has resolved the problem in future firmware
2682 		 */
2683 		.vid = 0x14a4,
2684 		.fr = "22301111",
2685 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2686 	},
2687 	{
2688 		/*
2689 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2690 		 * aborts I/O during any load, but more easily reproducible
2691 		 * with discards (fstrim).
2692 		 *
2693 		 * The device is left in a state where it is also not possible
2694 		 * to use "nvme set-feature" to disable APST, but booting with
2695 		 * nvme_core.default_ps_max_latency=0 works.
2696 		 */
2697 		.vid = 0x1e0f,
2698 		.mn = "KCD6XVUL6T40",
2699 		.quirks = NVME_QUIRK_NO_APST,
2700 	},
2701 	{
2702 		/*
2703 		 * The external Samsung X5 SSD fails initialization without a
2704 		 * delay before checking if it is ready and has a whole set of
2705 		 * other problems.  To make this even more interesting, it
2706 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2707 		 * does not need or want these quirks.
2708 		 */
2709 		.vid = 0x144d,
2710 		.mn = "Samsung Portable SSD X5",
2711 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2712 			  NVME_QUIRK_NO_DEEPEST_PS |
2713 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2714 	}
2715 };
2716 
2717 /* match is null-terminated but idstr is space-padded. */
2718 static bool string_matches(const char *idstr, const char *match, size_t len)
2719 {
2720 	size_t matchlen;
2721 
2722 	if (!match)
2723 		return true;
2724 
2725 	matchlen = strlen(match);
2726 	WARN_ON_ONCE(matchlen > len);
2727 
2728 	if (memcmp(idstr, match, matchlen))
2729 		return false;
2730 
2731 	for (; matchlen < len; matchlen++)
2732 		if (idstr[matchlen] != ' ')
2733 			return false;
2734 
2735 	return true;
2736 }
2737 
2738 static bool quirk_matches(const struct nvme_id_ctrl *id,
2739 			  const struct nvme_core_quirk_entry *q)
2740 {
2741 	return q->vid == le16_to_cpu(id->vid) &&
2742 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2743 		string_matches(id->fr, q->fr, sizeof(id->fr));
2744 }
2745 
2746 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2747 		struct nvme_id_ctrl *id)
2748 {
2749 	size_t nqnlen;
2750 	int off;
2751 
2752 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2753 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2754 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2755 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2756 			return;
2757 		}
2758 
2759 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2760 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2761 	}
2762 
2763 	/*
2764 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2765 	 * Base Specification 2.0.  It is slightly different from the format
2766 	 * specified there due to historic reasons, and we can't change it now.
2767 	 */
2768 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2769 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2770 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2771 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2772 	off += sizeof(id->sn);
2773 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2774 	off += sizeof(id->mn);
2775 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2776 }
2777 
2778 static void nvme_release_subsystem(struct device *dev)
2779 {
2780 	struct nvme_subsystem *subsys =
2781 		container_of(dev, struct nvme_subsystem, dev);
2782 
2783 	if (subsys->instance >= 0)
2784 		ida_free(&nvme_instance_ida, subsys->instance);
2785 	kfree(subsys);
2786 }
2787 
2788 static void nvme_destroy_subsystem(struct kref *ref)
2789 {
2790 	struct nvme_subsystem *subsys =
2791 			container_of(ref, struct nvme_subsystem, ref);
2792 
2793 	mutex_lock(&nvme_subsystems_lock);
2794 	list_del(&subsys->entry);
2795 	mutex_unlock(&nvme_subsystems_lock);
2796 
2797 	ida_destroy(&subsys->ns_ida);
2798 	device_del(&subsys->dev);
2799 	put_device(&subsys->dev);
2800 }
2801 
2802 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2803 {
2804 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2805 }
2806 
2807 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2808 {
2809 	struct nvme_subsystem *subsys;
2810 
2811 	lockdep_assert_held(&nvme_subsystems_lock);
2812 
2813 	/*
2814 	 * Fail matches for discovery subsystems. This results
2815 	 * in each discovery controller bound to a unique subsystem.
2816 	 * This avoids issues with validating controller values
2817 	 * that can only be true when there is a single unique subsystem.
2818 	 * There may be multiple and completely independent entities
2819 	 * that provide discovery controllers.
2820 	 */
2821 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2822 		return NULL;
2823 
2824 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2825 		if (strcmp(subsys->subnqn, subsysnqn))
2826 			continue;
2827 		if (!kref_get_unless_zero(&subsys->ref))
2828 			continue;
2829 		return subsys;
2830 	}
2831 
2832 	return NULL;
2833 }
2834 
2835 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2836 {
2837 	return ctrl->opts && ctrl->opts->discovery_nqn;
2838 }
2839 
2840 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2841 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2842 {
2843 	struct nvme_ctrl *tmp;
2844 
2845 	lockdep_assert_held(&nvme_subsystems_lock);
2846 
2847 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2848 		if (nvme_state_terminal(tmp))
2849 			continue;
2850 
2851 		if (tmp->cntlid == ctrl->cntlid) {
2852 			dev_err(ctrl->device,
2853 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2854 				ctrl->cntlid, dev_name(tmp->device),
2855 				subsys->subnqn);
2856 			return false;
2857 		}
2858 
2859 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2860 		    nvme_discovery_ctrl(ctrl))
2861 			continue;
2862 
2863 		dev_err(ctrl->device,
2864 			"Subsystem does not support multiple controllers\n");
2865 		return false;
2866 	}
2867 
2868 	return true;
2869 }
2870 
2871 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2872 {
2873 	struct nvme_subsystem *subsys, *found;
2874 	int ret;
2875 
2876 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2877 	if (!subsys)
2878 		return -ENOMEM;
2879 
2880 	subsys->instance = -1;
2881 	mutex_init(&subsys->lock);
2882 	kref_init(&subsys->ref);
2883 	INIT_LIST_HEAD(&subsys->ctrls);
2884 	INIT_LIST_HEAD(&subsys->nsheads);
2885 	nvme_init_subnqn(subsys, ctrl, id);
2886 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2887 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2888 	subsys->vendor_id = le16_to_cpu(id->vid);
2889 	subsys->cmic = id->cmic;
2890 
2891 	/* Versions prior to 1.4 don't necessarily report a valid type */
2892 	if (id->cntrltype == NVME_CTRL_DISC ||
2893 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2894 		subsys->subtype = NVME_NQN_DISC;
2895 	else
2896 		subsys->subtype = NVME_NQN_NVME;
2897 
2898 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2899 		dev_err(ctrl->device,
2900 			"Subsystem %s is not a discovery controller",
2901 			subsys->subnqn);
2902 		kfree(subsys);
2903 		return -EINVAL;
2904 	}
2905 	subsys->awupf = le16_to_cpu(id->awupf);
2906 	nvme_mpath_default_iopolicy(subsys);
2907 
2908 	subsys->dev.class = &nvme_subsys_class;
2909 	subsys->dev.release = nvme_release_subsystem;
2910 	subsys->dev.groups = nvme_subsys_attrs_groups;
2911 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2912 	device_initialize(&subsys->dev);
2913 
2914 	mutex_lock(&nvme_subsystems_lock);
2915 	found = __nvme_find_get_subsystem(subsys->subnqn);
2916 	if (found) {
2917 		put_device(&subsys->dev);
2918 		subsys = found;
2919 
2920 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2921 			ret = -EINVAL;
2922 			goto out_put_subsystem;
2923 		}
2924 	} else {
2925 		ret = device_add(&subsys->dev);
2926 		if (ret) {
2927 			dev_err(ctrl->device,
2928 				"failed to register subsystem device.\n");
2929 			put_device(&subsys->dev);
2930 			goto out_unlock;
2931 		}
2932 		ida_init(&subsys->ns_ida);
2933 		list_add_tail(&subsys->entry, &nvme_subsystems);
2934 	}
2935 
2936 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2937 				dev_name(ctrl->device));
2938 	if (ret) {
2939 		dev_err(ctrl->device,
2940 			"failed to create sysfs link from subsystem.\n");
2941 		goto out_put_subsystem;
2942 	}
2943 
2944 	if (!found)
2945 		subsys->instance = ctrl->instance;
2946 	ctrl->subsys = subsys;
2947 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2948 	mutex_unlock(&nvme_subsystems_lock);
2949 	return 0;
2950 
2951 out_put_subsystem:
2952 	nvme_put_subsystem(subsys);
2953 out_unlock:
2954 	mutex_unlock(&nvme_subsystems_lock);
2955 	return ret;
2956 }
2957 
2958 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2959 		void *log, size_t size, u64 offset)
2960 {
2961 	struct nvme_command c = { };
2962 	u32 dwlen = nvme_bytes_to_numd(size);
2963 
2964 	c.get_log_page.opcode = nvme_admin_get_log_page;
2965 	c.get_log_page.nsid = cpu_to_le32(nsid);
2966 	c.get_log_page.lid = log_page;
2967 	c.get_log_page.lsp = lsp;
2968 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2969 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2970 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2971 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2972 	c.get_log_page.csi = csi;
2973 
2974 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2975 }
2976 
2977 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2978 				struct nvme_effects_log **log)
2979 {
2980 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2981 	int ret;
2982 
2983 	if (cel)
2984 		goto out;
2985 
2986 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2987 	if (!cel)
2988 		return -ENOMEM;
2989 
2990 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2991 			cel, sizeof(*cel), 0);
2992 	if (ret) {
2993 		kfree(cel);
2994 		return ret;
2995 	}
2996 
2997 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2998 out:
2999 	*log = cel;
3000 	return 0;
3001 }
3002 
3003 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3004 {
3005 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3006 
3007 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3008 		return UINT_MAX;
3009 	return val;
3010 }
3011 
3012 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3013 {
3014 	struct nvme_command c = { };
3015 	struct nvme_id_ctrl_nvm *id;
3016 	int ret;
3017 
3018 	/*
3019 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3020 	 * to the write-zeroes, we are cautious and limit the size to the
3021 	 * controllers max_hw_sectors value, which is based on the MDTS field
3022 	 * and possibly other limiting factors.
3023 	 */
3024 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3025 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3026 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3027 	else
3028 		ctrl->max_zeroes_sectors = 0;
3029 
3030 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3031 	    nvme_ctrl_limited_cns(ctrl) ||
3032 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3033 		return 0;
3034 
3035 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3036 	if (!id)
3037 		return -ENOMEM;
3038 
3039 	c.identify.opcode = nvme_admin_identify;
3040 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3041 	c.identify.csi = NVME_CSI_NVM;
3042 
3043 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3044 	if (ret)
3045 		goto free_data;
3046 
3047 	ctrl->dmrl = id->dmrl;
3048 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3049 	if (id->wzsl)
3050 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3051 
3052 free_data:
3053 	if (ret > 0)
3054 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3055 	kfree(id);
3056 	return ret;
3057 }
3058 
3059 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3060 {
3061 	struct nvme_effects_log	*log = ctrl->effects;
3062 
3063 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3064 						NVME_CMD_EFFECTS_NCC |
3065 						NVME_CMD_EFFECTS_CSE_MASK);
3066 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3067 						NVME_CMD_EFFECTS_CSE_MASK);
3068 
3069 	/*
3070 	 * The spec says the result of a security receive command depends on
3071 	 * the previous security send command. As such, many vendors log this
3072 	 * command as one to submitted only when no other commands to the same
3073 	 * namespace are outstanding. The intention is to tell the host to
3074 	 * prevent mixing security send and receive.
3075 	 *
3076 	 * This driver can only enforce such exclusive access against IO
3077 	 * queues, though. We are not readily able to enforce such a rule for
3078 	 * two commands to the admin queue, which is the only queue that
3079 	 * matters for this command.
3080 	 *
3081 	 * Rather than blindly freezing the IO queues for this effect that
3082 	 * doesn't even apply to IO, mask it off.
3083 	 */
3084 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3085 
3086 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3087 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3088 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3089 }
3090 
3091 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3092 {
3093 	int ret = 0;
3094 
3095 	if (ctrl->effects)
3096 		return 0;
3097 
3098 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3099 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3100 		if (ret < 0)
3101 			return ret;
3102 	}
3103 
3104 	if (!ctrl->effects) {
3105 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3106 		if (!ctrl->effects)
3107 			return -ENOMEM;
3108 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3109 	}
3110 
3111 	nvme_init_known_nvm_effects(ctrl);
3112 	return 0;
3113 }
3114 
3115 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3116 {
3117 	/*
3118 	 * In fabrics we need to verify the cntlid matches the
3119 	 * admin connect
3120 	 */
3121 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3122 		dev_err(ctrl->device,
3123 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3124 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3125 		return -EINVAL;
3126 	}
3127 
3128 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3129 		dev_err(ctrl->device,
3130 			"keep-alive support is mandatory for fabrics\n");
3131 		return -EINVAL;
3132 	}
3133 
3134 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3135 		dev_err(ctrl->device,
3136 			"I/O queue command capsule supported size %d < 4\n",
3137 			ctrl->ioccsz);
3138 		return -EINVAL;
3139 	}
3140 
3141 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3142 		dev_err(ctrl->device,
3143 			"I/O queue response capsule supported size %d < 1\n",
3144 			ctrl->iorcsz);
3145 		return -EINVAL;
3146 	}
3147 
3148 	if (!ctrl->maxcmd) {
3149 		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3150 		return -EINVAL;
3151 	}
3152 
3153 	return 0;
3154 }
3155 
3156 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3157 {
3158 	struct queue_limits lim;
3159 	struct nvme_id_ctrl *id;
3160 	u32 max_hw_sectors;
3161 	bool prev_apst_enabled;
3162 	int ret;
3163 
3164 	ret = nvme_identify_ctrl(ctrl, &id);
3165 	if (ret) {
3166 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3167 		return -EIO;
3168 	}
3169 
3170 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3171 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3172 
3173 	if (!ctrl->identified) {
3174 		unsigned int i;
3175 
3176 		/*
3177 		 * Check for quirks.  Quirk can depend on firmware version,
3178 		 * so, in principle, the set of quirks present can change
3179 		 * across a reset.  As a possible future enhancement, we
3180 		 * could re-scan for quirks every time we reinitialize
3181 		 * the device, but we'd have to make sure that the driver
3182 		 * behaves intelligently if the quirks change.
3183 		 */
3184 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3185 			if (quirk_matches(id, &core_quirks[i]))
3186 				ctrl->quirks |= core_quirks[i].quirks;
3187 		}
3188 
3189 		ret = nvme_init_subsystem(ctrl, id);
3190 		if (ret)
3191 			goto out_free;
3192 
3193 		ret = nvme_init_effects(ctrl, id);
3194 		if (ret)
3195 			goto out_free;
3196 	}
3197 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3198 	       sizeof(ctrl->subsys->firmware_rev));
3199 
3200 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3201 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3202 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3203 	}
3204 
3205 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3206 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3207 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3208 
3209 	ctrl->oacs = le16_to_cpu(id->oacs);
3210 	ctrl->oncs = le16_to_cpu(id->oncs);
3211 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3212 	ctrl->oaes = le32_to_cpu(id->oaes);
3213 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3214 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3215 
3216 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3217 	ctrl->vwc = id->vwc;
3218 	if (id->mdts)
3219 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3220 	else
3221 		max_hw_sectors = UINT_MAX;
3222 	ctrl->max_hw_sectors =
3223 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3224 
3225 	lim = queue_limits_start_update(ctrl->admin_q);
3226 	nvme_set_ctrl_limits(ctrl, &lim);
3227 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3228 	if (ret)
3229 		goto out_free;
3230 
3231 	ctrl->sgls = le32_to_cpu(id->sgls);
3232 	ctrl->kas = le16_to_cpu(id->kas);
3233 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3234 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3235 
3236 	ctrl->cntrltype = id->cntrltype;
3237 	ctrl->dctype = id->dctype;
3238 
3239 	if (id->rtd3e) {
3240 		/* us -> s */
3241 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3242 
3243 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3244 						 shutdown_timeout, 60);
3245 
3246 		if (ctrl->shutdown_timeout != shutdown_timeout)
3247 			dev_info(ctrl->device,
3248 				 "D3 entry latency set to %u seconds\n",
3249 				 ctrl->shutdown_timeout);
3250 	} else
3251 		ctrl->shutdown_timeout = shutdown_timeout;
3252 
3253 	ctrl->npss = id->npss;
3254 	ctrl->apsta = id->apsta;
3255 	prev_apst_enabled = ctrl->apst_enabled;
3256 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3257 		if (force_apst && id->apsta) {
3258 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3259 			ctrl->apst_enabled = true;
3260 		} else {
3261 			ctrl->apst_enabled = false;
3262 		}
3263 	} else {
3264 		ctrl->apst_enabled = id->apsta;
3265 	}
3266 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3267 
3268 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3269 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3270 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3271 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3272 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3273 
3274 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3275 		if (ret)
3276 			goto out_free;
3277 	} else {
3278 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3279 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3280 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3281 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3282 	}
3283 
3284 	ret = nvme_mpath_init_identify(ctrl, id);
3285 	if (ret < 0)
3286 		goto out_free;
3287 
3288 	if (ctrl->apst_enabled && !prev_apst_enabled)
3289 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3290 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3291 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3292 
3293 out_free:
3294 	kfree(id);
3295 	return ret;
3296 }
3297 
3298 /*
3299  * Initialize the cached copies of the Identify data and various controller
3300  * register in our nvme_ctrl structure.  This should be called as soon as
3301  * the admin queue is fully up and running.
3302  */
3303 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3304 {
3305 	int ret;
3306 
3307 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3308 	if (ret) {
3309 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3310 		return ret;
3311 	}
3312 
3313 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3314 
3315 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3316 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3317 
3318 	ret = nvme_init_identify(ctrl);
3319 	if (ret)
3320 		return ret;
3321 
3322 	ret = nvme_configure_apst(ctrl);
3323 	if (ret < 0)
3324 		return ret;
3325 
3326 	ret = nvme_configure_timestamp(ctrl);
3327 	if (ret < 0)
3328 		return ret;
3329 
3330 	ret = nvme_configure_host_options(ctrl);
3331 	if (ret < 0)
3332 		return ret;
3333 
3334 	nvme_configure_opal(ctrl, was_suspended);
3335 
3336 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3337 		/*
3338 		 * Do not return errors unless we are in a controller reset,
3339 		 * the controller works perfectly fine without hwmon.
3340 		 */
3341 		ret = nvme_hwmon_init(ctrl);
3342 		if (ret == -EINTR)
3343 			return ret;
3344 	}
3345 
3346 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3347 	ctrl->identified = true;
3348 
3349 	nvme_start_keep_alive(ctrl);
3350 
3351 	return 0;
3352 }
3353 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3354 
3355 static int nvme_dev_open(struct inode *inode, struct file *file)
3356 {
3357 	struct nvme_ctrl *ctrl =
3358 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3359 
3360 	switch (nvme_ctrl_state(ctrl)) {
3361 	case NVME_CTRL_LIVE:
3362 		break;
3363 	default:
3364 		return -EWOULDBLOCK;
3365 	}
3366 
3367 	nvme_get_ctrl(ctrl);
3368 	if (!try_module_get(ctrl->ops->module)) {
3369 		nvme_put_ctrl(ctrl);
3370 		return -EINVAL;
3371 	}
3372 
3373 	file->private_data = ctrl;
3374 	return 0;
3375 }
3376 
3377 static int nvme_dev_release(struct inode *inode, struct file *file)
3378 {
3379 	struct nvme_ctrl *ctrl =
3380 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3381 
3382 	module_put(ctrl->ops->module);
3383 	nvme_put_ctrl(ctrl);
3384 	return 0;
3385 }
3386 
3387 static const struct file_operations nvme_dev_fops = {
3388 	.owner		= THIS_MODULE,
3389 	.open		= nvme_dev_open,
3390 	.release	= nvme_dev_release,
3391 	.unlocked_ioctl	= nvme_dev_ioctl,
3392 	.compat_ioctl	= compat_ptr_ioctl,
3393 	.uring_cmd	= nvme_dev_uring_cmd,
3394 };
3395 
3396 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3397 		unsigned nsid)
3398 {
3399 	struct nvme_ns_head *h;
3400 
3401 	lockdep_assert_held(&ctrl->subsys->lock);
3402 
3403 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3404 		/*
3405 		 * Private namespaces can share NSIDs under some conditions.
3406 		 * In that case we can't use the same ns_head for namespaces
3407 		 * with the same NSID.
3408 		 */
3409 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3410 			continue;
3411 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3412 			return h;
3413 	}
3414 
3415 	return NULL;
3416 }
3417 
3418 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3419 		struct nvme_ns_ids *ids)
3420 {
3421 	bool has_uuid = !uuid_is_null(&ids->uuid);
3422 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3423 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3424 	struct nvme_ns_head *h;
3425 
3426 	lockdep_assert_held(&subsys->lock);
3427 
3428 	list_for_each_entry(h, &subsys->nsheads, entry) {
3429 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3430 			return -EINVAL;
3431 		if (has_nguid &&
3432 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3433 			return -EINVAL;
3434 		if (has_eui64 &&
3435 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3436 			return -EINVAL;
3437 	}
3438 
3439 	return 0;
3440 }
3441 
3442 static void nvme_cdev_rel(struct device *dev)
3443 {
3444 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3445 }
3446 
3447 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3448 {
3449 	cdev_device_del(cdev, cdev_device);
3450 	put_device(cdev_device);
3451 }
3452 
3453 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3454 		const struct file_operations *fops, struct module *owner)
3455 {
3456 	int minor, ret;
3457 
3458 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3459 	if (minor < 0)
3460 		return minor;
3461 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3462 	cdev_device->class = &nvme_ns_chr_class;
3463 	cdev_device->release = nvme_cdev_rel;
3464 	device_initialize(cdev_device);
3465 	cdev_init(cdev, fops);
3466 	cdev->owner = owner;
3467 	ret = cdev_device_add(cdev, cdev_device);
3468 	if (ret)
3469 		put_device(cdev_device);
3470 
3471 	return ret;
3472 }
3473 
3474 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3475 {
3476 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3477 }
3478 
3479 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3480 {
3481 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3482 	return 0;
3483 }
3484 
3485 static const struct file_operations nvme_ns_chr_fops = {
3486 	.owner		= THIS_MODULE,
3487 	.open		= nvme_ns_chr_open,
3488 	.release	= nvme_ns_chr_release,
3489 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3490 	.compat_ioctl	= compat_ptr_ioctl,
3491 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3492 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3493 };
3494 
3495 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3496 {
3497 	int ret;
3498 
3499 	ns->cdev_device.parent = ns->ctrl->device;
3500 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3501 			   ns->ctrl->instance, ns->head->instance);
3502 	if (ret)
3503 		return ret;
3504 
3505 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3506 			     ns->ctrl->ops->module);
3507 }
3508 
3509 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3510 		struct nvme_ns_info *info)
3511 {
3512 	struct nvme_ns_head *head;
3513 	size_t size = sizeof(*head);
3514 	int ret = -ENOMEM;
3515 
3516 #ifdef CONFIG_NVME_MULTIPATH
3517 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3518 #endif
3519 
3520 	head = kzalloc(size, GFP_KERNEL);
3521 	if (!head)
3522 		goto out;
3523 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3524 	if (ret < 0)
3525 		goto out_free_head;
3526 	head->instance = ret;
3527 	INIT_LIST_HEAD(&head->list);
3528 	ret = init_srcu_struct(&head->srcu);
3529 	if (ret)
3530 		goto out_ida_remove;
3531 	head->subsys = ctrl->subsys;
3532 	head->ns_id = info->nsid;
3533 	head->ids = info->ids;
3534 	head->shared = info->is_shared;
3535 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3536 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3537 	kref_init(&head->ref);
3538 
3539 	if (head->ids.csi) {
3540 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3541 		if (ret)
3542 			goto out_cleanup_srcu;
3543 	} else
3544 		head->effects = ctrl->effects;
3545 
3546 	ret = nvme_mpath_alloc_disk(ctrl, head);
3547 	if (ret)
3548 		goto out_cleanup_srcu;
3549 
3550 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3551 
3552 	kref_get(&ctrl->subsys->ref);
3553 
3554 	return head;
3555 out_cleanup_srcu:
3556 	cleanup_srcu_struct(&head->srcu);
3557 out_ida_remove:
3558 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3559 out_free_head:
3560 	kfree(head);
3561 out:
3562 	if (ret > 0)
3563 		ret = blk_status_to_errno(nvme_error_status(ret));
3564 	return ERR_PTR(ret);
3565 }
3566 
3567 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3568 		struct nvme_ns_ids *ids)
3569 {
3570 	struct nvme_subsystem *s;
3571 	int ret = 0;
3572 
3573 	/*
3574 	 * Note that this check is racy as we try to avoid holding the global
3575 	 * lock over the whole ns_head creation.  But it is only intended as
3576 	 * a sanity check anyway.
3577 	 */
3578 	mutex_lock(&nvme_subsystems_lock);
3579 	list_for_each_entry(s, &nvme_subsystems, entry) {
3580 		if (s == this)
3581 			continue;
3582 		mutex_lock(&s->lock);
3583 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3584 		mutex_unlock(&s->lock);
3585 		if (ret)
3586 			break;
3587 	}
3588 	mutex_unlock(&nvme_subsystems_lock);
3589 
3590 	return ret;
3591 }
3592 
3593 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3594 {
3595 	struct nvme_ctrl *ctrl = ns->ctrl;
3596 	struct nvme_ns_head *head = NULL;
3597 	int ret;
3598 
3599 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3600 	if (ret) {
3601 		/*
3602 		 * We've found two different namespaces on two different
3603 		 * subsystems that report the same ID.  This is pretty nasty
3604 		 * for anything that actually requires unique device
3605 		 * identification.  In the kernel we need this for multipathing,
3606 		 * and in user space the /dev/disk/by-id/ links rely on it.
3607 		 *
3608 		 * If the device also claims to be multi-path capable back off
3609 		 * here now and refuse the probe the second device as this is a
3610 		 * recipe for data corruption.  If not this is probably a
3611 		 * cheap consumer device if on the PCIe bus, so let the user
3612 		 * proceed and use the shiny toy, but warn that with changing
3613 		 * probing order (which due to our async probing could just be
3614 		 * device taking longer to startup) the other device could show
3615 		 * up at any time.
3616 		 */
3617 		nvme_print_device_info(ctrl);
3618 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3619 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3620 		     info->is_shared)) {
3621 			dev_err(ctrl->device,
3622 				"ignoring nsid %d because of duplicate IDs\n",
3623 				info->nsid);
3624 			return ret;
3625 		}
3626 
3627 		dev_err(ctrl->device,
3628 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3629 		dev_err(ctrl->device,
3630 			"use of /dev/disk/by-id/ may cause data corruption\n");
3631 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3632 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3633 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3634 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3635 	}
3636 
3637 	mutex_lock(&ctrl->subsys->lock);
3638 	head = nvme_find_ns_head(ctrl, info->nsid);
3639 	if (!head) {
3640 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3641 		if (ret) {
3642 			dev_err(ctrl->device,
3643 				"duplicate IDs in subsystem for nsid %d\n",
3644 				info->nsid);
3645 			goto out_unlock;
3646 		}
3647 		head = nvme_alloc_ns_head(ctrl, info);
3648 		if (IS_ERR(head)) {
3649 			ret = PTR_ERR(head);
3650 			goto out_unlock;
3651 		}
3652 	} else {
3653 		ret = -EINVAL;
3654 		if (!info->is_shared || !head->shared) {
3655 			dev_err(ctrl->device,
3656 				"Duplicate unshared namespace %d\n",
3657 				info->nsid);
3658 			goto out_put_ns_head;
3659 		}
3660 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3661 			dev_err(ctrl->device,
3662 				"IDs don't match for shared namespace %d\n",
3663 					info->nsid);
3664 			goto out_put_ns_head;
3665 		}
3666 
3667 		if (!multipath) {
3668 			dev_warn(ctrl->device,
3669 				"Found shared namespace %d, but multipathing not supported.\n",
3670 				info->nsid);
3671 			dev_warn_once(ctrl->device,
3672 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3673 		}
3674 	}
3675 
3676 	list_add_tail_rcu(&ns->siblings, &head->list);
3677 	ns->head = head;
3678 	mutex_unlock(&ctrl->subsys->lock);
3679 	return 0;
3680 
3681 out_put_ns_head:
3682 	nvme_put_ns_head(head);
3683 out_unlock:
3684 	mutex_unlock(&ctrl->subsys->lock);
3685 	return ret;
3686 }
3687 
3688 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3689 {
3690 	struct nvme_ns *ns, *ret = NULL;
3691 	int srcu_idx;
3692 
3693 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3694 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
3695 		if (ns->head->ns_id == nsid) {
3696 			if (!nvme_get_ns(ns))
3697 				continue;
3698 			ret = ns;
3699 			break;
3700 		}
3701 		if (ns->head->ns_id > nsid)
3702 			break;
3703 	}
3704 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3705 	return ret;
3706 }
3707 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3708 
3709 /*
3710  * Add the namespace to the controller list while keeping the list ordered.
3711  */
3712 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3713 {
3714 	struct nvme_ns *tmp;
3715 
3716 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3717 		if (tmp->head->ns_id < ns->head->ns_id) {
3718 			list_add_rcu(&ns->list, &tmp->list);
3719 			return;
3720 		}
3721 	}
3722 	list_add(&ns->list, &ns->ctrl->namespaces);
3723 }
3724 
3725 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3726 {
3727 	struct queue_limits lim = { };
3728 	struct nvme_ns *ns;
3729 	struct gendisk *disk;
3730 	int node = ctrl->numa_node;
3731 
3732 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3733 	if (!ns)
3734 		return;
3735 
3736 	if (ctrl->opts && ctrl->opts->data_digest)
3737 		lim.features |= BLK_FEAT_STABLE_WRITES;
3738 	if (ctrl->ops->supports_pci_p2pdma &&
3739 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3740 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3741 
3742 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3743 	if (IS_ERR(disk))
3744 		goto out_free_ns;
3745 	disk->fops = &nvme_bdev_ops;
3746 	disk->private_data = ns;
3747 
3748 	ns->disk = disk;
3749 	ns->queue = disk->queue;
3750 	ns->ctrl = ctrl;
3751 	kref_init(&ns->kref);
3752 
3753 	if (nvme_init_ns_head(ns, info))
3754 		goto out_cleanup_disk;
3755 
3756 	/*
3757 	 * If multipathing is enabled, the device name for all disks and not
3758 	 * just those that represent shared namespaces needs to be based on the
3759 	 * subsystem instance.  Using the controller instance for private
3760 	 * namespaces could lead to naming collisions between shared and private
3761 	 * namespaces if they don't use a common numbering scheme.
3762 	 *
3763 	 * If multipathing is not enabled, disk names must use the controller
3764 	 * instance as shared namespaces will show up as multiple block
3765 	 * devices.
3766 	 */
3767 	if (nvme_ns_head_multipath(ns->head)) {
3768 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3769 			ctrl->instance, ns->head->instance);
3770 		disk->flags |= GENHD_FL_HIDDEN;
3771 	} else if (multipath) {
3772 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3773 			ns->head->instance);
3774 	} else {
3775 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3776 			ns->head->instance);
3777 	}
3778 
3779 	if (nvme_update_ns_info(ns, info))
3780 		goto out_unlink_ns;
3781 
3782 	mutex_lock(&ctrl->namespaces_lock);
3783 	/*
3784 	 * Ensure that no namespaces are added to the ctrl list after the queues
3785 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3786 	 */
3787 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3788 		mutex_unlock(&ctrl->namespaces_lock);
3789 		goto out_unlink_ns;
3790 	}
3791 	nvme_ns_add_to_ctrl_list(ns);
3792 	mutex_unlock(&ctrl->namespaces_lock);
3793 	synchronize_srcu(&ctrl->srcu);
3794 	nvme_get_ctrl(ctrl);
3795 
3796 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3797 		goto out_cleanup_ns_from_list;
3798 
3799 	if (!nvme_ns_head_multipath(ns->head))
3800 		nvme_add_ns_cdev(ns);
3801 
3802 	nvme_mpath_add_disk(ns, info->anagrpid);
3803 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3804 
3805 	/*
3806 	 * Set ns->disk->device->driver_data to ns so we can access
3807 	 * ns->head->passthru_err_log_enabled in
3808 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3809 	 */
3810 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3811 
3812 	return;
3813 
3814  out_cleanup_ns_from_list:
3815 	nvme_put_ctrl(ctrl);
3816 	mutex_lock(&ctrl->namespaces_lock);
3817 	list_del_rcu(&ns->list);
3818 	mutex_unlock(&ctrl->namespaces_lock);
3819 	synchronize_srcu(&ctrl->srcu);
3820  out_unlink_ns:
3821 	mutex_lock(&ctrl->subsys->lock);
3822 	list_del_rcu(&ns->siblings);
3823 	if (list_empty(&ns->head->list))
3824 		list_del_init(&ns->head->entry);
3825 	mutex_unlock(&ctrl->subsys->lock);
3826 	nvme_put_ns_head(ns->head);
3827  out_cleanup_disk:
3828 	put_disk(disk);
3829  out_free_ns:
3830 	kfree(ns);
3831 }
3832 
3833 static void nvme_ns_remove(struct nvme_ns *ns)
3834 {
3835 	bool last_path = false;
3836 
3837 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3838 		return;
3839 
3840 	clear_bit(NVME_NS_READY, &ns->flags);
3841 	set_capacity(ns->disk, 0);
3842 	nvme_fault_inject_fini(&ns->fault_inject);
3843 
3844 	/*
3845 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3846 	 * this ns going back into current_path.
3847 	 */
3848 	synchronize_srcu(&ns->head->srcu);
3849 
3850 	/* wait for concurrent submissions */
3851 	if (nvme_mpath_clear_current_path(ns))
3852 		synchronize_srcu(&ns->head->srcu);
3853 
3854 	mutex_lock(&ns->ctrl->subsys->lock);
3855 	list_del_rcu(&ns->siblings);
3856 	if (list_empty(&ns->head->list)) {
3857 		list_del_init(&ns->head->entry);
3858 		last_path = true;
3859 	}
3860 	mutex_unlock(&ns->ctrl->subsys->lock);
3861 
3862 	/* guarantee not available in head->list */
3863 	synchronize_srcu(&ns->head->srcu);
3864 
3865 	if (!nvme_ns_head_multipath(ns->head))
3866 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3867 	del_gendisk(ns->disk);
3868 
3869 	mutex_lock(&ns->ctrl->namespaces_lock);
3870 	list_del_rcu(&ns->list);
3871 	mutex_unlock(&ns->ctrl->namespaces_lock);
3872 	synchronize_srcu(&ns->ctrl->srcu);
3873 
3874 	if (last_path)
3875 		nvme_mpath_shutdown_disk(ns->head);
3876 	nvme_put_ns(ns);
3877 }
3878 
3879 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3880 {
3881 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3882 
3883 	if (ns) {
3884 		nvme_ns_remove(ns);
3885 		nvme_put_ns(ns);
3886 	}
3887 }
3888 
3889 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3890 {
3891 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3892 
3893 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3894 		dev_err(ns->ctrl->device,
3895 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3896 		goto out;
3897 	}
3898 
3899 	ret = nvme_update_ns_info(ns, info);
3900 out:
3901 	/*
3902 	 * Only remove the namespace if we got a fatal error back from the
3903 	 * device, otherwise ignore the error and just move on.
3904 	 *
3905 	 * TODO: we should probably schedule a delayed retry here.
3906 	 */
3907 	if (ret > 0 && (ret & NVME_SC_DNR))
3908 		nvme_ns_remove(ns);
3909 }
3910 
3911 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3912 {
3913 	struct nvme_ns_info info = { .nsid = nsid };
3914 	struct nvme_ns *ns;
3915 	int ret;
3916 
3917 	if (nvme_identify_ns_descs(ctrl, &info))
3918 		return;
3919 
3920 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3921 		dev_warn(ctrl->device,
3922 			"command set not reported for nsid: %d\n", nsid);
3923 		return;
3924 	}
3925 
3926 	/*
3927 	 * If available try to use the Command Set Idependent Identify Namespace
3928 	 * data structure to find all the generic information that is needed to
3929 	 * set up a namespace.  If not fall back to the legacy version.
3930 	 */
3931 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3932 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3933 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3934 	else
3935 		ret = nvme_ns_info_from_identify(ctrl, &info);
3936 
3937 	if (info.is_removed)
3938 		nvme_ns_remove_by_nsid(ctrl, nsid);
3939 
3940 	/*
3941 	 * Ignore the namespace if it is not ready. We will get an AEN once it
3942 	 * becomes ready and restart the scan.
3943 	 */
3944 	if (ret || !info.is_ready)
3945 		return;
3946 
3947 	ns = nvme_find_get_ns(ctrl, nsid);
3948 	if (ns) {
3949 		nvme_validate_ns(ns, &info);
3950 		nvme_put_ns(ns);
3951 	} else {
3952 		nvme_alloc_ns(ctrl, &info);
3953 	}
3954 }
3955 
3956 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3957 					unsigned nsid)
3958 {
3959 	struct nvme_ns *ns, *next;
3960 	LIST_HEAD(rm_list);
3961 
3962 	mutex_lock(&ctrl->namespaces_lock);
3963 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3964 		if (ns->head->ns_id > nsid)
3965 			list_splice_init_rcu(&ns->list, &rm_list,
3966 					     synchronize_rcu);
3967 	}
3968 	mutex_unlock(&ctrl->namespaces_lock);
3969 	synchronize_srcu(&ctrl->srcu);
3970 
3971 	list_for_each_entry_safe(ns, next, &rm_list, list)
3972 		nvme_ns_remove(ns);
3973 }
3974 
3975 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3976 {
3977 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3978 	__le32 *ns_list;
3979 	u32 prev = 0;
3980 	int ret = 0, i;
3981 
3982 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3983 	if (!ns_list)
3984 		return -ENOMEM;
3985 
3986 	for (;;) {
3987 		struct nvme_command cmd = {
3988 			.identify.opcode	= nvme_admin_identify,
3989 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3990 			.identify.nsid		= cpu_to_le32(prev),
3991 		};
3992 
3993 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3994 					    NVME_IDENTIFY_DATA_SIZE);
3995 		if (ret) {
3996 			dev_warn(ctrl->device,
3997 				"Identify NS List failed (status=0x%x)\n", ret);
3998 			goto free;
3999 		}
4000 
4001 		for (i = 0; i < nr_entries; i++) {
4002 			u32 nsid = le32_to_cpu(ns_list[i]);
4003 
4004 			if (!nsid)	/* end of the list? */
4005 				goto out;
4006 			nvme_scan_ns(ctrl, nsid);
4007 			while (++prev < nsid)
4008 				nvme_ns_remove_by_nsid(ctrl, prev);
4009 		}
4010 	}
4011  out:
4012 	nvme_remove_invalid_namespaces(ctrl, prev);
4013  free:
4014 	kfree(ns_list);
4015 	return ret;
4016 }
4017 
4018 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4019 {
4020 	struct nvme_id_ctrl *id;
4021 	u32 nn, i;
4022 
4023 	if (nvme_identify_ctrl(ctrl, &id))
4024 		return;
4025 	nn = le32_to_cpu(id->nn);
4026 	kfree(id);
4027 
4028 	for (i = 1; i <= nn; i++)
4029 		nvme_scan_ns(ctrl, i);
4030 
4031 	nvme_remove_invalid_namespaces(ctrl, nn);
4032 }
4033 
4034 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4035 {
4036 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4037 	__le32 *log;
4038 	int error;
4039 
4040 	log = kzalloc(log_size, GFP_KERNEL);
4041 	if (!log)
4042 		return;
4043 
4044 	/*
4045 	 * We need to read the log to clear the AEN, but we don't want to rely
4046 	 * on it for the changed namespace information as userspace could have
4047 	 * raced with us in reading the log page, which could cause us to miss
4048 	 * updates.
4049 	 */
4050 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4051 			NVME_CSI_NVM, log, log_size, 0);
4052 	if (error)
4053 		dev_warn(ctrl->device,
4054 			"reading changed ns log failed: %d\n", error);
4055 
4056 	kfree(log);
4057 }
4058 
4059 static void nvme_scan_work(struct work_struct *work)
4060 {
4061 	struct nvme_ctrl *ctrl =
4062 		container_of(work, struct nvme_ctrl, scan_work);
4063 	int ret;
4064 
4065 	/* No tagset on a live ctrl means IO queues could not created */
4066 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4067 		return;
4068 
4069 	/*
4070 	 * Identify controller limits can change at controller reset due to
4071 	 * new firmware download, even though it is not common we cannot ignore
4072 	 * such scenario. Controller's non-mdts limits are reported in the unit
4073 	 * of logical blocks that is dependent on the format of attached
4074 	 * namespace. Hence re-read the limits at the time of ns allocation.
4075 	 */
4076 	ret = nvme_init_non_mdts_limits(ctrl);
4077 	if (ret < 0) {
4078 		dev_warn(ctrl->device,
4079 			"reading non-mdts-limits failed: %d\n", ret);
4080 		return;
4081 	}
4082 
4083 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4084 		dev_info(ctrl->device, "rescanning namespaces.\n");
4085 		nvme_clear_changed_ns_log(ctrl);
4086 	}
4087 
4088 	mutex_lock(&ctrl->scan_lock);
4089 	if (nvme_ctrl_limited_cns(ctrl)) {
4090 		nvme_scan_ns_sequential(ctrl);
4091 	} else {
4092 		/*
4093 		 * Fall back to sequential scan if DNR is set to handle broken
4094 		 * devices which should support Identify NS List (as per the VS
4095 		 * they report) but don't actually support it.
4096 		 */
4097 		ret = nvme_scan_ns_list(ctrl);
4098 		if (ret > 0 && ret & NVME_SC_DNR)
4099 			nvme_scan_ns_sequential(ctrl);
4100 	}
4101 	mutex_unlock(&ctrl->scan_lock);
4102 }
4103 
4104 /*
4105  * This function iterates the namespace list unlocked to allow recovery from
4106  * controller failure. It is up to the caller to ensure the namespace list is
4107  * not modified by scan work while this function is executing.
4108  */
4109 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4110 {
4111 	struct nvme_ns *ns, *next;
4112 	LIST_HEAD(ns_list);
4113 
4114 	/*
4115 	 * make sure to requeue I/O to all namespaces as these
4116 	 * might result from the scan itself and must complete
4117 	 * for the scan_work to make progress
4118 	 */
4119 	nvme_mpath_clear_ctrl_paths(ctrl);
4120 
4121 	/*
4122 	 * Unquiesce io queues so any pending IO won't hang, especially
4123 	 * those submitted from scan work
4124 	 */
4125 	nvme_unquiesce_io_queues(ctrl);
4126 
4127 	/* prevent racing with ns scanning */
4128 	flush_work(&ctrl->scan_work);
4129 
4130 	/*
4131 	 * The dead states indicates the controller was not gracefully
4132 	 * disconnected. In that case, we won't be able to flush any data while
4133 	 * removing the namespaces' disks; fail all the queues now to avoid
4134 	 * potentially having to clean up the failed sync later.
4135 	 */
4136 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4137 		nvme_mark_namespaces_dead(ctrl);
4138 
4139 	/* this is a no-op when called from the controller reset handler */
4140 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4141 
4142 	mutex_lock(&ctrl->namespaces_lock);
4143 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4144 	mutex_unlock(&ctrl->namespaces_lock);
4145 	synchronize_srcu(&ctrl->srcu);
4146 
4147 	list_for_each_entry_safe(ns, next, &ns_list, list)
4148 		nvme_ns_remove(ns);
4149 }
4150 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4151 
4152 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4153 {
4154 	const struct nvme_ctrl *ctrl =
4155 		container_of(dev, struct nvme_ctrl, ctrl_device);
4156 	struct nvmf_ctrl_options *opts = ctrl->opts;
4157 	int ret;
4158 
4159 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4160 	if (ret)
4161 		return ret;
4162 
4163 	if (opts) {
4164 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4165 		if (ret)
4166 			return ret;
4167 
4168 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4169 				opts->trsvcid ?: "none");
4170 		if (ret)
4171 			return ret;
4172 
4173 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4174 				opts->host_traddr ?: "none");
4175 		if (ret)
4176 			return ret;
4177 
4178 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4179 				opts->host_iface ?: "none");
4180 	}
4181 	return ret;
4182 }
4183 
4184 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4185 {
4186 	char *envp[2] = { envdata, NULL };
4187 
4188 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4189 }
4190 
4191 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4192 {
4193 	char *envp[2] = { NULL, NULL };
4194 	u32 aen_result = ctrl->aen_result;
4195 
4196 	ctrl->aen_result = 0;
4197 	if (!aen_result)
4198 		return;
4199 
4200 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4201 	if (!envp[0])
4202 		return;
4203 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4204 	kfree(envp[0]);
4205 }
4206 
4207 static void nvme_async_event_work(struct work_struct *work)
4208 {
4209 	struct nvme_ctrl *ctrl =
4210 		container_of(work, struct nvme_ctrl, async_event_work);
4211 
4212 	nvme_aen_uevent(ctrl);
4213 
4214 	/*
4215 	 * The transport drivers must guarantee AER submission here is safe by
4216 	 * flushing ctrl async_event_work after changing the controller state
4217 	 * from LIVE and before freeing the admin queue.
4218 	*/
4219 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4220 		ctrl->ops->submit_async_event(ctrl);
4221 }
4222 
4223 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4224 {
4225 
4226 	u32 csts;
4227 
4228 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4229 		return false;
4230 
4231 	if (csts == ~0)
4232 		return false;
4233 
4234 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4235 }
4236 
4237 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4238 {
4239 	struct nvme_fw_slot_info_log *log;
4240 	u8 next_fw_slot, cur_fw_slot;
4241 
4242 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4243 	if (!log)
4244 		return;
4245 
4246 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4247 			 log, sizeof(*log), 0)) {
4248 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4249 		goto out_free_log;
4250 	}
4251 
4252 	cur_fw_slot = log->afi & 0x7;
4253 	next_fw_slot = (log->afi & 0x70) >> 4;
4254 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4255 		dev_info(ctrl->device,
4256 			 "Firmware is activated after next Controller Level Reset\n");
4257 		goto out_free_log;
4258 	}
4259 
4260 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4261 		sizeof(ctrl->subsys->firmware_rev));
4262 
4263 out_free_log:
4264 	kfree(log);
4265 }
4266 
4267 static void nvme_fw_act_work(struct work_struct *work)
4268 {
4269 	struct nvme_ctrl *ctrl = container_of(work,
4270 				struct nvme_ctrl, fw_act_work);
4271 	unsigned long fw_act_timeout;
4272 
4273 	nvme_auth_stop(ctrl);
4274 
4275 	if (ctrl->mtfa)
4276 		fw_act_timeout = jiffies +
4277 				msecs_to_jiffies(ctrl->mtfa * 100);
4278 	else
4279 		fw_act_timeout = jiffies +
4280 				msecs_to_jiffies(admin_timeout * 1000);
4281 
4282 	nvme_quiesce_io_queues(ctrl);
4283 	while (nvme_ctrl_pp_status(ctrl)) {
4284 		if (time_after(jiffies, fw_act_timeout)) {
4285 			dev_warn(ctrl->device,
4286 				"Fw activation timeout, reset controller\n");
4287 			nvme_try_sched_reset(ctrl);
4288 			return;
4289 		}
4290 		msleep(100);
4291 	}
4292 
4293 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4294 		return;
4295 
4296 	nvme_unquiesce_io_queues(ctrl);
4297 	/* read FW slot information to clear the AER */
4298 	nvme_get_fw_slot_info(ctrl);
4299 
4300 	queue_work(nvme_wq, &ctrl->async_event_work);
4301 }
4302 
4303 static u32 nvme_aer_type(u32 result)
4304 {
4305 	return result & 0x7;
4306 }
4307 
4308 static u32 nvme_aer_subtype(u32 result)
4309 {
4310 	return (result & 0xff00) >> 8;
4311 }
4312 
4313 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4314 {
4315 	u32 aer_notice_type = nvme_aer_subtype(result);
4316 	bool requeue = true;
4317 
4318 	switch (aer_notice_type) {
4319 	case NVME_AER_NOTICE_NS_CHANGED:
4320 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4321 		nvme_queue_scan(ctrl);
4322 		break;
4323 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4324 		/*
4325 		 * We are (ab)using the RESETTING state to prevent subsequent
4326 		 * recovery actions from interfering with the controller's
4327 		 * firmware activation.
4328 		 */
4329 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4330 			requeue = false;
4331 			queue_work(nvme_wq, &ctrl->fw_act_work);
4332 		}
4333 		break;
4334 #ifdef CONFIG_NVME_MULTIPATH
4335 	case NVME_AER_NOTICE_ANA:
4336 		if (!ctrl->ana_log_buf)
4337 			break;
4338 		queue_work(nvme_wq, &ctrl->ana_work);
4339 		break;
4340 #endif
4341 	case NVME_AER_NOTICE_DISC_CHANGED:
4342 		ctrl->aen_result = result;
4343 		break;
4344 	default:
4345 		dev_warn(ctrl->device, "async event result %08x\n", result);
4346 	}
4347 	return requeue;
4348 }
4349 
4350 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4351 {
4352 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4353 	nvme_reset_ctrl(ctrl);
4354 }
4355 
4356 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4357 		volatile union nvme_result *res)
4358 {
4359 	u32 result = le32_to_cpu(res->u32);
4360 	u32 aer_type = nvme_aer_type(result);
4361 	u32 aer_subtype = nvme_aer_subtype(result);
4362 	bool requeue = true;
4363 
4364 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4365 		return;
4366 
4367 	trace_nvme_async_event(ctrl, result);
4368 	switch (aer_type) {
4369 	case NVME_AER_NOTICE:
4370 		requeue = nvme_handle_aen_notice(ctrl, result);
4371 		break;
4372 	case NVME_AER_ERROR:
4373 		/*
4374 		 * For a persistent internal error, don't run async_event_work
4375 		 * to submit a new AER. The controller reset will do it.
4376 		 */
4377 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4378 			nvme_handle_aer_persistent_error(ctrl);
4379 			return;
4380 		}
4381 		fallthrough;
4382 	case NVME_AER_SMART:
4383 	case NVME_AER_CSS:
4384 	case NVME_AER_VS:
4385 		ctrl->aen_result = result;
4386 		break;
4387 	default:
4388 		break;
4389 	}
4390 
4391 	if (requeue)
4392 		queue_work(nvme_wq, &ctrl->async_event_work);
4393 }
4394 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4395 
4396 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4397 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4398 {
4399 	struct queue_limits lim = {};
4400 	int ret;
4401 
4402 	memset(set, 0, sizeof(*set));
4403 	set->ops = ops;
4404 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4405 	if (ctrl->ops->flags & NVME_F_FABRICS)
4406 		/* Reserved for fabric connect and keep alive */
4407 		set->reserved_tags = 2;
4408 	set->numa_node = ctrl->numa_node;
4409 	set->flags = BLK_MQ_F_NO_SCHED;
4410 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4411 		set->flags |= BLK_MQ_F_BLOCKING;
4412 	set->cmd_size = cmd_size;
4413 	set->driver_data = ctrl;
4414 	set->nr_hw_queues = 1;
4415 	set->timeout = NVME_ADMIN_TIMEOUT;
4416 	ret = blk_mq_alloc_tag_set(set);
4417 	if (ret)
4418 		return ret;
4419 
4420 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4421 	if (IS_ERR(ctrl->admin_q)) {
4422 		ret = PTR_ERR(ctrl->admin_q);
4423 		goto out_free_tagset;
4424 	}
4425 
4426 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4427 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4428 		if (IS_ERR(ctrl->fabrics_q)) {
4429 			ret = PTR_ERR(ctrl->fabrics_q);
4430 			goto out_cleanup_admin_q;
4431 		}
4432 	}
4433 
4434 	ctrl->admin_tagset = set;
4435 	return 0;
4436 
4437 out_cleanup_admin_q:
4438 	blk_mq_destroy_queue(ctrl->admin_q);
4439 	blk_put_queue(ctrl->admin_q);
4440 out_free_tagset:
4441 	blk_mq_free_tag_set(set);
4442 	ctrl->admin_q = NULL;
4443 	ctrl->fabrics_q = NULL;
4444 	return ret;
4445 }
4446 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4447 
4448 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4449 {
4450 	blk_mq_destroy_queue(ctrl->admin_q);
4451 	blk_put_queue(ctrl->admin_q);
4452 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4453 		blk_mq_destroy_queue(ctrl->fabrics_q);
4454 		blk_put_queue(ctrl->fabrics_q);
4455 	}
4456 	blk_mq_free_tag_set(ctrl->admin_tagset);
4457 }
4458 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4459 
4460 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4461 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4462 		unsigned int cmd_size)
4463 {
4464 	int ret;
4465 
4466 	memset(set, 0, sizeof(*set));
4467 	set->ops = ops;
4468 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4469 	/*
4470 	 * Some Apple controllers requires tags to be unique across admin and
4471 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4472 	 */
4473 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4474 		set->reserved_tags = NVME_AQ_DEPTH;
4475 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4476 		/* Reserved for fabric connect */
4477 		set->reserved_tags = 1;
4478 	set->numa_node = ctrl->numa_node;
4479 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4480 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4481 		set->flags |= BLK_MQ_F_BLOCKING;
4482 	set->cmd_size = cmd_size,
4483 	set->driver_data = ctrl;
4484 	set->nr_hw_queues = ctrl->queue_count - 1;
4485 	set->timeout = NVME_IO_TIMEOUT;
4486 	set->nr_maps = nr_maps;
4487 	ret = blk_mq_alloc_tag_set(set);
4488 	if (ret)
4489 		return ret;
4490 
4491 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4492 		struct queue_limits lim = {
4493 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4494 		};
4495 
4496 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4497         	if (IS_ERR(ctrl->connect_q)) {
4498 			ret = PTR_ERR(ctrl->connect_q);
4499 			goto out_free_tag_set;
4500 		}
4501 	}
4502 
4503 	ctrl->tagset = set;
4504 	return 0;
4505 
4506 out_free_tag_set:
4507 	blk_mq_free_tag_set(set);
4508 	ctrl->connect_q = NULL;
4509 	return ret;
4510 }
4511 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4512 
4513 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4514 {
4515 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4516 		blk_mq_destroy_queue(ctrl->connect_q);
4517 		blk_put_queue(ctrl->connect_q);
4518 	}
4519 	blk_mq_free_tag_set(ctrl->tagset);
4520 }
4521 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4522 
4523 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4524 {
4525 	nvme_mpath_stop(ctrl);
4526 	nvme_auth_stop(ctrl);
4527 	nvme_stop_keep_alive(ctrl);
4528 	nvme_stop_failfast_work(ctrl);
4529 	flush_work(&ctrl->async_event_work);
4530 	cancel_work_sync(&ctrl->fw_act_work);
4531 	if (ctrl->ops->stop_ctrl)
4532 		ctrl->ops->stop_ctrl(ctrl);
4533 }
4534 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4535 
4536 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4537 {
4538 	nvme_enable_aen(ctrl);
4539 
4540 	/*
4541 	 * persistent discovery controllers need to send indication to userspace
4542 	 * to re-read the discovery log page to learn about possible changes
4543 	 * that were missed. We identify persistent discovery controllers by
4544 	 * checking that they started once before, hence are reconnecting back.
4545 	 */
4546 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4547 	    nvme_discovery_ctrl(ctrl))
4548 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4549 
4550 	if (ctrl->queue_count > 1) {
4551 		nvme_queue_scan(ctrl);
4552 		nvme_unquiesce_io_queues(ctrl);
4553 		nvme_mpath_update(ctrl);
4554 	}
4555 
4556 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4557 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4558 }
4559 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4560 
4561 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4562 {
4563 	nvme_hwmon_exit(ctrl);
4564 	nvme_fault_inject_fini(&ctrl->fault_inject);
4565 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4566 	cdev_device_del(&ctrl->cdev, ctrl->device);
4567 	nvme_put_ctrl(ctrl);
4568 }
4569 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4570 
4571 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4572 {
4573 	struct nvme_effects_log	*cel;
4574 	unsigned long i;
4575 
4576 	xa_for_each(&ctrl->cels, i, cel) {
4577 		xa_erase(&ctrl->cels, i);
4578 		kfree(cel);
4579 	}
4580 
4581 	xa_destroy(&ctrl->cels);
4582 }
4583 
4584 static void nvme_free_ctrl(struct device *dev)
4585 {
4586 	struct nvme_ctrl *ctrl =
4587 		container_of(dev, struct nvme_ctrl, ctrl_device);
4588 	struct nvme_subsystem *subsys = ctrl->subsys;
4589 
4590 	if (!subsys || ctrl->instance != subsys->instance)
4591 		ida_free(&nvme_instance_ida, ctrl->instance);
4592 	key_put(ctrl->tls_key);
4593 	nvme_free_cels(ctrl);
4594 	nvme_mpath_uninit(ctrl);
4595 	cleanup_srcu_struct(&ctrl->srcu);
4596 	nvme_auth_stop(ctrl);
4597 	nvme_auth_free(ctrl);
4598 	__free_page(ctrl->discard_page);
4599 	free_opal_dev(ctrl->opal_dev);
4600 
4601 	if (subsys) {
4602 		mutex_lock(&nvme_subsystems_lock);
4603 		list_del(&ctrl->subsys_entry);
4604 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4605 		mutex_unlock(&nvme_subsystems_lock);
4606 	}
4607 
4608 	ctrl->ops->free_ctrl(ctrl);
4609 
4610 	if (subsys)
4611 		nvme_put_subsystem(subsys);
4612 }
4613 
4614 /*
4615  * Initialize a NVMe controller structures.  This needs to be called during
4616  * earliest initialization so that we have the initialized structured around
4617  * during probing.
4618  */
4619 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4620 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4621 {
4622 	int ret;
4623 
4624 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4625 	ctrl->passthru_err_log_enabled = false;
4626 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4627 	spin_lock_init(&ctrl->lock);
4628 	mutex_init(&ctrl->namespaces_lock);
4629 
4630 	ret = init_srcu_struct(&ctrl->srcu);
4631 	if (ret)
4632 		return ret;
4633 
4634 	mutex_init(&ctrl->scan_lock);
4635 	INIT_LIST_HEAD(&ctrl->namespaces);
4636 	xa_init(&ctrl->cels);
4637 	ctrl->dev = dev;
4638 	ctrl->ops = ops;
4639 	ctrl->quirks = quirks;
4640 	ctrl->numa_node = NUMA_NO_NODE;
4641 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4642 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4643 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4644 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4645 	init_waitqueue_head(&ctrl->state_wq);
4646 
4647 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4648 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4649 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4650 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4651 	ctrl->ka_last_check_time = jiffies;
4652 
4653 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4654 			PAGE_SIZE);
4655 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4656 	if (!ctrl->discard_page) {
4657 		ret = -ENOMEM;
4658 		goto out;
4659 	}
4660 
4661 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4662 	if (ret < 0)
4663 		goto out;
4664 	ctrl->instance = ret;
4665 
4666 	device_initialize(&ctrl->ctrl_device);
4667 	ctrl->device = &ctrl->ctrl_device;
4668 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4669 			ctrl->instance);
4670 	ctrl->device->class = &nvme_class;
4671 	ctrl->device->parent = ctrl->dev;
4672 	if (ops->dev_attr_groups)
4673 		ctrl->device->groups = ops->dev_attr_groups;
4674 	else
4675 		ctrl->device->groups = nvme_dev_attr_groups;
4676 	ctrl->device->release = nvme_free_ctrl;
4677 	dev_set_drvdata(ctrl->device, ctrl);
4678 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4679 	if (ret)
4680 		goto out_release_instance;
4681 
4682 	nvme_get_ctrl(ctrl);
4683 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4684 	ctrl->cdev.owner = ops->module;
4685 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4686 	if (ret)
4687 		goto out_free_name;
4688 
4689 	/*
4690 	 * Initialize latency tolerance controls.  The sysfs files won't
4691 	 * be visible to userspace unless the device actually supports APST.
4692 	 */
4693 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4694 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4695 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4696 
4697 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4698 	nvme_mpath_init_ctrl(ctrl);
4699 	ret = nvme_auth_init_ctrl(ctrl);
4700 	if (ret)
4701 		goto out_free_cdev;
4702 
4703 	return 0;
4704 out_free_cdev:
4705 	nvme_fault_inject_fini(&ctrl->fault_inject);
4706 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4707 	cdev_device_del(&ctrl->cdev, ctrl->device);
4708 out_free_name:
4709 	nvme_put_ctrl(ctrl);
4710 	kfree_const(ctrl->device->kobj.name);
4711 out_release_instance:
4712 	ida_free(&nvme_instance_ida, ctrl->instance);
4713 out:
4714 	if (ctrl->discard_page)
4715 		__free_page(ctrl->discard_page);
4716 	cleanup_srcu_struct(&ctrl->srcu);
4717 	return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4720 
4721 /* let I/O to all namespaces fail in preparation for surprise removal */
4722 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4723 {
4724 	struct nvme_ns *ns;
4725 	int srcu_idx;
4726 
4727 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4728 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4729 		blk_mark_disk_dead(ns->disk);
4730 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4731 }
4732 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4733 
4734 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4735 {
4736 	struct nvme_ns *ns;
4737 	int srcu_idx;
4738 
4739 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4740 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4741 		blk_mq_unfreeze_queue(ns->queue);
4742 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4743 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4744 }
4745 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4746 
4747 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4748 {
4749 	struct nvme_ns *ns;
4750 	int srcu_idx;
4751 
4752 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4753 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
4754 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4755 		if (timeout <= 0)
4756 			break;
4757 	}
4758 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4759 	return timeout;
4760 }
4761 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4762 
4763 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4764 {
4765 	struct nvme_ns *ns;
4766 	int srcu_idx;
4767 
4768 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4769 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4770 		blk_mq_freeze_queue_wait(ns->queue);
4771 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4772 }
4773 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4774 
4775 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4776 {
4777 	struct nvme_ns *ns;
4778 	int srcu_idx;
4779 
4780 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4781 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4782 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4783 		blk_freeze_queue_start(ns->queue);
4784 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4785 }
4786 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4787 
4788 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4789 {
4790 	if (!ctrl->tagset)
4791 		return;
4792 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4793 		blk_mq_quiesce_tagset(ctrl->tagset);
4794 	else
4795 		blk_mq_wait_quiesce_done(ctrl->tagset);
4796 }
4797 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4798 
4799 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4800 {
4801 	if (!ctrl->tagset)
4802 		return;
4803 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4804 		blk_mq_unquiesce_tagset(ctrl->tagset);
4805 }
4806 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4807 
4808 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4809 {
4810 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4811 		blk_mq_quiesce_queue(ctrl->admin_q);
4812 	else
4813 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4814 }
4815 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4816 
4817 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4818 {
4819 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4820 		blk_mq_unquiesce_queue(ctrl->admin_q);
4821 }
4822 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4823 
4824 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4825 {
4826 	struct nvme_ns *ns;
4827 	int srcu_idx;
4828 
4829 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4830 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4831 		blk_sync_queue(ns->queue);
4832 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4833 }
4834 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4835 
4836 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4837 {
4838 	nvme_sync_io_queues(ctrl);
4839 	if (ctrl->admin_q)
4840 		blk_sync_queue(ctrl->admin_q);
4841 }
4842 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4843 
4844 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4845 {
4846 	if (file->f_op != &nvme_dev_fops)
4847 		return NULL;
4848 	return file->private_data;
4849 }
4850 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4851 
4852 /*
4853  * Check we didn't inadvertently grow the command structure sizes:
4854  */
4855 static inline void _nvme_check_size(void)
4856 {
4857 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4858 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4859 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4860 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4861 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4862 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4863 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4864 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4865 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4866 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4867 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4868 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4869 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4870 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4871 			NVME_IDENTIFY_DATA_SIZE);
4872 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4873 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4874 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4875 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4876 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4877 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4878 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4879 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4880 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4881 }
4882 
4883 
4884 static int __init nvme_core_init(void)
4885 {
4886 	int result = -ENOMEM;
4887 
4888 	_nvme_check_size();
4889 
4890 	nvme_wq = alloc_workqueue("nvme-wq",
4891 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4892 	if (!nvme_wq)
4893 		goto out;
4894 
4895 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4896 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4897 	if (!nvme_reset_wq)
4898 		goto destroy_wq;
4899 
4900 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4901 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4902 	if (!nvme_delete_wq)
4903 		goto destroy_reset_wq;
4904 
4905 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4906 			NVME_MINORS, "nvme");
4907 	if (result < 0)
4908 		goto destroy_delete_wq;
4909 
4910 	result = class_register(&nvme_class);
4911 	if (result)
4912 		goto unregister_chrdev;
4913 
4914 	result = class_register(&nvme_subsys_class);
4915 	if (result)
4916 		goto destroy_class;
4917 
4918 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4919 				     "nvme-generic");
4920 	if (result < 0)
4921 		goto destroy_subsys_class;
4922 
4923 	result = class_register(&nvme_ns_chr_class);
4924 	if (result)
4925 		goto unregister_generic_ns;
4926 
4927 	result = nvme_init_auth();
4928 	if (result)
4929 		goto destroy_ns_chr;
4930 	return 0;
4931 
4932 destroy_ns_chr:
4933 	class_unregister(&nvme_ns_chr_class);
4934 unregister_generic_ns:
4935 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4936 destroy_subsys_class:
4937 	class_unregister(&nvme_subsys_class);
4938 destroy_class:
4939 	class_unregister(&nvme_class);
4940 unregister_chrdev:
4941 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4942 destroy_delete_wq:
4943 	destroy_workqueue(nvme_delete_wq);
4944 destroy_reset_wq:
4945 	destroy_workqueue(nvme_reset_wq);
4946 destroy_wq:
4947 	destroy_workqueue(nvme_wq);
4948 out:
4949 	return result;
4950 }
4951 
4952 static void __exit nvme_core_exit(void)
4953 {
4954 	nvme_exit_auth();
4955 	class_unregister(&nvme_ns_chr_class);
4956 	class_unregister(&nvme_subsys_class);
4957 	class_unregister(&nvme_class);
4958 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4959 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4960 	destroy_workqueue(nvme_delete_wq);
4961 	destroy_workqueue(nvme_reset_wq);
4962 	destroy_workqueue(nvme_wq);
4963 	ida_destroy(&nvme_ns_chr_minor_ida);
4964 	ida_destroy(&nvme_instance_ida);
4965 }
4966 
4967 MODULE_LICENSE("GPL");
4968 MODULE_VERSION("1.0");
4969 MODULE_DESCRIPTION("NVMe host core framework");
4970 module_init(nvme_core_init);
4971 module_exit(nvme_core_exit);
4972