1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include "nvme.h" 27 #include "fabrics.h" 28 #include <linux/nvme-auth.h> 29 30 #define CREATE_TRACE_POINTS 31 #include "trace.h" 32 33 #define NVME_MINORS (1U << MINORBITS) 34 35 struct nvme_ns_info { 36 struct nvme_ns_ids ids; 37 u32 nsid; 38 __le32 anagrpid; 39 bool is_shared; 40 bool is_readonly; 41 bool is_ready; 42 bool is_removed; 43 }; 44 45 unsigned int admin_timeout = 60; 46 module_param(admin_timeout, uint, 0644); 47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 48 EXPORT_SYMBOL_GPL(admin_timeout); 49 50 unsigned int nvme_io_timeout = 30; 51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 53 EXPORT_SYMBOL_GPL(nvme_io_timeout); 54 55 static unsigned char shutdown_timeout = 5; 56 module_param(shutdown_timeout, byte, 0644); 57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 58 59 static u8 nvme_max_retries = 5; 60 module_param_named(max_retries, nvme_max_retries, byte, 0644); 61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 62 63 static unsigned long default_ps_max_latency_us = 100000; 64 module_param(default_ps_max_latency_us, ulong, 0644); 65 MODULE_PARM_DESC(default_ps_max_latency_us, 66 "max power saving latency for new devices; use PM QOS to change per device"); 67 68 static bool force_apst; 69 module_param(force_apst, bool, 0644); 70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 71 72 static unsigned long apst_primary_timeout_ms = 100; 73 module_param(apst_primary_timeout_ms, ulong, 0644); 74 MODULE_PARM_DESC(apst_primary_timeout_ms, 75 "primary APST timeout in ms"); 76 77 static unsigned long apst_secondary_timeout_ms = 2000; 78 module_param(apst_secondary_timeout_ms, ulong, 0644); 79 MODULE_PARM_DESC(apst_secondary_timeout_ms, 80 "secondary APST timeout in ms"); 81 82 static unsigned long apst_primary_latency_tol_us = 15000; 83 module_param(apst_primary_latency_tol_us, ulong, 0644); 84 MODULE_PARM_DESC(apst_primary_latency_tol_us, 85 "primary APST latency tolerance in us"); 86 87 static unsigned long apst_secondary_latency_tol_us = 100000; 88 module_param(apst_secondary_latency_tol_us, ulong, 0644); 89 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 90 "secondary APST latency tolerance in us"); 91 92 /* 93 * nvme_wq - hosts nvme related works that are not reset or delete 94 * nvme_reset_wq - hosts nvme reset works 95 * nvme_delete_wq - hosts nvme delete works 96 * 97 * nvme_wq will host works such as scan, aen handling, fw activation, 98 * keep-alive, periodic reconnects etc. nvme_reset_wq 99 * runs reset works which also flush works hosted on nvme_wq for 100 * serialization purposes. nvme_delete_wq host controller deletion 101 * works which flush reset works for serialization. 102 */ 103 struct workqueue_struct *nvme_wq; 104 EXPORT_SYMBOL_GPL(nvme_wq); 105 106 struct workqueue_struct *nvme_reset_wq; 107 EXPORT_SYMBOL_GPL(nvme_reset_wq); 108 109 struct workqueue_struct *nvme_delete_wq; 110 EXPORT_SYMBOL_GPL(nvme_delete_wq); 111 112 static LIST_HEAD(nvme_subsystems); 113 static DEFINE_MUTEX(nvme_subsystems_lock); 114 115 static DEFINE_IDA(nvme_instance_ida); 116 static dev_t nvme_ctrl_base_chr_devt; 117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 118 static const struct class nvme_class = { 119 .name = "nvme", 120 .dev_uevent = nvme_class_uevent, 121 }; 122 123 static const struct class nvme_subsys_class = { 124 .name = "nvme-subsystem", 125 }; 126 127 static DEFINE_IDA(nvme_ns_chr_minor_ida); 128 static dev_t nvme_ns_chr_devt; 129 static const struct class nvme_ns_chr_class = { 130 .name = "nvme-generic", 131 }; 132 133 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 135 unsigned nsid); 136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 137 struct nvme_command *cmd); 138 139 void nvme_queue_scan(struct nvme_ctrl *ctrl) 140 { 141 /* 142 * Only new queue scan work when admin and IO queues are both alive 143 */ 144 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 145 queue_work(nvme_wq, &ctrl->scan_work); 146 } 147 148 /* 149 * Use this function to proceed with scheduling reset_work for a controller 150 * that had previously been set to the resetting state. This is intended for 151 * code paths that can't be interrupted by other reset attempts. A hot removal 152 * may prevent this from succeeding. 153 */ 154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 155 { 156 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 157 return -EBUSY; 158 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 159 return -EBUSY; 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 163 164 static void nvme_failfast_work(struct work_struct *work) 165 { 166 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 167 struct nvme_ctrl, failfast_work); 168 169 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 170 return; 171 172 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 173 dev_info(ctrl->device, "failfast expired\n"); 174 nvme_kick_requeue_lists(ctrl); 175 } 176 177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 178 { 179 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 180 return; 181 182 schedule_delayed_work(&ctrl->failfast_work, 183 ctrl->opts->fast_io_fail_tmo * HZ); 184 } 185 186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 187 { 188 if (!ctrl->opts) 189 return; 190 191 cancel_delayed_work_sync(&ctrl->failfast_work); 192 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 193 } 194 195 196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 197 { 198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 199 return -EBUSY; 200 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 201 return -EBUSY; 202 return 0; 203 } 204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 205 206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 207 { 208 int ret; 209 210 ret = nvme_reset_ctrl(ctrl); 211 if (!ret) { 212 flush_work(&ctrl->reset_work); 213 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 214 ret = -ENETRESET; 215 } 216 217 return ret; 218 } 219 220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 221 { 222 dev_info(ctrl->device, 223 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 224 225 flush_work(&ctrl->reset_work); 226 nvme_stop_ctrl(ctrl); 227 nvme_remove_namespaces(ctrl); 228 ctrl->ops->delete_ctrl(ctrl); 229 nvme_uninit_ctrl(ctrl); 230 } 231 232 static void nvme_delete_ctrl_work(struct work_struct *work) 233 { 234 struct nvme_ctrl *ctrl = 235 container_of(work, struct nvme_ctrl, delete_work); 236 237 nvme_do_delete_ctrl(ctrl); 238 } 239 240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 241 { 242 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 243 return -EBUSY; 244 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 245 return -EBUSY; 246 return 0; 247 } 248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 249 250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 251 { 252 /* 253 * Keep a reference until nvme_do_delete_ctrl() complete, 254 * since ->delete_ctrl can free the controller. 255 */ 256 nvme_get_ctrl(ctrl); 257 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 258 nvme_do_delete_ctrl(ctrl); 259 nvme_put_ctrl(ctrl); 260 } 261 262 static blk_status_t nvme_error_status(u16 status) 263 { 264 switch (status & 0x7ff) { 265 case NVME_SC_SUCCESS: 266 return BLK_STS_OK; 267 case NVME_SC_CAP_EXCEEDED: 268 return BLK_STS_NOSPC; 269 case NVME_SC_LBA_RANGE: 270 case NVME_SC_CMD_INTERRUPTED: 271 case NVME_SC_NS_NOT_READY: 272 return BLK_STS_TARGET; 273 case NVME_SC_BAD_ATTRIBUTES: 274 case NVME_SC_ONCS_NOT_SUPPORTED: 275 case NVME_SC_INVALID_OPCODE: 276 case NVME_SC_INVALID_FIELD: 277 case NVME_SC_INVALID_NS: 278 return BLK_STS_NOTSUPP; 279 case NVME_SC_WRITE_FAULT: 280 case NVME_SC_READ_ERROR: 281 case NVME_SC_UNWRITTEN_BLOCK: 282 case NVME_SC_ACCESS_DENIED: 283 case NVME_SC_READ_ONLY: 284 case NVME_SC_COMPARE_FAILED: 285 return BLK_STS_MEDIUM; 286 case NVME_SC_GUARD_CHECK: 287 case NVME_SC_APPTAG_CHECK: 288 case NVME_SC_REFTAG_CHECK: 289 case NVME_SC_INVALID_PI: 290 return BLK_STS_PROTECTION; 291 case NVME_SC_RESERVATION_CONFLICT: 292 return BLK_STS_RESV_CONFLICT; 293 case NVME_SC_HOST_PATH_ERROR: 294 return BLK_STS_TRANSPORT; 295 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 296 return BLK_STS_ZONE_ACTIVE_RESOURCE; 297 case NVME_SC_ZONE_TOO_MANY_OPEN: 298 return BLK_STS_ZONE_OPEN_RESOURCE; 299 default: 300 return BLK_STS_IOERR; 301 } 302 } 303 304 static void nvme_retry_req(struct request *req) 305 { 306 unsigned long delay = 0; 307 u16 crd; 308 309 /* The mask and shift result must be <= 3 */ 310 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 311 if (crd) 312 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 313 314 nvme_req(req)->retries++; 315 blk_mq_requeue_request(req, false); 316 blk_mq_delay_kick_requeue_list(req->q, delay); 317 } 318 319 static void nvme_log_error(struct request *req) 320 { 321 struct nvme_ns *ns = req->q->queuedata; 322 struct nvme_request *nr = nvme_req(req); 323 324 if (ns) { 325 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 326 ns->disk ? ns->disk->disk_name : "?", 327 nvme_get_opcode_str(nr->cmd->common.opcode), 328 nr->cmd->common.opcode, 329 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 330 blk_rq_bytes(req) >> ns->head->lba_shift, 331 nvme_get_error_status_str(nr->status), 332 nr->status >> 8 & 7, /* Status Code Type */ 333 nr->status & 0xff, /* Status Code */ 334 nr->status & NVME_SC_MORE ? "MORE " : "", 335 nr->status & NVME_SC_DNR ? "DNR " : ""); 336 return; 337 } 338 339 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 340 dev_name(nr->ctrl->device), 341 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 342 nr->cmd->common.opcode, 343 nvme_get_error_status_str(nr->status), 344 nr->status >> 8 & 7, /* Status Code Type */ 345 nr->status & 0xff, /* Status Code */ 346 nr->status & NVME_SC_MORE ? "MORE " : "", 347 nr->status & NVME_SC_DNR ? "DNR " : ""); 348 } 349 350 static void nvme_log_err_passthru(struct request *req) 351 { 352 struct nvme_ns *ns = req->q->queuedata; 353 struct nvme_request *nr = nvme_req(req); 354 355 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 356 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 357 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 358 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 359 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 360 nr->cmd->common.opcode, 361 nvme_get_error_status_str(nr->status), 362 nr->status >> 8 & 7, /* Status Code Type */ 363 nr->status & 0xff, /* Status Code */ 364 nr->status & NVME_SC_MORE ? "MORE " : "", 365 nr->status & NVME_SC_DNR ? "DNR " : "", 366 nr->cmd->common.cdw10, 367 nr->cmd->common.cdw11, 368 nr->cmd->common.cdw12, 369 nr->cmd->common.cdw13, 370 nr->cmd->common.cdw14, 371 nr->cmd->common.cdw14); 372 } 373 374 enum nvme_disposition { 375 COMPLETE, 376 RETRY, 377 FAILOVER, 378 AUTHENTICATE, 379 }; 380 381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 382 { 383 if (likely(nvme_req(req)->status == 0)) 384 return COMPLETE; 385 386 if (blk_noretry_request(req) || 387 (nvme_req(req)->status & NVME_SC_DNR) || 388 nvme_req(req)->retries >= nvme_max_retries) 389 return COMPLETE; 390 391 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) 392 return AUTHENTICATE; 393 394 if (req->cmd_flags & REQ_NVME_MPATH) { 395 if (nvme_is_path_error(nvme_req(req)->status) || 396 blk_queue_dying(req->q)) 397 return FAILOVER; 398 } else { 399 if (blk_queue_dying(req->q)) 400 return COMPLETE; 401 } 402 403 return RETRY; 404 } 405 406 static inline void nvme_end_req_zoned(struct request *req) 407 { 408 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 409 req_op(req) == REQ_OP_ZONE_APPEND) { 410 struct nvme_ns *ns = req->q->queuedata; 411 412 req->__sector = nvme_lba_to_sect(ns->head, 413 le64_to_cpu(nvme_req(req)->result.u64)); 414 } 415 } 416 417 static inline void __nvme_end_req(struct request *req) 418 { 419 nvme_end_req_zoned(req); 420 nvme_trace_bio_complete(req); 421 if (req->cmd_flags & REQ_NVME_MPATH) 422 nvme_mpath_end_request(req); 423 } 424 425 void nvme_end_req(struct request *req) 426 { 427 blk_status_t status = nvme_error_status(nvme_req(req)->status); 428 429 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 430 if (blk_rq_is_passthrough(req)) 431 nvme_log_err_passthru(req); 432 else 433 nvme_log_error(req); 434 } 435 __nvme_end_req(req); 436 blk_mq_end_request(req, status); 437 } 438 439 void nvme_complete_rq(struct request *req) 440 { 441 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 442 443 trace_nvme_complete_rq(req); 444 nvme_cleanup_cmd(req); 445 446 /* 447 * Completions of long-running commands should not be able to 448 * defer sending of periodic keep alives, since the controller 449 * may have completed processing such commands a long time ago 450 * (arbitrarily close to command submission time). 451 * req->deadline - req->timeout is the command submission time 452 * in jiffies. 453 */ 454 if (ctrl->kas && 455 req->deadline - req->timeout >= ctrl->ka_last_check_time) 456 ctrl->comp_seen = true; 457 458 switch (nvme_decide_disposition(req)) { 459 case COMPLETE: 460 nvme_end_req(req); 461 return; 462 case RETRY: 463 nvme_retry_req(req); 464 return; 465 case FAILOVER: 466 nvme_failover_req(req); 467 return; 468 case AUTHENTICATE: 469 #ifdef CONFIG_NVME_HOST_AUTH 470 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 471 nvme_retry_req(req); 472 #else 473 nvme_end_req(req); 474 #endif 475 return; 476 } 477 } 478 EXPORT_SYMBOL_GPL(nvme_complete_rq); 479 480 void nvme_complete_batch_req(struct request *req) 481 { 482 trace_nvme_complete_rq(req); 483 nvme_cleanup_cmd(req); 484 __nvme_end_req(req); 485 } 486 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 487 488 /* 489 * Called to unwind from ->queue_rq on a failed command submission so that the 490 * multipathing code gets called to potentially failover to another path. 491 * The caller needs to unwind all transport specific resource allocations and 492 * must return propagate the return value. 493 */ 494 blk_status_t nvme_host_path_error(struct request *req) 495 { 496 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 497 blk_mq_set_request_complete(req); 498 nvme_complete_rq(req); 499 return BLK_STS_OK; 500 } 501 EXPORT_SYMBOL_GPL(nvme_host_path_error); 502 503 bool nvme_cancel_request(struct request *req, void *data) 504 { 505 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 506 "Cancelling I/O %d", req->tag); 507 508 /* don't abort one completed or idle request */ 509 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 510 return true; 511 512 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 513 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 514 blk_mq_complete_request(req); 515 return true; 516 } 517 EXPORT_SYMBOL_GPL(nvme_cancel_request); 518 519 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 520 { 521 if (ctrl->tagset) { 522 blk_mq_tagset_busy_iter(ctrl->tagset, 523 nvme_cancel_request, ctrl); 524 blk_mq_tagset_wait_completed_request(ctrl->tagset); 525 } 526 } 527 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 528 529 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 530 { 531 if (ctrl->admin_tagset) { 532 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 533 nvme_cancel_request, ctrl); 534 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 535 } 536 } 537 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 538 539 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 540 enum nvme_ctrl_state new_state) 541 { 542 enum nvme_ctrl_state old_state; 543 unsigned long flags; 544 bool changed = false; 545 546 spin_lock_irqsave(&ctrl->lock, flags); 547 548 old_state = nvme_ctrl_state(ctrl); 549 switch (new_state) { 550 case NVME_CTRL_LIVE: 551 switch (old_state) { 552 case NVME_CTRL_NEW: 553 case NVME_CTRL_RESETTING: 554 case NVME_CTRL_CONNECTING: 555 changed = true; 556 fallthrough; 557 default: 558 break; 559 } 560 break; 561 case NVME_CTRL_RESETTING: 562 switch (old_state) { 563 case NVME_CTRL_NEW: 564 case NVME_CTRL_LIVE: 565 changed = true; 566 fallthrough; 567 default: 568 break; 569 } 570 break; 571 case NVME_CTRL_CONNECTING: 572 switch (old_state) { 573 case NVME_CTRL_NEW: 574 case NVME_CTRL_RESETTING: 575 changed = true; 576 fallthrough; 577 default: 578 break; 579 } 580 break; 581 case NVME_CTRL_DELETING: 582 switch (old_state) { 583 case NVME_CTRL_LIVE: 584 case NVME_CTRL_RESETTING: 585 case NVME_CTRL_CONNECTING: 586 changed = true; 587 fallthrough; 588 default: 589 break; 590 } 591 break; 592 case NVME_CTRL_DELETING_NOIO: 593 switch (old_state) { 594 case NVME_CTRL_DELETING: 595 case NVME_CTRL_DEAD: 596 changed = true; 597 fallthrough; 598 default: 599 break; 600 } 601 break; 602 case NVME_CTRL_DEAD: 603 switch (old_state) { 604 case NVME_CTRL_DELETING: 605 changed = true; 606 fallthrough; 607 default: 608 break; 609 } 610 break; 611 default: 612 break; 613 } 614 615 if (changed) { 616 WRITE_ONCE(ctrl->state, new_state); 617 wake_up_all(&ctrl->state_wq); 618 } 619 620 spin_unlock_irqrestore(&ctrl->lock, flags); 621 if (!changed) 622 return false; 623 624 if (new_state == NVME_CTRL_LIVE) { 625 if (old_state == NVME_CTRL_CONNECTING) 626 nvme_stop_failfast_work(ctrl); 627 nvme_kick_requeue_lists(ctrl); 628 } else if (new_state == NVME_CTRL_CONNECTING && 629 old_state == NVME_CTRL_RESETTING) { 630 nvme_start_failfast_work(ctrl); 631 } 632 return changed; 633 } 634 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 635 636 /* 637 * Waits for the controller state to be resetting, or returns false if it is 638 * not possible to ever transition to that state. 639 */ 640 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 641 { 642 wait_event(ctrl->state_wq, 643 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 644 nvme_state_terminal(ctrl)); 645 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 646 } 647 EXPORT_SYMBOL_GPL(nvme_wait_reset); 648 649 static void nvme_free_ns_head(struct kref *ref) 650 { 651 struct nvme_ns_head *head = 652 container_of(ref, struct nvme_ns_head, ref); 653 654 nvme_mpath_remove_disk(head); 655 ida_free(&head->subsys->ns_ida, head->instance); 656 cleanup_srcu_struct(&head->srcu); 657 nvme_put_subsystem(head->subsys); 658 kfree(head); 659 } 660 661 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 662 { 663 return kref_get_unless_zero(&head->ref); 664 } 665 666 void nvme_put_ns_head(struct nvme_ns_head *head) 667 { 668 kref_put(&head->ref, nvme_free_ns_head); 669 } 670 671 static void nvme_free_ns(struct kref *kref) 672 { 673 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 674 675 put_disk(ns->disk); 676 nvme_put_ns_head(ns->head); 677 nvme_put_ctrl(ns->ctrl); 678 kfree(ns); 679 } 680 681 bool nvme_get_ns(struct nvme_ns *ns) 682 { 683 return kref_get_unless_zero(&ns->kref); 684 } 685 686 void nvme_put_ns(struct nvme_ns *ns) 687 { 688 kref_put(&ns->kref, nvme_free_ns); 689 } 690 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 691 692 static inline void nvme_clear_nvme_request(struct request *req) 693 { 694 nvme_req(req)->status = 0; 695 nvme_req(req)->retries = 0; 696 nvme_req(req)->flags = 0; 697 req->rq_flags |= RQF_DONTPREP; 698 } 699 700 /* initialize a passthrough request */ 701 void nvme_init_request(struct request *req, struct nvme_command *cmd) 702 { 703 struct nvme_request *nr = nvme_req(req); 704 bool logging_enabled; 705 706 if (req->q->queuedata) { 707 struct nvme_ns *ns = req->q->disk->private_data; 708 709 logging_enabled = ns->head->passthru_err_log_enabled; 710 req->timeout = NVME_IO_TIMEOUT; 711 } else { /* no queuedata implies admin queue */ 712 logging_enabled = nr->ctrl->passthru_err_log_enabled; 713 req->timeout = NVME_ADMIN_TIMEOUT; 714 } 715 716 if (!logging_enabled) 717 req->rq_flags |= RQF_QUIET; 718 719 /* passthru commands should let the driver set the SGL flags */ 720 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 721 722 req->cmd_flags |= REQ_FAILFAST_DRIVER; 723 if (req->mq_hctx->type == HCTX_TYPE_POLL) 724 req->cmd_flags |= REQ_POLLED; 725 nvme_clear_nvme_request(req); 726 memcpy(nr->cmd, cmd, sizeof(*cmd)); 727 } 728 EXPORT_SYMBOL_GPL(nvme_init_request); 729 730 /* 731 * For something we're not in a state to send to the device the default action 732 * is to busy it and retry it after the controller state is recovered. However, 733 * if the controller is deleting or if anything is marked for failfast or 734 * nvme multipath it is immediately failed. 735 * 736 * Note: commands used to initialize the controller will be marked for failfast. 737 * Note: nvme cli/ioctl commands are marked for failfast. 738 */ 739 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 740 struct request *rq) 741 { 742 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 743 744 if (state != NVME_CTRL_DELETING_NOIO && 745 state != NVME_CTRL_DELETING && 746 state != NVME_CTRL_DEAD && 747 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 748 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 749 return BLK_STS_RESOURCE; 750 return nvme_host_path_error(rq); 751 } 752 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 753 754 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 755 bool queue_live, enum nvme_ctrl_state state) 756 { 757 struct nvme_request *req = nvme_req(rq); 758 759 /* 760 * currently we have a problem sending passthru commands 761 * on the admin_q if the controller is not LIVE because we can't 762 * make sure that they are going out after the admin connect, 763 * controller enable and/or other commands in the initialization 764 * sequence. until the controller will be LIVE, fail with 765 * BLK_STS_RESOURCE so that they will be rescheduled. 766 */ 767 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 768 return false; 769 770 if (ctrl->ops->flags & NVME_F_FABRICS) { 771 /* 772 * Only allow commands on a live queue, except for the connect 773 * command, which is require to set the queue live in the 774 * appropinquate states. 775 */ 776 switch (state) { 777 case NVME_CTRL_CONNECTING: 778 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 779 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 780 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 781 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 782 return true; 783 break; 784 default: 785 break; 786 case NVME_CTRL_DEAD: 787 return false; 788 } 789 } 790 791 return queue_live; 792 } 793 EXPORT_SYMBOL_GPL(__nvme_check_ready); 794 795 static inline void nvme_setup_flush(struct nvme_ns *ns, 796 struct nvme_command *cmnd) 797 { 798 memset(cmnd, 0, sizeof(*cmnd)); 799 cmnd->common.opcode = nvme_cmd_flush; 800 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 801 } 802 803 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 804 struct nvme_command *cmnd) 805 { 806 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 807 struct nvme_dsm_range *range; 808 struct bio *bio; 809 810 /* 811 * Some devices do not consider the DSM 'Number of Ranges' field when 812 * determining how much data to DMA. Always allocate memory for maximum 813 * number of segments to prevent device reading beyond end of buffer. 814 */ 815 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 816 817 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 818 if (!range) { 819 /* 820 * If we fail allocation our range, fallback to the controller 821 * discard page. If that's also busy, it's safe to return 822 * busy, as we know we can make progress once that's freed. 823 */ 824 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 825 return BLK_STS_RESOURCE; 826 827 range = page_address(ns->ctrl->discard_page); 828 } 829 830 if (queue_max_discard_segments(req->q) == 1) { 831 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 832 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 833 834 range[0].cattr = cpu_to_le32(0); 835 range[0].nlb = cpu_to_le32(nlb); 836 range[0].slba = cpu_to_le64(slba); 837 n = 1; 838 } else { 839 __rq_for_each_bio(bio, req) { 840 u64 slba = nvme_sect_to_lba(ns->head, 841 bio->bi_iter.bi_sector); 842 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 843 844 if (n < segments) { 845 range[n].cattr = cpu_to_le32(0); 846 range[n].nlb = cpu_to_le32(nlb); 847 range[n].slba = cpu_to_le64(slba); 848 } 849 n++; 850 } 851 } 852 853 if (WARN_ON_ONCE(n != segments)) { 854 if (virt_to_page(range) == ns->ctrl->discard_page) 855 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 856 else 857 kfree(range); 858 return BLK_STS_IOERR; 859 } 860 861 memset(cmnd, 0, sizeof(*cmnd)); 862 cmnd->dsm.opcode = nvme_cmd_dsm; 863 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 864 cmnd->dsm.nr = cpu_to_le32(segments - 1); 865 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 866 867 bvec_set_virt(&req->special_vec, range, alloc_size); 868 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 869 870 return BLK_STS_OK; 871 } 872 873 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 874 struct request *req) 875 { 876 u32 upper, lower; 877 u64 ref48; 878 879 /* both rw and write zeroes share the same reftag format */ 880 switch (ns->head->guard_type) { 881 case NVME_NVM_NS_16B_GUARD: 882 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 883 break; 884 case NVME_NVM_NS_64B_GUARD: 885 ref48 = ext_pi_ref_tag(req); 886 lower = lower_32_bits(ref48); 887 upper = upper_32_bits(ref48); 888 889 cmnd->rw.reftag = cpu_to_le32(lower); 890 cmnd->rw.cdw3 = cpu_to_le32(upper); 891 break; 892 default: 893 break; 894 } 895 } 896 897 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 898 struct request *req, struct nvme_command *cmnd) 899 { 900 memset(cmnd, 0, sizeof(*cmnd)); 901 902 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 903 return nvme_setup_discard(ns, req, cmnd); 904 905 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 906 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 907 cmnd->write_zeroes.slba = 908 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 909 cmnd->write_zeroes.length = 910 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 911 912 if (!(req->cmd_flags & REQ_NOUNMAP) && 913 (ns->head->features & NVME_NS_DEAC)) 914 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 915 916 if (nvme_ns_has_pi(ns->head)) { 917 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 918 919 switch (ns->head->pi_type) { 920 case NVME_NS_DPS_PI_TYPE1: 921 case NVME_NS_DPS_PI_TYPE2: 922 nvme_set_ref_tag(ns, cmnd, req); 923 break; 924 } 925 } 926 927 return BLK_STS_OK; 928 } 929 930 /* 931 * NVMe does not support a dedicated command to issue an atomic write. A write 932 * which does adhere to the device atomic limits will silently be executed 933 * non-atomically. The request issuer should ensure that the write is within 934 * the queue atomic writes limits, but just validate this in case it is not. 935 */ 936 static bool nvme_valid_atomic_write(struct request *req) 937 { 938 struct request_queue *q = req->q; 939 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); 940 941 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) 942 return false; 943 944 if (boundary_bytes) { 945 u64 mask = boundary_bytes - 1, imask = ~mask; 946 u64 start = blk_rq_pos(req) << SECTOR_SHIFT; 947 u64 end = start + blk_rq_bytes(req) - 1; 948 949 /* If greater then must be crossing a boundary */ 950 if (blk_rq_bytes(req) > boundary_bytes) 951 return false; 952 953 if ((start & imask) != (end & imask)) 954 return false; 955 } 956 957 return true; 958 } 959 960 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 961 struct request *req, struct nvme_command *cmnd, 962 enum nvme_opcode op) 963 { 964 u16 control = 0; 965 u32 dsmgmt = 0; 966 967 if (req->cmd_flags & REQ_FUA) 968 control |= NVME_RW_FUA; 969 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 970 control |= NVME_RW_LR; 971 972 if (req->cmd_flags & REQ_RAHEAD) 973 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 974 975 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) 976 return BLK_STS_INVAL; 977 978 cmnd->rw.opcode = op; 979 cmnd->rw.flags = 0; 980 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 981 cmnd->rw.cdw2 = 0; 982 cmnd->rw.cdw3 = 0; 983 cmnd->rw.metadata = 0; 984 cmnd->rw.slba = 985 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 986 cmnd->rw.length = 987 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 988 cmnd->rw.reftag = 0; 989 cmnd->rw.apptag = 0; 990 cmnd->rw.appmask = 0; 991 992 if (ns->head->ms) { 993 /* 994 * If formated with metadata, the block layer always provides a 995 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 996 * we enable the PRACT bit for protection information or set the 997 * namespace capacity to zero to prevent any I/O. 998 */ 999 if (!blk_integrity_rq(req)) { 1000 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 1001 return BLK_STS_NOTSUPP; 1002 control |= NVME_RW_PRINFO_PRACT; 1003 } 1004 1005 switch (ns->head->pi_type) { 1006 case NVME_NS_DPS_PI_TYPE3: 1007 control |= NVME_RW_PRINFO_PRCHK_GUARD; 1008 break; 1009 case NVME_NS_DPS_PI_TYPE1: 1010 case NVME_NS_DPS_PI_TYPE2: 1011 control |= NVME_RW_PRINFO_PRCHK_GUARD | 1012 NVME_RW_PRINFO_PRCHK_REF; 1013 if (op == nvme_cmd_zone_append) 1014 control |= NVME_RW_APPEND_PIREMAP; 1015 nvme_set_ref_tag(ns, cmnd, req); 1016 break; 1017 } 1018 } 1019 1020 cmnd->rw.control = cpu_to_le16(control); 1021 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 1022 return 0; 1023 } 1024 1025 void nvme_cleanup_cmd(struct request *req) 1026 { 1027 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 1028 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 1029 1030 if (req->special_vec.bv_page == ctrl->discard_page) 1031 clear_bit_unlock(0, &ctrl->discard_page_busy); 1032 else 1033 kfree(bvec_virt(&req->special_vec)); 1034 } 1035 } 1036 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1037 1038 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1039 { 1040 struct nvme_command *cmd = nvme_req(req)->cmd; 1041 blk_status_t ret = BLK_STS_OK; 1042 1043 if (!(req->rq_flags & RQF_DONTPREP)) 1044 nvme_clear_nvme_request(req); 1045 1046 switch (req_op(req)) { 1047 case REQ_OP_DRV_IN: 1048 case REQ_OP_DRV_OUT: 1049 /* these are setup prior to execution in nvme_init_request() */ 1050 break; 1051 case REQ_OP_FLUSH: 1052 nvme_setup_flush(ns, cmd); 1053 break; 1054 case REQ_OP_ZONE_RESET_ALL: 1055 case REQ_OP_ZONE_RESET: 1056 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1057 break; 1058 case REQ_OP_ZONE_OPEN: 1059 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1060 break; 1061 case REQ_OP_ZONE_CLOSE: 1062 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1063 break; 1064 case REQ_OP_ZONE_FINISH: 1065 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1066 break; 1067 case REQ_OP_WRITE_ZEROES: 1068 ret = nvme_setup_write_zeroes(ns, req, cmd); 1069 break; 1070 case REQ_OP_DISCARD: 1071 ret = nvme_setup_discard(ns, req, cmd); 1072 break; 1073 case REQ_OP_READ: 1074 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1075 break; 1076 case REQ_OP_WRITE: 1077 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1078 break; 1079 case REQ_OP_ZONE_APPEND: 1080 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1081 break; 1082 default: 1083 WARN_ON_ONCE(1); 1084 return BLK_STS_IOERR; 1085 } 1086 1087 cmd->common.command_id = nvme_cid(req); 1088 trace_nvme_setup_cmd(req, cmd); 1089 return ret; 1090 } 1091 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1092 1093 /* 1094 * Return values: 1095 * 0: success 1096 * >0: nvme controller's cqe status response 1097 * <0: kernel error in lieu of controller response 1098 */ 1099 int nvme_execute_rq(struct request *rq, bool at_head) 1100 { 1101 blk_status_t status; 1102 1103 status = blk_execute_rq(rq, at_head); 1104 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1105 return -EINTR; 1106 if (nvme_req(rq)->status) 1107 return nvme_req(rq)->status; 1108 return blk_status_to_errno(status); 1109 } 1110 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1111 1112 /* 1113 * Returns 0 on success. If the result is negative, it's a Linux error code; 1114 * if the result is positive, it's an NVM Express status code 1115 */ 1116 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1117 union nvme_result *result, void *buffer, unsigned bufflen, 1118 int qid, nvme_submit_flags_t flags) 1119 { 1120 struct request *req; 1121 int ret; 1122 blk_mq_req_flags_t blk_flags = 0; 1123 1124 if (flags & NVME_SUBMIT_NOWAIT) 1125 blk_flags |= BLK_MQ_REQ_NOWAIT; 1126 if (flags & NVME_SUBMIT_RESERVED) 1127 blk_flags |= BLK_MQ_REQ_RESERVED; 1128 if (qid == NVME_QID_ANY) 1129 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1130 else 1131 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1132 qid - 1); 1133 1134 if (IS_ERR(req)) 1135 return PTR_ERR(req); 1136 nvme_init_request(req, cmd); 1137 if (flags & NVME_SUBMIT_RETRY) 1138 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1139 1140 if (buffer && bufflen) { 1141 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1142 if (ret) 1143 goto out; 1144 } 1145 1146 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1147 if (result && ret >= 0) 1148 *result = nvme_req(req)->result; 1149 out: 1150 blk_mq_free_request(req); 1151 return ret; 1152 } 1153 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1154 1155 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1156 void *buffer, unsigned bufflen) 1157 { 1158 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1159 NVME_QID_ANY, 0); 1160 } 1161 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1162 1163 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1164 { 1165 u32 effects = 0; 1166 1167 if (ns) { 1168 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1169 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1170 dev_warn_once(ctrl->device, 1171 "IO command:%02x has unusual effects:%08x\n", 1172 opcode, effects); 1173 1174 /* 1175 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1176 * which would deadlock when done on an I/O command. Note that 1177 * We already warn about an unusual effect above. 1178 */ 1179 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1180 } else { 1181 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1182 1183 /* Ignore execution restrictions if any relaxation bits are set */ 1184 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1185 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1186 } 1187 1188 return effects; 1189 } 1190 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1191 1192 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1193 { 1194 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1195 1196 /* 1197 * For simplicity, IO to all namespaces is quiesced even if the command 1198 * effects say only one namespace is affected. 1199 */ 1200 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1201 mutex_lock(&ctrl->scan_lock); 1202 mutex_lock(&ctrl->subsys->lock); 1203 nvme_mpath_start_freeze(ctrl->subsys); 1204 nvme_mpath_wait_freeze(ctrl->subsys); 1205 nvme_start_freeze(ctrl); 1206 nvme_wait_freeze(ctrl); 1207 } 1208 return effects; 1209 } 1210 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1211 1212 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1213 struct nvme_command *cmd, int status) 1214 { 1215 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1216 nvme_unfreeze(ctrl); 1217 nvme_mpath_unfreeze(ctrl->subsys); 1218 mutex_unlock(&ctrl->subsys->lock); 1219 mutex_unlock(&ctrl->scan_lock); 1220 } 1221 if (effects & NVME_CMD_EFFECTS_CCC) { 1222 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1223 &ctrl->flags)) { 1224 dev_info(ctrl->device, 1225 "controller capabilities changed, reset may be required to take effect.\n"); 1226 } 1227 } 1228 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1229 nvme_queue_scan(ctrl); 1230 flush_work(&ctrl->scan_work); 1231 } 1232 if (ns) 1233 return; 1234 1235 switch (cmd->common.opcode) { 1236 case nvme_admin_set_features: 1237 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1238 case NVME_FEAT_KATO: 1239 /* 1240 * Keep alive commands interval on the host should be 1241 * updated when KATO is modified by Set Features 1242 * commands. 1243 */ 1244 if (!status) 1245 nvme_update_keep_alive(ctrl, cmd); 1246 break; 1247 default: 1248 break; 1249 } 1250 break; 1251 default: 1252 break; 1253 } 1254 } 1255 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1256 1257 /* 1258 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1259 * 1260 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1261 * accounting for transport roundtrip times [..]. 1262 */ 1263 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1264 { 1265 unsigned long delay = ctrl->kato * HZ / 2; 1266 1267 /* 1268 * When using Traffic Based Keep Alive, we need to run 1269 * nvme_keep_alive_work at twice the normal frequency, as one 1270 * command completion can postpone sending a keep alive command 1271 * by up to twice the delay between runs. 1272 */ 1273 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1274 delay /= 2; 1275 return delay; 1276 } 1277 1278 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1279 { 1280 unsigned long now = jiffies; 1281 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1282 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1283 1284 if (time_after(now, ka_next_check_tm)) 1285 delay = 0; 1286 else 1287 delay = ka_next_check_tm - now; 1288 1289 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1290 } 1291 1292 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1293 blk_status_t status) 1294 { 1295 struct nvme_ctrl *ctrl = rq->end_io_data; 1296 unsigned long flags; 1297 bool startka = false; 1298 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1299 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1300 1301 /* 1302 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1303 * at the desired frequency. 1304 */ 1305 if (rtt <= delay) { 1306 delay -= rtt; 1307 } else { 1308 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1309 jiffies_to_msecs(rtt)); 1310 delay = 0; 1311 } 1312 1313 blk_mq_free_request(rq); 1314 1315 if (status) { 1316 dev_err(ctrl->device, 1317 "failed nvme_keep_alive_end_io error=%d\n", 1318 status); 1319 return RQ_END_IO_NONE; 1320 } 1321 1322 ctrl->ka_last_check_time = jiffies; 1323 ctrl->comp_seen = false; 1324 spin_lock_irqsave(&ctrl->lock, flags); 1325 if (ctrl->state == NVME_CTRL_LIVE || 1326 ctrl->state == NVME_CTRL_CONNECTING) 1327 startka = true; 1328 spin_unlock_irqrestore(&ctrl->lock, flags); 1329 if (startka) 1330 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1331 return RQ_END_IO_NONE; 1332 } 1333 1334 static void nvme_keep_alive_work(struct work_struct *work) 1335 { 1336 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1337 struct nvme_ctrl, ka_work); 1338 bool comp_seen = ctrl->comp_seen; 1339 struct request *rq; 1340 1341 ctrl->ka_last_check_time = jiffies; 1342 1343 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1344 dev_dbg(ctrl->device, 1345 "reschedule traffic based keep-alive timer\n"); 1346 ctrl->comp_seen = false; 1347 nvme_queue_keep_alive_work(ctrl); 1348 return; 1349 } 1350 1351 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1352 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1353 if (IS_ERR(rq)) { 1354 /* allocation failure, reset the controller */ 1355 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1356 nvme_reset_ctrl(ctrl); 1357 return; 1358 } 1359 nvme_init_request(rq, &ctrl->ka_cmd); 1360 1361 rq->timeout = ctrl->kato * HZ; 1362 rq->end_io = nvme_keep_alive_end_io; 1363 rq->end_io_data = ctrl; 1364 blk_execute_rq_nowait(rq, false); 1365 } 1366 1367 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1368 { 1369 if (unlikely(ctrl->kato == 0)) 1370 return; 1371 1372 nvme_queue_keep_alive_work(ctrl); 1373 } 1374 1375 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1376 { 1377 if (unlikely(ctrl->kato == 0)) 1378 return; 1379 1380 cancel_delayed_work_sync(&ctrl->ka_work); 1381 } 1382 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1383 1384 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1385 struct nvme_command *cmd) 1386 { 1387 unsigned int new_kato = 1388 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1389 1390 dev_info(ctrl->device, 1391 "keep alive interval updated from %u ms to %u ms\n", 1392 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1393 1394 nvme_stop_keep_alive(ctrl); 1395 ctrl->kato = new_kato; 1396 nvme_start_keep_alive(ctrl); 1397 } 1398 1399 /* 1400 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1401 * flag, thus sending any new CNS opcodes has a big chance of not working. 1402 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1403 * (but not for any later version). 1404 */ 1405 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1406 { 1407 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1408 return ctrl->vs < NVME_VS(1, 2, 0); 1409 return ctrl->vs < NVME_VS(1, 1, 0); 1410 } 1411 1412 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1413 { 1414 struct nvme_command c = { }; 1415 int error; 1416 1417 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1418 c.identify.opcode = nvme_admin_identify; 1419 c.identify.cns = NVME_ID_CNS_CTRL; 1420 1421 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1422 if (!*id) 1423 return -ENOMEM; 1424 1425 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1426 sizeof(struct nvme_id_ctrl)); 1427 if (error) { 1428 kfree(*id); 1429 *id = NULL; 1430 } 1431 return error; 1432 } 1433 1434 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1435 struct nvme_ns_id_desc *cur, bool *csi_seen) 1436 { 1437 const char *warn_str = "ctrl returned bogus length:"; 1438 void *data = cur; 1439 1440 switch (cur->nidt) { 1441 case NVME_NIDT_EUI64: 1442 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1443 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1444 warn_str, cur->nidl); 1445 return -1; 1446 } 1447 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1448 return NVME_NIDT_EUI64_LEN; 1449 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1450 return NVME_NIDT_EUI64_LEN; 1451 case NVME_NIDT_NGUID: 1452 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1453 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1454 warn_str, cur->nidl); 1455 return -1; 1456 } 1457 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1458 return NVME_NIDT_NGUID_LEN; 1459 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1460 return NVME_NIDT_NGUID_LEN; 1461 case NVME_NIDT_UUID: 1462 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1463 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1464 warn_str, cur->nidl); 1465 return -1; 1466 } 1467 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1468 return NVME_NIDT_UUID_LEN; 1469 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1470 return NVME_NIDT_UUID_LEN; 1471 case NVME_NIDT_CSI: 1472 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1473 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1474 warn_str, cur->nidl); 1475 return -1; 1476 } 1477 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1478 *csi_seen = true; 1479 return NVME_NIDT_CSI_LEN; 1480 default: 1481 /* Skip unknown types */ 1482 return cur->nidl; 1483 } 1484 } 1485 1486 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1487 struct nvme_ns_info *info) 1488 { 1489 struct nvme_command c = { }; 1490 bool csi_seen = false; 1491 int status, pos, len; 1492 void *data; 1493 1494 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1495 return 0; 1496 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1497 return 0; 1498 1499 c.identify.opcode = nvme_admin_identify; 1500 c.identify.nsid = cpu_to_le32(info->nsid); 1501 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1502 1503 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1504 if (!data) 1505 return -ENOMEM; 1506 1507 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1508 NVME_IDENTIFY_DATA_SIZE); 1509 if (status) { 1510 dev_warn(ctrl->device, 1511 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1512 info->nsid, status); 1513 goto free_data; 1514 } 1515 1516 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1517 struct nvme_ns_id_desc *cur = data + pos; 1518 1519 if (cur->nidl == 0) 1520 break; 1521 1522 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1523 if (len < 0) 1524 break; 1525 1526 len += sizeof(*cur); 1527 } 1528 1529 if (nvme_multi_css(ctrl) && !csi_seen) { 1530 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1531 info->nsid); 1532 status = -EINVAL; 1533 } 1534 1535 free_data: 1536 kfree(data); 1537 return status; 1538 } 1539 1540 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1541 struct nvme_id_ns **id) 1542 { 1543 struct nvme_command c = { }; 1544 int error; 1545 1546 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1547 c.identify.opcode = nvme_admin_identify; 1548 c.identify.nsid = cpu_to_le32(nsid); 1549 c.identify.cns = NVME_ID_CNS_NS; 1550 1551 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1552 if (!*id) 1553 return -ENOMEM; 1554 1555 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1556 if (error) { 1557 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1558 kfree(*id); 1559 *id = NULL; 1560 } 1561 return error; 1562 } 1563 1564 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1565 struct nvme_ns_info *info) 1566 { 1567 struct nvme_ns_ids *ids = &info->ids; 1568 struct nvme_id_ns *id; 1569 int ret; 1570 1571 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1572 if (ret) 1573 return ret; 1574 1575 if (id->ncap == 0) { 1576 /* namespace not allocated or attached */ 1577 info->is_removed = true; 1578 ret = -ENODEV; 1579 goto error; 1580 } 1581 1582 info->anagrpid = id->anagrpid; 1583 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1584 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1585 info->is_ready = true; 1586 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1587 dev_info(ctrl->device, 1588 "Ignoring bogus Namespace Identifiers\n"); 1589 } else { 1590 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1591 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1592 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1593 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1594 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1595 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1596 } 1597 1598 error: 1599 kfree(id); 1600 return ret; 1601 } 1602 1603 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1604 struct nvme_ns_info *info) 1605 { 1606 struct nvme_id_ns_cs_indep *id; 1607 struct nvme_command c = { 1608 .identify.opcode = nvme_admin_identify, 1609 .identify.nsid = cpu_to_le32(info->nsid), 1610 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1611 }; 1612 int ret; 1613 1614 id = kmalloc(sizeof(*id), GFP_KERNEL); 1615 if (!id) 1616 return -ENOMEM; 1617 1618 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1619 if (!ret) { 1620 info->anagrpid = id->anagrpid; 1621 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1622 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1623 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1624 } 1625 kfree(id); 1626 return ret; 1627 } 1628 1629 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1630 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1631 { 1632 union nvme_result res = { 0 }; 1633 struct nvme_command c = { }; 1634 int ret; 1635 1636 c.features.opcode = op; 1637 c.features.fid = cpu_to_le32(fid); 1638 c.features.dword11 = cpu_to_le32(dword11); 1639 1640 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1641 buffer, buflen, NVME_QID_ANY, 0); 1642 if (ret >= 0 && result) 1643 *result = le32_to_cpu(res.u32); 1644 return ret; 1645 } 1646 1647 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1648 unsigned int dword11, void *buffer, size_t buflen, 1649 u32 *result) 1650 { 1651 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1652 buflen, result); 1653 } 1654 EXPORT_SYMBOL_GPL(nvme_set_features); 1655 1656 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1657 unsigned int dword11, void *buffer, size_t buflen, 1658 u32 *result) 1659 { 1660 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1661 buflen, result); 1662 } 1663 EXPORT_SYMBOL_GPL(nvme_get_features); 1664 1665 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1666 { 1667 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1668 u32 result; 1669 int status, nr_io_queues; 1670 1671 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1672 &result); 1673 if (status < 0) 1674 return status; 1675 1676 /* 1677 * Degraded controllers might return an error when setting the queue 1678 * count. We still want to be able to bring them online and offer 1679 * access to the admin queue, as that might be only way to fix them up. 1680 */ 1681 if (status > 0) { 1682 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1683 *count = 0; 1684 } else { 1685 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1686 *count = min(*count, nr_io_queues); 1687 } 1688 1689 return 0; 1690 } 1691 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1692 1693 #define NVME_AEN_SUPPORTED \ 1694 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1695 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1696 1697 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1698 { 1699 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1700 int status; 1701 1702 if (!supported_aens) 1703 return; 1704 1705 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1706 NULL, 0, &result); 1707 if (status) 1708 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1709 supported_aens); 1710 1711 queue_work(nvme_wq, &ctrl->async_event_work); 1712 } 1713 1714 static int nvme_ns_open(struct nvme_ns *ns) 1715 { 1716 1717 /* should never be called due to GENHD_FL_HIDDEN */ 1718 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1719 goto fail; 1720 if (!nvme_get_ns(ns)) 1721 goto fail; 1722 if (!try_module_get(ns->ctrl->ops->module)) 1723 goto fail_put_ns; 1724 1725 return 0; 1726 1727 fail_put_ns: 1728 nvme_put_ns(ns); 1729 fail: 1730 return -ENXIO; 1731 } 1732 1733 static void nvme_ns_release(struct nvme_ns *ns) 1734 { 1735 1736 module_put(ns->ctrl->ops->module); 1737 nvme_put_ns(ns); 1738 } 1739 1740 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1741 { 1742 return nvme_ns_open(disk->private_data); 1743 } 1744 1745 static void nvme_release(struct gendisk *disk) 1746 { 1747 nvme_ns_release(disk->private_data); 1748 } 1749 1750 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1751 { 1752 /* some standard values */ 1753 geo->heads = 1 << 6; 1754 geo->sectors = 1 << 5; 1755 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1756 return 0; 1757 } 1758 1759 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head, 1760 struct queue_limits *lim) 1761 { 1762 struct blk_integrity *bi = &lim->integrity; 1763 1764 memset(bi, 0, sizeof(*bi)); 1765 1766 if (!head->ms) 1767 return true; 1768 1769 /* 1770 * PI can always be supported as we can ask the controller to simply 1771 * insert/strip it, which is not possible for other kinds of metadata. 1772 */ 1773 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1774 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1775 return nvme_ns_has_pi(head); 1776 1777 switch (head->pi_type) { 1778 case NVME_NS_DPS_PI_TYPE3: 1779 switch (head->guard_type) { 1780 case NVME_NVM_NS_16B_GUARD: 1781 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1782 bi->tag_size = sizeof(u16) + sizeof(u32); 1783 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1784 break; 1785 case NVME_NVM_NS_64B_GUARD: 1786 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1787 bi->tag_size = sizeof(u16) + 6; 1788 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1789 break; 1790 default: 1791 break; 1792 } 1793 break; 1794 case NVME_NS_DPS_PI_TYPE1: 1795 case NVME_NS_DPS_PI_TYPE2: 1796 switch (head->guard_type) { 1797 case NVME_NVM_NS_16B_GUARD: 1798 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1799 bi->tag_size = sizeof(u16); 1800 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1801 BLK_INTEGRITY_REF_TAG; 1802 break; 1803 case NVME_NVM_NS_64B_GUARD: 1804 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1805 bi->tag_size = sizeof(u16); 1806 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1807 BLK_INTEGRITY_REF_TAG; 1808 break; 1809 default: 1810 break; 1811 } 1812 break; 1813 default: 1814 break; 1815 } 1816 1817 bi->tuple_size = head->ms; 1818 bi->pi_offset = head->pi_offset; 1819 return true; 1820 } 1821 1822 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1823 { 1824 struct nvme_ctrl *ctrl = ns->ctrl; 1825 1826 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1827 lim->max_hw_discard_sectors = 1828 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1829 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1830 lim->max_hw_discard_sectors = UINT_MAX; 1831 else 1832 lim->max_hw_discard_sectors = 0; 1833 1834 lim->discard_granularity = lim->logical_block_size; 1835 1836 if (ctrl->dmrl) 1837 lim->max_discard_segments = ctrl->dmrl; 1838 else 1839 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1840 } 1841 1842 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1843 { 1844 return uuid_equal(&a->uuid, &b->uuid) && 1845 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1846 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1847 a->csi == b->csi; 1848 } 1849 1850 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1851 struct nvme_id_ns_nvm **nvmp) 1852 { 1853 struct nvme_command c = { 1854 .identify.opcode = nvme_admin_identify, 1855 .identify.nsid = cpu_to_le32(nsid), 1856 .identify.cns = NVME_ID_CNS_CS_NS, 1857 .identify.csi = NVME_CSI_NVM, 1858 }; 1859 struct nvme_id_ns_nvm *nvm; 1860 int ret; 1861 1862 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1863 if (!nvm) 1864 return -ENOMEM; 1865 1866 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1867 if (ret) 1868 kfree(nvm); 1869 else 1870 *nvmp = nvm; 1871 return ret; 1872 } 1873 1874 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1875 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1876 { 1877 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1878 1879 /* no support for storage tag formats right now */ 1880 if (nvme_elbaf_sts(elbaf)) 1881 return; 1882 1883 head->guard_type = nvme_elbaf_guard_type(elbaf); 1884 switch (head->guard_type) { 1885 case NVME_NVM_NS_64B_GUARD: 1886 head->pi_size = sizeof(struct crc64_pi_tuple); 1887 break; 1888 case NVME_NVM_NS_16B_GUARD: 1889 head->pi_size = sizeof(struct t10_pi_tuple); 1890 break; 1891 default: 1892 break; 1893 } 1894 } 1895 1896 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1897 struct nvme_ns_head *head, struct nvme_id_ns *id, 1898 struct nvme_id_ns_nvm *nvm) 1899 { 1900 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1901 head->pi_type = 0; 1902 head->pi_size = 0; 1903 head->pi_offset = 0; 1904 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1905 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1906 return; 1907 1908 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1909 nvme_configure_pi_elbas(head, id, nvm); 1910 } else { 1911 head->pi_size = sizeof(struct t10_pi_tuple); 1912 head->guard_type = NVME_NVM_NS_16B_GUARD; 1913 } 1914 1915 if (head->pi_size && head->ms >= head->pi_size) 1916 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1917 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) 1918 head->pi_offset = head->ms - head->pi_size; 1919 1920 if (ctrl->ops->flags & NVME_F_FABRICS) { 1921 /* 1922 * The NVMe over Fabrics specification only supports metadata as 1923 * part of the extended data LBA. We rely on HCA/HBA support to 1924 * remap the separate metadata buffer from the block layer. 1925 */ 1926 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1927 return; 1928 1929 head->features |= NVME_NS_EXT_LBAS; 1930 1931 /* 1932 * The current fabrics transport drivers support namespace 1933 * metadata formats only if nvme_ns_has_pi() returns true. 1934 * Suppress support for all other formats so the namespace will 1935 * have a 0 capacity and not be usable through the block stack. 1936 * 1937 * Note, this check will need to be modified if any drivers 1938 * gain the ability to use other metadata formats. 1939 */ 1940 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1941 head->features |= NVME_NS_METADATA_SUPPORTED; 1942 } else { 1943 /* 1944 * For PCIe controllers, we can't easily remap the separate 1945 * metadata buffer from the block layer and thus require a 1946 * separate metadata buffer for block layer metadata/PI support. 1947 * We allow extended LBAs for the passthrough interface, though. 1948 */ 1949 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1950 head->features |= NVME_NS_EXT_LBAS; 1951 else 1952 head->features |= NVME_NS_METADATA_SUPPORTED; 1953 } 1954 } 1955 1956 1957 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, 1958 struct nvme_id_ns *id, struct queue_limits *lim, 1959 u32 bs, u32 atomic_bs) 1960 { 1961 unsigned int boundary = 0; 1962 1963 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { 1964 if (le16_to_cpu(id->nabspf)) 1965 boundary = (le16_to_cpu(id->nabspf) + 1) * bs; 1966 } 1967 lim->atomic_write_hw_max = atomic_bs; 1968 lim->atomic_write_hw_boundary = boundary; 1969 lim->atomic_write_hw_unit_min = bs; 1970 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); 1971 } 1972 1973 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 1974 { 1975 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 1976 } 1977 1978 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 1979 struct queue_limits *lim) 1980 { 1981 lim->max_hw_sectors = ctrl->max_hw_sectors; 1982 lim->max_segments = min_t(u32, USHRT_MAX, 1983 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 1984 lim->max_integrity_segments = ctrl->max_integrity_segments; 1985 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 1986 lim->max_segment_size = UINT_MAX; 1987 lim->dma_alignment = 3; 1988 } 1989 1990 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 1991 struct queue_limits *lim) 1992 { 1993 struct nvme_ns_head *head = ns->head; 1994 u32 bs = 1U << head->lba_shift; 1995 u32 atomic_bs, phys_bs, io_opt = 0; 1996 bool valid = true; 1997 1998 /* 1999 * The block layer can't support LBA sizes larger than the page size 2000 * or smaller than a sector size yet, so catch this early and don't 2001 * allow block I/O. 2002 */ 2003 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { 2004 bs = (1 << 9); 2005 valid = false; 2006 } 2007 2008 atomic_bs = phys_bs = bs; 2009 if (id->nabo == 0) { 2010 /* 2011 * Bit 1 indicates whether NAWUPF is defined for this namespace 2012 * and whether it should be used instead of AWUPF. If NAWUPF == 2013 * 0 then AWUPF must be used instead. 2014 */ 2015 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 2016 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2017 else 2018 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2019 2020 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); 2021 } 2022 2023 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2024 /* NPWG = Namespace Preferred Write Granularity */ 2025 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2026 /* NOWS = Namespace Optimal Write Size */ 2027 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2028 } 2029 2030 /* 2031 * Linux filesystems assume writing a single physical block is 2032 * an atomic operation. Hence limit the physical block size to the 2033 * value of the Atomic Write Unit Power Fail parameter. 2034 */ 2035 lim->logical_block_size = bs; 2036 lim->physical_block_size = min(phys_bs, atomic_bs); 2037 lim->io_min = phys_bs; 2038 lim->io_opt = io_opt; 2039 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 2040 lim->max_write_zeroes_sectors = UINT_MAX; 2041 else 2042 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 2043 return valid; 2044 } 2045 2046 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 2047 { 2048 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 2049 } 2050 2051 static inline bool nvme_first_scan(struct gendisk *disk) 2052 { 2053 /* nvme_alloc_ns() scans the disk prior to adding it */ 2054 return !disk_live(disk); 2055 } 2056 2057 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2058 struct queue_limits *lim) 2059 { 2060 struct nvme_ctrl *ctrl = ns->ctrl; 2061 u32 iob; 2062 2063 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2064 is_power_of_2(ctrl->max_hw_sectors)) 2065 iob = ctrl->max_hw_sectors; 2066 else 2067 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2068 2069 if (!iob) 2070 return; 2071 2072 if (!is_power_of_2(iob)) { 2073 if (nvme_first_scan(ns->disk)) 2074 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2075 ns->disk->disk_name, iob); 2076 return; 2077 } 2078 2079 if (blk_queue_is_zoned(ns->disk->queue)) { 2080 if (nvme_first_scan(ns->disk)) 2081 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2082 ns->disk->disk_name); 2083 return; 2084 } 2085 2086 lim->chunk_sectors = iob; 2087 } 2088 2089 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2090 struct nvme_ns_info *info) 2091 { 2092 struct queue_limits lim; 2093 int ret; 2094 2095 blk_mq_freeze_queue(ns->disk->queue); 2096 lim = queue_limits_start_update(ns->disk->queue); 2097 nvme_set_ctrl_limits(ns->ctrl, &lim); 2098 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2099 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2100 blk_mq_unfreeze_queue(ns->disk->queue); 2101 2102 /* Hide the block-interface for these devices */ 2103 if (!ret) 2104 ret = -ENODEV; 2105 return ret; 2106 } 2107 2108 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2109 struct nvme_ns_info *info) 2110 { 2111 struct queue_limits lim; 2112 struct nvme_id_ns_nvm *nvm = NULL; 2113 struct nvme_zone_info zi = {}; 2114 struct nvme_id_ns *id; 2115 sector_t capacity; 2116 unsigned lbaf; 2117 int ret; 2118 2119 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2120 if (ret) 2121 return ret; 2122 2123 if (id->ncap == 0) { 2124 /* namespace not allocated or attached */ 2125 info->is_removed = true; 2126 ret = -ENXIO; 2127 goto out; 2128 } 2129 lbaf = nvme_lbaf_index(id->flbas); 2130 2131 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2132 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2133 if (ret < 0) 2134 goto out; 2135 } 2136 2137 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2138 ns->head->ids.csi == NVME_CSI_ZNS) { 2139 ret = nvme_query_zone_info(ns, lbaf, &zi); 2140 if (ret < 0) 2141 goto out; 2142 } 2143 2144 blk_mq_freeze_queue(ns->disk->queue); 2145 ns->head->lba_shift = id->lbaf[lbaf].ds; 2146 ns->head->nuse = le64_to_cpu(id->nuse); 2147 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2148 2149 lim = queue_limits_start_update(ns->disk->queue); 2150 nvme_set_ctrl_limits(ns->ctrl, &lim); 2151 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm); 2152 nvme_set_chunk_sectors(ns, id, &lim); 2153 if (!nvme_update_disk_info(ns, id, &lim)) 2154 capacity = 0; 2155 nvme_config_discard(ns, &lim); 2156 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2157 ns->head->ids.csi == NVME_CSI_ZNS) 2158 nvme_update_zone_info(ns, &lim, &zi); 2159 2160 if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) 2161 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2162 else 2163 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2164 2165 /* 2166 * Register a metadata profile for PI, or the plain non-integrity NVMe 2167 * metadata masquerading as Type 0 if supported, otherwise reject block 2168 * I/O to namespaces with metadata except when the namespace supports 2169 * PI, as it can strip/insert in that case. 2170 */ 2171 if (!nvme_init_integrity(ns->disk, ns->head, &lim)) 2172 capacity = 0; 2173 2174 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2175 if (ret) { 2176 blk_mq_unfreeze_queue(ns->disk->queue); 2177 goto out; 2178 } 2179 2180 set_capacity_and_notify(ns->disk, capacity); 2181 2182 /* 2183 * Only set the DEAC bit if the device guarantees that reads from 2184 * deallocated data return zeroes. While the DEAC bit does not 2185 * require that, it must be a no-op if reads from deallocated data 2186 * do not return zeroes. 2187 */ 2188 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2189 ns->head->features |= NVME_NS_DEAC; 2190 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2191 set_bit(NVME_NS_READY, &ns->flags); 2192 blk_mq_unfreeze_queue(ns->disk->queue); 2193 2194 if (blk_queue_is_zoned(ns->queue)) { 2195 ret = blk_revalidate_disk_zones(ns->disk); 2196 if (ret && !nvme_first_scan(ns->disk)) 2197 goto out; 2198 } 2199 2200 ret = 0; 2201 out: 2202 kfree(nvm); 2203 kfree(id); 2204 return ret; 2205 } 2206 2207 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2208 { 2209 bool unsupported = false; 2210 int ret; 2211 2212 switch (info->ids.csi) { 2213 case NVME_CSI_ZNS: 2214 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2215 dev_info(ns->ctrl->device, 2216 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2217 info->nsid); 2218 ret = nvme_update_ns_info_generic(ns, info); 2219 break; 2220 } 2221 ret = nvme_update_ns_info_block(ns, info); 2222 break; 2223 case NVME_CSI_NVM: 2224 ret = nvme_update_ns_info_block(ns, info); 2225 break; 2226 default: 2227 dev_info(ns->ctrl->device, 2228 "block device for nsid %u not supported (csi %u)\n", 2229 info->nsid, info->ids.csi); 2230 ret = nvme_update_ns_info_generic(ns, info); 2231 break; 2232 } 2233 2234 /* 2235 * If probing fails due an unsupported feature, hide the block device, 2236 * but still allow other access. 2237 */ 2238 if (ret == -ENODEV) { 2239 ns->disk->flags |= GENHD_FL_HIDDEN; 2240 set_bit(NVME_NS_READY, &ns->flags); 2241 unsupported = true; 2242 ret = 0; 2243 } 2244 2245 if (!ret && nvme_ns_head_multipath(ns->head)) { 2246 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2247 struct queue_limits lim; 2248 2249 blk_mq_freeze_queue(ns->head->disk->queue); 2250 /* 2251 * queue_limits mixes values that are the hardware limitations 2252 * for bio splitting with what is the device configuration. 2253 * 2254 * For NVMe the device configuration can change after e.g. a 2255 * Format command, and we really want to pick up the new format 2256 * value here. But we must still stack the queue limits to the 2257 * least common denominator for multipathing to split the bios 2258 * properly. 2259 * 2260 * To work around this, we explicitly set the device 2261 * configuration to those that we just queried, but only stack 2262 * the splitting limits in to make sure we still obey possibly 2263 * lower limitations of other controllers. 2264 */ 2265 lim = queue_limits_start_update(ns->head->disk->queue); 2266 lim.logical_block_size = ns_lim->logical_block_size; 2267 lim.physical_block_size = ns_lim->physical_block_size; 2268 lim.io_min = ns_lim->io_min; 2269 lim.io_opt = ns_lim->io_opt; 2270 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2271 ns->head->disk->disk_name); 2272 if (unsupported) 2273 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2274 else 2275 nvme_init_integrity(ns->head->disk, ns->head, &lim); 2276 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2277 2278 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2279 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2280 nvme_mpath_revalidate_paths(ns); 2281 2282 blk_mq_unfreeze_queue(ns->head->disk->queue); 2283 } 2284 2285 return ret; 2286 } 2287 2288 #ifdef CONFIG_BLK_SED_OPAL 2289 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2290 bool send) 2291 { 2292 struct nvme_ctrl *ctrl = data; 2293 struct nvme_command cmd = { }; 2294 2295 if (send) 2296 cmd.common.opcode = nvme_admin_security_send; 2297 else 2298 cmd.common.opcode = nvme_admin_security_recv; 2299 cmd.common.nsid = 0; 2300 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2301 cmd.common.cdw11 = cpu_to_le32(len); 2302 2303 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2304 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2305 } 2306 2307 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2308 { 2309 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2310 if (!ctrl->opal_dev) 2311 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2312 else if (was_suspended) 2313 opal_unlock_from_suspend(ctrl->opal_dev); 2314 } else { 2315 free_opal_dev(ctrl->opal_dev); 2316 ctrl->opal_dev = NULL; 2317 } 2318 } 2319 #else 2320 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2321 { 2322 } 2323 #endif /* CONFIG_BLK_SED_OPAL */ 2324 2325 #ifdef CONFIG_BLK_DEV_ZONED 2326 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2327 unsigned int nr_zones, report_zones_cb cb, void *data) 2328 { 2329 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2330 data); 2331 } 2332 #else 2333 #define nvme_report_zones NULL 2334 #endif /* CONFIG_BLK_DEV_ZONED */ 2335 2336 const struct block_device_operations nvme_bdev_ops = { 2337 .owner = THIS_MODULE, 2338 .ioctl = nvme_ioctl, 2339 .compat_ioctl = blkdev_compat_ptr_ioctl, 2340 .open = nvme_open, 2341 .release = nvme_release, 2342 .getgeo = nvme_getgeo, 2343 .report_zones = nvme_report_zones, 2344 .pr_ops = &nvme_pr_ops, 2345 }; 2346 2347 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2348 u32 timeout, const char *op) 2349 { 2350 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2351 u32 csts; 2352 int ret; 2353 2354 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2355 if (csts == ~0) 2356 return -ENODEV; 2357 if ((csts & mask) == val) 2358 break; 2359 2360 usleep_range(1000, 2000); 2361 if (fatal_signal_pending(current)) 2362 return -EINTR; 2363 if (time_after(jiffies, timeout_jiffies)) { 2364 dev_err(ctrl->device, 2365 "Device not ready; aborting %s, CSTS=0x%x\n", 2366 op, csts); 2367 return -ENODEV; 2368 } 2369 } 2370 2371 return ret; 2372 } 2373 2374 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2375 { 2376 int ret; 2377 2378 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2379 if (shutdown) 2380 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2381 else 2382 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2383 2384 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2385 if (ret) 2386 return ret; 2387 2388 if (shutdown) { 2389 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2390 NVME_CSTS_SHST_CMPLT, 2391 ctrl->shutdown_timeout, "shutdown"); 2392 } 2393 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2394 msleep(NVME_QUIRK_DELAY_AMOUNT); 2395 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2396 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2397 } 2398 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2399 2400 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2401 { 2402 unsigned dev_page_min; 2403 u32 timeout; 2404 int ret; 2405 2406 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2407 if (ret) { 2408 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2409 return ret; 2410 } 2411 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2412 2413 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2414 dev_err(ctrl->device, 2415 "Minimum device page size %u too large for host (%u)\n", 2416 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2417 return -ENODEV; 2418 } 2419 2420 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2421 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2422 else 2423 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2424 2425 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) 2426 ctrl->ctrl_config |= NVME_CC_CRIME; 2427 2428 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2429 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2430 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2431 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2432 if (ret) 2433 return ret; 2434 2435 /* Flush write to device (required if transport is PCI) */ 2436 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2437 if (ret) 2438 return ret; 2439 2440 /* CAP value may change after initial CC write */ 2441 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2442 if (ret) 2443 return ret; 2444 2445 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2446 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2447 u32 crto, ready_timeout; 2448 2449 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2450 if (ret) { 2451 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2452 ret); 2453 return ret; 2454 } 2455 2456 /* 2457 * CRTO should always be greater or equal to CAP.TO, but some 2458 * devices are known to get this wrong. Use the larger of the 2459 * two values. 2460 */ 2461 if (ctrl->ctrl_config & NVME_CC_CRIME) 2462 ready_timeout = NVME_CRTO_CRIMT(crto); 2463 else 2464 ready_timeout = NVME_CRTO_CRWMT(crto); 2465 2466 if (ready_timeout < timeout) 2467 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2468 crto, ctrl->cap); 2469 else 2470 timeout = ready_timeout; 2471 } 2472 2473 ctrl->ctrl_config |= NVME_CC_ENABLE; 2474 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2475 if (ret) 2476 return ret; 2477 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2478 (timeout + 1) / 2, "initialisation"); 2479 } 2480 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2481 2482 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2483 { 2484 __le64 ts; 2485 int ret; 2486 2487 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2488 return 0; 2489 2490 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2491 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2492 NULL); 2493 if (ret) 2494 dev_warn_once(ctrl->device, 2495 "could not set timestamp (%d)\n", ret); 2496 return ret; 2497 } 2498 2499 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2500 { 2501 struct nvme_feat_host_behavior *host; 2502 u8 acre = 0, lbafee = 0; 2503 int ret; 2504 2505 /* Don't bother enabling the feature if retry delay is not reported */ 2506 if (ctrl->crdt[0]) 2507 acre = NVME_ENABLE_ACRE; 2508 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2509 lbafee = NVME_ENABLE_LBAFEE; 2510 2511 if (!acre && !lbafee) 2512 return 0; 2513 2514 host = kzalloc(sizeof(*host), GFP_KERNEL); 2515 if (!host) 2516 return 0; 2517 2518 host->acre = acre; 2519 host->lbafee = lbafee; 2520 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2521 host, sizeof(*host), NULL); 2522 kfree(host); 2523 return ret; 2524 } 2525 2526 /* 2527 * The function checks whether the given total (exlat + enlat) latency of 2528 * a power state allows the latter to be used as an APST transition target. 2529 * It does so by comparing the latency to the primary and secondary latency 2530 * tolerances defined by module params. If there's a match, the corresponding 2531 * timeout value is returned and the matching tolerance index (1 or 2) is 2532 * reported. 2533 */ 2534 static bool nvme_apst_get_transition_time(u64 total_latency, 2535 u64 *transition_time, unsigned *last_index) 2536 { 2537 if (total_latency <= apst_primary_latency_tol_us) { 2538 if (*last_index == 1) 2539 return false; 2540 *last_index = 1; 2541 *transition_time = apst_primary_timeout_ms; 2542 return true; 2543 } 2544 if (apst_secondary_timeout_ms && 2545 total_latency <= apst_secondary_latency_tol_us) { 2546 if (*last_index <= 2) 2547 return false; 2548 *last_index = 2; 2549 *transition_time = apst_secondary_timeout_ms; 2550 return true; 2551 } 2552 return false; 2553 } 2554 2555 /* 2556 * APST (Autonomous Power State Transition) lets us program a table of power 2557 * state transitions that the controller will perform automatically. 2558 * 2559 * Depending on module params, one of the two supported techniques will be used: 2560 * 2561 * - If the parameters provide explicit timeouts and tolerances, they will be 2562 * used to build a table with up to 2 non-operational states to transition to. 2563 * The default parameter values were selected based on the values used by 2564 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2565 * regeneration of the APST table in the event of switching between external 2566 * and battery power, the timeouts and tolerances reflect a compromise 2567 * between values used by Microsoft for AC and battery scenarios. 2568 * - If not, we'll configure the table with a simple heuristic: we are willing 2569 * to spend at most 2% of the time transitioning between power states. 2570 * Therefore, when running in any given state, we will enter the next 2571 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2572 * microseconds, as long as that state's exit latency is under the requested 2573 * maximum latency. 2574 * 2575 * We will not autonomously enter any non-operational state for which the total 2576 * latency exceeds ps_max_latency_us. 2577 * 2578 * Users can set ps_max_latency_us to zero to turn off APST. 2579 */ 2580 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2581 { 2582 struct nvme_feat_auto_pst *table; 2583 unsigned apste = 0; 2584 u64 max_lat_us = 0; 2585 __le64 target = 0; 2586 int max_ps = -1; 2587 int state; 2588 int ret; 2589 unsigned last_lt_index = UINT_MAX; 2590 2591 /* 2592 * If APST isn't supported or if we haven't been initialized yet, 2593 * then don't do anything. 2594 */ 2595 if (!ctrl->apsta) 2596 return 0; 2597 2598 if (ctrl->npss > 31) { 2599 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2600 return 0; 2601 } 2602 2603 table = kzalloc(sizeof(*table), GFP_KERNEL); 2604 if (!table) 2605 return 0; 2606 2607 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2608 /* Turn off APST. */ 2609 dev_dbg(ctrl->device, "APST disabled\n"); 2610 goto done; 2611 } 2612 2613 /* 2614 * Walk through all states from lowest- to highest-power. 2615 * According to the spec, lower-numbered states use more power. NPSS, 2616 * despite the name, is the index of the lowest-power state, not the 2617 * number of states. 2618 */ 2619 for (state = (int)ctrl->npss; state >= 0; state--) { 2620 u64 total_latency_us, exit_latency_us, transition_ms; 2621 2622 if (target) 2623 table->entries[state] = target; 2624 2625 /* 2626 * Don't allow transitions to the deepest state if it's quirked 2627 * off. 2628 */ 2629 if (state == ctrl->npss && 2630 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2631 continue; 2632 2633 /* 2634 * Is this state a useful non-operational state for higher-power 2635 * states to autonomously transition to? 2636 */ 2637 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2638 continue; 2639 2640 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2641 if (exit_latency_us > ctrl->ps_max_latency_us) 2642 continue; 2643 2644 total_latency_us = exit_latency_us + 2645 le32_to_cpu(ctrl->psd[state].entry_lat); 2646 2647 /* 2648 * This state is good. It can be used as the APST idle target 2649 * for higher power states. 2650 */ 2651 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2652 if (!nvme_apst_get_transition_time(total_latency_us, 2653 &transition_ms, &last_lt_index)) 2654 continue; 2655 } else { 2656 transition_ms = total_latency_us + 19; 2657 do_div(transition_ms, 20); 2658 if (transition_ms > (1 << 24) - 1) 2659 transition_ms = (1 << 24) - 1; 2660 } 2661 2662 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2663 if (max_ps == -1) 2664 max_ps = state; 2665 if (total_latency_us > max_lat_us) 2666 max_lat_us = total_latency_us; 2667 } 2668 2669 if (max_ps == -1) 2670 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2671 else 2672 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2673 max_ps, max_lat_us, (int)sizeof(*table), table); 2674 apste = 1; 2675 2676 done: 2677 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2678 table, sizeof(*table), NULL); 2679 if (ret) 2680 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2681 kfree(table); 2682 return ret; 2683 } 2684 2685 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2686 { 2687 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2688 u64 latency; 2689 2690 switch (val) { 2691 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2692 case PM_QOS_LATENCY_ANY: 2693 latency = U64_MAX; 2694 break; 2695 2696 default: 2697 latency = val; 2698 } 2699 2700 if (ctrl->ps_max_latency_us != latency) { 2701 ctrl->ps_max_latency_us = latency; 2702 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2703 nvme_configure_apst(ctrl); 2704 } 2705 } 2706 2707 struct nvme_core_quirk_entry { 2708 /* 2709 * NVMe model and firmware strings are padded with spaces. For 2710 * simplicity, strings in the quirk table are padded with NULLs 2711 * instead. 2712 */ 2713 u16 vid; 2714 const char *mn; 2715 const char *fr; 2716 unsigned long quirks; 2717 }; 2718 2719 static const struct nvme_core_quirk_entry core_quirks[] = { 2720 { 2721 /* 2722 * This Toshiba device seems to die using any APST states. See: 2723 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2724 */ 2725 .vid = 0x1179, 2726 .mn = "THNSF5256GPUK TOSHIBA", 2727 .quirks = NVME_QUIRK_NO_APST, 2728 }, 2729 { 2730 /* 2731 * This LiteON CL1-3D*-Q11 firmware version has a race 2732 * condition associated with actions related to suspend to idle 2733 * LiteON has resolved the problem in future firmware 2734 */ 2735 .vid = 0x14a4, 2736 .fr = "22301111", 2737 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2738 }, 2739 { 2740 /* 2741 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2742 * aborts I/O during any load, but more easily reproducible 2743 * with discards (fstrim). 2744 * 2745 * The device is left in a state where it is also not possible 2746 * to use "nvme set-feature" to disable APST, but booting with 2747 * nvme_core.default_ps_max_latency=0 works. 2748 */ 2749 .vid = 0x1e0f, 2750 .mn = "KCD6XVUL6T40", 2751 .quirks = NVME_QUIRK_NO_APST, 2752 }, 2753 { 2754 /* 2755 * The external Samsung X5 SSD fails initialization without a 2756 * delay before checking if it is ready and has a whole set of 2757 * other problems. To make this even more interesting, it 2758 * shares the PCI ID with internal Samsung 970 Evo Plus that 2759 * does not need or want these quirks. 2760 */ 2761 .vid = 0x144d, 2762 .mn = "Samsung Portable SSD X5", 2763 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2764 NVME_QUIRK_NO_DEEPEST_PS | 2765 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2766 } 2767 }; 2768 2769 /* match is null-terminated but idstr is space-padded. */ 2770 static bool string_matches(const char *idstr, const char *match, size_t len) 2771 { 2772 size_t matchlen; 2773 2774 if (!match) 2775 return true; 2776 2777 matchlen = strlen(match); 2778 WARN_ON_ONCE(matchlen > len); 2779 2780 if (memcmp(idstr, match, matchlen)) 2781 return false; 2782 2783 for (; matchlen < len; matchlen++) 2784 if (idstr[matchlen] != ' ') 2785 return false; 2786 2787 return true; 2788 } 2789 2790 static bool quirk_matches(const struct nvme_id_ctrl *id, 2791 const struct nvme_core_quirk_entry *q) 2792 { 2793 return q->vid == le16_to_cpu(id->vid) && 2794 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2795 string_matches(id->fr, q->fr, sizeof(id->fr)); 2796 } 2797 2798 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2799 struct nvme_id_ctrl *id) 2800 { 2801 size_t nqnlen; 2802 int off; 2803 2804 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2805 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2806 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2807 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2808 return; 2809 } 2810 2811 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2812 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2813 } 2814 2815 /* 2816 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2817 * Base Specification 2.0. It is slightly different from the format 2818 * specified there due to historic reasons, and we can't change it now. 2819 */ 2820 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2821 "nqn.2014.08.org.nvmexpress:%04x%04x", 2822 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2823 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2824 off += sizeof(id->sn); 2825 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2826 off += sizeof(id->mn); 2827 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2828 } 2829 2830 static void nvme_release_subsystem(struct device *dev) 2831 { 2832 struct nvme_subsystem *subsys = 2833 container_of(dev, struct nvme_subsystem, dev); 2834 2835 if (subsys->instance >= 0) 2836 ida_free(&nvme_instance_ida, subsys->instance); 2837 kfree(subsys); 2838 } 2839 2840 static void nvme_destroy_subsystem(struct kref *ref) 2841 { 2842 struct nvme_subsystem *subsys = 2843 container_of(ref, struct nvme_subsystem, ref); 2844 2845 mutex_lock(&nvme_subsystems_lock); 2846 list_del(&subsys->entry); 2847 mutex_unlock(&nvme_subsystems_lock); 2848 2849 ida_destroy(&subsys->ns_ida); 2850 device_del(&subsys->dev); 2851 put_device(&subsys->dev); 2852 } 2853 2854 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2855 { 2856 kref_put(&subsys->ref, nvme_destroy_subsystem); 2857 } 2858 2859 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2860 { 2861 struct nvme_subsystem *subsys; 2862 2863 lockdep_assert_held(&nvme_subsystems_lock); 2864 2865 /* 2866 * Fail matches for discovery subsystems. This results 2867 * in each discovery controller bound to a unique subsystem. 2868 * This avoids issues with validating controller values 2869 * that can only be true when there is a single unique subsystem. 2870 * There may be multiple and completely independent entities 2871 * that provide discovery controllers. 2872 */ 2873 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2874 return NULL; 2875 2876 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2877 if (strcmp(subsys->subnqn, subsysnqn)) 2878 continue; 2879 if (!kref_get_unless_zero(&subsys->ref)) 2880 continue; 2881 return subsys; 2882 } 2883 2884 return NULL; 2885 } 2886 2887 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2888 { 2889 return ctrl->opts && ctrl->opts->discovery_nqn; 2890 } 2891 2892 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2893 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2894 { 2895 struct nvme_ctrl *tmp; 2896 2897 lockdep_assert_held(&nvme_subsystems_lock); 2898 2899 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2900 if (nvme_state_terminal(tmp)) 2901 continue; 2902 2903 if (tmp->cntlid == ctrl->cntlid) { 2904 dev_err(ctrl->device, 2905 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2906 ctrl->cntlid, dev_name(tmp->device), 2907 subsys->subnqn); 2908 return false; 2909 } 2910 2911 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2912 nvme_discovery_ctrl(ctrl)) 2913 continue; 2914 2915 dev_err(ctrl->device, 2916 "Subsystem does not support multiple controllers\n"); 2917 return false; 2918 } 2919 2920 return true; 2921 } 2922 2923 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2924 { 2925 struct nvme_subsystem *subsys, *found; 2926 int ret; 2927 2928 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2929 if (!subsys) 2930 return -ENOMEM; 2931 2932 subsys->instance = -1; 2933 mutex_init(&subsys->lock); 2934 kref_init(&subsys->ref); 2935 INIT_LIST_HEAD(&subsys->ctrls); 2936 INIT_LIST_HEAD(&subsys->nsheads); 2937 nvme_init_subnqn(subsys, ctrl, id); 2938 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2939 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2940 subsys->vendor_id = le16_to_cpu(id->vid); 2941 subsys->cmic = id->cmic; 2942 2943 /* Versions prior to 1.4 don't necessarily report a valid type */ 2944 if (id->cntrltype == NVME_CTRL_DISC || 2945 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2946 subsys->subtype = NVME_NQN_DISC; 2947 else 2948 subsys->subtype = NVME_NQN_NVME; 2949 2950 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2951 dev_err(ctrl->device, 2952 "Subsystem %s is not a discovery controller", 2953 subsys->subnqn); 2954 kfree(subsys); 2955 return -EINVAL; 2956 } 2957 subsys->awupf = le16_to_cpu(id->awupf); 2958 nvme_mpath_default_iopolicy(subsys); 2959 2960 subsys->dev.class = &nvme_subsys_class; 2961 subsys->dev.release = nvme_release_subsystem; 2962 subsys->dev.groups = nvme_subsys_attrs_groups; 2963 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2964 device_initialize(&subsys->dev); 2965 2966 mutex_lock(&nvme_subsystems_lock); 2967 found = __nvme_find_get_subsystem(subsys->subnqn); 2968 if (found) { 2969 put_device(&subsys->dev); 2970 subsys = found; 2971 2972 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2973 ret = -EINVAL; 2974 goto out_put_subsystem; 2975 } 2976 } else { 2977 ret = device_add(&subsys->dev); 2978 if (ret) { 2979 dev_err(ctrl->device, 2980 "failed to register subsystem device.\n"); 2981 put_device(&subsys->dev); 2982 goto out_unlock; 2983 } 2984 ida_init(&subsys->ns_ida); 2985 list_add_tail(&subsys->entry, &nvme_subsystems); 2986 } 2987 2988 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2989 dev_name(ctrl->device)); 2990 if (ret) { 2991 dev_err(ctrl->device, 2992 "failed to create sysfs link from subsystem.\n"); 2993 goto out_put_subsystem; 2994 } 2995 2996 if (!found) 2997 subsys->instance = ctrl->instance; 2998 ctrl->subsys = subsys; 2999 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3000 mutex_unlock(&nvme_subsystems_lock); 3001 return 0; 3002 3003 out_put_subsystem: 3004 nvme_put_subsystem(subsys); 3005 out_unlock: 3006 mutex_unlock(&nvme_subsystems_lock); 3007 return ret; 3008 } 3009 3010 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3011 void *log, size_t size, u64 offset) 3012 { 3013 struct nvme_command c = { }; 3014 u32 dwlen = nvme_bytes_to_numd(size); 3015 3016 c.get_log_page.opcode = nvme_admin_get_log_page; 3017 c.get_log_page.nsid = cpu_to_le32(nsid); 3018 c.get_log_page.lid = log_page; 3019 c.get_log_page.lsp = lsp; 3020 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3021 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3022 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3023 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3024 c.get_log_page.csi = csi; 3025 3026 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3027 } 3028 3029 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3030 struct nvme_effects_log **log) 3031 { 3032 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 3033 int ret; 3034 3035 if (cel) 3036 goto out; 3037 3038 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3039 if (!cel) 3040 return -ENOMEM; 3041 3042 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3043 cel, sizeof(*cel), 0); 3044 if (ret) { 3045 kfree(cel); 3046 return ret; 3047 } 3048 3049 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3050 out: 3051 *log = cel; 3052 return 0; 3053 } 3054 3055 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3056 { 3057 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3058 3059 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3060 return UINT_MAX; 3061 return val; 3062 } 3063 3064 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3065 { 3066 struct nvme_command c = { }; 3067 struct nvme_id_ctrl_nvm *id; 3068 int ret; 3069 3070 /* 3071 * Even though NVMe spec explicitly states that MDTS is not applicable 3072 * to the write-zeroes, we are cautious and limit the size to the 3073 * controllers max_hw_sectors value, which is based on the MDTS field 3074 * and possibly other limiting factors. 3075 */ 3076 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3077 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3078 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3079 else 3080 ctrl->max_zeroes_sectors = 0; 3081 3082 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3083 nvme_ctrl_limited_cns(ctrl) || 3084 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3085 return 0; 3086 3087 id = kzalloc(sizeof(*id), GFP_KERNEL); 3088 if (!id) 3089 return -ENOMEM; 3090 3091 c.identify.opcode = nvme_admin_identify; 3092 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3093 c.identify.csi = NVME_CSI_NVM; 3094 3095 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3096 if (ret) 3097 goto free_data; 3098 3099 ctrl->dmrl = id->dmrl; 3100 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3101 if (id->wzsl) 3102 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3103 3104 free_data: 3105 if (ret > 0) 3106 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3107 kfree(id); 3108 return ret; 3109 } 3110 3111 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3112 { 3113 struct nvme_effects_log *log = ctrl->effects; 3114 3115 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3116 NVME_CMD_EFFECTS_NCC | 3117 NVME_CMD_EFFECTS_CSE_MASK); 3118 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3119 NVME_CMD_EFFECTS_CSE_MASK); 3120 3121 /* 3122 * The spec says the result of a security receive command depends on 3123 * the previous security send command. As such, many vendors log this 3124 * command as one to submitted only when no other commands to the same 3125 * namespace are outstanding. The intention is to tell the host to 3126 * prevent mixing security send and receive. 3127 * 3128 * This driver can only enforce such exclusive access against IO 3129 * queues, though. We are not readily able to enforce such a rule for 3130 * two commands to the admin queue, which is the only queue that 3131 * matters for this command. 3132 * 3133 * Rather than blindly freezing the IO queues for this effect that 3134 * doesn't even apply to IO, mask it off. 3135 */ 3136 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3137 3138 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3139 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3140 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3141 } 3142 3143 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3144 { 3145 int ret = 0; 3146 3147 if (ctrl->effects) 3148 return 0; 3149 3150 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3151 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3152 if (ret < 0) 3153 return ret; 3154 } 3155 3156 if (!ctrl->effects) { 3157 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3158 if (!ctrl->effects) 3159 return -ENOMEM; 3160 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3161 } 3162 3163 nvme_init_known_nvm_effects(ctrl); 3164 return 0; 3165 } 3166 3167 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3168 { 3169 /* 3170 * In fabrics we need to verify the cntlid matches the 3171 * admin connect 3172 */ 3173 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3174 dev_err(ctrl->device, 3175 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3176 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3177 return -EINVAL; 3178 } 3179 3180 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3181 dev_err(ctrl->device, 3182 "keep-alive support is mandatory for fabrics\n"); 3183 return -EINVAL; 3184 } 3185 3186 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3187 dev_err(ctrl->device, 3188 "I/O queue command capsule supported size %d < 4\n", 3189 ctrl->ioccsz); 3190 return -EINVAL; 3191 } 3192 3193 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3194 dev_err(ctrl->device, 3195 "I/O queue response capsule supported size %d < 1\n", 3196 ctrl->iorcsz); 3197 return -EINVAL; 3198 } 3199 3200 if (!ctrl->maxcmd) { 3201 dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); 3202 return -EINVAL; 3203 } 3204 3205 return 0; 3206 } 3207 3208 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3209 { 3210 struct queue_limits lim; 3211 struct nvme_id_ctrl *id; 3212 u32 max_hw_sectors; 3213 bool prev_apst_enabled; 3214 int ret; 3215 3216 ret = nvme_identify_ctrl(ctrl, &id); 3217 if (ret) { 3218 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3219 return -EIO; 3220 } 3221 3222 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3223 ctrl->cntlid = le16_to_cpu(id->cntlid); 3224 3225 if (!ctrl->identified) { 3226 unsigned int i; 3227 3228 /* 3229 * Check for quirks. Quirk can depend on firmware version, 3230 * so, in principle, the set of quirks present can change 3231 * across a reset. As a possible future enhancement, we 3232 * could re-scan for quirks every time we reinitialize 3233 * the device, but we'd have to make sure that the driver 3234 * behaves intelligently if the quirks change. 3235 */ 3236 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3237 if (quirk_matches(id, &core_quirks[i])) 3238 ctrl->quirks |= core_quirks[i].quirks; 3239 } 3240 3241 ret = nvme_init_subsystem(ctrl, id); 3242 if (ret) 3243 goto out_free; 3244 3245 ret = nvme_init_effects(ctrl, id); 3246 if (ret) 3247 goto out_free; 3248 } 3249 memcpy(ctrl->subsys->firmware_rev, id->fr, 3250 sizeof(ctrl->subsys->firmware_rev)); 3251 3252 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3253 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3254 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3255 } 3256 3257 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3258 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3259 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3260 3261 ctrl->oacs = le16_to_cpu(id->oacs); 3262 ctrl->oncs = le16_to_cpu(id->oncs); 3263 ctrl->mtfa = le16_to_cpu(id->mtfa); 3264 ctrl->oaes = le32_to_cpu(id->oaes); 3265 ctrl->wctemp = le16_to_cpu(id->wctemp); 3266 ctrl->cctemp = le16_to_cpu(id->cctemp); 3267 3268 atomic_set(&ctrl->abort_limit, id->acl + 1); 3269 ctrl->vwc = id->vwc; 3270 if (id->mdts) 3271 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3272 else 3273 max_hw_sectors = UINT_MAX; 3274 ctrl->max_hw_sectors = 3275 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3276 3277 lim = queue_limits_start_update(ctrl->admin_q); 3278 nvme_set_ctrl_limits(ctrl, &lim); 3279 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3280 if (ret) 3281 goto out_free; 3282 3283 ctrl->sgls = le32_to_cpu(id->sgls); 3284 ctrl->kas = le16_to_cpu(id->kas); 3285 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3286 ctrl->ctratt = le32_to_cpu(id->ctratt); 3287 3288 ctrl->cntrltype = id->cntrltype; 3289 ctrl->dctype = id->dctype; 3290 3291 if (id->rtd3e) { 3292 /* us -> s */ 3293 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3294 3295 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3296 shutdown_timeout, 60); 3297 3298 if (ctrl->shutdown_timeout != shutdown_timeout) 3299 dev_info(ctrl->device, 3300 "D3 entry latency set to %u seconds\n", 3301 ctrl->shutdown_timeout); 3302 } else 3303 ctrl->shutdown_timeout = shutdown_timeout; 3304 3305 ctrl->npss = id->npss; 3306 ctrl->apsta = id->apsta; 3307 prev_apst_enabled = ctrl->apst_enabled; 3308 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3309 if (force_apst && id->apsta) { 3310 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3311 ctrl->apst_enabled = true; 3312 } else { 3313 ctrl->apst_enabled = false; 3314 } 3315 } else { 3316 ctrl->apst_enabled = id->apsta; 3317 } 3318 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3319 3320 if (ctrl->ops->flags & NVME_F_FABRICS) { 3321 ctrl->icdoff = le16_to_cpu(id->icdoff); 3322 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3323 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3324 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3325 3326 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3327 if (ret) 3328 goto out_free; 3329 } else { 3330 ctrl->hmpre = le32_to_cpu(id->hmpre); 3331 ctrl->hmmin = le32_to_cpu(id->hmmin); 3332 ctrl->hmminds = le32_to_cpu(id->hmminds); 3333 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3334 } 3335 3336 ret = nvme_mpath_init_identify(ctrl, id); 3337 if (ret < 0) 3338 goto out_free; 3339 3340 if (ctrl->apst_enabled && !prev_apst_enabled) 3341 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3342 else if (!ctrl->apst_enabled && prev_apst_enabled) 3343 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3344 3345 out_free: 3346 kfree(id); 3347 return ret; 3348 } 3349 3350 /* 3351 * Initialize the cached copies of the Identify data and various controller 3352 * register in our nvme_ctrl structure. This should be called as soon as 3353 * the admin queue is fully up and running. 3354 */ 3355 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3356 { 3357 int ret; 3358 3359 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3360 if (ret) { 3361 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3362 return ret; 3363 } 3364 3365 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3366 3367 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3368 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3369 3370 ret = nvme_init_identify(ctrl); 3371 if (ret) 3372 return ret; 3373 3374 ret = nvme_configure_apst(ctrl); 3375 if (ret < 0) 3376 return ret; 3377 3378 ret = nvme_configure_timestamp(ctrl); 3379 if (ret < 0) 3380 return ret; 3381 3382 ret = nvme_configure_host_options(ctrl); 3383 if (ret < 0) 3384 return ret; 3385 3386 nvme_configure_opal(ctrl, was_suspended); 3387 3388 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3389 /* 3390 * Do not return errors unless we are in a controller reset, 3391 * the controller works perfectly fine without hwmon. 3392 */ 3393 ret = nvme_hwmon_init(ctrl); 3394 if (ret == -EINTR) 3395 return ret; 3396 } 3397 3398 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3399 ctrl->identified = true; 3400 3401 nvme_start_keep_alive(ctrl); 3402 3403 return 0; 3404 } 3405 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3406 3407 static int nvme_dev_open(struct inode *inode, struct file *file) 3408 { 3409 struct nvme_ctrl *ctrl = 3410 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3411 3412 switch (nvme_ctrl_state(ctrl)) { 3413 case NVME_CTRL_LIVE: 3414 break; 3415 default: 3416 return -EWOULDBLOCK; 3417 } 3418 3419 nvme_get_ctrl(ctrl); 3420 if (!try_module_get(ctrl->ops->module)) { 3421 nvme_put_ctrl(ctrl); 3422 return -EINVAL; 3423 } 3424 3425 file->private_data = ctrl; 3426 return 0; 3427 } 3428 3429 static int nvme_dev_release(struct inode *inode, struct file *file) 3430 { 3431 struct nvme_ctrl *ctrl = 3432 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3433 3434 module_put(ctrl->ops->module); 3435 nvme_put_ctrl(ctrl); 3436 return 0; 3437 } 3438 3439 static const struct file_operations nvme_dev_fops = { 3440 .owner = THIS_MODULE, 3441 .open = nvme_dev_open, 3442 .release = nvme_dev_release, 3443 .unlocked_ioctl = nvme_dev_ioctl, 3444 .compat_ioctl = compat_ptr_ioctl, 3445 .uring_cmd = nvme_dev_uring_cmd, 3446 }; 3447 3448 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3449 unsigned nsid) 3450 { 3451 struct nvme_ns_head *h; 3452 3453 lockdep_assert_held(&ctrl->subsys->lock); 3454 3455 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3456 /* 3457 * Private namespaces can share NSIDs under some conditions. 3458 * In that case we can't use the same ns_head for namespaces 3459 * with the same NSID. 3460 */ 3461 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3462 continue; 3463 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3464 return h; 3465 } 3466 3467 return NULL; 3468 } 3469 3470 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3471 struct nvme_ns_ids *ids) 3472 { 3473 bool has_uuid = !uuid_is_null(&ids->uuid); 3474 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3475 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3476 struct nvme_ns_head *h; 3477 3478 lockdep_assert_held(&subsys->lock); 3479 3480 list_for_each_entry(h, &subsys->nsheads, entry) { 3481 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3482 return -EINVAL; 3483 if (has_nguid && 3484 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3485 return -EINVAL; 3486 if (has_eui64 && 3487 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3488 return -EINVAL; 3489 } 3490 3491 return 0; 3492 } 3493 3494 static void nvme_cdev_rel(struct device *dev) 3495 { 3496 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3497 } 3498 3499 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3500 { 3501 cdev_device_del(cdev, cdev_device); 3502 put_device(cdev_device); 3503 } 3504 3505 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3506 const struct file_operations *fops, struct module *owner) 3507 { 3508 int minor, ret; 3509 3510 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3511 if (minor < 0) 3512 return minor; 3513 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3514 cdev_device->class = &nvme_ns_chr_class; 3515 cdev_device->release = nvme_cdev_rel; 3516 device_initialize(cdev_device); 3517 cdev_init(cdev, fops); 3518 cdev->owner = owner; 3519 ret = cdev_device_add(cdev, cdev_device); 3520 if (ret) 3521 put_device(cdev_device); 3522 3523 return ret; 3524 } 3525 3526 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3527 { 3528 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3529 } 3530 3531 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3532 { 3533 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3534 return 0; 3535 } 3536 3537 static const struct file_operations nvme_ns_chr_fops = { 3538 .owner = THIS_MODULE, 3539 .open = nvme_ns_chr_open, 3540 .release = nvme_ns_chr_release, 3541 .unlocked_ioctl = nvme_ns_chr_ioctl, 3542 .compat_ioctl = compat_ptr_ioctl, 3543 .uring_cmd = nvme_ns_chr_uring_cmd, 3544 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3545 }; 3546 3547 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3548 { 3549 int ret; 3550 3551 ns->cdev_device.parent = ns->ctrl->device; 3552 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3553 ns->ctrl->instance, ns->head->instance); 3554 if (ret) 3555 return ret; 3556 3557 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3558 ns->ctrl->ops->module); 3559 } 3560 3561 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3562 struct nvme_ns_info *info) 3563 { 3564 struct nvme_ns_head *head; 3565 size_t size = sizeof(*head); 3566 int ret = -ENOMEM; 3567 3568 #ifdef CONFIG_NVME_MULTIPATH 3569 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3570 #endif 3571 3572 head = kzalloc(size, GFP_KERNEL); 3573 if (!head) 3574 goto out; 3575 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3576 if (ret < 0) 3577 goto out_free_head; 3578 head->instance = ret; 3579 INIT_LIST_HEAD(&head->list); 3580 ret = init_srcu_struct(&head->srcu); 3581 if (ret) 3582 goto out_ida_remove; 3583 head->subsys = ctrl->subsys; 3584 head->ns_id = info->nsid; 3585 head->ids = info->ids; 3586 head->shared = info->is_shared; 3587 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3588 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3589 kref_init(&head->ref); 3590 3591 if (head->ids.csi) { 3592 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3593 if (ret) 3594 goto out_cleanup_srcu; 3595 } else 3596 head->effects = ctrl->effects; 3597 3598 ret = nvme_mpath_alloc_disk(ctrl, head); 3599 if (ret) 3600 goto out_cleanup_srcu; 3601 3602 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3603 3604 kref_get(&ctrl->subsys->ref); 3605 3606 return head; 3607 out_cleanup_srcu: 3608 cleanup_srcu_struct(&head->srcu); 3609 out_ida_remove: 3610 ida_free(&ctrl->subsys->ns_ida, head->instance); 3611 out_free_head: 3612 kfree(head); 3613 out: 3614 if (ret > 0) 3615 ret = blk_status_to_errno(nvme_error_status(ret)); 3616 return ERR_PTR(ret); 3617 } 3618 3619 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3620 struct nvme_ns_ids *ids) 3621 { 3622 struct nvme_subsystem *s; 3623 int ret = 0; 3624 3625 /* 3626 * Note that this check is racy as we try to avoid holding the global 3627 * lock over the whole ns_head creation. But it is only intended as 3628 * a sanity check anyway. 3629 */ 3630 mutex_lock(&nvme_subsystems_lock); 3631 list_for_each_entry(s, &nvme_subsystems, entry) { 3632 if (s == this) 3633 continue; 3634 mutex_lock(&s->lock); 3635 ret = nvme_subsys_check_duplicate_ids(s, ids); 3636 mutex_unlock(&s->lock); 3637 if (ret) 3638 break; 3639 } 3640 mutex_unlock(&nvme_subsystems_lock); 3641 3642 return ret; 3643 } 3644 3645 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3646 { 3647 struct nvme_ctrl *ctrl = ns->ctrl; 3648 struct nvme_ns_head *head = NULL; 3649 int ret; 3650 3651 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3652 if (ret) { 3653 /* 3654 * We've found two different namespaces on two different 3655 * subsystems that report the same ID. This is pretty nasty 3656 * for anything that actually requires unique device 3657 * identification. In the kernel we need this for multipathing, 3658 * and in user space the /dev/disk/by-id/ links rely on it. 3659 * 3660 * If the device also claims to be multi-path capable back off 3661 * here now and refuse the probe the second device as this is a 3662 * recipe for data corruption. If not this is probably a 3663 * cheap consumer device if on the PCIe bus, so let the user 3664 * proceed and use the shiny toy, but warn that with changing 3665 * probing order (which due to our async probing could just be 3666 * device taking longer to startup) the other device could show 3667 * up at any time. 3668 */ 3669 nvme_print_device_info(ctrl); 3670 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3671 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3672 info->is_shared)) { 3673 dev_err(ctrl->device, 3674 "ignoring nsid %d because of duplicate IDs\n", 3675 info->nsid); 3676 return ret; 3677 } 3678 3679 dev_err(ctrl->device, 3680 "clearing duplicate IDs for nsid %d\n", info->nsid); 3681 dev_err(ctrl->device, 3682 "use of /dev/disk/by-id/ may cause data corruption\n"); 3683 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3684 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3685 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3686 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3687 } 3688 3689 mutex_lock(&ctrl->subsys->lock); 3690 head = nvme_find_ns_head(ctrl, info->nsid); 3691 if (!head) { 3692 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3693 if (ret) { 3694 dev_err(ctrl->device, 3695 "duplicate IDs in subsystem for nsid %d\n", 3696 info->nsid); 3697 goto out_unlock; 3698 } 3699 head = nvme_alloc_ns_head(ctrl, info); 3700 if (IS_ERR(head)) { 3701 ret = PTR_ERR(head); 3702 goto out_unlock; 3703 } 3704 } else { 3705 ret = -EINVAL; 3706 if (!info->is_shared || !head->shared) { 3707 dev_err(ctrl->device, 3708 "Duplicate unshared namespace %d\n", 3709 info->nsid); 3710 goto out_put_ns_head; 3711 } 3712 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3713 dev_err(ctrl->device, 3714 "IDs don't match for shared namespace %d\n", 3715 info->nsid); 3716 goto out_put_ns_head; 3717 } 3718 3719 if (!multipath) { 3720 dev_warn(ctrl->device, 3721 "Found shared namespace %d, but multipathing not supported.\n", 3722 info->nsid); 3723 dev_warn_once(ctrl->device, 3724 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3725 } 3726 } 3727 3728 list_add_tail_rcu(&ns->siblings, &head->list); 3729 ns->head = head; 3730 mutex_unlock(&ctrl->subsys->lock); 3731 return 0; 3732 3733 out_put_ns_head: 3734 nvme_put_ns_head(head); 3735 out_unlock: 3736 mutex_unlock(&ctrl->subsys->lock); 3737 return ret; 3738 } 3739 3740 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3741 { 3742 struct nvme_ns *ns, *ret = NULL; 3743 int srcu_idx; 3744 3745 srcu_idx = srcu_read_lock(&ctrl->srcu); 3746 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 3747 if (ns->head->ns_id == nsid) { 3748 if (!nvme_get_ns(ns)) 3749 continue; 3750 ret = ns; 3751 break; 3752 } 3753 if (ns->head->ns_id > nsid) 3754 break; 3755 } 3756 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3757 return ret; 3758 } 3759 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3760 3761 /* 3762 * Add the namespace to the controller list while keeping the list ordered. 3763 */ 3764 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3765 { 3766 struct nvme_ns *tmp; 3767 3768 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3769 if (tmp->head->ns_id < ns->head->ns_id) { 3770 list_add_rcu(&ns->list, &tmp->list); 3771 return; 3772 } 3773 } 3774 list_add(&ns->list, &ns->ctrl->namespaces); 3775 } 3776 3777 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3778 { 3779 struct queue_limits lim = { }; 3780 struct nvme_ns *ns; 3781 struct gendisk *disk; 3782 int node = ctrl->numa_node; 3783 3784 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3785 if (!ns) 3786 return; 3787 3788 if (ctrl->opts && ctrl->opts->data_digest) 3789 lim.features |= BLK_FEAT_STABLE_WRITES; 3790 if (ctrl->ops->supports_pci_p2pdma && 3791 ctrl->ops->supports_pci_p2pdma(ctrl)) 3792 lim.features |= BLK_FEAT_PCI_P2PDMA; 3793 3794 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); 3795 if (IS_ERR(disk)) 3796 goto out_free_ns; 3797 disk->fops = &nvme_bdev_ops; 3798 disk->private_data = ns; 3799 3800 ns->disk = disk; 3801 ns->queue = disk->queue; 3802 ns->ctrl = ctrl; 3803 kref_init(&ns->kref); 3804 3805 if (nvme_init_ns_head(ns, info)) 3806 goto out_cleanup_disk; 3807 3808 /* 3809 * If multipathing is enabled, the device name for all disks and not 3810 * just those that represent shared namespaces needs to be based on the 3811 * subsystem instance. Using the controller instance for private 3812 * namespaces could lead to naming collisions between shared and private 3813 * namespaces if they don't use a common numbering scheme. 3814 * 3815 * If multipathing is not enabled, disk names must use the controller 3816 * instance as shared namespaces will show up as multiple block 3817 * devices. 3818 */ 3819 if (nvme_ns_head_multipath(ns->head)) { 3820 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3821 ctrl->instance, ns->head->instance); 3822 disk->flags |= GENHD_FL_HIDDEN; 3823 } else if (multipath) { 3824 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3825 ns->head->instance); 3826 } else { 3827 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3828 ns->head->instance); 3829 } 3830 3831 if (nvme_update_ns_info(ns, info)) 3832 goto out_unlink_ns; 3833 3834 mutex_lock(&ctrl->namespaces_lock); 3835 /* 3836 * Ensure that no namespaces are added to the ctrl list after the queues 3837 * are frozen, thereby avoiding a deadlock between scan and reset. 3838 */ 3839 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3840 mutex_unlock(&ctrl->namespaces_lock); 3841 goto out_unlink_ns; 3842 } 3843 nvme_ns_add_to_ctrl_list(ns); 3844 mutex_unlock(&ctrl->namespaces_lock); 3845 synchronize_srcu(&ctrl->srcu); 3846 nvme_get_ctrl(ctrl); 3847 3848 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3849 goto out_cleanup_ns_from_list; 3850 3851 if (!nvme_ns_head_multipath(ns->head)) 3852 nvme_add_ns_cdev(ns); 3853 3854 nvme_mpath_add_disk(ns, info->anagrpid); 3855 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3856 3857 /* 3858 * Set ns->disk->device->driver_data to ns so we can access 3859 * ns->head->passthru_err_log_enabled in 3860 * nvme_io_passthru_err_log_enabled_[store | show](). 3861 */ 3862 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3863 3864 return; 3865 3866 out_cleanup_ns_from_list: 3867 nvme_put_ctrl(ctrl); 3868 mutex_lock(&ctrl->namespaces_lock); 3869 list_del_rcu(&ns->list); 3870 mutex_unlock(&ctrl->namespaces_lock); 3871 synchronize_srcu(&ctrl->srcu); 3872 out_unlink_ns: 3873 mutex_lock(&ctrl->subsys->lock); 3874 list_del_rcu(&ns->siblings); 3875 if (list_empty(&ns->head->list)) 3876 list_del_init(&ns->head->entry); 3877 mutex_unlock(&ctrl->subsys->lock); 3878 nvme_put_ns_head(ns->head); 3879 out_cleanup_disk: 3880 put_disk(disk); 3881 out_free_ns: 3882 kfree(ns); 3883 } 3884 3885 static void nvme_ns_remove(struct nvme_ns *ns) 3886 { 3887 bool last_path = false; 3888 3889 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3890 return; 3891 3892 clear_bit(NVME_NS_READY, &ns->flags); 3893 set_capacity(ns->disk, 0); 3894 nvme_fault_inject_fini(&ns->fault_inject); 3895 3896 /* 3897 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3898 * this ns going back into current_path. 3899 */ 3900 synchronize_srcu(&ns->head->srcu); 3901 3902 /* wait for concurrent submissions */ 3903 if (nvme_mpath_clear_current_path(ns)) 3904 synchronize_srcu(&ns->head->srcu); 3905 3906 mutex_lock(&ns->ctrl->subsys->lock); 3907 list_del_rcu(&ns->siblings); 3908 if (list_empty(&ns->head->list)) { 3909 list_del_init(&ns->head->entry); 3910 last_path = true; 3911 } 3912 mutex_unlock(&ns->ctrl->subsys->lock); 3913 3914 /* guarantee not available in head->list */ 3915 synchronize_srcu(&ns->head->srcu); 3916 3917 if (!nvme_ns_head_multipath(ns->head)) 3918 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3919 del_gendisk(ns->disk); 3920 3921 mutex_lock(&ns->ctrl->namespaces_lock); 3922 list_del_rcu(&ns->list); 3923 mutex_unlock(&ns->ctrl->namespaces_lock); 3924 synchronize_srcu(&ns->ctrl->srcu); 3925 3926 if (last_path) 3927 nvme_mpath_shutdown_disk(ns->head); 3928 nvme_put_ns(ns); 3929 } 3930 3931 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3932 { 3933 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3934 3935 if (ns) { 3936 nvme_ns_remove(ns); 3937 nvme_put_ns(ns); 3938 } 3939 } 3940 3941 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3942 { 3943 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3944 3945 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3946 dev_err(ns->ctrl->device, 3947 "identifiers changed for nsid %d\n", ns->head->ns_id); 3948 goto out; 3949 } 3950 3951 ret = nvme_update_ns_info(ns, info); 3952 out: 3953 /* 3954 * Only remove the namespace if we got a fatal error back from the 3955 * device, otherwise ignore the error and just move on. 3956 * 3957 * TODO: we should probably schedule a delayed retry here. 3958 */ 3959 if (ret > 0 && (ret & NVME_SC_DNR)) 3960 nvme_ns_remove(ns); 3961 } 3962 3963 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3964 { 3965 struct nvme_ns_info info = { .nsid = nsid }; 3966 struct nvme_ns *ns; 3967 int ret; 3968 3969 if (nvme_identify_ns_descs(ctrl, &info)) 3970 return; 3971 3972 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 3973 dev_warn(ctrl->device, 3974 "command set not reported for nsid: %d\n", nsid); 3975 return; 3976 } 3977 3978 /* 3979 * If available try to use the Command Set Idependent Identify Namespace 3980 * data structure to find all the generic information that is needed to 3981 * set up a namespace. If not fall back to the legacy version. 3982 */ 3983 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 3984 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 3985 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 3986 else 3987 ret = nvme_ns_info_from_identify(ctrl, &info); 3988 3989 if (info.is_removed) 3990 nvme_ns_remove_by_nsid(ctrl, nsid); 3991 3992 /* 3993 * Ignore the namespace if it is not ready. We will get an AEN once it 3994 * becomes ready and restart the scan. 3995 */ 3996 if (ret || !info.is_ready) 3997 return; 3998 3999 ns = nvme_find_get_ns(ctrl, nsid); 4000 if (ns) { 4001 nvme_validate_ns(ns, &info); 4002 nvme_put_ns(ns); 4003 } else { 4004 nvme_alloc_ns(ctrl, &info); 4005 } 4006 } 4007 4008 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4009 unsigned nsid) 4010 { 4011 struct nvme_ns *ns, *next; 4012 LIST_HEAD(rm_list); 4013 4014 mutex_lock(&ctrl->namespaces_lock); 4015 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4016 if (ns->head->ns_id > nsid) 4017 list_splice_init_rcu(&ns->list, &rm_list, 4018 synchronize_rcu); 4019 } 4020 mutex_unlock(&ctrl->namespaces_lock); 4021 synchronize_srcu(&ctrl->srcu); 4022 4023 list_for_each_entry_safe(ns, next, &rm_list, list) 4024 nvme_ns_remove(ns); 4025 } 4026 4027 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4028 { 4029 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4030 __le32 *ns_list; 4031 u32 prev = 0; 4032 int ret = 0, i; 4033 4034 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4035 if (!ns_list) 4036 return -ENOMEM; 4037 4038 for (;;) { 4039 struct nvme_command cmd = { 4040 .identify.opcode = nvme_admin_identify, 4041 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4042 .identify.nsid = cpu_to_le32(prev), 4043 }; 4044 4045 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4046 NVME_IDENTIFY_DATA_SIZE); 4047 if (ret) { 4048 dev_warn(ctrl->device, 4049 "Identify NS List failed (status=0x%x)\n", ret); 4050 goto free; 4051 } 4052 4053 for (i = 0; i < nr_entries; i++) { 4054 u32 nsid = le32_to_cpu(ns_list[i]); 4055 4056 if (!nsid) /* end of the list? */ 4057 goto out; 4058 nvme_scan_ns(ctrl, nsid); 4059 while (++prev < nsid) 4060 nvme_ns_remove_by_nsid(ctrl, prev); 4061 } 4062 } 4063 out: 4064 nvme_remove_invalid_namespaces(ctrl, prev); 4065 free: 4066 kfree(ns_list); 4067 return ret; 4068 } 4069 4070 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4071 { 4072 struct nvme_id_ctrl *id; 4073 u32 nn, i; 4074 4075 if (nvme_identify_ctrl(ctrl, &id)) 4076 return; 4077 nn = le32_to_cpu(id->nn); 4078 kfree(id); 4079 4080 for (i = 1; i <= nn; i++) 4081 nvme_scan_ns(ctrl, i); 4082 4083 nvme_remove_invalid_namespaces(ctrl, nn); 4084 } 4085 4086 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4087 { 4088 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4089 __le32 *log; 4090 int error; 4091 4092 log = kzalloc(log_size, GFP_KERNEL); 4093 if (!log) 4094 return; 4095 4096 /* 4097 * We need to read the log to clear the AEN, but we don't want to rely 4098 * on it for the changed namespace information as userspace could have 4099 * raced with us in reading the log page, which could cause us to miss 4100 * updates. 4101 */ 4102 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4103 NVME_CSI_NVM, log, log_size, 0); 4104 if (error) 4105 dev_warn(ctrl->device, 4106 "reading changed ns log failed: %d\n", error); 4107 4108 kfree(log); 4109 } 4110 4111 static void nvme_scan_work(struct work_struct *work) 4112 { 4113 struct nvme_ctrl *ctrl = 4114 container_of(work, struct nvme_ctrl, scan_work); 4115 int ret; 4116 4117 /* No tagset on a live ctrl means IO queues could not created */ 4118 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4119 return; 4120 4121 /* 4122 * Identify controller limits can change at controller reset due to 4123 * new firmware download, even though it is not common we cannot ignore 4124 * such scenario. Controller's non-mdts limits are reported in the unit 4125 * of logical blocks that is dependent on the format of attached 4126 * namespace. Hence re-read the limits at the time of ns allocation. 4127 */ 4128 ret = nvme_init_non_mdts_limits(ctrl); 4129 if (ret < 0) { 4130 dev_warn(ctrl->device, 4131 "reading non-mdts-limits failed: %d\n", ret); 4132 return; 4133 } 4134 4135 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4136 dev_info(ctrl->device, "rescanning namespaces.\n"); 4137 nvme_clear_changed_ns_log(ctrl); 4138 } 4139 4140 mutex_lock(&ctrl->scan_lock); 4141 if (nvme_ctrl_limited_cns(ctrl)) { 4142 nvme_scan_ns_sequential(ctrl); 4143 } else { 4144 /* 4145 * Fall back to sequential scan if DNR is set to handle broken 4146 * devices which should support Identify NS List (as per the VS 4147 * they report) but don't actually support it. 4148 */ 4149 ret = nvme_scan_ns_list(ctrl); 4150 if (ret > 0 && ret & NVME_SC_DNR) 4151 nvme_scan_ns_sequential(ctrl); 4152 } 4153 mutex_unlock(&ctrl->scan_lock); 4154 } 4155 4156 /* 4157 * This function iterates the namespace list unlocked to allow recovery from 4158 * controller failure. It is up to the caller to ensure the namespace list is 4159 * not modified by scan work while this function is executing. 4160 */ 4161 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4162 { 4163 struct nvme_ns *ns, *next; 4164 LIST_HEAD(ns_list); 4165 4166 /* 4167 * make sure to requeue I/O to all namespaces as these 4168 * might result from the scan itself and must complete 4169 * for the scan_work to make progress 4170 */ 4171 nvme_mpath_clear_ctrl_paths(ctrl); 4172 4173 /* 4174 * Unquiesce io queues so any pending IO won't hang, especially 4175 * those submitted from scan work 4176 */ 4177 nvme_unquiesce_io_queues(ctrl); 4178 4179 /* prevent racing with ns scanning */ 4180 flush_work(&ctrl->scan_work); 4181 4182 /* 4183 * The dead states indicates the controller was not gracefully 4184 * disconnected. In that case, we won't be able to flush any data while 4185 * removing the namespaces' disks; fail all the queues now to avoid 4186 * potentially having to clean up the failed sync later. 4187 */ 4188 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4189 nvme_mark_namespaces_dead(ctrl); 4190 4191 /* this is a no-op when called from the controller reset handler */ 4192 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4193 4194 mutex_lock(&ctrl->namespaces_lock); 4195 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4196 mutex_unlock(&ctrl->namespaces_lock); 4197 synchronize_srcu(&ctrl->srcu); 4198 4199 list_for_each_entry_safe(ns, next, &ns_list, list) 4200 nvme_ns_remove(ns); 4201 } 4202 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4203 4204 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4205 { 4206 const struct nvme_ctrl *ctrl = 4207 container_of(dev, struct nvme_ctrl, ctrl_device); 4208 struct nvmf_ctrl_options *opts = ctrl->opts; 4209 int ret; 4210 4211 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4212 if (ret) 4213 return ret; 4214 4215 if (opts) { 4216 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4217 if (ret) 4218 return ret; 4219 4220 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4221 opts->trsvcid ?: "none"); 4222 if (ret) 4223 return ret; 4224 4225 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4226 opts->host_traddr ?: "none"); 4227 if (ret) 4228 return ret; 4229 4230 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4231 opts->host_iface ?: "none"); 4232 } 4233 return ret; 4234 } 4235 4236 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4237 { 4238 char *envp[2] = { envdata, NULL }; 4239 4240 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4241 } 4242 4243 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4244 { 4245 char *envp[2] = { NULL, NULL }; 4246 u32 aen_result = ctrl->aen_result; 4247 4248 ctrl->aen_result = 0; 4249 if (!aen_result) 4250 return; 4251 4252 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4253 if (!envp[0]) 4254 return; 4255 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4256 kfree(envp[0]); 4257 } 4258 4259 static void nvme_async_event_work(struct work_struct *work) 4260 { 4261 struct nvme_ctrl *ctrl = 4262 container_of(work, struct nvme_ctrl, async_event_work); 4263 4264 nvme_aen_uevent(ctrl); 4265 4266 /* 4267 * The transport drivers must guarantee AER submission here is safe by 4268 * flushing ctrl async_event_work after changing the controller state 4269 * from LIVE and before freeing the admin queue. 4270 */ 4271 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4272 ctrl->ops->submit_async_event(ctrl); 4273 } 4274 4275 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4276 { 4277 4278 u32 csts; 4279 4280 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4281 return false; 4282 4283 if (csts == ~0) 4284 return false; 4285 4286 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4287 } 4288 4289 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4290 { 4291 struct nvme_fw_slot_info_log *log; 4292 u8 next_fw_slot, cur_fw_slot; 4293 4294 log = kmalloc(sizeof(*log), GFP_KERNEL); 4295 if (!log) 4296 return; 4297 4298 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4299 log, sizeof(*log), 0)) { 4300 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4301 goto out_free_log; 4302 } 4303 4304 cur_fw_slot = log->afi & 0x7; 4305 next_fw_slot = (log->afi & 0x70) >> 4; 4306 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4307 dev_info(ctrl->device, 4308 "Firmware is activated after next Controller Level Reset\n"); 4309 goto out_free_log; 4310 } 4311 4312 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4313 sizeof(ctrl->subsys->firmware_rev)); 4314 4315 out_free_log: 4316 kfree(log); 4317 } 4318 4319 static void nvme_fw_act_work(struct work_struct *work) 4320 { 4321 struct nvme_ctrl *ctrl = container_of(work, 4322 struct nvme_ctrl, fw_act_work); 4323 unsigned long fw_act_timeout; 4324 4325 nvme_auth_stop(ctrl); 4326 4327 if (ctrl->mtfa) 4328 fw_act_timeout = jiffies + 4329 msecs_to_jiffies(ctrl->mtfa * 100); 4330 else 4331 fw_act_timeout = jiffies + 4332 msecs_to_jiffies(admin_timeout * 1000); 4333 4334 nvme_quiesce_io_queues(ctrl); 4335 while (nvme_ctrl_pp_status(ctrl)) { 4336 if (time_after(jiffies, fw_act_timeout)) { 4337 dev_warn(ctrl->device, 4338 "Fw activation timeout, reset controller\n"); 4339 nvme_try_sched_reset(ctrl); 4340 return; 4341 } 4342 msleep(100); 4343 } 4344 4345 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4346 return; 4347 4348 nvme_unquiesce_io_queues(ctrl); 4349 /* read FW slot information to clear the AER */ 4350 nvme_get_fw_slot_info(ctrl); 4351 4352 queue_work(nvme_wq, &ctrl->async_event_work); 4353 } 4354 4355 static u32 nvme_aer_type(u32 result) 4356 { 4357 return result & 0x7; 4358 } 4359 4360 static u32 nvme_aer_subtype(u32 result) 4361 { 4362 return (result & 0xff00) >> 8; 4363 } 4364 4365 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4366 { 4367 u32 aer_notice_type = nvme_aer_subtype(result); 4368 bool requeue = true; 4369 4370 switch (aer_notice_type) { 4371 case NVME_AER_NOTICE_NS_CHANGED: 4372 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4373 nvme_queue_scan(ctrl); 4374 break; 4375 case NVME_AER_NOTICE_FW_ACT_STARTING: 4376 /* 4377 * We are (ab)using the RESETTING state to prevent subsequent 4378 * recovery actions from interfering with the controller's 4379 * firmware activation. 4380 */ 4381 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4382 requeue = false; 4383 queue_work(nvme_wq, &ctrl->fw_act_work); 4384 } 4385 break; 4386 #ifdef CONFIG_NVME_MULTIPATH 4387 case NVME_AER_NOTICE_ANA: 4388 if (!ctrl->ana_log_buf) 4389 break; 4390 queue_work(nvme_wq, &ctrl->ana_work); 4391 break; 4392 #endif 4393 case NVME_AER_NOTICE_DISC_CHANGED: 4394 ctrl->aen_result = result; 4395 break; 4396 default: 4397 dev_warn(ctrl->device, "async event result %08x\n", result); 4398 } 4399 return requeue; 4400 } 4401 4402 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4403 { 4404 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4405 nvme_reset_ctrl(ctrl); 4406 } 4407 4408 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4409 volatile union nvme_result *res) 4410 { 4411 u32 result = le32_to_cpu(res->u32); 4412 u32 aer_type = nvme_aer_type(result); 4413 u32 aer_subtype = nvme_aer_subtype(result); 4414 bool requeue = true; 4415 4416 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4417 return; 4418 4419 trace_nvme_async_event(ctrl, result); 4420 switch (aer_type) { 4421 case NVME_AER_NOTICE: 4422 requeue = nvme_handle_aen_notice(ctrl, result); 4423 break; 4424 case NVME_AER_ERROR: 4425 /* 4426 * For a persistent internal error, don't run async_event_work 4427 * to submit a new AER. The controller reset will do it. 4428 */ 4429 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4430 nvme_handle_aer_persistent_error(ctrl); 4431 return; 4432 } 4433 fallthrough; 4434 case NVME_AER_SMART: 4435 case NVME_AER_CSS: 4436 case NVME_AER_VS: 4437 ctrl->aen_result = result; 4438 break; 4439 default: 4440 break; 4441 } 4442 4443 if (requeue) 4444 queue_work(nvme_wq, &ctrl->async_event_work); 4445 } 4446 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4447 4448 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4449 const struct blk_mq_ops *ops, unsigned int cmd_size) 4450 { 4451 struct queue_limits lim = {}; 4452 int ret; 4453 4454 memset(set, 0, sizeof(*set)); 4455 set->ops = ops; 4456 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4457 if (ctrl->ops->flags & NVME_F_FABRICS) 4458 /* Reserved for fabric connect and keep alive */ 4459 set->reserved_tags = 2; 4460 set->numa_node = ctrl->numa_node; 4461 set->flags = BLK_MQ_F_NO_SCHED; 4462 if (ctrl->ops->flags & NVME_F_BLOCKING) 4463 set->flags |= BLK_MQ_F_BLOCKING; 4464 set->cmd_size = cmd_size; 4465 set->driver_data = ctrl; 4466 set->nr_hw_queues = 1; 4467 set->timeout = NVME_ADMIN_TIMEOUT; 4468 ret = blk_mq_alloc_tag_set(set); 4469 if (ret) 4470 return ret; 4471 4472 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4473 if (IS_ERR(ctrl->admin_q)) { 4474 ret = PTR_ERR(ctrl->admin_q); 4475 goto out_free_tagset; 4476 } 4477 4478 if (ctrl->ops->flags & NVME_F_FABRICS) { 4479 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4480 if (IS_ERR(ctrl->fabrics_q)) { 4481 ret = PTR_ERR(ctrl->fabrics_q); 4482 goto out_cleanup_admin_q; 4483 } 4484 } 4485 4486 ctrl->admin_tagset = set; 4487 return 0; 4488 4489 out_cleanup_admin_q: 4490 blk_mq_destroy_queue(ctrl->admin_q); 4491 blk_put_queue(ctrl->admin_q); 4492 out_free_tagset: 4493 blk_mq_free_tag_set(set); 4494 ctrl->admin_q = NULL; 4495 ctrl->fabrics_q = NULL; 4496 return ret; 4497 } 4498 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4499 4500 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4501 { 4502 blk_mq_destroy_queue(ctrl->admin_q); 4503 blk_put_queue(ctrl->admin_q); 4504 if (ctrl->ops->flags & NVME_F_FABRICS) { 4505 blk_mq_destroy_queue(ctrl->fabrics_q); 4506 blk_put_queue(ctrl->fabrics_q); 4507 } 4508 blk_mq_free_tag_set(ctrl->admin_tagset); 4509 } 4510 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4511 4512 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4513 const struct blk_mq_ops *ops, unsigned int nr_maps, 4514 unsigned int cmd_size) 4515 { 4516 int ret; 4517 4518 memset(set, 0, sizeof(*set)); 4519 set->ops = ops; 4520 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4521 /* 4522 * Some Apple controllers requires tags to be unique across admin and 4523 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4524 */ 4525 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4526 set->reserved_tags = NVME_AQ_DEPTH; 4527 else if (ctrl->ops->flags & NVME_F_FABRICS) 4528 /* Reserved for fabric connect */ 4529 set->reserved_tags = 1; 4530 set->numa_node = ctrl->numa_node; 4531 set->flags = BLK_MQ_F_SHOULD_MERGE; 4532 if (ctrl->ops->flags & NVME_F_BLOCKING) 4533 set->flags |= BLK_MQ_F_BLOCKING; 4534 set->cmd_size = cmd_size, 4535 set->driver_data = ctrl; 4536 set->nr_hw_queues = ctrl->queue_count - 1; 4537 set->timeout = NVME_IO_TIMEOUT; 4538 set->nr_maps = nr_maps; 4539 ret = blk_mq_alloc_tag_set(set); 4540 if (ret) 4541 return ret; 4542 4543 if (ctrl->ops->flags & NVME_F_FABRICS) { 4544 struct queue_limits lim = { 4545 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, 4546 }; 4547 4548 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); 4549 if (IS_ERR(ctrl->connect_q)) { 4550 ret = PTR_ERR(ctrl->connect_q); 4551 goto out_free_tag_set; 4552 } 4553 } 4554 4555 ctrl->tagset = set; 4556 return 0; 4557 4558 out_free_tag_set: 4559 blk_mq_free_tag_set(set); 4560 ctrl->connect_q = NULL; 4561 return ret; 4562 } 4563 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4564 4565 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4566 { 4567 if (ctrl->ops->flags & NVME_F_FABRICS) { 4568 blk_mq_destroy_queue(ctrl->connect_q); 4569 blk_put_queue(ctrl->connect_q); 4570 } 4571 blk_mq_free_tag_set(ctrl->tagset); 4572 } 4573 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4574 4575 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4576 { 4577 nvme_mpath_stop(ctrl); 4578 nvme_auth_stop(ctrl); 4579 nvme_stop_keep_alive(ctrl); 4580 nvme_stop_failfast_work(ctrl); 4581 flush_work(&ctrl->async_event_work); 4582 cancel_work_sync(&ctrl->fw_act_work); 4583 if (ctrl->ops->stop_ctrl) 4584 ctrl->ops->stop_ctrl(ctrl); 4585 } 4586 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4587 4588 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4589 { 4590 nvme_enable_aen(ctrl); 4591 4592 /* 4593 * persistent discovery controllers need to send indication to userspace 4594 * to re-read the discovery log page to learn about possible changes 4595 * that were missed. We identify persistent discovery controllers by 4596 * checking that they started once before, hence are reconnecting back. 4597 */ 4598 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4599 nvme_discovery_ctrl(ctrl)) 4600 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4601 4602 if (ctrl->queue_count > 1) { 4603 nvme_queue_scan(ctrl); 4604 nvme_unquiesce_io_queues(ctrl); 4605 nvme_mpath_update(ctrl); 4606 } 4607 4608 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4609 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4610 } 4611 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4612 4613 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4614 { 4615 nvme_hwmon_exit(ctrl); 4616 nvme_fault_inject_fini(&ctrl->fault_inject); 4617 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4618 cdev_device_del(&ctrl->cdev, ctrl->device); 4619 nvme_put_ctrl(ctrl); 4620 } 4621 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4622 4623 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4624 { 4625 struct nvme_effects_log *cel; 4626 unsigned long i; 4627 4628 xa_for_each(&ctrl->cels, i, cel) { 4629 xa_erase(&ctrl->cels, i); 4630 kfree(cel); 4631 } 4632 4633 xa_destroy(&ctrl->cels); 4634 } 4635 4636 static void nvme_free_ctrl(struct device *dev) 4637 { 4638 struct nvme_ctrl *ctrl = 4639 container_of(dev, struct nvme_ctrl, ctrl_device); 4640 struct nvme_subsystem *subsys = ctrl->subsys; 4641 4642 if (!subsys || ctrl->instance != subsys->instance) 4643 ida_free(&nvme_instance_ida, ctrl->instance); 4644 key_put(ctrl->tls_key); 4645 nvme_free_cels(ctrl); 4646 nvme_mpath_uninit(ctrl); 4647 cleanup_srcu_struct(&ctrl->srcu); 4648 nvme_auth_stop(ctrl); 4649 nvme_auth_free(ctrl); 4650 __free_page(ctrl->discard_page); 4651 free_opal_dev(ctrl->opal_dev); 4652 4653 if (subsys) { 4654 mutex_lock(&nvme_subsystems_lock); 4655 list_del(&ctrl->subsys_entry); 4656 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4657 mutex_unlock(&nvme_subsystems_lock); 4658 } 4659 4660 ctrl->ops->free_ctrl(ctrl); 4661 4662 if (subsys) 4663 nvme_put_subsystem(subsys); 4664 } 4665 4666 /* 4667 * Initialize a NVMe controller structures. This needs to be called during 4668 * earliest initialization so that we have the initialized structured around 4669 * during probing. 4670 */ 4671 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4672 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4673 { 4674 int ret; 4675 4676 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4677 ctrl->passthru_err_log_enabled = false; 4678 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4679 spin_lock_init(&ctrl->lock); 4680 mutex_init(&ctrl->namespaces_lock); 4681 4682 ret = init_srcu_struct(&ctrl->srcu); 4683 if (ret) 4684 return ret; 4685 4686 mutex_init(&ctrl->scan_lock); 4687 INIT_LIST_HEAD(&ctrl->namespaces); 4688 xa_init(&ctrl->cels); 4689 ctrl->dev = dev; 4690 ctrl->ops = ops; 4691 ctrl->quirks = quirks; 4692 ctrl->numa_node = NUMA_NO_NODE; 4693 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4694 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4695 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4696 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4697 init_waitqueue_head(&ctrl->state_wq); 4698 4699 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4700 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4701 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4702 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4703 ctrl->ka_last_check_time = jiffies; 4704 4705 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4706 PAGE_SIZE); 4707 ctrl->discard_page = alloc_page(GFP_KERNEL); 4708 if (!ctrl->discard_page) { 4709 ret = -ENOMEM; 4710 goto out; 4711 } 4712 4713 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4714 if (ret < 0) 4715 goto out; 4716 ctrl->instance = ret; 4717 4718 device_initialize(&ctrl->ctrl_device); 4719 ctrl->device = &ctrl->ctrl_device; 4720 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4721 ctrl->instance); 4722 ctrl->device->class = &nvme_class; 4723 ctrl->device->parent = ctrl->dev; 4724 if (ops->dev_attr_groups) 4725 ctrl->device->groups = ops->dev_attr_groups; 4726 else 4727 ctrl->device->groups = nvme_dev_attr_groups; 4728 ctrl->device->release = nvme_free_ctrl; 4729 dev_set_drvdata(ctrl->device, ctrl); 4730 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4731 if (ret) 4732 goto out_release_instance; 4733 4734 nvme_get_ctrl(ctrl); 4735 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4736 ctrl->cdev.owner = ops->module; 4737 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4738 if (ret) 4739 goto out_free_name; 4740 4741 /* 4742 * Initialize latency tolerance controls. The sysfs files won't 4743 * be visible to userspace unless the device actually supports APST. 4744 */ 4745 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4746 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4747 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4748 4749 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4750 nvme_mpath_init_ctrl(ctrl); 4751 ret = nvme_auth_init_ctrl(ctrl); 4752 if (ret) 4753 goto out_free_cdev; 4754 4755 return 0; 4756 out_free_cdev: 4757 nvme_fault_inject_fini(&ctrl->fault_inject); 4758 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4759 cdev_device_del(&ctrl->cdev, ctrl->device); 4760 out_free_name: 4761 nvme_put_ctrl(ctrl); 4762 kfree_const(ctrl->device->kobj.name); 4763 out_release_instance: 4764 ida_free(&nvme_instance_ida, ctrl->instance); 4765 out: 4766 if (ctrl->discard_page) 4767 __free_page(ctrl->discard_page); 4768 cleanup_srcu_struct(&ctrl->srcu); 4769 return ret; 4770 } 4771 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4772 4773 /* let I/O to all namespaces fail in preparation for surprise removal */ 4774 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4775 { 4776 struct nvme_ns *ns; 4777 int srcu_idx; 4778 4779 srcu_idx = srcu_read_lock(&ctrl->srcu); 4780 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4781 blk_mark_disk_dead(ns->disk); 4782 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4783 } 4784 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4785 4786 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4787 { 4788 struct nvme_ns *ns; 4789 int srcu_idx; 4790 4791 srcu_idx = srcu_read_lock(&ctrl->srcu); 4792 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4793 blk_mq_unfreeze_queue(ns->queue); 4794 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4795 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4796 } 4797 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4798 4799 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4800 { 4801 struct nvme_ns *ns; 4802 int srcu_idx; 4803 4804 srcu_idx = srcu_read_lock(&ctrl->srcu); 4805 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 4806 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4807 if (timeout <= 0) 4808 break; 4809 } 4810 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4811 return timeout; 4812 } 4813 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4814 4815 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4816 { 4817 struct nvme_ns *ns; 4818 int srcu_idx; 4819 4820 srcu_idx = srcu_read_lock(&ctrl->srcu); 4821 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4822 blk_mq_freeze_queue_wait(ns->queue); 4823 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4824 } 4825 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4826 4827 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4828 { 4829 struct nvme_ns *ns; 4830 int srcu_idx; 4831 4832 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4833 srcu_idx = srcu_read_lock(&ctrl->srcu); 4834 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4835 blk_freeze_queue_start(ns->queue); 4836 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4837 } 4838 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4839 4840 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4841 { 4842 if (!ctrl->tagset) 4843 return; 4844 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4845 blk_mq_quiesce_tagset(ctrl->tagset); 4846 else 4847 blk_mq_wait_quiesce_done(ctrl->tagset); 4848 } 4849 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4850 4851 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4852 { 4853 if (!ctrl->tagset) 4854 return; 4855 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4856 blk_mq_unquiesce_tagset(ctrl->tagset); 4857 } 4858 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4859 4860 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4861 { 4862 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4863 blk_mq_quiesce_queue(ctrl->admin_q); 4864 else 4865 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4866 } 4867 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4868 4869 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4870 { 4871 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4872 blk_mq_unquiesce_queue(ctrl->admin_q); 4873 } 4874 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4875 4876 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4877 { 4878 struct nvme_ns *ns; 4879 int srcu_idx; 4880 4881 srcu_idx = srcu_read_lock(&ctrl->srcu); 4882 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4883 blk_sync_queue(ns->queue); 4884 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4885 } 4886 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4887 4888 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4889 { 4890 nvme_sync_io_queues(ctrl); 4891 if (ctrl->admin_q) 4892 blk_sync_queue(ctrl->admin_q); 4893 } 4894 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4895 4896 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4897 { 4898 if (file->f_op != &nvme_dev_fops) 4899 return NULL; 4900 return file->private_data; 4901 } 4902 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4903 4904 /* 4905 * Check we didn't inadvertently grow the command structure sizes: 4906 */ 4907 static inline void _nvme_check_size(void) 4908 { 4909 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4910 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4911 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4912 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4913 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4914 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4915 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4916 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4917 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4918 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4919 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4920 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4921 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4922 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4923 NVME_IDENTIFY_DATA_SIZE); 4924 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4925 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4926 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4927 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4928 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4929 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4930 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4931 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4932 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4933 } 4934 4935 4936 static int __init nvme_core_init(void) 4937 { 4938 int result = -ENOMEM; 4939 4940 _nvme_check_size(); 4941 4942 nvme_wq = alloc_workqueue("nvme-wq", 4943 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4944 if (!nvme_wq) 4945 goto out; 4946 4947 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4948 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4949 if (!nvme_reset_wq) 4950 goto destroy_wq; 4951 4952 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4953 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4954 if (!nvme_delete_wq) 4955 goto destroy_reset_wq; 4956 4957 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4958 NVME_MINORS, "nvme"); 4959 if (result < 0) 4960 goto destroy_delete_wq; 4961 4962 result = class_register(&nvme_class); 4963 if (result) 4964 goto unregister_chrdev; 4965 4966 result = class_register(&nvme_subsys_class); 4967 if (result) 4968 goto destroy_class; 4969 4970 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4971 "nvme-generic"); 4972 if (result < 0) 4973 goto destroy_subsys_class; 4974 4975 result = class_register(&nvme_ns_chr_class); 4976 if (result) 4977 goto unregister_generic_ns; 4978 4979 result = nvme_init_auth(); 4980 if (result) 4981 goto destroy_ns_chr; 4982 return 0; 4983 4984 destroy_ns_chr: 4985 class_unregister(&nvme_ns_chr_class); 4986 unregister_generic_ns: 4987 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4988 destroy_subsys_class: 4989 class_unregister(&nvme_subsys_class); 4990 destroy_class: 4991 class_unregister(&nvme_class); 4992 unregister_chrdev: 4993 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4994 destroy_delete_wq: 4995 destroy_workqueue(nvme_delete_wq); 4996 destroy_reset_wq: 4997 destroy_workqueue(nvme_reset_wq); 4998 destroy_wq: 4999 destroy_workqueue(nvme_wq); 5000 out: 5001 return result; 5002 } 5003 5004 static void __exit nvme_core_exit(void) 5005 { 5006 nvme_exit_auth(); 5007 class_unregister(&nvme_ns_chr_class); 5008 class_unregister(&nvme_subsys_class); 5009 class_unregister(&nvme_class); 5010 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5011 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5012 destroy_workqueue(nvme_delete_wq); 5013 destroy_workqueue(nvme_reset_wq); 5014 destroy_workqueue(nvme_wq); 5015 ida_destroy(&nvme_ns_chr_minor_ida); 5016 ida_destroy(&nvme_instance_ida); 5017 } 5018 5019 MODULE_LICENSE("GPL"); 5020 MODULE_VERSION("1.0"); 5021 MODULE_DESCRIPTION("NVMe host core framework"); 5022 module_init(nvme_core_init); 5023 module_exit(nvme_core_exit); 5024