1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/async.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-mq.h> 10 #include <linux/blk-integrity.h> 11 #include <linux/compat.h> 12 #include <linux/delay.h> 13 #include <linux/errno.h> 14 #include <linux/hdreg.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/pr.h> 21 #include <linux/ptrace.h> 22 #include <linux/nvme_ioctl.h> 23 #include <linux/pm_qos.h> 24 #include <linux/ratelimit.h> 25 #include <linux/unaligned.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 #include <linux/nvme-auth.h> 30 31 #define CREATE_TRACE_POINTS 32 #include "trace.h" 33 34 #define NVME_MINORS (1U << MINORBITS) 35 36 struct nvme_ns_info { 37 struct nvme_ns_ids ids; 38 u32 nsid; 39 __le32 anagrpid; 40 u8 pi_offset; 41 bool is_shared; 42 bool is_readonly; 43 bool is_ready; 44 bool is_removed; 45 }; 46 47 unsigned int admin_timeout = 60; 48 module_param(admin_timeout, uint, 0644); 49 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 50 EXPORT_SYMBOL_GPL(admin_timeout); 51 52 unsigned int nvme_io_timeout = 30; 53 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 54 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 55 EXPORT_SYMBOL_GPL(nvme_io_timeout); 56 57 static unsigned char shutdown_timeout = 5; 58 module_param(shutdown_timeout, byte, 0644); 59 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 60 61 static u8 nvme_max_retries = 5; 62 module_param_named(max_retries, nvme_max_retries, byte, 0644); 63 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 64 65 static unsigned long default_ps_max_latency_us = 100000; 66 module_param(default_ps_max_latency_us, ulong, 0644); 67 MODULE_PARM_DESC(default_ps_max_latency_us, 68 "max power saving latency for new devices; use PM QOS to change per device"); 69 70 static bool force_apst; 71 module_param(force_apst, bool, 0644); 72 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 73 74 static unsigned long apst_primary_timeout_ms = 100; 75 module_param(apst_primary_timeout_ms, ulong, 0644); 76 MODULE_PARM_DESC(apst_primary_timeout_ms, 77 "primary APST timeout in ms"); 78 79 static unsigned long apst_secondary_timeout_ms = 2000; 80 module_param(apst_secondary_timeout_ms, ulong, 0644); 81 MODULE_PARM_DESC(apst_secondary_timeout_ms, 82 "secondary APST timeout in ms"); 83 84 static unsigned long apst_primary_latency_tol_us = 15000; 85 module_param(apst_primary_latency_tol_us, ulong, 0644); 86 MODULE_PARM_DESC(apst_primary_latency_tol_us, 87 "primary APST latency tolerance in us"); 88 89 static unsigned long apst_secondary_latency_tol_us = 100000; 90 module_param(apst_secondary_latency_tol_us, ulong, 0644); 91 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 92 "secondary APST latency tolerance in us"); 93 94 /* 95 * Older kernels didn't enable protection information if it was at an offset. 96 * Newer kernels do, so it breaks reads on the upgrade if such formats were 97 * used in prior kernels since the metadata written did not contain a valid 98 * checksum. 99 */ 100 static bool disable_pi_offsets = false; 101 module_param(disable_pi_offsets, bool, 0444); 102 MODULE_PARM_DESC(disable_pi_offsets, 103 "disable protection information if it has an offset"); 104 105 /* 106 * nvme_wq - hosts nvme related works that are not reset or delete 107 * nvme_reset_wq - hosts nvme reset works 108 * nvme_delete_wq - hosts nvme delete works 109 * 110 * nvme_wq will host works such as scan, aen handling, fw activation, 111 * keep-alive, periodic reconnects etc. nvme_reset_wq 112 * runs reset works which also flush works hosted on nvme_wq for 113 * serialization purposes. nvme_delete_wq host controller deletion 114 * works which flush reset works for serialization. 115 */ 116 struct workqueue_struct *nvme_wq; 117 EXPORT_SYMBOL_GPL(nvme_wq); 118 119 struct workqueue_struct *nvme_reset_wq; 120 EXPORT_SYMBOL_GPL(nvme_reset_wq); 121 122 struct workqueue_struct *nvme_delete_wq; 123 EXPORT_SYMBOL_GPL(nvme_delete_wq); 124 125 static LIST_HEAD(nvme_subsystems); 126 DEFINE_MUTEX(nvme_subsystems_lock); 127 128 static DEFINE_IDA(nvme_instance_ida); 129 static dev_t nvme_ctrl_base_chr_devt; 130 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 131 static const struct class nvme_class = { 132 .name = "nvme", 133 .dev_uevent = nvme_class_uevent, 134 }; 135 136 static const struct class nvme_subsys_class = { 137 .name = "nvme-subsystem", 138 }; 139 140 static DEFINE_IDA(nvme_ns_chr_minor_ida); 141 static dev_t nvme_ns_chr_devt; 142 static const struct class nvme_ns_chr_class = { 143 .name = "nvme-generic", 144 }; 145 146 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 147 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 148 unsigned nsid); 149 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 150 struct nvme_command *cmd); 151 152 void nvme_queue_scan(struct nvme_ctrl *ctrl) 153 { 154 /* 155 * Only new queue scan work when admin and IO queues are both alive 156 */ 157 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 158 queue_work(nvme_wq, &ctrl->scan_work); 159 } 160 161 /* 162 * Use this function to proceed with scheduling reset_work for a controller 163 * that had previously been set to the resetting state. This is intended for 164 * code paths that can't be interrupted by other reset attempts. A hot removal 165 * may prevent this from succeeding. 166 */ 167 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 168 { 169 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 170 return -EBUSY; 171 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 172 return -EBUSY; 173 return 0; 174 } 175 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 176 177 static void nvme_failfast_work(struct work_struct *work) 178 { 179 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 180 struct nvme_ctrl, failfast_work); 181 182 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 183 return; 184 185 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 186 dev_info(ctrl->device, "failfast expired\n"); 187 nvme_kick_requeue_lists(ctrl); 188 } 189 190 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 191 { 192 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 193 return; 194 195 schedule_delayed_work(&ctrl->failfast_work, 196 ctrl->opts->fast_io_fail_tmo * HZ); 197 } 198 199 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 200 { 201 if (!ctrl->opts) 202 return; 203 204 cancel_delayed_work_sync(&ctrl->failfast_work); 205 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 206 } 207 208 209 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 210 { 211 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 212 return -EBUSY; 213 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 214 return -EBUSY; 215 return 0; 216 } 217 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 218 219 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 220 { 221 int ret; 222 223 ret = nvme_reset_ctrl(ctrl); 224 if (!ret) { 225 flush_work(&ctrl->reset_work); 226 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 227 ret = -ENETRESET; 228 } 229 230 return ret; 231 } 232 233 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 234 { 235 dev_info(ctrl->device, 236 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 237 238 flush_work(&ctrl->reset_work); 239 nvme_stop_ctrl(ctrl); 240 nvme_remove_namespaces(ctrl); 241 ctrl->ops->delete_ctrl(ctrl); 242 nvme_uninit_ctrl(ctrl); 243 } 244 245 static void nvme_delete_ctrl_work(struct work_struct *work) 246 { 247 struct nvme_ctrl *ctrl = 248 container_of(work, struct nvme_ctrl, delete_work); 249 250 nvme_do_delete_ctrl(ctrl); 251 } 252 253 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 254 { 255 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 256 return -EBUSY; 257 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 258 return -EBUSY; 259 return 0; 260 } 261 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 262 263 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 264 { 265 /* 266 * Keep a reference until nvme_do_delete_ctrl() complete, 267 * since ->delete_ctrl can free the controller. 268 */ 269 nvme_get_ctrl(ctrl); 270 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 271 nvme_do_delete_ctrl(ctrl); 272 nvme_put_ctrl(ctrl); 273 } 274 275 static blk_status_t nvme_error_status(u16 status) 276 { 277 switch (status & NVME_SCT_SC_MASK) { 278 case NVME_SC_SUCCESS: 279 return BLK_STS_OK; 280 case NVME_SC_CAP_EXCEEDED: 281 return BLK_STS_NOSPC; 282 case NVME_SC_LBA_RANGE: 283 case NVME_SC_CMD_INTERRUPTED: 284 case NVME_SC_NS_NOT_READY: 285 return BLK_STS_TARGET; 286 case NVME_SC_BAD_ATTRIBUTES: 287 case NVME_SC_ONCS_NOT_SUPPORTED: 288 case NVME_SC_INVALID_OPCODE: 289 case NVME_SC_INVALID_FIELD: 290 case NVME_SC_INVALID_NS: 291 return BLK_STS_NOTSUPP; 292 case NVME_SC_WRITE_FAULT: 293 case NVME_SC_READ_ERROR: 294 case NVME_SC_UNWRITTEN_BLOCK: 295 case NVME_SC_ACCESS_DENIED: 296 case NVME_SC_READ_ONLY: 297 case NVME_SC_COMPARE_FAILED: 298 return BLK_STS_MEDIUM; 299 case NVME_SC_GUARD_CHECK: 300 case NVME_SC_APPTAG_CHECK: 301 case NVME_SC_REFTAG_CHECK: 302 case NVME_SC_INVALID_PI: 303 return BLK_STS_PROTECTION; 304 case NVME_SC_RESERVATION_CONFLICT: 305 return BLK_STS_RESV_CONFLICT; 306 case NVME_SC_HOST_PATH_ERROR: 307 return BLK_STS_TRANSPORT; 308 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 309 return BLK_STS_ZONE_ACTIVE_RESOURCE; 310 case NVME_SC_ZONE_TOO_MANY_OPEN: 311 return BLK_STS_ZONE_OPEN_RESOURCE; 312 default: 313 return BLK_STS_IOERR; 314 } 315 } 316 317 static void nvme_retry_req(struct request *req) 318 { 319 unsigned long delay = 0; 320 u16 crd; 321 322 /* The mask and shift result must be <= 3 */ 323 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; 324 if (crd) 325 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 326 327 nvme_req(req)->retries++; 328 blk_mq_requeue_request(req, false); 329 blk_mq_delay_kick_requeue_list(req->q, delay); 330 } 331 332 static void nvme_log_error(struct request *req) 333 { 334 struct nvme_ns *ns = req->q->queuedata; 335 struct nvme_request *nr = nvme_req(req); 336 337 if (ns) { 338 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 339 ns->disk ? ns->disk->disk_name : "?", 340 nvme_get_opcode_str(nr->cmd->common.opcode), 341 nr->cmd->common.opcode, 342 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 343 blk_rq_bytes(req) >> ns->head->lba_shift, 344 nvme_get_error_status_str(nr->status), 345 NVME_SCT(nr->status), /* Status Code Type */ 346 nr->status & NVME_SC_MASK, /* Status Code */ 347 nr->status & NVME_STATUS_MORE ? "MORE " : "", 348 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 349 return; 350 } 351 352 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 353 dev_name(nr->ctrl->device), 354 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 355 nr->cmd->common.opcode, 356 nvme_get_error_status_str(nr->status), 357 NVME_SCT(nr->status), /* Status Code Type */ 358 nr->status & NVME_SC_MASK, /* Status Code */ 359 nr->status & NVME_STATUS_MORE ? "MORE " : "", 360 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 361 } 362 363 static void nvme_log_err_passthru(struct request *req) 364 { 365 struct nvme_ns *ns = req->q->queuedata; 366 struct nvme_request *nr = nvme_req(req); 367 368 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 369 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 370 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 371 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 372 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 373 nr->cmd->common.opcode, 374 nvme_get_error_status_str(nr->status), 375 NVME_SCT(nr->status), /* Status Code Type */ 376 nr->status & NVME_SC_MASK, /* Status Code */ 377 nr->status & NVME_STATUS_MORE ? "MORE " : "", 378 nr->status & NVME_STATUS_DNR ? "DNR " : "", 379 nr->cmd->common.cdw10, 380 nr->cmd->common.cdw11, 381 nr->cmd->common.cdw12, 382 nr->cmd->common.cdw13, 383 nr->cmd->common.cdw14, 384 nr->cmd->common.cdw14); 385 } 386 387 enum nvme_disposition { 388 COMPLETE, 389 RETRY, 390 FAILOVER, 391 AUTHENTICATE, 392 }; 393 394 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 395 { 396 if (likely(nvme_req(req)->status == 0)) 397 return COMPLETE; 398 399 if (blk_noretry_request(req) || 400 (nvme_req(req)->status & NVME_STATUS_DNR) || 401 nvme_req(req)->retries >= nvme_max_retries) 402 return COMPLETE; 403 404 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) 405 return AUTHENTICATE; 406 407 if (req->cmd_flags & REQ_NVME_MPATH) { 408 if (nvme_is_path_error(nvme_req(req)->status) || 409 blk_queue_dying(req->q)) 410 return FAILOVER; 411 } else { 412 if (blk_queue_dying(req->q)) 413 return COMPLETE; 414 } 415 416 return RETRY; 417 } 418 419 static inline void nvme_end_req_zoned(struct request *req) 420 { 421 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 422 req_op(req) == REQ_OP_ZONE_APPEND) { 423 struct nvme_ns *ns = req->q->queuedata; 424 425 req->__sector = nvme_lba_to_sect(ns->head, 426 le64_to_cpu(nvme_req(req)->result.u64)); 427 } 428 } 429 430 static inline void __nvme_end_req(struct request *req) 431 { 432 nvme_end_req_zoned(req); 433 nvme_trace_bio_complete(req); 434 if (req->cmd_flags & REQ_NVME_MPATH) 435 nvme_mpath_end_request(req); 436 } 437 438 void nvme_end_req(struct request *req) 439 { 440 blk_status_t status = nvme_error_status(nvme_req(req)->status); 441 442 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 443 if (blk_rq_is_passthrough(req)) 444 nvme_log_err_passthru(req); 445 else 446 nvme_log_error(req); 447 } 448 __nvme_end_req(req); 449 blk_mq_end_request(req, status); 450 } 451 452 void nvme_complete_rq(struct request *req) 453 { 454 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 455 456 trace_nvme_complete_rq(req); 457 nvme_cleanup_cmd(req); 458 459 /* 460 * Completions of long-running commands should not be able to 461 * defer sending of periodic keep alives, since the controller 462 * may have completed processing such commands a long time ago 463 * (arbitrarily close to command submission time). 464 * req->deadline - req->timeout is the command submission time 465 * in jiffies. 466 */ 467 if (ctrl->kas && 468 req->deadline - req->timeout >= ctrl->ka_last_check_time) 469 ctrl->comp_seen = true; 470 471 switch (nvme_decide_disposition(req)) { 472 case COMPLETE: 473 nvme_end_req(req); 474 return; 475 case RETRY: 476 nvme_retry_req(req); 477 return; 478 case FAILOVER: 479 nvme_failover_req(req); 480 return; 481 case AUTHENTICATE: 482 #ifdef CONFIG_NVME_HOST_AUTH 483 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 484 nvme_retry_req(req); 485 #else 486 nvme_end_req(req); 487 #endif 488 return; 489 } 490 } 491 EXPORT_SYMBOL_GPL(nvme_complete_rq); 492 493 void nvme_complete_batch_req(struct request *req) 494 { 495 trace_nvme_complete_rq(req); 496 nvme_cleanup_cmd(req); 497 __nvme_end_req(req); 498 } 499 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 500 501 /* 502 * Called to unwind from ->queue_rq on a failed command submission so that the 503 * multipathing code gets called to potentially failover to another path. 504 * The caller needs to unwind all transport specific resource allocations and 505 * must return propagate the return value. 506 */ 507 blk_status_t nvme_host_path_error(struct request *req) 508 { 509 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 510 blk_mq_set_request_complete(req); 511 nvme_complete_rq(req); 512 return BLK_STS_OK; 513 } 514 EXPORT_SYMBOL_GPL(nvme_host_path_error); 515 516 bool nvme_cancel_request(struct request *req, void *data) 517 { 518 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 519 "Cancelling I/O %d", req->tag); 520 521 /* don't abort one completed or idle request */ 522 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 523 return true; 524 525 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 526 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 527 blk_mq_complete_request(req); 528 return true; 529 } 530 EXPORT_SYMBOL_GPL(nvme_cancel_request); 531 532 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 533 { 534 if (ctrl->tagset) { 535 blk_mq_tagset_busy_iter(ctrl->tagset, 536 nvme_cancel_request, ctrl); 537 blk_mq_tagset_wait_completed_request(ctrl->tagset); 538 } 539 } 540 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 541 542 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 543 { 544 if (ctrl->admin_tagset) { 545 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 546 nvme_cancel_request, ctrl); 547 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 548 } 549 } 550 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 551 552 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 553 enum nvme_ctrl_state new_state) 554 { 555 enum nvme_ctrl_state old_state; 556 unsigned long flags; 557 bool changed = false; 558 559 spin_lock_irqsave(&ctrl->lock, flags); 560 561 old_state = nvme_ctrl_state(ctrl); 562 switch (new_state) { 563 case NVME_CTRL_LIVE: 564 switch (old_state) { 565 case NVME_CTRL_NEW: 566 case NVME_CTRL_RESETTING: 567 case NVME_CTRL_CONNECTING: 568 changed = true; 569 fallthrough; 570 default: 571 break; 572 } 573 break; 574 case NVME_CTRL_RESETTING: 575 switch (old_state) { 576 case NVME_CTRL_NEW: 577 case NVME_CTRL_LIVE: 578 changed = true; 579 fallthrough; 580 default: 581 break; 582 } 583 break; 584 case NVME_CTRL_CONNECTING: 585 switch (old_state) { 586 case NVME_CTRL_NEW: 587 case NVME_CTRL_RESETTING: 588 changed = true; 589 fallthrough; 590 default: 591 break; 592 } 593 break; 594 case NVME_CTRL_DELETING: 595 switch (old_state) { 596 case NVME_CTRL_LIVE: 597 case NVME_CTRL_RESETTING: 598 case NVME_CTRL_CONNECTING: 599 changed = true; 600 fallthrough; 601 default: 602 break; 603 } 604 break; 605 case NVME_CTRL_DELETING_NOIO: 606 switch (old_state) { 607 case NVME_CTRL_DELETING: 608 case NVME_CTRL_DEAD: 609 changed = true; 610 fallthrough; 611 default: 612 break; 613 } 614 break; 615 case NVME_CTRL_DEAD: 616 switch (old_state) { 617 case NVME_CTRL_DELETING: 618 changed = true; 619 fallthrough; 620 default: 621 break; 622 } 623 break; 624 default: 625 break; 626 } 627 628 if (changed) { 629 WRITE_ONCE(ctrl->state, new_state); 630 wake_up_all(&ctrl->state_wq); 631 } 632 633 spin_unlock_irqrestore(&ctrl->lock, flags); 634 if (!changed) 635 return false; 636 637 if (new_state == NVME_CTRL_LIVE) { 638 if (old_state == NVME_CTRL_CONNECTING) 639 nvme_stop_failfast_work(ctrl); 640 nvme_kick_requeue_lists(ctrl); 641 } else if (new_state == NVME_CTRL_CONNECTING && 642 old_state == NVME_CTRL_RESETTING) { 643 nvme_start_failfast_work(ctrl); 644 } 645 return changed; 646 } 647 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 648 649 /* 650 * Waits for the controller state to be resetting, or returns false if it is 651 * not possible to ever transition to that state. 652 */ 653 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 654 { 655 wait_event(ctrl->state_wq, 656 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 657 nvme_state_terminal(ctrl)); 658 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 659 } 660 EXPORT_SYMBOL_GPL(nvme_wait_reset); 661 662 static void nvme_free_ns_head(struct kref *ref) 663 { 664 struct nvme_ns_head *head = 665 container_of(ref, struct nvme_ns_head, ref); 666 667 nvme_mpath_remove_disk(head); 668 ida_free(&head->subsys->ns_ida, head->instance); 669 cleanup_srcu_struct(&head->srcu); 670 nvme_put_subsystem(head->subsys); 671 kfree(head); 672 } 673 674 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 675 { 676 return kref_get_unless_zero(&head->ref); 677 } 678 679 void nvme_put_ns_head(struct nvme_ns_head *head) 680 { 681 kref_put(&head->ref, nvme_free_ns_head); 682 } 683 684 static void nvme_free_ns(struct kref *kref) 685 { 686 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 687 688 put_disk(ns->disk); 689 nvme_put_ns_head(ns->head); 690 nvme_put_ctrl(ns->ctrl); 691 kfree(ns); 692 } 693 694 bool nvme_get_ns(struct nvme_ns *ns) 695 { 696 return kref_get_unless_zero(&ns->kref); 697 } 698 699 void nvme_put_ns(struct nvme_ns *ns) 700 { 701 kref_put(&ns->kref, nvme_free_ns); 702 } 703 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 704 705 static inline void nvme_clear_nvme_request(struct request *req) 706 { 707 nvme_req(req)->status = 0; 708 nvme_req(req)->retries = 0; 709 nvme_req(req)->flags = 0; 710 req->rq_flags |= RQF_DONTPREP; 711 } 712 713 /* initialize a passthrough request */ 714 void nvme_init_request(struct request *req, struct nvme_command *cmd) 715 { 716 struct nvme_request *nr = nvme_req(req); 717 bool logging_enabled; 718 719 if (req->q->queuedata) { 720 struct nvme_ns *ns = req->q->disk->private_data; 721 722 logging_enabled = ns->head->passthru_err_log_enabled; 723 req->timeout = NVME_IO_TIMEOUT; 724 } else { /* no queuedata implies admin queue */ 725 logging_enabled = nr->ctrl->passthru_err_log_enabled; 726 req->timeout = NVME_ADMIN_TIMEOUT; 727 } 728 729 if (!logging_enabled) 730 req->rq_flags |= RQF_QUIET; 731 732 /* passthru commands should let the driver set the SGL flags */ 733 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 734 735 req->cmd_flags |= REQ_FAILFAST_DRIVER; 736 if (req->mq_hctx->type == HCTX_TYPE_POLL) 737 req->cmd_flags |= REQ_POLLED; 738 nvme_clear_nvme_request(req); 739 memcpy(nr->cmd, cmd, sizeof(*cmd)); 740 } 741 EXPORT_SYMBOL_GPL(nvme_init_request); 742 743 /* 744 * For something we're not in a state to send to the device the default action 745 * is to busy it and retry it after the controller state is recovered. However, 746 * if the controller is deleting or if anything is marked for failfast or 747 * nvme multipath it is immediately failed. 748 * 749 * Note: commands used to initialize the controller will be marked for failfast. 750 * Note: nvme cli/ioctl commands are marked for failfast. 751 */ 752 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 753 struct request *rq) 754 { 755 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 756 757 if (state != NVME_CTRL_DELETING_NOIO && 758 state != NVME_CTRL_DELETING && 759 state != NVME_CTRL_DEAD && 760 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 761 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 762 return BLK_STS_RESOURCE; 763 return nvme_host_path_error(rq); 764 } 765 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 766 767 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 768 bool queue_live, enum nvme_ctrl_state state) 769 { 770 struct nvme_request *req = nvme_req(rq); 771 772 /* 773 * currently we have a problem sending passthru commands 774 * on the admin_q if the controller is not LIVE because we can't 775 * make sure that they are going out after the admin connect, 776 * controller enable and/or other commands in the initialization 777 * sequence. until the controller will be LIVE, fail with 778 * BLK_STS_RESOURCE so that they will be rescheduled. 779 */ 780 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 781 return false; 782 783 if (ctrl->ops->flags & NVME_F_FABRICS) { 784 /* 785 * Only allow commands on a live queue, except for the connect 786 * command, which is require to set the queue live in the 787 * appropinquate states. 788 */ 789 switch (state) { 790 case NVME_CTRL_CONNECTING: 791 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 792 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 793 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 794 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 795 return true; 796 break; 797 default: 798 break; 799 case NVME_CTRL_DEAD: 800 return false; 801 } 802 } 803 804 return queue_live; 805 } 806 EXPORT_SYMBOL_GPL(__nvme_check_ready); 807 808 static inline void nvme_setup_flush(struct nvme_ns *ns, 809 struct nvme_command *cmnd) 810 { 811 memset(cmnd, 0, sizeof(*cmnd)); 812 cmnd->common.opcode = nvme_cmd_flush; 813 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 814 } 815 816 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 817 struct nvme_command *cmnd) 818 { 819 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 820 struct nvme_dsm_range *range; 821 struct bio *bio; 822 823 /* 824 * Some devices do not consider the DSM 'Number of Ranges' field when 825 * determining how much data to DMA. Always allocate memory for maximum 826 * number of segments to prevent device reading beyond end of buffer. 827 */ 828 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 829 830 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 831 if (!range) { 832 /* 833 * If we fail allocation our range, fallback to the controller 834 * discard page. If that's also busy, it's safe to return 835 * busy, as we know we can make progress once that's freed. 836 */ 837 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 838 return BLK_STS_RESOURCE; 839 840 range = page_address(ns->ctrl->discard_page); 841 } 842 843 if (queue_max_discard_segments(req->q) == 1) { 844 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 845 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 846 847 range[0].cattr = cpu_to_le32(0); 848 range[0].nlb = cpu_to_le32(nlb); 849 range[0].slba = cpu_to_le64(slba); 850 n = 1; 851 } else { 852 __rq_for_each_bio(bio, req) { 853 u64 slba = nvme_sect_to_lba(ns->head, 854 bio->bi_iter.bi_sector); 855 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 856 857 if (n < segments) { 858 range[n].cattr = cpu_to_le32(0); 859 range[n].nlb = cpu_to_le32(nlb); 860 range[n].slba = cpu_to_le64(slba); 861 } 862 n++; 863 } 864 } 865 866 if (WARN_ON_ONCE(n != segments)) { 867 if (virt_to_page(range) == ns->ctrl->discard_page) 868 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 869 else 870 kfree(range); 871 return BLK_STS_IOERR; 872 } 873 874 memset(cmnd, 0, sizeof(*cmnd)); 875 cmnd->dsm.opcode = nvme_cmd_dsm; 876 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 877 cmnd->dsm.nr = cpu_to_le32(segments - 1); 878 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 879 880 bvec_set_virt(&req->special_vec, range, alloc_size); 881 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 882 883 return BLK_STS_OK; 884 } 885 886 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 887 struct request *req) 888 { 889 u32 upper, lower; 890 u64 ref48; 891 892 /* both rw and write zeroes share the same reftag format */ 893 switch (ns->head->guard_type) { 894 case NVME_NVM_NS_16B_GUARD: 895 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 896 break; 897 case NVME_NVM_NS_64B_GUARD: 898 ref48 = ext_pi_ref_tag(req); 899 lower = lower_32_bits(ref48); 900 upper = upper_32_bits(ref48); 901 902 cmnd->rw.reftag = cpu_to_le32(lower); 903 cmnd->rw.cdw3 = cpu_to_le32(upper); 904 break; 905 default: 906 break; 907 } 908 } 909 910 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 911 struct request *req, struct nvme_command *cmnd) 912 { 913 memset(cmnd, 0, sizeof(*cmnd)); 914 915 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 916 return nvme_setup_discard(ns, req, cmnd); 917 918 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 919 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 920 cmnd->write_zeroes.slba = 921 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 922 cmnd->write_zeroes.length = 923 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 924 925 if (!(req->cmd_flags & REQ_NOUNMAP) && 926 (ns->head->features & NVME_NS_DEAC)) 927 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 928 929 if (nvme_ns_has_pi(ns->head)) { 930 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 931 932 switch (ns->head->pi_type) { 933 case NVME_NS_DPS_PI_TYPE1: 934 case NVME_NS_DPS_PI_TYPE2: 935 nvme_set_ref_tag(ns, cmnd, req); 936 break; 937 } 938 } 939 940 return BLK_STS_OK; 941 } 942 943 /* 944 * NVMe does not support a dedicated command to issue an atomic write. A write 945 * which does adhere to the device atomic limits will silently be executed 946 * non-atomically. The request issuer should ensure that the write is within 947 * the queue atomic writes limits, but just validate this in case it is not. 948 */ 949 static bool nvme_valid_atomic_write(struct request *req) 950 { 951 struct request_queue *q = req->q; 952 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); 953 954 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) 955 return false; 956 957 if (boundary_bytes) { 958 u64 mask = boundary_bytes - 1, imask = ~mask; 959 u64 start = blk_rq_pos(req) << SECTOR_SHIFT; 960 u64 end = start + blk_rq_bytes(req) - 1; 961 962 /* If greater then must be crossing a boundary */ 963 if (blk_rq_bytes(req) > boundary_bytes) 964 return false; 965 966 if ((start & imask) != (end & imask)) 967 return false; 968 } 969 970 return true; 971 } 972 973 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 974 struct request *req, struct nvme_command *cmnd, 975 enum nvme_opcode op) 976 { 977 u16 control = 0; 978 u32 dsmgmt = 0; 979 980 if (req->cmd_flags & REQ_FUA) 981 control |= NVME_RW_FUA; 982 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 983 control |= NVME_RW_LR; 984 985 if (req->cmd_flags & REQ_RAHEAD) 986 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 987 988 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) 989 return BLK_STS_INVAL; 990 991 cmnd->rw.opcode = op; 992 cmnd->rw.flags = 0; 993 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 994 cmnd->rw.cdw2 = 0; 995 cmnd->rw.cdw3 = 0; 996 cmnd->rw.metadata = 0; 997 cmnd->rw.slba = 998 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 999 cmnd->rw.length = 1000 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 1001 cmnd->rw.reftag = 0; 1002 cmnd->rw.lbat = 0; 1003 cmnd->rw.lbatm = 0; 1004 1005 if (ns->head->ms) { 1006 /* 1007 * If formated with metadata, the block layer always provides a 1008 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 1009 * we enable the PRACT bit for protection information or set the 1010 * namespace capacity to zero to prevent any I/O. 1011 */ 1012 if (!blk_integrity_rq(req)) { 1013 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 1014 return BLK_STS_NOTSUPP; 1015 control |= NVME_RW_PRINFO_PRACT; 1016 } 1017 1018 switch (ns->head->pi_type) { 1019 case NVME_NS_DPS_PI_TYPE3: 1020 control |= NVME_RW_PRINFO_PRCHK_GUARD; 1021 break; 1022 case NVME_NS_DPS_PI_TYPE1: 1023 case NVME_NS_DPS_PI_TYPE2: 1024 control |= NVME_RW_PRINFO_PRCHK_GUARD | 1025 NVME_RW_PRINFO_PRCHK_REF; 1026 if (op == nvme_cmd_zone_append) 1027 control |= NVME_RW_APPEND_PIREMAP; 1028 nvme_set_ref_tag(ns, cmnd, req); 1029 break; 1030 } 1031 } 1032 1033 cmnd->rw.control = cpu_to_le16(control); 1034 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 1035 return 0; 1036 } 1037 1038 void nvme_cleanup_cmd(struct request *req) 1039 { 1040 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 1041 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 1042 1043 if (req->special_vec.bv_page == ctrl->discard_page) 1044 clear_bit_unlock(0, &ctrl->discard_page_busy); 1045 else 1046 kfree(bvec_virt(&req->special_vec)); 1047 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; 1048 } 1049 } 1050 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1051 1052 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1053 { 1054 struct nvme_command *cmd = nvme_req(req)->cmd; 1055 blk_status_t ret = BLK_STS_OK; 1056 1057 if (!(req->rq_flags & RQF_DONTPREP)) 1058 nvme_clear_nvme_request(req); 1059 1060 switch (req_op(req)) { 1061 case REQ_OP_DRV_IN: 1062 case REQ_OP_DRV_OUT: 1063 /* these are setup prior to execution in nvme_init_request() */ 1064 break; 1065 case REQ_OP_FLUSH: 1066 nvme_setup_flush(ns, cmd); 1067 break; 1068 case REQ_OP_ZONE_RESET_ALL: 1069 case REQ_OP_ZONE_RESET: 1070 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1071 break; 1072 case REQ_OP_ZONE_OPEN: 1073 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1074 break; 1075 case REQ_OP_ZONE_CLOSE: 1076 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1077 break; 1078 case REQ_OP_ZONE_FINISH: 1079 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1080 break; 1081 case REQ_OP_WRITE_ZEROES: 1082 ret = nvme_setup_write_zeroes(ns, req, cmd); 1083 break; 1084 case REQ_OP_DISCARD: 1085 ret = nvme_setup_discard(ns, req, cmd); 1086 break; 1087 case REQ_OP_READ: 1088 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1089 break; 1090 case REQ_OP_WRITE: 1091 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1092 break; 1093 case REQ_OP_ZONE_APPEND: 1094 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1095 break; 1096 default: 1097 WARN_ON_ONCE(1); 1098 return BLK_STS_IOERR; 1099 } 1100 1101 cmd->common.command_id = nvme_cid(req); 1102 trace_nvme_setup_cmd(req, cmd); 1103 return ret; 1104 } 1105 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1106 1107 /* 1108 * Return values: 1109 * 0: success 1110 * >0: nvme controller's cqe status response 1111 * <0: kernel error in lieu of controller response 1112 */ 1113 int nvme_execute_rq(struct request *rq, bool at_head) 1114 { 1115 blk_status_t status; 1116 1117 status = blk_execute_rq(rq, at_head); 1118 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1119 return -EINTR; 1120 if (nvme_req(rq)->status) 1121 return nvme_req(rq)->status; 1122 return blk_status_to_errno(status); 1123 } 1124 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1125 1126 /* 1127 * Returns 0 on success. If the result is negative, it's a Linux error code; 1128 * if the result is positive, it's an NVM Express status code 1129 */ 1130 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1131 union nvme_result *result, void *buffer, unsigned bufflen, 1132 int qid, nvme_submit_flags_t flags) 1133 { 1134 struct request *req; 1135 int ret; 1136 blk_mq_req_flags_t blk_flags = 0; 1137 1138 if (flags & NVME_SUBMIT_NOWAIT) 1139 blk_flags |= BLK_MQ_REQ_NOWAIT; 1140 if (flags & NVME_SUBMIT_RESERVED) 1141 blk_flags |= BLK_MQ_REQ_RESERVED; 1142 if (qid == NVME_QID_ANY) 1143 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1144 else 1145 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1146 qid - 1); 1147 1148 if (IS_ERR(req)) 1149 return PTR_ERR(req); 1150 nvme_init_request(req, cmd); 1151 if (flags & NVME_SUBMIT_RETRY) 1152 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1153 1154 if (buffer && bufflen) { 1155 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1156 if (ret) 1157 goto out; 1158 } 1159 1160 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1161 if (result && ret >= 0) 1162 *result = nvme_req(req)->result; 1163 out: 1164 blk_mq_free_request(req); 1165 return ret; 1166 } 1167 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1168 1169 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1170 void *buffer, unsigned bufflen) 1171 { 1172 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1173 NVME_QID_ANY, 0); 1174 } 1175 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1176 1177 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1178 { 1179 u32 effects = 0; 1180 1181 if (ns) { 1182 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1183 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1184 dev_warn_once(ctrl->device, 1185 "IO command:%02x has unusual effects:%08x\n", 1186 opcode, effects); 1187 1188 /* 1189 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1190 * which would deadlock when done on an I/O command. Note that 1191 * We already warn about an unusual effect above. 1192 */ 1193 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1194 } else { 1195 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1196 1197 /* Ignore execution restrictions if any relaxation bits are set */ 1198 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1199 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1200 } 1201 1202 return effects; 1203 } 1204 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1205 1206 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1207 { 1208 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1209 1210 /* 1211 * For simplicity, IO to all namespaces is quiesced even if the command 1212 * effects say only one namespace is affected. 1213 */ 1214 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1215 mutex_lock(&ctrl->scan_lock); 1216 mutex_lock(&ctrl->subsys->lock); 1217 nvme_mpath_start_freeze(ctrl->subsys); 1218 nvme_mpath_wait_freeze(ctrl->subsys); 1219 nvme_start_freeze(ctrl); 1220 nvme_wait_freeze(ctrl); 1221 } 1222 return effects; 1223 } 1224 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1225 1226 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1227 struct nvme_command *cmd, int status) 1228 { 1229 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1230 nvme_unfreeze(ctrl); 1231 nvme_mpath_unfreeze(ctrl->subsys); 1232 mutex_unlock(&ctrl->subsys->lock); 1233 mutex_unlock(&ctrl->scan_lock); 1234 } 1235 if (effects & NVME_CMD_EFFECTS_CCC) { 1236 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1237 &ctrl->flags)) { 1238 dev_info(ctrl->device, 1239 "controller capabilities changed, reset may be required to take effect.\n"); 1240 } 1241 } 1242 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1243 nvme_queue_scan(ctrl); 1244 flush_work(&ctrl->scan_work); 1245 } 1246 if (ns) 1247 return; 1248 1249 switch (cmd->common.opcode) { 1250 case nvme_admin_set_features: 1251 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1252 case NVME_FEAT_KATO: 1253 /* 1254 * Keep alive commands interval on the host should be 1255 * updated when KATO is modified by Set Features 1256 * commands. 1257 */ 1258 if (!status) 1259 nvme_update_keep_alive(ctrl, cmd); 1260 break; 1261 default: 1262 break; 1263 } 1264 break; 1265 default: 1266 break; 1267 } 1268 } 1269 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1270 1271 /* 1272 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1273 * 1274 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1275 * accounting for transport roundtrip times [..]. 1276 */ 1277 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1278 { 1279 unsigned long delay = ctrl->kato * HZ / 2; 1280 1281 /* 1282 * When using Traffic Based Keep Alive, we need to run 1283 * nvme_keep_alive_work at twice the normal frequency, as one 1284 * command completion can postpone sending a keep alive command 1285 * by up to twice the delay between runs. 1286 */ 1287 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1288 delay /= 2; 1289 return delay; 1290 } 1291 1292 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1293 { 1294 unsigned long now = jiffies; 1295 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1296 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1297 1298 if (time_after(now, ka_next_check_tm)) 1299 delay = 0; 1300 else 1301 delay = ka_next_check_tm - now; 1302 1303 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1304 } 1305 1306 static void nvme_keep_alive_finish(struct request *rq, 1307 blk_status_t status, struct nvme_ctrl *ctrl) 1308 { 1309 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1310 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1311 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 1312 1313 /* 1314 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1315 * at the desired frequency. 1316 */ 1317 if (rtt <= delay) { 1318 delay -= rtt; 1319 } else { 1320 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1321 jiffies_to_msecs(rtt)); 1322 delay = 0; 1323 } 1324 1325 if (status) { 1326 dev_err(ctrl->device, 1327 "failed nvme_keep_alive_end_io error=%d\n", 1328 status); 1329 return; 1330 } 1331 1332 ctrl->ka_last_check_time = jiffies; 1333 ctrl->comp_seen = false; 1334 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING) 1335 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1336 } 1337 1338 static void nvme_keep_alive_work(struct work_struct *work) 1339 { 1340 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1341 struct nvme_ctrl, ka_work); 1342 bool comp_seen = ctrl->comp_seen; 1343 struct request *rq; 1344 blk_status_t status; 1345 1346 ctrl->ka_last_check_time = jiffies; 1347 1348 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1349 dev_dbg(ctrl->device, 1350 "reschedule traffic based keep-alive timer\n"); 1351 ctrl->comp_seen = false; 1352 nvme_queue_keep_alive_work(ctrl); 1353 return; 1354 } 1355 1356 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1357 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1358 if (IS_ERR(rq)) { 1359 /* allocation failure, reset the controller */ 1360 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1361 nvme_reset_ctrl(ctrl); 1362 return; 1363 } 1364 nvme_init_request(rq, &ctrl->ka_cmd); 1365 1366 rq->timeout = ctrl->kato * HZ; 1367 status = blk_execute_rq(rq, false); 1368 nvme_keep_alive_finish(rq, status, ctrl); 1369 blk_mq_free_request(rq); 1370 } 1371 1372 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1373 { 1374 if (unlikely(ctrl->kato == 0)) 1375 return; 1376 1377 nvme_queue_keep_alive_work(ctrl); 1378 } 1379 1380 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1381 { 1382 if (unlikely(ctrl->kato == 0)) 1383 return; 1384 1385 cancel_delayed_work_sync(&ctrl->ka_work); 1386 } 1387 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1388 1389 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1390 struct nvme_command *cmd) 1391 { 1392 unsigned int new_kato = 1393 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1394 1395 dev_info(ctrl->device, 1396 "keep alive interval updated from %u ms to %u ms\n", 1397 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1398 1399 nvme_stop_keep_alive(ctrl); 1400 ctrl->kato = new_kato; 1401 nvme_start_keep_alive(ctrl); 1402 } 1403 1404 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns) 1405 { 1406 /* 1407 * The CNS field occupies a full byte starting with NVMe 1.2 1408 */ 1409 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1410 return true; 1411 1412 /* 1413 * NVMe 1.1 expanded the CNS value to two bits, which means values 1414 * larger than that could get truncated and treated as an incorrect 1415 * value. 1416 * 1417 * Qemu implemented 1.0 behavior for controllers claiming 1.1 1418 * compliance, so they need to be quirked here. 1419 */ 1420 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1421 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) 1422 return cns <= 3; 1423 1424 /* 1425 * NVMe 1.0 used a single bit for the CNS value. 1426 */ 1427 return cns <= 1; 1428 } 1429 1430 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1431 { 1432 struct nvme_command c = { }; 1433 int error; 1434 1435 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1436 c.identify.opcode = nvme_admin_identify; 1437 c.identify.cns = NVME_ID_CNS_CTRL; 1438 1439 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1440 if (!*id) 1441 return -ENOMEM; 1442 1443 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1444 sizeof(struct nvme_id_ctrl)); 1445 if (error) { 1446 kfree(*id); 1447 *id = NULL; 1448 } 1449 return error; 1450 } 1451 1452 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1453 struct nvme_ns_id_desc *cur, bool *csi_seen) 1454 { 1455 const char *warn_str = "ctrl returned bogus length:"; 1456 void *data = cur; 1457 1458 switch (cur->nidt) { 1459 case NVME_NIDT_EUI64: 1460 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1461 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1462 warn_str, cur->nidl); 1463 return -1; 1464 } 1465 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1466 return NVME_NIDT_EUI64_LEN; 1467 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1468 return NVME_NIDT_EUI64_LEN; 1469 case NVME_NIDT_NGUID: 1470 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1471 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1472 warn_str, cur->nidl); 1473 return -1; 1474 } 1475 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1476 return NVME_NIDT_NGUID_LEN; 1477 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1478 return NVME_NIDT_NGUID_LEN; 1479 case NVME_NIDT_UUID: 1480 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1481 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1482 warn_str, cur->nidl); 1483 return -1; 1484 } 1485 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1486 return NVME_NIDT_UUID_LEN; 1487 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1488 return NVME_NIDT_UUID_LEN; 1489 case NVME_NIDT_CSI: 1490 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1491 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1492 warn_str, cur->nidl); 1493 return -1; 1494 } 1495 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1496 *csi_seen = true; 1497 return NVME_NIDT_CSI_LEN; 1498 default: 1499 /* Skip unknown types */ 1500 return cur->nidl; 1501 } 1502 } 1503 1504 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1505 struct nvme_ns_info *info) 1506 { 1507 struct nvme_command c = { }; 1508 bool csi_seen = false; 1509 int status, pos, len; 1510 void *data; 1511 1512 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1513 return 0; 1514 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1515 return 0; 1516 1517 c.identify.opcode = nvme_admin_identify; 1518 c.identify.nsid = cpu_to_le32(info->nsid); 1519 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1520 1521 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1522 if (!data) 1523 return -ENOMEM; 1524 1525 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1526 NVME_IDENTIFY_DATA_SIZE); 1527 if (status) { 1528 dev_warn(ctrl->device, 1529 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1530 info->nsid, status); 1531 goto free_data; 1532 } 1533 1534 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1535 struct nvme_ns_id_desc *cur = data + pos; 1536 1537 if (cur->nidl == 0) 1538 break; 1539 1540 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1541 if (len < 0) 1542 break; 1543 1544 len += sizeof(*cur); 1545 } 1546 1547 if (nvme_multi_css(ctrl) && !csi_seen) { 1548 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1549 info->nsid); 1550 status = -EINVAL; 1551 } 1552 1553 free_data: 1554 kfree(data); 1555 return status; 1556 } 1557 1558 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1559 struct nvme_id_ns **id) 1560 { 1561 struct nvme_command c = { }; 1562 int error; 1563 1564 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1565 c.identify.opcode = nvme_admin_identify; 1566 c.identify.nsid = cpu_to_le32(nsid); 1567 c.identify.cns = NVME_ID_CNS_NS; 1568 1569 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1570 if (!*id) 1571 return -ENOMEM; 1572 1573 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1574 if (error) { 1575 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1576 kfree(*id); 1577 *id = NULL; 1578 } 1579 return error; 1580 } 1581 1582 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1583 struct nvme_ns_info *info) 1584 { 1585 struct nvme_ns_ids *ids = &info->ids; 1586 struct nvme_id_ns *id; 1587 int ret; 1588 1589 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1590 if (ret) 1591 return ret; 1592 1593 if (id->ncap == 0) { 1594 /* namespace not allocated or attached */ 1595 info->is_removed = true; 1596 ret = -ENODEV; 1597 goto error; 1598 } 1599 1600 info->anagrpid = id->anagrpid; 1601 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1602 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1603 info->is_ready = true; 1604 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1605 dev_info(ctrl->device, 1606 "Ignoring bogus Namespace Identifiers\n"); 1607 } else { 1608 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1609 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1610 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1611 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1612 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1613 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1614 } 1615 1616 error: 1617 kfree(id); 1618 return ret; 1619 } 1620 1621 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1622 struct nvme_ns_info *info) 1623 { 1624 struct nvme_id_ns_cs_indep *id; 1625 struct nvme_command c = { 1626 .identify.opcode = nvme_admin_identify, 1627 .identify.nsid = cpu_to_le32(info->nsid), 1628 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1629 }; 1630 int ret; 1631 1632 id = kmalloc(sizeof(*id), GFP_KERNEL); 1633 if (!id) 1634 return -ENOMEM; 1635 1636 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1637 if (!ret) { 1638 info->anagrpid = id->anagrpid; 1639 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1640 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1641 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1642 } 1643 kfree(id); 1644 return ret; 1645 } 1646 1647 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1648 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1649 { 1650 union nvme_result res = { 0 }; 1651 struct nvme_command c = { }; 1652 int ret; 1653 1654 c.features.opcode = op; 1655 c.features.fid = cpu_to_le32(fid); 1656 c.features.dword11 = cpu_to_le32(dword11); 1657 1658 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1659 buffer, buflen, NVME_QID_ANY, 0); 1660 if (ret >= 0 && result) 1661 *result = le32_to_cpu(res.u32); 1662 return ret; 1663 } 1664 1665 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1666 unsigned int dword11, void *buffer, size_t buflen, 1667 u32 *result) 1668 { 1669 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1670 buflen, result); 1671 } 1672 EXPORT_SYMBOL_GPL(nvme_set_features); 1673 1674 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1675 unsigned int dword11, void *buffer, size_t buflen, 1676 u32 *result) 1677 { 1678 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1679 buflen, result); 1680 } 1681 EXPORT_SYMBOL_GPL(nvme_get_features); 1682 1683 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1684 { 1685 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1686 u32 result; 1687 int status, nr_io_queues; 1688 1689 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1690 &result); 1691 if (status < 0) 1692 return status; 1693 1694 /* 1695 * Degraded controllers might return an error when setting the queue 1696 * count. We still want to be able to bring them online and offer 1697 * access to the admin queue, as that might be only way to fix them up. 1698 */ 1699 if (status > 0) { 1700 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1701 *count = 0; 1702 } else { 1703 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1704 *count = min(*count, nr_io_queues); 1705 } 1706 1707 return 0; 1708 } 1709 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1710 1711 #define NVME_AEN_SUPPORTED \ 1712 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1713 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1714 1715 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1716 { 1717 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1718 int status; 1719 1720 if (!supported_aens) 1721 return; 1722 1723 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1724 NULL, 0, &result); 1725 if (status) 1726 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1727 supported_aens); 1728 1729 queue_work(nvme_wq, &ctrl->async_event_work); 1730 } 1731 1732 static int nvme_ns_open(struct nvme_ns *ns) 1733 { 1734 1735 /* should never be called due to GENHD_FL_HIDDEN */ 1736 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1737 goto fail; 1738 if (!nvme_get_ns(ns)) 1739 goto fail; 1740 if (!try_module_get(ns->ctrl->ops->module)) 1741 goto fail_put_ns; 1742 1743 return 0; 1744 1745 fail_put_ns: 1746 nvme_put_ns(ns); 1747 fail: 1748 return -ENXIO; 1749 } 1750 1751 static void nvme_ns_release(struct nvme_ns *ns) 1752 { 1753 1754 module_put(ns->ctrl->ops->module); 1755 nvme_put_ns(ns); 1756 } 1757 1758 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1759 { 1760 return nvme_ns_open(disk->private_data); 1761 } 1762 1763 static void nvme_release(struct gendisk *disk) 1764 { 1765 nvme_ns_release(disk->private_data); 1766 } 1767 1768 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1769 { 1770 /* some standard values */ 1771 geo->heads = 1 << 6; 1772 geo->sectors = 1 << 5; 1773 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1774 return 0; 1775 } 1776 1777 static bool nvme_init_integrity(struct nvme_ns_head *head, 1778 struct queue_limits *lim, struct nvme_ns_info *info) 1779 { 1780 struct blk_integrity *bi = &lim->integrity; 1781 1782 memset(bi, 0, sizeof(*bi)); 1783 1784 if (!head->ms) 1785 return true; 1786 1787 /* 1788 * PI can always be supported as we can ask the controller to simply 1789 * insert/strip it, which is not possible for other kinds of metadata. 1790 */ 1791 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1792 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1793 return nvme_ns_has_pi(head); 1794 1795 switch (head->pi_type) { 1796 case NVME_NS_DPS_PI_TYPE3: 1797 switch (head->guard_type) { 1798 case NVME_NVM_NS_16B_GUARD: 1799 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1800 bi->tag_size = sizeof(u16) + sizeof(u32); 1801 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1802 break; 1803 case NVME_NVM_NS_64B_GUARD: 1804 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1805 bi->tag_size = sizeof(u16) + 6; 1806 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1807 break; 1808 default: 1809 break; 1810 } 1811 break; 1812 case NVME_NS_DPS_PI_TYPE1: 1813 case NVME_NS_DPS_PI_TYPE2: 1814 switch (head->guard_type) { 1815 case NVME_NVM_NS_16B_GUARD: 1816 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1817 bi->tag_size = sizeof(u16); 1818 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1819 BLK_INTEGRITY_REF_TAG; 1820 break; 1821 case NVME_NVM_NS_64B_GUARD: 1822 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1823 bi->tag_size = sizeof(u16); 1824 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1825 BLK_INTEGRITY_REF_TAG; 1826 break; 1827 default: 1828 break; 1829 } 1830 break; 1831 default: 1832 break; 1833 } 1834 1835 bi->tuple_size = head->ms; 1836 bi->pi_offset = info->pi_offset; 1837 return true; 1838 } 1839 1840 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1841 { 1842 struct nvme_ctrl *ctrl = ns->ctrl; 1843 1844 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1845 lim->max_hw_discard_sectors = 1846 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1847 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1848 lim->max_hw_discard_sectors = UINT_MAX; 1849 else 1850 lim->max_hw_discard_sectors = 0; 1851 1852 lim->discard_granularity = lim->logical_block_size; 1853 1854 if (ctrl->dmrl) 1855 lim->max_discard_segments = ctrl->dmrl; 1856 else 1857 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1858 } 1859 1860 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1861 { 1862 return uuid_equal(&a->uuid, &b->uuid) && 1863 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1864 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1865 a->csi == b->csi; 1866 } 1867 1868 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1869 struct nvme_id_ns_nvm **nvmp) 1870 { 1871 struct nvme_command c = { 1872 .identify.opcode = nvme_admin_identify, 1873 .identify.nsid = cpu_to_le32(nsid), 1874 .identify.cns = NVME_ID_CNS_CS_NS, 1875 .identify.csi = NVME_CSI_NVM, 1876 }; 1877 struct nvme_id_ns_nvm *nvm; 1878 int ret; 1879 1880 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1881 if (!nvm) 1882 return -ENOMEM; 1883 1884 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1885 if (ret) 1886 kfree(nvm); 1887 else 1888 *nvmp = nvm; 1889 return ret; 1890 } 1891 1892 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1893 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1894 { 1895 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1896 u8 guard_type; 1897 1898 /* no support for storage tag formats right now */ 1899 if (nvme_elbaf_sts(elbaf)) 1900 return; 1901 1902 guard_type = nvme_elbaf_guard_type(elbaf); 1903 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && 1904 guard_type == NVME_NVM_NS_QTYPE_GUARD) 1905 guard_type = nvme_elbaf_qualified_guard_type(elbaf); 1906 1907 head->guard_type = guard_type; 1908 switch (head->guard_type) { 1909 case NVME_NVM_NS_64B_GUARD: 1910 head->pi_size = sizeof(struct crc64_pi_tuple); 1911 break; 1912 case NVME_NVM_NS_16B_GUARD: 1913 head->pi_size = sizeof(struct t10_pi_tuple); 1914 break; 1915 default: 1916 break; 1917 } 1918 } 1919 1920 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1921 struct nvme_ns_head *head, struct nvme_id_ns *id, 1922 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) 1923 { 1924 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1925 head->pi_type = 0; 1926 head->pi_size = 0; 1927 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1928 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1929 return; 1930 1931 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1932 nvme_configure_pi_elbas(head, id, nvm); 1933 } else { 1934 head->pi_size = sizeof(struct t10_pi_tuple); 1935 head->guard_type = NVME_NVM_NS_16B_GUARD; 1936 } 1937 1938 if (head->pi_size && head->ms >= head->pi_size) 1939 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1940 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) { 1941 if (disable_pi_offsets) 1942 head->pi_type = 0; 1943 else 1944 info->pi_offset = head->ms - head->pi_size; 1945 } 1946 1947 if (ctrl->ops->flags & NVME_F_FABRICS) { 1948 /* 1949 * The NVMe over Fabrics specification only supports metadata as 1950 * part of the extended data LBA. We rely on HCA/HBA support to 1951 * remap the separate metadata buffer from the block layer. 1952 */ 1953 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1954 return; 1955 1956 head->features |= NVME_NS_EXT_LBAS; 1957 1958 /* 1959 * The current fabrics transport drivers support namespace 1960 * metadata formats only if nvme_ns_has_pi() returns true. 1961 * Suppress support for all other formats so the namespace will 1962 * have a 0 capacity and not be usable through the block stack. 1963 * 1964 * Note, this check will need to be modified if any drivers 1965 * gain the ability to use other metadata formats. 1966 */ 1967 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1968 head->features |= NVME_NS_METADATA_SUPPORTED; 1969 } else { 1970 /* 1971 * For PCIe controllers, we can't easily remap the separate 1972 * metadata buffer from the block layer and thus require a 1973 * separate metadata buffer for block layer metadata/PI support. 1974 * We allow extended LBAs for the passthrough interface, though. 1975 */ 1976 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1977 head->features |= NVME_NS_EXT_LBAS; 1978 else 1979 head->features |= NVME_NS_METADATA_SUPPORTED; 1980 } 1981 } 1982 1983 1984 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, 1985 struct nvme_id_ns *id, struct queue_limits *lim, 1986 u32 bs, u32 atomic_bs) 1987 { 1988 unsigned int boundary = 0; 1989 1990 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { 1991 if (le16_to_cpu(id->nabspf)) 1992 boundary = (le16_to_cpu(id->nabspf) + 1) * bs; 1993 } 1994 lim->atomic_write_hw_max = atomic_bs; 1995 lim->atomic_write_hw_boundary = boundary; 1996 lim->atomic_write_hw_unit_min = bs; 1997 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); 1998 } 1999 2000 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 2001 { 2002 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 2003 } 2004 2005 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 2006 struct queue_limits *lim) 2007 { 2008 lim->max_hw_sectors = ctrl->max_hw_sectors; 2009 lim->max_segments = min_t(u32, USHRT_MAX, 2010 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 2011 lim->max_integrity_segments = ctrl->max_integrity_segments; 2012 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 2013 lim->max_segment_size = UINT_MAX; 2014 lim->dma_alignment = 3; 2015 } 2016 2017 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 2018 struct queue_limits *lim) 2019 { 2020 struct nvme_ns_head *head = ns->head; 2021 u32 bs = 1U << head->lba_shift; 2022 u32 atomic_bs, phys_bs, io_opt = 0; 2023 bool valid = true; 2024 2025 /* 2026 * The block layer can't support LBA sizes larger than the page size 2027 * or smaller than a sector size yet, so catch this early and don't 2028 * allow block I/O. 2029 */ 2030 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { 2031 bs = (1 << 9); 2032 valid = false; 2033 } 2034 2035 atomic_bs = phys_bs = bs; 2036 if (id->nabo == 0) { 2037 /* 2038 * Bit 1 indicates whether NAWUPF is defined for this namespace 2039 * and whether it should be used instead of AWUPF. If NAWUPF == 2040 * 0 then AWUPF must be used instead. 2041 */ 2042 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 2043 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2044 else 2045 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2046 2047 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); 2048 } 2049 2050 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2051 /* NPWG = Namespace Preferred Write Granularity */ 2052 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2053 /* NOWS = Namespace Optimal Write Size */ 2054 if (id->nows) 2055 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2056 } 2057 2058 /* 2059 * Linux filesystems assume writing a single physical block is 2060 * an atomic operation. Hence limit the physical block size to the 2061 * value of the Atomic Write Unit Power Fail parameter. 2062 */ 2063 lim->logical_block_size = bs; 2064 lim->physical_block_size = min(phys_bs, atomic_bs); 2065 lim->io_min = phys_bs; 2066 lim->io_opt = io_opt; 2067 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 2068 lim->max_write_zeroes_sectors = UINT_MAX; 2069 else 2070 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 2071 return valid; 2072 } 2073 2074 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 2075 { 2076 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 2077 } 2078 2079 static inline bool nvme_first_scan(struct gendisk *disk) 2080 { 2081 /* nvme_alloc_ns() scans the disk prior to adding it */ 2082 return !disk_live(disk); 2083 } 2084 2085 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2086 struct queue_limits *lim) 2087 { 2088 struct nvme_ctrl *ctrl = ns->ctrl; 2089 u32 iob; 2090 2091 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2092 is_power_of_2(ctrl->max_hw_sectors)) 2093 iob = ctrl->max_hw_sectors; 2094 else 2095 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2096 2097 if (!iob) 2098 return; 2099 2100 if (!is_power_of_2(iob)) { 2101 if (nvme_first_scan(ns->disk)) 2102 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2103 ns->disk->disk_name, iob); 2104 return; 2105 } 2106 2107 if (blk_queue_is_zoned(ns->disk->queue)) { 2108 if (nvme_first_scan(ns->disk)) 2109 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2110 ns->disk->disk_name); 2111 return; 2112 } 2113 2114 lim->chunk_sectors = iob; 2115 } 2116 2117 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2118 struct nvme_ns_info *info) 2119 { 2120 struct queue_limits lim; 2121 int ret; 2122 2123 blk_mq_freeze_queue(ns->disk->queue); 2124 lim = queue_limits_start_update(ns->disk->queue); 2125 nvme_set_ctrl_limits(ns->ctrl, &lim); 2126 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2127 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2128 blk_mq_unfreeze_queue(ns->disk->queue); 2129 2130 /* Hide the block-interface for these devices */ 2131 if (!ret) 2132 ret = -ENODEV; 2133 return ret; 2134 } 2135 2136 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2137 struct nvme_ns_info *info) 2138 { 2139 struct queue_limits lim; 2140 struct nvme_id_ns_nvm *nvm = NULL; 2141 struct nvme_zone_info zi = {}; 2142 struct nvme_id_ns *id; 2143 sector_t capacity; 2144 unsigned lbaf; 2145 int ret; 2146 2147 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2148 if (ret) 2149 return ret; 2150 2151 if (id->ncap == 0) { 2152 /* namespace not allocated or attached */ 2153 info->is_removed = true; 2154 ret = -ENXIO; 2155 goto out; 2156 } 2157 lbaf = nvme_lbaf_index(id->flbas); 2158 2159 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2160 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2161 if (ret < 0) 2162 goto out; 2163 } 2164 2165 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2166 ns->head->ids.csi == NVME_CSI_ZNS) { 2167 ret = nvme_query_zone_info(ns, lbaf, &zi); 2168 if (ret < 0) 2169 goto out; 2170 } 2171 2172 blk_mq_freeze_queue(ns->disk->queue); 2173 ns->head->lba_shift = id->lbaf[lbaf].ds; 2174 ns->head->nuse = le64_to_cpu(id->nuse); 2175 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2176 2177 lim = queue_limits_start_update(ns->disk->queue); 2178 nvme_set_ctrl_limits(ns->ctrl, &lim); 2179 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info); 2180 nvme_set_chunk_sectors(ns, id, &lim); 2181 if (!nvme_update_disk_info(ns, id, &lim)) 2182 capacity = 0; 2183 nvme_config_discard(ns, &lim); 2184 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2185 ns->head->ids.csi == NVME_CSI_ZNS) 2186 nvme_update_zone_info(ns, &lim, &zi); 2187 2188 if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2189 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2190 else 2191 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2192 2193 /* 2194 * Register a metadata profile for PI, or the plain non-integrity NVMe 2195 * metadata masquerading as Type 0 if supported, otherwise reject block 2196 * I/O to namespaces with metadata except when the namespace supports 2197 * PI, as it can strip/insert in that case. 2198 */ 2199 if (!nvme_init_integrity(ns->head, &lim, info)) 2200 capacity = 0; 2201 2202 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2203 if (ret) { 2204 blk_mq_unfreeze_queue(ns->disk->queue); 2205 goto out; 2206 } 2207 2208 set_capacity_and_notify(ns->disk, capacity); 2209 2210 /* 2211 * Only set the DEAC bit if the device guarantees that reads from 2212 * deallocated data return zeroes. While the DEAC bit does not 2213 * require that, it must be a no-op if reads from deallocated data 2214 * do not return zeroes. 2215 */ 2216 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2217 ns->head->features |= NVME_NS_DEAC; 2218 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2219 set_bit(NVME_NS_READY, &ns->flags); 2220 blk_mq_unfreeze_queue(ns->disk->queue); 2221 2222 if (blk_queue_is_zoned(ns->queue)) { 2223 ret = blk_revalidate_disk_zones(ns->disk); 2224 if (ret && !nvme_first_scan(ns->disk)) 2225 goto out; 2226 } 2227 2228 ret = 0; 2229 out: 2230 kfree(nvm); 2231 kfree(id); 2232 return ret; 2233 } 2234 2235 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2236 { 2237 bool unsupported = false; 2238 int ret; 2239 2240 switch (info->ids.csi) { 2241 case NVME_CSI_ZNS: 2242 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2243 dev_info(ns->ctrl->device, 2244 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2245 info->nsid); 2246 ret = nvme_update_ns_info_generic(ns, info); 2247 break; 2248 } 2249 ret = nvme_update_ns_info_block(ns, info); 2250 break; 2251 case NVME_CSI_NVM: 2252 ret = nvme_update_ns_info_block(ns, info); 2253 break; 2254 default: 2255 dev_info(ns->ctrl->device, 2256 "block device for nsid %u not supported (csi %u)\n", 2257 info->nsid, info->ids.csi); 2258 ret = nvme_update_ns_info_generic(ns, info); 2259 break; 2260 } 2261 2262 /* 2263 * If probing fails due an unsupported feature, hide the block device, 2264 * but still allow other access. 2265 */ 2266 if (ret == -ENODEV) { 2267 ns->disk->flags |= GENHD_FL_HIDDEN; 2268 set_bit(NVME_NS_READY, &ns->flags); 2269 unsupported = true; 2270 ret = 0; 2271 } 2272 2273 if (!ret && nvme_ns_head_multipath(ns->head)) { 2274 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2275 struct queue_limits lim; 2276 2277 blk_mq_freeze_queue(ns->head->disk->queue); 2278 /* 2279 * queue_limits mixes values that are the hardware limitations 2280 * for bio splitting with what is the device configuration. 2281 * 2282 * For NVMe the device configuration can change after e.g. a 2283 * Format command, and we really want to pick up the new format 2284 * value here. But we must still stack the queue limits to the 2285 * least common denominator for multipathing to split the bios 2286 * properly. 2287 * 2288 * To work around this, we explicitly set the device 2289 * configuration to those that we just queried, but only stack 2290 * the splitting limits in to make sure we still obey possibly 2291 * lower limitations of other controllers. 2292 */ 2293 lim = queue_limits_start_update(ns->head->disk->queue); 2294 lim.logical_block_size = ns_lim->logical_block_size; 2295 lim.physical_block_size = ns_lim->physical_block_size; 2296 lim.io_min = ns_lim->io_min; 2297 lim.io_opt = ns_lim->io_opt; 2298 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2299 ns->head->disk->disk_name); 2300 if (unsupported) 2301 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2302 else 2303 nvme_init_integrity(ns->head, &lim, info); 2304 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2305 2306 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2307 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2308 nvme_mpath_revalidate_paths(ns); 2309 2310 blk_mq_unfreeze_queue(ns->head->disk->queue); 2311 } 2312 2313 return ret; 2314 } 2315 2316 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], 2317 enum blk_unique_id type) 2318 { 2319 struct nvme_ns_ids *ids = &ns->head->ids; 2320 2321 if (type != BLK_UID_EUI64) 2322 return -EINVAL; 2323 2324 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { 2325 memcpy(id, &ids->nguid, sizeof(ids->nguid)); 2326 return sizeof(ids->nguid); 2327 } 2328 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { 2329 memcpy(id, &ids->eui64, sizeof(ids->eui64)); 2330 return sizeof(ids->eui64); 2331 } 2332 2333 return -EINVAL; 2334 } 2335 2336 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], 2337 enum blk_unique_id type) 2338 { 2339 return nvme_ns_get_unique_id(disk->private_data, id, type); 2340 } 2341 2342 #ifdef CONFIG_BLK_SED_OPAL 2343 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2344 bool send) 2345 { 2346 struct nvme_ctrl *ctrl = data; 2347 struct nvme_command cmd = { }; 2348 2349 if (send) 2350 cmd.common.opcode = nvme_admin_security_send; 2351 else 2352 cmd.common.opcode = nvme_admin_security_recv; 2353 cmd.common.nsid = 0; 2354 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2355 cmd.common.cdw11 = cpu_to_le32(len); 2356 2357 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2358 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2359 } 2360 2361 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2362 { 2363 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2364 if (!ctrl->opal_dev) 2365 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2366 else if (was_suspended) 2367 opal_unlock_from_suspend(ctrl->opal_dev); 2368 } else { 2369 free_opal_dev(ctrl->opal_dev); 2370 ctrl->opal_dev = NULL; 2371 } 2372 } 2373 #else 2374 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2375 { 2376 } 2377 #endif /* CONFIG_BLK_SED_OPAL */ 2378 2379 #ifdef CONFIG_BLK_DEV_ZONED 2380 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2381 unsigned int nr_zones, report_zones_cb cb, void *data) 2382 { 2383 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2384 data); 2385 } 2386 #else 2387 #define nvme_report_zones NULL 2388 #endif /* CONFIG_BLK_DEV_ZONED */ 2389 2390 const struct block_device_operations nvme_bdev_ops = { 2391 .owner = THIS_MODULE, 2392 .ioctl = nvme_ioctl, 2393 .compat_ioctl = blkdev_compat_ptr_ioctl, 2394 .open = nvme_open, 2395 .release = nvme_release, 2396 .getgeo = nvme_getgeo, 2397 .get_unique_id = nvme_get_unique_id, 2398 .report_zones = nvme_report_zones, 2399 .pr_ops = &nvme_pr_ops, 2400 }; 2401 2402 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2403 u32 timeout, const char *op) 2404 { 2405 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2406 u32 csts; 2407 int ret; 2408 2409 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2410 if (csts == ~0) 2411 return -ENODEV; 2412 if ((csts & mask) == val) 2413 break; 2414 2415 usleep_range(1000, 2000); 2416 if (fatal_signal_pending(current)) 2417 return -EINTR; 2418 if (time_after(jiffies, timeout_jiffies)) { 2419 dev_err(ctrl->device, 2420 "Device not ready; aborting %s, CSTS=0x%x\n", 2421 op, csts); 2422 return -ENODEV; 2423 } 2424 } 2425 2426 return ret; 2427 } 2428 2429 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2430 { 2431 int ret; 2432 2433 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2434 if (shutdown) 2435 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2436 else 2437 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2438 2439 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2440 if (ret) 2441 return ret; 2442 2443 if (shutdown) { 2444 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2445 NVME_CSTS_SHST_CMPLT, 2446 ctrl->shutdown_timeout, "shutdown"); 2447 } 2448 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2449 msleep(NVME_QUIRK_DELAY_AMOUNT); 2450 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2451 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2452 } 2453 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2454 2455 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2456 { 2457 unsigned dev_page_min; 2458 u32 timeout; 2459 int ret; 2460 2461 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2462 if (ret) { 2463 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2464 return ret; 2465 } 2466 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2467 2468 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2469 dev_err(ctrl->device, 2470 "Minimum device page size %u too large for host (%u)\n", 2471 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2472 return -ENODEV; 2473 } 2474 2475 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2476 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2477 else 2478 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2479 2480 /* 2481 * Setting CRIME results in CSTS.RDY before the media is ready. This 2482 * makes it possible for media related commands to return the error 2483 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is 2484 * restructured to handle retries, disable CC.CRIME. 2485 */ 2486 ctrl->ctrl_config &= ~NVME_CC_CRIME; 2487 2488 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2489 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2490 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2491 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2492 if (ret) 2493 return ret; 2494 2495 /* CAP value may change after initial CC write */ 2496 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2497 if (ret) 2498 return ret; 2499 2500 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2501 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2502 u32 crto, ready_timeout; 2503 2504 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2505 if (ret) { 2506 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2507 ret); 2508 return ret; 2509 } 2510 2511 /* 2512 * CRTO should always be greater or equal to CAP.TO, but some 2513 * devices are known to get this wrong. Use the larger of the 2514 * two values. 2515 */ 2516 ready_timeout = NVME_CRTO_CRWMT(crto); 2517 2518 if (ready_timeout < timeout) 2519 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2520 crto, ctrl->cap); 2521 else 2522 timeout = ready_timeout; 2523 } 2524 2525 ctrl->ctrl_config |= NVME_CC_ENABLE; 2526 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2527 if (ret) 2528 return ret; 2529 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2530 (timeout + 1) / 2, "initialisation"); 2531 } 2532 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2533 2534 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2535 { 2536 __le64 ts; 2537 int ret; 2538 2539 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2540 return 0; 2541 2542 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2543 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2544 NULL); 2545 if (ret) 2546 dev_warn_once(ctrl->device, 2547 "could not set timestamp (%d)\n", ret); 2548 return ret; 2549 } 2550 2551 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2552 { 2553 struct nvme_feat_host_behavior *host; 2554 u8 acre = 0, lbafee = 0; 2555 int ret; 2556 2557 /* Don't bother enabling the feature if retry delay is not reported */ 2558 if (ctrl->crdt[0]) 2559 acre = NVME_ENABLE_ACRE; 2560 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2561 lbafee = NVME_ENABLE_LBAFEE; 2562 2563 if (!acre && !lbafee) 2564 return 0; 2565 2566 host = kzalloc(sizeof(*host), GFP_KERNEL); 2567 if (!host) 2568 return 0; 2569 2570 host->acre = acre; 2571 host->lbafee = lbafee; 2572 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2573 host, sizeof(*host), NULL); 2574 kfree(host); 2575 return ret; 2576 } 2577 2578 /* 2579 * The function checks whether the given total (exlat + enlat) latency of 2580 * a power state allows the latter to be used as an APST transition target. 2581 * It does so by comparing the latency to the primary and secondary latency 2582 * tolerances defined by module params. If there's a match, the corresponding 2583 * timeout value is returned and the matching tolerance index (1 or 2) is 2584 * reported. 2585 */ 2586 static bool nvme_apst_get_transition_time(u64 total_latency, 2587 u64 *transition_time, unsigned *last_index) 2588 { 2589 if (total_latency <= apst_primary_latency_tol_us) { 2590 if (*last_index == 1) 2591 return false; 2592 *last_index = 1; 2593 *transition_time = apst_primary_timeout_ms; 2594 return true; 2595 } 2596 if (apst_secondary_timeout_ms && 2597 total_latency <= apst_secondary_latency_tol_us) { 2598 if (*last_index <= 2) 2599 return false; 2600 *last_index = 2; 2601 *transition_time = apst_secondary_timeout_ms; 2602 return true; 2603 } 2604 return false; 2605 } 2606 2607 /* 2608 * APST (Autonomous Power State Transition) lets us program a table of power 2609 * state transitions that the controller will perform automatically. 2610 * 2611 * Depending on module params, one of the two supported techniques will be used: 2612 * 2613 * - If the parameters provide explicit timeouts and tolerances, they will be 2614 * used to build a table with up to 2 non-operational states to transition to. 2615 * The default parameter values were selected based on the values used by 2616 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2617 * regeneration of the APST table in the event of switching between external 2618 * and battery power, the timeouts and tolerances reflect a compromise 2619 * between values used by Microsoft for AC and battery scenarios. 2620 * - If not, we'll configure the table with a simple heuristic: we are willing 2621 * to spend at most 2% of the time transitioning between power states. 2622 * Therefore, when running in any given state, we will enter the next 2623 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2624 * microseconds, as long as that state's exit latency is under the requested 2625 * maximum latency. 2626 * 2627 * We will not autonomously enter any non-operational state for which the total 2628 * latency exceeds ps_max_latency_us. 2629 * 2630 * Users can set ps_max_latency_us to zero to turn off APST. 2631 */ 2632 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2633 { 2634 struct nvme_feat_auto_pst *table; 2635 unsigned apste = 0; 2636 u64 max_lat_us = 0; 2637 __le64 target = 0; 2638 int max_ps = -1; 2639 int state; 2640 int ret; 2641 unsigned last_lt_index = UINT_MAX; 2642 2643 /* 2644 * If APST isn't supported or if we haven't been initialized yet, 2645 * then don't do anything. 2646 */ 2647 if (!ctrl->apsta) 2648 return 0; 2649 2650 if (ctrl->npss > 31) { 2651 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2652 return 0; 2653 } 2654 2655 table = kzalloc(sizeof(*table), GFP_KERNEL); 2656 if (!table) 2657 return 0; 2658 2659 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2660 /* Turn off APST. */ 2661 dev_dbg(ctrl->device, "APST disabled\n"); 2662 goto done; 2663 } 2664 2665 /* 2666 * Walk through all states from lowest- to highest-power. 2667 * According to the spec, lower-numbered states use more power. NPSS, 2668 * despite the name, is the index of the lowest-power state, not the 2669 * number of states. 2670 */ 2671 for (state = (int)ctrl->npss; state >= 0; state--) { 2672 u64 total_latency_us, exit_latency_us, transition_ms; 2673 2674 if (target) 2675 table->entries[state] = target; 2676 2677 /* 2678 * Don't allow transitions to the deepest state if it's quirked 2679 * off. 2680 */ 2681 if (state == ctrl->npss && 2682 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2683 continue; 2684 2685 /* 2686 * Is this state a useful non-operational state for higher-power 2687 * states to autonomously transition to? 2688 */ 2689 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2690 continue; 2691 2692 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2693 if (exit_latency_us > ctrl->ps_max_latency_us) 2694 continue; 2695 2696 total_latency_us = exit_latency_us + 2697 le32_to_cpu(ctrl->psd[state].entry_lat); 2698 2699 /* 2700 * This state is good. It can be used as the APST idle target 2701 * for higher power states. 2702 */ 2703 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2704 if (!nvme_apst_get_transition_time(total_latency_us, 2705 &transition_ms, &last_lt_index)) 2706 continue; 2707 } else { 2708 transition_ms = total_latency_us + 19; 2709 do_div(transition_ms, 20); 2710 if (transition_ms > (1 << 24) - 1) 2711 transition_ms = (1 << 24) - 1; 2712 } 2713 2714 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2715 if (max_ps == -1) 2716 max_ps = state; 2717 if (total_latency_us > max_lat_us) 2718 max_lat_us = total_latency_us; 2719 } 2720 2721 if (max_ps == -1) 2722 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2723 else 2724 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2725 max_ps, max_lat_us, (int)sizeof(*table), table); 2726 apste = 1; 2727 2728 done: 2729 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2730 table, sizeof(*table), NULL); 2731 if (ret) 2732 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2733 kfree(table); 2734 return ret; 2735 } 2736 2737 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2738 { 2739 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2740 u64 latency; 2741 2742 switch (val) { 2743 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2744 case PM_QOS_LATENCY_ANY: 2745 latency = U64_MAX; 2746 break; 2747 2748 default: 2749 latency = val; 2750 } 2751 2752 if (ctrl->ps_max_latency_us != latency) { 2753 ctrl->ps_max_latency_us = latency; 2754 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2755 nvme_configure_apst(ctrl); 2756 } 2757 } 2758 2759 struct nvme_core_quirk_entry { 2760 /* 2761 * NVMe model and firmware strings are padded with spaces. For 2762 * simplicity, strings in the quirk table are padded with NULLs 2763 * instead. 2764 */ 2765 u16 vid; 2766 const char *mn; 2767 const char *fr; 2768 unsigned long quirks; 2769 }; 2770 2771 static const struct nvme_core_quirk_entry core_quirks[] = { 2772 { 2773 /* 2774 * This Toshiba device seems to die using any APST states. See: 2775 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2776 */ 2777 .vid = 0x1179, 2778 .mn = "THNSF5256GPUK TOSHIBA", 2779 .quirks = NVME_QUIRK_NO_APST, 2780 }, 2781 { 2782 /* 2783 * This LiteON CL1-3D*-Q11 firmware version has a race 2784 * condition associated with actions related to suspend to idle 2785 * LiteON has resolved the problem in future firmware 2786 */ 2787 .vid = 0x14a4, 2788 .fr = "22301111", 2789 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2790 }, 2791 { 2792 /* 2793 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2794 * aborts I/O during any load, but more easily reproducible 2795 * with discards (fstrim). 2796 * 2797 * The device is left in a state where it is also not possible 2798 * to use "nvme set-feature" to disable APST, but booting with 2799 * nvme_core.default_ps_max_latency=0 works. 2800 */ 2801 .vid = 0x1e0f, 2802 .mn = "KCD6XVUL6T40", 2803 .quirks = NVME_QUIRK_NO_APST, 2804 }, 2805 { 2806 /* 2807 * The external Samsung X5 SSD fails initialization without a 2808 * delay before checking if it is ready and has a whole set of 2809 * other problems. To make this even more interesting, it 2810 * shares the PCI ID with internal Samsung 970 Evo Plus that 2811 * does not need or want these quirks. 2812 */ 2813 .vid = 0x144d, 2814 .mn = "Samsung Portable SSD X5", 2815 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2816 NVME_QUIRK_NO_DEEPEST_PS | 2817 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2818 } 2819 }; 2820 2821 /* match is null-terminated but idstr is space-padded. */ 2822 static bool string_matches(const char *idstr, const char *match, size_t len) 2823 { 2824 size_t matchlen; 2825 2826 if (!match) 2827 return true; 2828 2829 matchlen = strlen(match); 2830 WARN_ON_ONCE(matchlen > len); 2831 2832 if (memcmp(idstr, match, matchlen)) 2833 return false; 2834 2835 for (; matchlen < len; matchlen++) 2836 if (idstr[matchlen] != ' ') 2837 return false; 2838 2839 return true; 2840 } 2841 2842 static bool quirk_matches(const struct nvme_id_ctrl *id, 2843 const struct nvme_core_quirk_entry *q) 2844 { 2845 return q->vid == le16_to_cpu(id->vid) && 2846 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2847 string_matches(id->fr, q->fr, sizeof(id->fr)); 2848 } 2849 2850 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2851 struct nvme_id_ctrl *id) 2852 { 2853 size_t nqnlen; 2854 int off; 2855 2856 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2857 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2858 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2859 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2860 return; 2861 } 2862 2863 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2864 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2865 } 2866 2867 /* 2868 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2869 * Base Specification 2.0. It is slightly different from the format 2870 * specified there due to historic reasons, and we can't change it now. 2871 */ 2872 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2873 "nqn.2014.08.org.nvmexpress:%04x%04x", 2874 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2875 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2876 off += sizeof(id->sn); 2877 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2878 off += sizeof(id->mn); 2879 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2880 } 2881 2882 static void nvme_release_subsystem(struct device *dev) 2883 { 2884 struct nvme_subsystem *subsys = 2885 container_of(dev, struct nvme_subsystem, dev); 2886 2887 if (subsys->instance >= 0) 2888 ida_free(&nvme_instance_ida, subsys->instance); 2889 kfree(subsys); 2890 } 2891 2892 static void nvme_destroy_subsystem(struct kref *ref) 2893 { 2894 struct nvme_subsystem *subsys = 2895 container_of(ref, struct nvme_subsystem, ref); 2896 2897 mutex_lock(&nvme_subsystems_lock); 2898 list_del(&subsys->entry); 2899 mutex_unlock(&nvme_subsystems_lock); 2900 2901 ida_destroy(&subsys->ns_ida); 2902 device_del(&subsys->dev); 2903 put_device(&subsys->dev); 2904 } 2905 2906 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2907 { 2908 kref_put(&subsys->ref, nvme_destroy_subsystem); 2909 } 2910 2911 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2912 { 2913 struct nvme_subsystem *subsys; 2914 2915 lockdep_assert_held(&nvme_subsystems_lock); 2916 2917 /* 2918 * Fail matches for discovery subsystems. This results 2919 * in each discovery controller bound to a unique subsystem. 2920 * This avoids issues with validating controller values 2921 * that can only be true when there is a single unique subsystem. 2922 * There may be multiple and completely independent entities 2923 * that provide discovery controllers. 2924 */ 2925 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2926 return NULL; 2927 2928 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2929 if (strcmp(subsys->subnqn, subsysnqn)) 2930 continue; 2931 if (!kref_get_unless_zero(&subsys->ref)) 2932 continue; 2933 return subsys; 2934 } 2935 2936 return NULL; 2937 } 2938 2939 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2940 { 2941 return ctrl->opts && ctrl->opts->discovery_nqn; 2942 } 2943 2944 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2945 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2946 { 2947 struct nvme_ctrl *tmp; 2948 2949 lockdep_assert_held(&nvme_subsystems_lock); 2950 2951 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2952 if (nvme_state_terminal(tmp)) 2953 continue; 2954 2955 if (tmp->cntlid == ctrl->cntlid) { 2956 dev_err(ctrl->device, 2957 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2958 ctrl->cntlid, dev_name(tmp->device), 2959 subsys->subnqn); 2960 return false; 2961 } 2962 2963 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2964 nvme_discovery_ctrl(ctrl)) 2965 continue; 2966 2967 dev_err(ctrl->device, 2968 "Subsystem does not support multiple controllers\n"); 2969 return false; 2970 } 2971 2972 return true; 2973 } 2974 2975 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2976 { 2977 struct nvme_subsystem *subsys, *found; 2978 int ret; 2979 2980 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2981 if (!subsys) 2982 return -ENOMEM; 2983 2984 subsys->instance = -1; 2985 mutex_init(&subsys->lock); 2986 kref_init(&subsys->ref); 2987 INIT_LIST_HEAD(&subsys->ctrls); 2988 INIT_LIST_HEAD(&subsys->nsheads); 2989 nvme_init_subnqn(subsys, ctrl, id); 2990 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2991 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2992 subsys->vendor_id = le16_to_cpu(id->vid); 2993 subsys->cmic = id->cmic; 2994 2995 /* Versions prior to 1.4 don't necessarily report a valid type */ 2996 if (id->cntrltype == NVME_CTRL_DISC || 2997 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2998 subsys->subtype = NVME_NQN_DISC; 2999 else 3000 subsys->subtype = NVME_NQN_NVME; 3001 3002 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 3003 dev_err(ctrl->device, 3004 "Subsystem %s is not a discovery controller", 3005 subsys->subnqn); 3006 kfree(subsys); 3007 return -EINVAL; 3008 } 3009 subsys->awupf = le16_to_cpu(id->awupf); 3010 nvme_mpath_default_iopolicy(subsys); 3011 3012 subsys->dev.class = &nvme_subsys_class; 3013 subsys->dev.release = nvme_release_subsystem; 3014 subsys->dev.groups = nvme_subsys_attrs_groups; 3015 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 3016 device_initialize(&subsys->dev); 3017 3018 mutex_lock(&nvme_subsystems_lock); 3019 found = __nvme_find_get_subsystem(subsys->subnqn); 3020 if (found) { 3021 put_device(&subsys->dev); 3022 subsys = found; 3023 3024 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 3025 ret = -EINVAL; 3026 goto out_put_subsystem; 3027 } 3028 } else { 3029 ret = device_add(&subsys->dev); 3030 if (ret) { 3031 dev_err(ctrl->device, 3032 "failed to register subsystem device.\n"); 3033 put_device(&subsys->dev); 3034 goto out_unlock; 3035 } 3036 ida_init(&subsys->ns_ida); 3037 list_add_tail(&subsys->entry, &nvme_subsystems); 3038 } 3039 3040 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 3041 dev_name(ctrl->device)); 3042 if (ret) { 3043 dev_err(ctrl->device, 3044 "failed to create sysfs link from subsystem.\n"); 3045 goto out_put_subsystem; 3046 } 3047 3048 if (!found) 3049 subsys->instance = ctrl->instance; 3050 ctrl->subsys = subsys; 3051 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3052 mutex_unlock(&nvme_subsystems_lock); 3053 return 0; 3054 3055 out_put_subsystem: 3056 nvme_put_subsystem(subsys); 3057 out_unlock: 3058 mutex_unlock(&nvme_subsystems_lock); 3059 return ret; 3060 } 3061 3062 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3063 void *log, size_t size, u64 offset) 3064 { 3065 struct nvme_command c = { }; 3066 u32 dwlen = nvme_bytes_to_numd(size); 3067 3068 c.get_log_page.opcode = nvme_admin_get_log_page; 3069 c.get_log_page.nsid = cpu_to_le32(nsid); 3070 c.get_log_page.lid = log_page; 3071 c.get_log_page.lsp = lsp; 3072 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3073 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3074 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3075 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3076 c.get_log_page.csi = csi; 3077 3078 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3079 } 3080 3081 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3082 struct nvme_effects_log **log) 3083 { 3084 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 3085 int ret; 3086 3087 if (cel) 3088 goto out; 3089 3090 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3091 if (!cel) 3092 return -ENOMEM; 3093 3094 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3095 cel, sizeof(*cel), 0); 3096 if (ret) { 3097 kfree(cel); 3098 return ret; 3099 } 3100 3101 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3102 out: 3103 *log = cel; 3104 return 0; 3105 } 3106 3107 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3108 { 3109 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3110 3111 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3112 return UINT_MAX; 3113 return val; 3114 } 3115 3116 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3117 { 3118 struct nvme_command c = { }; 3119 struct nvme_id_ctrl_nvm *id; 3120 int ret; 3121 3122 /* 3123 * Even though NVMe spec explicitly states that MDTS is not applicable 3124 * to the write-zeroes, we are cautious and limit the size to the 3125 * controllers max_hw_sectors value, which is based on the MDTS field 3126 * and possibly other limiting factors. 3127 */ 3128 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3129 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3130 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3131 else 3132 ctrl->max_zeroes_sectors = 0; 3133 3134 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3135 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) || 3136 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3137 return 0; 3138 3139 id = kzalloc(sizeof(*id), GFP_KERNEL); 3140 if (!id) 3141 return -ENOMEM; 3142 3143 c.identify.opcode = nvme_admin_identify; 3144 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3145 c.identify.csi = NVME_CSI_NVM; 3146 3147 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3148 if (ret) 3149 goto free_data; 3150 3151 ctrl->dmrl = id->dmrl; 3152 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3153 if (id->wzsl) 3154 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3155 3156 free_data: 3157 if (ret > 0) 3158 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3159 kfree(id); 3160 return ret; 3161 } 3162 3163 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3164 { 3165 struct nvme_effects_log *log = ctrl->effects; 3166 3167 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3168 NVME_CMD_EFFECTS_NCC | 3169 NVME_CMD_EFFECTS_CSE_MASK); 3170 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3171 NVME_CMD_EFFECTS_CSE_MASK); 3172 3173 /* 3174 * The spec says the result of a security receive command depends on 3175 * the previous security send command. As such, many vendors log this 3176 * command as one to submitted only when no other commands to the same 3177 * namespace are outstanding. The intention is to tell the host to 3178 * prevent mixing security send and receive. 3179 * 3180 * This driver can only enforce such exclusive access against IO 3181 * queues, though. We are not readily able to enforce such a rule for 3182 * two commands to the admin queue, which is the only queue that 3183 * matters for this command. 3184 * 3185 * Rather than blindly freezing the IO queues for this effect that 3186 * doesn't even apply to IO, mask it off. 3187 */ 3188 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3189 3190 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3191 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3192 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3193 } 3194 3195 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3196 { 3197 int ret = 0; 3198 3199 if (ctrl->effects) 3200 return 0; 3201 3202 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3203 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3204 if (ret < 0) 3205 return ret; 3206 } 3207 3208 if (!ctrl->effects) { 3209 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3210 if (!ctrl->effects) 3211 return -ENOMEM; 3212 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3213 } 3214 3215 nvme_init_known_nvm_effects(ctrl); 3216 return 0; 3217 } 3218 3219 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3220 { 3221 /* 3222 * In fabrics we need to verify the cntlid matches the 3223 * admin connect 3224 */ 3225 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3226 dev_err(ctrl->device, 3227 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3228 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3229 return -EINVAL; 3230 } 3231 3232 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3233 dev_err(ctrl->device, 3234 "keep-alive support is mandatory for fabrics\n"); 3235 return -EINVAL; 3236 } 3237 3238 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3239 dev_err(ctrl->device, 3240 "I/O queue command capsule supported size %d < 4\n", 3241 ctrl->ioccsz); 3242 return -EINVAL; 3243 } 3244 3245 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3246 dev_err(ctrl->device, 3247 "I/O queue response capsule supported size %d < 1\n", 3248 ctrl->iorcsz); 3249 return -EINVAL; 3250 } 3251 3252 if (!ctrl->maxcmd) { 3253 dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); 3254 return -EINVAL; 3255 } 3256 3257 return 0; 3258 } 3259 3260 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3261 { 3262 struct queue_limits lim; 3263 struct nvme_id_ctrl *id; 3264 u32 max_hw_sectors; 3265 bool prev_apst_enabled; 3266 int ret; 3267 3268 ret = nvme_identify_ctrl(ctrl, &id); 3269 if (ret) { 3270 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3271 return -EIO; 3272 } 3273 3274 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3275 ctrl->cntlid = le16_to_cpu(id->cntlid); 3276 3277 if (!ctrl->identified) { 3278 unsigned int i; 3279 3280 /* 3281 * Check for quirks. Quirk can depend on firmware version, 3282 * so, in principle, the set of quirks present can change 3283 * across a reset. As a possible future enhancement, we 3284 * could re-scan for quirks every time we reinitialize 3285 * the device, but we'd have to make sure that the driver 3286 * behaves intelligently if the quirks change. 3287 */ 3288 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3289 if (quirk_matches(id, &core_quirks[i])) 3290 ctrl->quirks |= core_quirks[i].quirks; 3291 } 3292 3293 ret = nvme_init_subsystem(ctrl, id); 3294 if (ret) 3295 goto out_free; 3296 3297 ret = nvme_init_effects(ctrl, id); 3298 if (ret) 3299 goto out_free; 3300 } 3301 memcpy(ctrl->subsys->firmware_rev, id->fr, 3302 sizeof(ctrl->subsys->firmware_rev)); 3303 3304 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3305 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3306 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3307 } 3308 3309 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3310 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3311 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3312 3313 ctrl->oacs = le16_to_cpu(id->oacs); 3314 ctrl->oncs = le16_to_cpu(id->oncs); 3315 ctrl->mtfa = le16_to_cpu(id->mtfa); 3316 ctrl->oaes = le32_to_cpu(id->oaes); 3317 ctrl->wctemp = le16_to_cpu(id->wctemp); 3318 ctrl->cctemp = le16_to_cpu(id->cctemp); 3319 3320 atomic_set(&ctrl->abort_limit, id->acl + 1); 3321 ctrl->vwc = id->vwc; 3322 if (id->mdts) 3323 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3324 else 3325 max_hw_sectors = UINT_MAX; 3326 ctrl->max_hw_sectors = 3327 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3328 3329 lim = queue_limits_start_update(ctrl->admin_q); 3330 nvme_set_ctrl_limits(ctrl, &lim); 3331 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3332 if (ret) 3333 goto out_free; 3334 3335 ctrl->sgls = le32_to_cpu(id->sgls); 3336 ctrl->kas = le16_to_cpu(id->kas); 3337 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3338 ctrl->ctratt = le32_to_cpu(id->ctratt); 3339 3340 ctrl->cntrltype = id->cntrltype; 3341 ctrl->dctype = id->dctype; 3342 3343 if (id->rtd3e) { 3344 /* us -> s */ 3345 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3346 3347 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3348 shutdown_timeout, 60); 3349 3350 if (ctrl->shutdown_timeout != shutdown_timeout) 3351 dev_info(ctrl->device, 3352 "D3 entry latency set to %u seconds\n", 3353 ctrl->shutdown_timeout); 3354 } else 3355 ctrl->shutdown_timeout = shutdown_timeout; 3356 3357 ctrl->npss = id->npss; 3358 ctrl->apsta = id->apsta; 3359 prev_apst_enabled = ctrl->apst_enabled; 3360 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3361 if (force_apst && id->apsta) { 3362 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3363 ctrl->apst_enabled = true; 3364 } else { 3365 ctrl->apst_enabled = false; 3366 } 3367 } else { 3368 ctrl->apst_enabled = id->apsta; 3369 } 3370 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3371 3372 if (ctrl->ops->flags & NVME_F_FABRICS) { 3373 ctrl->icdoff = le16_to_cpu(id->icdoff); 3374 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3375 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3376 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3377 3378 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3379 if (ret) 3380 goto out_free; 3381 } else { 3382 ctrl->hmpre = le32_to_cpu(id->hmpre); 3383 ctrl->hmmin = le32_to_cpu(id->hmmin); 3384 ctrl->hmminds = le32_to_cpu(id->hmminds); 3385 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3386 } 3387 3388 ret = nvme_mpath_init_identify(ctrl, id); 3389 if (ret < 0) 3390 goto out_free; 3391 3392 if (ctrl->apst_enabled && !prev_apst_enabled) 3393 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3394 else if (!ctrl->apst_enabled && prev_apst_enabled) 3395 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3396 3397 out_free: 3398 kfree(id); 3399 return ret; 3400 } 3401 3402 /* 3403 * Initialize the cached copies of the Identify data and various controller 3404 * register in our nvme_ctrl structure. This should be called as soon as 3405 * the admin queue is fully up and running. 3406 */ 3407 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3408 { 3409 int ret; 3410 3411 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3412 if (ret) { 3413 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3414 return ret; 3415 } 3416 3417 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3418 3419 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3420 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3421 3422 ret = nvme_init_identify(ctrl); 3423 if (ret) 3424 return ret; 3425 3426 ret = nvme_configure_apst(ctrl); 3427 if (ret < 0) 3428 return ret; 3429 3430 ret = nvme_configure_timestamp(ctrl); 3431 if (ret < 0) 3432 return ret; 3433 3434 ret = nvme_configure_host_options(ctrl); 3435 if (ret < 0) 3436 return ret; 3437 3438 nvme_configure_opal(ctrl, was_suspended); 3439 3440 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3441 /* 3442 * Do not return errors unless we are in a controller reset, 3443 * the controller works perfectly fine without hwmon. 3444 */ 3445 ret = nvme_hwmon_init(ctrl); 3446 if (ret == -EINTR) 3447 return ret; 3448 } 3449 3450 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3451 ctrl->identified = true; 3452 3453 nvme_start_keep_alive(ctrl); 3454 3455 return 0; 3456 } 3457 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3458 3459 static int nvme_dev_open(struct inode *inode, struct file *file) 3460 { 3461 struct nvme_ctrl *ctrl = 3462 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3463 3464 switch (nvme_ctrl_state(ctrl)) { 3465 case NVME_CTRL_LIVE: 3466 break; 3467 default: 3468 return -EWOULDBLOCK; 3469 } 3470 3471 nvme_get_ctrl(ctrl); 3472 if (!try_module_get(ctrl->ops->module)) { 3473 nvme_put_ctrl(ctrl); 3474 return -EINVAL; 3475 } 3476 3477 file->private_data = ctrl; 3478 return 0; 3479 } 3480 3481 static int nvme_dev_release(struct inode *inode, struct file *file) 3482 { 3483 struct nvme_ctrl *ctrl = 3484 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3485 3486 module_put(ctrl->ops->module); 3487 nvme_put_ctrl(ctrl); 3488 return 0; 3489 } 3490 3491 static const struct file_operations nvme_dev_fops = { 3492 .owner = THIS_MODULE, 3493 .open = nvme_dev_open, 3494 .release = nvme_dev_release, 3495 .unlocked_ioctl = nvme_dev_ioctl, 3496 .compat_ioctl = compat_ptr_ioctl, 3497 .uring_cmd = nvme_dev_uring_cmd, 3498 }; 3499 3500 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3501 unsigned nsid) 3502 { 3503 struct nvme_ns_head *h; 3504 3505 lockdep_assert_held(&ctrl->subsys->lock); 3506 3507 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3508 /* 3509 * Private namespaces can share NSIDs under some conditions. 3510 * In that case we can't use the same ns_head for namespaces 3511 * with the same NSID. 3512 */ 3513 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3514 continue; 3515 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3516 return h; 3517 } 3518 3519 return NULL; 3520 } 3521 3522 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3523 struct nvme_ns_ids *ids) 3524 { 3525 bool has_uuid = !uuid_is_null(&ids->uuid); 3526 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3527 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3528 struct nvme_ns_head *h; 3529 3530 lockdep_assert_held(&subsys->lock); 3531 3532 list_for_each_entry(h, &subsys->nsheads, entry) { 3533 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3534 return -EINVAL; 3535 if (has_nguid && 3536 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3537 return -EINVAL; 3538 if (has_eui64 && 3539 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3540 return -EINVAL; 3541 } 3542 3543 return 0; 3544 } 3545 3546 static void nvme_cdev_rel(struct device *dev) 3547 { 3548 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3549 } 3550 3551 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3552 { 3553 cdev_device_del(cdev, cdev_device); 3554 put_device(cdev_device); 3555 } 3556 3557 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3558 const struct file_operations *fops, struct module *owner) 3559 { 3560 int minor, ret; 3561 3562 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3563 if (minor < 0) 3564 return minor; 3565 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3566 cdev_device->class = &nvme_ns_chr_class; 3567 cdev_device->release = nvme_cdev_rel; 3568 device_initialize(cdev_device); 3569 cdev_init(cdev, fops); 3570 cdev->owner = owner; 3571 ret = cdev_device_add(cdev, cdev_device); 3572 if (ret) 3573 put_device(cdev_device); 3574 3575 return ret; 3576 } 3577 3578 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3579 { 3580 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3581 } 3582 3583 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3584 { 3585 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3586 return 0; 3587 } 3588 3589 static const struct file_operations nvme_ns_chr_fops = { 3590 .owner = THIS_MODULE, 3591 .open = nvme_ns_chr_open, 3592 .release = nvme_ns_chr_release, 3593 .unlocked_ioctl = nvme_ns_chr_ioctl, 3594 .compat_ioctl = compat_ptr_ioctl, 3595 .uring_cmd = nvme_ns_chr_uring_cmd, 3596 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3597 }; 3598 3599 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3600 { 3601 int ret; 3602 3603 ns->cdev_device.parent = ns->ctrl->device; 3604 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3605 ns->ctrl->instance, ns->head->instance); 3606 if (ret) 3607 return ret; 3608 3609 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3610 ns->ctrl->ops->module); 3611 } 3612 3613 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3614 struct nvme_ns_info *info) 3615 { 3616 struct nvme_ns_head *head; 3617 size_t size = sizeof(*head); 3618 int ret = -ENOMEM; 3619 3620 #ifdef CONFIG_NVME_MULTIPATH 3621 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3622 #endif 3623 3624 head = kzalloc(size, GFP_KERNEL); 3625 if (!head) 3626 goto out; 3627 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3628 if (ret < 0) 3629 goto out_free_head; 3630 head->instance = ret; 3631 INIT_LIST_HEAD(&head->list); 3632 ret = init_srcu_struct(&head->srcu); 3633 if (ret) 3634 goto out_ida_remove; 3635 head->subsys = ctrl->subsys; 3636 head->ns_id = info->nsid; 3637 head->ids = info->ids; 3638 head->shared = info->is_shared; 3639 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3640 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3641 kref_init(&head->ref); 3642 3643 if (head->ids.csi) { 3644 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3645 if (ret) 3646 goto out_cleanup_srcu; 3647 } else 3648 head->effects = ctrl->effects; 3649 3650 ret = nvme_mpath_alloc_disk(ctrl, head); 3651 if (ret) 3652 goto out_cleanup_srcu; 3653 3654 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3655 3656 kref_get(&ctrl->subsys->ref); 3657 3658 return head; 3659 out_cleanup_srcu: 3660 cleanup_srcu_struct(&head->srcu); 3661 out_ida_remove: 3662 ida_free(&ctrl->subsys->ns_ida, head->instance); 3663 out_free_head: 3664 kfree(head); 3665 out: 3666 if (ret > 0) 3667 ret = blk_status_to_errno(nvme_error_status(ret)); 3668 return ERR_PTR(ret); 3669 } 3670 3671 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3672 struct nvme_ns_ids *ids) 3673 { 3674 struct nvme_subsystem *s; 3675 int ret = 0; 3676 3677 /* 3678 * Note that this check is racy as we try to avoid holding the global 3679 * lock over the whole ns_head creation. But it is only intended as 3680 * a sanity check anyway. 3681 */ 3682 mutex_lock(&nvme_subsystems_lock); 3683 list_for_each_entry(s, &nvme_subsystems, entry) { 3684 if (s == this) 3685 continue; 3686 mutex_lock(&s->lock); 3687 ret = nvme_subsys_check_duplicate_ids(s, ids); 3688 mutex_unlock(&s->lock); 3689 if (ret) 3690 break; 3691 } 3692 mutex_unlock(&nvme_subsystems_lock); 3693 3694 return ret; 3695 } 3696 3697 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3698 { 3699 struct nvme_ctrl *ctrl = ns->ctrl; 3700 struct nvme_ns_head *head = NULL; 3701 int ret; 3702 3703 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3704 if (ret) { 3705 /* 3706 * We've found two different namespaces on two different 3707 * subsystems that report the same ID. This is pretty nasty 3708 * for anything that actually requires unique device 3709 * identification. In the kernel we need this for multipathing, 3710 * and in user space the /dev/disk/by-id/ links rely on it. 3711 * 3712 * If the device also claims to be multi-path capable back off 3713 * here now and refuse the probe the second device as this is a 3714 * recipe for data corruption. If not this is probably a 3715 * cheap consumer device if on the PCIe bus, so let the user 3716 * proceed and use the shiny toy, but warn that with changing 3717 * probing order (which due to our async probing could just be 3718 * device taking longer to startup) the other device could show 3719 * up at any time. 3720 */ 3721 nvme_print_device_info(ctrl); 3722 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3723 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3724 info->is_shared)) { 3725 dev_err(ctrl->device, 3726 "ignoring nsid %d because of duplicate IDs\n", 3727 info->nsid); 3728 return ret; 3729 } 3730 3731 dev_err(ctrl->device, 3732 "clearing duplicate IDs for nsid %d\n", info->nsid); 3733 dev_err(ctrl->device, 3734 "use of /dev/disk/by-id/ may cause data corruption\n"); 3735 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3736 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3737 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3738 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3739 } 3740 3741 mutex_lock(&ctrl->subsys->lock); 3742 head = nvme_find_ns_head(ctrl, info->nsid); 3743 if (!head) { 3744 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3745 if (ret) { 3746 dev_err(ctrl->device, 3747 "duplicate IDs in subsystem for nsid %d\n", 3748 info->nsid); 3749 goto out_unlock; 3750 } 3751 head = nvme_alloc_ns_head(ctrl, info); 3752 if (IS_ERR(head)) { 3753 ret = PTR_ERR(head); 3754 goto out_unlock; 3755 } 3756 } else { 3757 ret = -EINVAL; 3758 if (!info->is_shared || !head->shared) { 3759 dev_err(ctrl->device, 3760 "Duplicate unshared namespace %d\n", 3761 info->nsid); 3762 goto out_put_ns_head; 3763 } 3764 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3765 dev_err(ctrl->device, 3766 "IDs don't match for shared namespace %d\n", 3767 info->nsid); 3768 goto out_put_ns_head; 3769 } 3770 3771 if (!multipath) { 3772 dev_warn(ctrl->device, 3773 "Found shared namespace %d, but multipathing not supported.\n", 3774 info->nsid); 3775 dev_warn_once(ctrl->device, 3776 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3777 } 3778 } 3779 3780 list_add_tail_rcu(&ns->siblings, &head->list); 3781 ns->head = head; 3782 mutex_unlock(&ctrl->subsys->lock); 3783 return 0; 3784 3785 out_put_ns_head: 3786 nvme_put_ns_head(head); 3787 out_unlock: 3788 mutex_unlock(&ctrl->subsys->lock); 3789 return ret; 3790 } 3791 3792 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3793 { 3794 struct nvme_ns *ns, *ret = NULL; 3795 int srcu_idx; 3796 3797 srcu_idx = srcu_read_lock(&ctrl->srcu); 3798 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 3799 srcu_read_lock_held(&ctrl->srcu)) { 3800 if (ns->head->ns_id == nsid) { 3801 if (!nvme_get_ns(ns)) 3802 continue; 3803 ret = ns; 3804 break; 3805 } 3806 if (ns->head->ns_id > nsid) 3807 break; 3808 } 3809 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3810 return ret; 3811 } 3812 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3813 3814 /* 3815 * Add the namespace to the controller list while keeping the list ordered. 3816 */ 3817 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3818 { 3819 struct nvme_ns *tmp; 3820 3821 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3822 if (tmp->head->ns_id < ns->head->ns_id) { 3823 list_add_rcu(&ns->list, &tmp->list); 3824 return; 3825 } 3826 } 3827 list_add(&ns->list, &ns->ctrl->namespaces); 3828 } 3829 3830 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3831 { 3832 struct queue_limits lim = { }; 3833 struct nvme_ns *ns; 3834 struct gendisk *disk; 3835 int node = ctrl->numa_node; 3836 3837 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3838 if (!ns) 3839 return; 3840 3841 if (ctrl->opts && ctrl->opts->data_digest) 3842 lim.features |= BLK_FEAT_STABLE_WRITES; 3843 if (ctrl->ops->supports_pci_p2pdma && 3844 ctrl->ops->supports_pci_p2pdma(ctrl)) 3845 lim.features |= BLK_FEAT_PCI_P2PDMA; 3846 3847 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); 3848 if (IS_ERR(disk)) 3849 goto out_free_ns; 3850 disk->fops = &nvme_bdev_ops; 3851 disk->private_data = ns; 3852 3853 ns->disk = disk; 3854 ns->queue = disk->queue; 3855 ns->ctrl = ctrl; 3856 kref_init(&ns->kref); 3857 3858 if (nvme_init_ns_head(ns, info)) 3859 goto out_cleanup_disk; 3860 3861 /* 3862 * If multipathing is enabled, the device name for all disks and not 3863 * just those that represent shared namespaces needs to be based on the 3864 * subsystem instance. Using the controller instance for private 3865 * namespaces could lead to naming collisions between shared and private 3866 * namespaces if they don't use a common numbering scheme. 3867 * 3868 * If multipathing is not enabled, disk names must use the controller 3869 * instance as shared namespaces will show up as multiple block 3870 * devices. 3871 */ 3872 if (nvme_ns_head_multipath(ns->head)) { 3873 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3874 ctrl->instance, ns->head->instance); 3875 disk->flags |= GENHD_FL_HIDDEN; 3876 } else if (multipath) { 3877 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3878 ns->head->instance); 3879 } else { 3880 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3881 ns->head->instance); 3882 } 3883 3884 if (nvme_update_ns_info(ns, info)) 3885 goto out_unlink_ns; 3886 3887 mutex_lock(&ctrl->namespaces_lock); 3888 /* 3889 * Ensure that no namespaces are added to the ctrl list after the queues 3890 * are frozen, thereby avoiding a deadlock between scan and reset. 3891 */ 3892 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3893 mutex_unlock(&ctrl->namespaces_lock); 3894 goto out_unlink_ns; 3895 } 3896 nvme_ns_add_to_ctrl_list(ns); 3897 mutex_unlock(&ctrl->namespaces_lock); 3898 synchronize_srcu(&ctrl->srcu); 3899 nvme_get_ctrl(ctrl); 3900 3901 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3902 goto out_cleanup_ns_from_list; 3903 3904 if (!nvme_ns_head_multipath(ns->head)) 3905 nvme_add_ns_cdev(ns); 3906 3907 nvme_mpath_add_disk(ns, info->anagrpid); 3908 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3909 3910 /* 3911 * Set ns->disk->device->driver_data to ns so we can access 3912 * ns->head->passthru_err_log_enabled in 3913 * nvme_io_passthru_err_log_enabled_[store | show](). 3914 */ 3915 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3916 3917 return; 3918 3919 out_cleanup_ns_from_list: 3920 nvme_put_ctrl(ctrl); 3921 mutex_lock(&ctrl->namespaces_lock); 3922 list_del_rcu(&ns->list); 3923 mutex_unlock(&ctrl->namespaces_lock); 3924 synchronize_srcu(&ctrl->srcu); 3925 out_unlink_ns: 3926 mutex_lock(&ctrl->subsys->lock); 3927 list_del_rcu(&ns->siblings); 3928 if (list_empty(&ns->head->list)) 3929 list_del_init(&ns->head->entry); 3930 mutex_unlock(&ctrl->subsys->lock); 3931 nvme_put_ns_head(ns->head); 3932 out_cleanup_disk: 3933 put_disk(disk); 3934 out_free_ns: 3935 kfree(ns); 3936 } 3937 3938 static void nvme_ns_remove(struct nvme_ns *ns) 3939 { 3940 bool last_path = false; 3941 3942 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3943 return; 3944 3945 clear_bit(NVME_NS_READY, &ns->flags); 3946 set_capacity(ns->disk, 0); 3947 nvme_fault_inject_fini(&ns->fault_inject); 3948 3949 /* 3950 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3951 * this ns going back into current_path. 3952 */ 3953 synchronize_srcu(&ns->head->srcu); 3954 3955 /* wait for concurrent submissions */ 3956 if (nvme_mpath_clear_current_path(ns)) 3957 synchronize_srcu(&ns->head->srcu); 3958 3959 mutex_lock(&ns->ctrl->subsys->lock); 3960 list_del_rcu(&ns->siblings); 3961 if (list_empty(&ns->head->list)) { 3962 list_del_init(&ns->head->entry); 3963 last_path = true; 3964 } 3965 mutex_unlock(&ns->ctrl->subsys->lock); 3966 3967 /* guarantee not available in head->list */ 3968 synchronize_srcu(&ns->head->srcu); 3969 3970 if (!nvme_ns_head_multipath(ns->head)) 3971 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3972 del_gendisk(ns->disk); 3973 3974 mutex_lock(&ns->ctrl->namespaces_lock); 3975 list_del_rcu(&ns->list); 3976 mutex_unlock(&ns->ctrl->namespaces_lock); 3977 synchronize_srcu(&ns->ctrl->srcu); 3978 3979 if (last_path) 3980 nvme_mpath_shutdown_disk(ns->head); 3981 nvme_put_ns(ns); 3982 } 3983 3984 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3985 { 3986 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3987 3988 if (ns) { 3989 nvme_ns_remove(ns); 3990 nvme_put_ns(ns); 3991 } 3992 } 3993 3994 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3995 { 3996 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; 3997 3998 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3999 dev_err(ns->ctrl->device, 4000 "identifiers changed for nsid %d\n", ns->head->ns_id); 4001 goto out; 4002 } 4003 4004 ret = nvme_update_ns_info(ns, info); 4005 out: 4006 /* 4007 * Only remove the namespace if we got a fatal error back from the 4008 * device, otherwise ignore the error and just move on. 4009 * 4010 * TODO: we should probably schedule a delayed retry here. 4011 */ 4012 if (ret > 0 && (ret & NVME_STATUS_DNR)) 4013 nvme_ns_remove(ns); 4014 } 4015 4016 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4017 { 4018 struct nvme_ns_info info = { .nsid = nsid }; 4019 struct nvme_ns *ns; 4020 int ret; 4021 4022 if (nvme_identify_ns_descs(ctrl, &info)) 4023 return; 4024 4025 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4026 dev_warn(ctrl->device, 4027 "command set not reported for nsid: %d\n", nsid); 4028 return; 4029 } 4030 4031 /* 4032 * If available try to use the Command Set Idependent Identify Namespace 4033 * data structure to find all the generic information that is needed to 4034 * set up a namespace. If not fall back to the legacy version. 4035 */ 4036 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4037 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 4038 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 4039 else 4040 ret = nvme_ns_info_from_identify(ctrl, &info); 4041 4042 if (info.is_removed) 4043 nvme_ns_remove_by_nsid(ctrl, nsid); 4044 4045 /* 4046 * Ignore the namespace if it is not ready. We will get an AEN once it 4047 * becomes ready and restart the scan. 4048 */ 4049 if (ret || !info.is_ready) 4050 return; 4051 4052 ns = nvme_find_get_ns(ctrl, nsid); 4053 if (ns) { 4054 nvme_validate_ns(ns, &info); 4055 nvme_put_ns(ns); 4056 } else { 4057 nvme_alloc_ns(ctrl, &info); 4058 } 4059 } 4060 4061 /** 4062 * struct async_scan_info - keeps track of controller & NSIDs to scan 4063 * @ctrl: Controller on which namespaces are being scanned 4064 * @next_nsid: Index of next NSID to scan in ns_list 4065 * @ns_list: Pointer to list of NSIDs to scan 4066 * 4067 * Note: There is a single async_scan_info structure shared by all instances 4068 * of nvme_scan_ns_async() scanning a given controller, so the atomic 4069 * operations on next_nsid are critical to ensure each instance scans a unique 4070 * NSID. 4071 */ 4072 struct async_scan_info { 4073 struct nvme_ctrl *ctrl; 4074 atomic_t next_nsid; 4075 __le32 *ns_list; 4076 }; 4077 4078 static void nvme_scan_ns_async(void *data, async_cookie_t cookie) 4079 { 4080 struct async_scan_info *scan_info = data; 4081 int idx; 4082 u32 nsid; 4083 4084 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid); 4085 nsid = le32_to_cpu(scan_info->ns_list[idx]); 4086 4087 nvme_scan_ns(scan_info->ctrl, nsid); 4088 } 4089 4090 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4091 unsigned nsid) 4092 { 4093 struct nvme_ns *ns, *next; 4094 LIST_HEAD(rm_list); 4095 4096 mutex_lock(&ctrl->namespaces_lock); 4097 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4098 if (ns->head->ns_id > nsid) { 4099 list_del_rcu(&ns->list); 4100 synchronize_srcu(&ctrl->srcu); 4101 list_add_tail_rcu(&ns->list, &rm_list); 4102 } 4103 } 4104 mutex_unlock(&ctrl->namespaces_lock); 4105 4106 list_for_each_entry_safe(ns, next, &rm_list, list) 4107 nvme_ns_remove(ns); 4108 } 4109 4110 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4111 { 4112 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4113 __le32 *ns_list; 4114 u32 prev = 0; 4115 int ret = 0, i; 4116 ASYNC_DOMAIN(domain); 4117 struct async_scan_info scan_info; 4118 4119 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4120 if (!ns_list) 4121 return -ENOMEM; 4122 4123 scan_info.ctrl = ctrl; 4124 scan_info.ns_list = ns_list; 4125 for (;;) { 4126 struct nvme_command cmd = { 4127 .identify.opcode = nvme_admin_identify, 4128 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4129 .identify.nsid = cpu_to_le32(prev), 4130 }; 4131 4132 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4133 NVME_IDENTIFY_DATA_SIZE); 4134 if (ret) { 4135 dev_warn(ctrl->device, 4136 "Identify NS List failed (status=0x%x)\n", ret); 4137 goto free; 4138 } 4139 4140 atomic_set(&scan_info.next_nsid, 0); 4141 for (i = 0; i < nr_entries; i++) { 4142 u32 nsid = le32_to_cpu(ns_list[i]); 4143 4144 if (!nsid) /* end of the list? */ 4145 goto out; 4146 async_schedule_domain(nvme_scan_ns_async, &scan_info, 4147 &domain); 4148 while (++prev < nsid) 4149 nvme_ns_remove_by_nsid(ctrl, prev); 4150 } 4151 async_synchronize_full_domain(&domain); 4152 } 4153 out: 4154 nvme_remove_invalid_namespaces(ctrl, prev); 4155 free: 4156 async_synchronize_full_domain(&domain); 4157 kfree(ns_list); 4158 return ret; 4159 } 4160 4161 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4162 { 4163 struct nvme_id_ctrl *id; 4164 u32 nn, i; 4165 4166 if (nvme_identify_ctrl(ctrl, &id)) 4167 return; 4168 nn = le32_to_cpu(id->nn); 4169 kfree(id); 4170 4171 for (i = 1; i <= nn; i++) 4172 nvme_scan_ns(ctrl, i); 4173 4174 nvme_remove_invalid_namespaces(ctrl, nn); 4175 } 4176 4177 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4178 { 4179 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4180 __le32 *log; 4181 int error; 4182 4183 log = kzalloc(log_size, GFP_KERNEL); 4184 if (!log) 4185 return; 4186 4187 /* 4188 * We need to read the log to clear the AEN, but we don't want to rely 4189 * on it for the changed namespace information as userspace could have 4190 * raced with us in reading the log page, which could cause us to miss 4191 * updates. 4192 */ 4193 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4194 NVME_CSI_NVM, log, log_size, 0); 4195 if (error) 4196 dev_warn(ctrl->device, 4197 "reading changed ns log failed: %d\n", error); 4198 4199 kfree(log); 4200 } 4201 4202 static void nvme_scan_work(struct work_struct *work) 4203 { 4204 struct nvme_ctrl *ctrl = 4205 container_of(work, struct nvme_ctrl, scan_work); 4206 int ret; 4207 4208 /* No tagset on a live ctrl means IO queues could not created */ 4209 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4210 return; 4211 4212 /* 4213 * Identify controller limits can change at controller reset due to 4214 * new firmware download, even though it is not common we cannot ignore 4215 * such scenario. Controller's non-mdts limits are reported in the unit 4216 * of logical blocks that is dependent on the format of attached 4217 * namespace. Hence re-read the limits at the time of ns allocation. 4218 */ 4219 ret = nvme_init_non_mdts_limits(ctrl); 4220 if (ret < 0) { 4221 dev_warn(ctrl->device, 4222 "reading non-mdts-limits failed: %d\n", ret); 4223 return; 4224 } 4225 4226 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4227 dev_info(ctrl->device, "rescanning namespaces.\n"); 4228 nvme_clear_changed_ns_log(ctrl); 4229 } 4230 4231 mutex_lock(&ctrl->scan_lock); 4232 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) { 4233 nvme_scan_ns_sequential(ctrl); 4234 } else { 4235 /* 4236 * Fall back to sequential scan if DNR is set to handle broken 4237 * devices which should support Identify NS List (as per the VS 4238 * they report) but don't actually support it. 4239 */ 4240 ret = nvme_scan_ns_list(ctrl); 4241 if (ret > 0 && ret & NVME_STATUS_DNR) 4242 nvme_scan_ns_sequential(ctrl); 4243 } 4244 mutex_unlock(&ctrl->scan_lock); 4245 } 4246 4247 /* 4248 * This function iterates the namespace list unlocked to allow recovery from 4249 * controller failure. It is up to the caller to ensure the namespace list is 4250 * not modified by scan work while this function is executing. 4251 */ 4252 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4253 { 4254 struct nvme_ns *ns, *next; 4255 LIST_HEAD(ns_list); 4256 4257 /* 4258 * make sure to requeue I/O to all namespaces as these 4259 * might result from the scan itself and must complete 4260 * for the scan_work to make progress 4261 */ 4262 nvme_mpath_clear_ctrl_paths(ctrl); 4263 4264 /* 4265 * Unquiesce io queues so any pending IO won't hang, especially 4266 * those submitted from scan work 4267 */ 4268 nvme_unquiesce_io_queues(ctrl); 4269 4270 /* prevent racing with ns scanning */ 4271 flush_work(&ctrl->scan_work); 4272 4273 /* 4274 * The dead states indicates the controller was not gracefully 4275 * disconnected. In that case, we won't be able to flush any data while 4276 * removing the namespaces' disks; fail all the queues now to avoid 4277 * potentially having to clean up the failed sync later. 4278 */ 4279 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4280 nvme_mark_namespaces_dead(ctrl); 4281 4282 /* this is a no-op when called from the controller reset handler */ 4283 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4284 4285 mutex_lock(&ctrl->namespaces_lock); 4286 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4287 mutex_unlock(&ctrl->namespaces_lock); 4288 synchronize_srcu(&ctrl->srcu); 4289 4290 list_for_each_entry_safe(ns, next, &ns_list, list) 4291 nvme_ns_remove(ns); 4292 } 4293 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4294 4295 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4296 { 4297 const struct nvme_ctrl *ctrl = 4298 container_of(dev, struct nvme_ctrl, ctrl_device); 4299 struct nvmf_ctrl_options *opts = ctrl->opts; 4300 int ret; 4301 4302 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4303 if (ret) 4304 return ret; 4305 4306 if (opts) { 4307 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4308 if (ret) 4309 return ret; 4310 4311 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4312 opts->trsvcid ?: "none"); 4313 if (ret) 4314 return ret; 4315 4316 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4317 opts->host_traddr ?: "none"); 4318 if (ret) 4319 return ret; 4320 4321 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4322 opts->host_iface ?: "none"); 4323 } 4324 return ret; 4325 } 4326 4327 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4328 { 4329 char *envp[2] = { envdata, NULL }; 4330 4331 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4332 } 4333 4334 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4335 { 4336 char *envp[2] = { NULL, NULL }; 4337 u32 aen_result = ctrl->aen_result; 4338 4339 ctrl->aen_result = 0; 4340 if (!aen_result) 4341 return; 4342 4343 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4344 if (!envp[0]) 4345 return; 4346 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4347 kfree(envp[0]); 4348 } 4349 4350 static void nvme_async_event_work(struct work_struct *work) 4351 { 4352 struct nvme_ctrl *ctrl = 4353 container_of(work, struct nvme_ctrl, async_event_work); 4354 4355 nvme_aen_uevent(ctrl); 4356 4357 /* 4358 * The transport drivers must guarantee AER submission here is safe by 4359 * flushing ctrl async_event_work after changing the controller state 4360 * from LIVE and before freeing the admin queue. 4361 */ 4362 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4363 ctrl->ops->submit_async_event(ctrl); 4364 } 4365 4366 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4367 { 4368 4369 u32 csts; 4370 4371 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4372 return false; 4373 4374 if (csts == ~0) 4375 return false; 4376 4377 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4378 } 4379 4380 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4381 { 4382 struct nvme_fw_slot_info_log *log; 4383 u8 next_fw_slot, cur_fw_slot; 4384 4385 log = kmalloc(sizeof(*log), GFP_KERNEL); 4386 if (!log) 4387 return; 4388 4389 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4390 log, sizeof(*log), 0)) { 4391 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4392 goto out_free_log; 4393 } 4394 4395 cur_fw_slot = log->afi & 0x7; 4396 next_fw_slot = (log->afi & 0x70) >> 4; 4397 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4398 dev_info(ctrl->device, 4399 "Firmware is activated after next Controller Level Reset\n"); 4400 goto out_free_log; 4401 } 4402 4403 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4404 sizeof(ctrl->subsys->firmware_rev)); 4405 4406 out_free_log: 4407 kfree(log); 4408 } 4409 4410 static void nvme_fw_act_work(struct work_struct *work) 4411 { 4412 struct nvme_ctrl *ctrl = container_of(work, 4413 struct nvme_ctrl, fw_act_work); 4414 unsigned long fw_act_timeout; 4415 4416 nvme_auth_stop(ctrl); 4417 4418 if (ctrl->mtfa) 4419 fw_act_timeout = jiffies + 4420 msecs_to_jiffies(ctrl->mtfa * 100); 4421 else 4422 fw_act_timeout = jiffies + 4423 msecs_to_jiffies(admin_timeout * 1000); 4424 4425 nvme_quiesce_io_queues(ctrl); 4426 while (nvme_ctrl_pp_status(ctrl)) { 4427 if (time_after(jiffies, fw_act_timeout)) { 4428 dev_warn(ctrl->device, 4429 "Fw activation timeout, reset controller\n"); 4430 nvme_try_sched_reset(ctrl); 4431 return; 4432 } 4433 msleep(100); 4434 } 4435 4436 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4437 return; 4438 4439 nvme_unquiesce_io_queues(ctrl); 4440 /* read FW slot information to clear the AER */ 4441 nvme_get_fw_slot_info(ctrl); 4442 4443 queue_work(nvme_wq, &ctrl->async_event_work); 4444 } 4445 4446 static u32 nvme_aer_type(u32 result) 4447 { 4448 return result & 0x7; 4449 } 4450 4451 static u32 nvme_aer_subtype(u32 result) 4452 { 4453 return (result & 0xff00) >> 8; 4454 } 4455 4456 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4457 { 4458 u32 aer_notice_type = nvme_aer_subtype(result); 4459 bool requeue = true; 4460 4461 switch (aer_notice_type) { 4462 case NVME_AER_NOTICE_NS_CHANGED: 4463 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4464 nvme_queue_scan(ctrl); 4465 break; 4466 case NVME_AER_NOTICE_FW_ACT_STARTING: 4467 /* 4468 * We are (ab)using the RESETTING state to prevent subsequent 4469 * recovery actions from interfering with the controller's 4470 * firmware activation. 4471 */ 4472 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4473 requeue = false; 4474 queue_work(nvme_wq, &ctrl->fw_act_work); 4475 } 4476 break; 4477 #ifdef CONFIG_NVME_MULTIPATH 4478 case NVME_AER_NOTICE_ANA: 4479 if (!ctrl->ana_log_buf) 4480 break; 4481 queue_work(nvme_wq, &ctrl->ana_work); 4482 break; 4483 #endif 4484 case NVME_AER_NOTICE_DISC_CHANGED: 4485 ctrl->aen_result = result; 4486 break; 4487 default: 4488 dev_warn(ctrl->device, "async event result %08x\n", result); 4489 } 4490 return requeue; 4491 } 4492 4493 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4494 { 4495 dev_warn(ctrl->device, 4496 "resetting controller due to persistent internal error\n"); 4497 nvme_reset_ctrl(ctrl); 4498 } 4499 4500 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4501 volatile union nvme_result *res) 4502 { 4503 u32 result = le32_to_cpu(res->u32); 4504 u32 aer_type = nvme_aer_type(result); 4505 u32 aer_subtype = nvme_aer_subtype(result); 4506 bool requeue = true; 4507 4508 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4509 return; 4510 4511 trace_nvme_async_event(ctrl, result); 4512 switch (aer_type) { 4513 case NVME_AER_NOTICE: 4514 requeue = nvme_handle_aen_notice(ctrl, result); 4515 break; 4516 case NVME_AER_ERROR: 4517 /* 4518 * For a persistent internal error, don't run async_event_work 4519 * to submit a new AER. The controller reset will do it. 4520 */ 4521 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4522 nvme_handle_aer_persistent_error(ctrl); 4523 return; 4524 } 4525 fallthrough; 4526 case NVME_AER_SMART: 4527 case NVME_AER_CSS: 4528 case NVME_AER_VS: 4529 ctrl->aen_result = result; 4530 break; 4531 default: 4532 break; 4533 } 4534 4535 if (requeue) 4536 queue_work(nvme_wq, &ctrl->async_event_work); 4537 } 4538 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4539 4540 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4541 const struct blk_mq_ops *ops, unsigned int cmd_size) 4542 { 4543 struct queue_limits lim = {}; 4544 int ret; 4545 4546 memset(set, 0, sizeof(*set)); 4547 set->ops = ops; 4548 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4549 if (ctrl->ops->flags & NVME_F_FABRICS) 4550 /* Reserved for fabric connect and keep alive */ 4551 set->reserved_tags = 2; 4552 set->numa_node = ctrl->numa_node; 4553 set->flags = BLK_MQ_F_NO_SCHED; 4554 if (ctrl->ops->flags & NVME_F_BLOCKING) 4555 set->flags |= BLK_MQ_F_BLOCKING; 4556 set->cmd_size = cmd_size; 4557 set->driver_data = ctrl; 4558 set->nr_hw_queues = 1; 4559 set->timeout = NVME_ADMIN_TIMEOUT; 4560 ret = blk_mq_alloc_tag_set(set); 4561 if (ret) 4562 return ret; 4563 4564 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4565 if (IS_ERR(ctrl->admin_q)) { 4566 ret = PTR_ERR(ctrl->admin_q); 4567 goto out_free_tagset; 4568 } 4569 4570 if (ctrl->ops->flags & NVME_F_FABRICS) { 4571 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4572 if (IS_ERR(ctrl->fabrics_q)) { 4573 ret = PTR_ERR(ctrl->fabrics_q); 4574 goto out_cleanup_admin_q; 4575 } 4576 } 4577 4578 ctrl->admin_tagset = set; 4579 return 0; 4580 4581 out_cleanup_admin_q: 4582 blk_mq_destroy_queue(ctrl->admin_q); 4583 blk_put_queue(ctrl->admin_q); 4584 out_free_tagset: 4585 blk_mq_free_tag_set(set); 4586 ctrl->admin_q = NULL; 4587 ctrl->fabrics_q = NULL; 4588 return ret; 4589 } 4590 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4591 4592 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4593 { 4594 blk_mq_destroy_queue(ctrl->admin_q); 4595 blk_put_queue(ctrl->admin_q); 4596 if (ctrl->ops->flags & NVME_F_FABRICS) { 4597 blk_mq_destroy_queue(ctrl->fabrics_q); 4598 blk_put_queue(ctrl->fabrics_q); 4599 } 4600 blk_mq_free_tag_set(ctrl->admin_tagset); 4601 } 4602 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4603 4604 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4605 const struct blk_mq_ops *ops, unsigned int nr_maps, 4606 unsigned int cmd_size) 4607 { 4608 int ret; 4609 4610 memset(set, 0, sizeof(*set)); 4611 set->ops = ops; 4612 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4613 /* 4614 * Some Apple controllers requires tags to be unique across admin and 4615 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4616 */ 4617 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4618 set->reserved_tags = NVME_AQ_DEPTH; 4619 else if (ctrl->ops->flags & NVME_F_FABRICS) 4620 /* Reserved for fabric connect */ 4621 set->reserved_tags = 1; 4622 set->numa_node = ctrl->numa_node; 4623 set->flags = BLK_MQ_F_SHOULD_MERGE; 4624 if (ctrl->ops->flags & NVME_F_BLOCKING) 4625 set->flags |= BLK_MQ_F_BLOCKING; 4626 set->cmd_size = cmd_size; 4627 set->driver_data = ctrl; 4628 set->nr_hw_queues = ctrl->queue_count - 1; 4629 set->timeout = NVME_IO_TIMEOUT; 4630 set->nr_maps = nr_maps; 4631 ret = blk_mq_alloc_tag_set(set); 4632 if (ret) 4633 return ret; 4634 4635 if (ctrl->ops->flags & NVME_F_FABRICS) { 4636 struct queue_limits lim = { 4637 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, 4638 }; 4639 4640 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); 4641 if (IS_ERR(ctrl->connect_q)) { 4642 ret = PTR_ERR(ctrl->connect_q); 4643 goto out_free_tag_set; 4644 } 4645 } 4646 4647 ctrl->tagset = set; 4648 return 0; 4649 4650 out_free_tag_set: 4651 blk_mq_free_tag_set(set); 4652 ctrl->connect_q = NULL; 4653 return ret; 4654 } 4655 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4656 4657 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4658 { 4659 if (ctrl->ops->flags & NVME_F_FABRICS) { 4660 blk_mq_destroy_queue(ctrl->connect_q); 4661 blk_put_queue(ctrl->connect_q); 4662 } 4663 blk_mq_free_tag_set(ctrl->tagset); 4664 } 4665 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4666 4667 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4668 { 4669 nvme_mpath_stop(ctrl); 4670 nvme_auth_stop(ctrl); 4671 nvme_stop_failfast_work(ctrl); 4672 flush_work(&ctrl->async_event_work); 4673 cancel_work_sync(&ctrl->fw_act_work); 4674 if (ctrl->ops->stop_ctrl) 4675 ctrl->ops->stop_ctrl(ctrl); 4676 } 4677 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4678 4679 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4680 { 4681 nvme_enable_aen(ctrl); 4682 4683 /* 4684 * persistent discovery controllers need to send indication to userspace 4685 * to re-read the discovery log page to learn about possible changes 4686 * that were missed. We identify persistent discovery controllers by 4687 * checking that they started once before, hence are reconnecting back. 4688 */ 4689 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4690 nvme_discovery_ctrl(ctrl)) 4691 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4692 4693 if (ctrl->queue_count > 1) { 4694 nvme_queue_scan(ctrl); 4695 nvme_unquiesce_io_queues(ctrl); 4696 nvme_mpath_update(ctrl); 4697 } 4698 4699 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4700 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4701 } 4702 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4703 4704 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4705 { 4706 nvme_stop_keep_alive(ctrl); 4707 nvme_hwmon_exit(ctrl); 4708 nvme_fault_inject_fini(&ctrl->fault_inject); 4709 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4710 cdev_device_del(&ctrl->cdev, ctrl->device); 4711 nvme_put_ctrl(ctrl); 4712 } 4713 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4714 4715 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4716 { 4717 struct nvme_effects_log *cel; 4718 unsigned long i; 4719 4720 xa_for_each(&ctrl->cels, i, cel) { 4721 xa_erase(&ctrl->cels, i); 4722 kfree(cel); 4723 } 4724 4725 xa_destroy(&ctrl->cels); 4726 } 4727 4728 static void nvme_free_ctrl(struct device *dev) 4729 { 4730 struct nvme_ctrl *ctrl = 4731 container_of(dev, struct nvme_ctrl, ctrl_device); 4732 struct nvme_subsystem *subsys = ctrl->subsys; 4733 4734 if (!subsys || ctrl->instance != subsys->instance) 4735 ida_free(&nvme_instance_ida, ctrl->instance); 4736 nvme_free_cels(ctrl); 4737 nvme_mpath_uninit(ctrl); 4738 cleanup_srcu_struct(&ctrl->srcu); 4739 nvme_auth_stop(ctrl); 4740 nvme_auth_free(ctrl); 4741 __free_page(ctrl->discard_page); 4742 free_opal_dev(ctrl->opal_dev); 4743 4744 if (subsys) { 4745 mutex_lock(&nvme_subsystems_lock); 4746 list_del(&ctrl->subsys_entry); 4747 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4748 mutex_unlock(&nvme_subsystems_lock); 4749 } 4750 4751 ctrl->ops->free_ctrl(ctrl); 4752 4753 if (subsys) 4754 nvme_put_subsystem(subsys); 4755 } 4756 4757 /* 4758 * Initialize a NVMe controller structures. This needs to be called during 4759 * earliest initialization so that we have the initialized structured around 4760 * during probing. 4761 * 4762 * On success, the caller must use the nvme_put_ctrl() to release this when 4763 * needed, which also invokes the ops->free_ctrl() callback. 4764 */ 4765 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4766 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4767 { 4768 int ret; 4769 4770 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4771 ctrl->passthru_err_log_enabled = false; 4772 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4773 spin_lock_init(&ctrl->lock); 4774 mutex_init(&ctrl->namespaces_lock); 4775 4776 ret = init_srcu_struct(&ctrl->srcu); 4777 if (ret) 4778 return ret; 4779 4780 mutex_init(&ctrl->scan_lock); 4781 INIT_LIST_HEAD(&ctrl->namespaces); 4782 xa_init(&ctrl->cels); 4783 ctrl->dev = dev; 4784 ctrl->ops = ops; 4785 ctrl->quirks = quirks; 4786 ctrl->numa_node = NUMA_NO_NODE; 4787 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4788 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4789 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4790 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4791 init_waitqueue_head(&ctrl->state_wq); 4792 4793 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4794 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4795 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4796 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4797 ctrl->ka_last_check_time = jiffies; 4798 4799 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4800 PAGE_SIZE); 4801 ctrl->discard_page = alloc_page(GFP_KERNEL); 4802 if (!ctrl->discard_page) { 4803 ret = -ENOMEM; 4804 goto out; 4805 } 4806 4807 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4808 if (ret < 0) 4809 goto out; 4810 ctrl->instance = ret; 4811 4812 ret = nvme_auth_init_ctrl(ctrl); 4813 if (ret) 4814 goto out_release_instance; 4815 4816 nvme_mpath_init_ctrl(ctrl); 4817 4818 device_initialize(&ctrl->ctrl_device); 4819 ctrl->device = &ctrl->ctrl_device; 4820 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4821 ctrl->instance); 4822 ctrl->device->class = &nvme_class; 4823 ctrl->device->parent = ctrl->dev; 4824 if (ops->dev_attr_groups) 4825 ctrl->device->groups = ops->dev_attr_groups; 4826 else 4827 ctrl->device->groups = nvme_dev_attr_groups; 4828 ctrl->device->release = nvme_free_ctrl; 4829 dev_set_drvdata(ctrl->device, ctrl); 4830 4831 return ret; 4832 4833 out_release_instance: 4834 ida_free(&nvme_instance_ida, ctrl->instance); 4835 out: 4836 if (ctrl->discard_page) 4837 __free_page(ctrl->discard_page); 4838 cleanup_srcu_struct(&ctrl->srcu); 4839 return ret; 4840 } 4841 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4842 4843 /* 4844 * On success, returns with an elevated controller reference and caller must 4845 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. 4846 */ 4847 int nvme_add_ctrl(struct nvme_ctrl *ctrl) 4848 { 4849 int ret; 4850 4851 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4852 if (ret) 4853 return ret; 4854 4855 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4856 ctrl->cdev.owner = ctrl->ops->module; 4857 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4858 if (ret) 4859 return ret; 4860 4861 /* 4862 * Initialize latency tolerance controls. The sysfs files won't 4863 * be visible to userspace unless the device actually supports APST. 4864 */ 4865 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4866 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4867 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4868 4869 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4870 nvme_get_ctrl(ctrl); 4871 4872 return 0; 4873 } 4874 EXPORT_SYMBOL_GPL(nvme_add_ctrl); 4875 4876 /* let I/O to all namespaces fail in preparation for surprise removal */ 4877 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4878 { 4879 struct nvme_ns *ns; 4880 int srcu_idx; 4881 4882 srcu_idx = srcu_read_lock(&ctrl->srcu); 4883 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4884 srcu_read_lock_held(&ctrl->srcu)) 4885 blk_mark_disk_dead(ns->disk); 4886 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4887 } 4888 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4889 4890 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4891 { 4892 struct nvme_ns *ns; 4893 int srcu_idx; 4894 4895 srcu_idx = srcu_read_lock(&ctrl->srcu); 4896 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4897 srcu_read_lock_held(&ctrl->srcu)) 4898 blk_mq_unfreeze_queue(ns->queue); 4899 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4900 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4901 } 4902 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4903 4904 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4905 { 4906 struct nvme_ns *ns; 4907 int srcu_idx; 4908 4909 srcu_idx = srcu_read_lock(&ctrl->srcu); 4910 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4911 srcu_read_lock_held(&ctrl->srcu)) { 4912 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4913 if (timeout <= 0) 4914 break; 4915 } 4916 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4917 return timeout; 4918 } 4919 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4920 4921 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4922 { 4923 struct nvme_ns *ns; 4924 int srcu_idx; 4925 4926 srcu_idx = srcu_read_lock(&ctrl->srcu); 4927 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4928 srcu_read_lock_held(&ctrl->srcu)) 4929 blk_mq_freeze_queue_wait(ns->queue); 4930 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4931 } 4932 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4933 4934 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4935 { 4936 struct nvme_ns *ns; 4937 int srcu_idx; 4938 4939 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4940 srcu_idx = srcu_read_lock(&ctrl->srcu); 4941 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4942 srcu_read_lock_held(&ctrl->srcu)) 4943 blk_freeze_queue_start(ns->queue); 4944 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4945 } 4946 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4947 4948 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4949 { 4950 if (!ctrl->tagset) 4951 return; 4952 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4953 blk_mq_quiesce_tagset(ctrl->tagset); 4954 else 4955 blk_mq_wait_quiesce_done(ctrl->tagset); 4956 } 4957 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4958 4959 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4960 { 4961 if (!ctrl->tagset) 4962 return; 4963 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4964 blk_mq_unquiesce_tagset(ctrl->tagset); 4965 } 4966 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4967 4968 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4969 { 4970 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4971 blk_mq_quiesce_queue(ctrl->admin_q); 4972 else 4973 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4974 } 4975 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4976 4977 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4978 { 4979 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4980 blk_mq_unquiesce_queue(ctrl->admin_q); 4981 } 4982 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4983 4984 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4985 { 4986 struct nvme_ns *ns; 4987 int srcu_idx; 4988 4989 srcu_idx = srcu_read_lock(&ctrl->srcu); 4990 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4991 srcu_read_lock_held(&ctrl->srcu)) 4992 blk_sync_queue(ns->queue); 4993 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4994 } 4995 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4996 4997 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4998 { 4999 nvme_sync_io_queues(ctrl); 5000 if (ctrl->admin_q) 5001 blk_sync_queue(ctrl->admin_q); 5002 } 5003 EXPORT_SYMBOL_GPL(nvme_sync_queues); 5004 5005 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 5006 { 5007 if (file->f_op != &nvme_dev_fops) 5008 return NULL; 5009 return file->private_data; 5010 } 5011 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 5012 5013 /* 5014 * Check we didn't inadvertently grow the command structure sizes: 5015 */ 5016 static inline void _nvme_check_size(void) 5017 { 5018 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 5019 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 5020 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 5021 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 5022 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 5023 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 5024 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 5025 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 5026 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 5027 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 5028 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 5029 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 5030 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 5031 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 5032 NVME_IDENTIFY_DATA_SIZE); 5033 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 5034 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 5035 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 5036 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 5037 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 5038 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 5039 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 5040 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 5041 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 5042 } 5043 5044 5045 static int __init nvme_core_init(void) 5046 { 5047 int result = -ENOMEM; 5048 5049 _nvme_check_size(); 5050 5051 nvme_wq = alloc_workqueue("nvme-wq", 5052 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5053 if (!nvme_wq) 5054 goto out; 5055 5056 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 5057 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5058 if (!nvme_reset_wq) 5059 goto destroy_wq; 5060 5061 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 5062 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 5063 if (!nvme_delete_wq) 5064 goto destroy_reset_wq; 5065 5066 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5067 NVME_MINORS, "nvme"); 5068 if (result < 0) 5069 goto destroy_delete_wq; 5070 5071 result = class_register(&nvme_class); 5072 if (result) 5073 goto unregister_chrdev; 5074 5075 result = class_register(&nvme_subsys_class); 5076 if (result) 5077 goto destroy_class; 5078 5079 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5080 "nvme-generic"); 5081 if (result < 0) 5082 goto destroy_subsys_class; 5083 5084 result = class_register(&nvme_ns_chr_class); 5085 if (result) 5086 goto unregister_generic_ns; 5087 5088 result = nvme_init_auth(); 5089 if (result) 5090 goto destroy_ns_chr; 5091 return 0; 5092 5093 destroy_ns_chr: 5094 class_unregister(&nvme_ns_chr_class); 5095 unregister_generic_ns: 5096 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5097 destroy_subsys_class: 5098 class_unregister(&nvme_subsys_class); 5099 destroy_class: 5100 class_unregister(&nvme_class); 5101 unregister_chrdev: 5102 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5103 destroy_delete_wq: 5104 destroy_workqueue(nvme_delete_wq); 5105 destroy_reset_wq: 5106 destroy_workqueue(nvme_reset_wq); 5107 destroy_wq: 5108 destroy_workqueue(nvme_wq); 5109 out: 5110 return result; 5111 } 5112 5113 static void __exit nvme_core_exit(void) 5114 { 5115 nvme_exit_auth(); 5116 class_unregister(&nvme_ns_chr_class); 5117 class_unregister(&nvme_subsys_class); 5118 class_unregister(&nvme_class); 5119 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5120 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5121 destroy_workqueue(nvme_delete_wq); 5122 destroy_workqueue(nvme_reset_wq); 5123 destroy_workqueue(nvme_wq); 5124 ida_destroy(&nvme_ns_chr_minor_ida); 5125 ida_destroy(&nvme_instance_ida); 5126 } 5127 5128 MODULE_LICENSE("GPL"); 5129 MODULE_VERSION("1.0"); 5130 MODULE_DESCRIPTION("NVMe host core framework"); 5131 module_init(nvme_core_init); 5132 module_exit(nvme_core_exit); 5133