xref: /linux/drivers/nvme/host/core.c (revision 5b026e34120766408e76ba19a0e33a9dc996f9f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include "nvme.h"
27 #include "fabrics.h"
28 #include <linux/nvme-auth.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #define NVME_MINORS		(1U << MINORBITS)
34 
35 struct nvme_ns_info {
36 	struct nvme_ns_ids ids;
37 	u32 nsid;
38 	__le32 anagrpid;
39 	bool is_shared;
40 	bool is_readonly;
41 	bool is_ready;
42 	bool is_removed;
43 };
44 
45 unsigned int admin_timeout = 60;
46 module_param(admin_timeout, uint, 0644);
47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
48 EXPORT_SYMBOL_GPL(admin_timeout);
49 
50 unsigned int nvme_io_timeout = 30;
51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
53 EXPORT_SYMBOL_GPL(nvme_io_timeout);
54 
55 static unsigned char shutdown_timeout = 5;
56 module_param(shutdown_timeout, byte, 0644);
57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58 
59 static u8 nvme_max_retries = 5;
60 module_param_named(max_retries, nvme_max_retries, byte, 0644);
61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62 
63 static unsigned long default_ps_max_latency_us = 100000;
64 module_param(default_ps_max_latency_us, ulong, 0644);
65 MODULE_PARM_DESC(default_ps_max_latency_us,
66 		 "max power saving latency for new devices; use PM QOS to change per device");
67 
68 static bool force_apst;
69 module_param(force_apst, bool, 0644);
70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71 
72 static unsigned long apst_primary_timeout_ms = 100;
73 module_param(apst_primary_timeout_ms, ulong, 0644);
74 MODULE_PARM_DESC(apst_primary_timeout_ms,
75 	"primary APST timeout in ms");
76 
77 static unsigned long apst_secondary_timeout_ms = 2000;
78 module_param(apst_secondary_timeout_ms, ulong, 0644);
79 MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 	"secondary APST timeout in ms");
81 
82 static unsigned long apst_primary_latency_tol_us = 15000;
83 module_param(apst_primary_latency_tol_us, ulong, 0644);
84 MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 	"primary APST latency tolerance in us");
86 
87 static unsigned long apst_secondary_latency_tol_us = 100000;
88 module_param(apst_secondary_latency_tol_us, ulong, 0644);
89 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 	"secondary APST latency tolerance in us");
91 
92 /*
93  * nvme_wq - hosts nvme related works that are not reset or delete
94  * nvme_reset_wq - hosts nvme reset works
95  * nvme_delete_wq - hosts nvme delete works
96  *
97  * nvme_wq will host works such as scan, aen handling, fw activation,
98  * keep-alive, periodic reconnects etc. nvme_reset_wq
99  * runs reset works which also flush works hosted on nvme_wq for
100  * serialization purposes. nvme_delete_wq host controller deletion
101  * works which flush reset works for serialization.
102  */
103 struct workqueue_struct *nvme_wq;
104 EXPORT_SYMBOL_GPL(nvme_wq);
105 
106 struct workqueue_struct *nvme_reset_wq;
107 EXPORT_SYMBOL_GPL(nvme_reset_wq);
108 
109 struct workqueue_struct *nvme_delete_wq;
110 EXPORT_SYMBOL_GPL(nvme_delete_wq);
111 
112 static LIST_HEAD(nvme_subsystems);
113 static DEFINE_MUTEX(nvme_subsystems_lock);
114 
115 static DEFINE_IDA(nvme_instance_ida);
116 static dev_t nvme_ctrl_base_chr_devt;
117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
118 static const struct class nvme_class = {
119 	.name = "nvme",
120 	.dev_uevent = nvme_class_uevent,
121 };
122 
123 static const struct class nvme_subsys_class = {
124 	.name = "nvme-subsystem",
125 };
126 
127 static DEFINE_IDA(nvme_ns_chr_minor_ida);
128 static dev_t nvme_ns_chr_devt;
129 static const struct class nvme_ns_chr_class = {
130 	.name = "nvme-generic",
131 };
132 
133 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
135 					   unsigned nsid);
136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
137 				   struct nvme_command *cmd);
138 
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141 	/*
142 	 * Only new queue scan work when admin and IO queues are both alive
143 	 */
144 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
145 		queue_work(nvme_wq, &ctrl->scan_work);
146 }
147 
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
157 		return -EBUSY;
158 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 		return -EBUSY;
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163 
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 			struct nvme_ctrl, failfast_work);
168 
169 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
170 		return;
171 
172 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 	dev_info(ctrl->device, "failfast expired\n");
174 	nvme_kick_requeue_lists(ctrl);
175 }
176 
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 		return;
181 
182 	schedule_delayed_work(&ctrl->failfast_work,
183 			      ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185 
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188 	if (!ctrl->opts)
189 		return;
190 
191 	cancel_delayed_work_sync(&ctrl->failfast_work);
192 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194 
195 
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205 
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	int ret;
209 
210 	ret = nvme_reset_ctrl(ctrl);
211 	if (!ret) {
212 		flush_work(&ctrl->reset_work);
213 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
214 			ret = -ENETRESET;
215 	}
216 
217 	return ret;
218 }
219 
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	dev_info(ctrl->device,
223 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
224 
225 	flush_work(&ctrl->reset_work);
226 	nvme_stop_ctrl(ctrl);
227 	nvme_remove_namespaces(ctrl);
228 	ctrl->ops->delete_ctrl(ctrl);
229 	nvme_uninit_ctrl(ctrl);
230 }
231 
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234 	struct nvme_ctrl *ctrl =
235 		container_of(work, struct nvme_ctrl, delete_work);
236 
237 	nvme_do_delete_ctrl(ctrl);
238 }
239 
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 		return -EBUSY;
244 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245 		return -EBUSY;
246 	return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249 
250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252 	/*
253 	 * Keep a reference until nvme_do_delete_ctrl() complete,
254 	 * since ->delete_ctrl can free the controller.
255 	 */
256 	nvme_get_ctrl(ctrl);
257 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		nvme_do_delete_ctrl(ctrl);
259 	nvme_put_ctrl(ctrl);
260 }
261 
262 static blk_status_t nvme_error_status(u16 status)
263 {
264 	switch (status & 0x7ff) {
265 	case NVME_SC_SUCCESS:
266 		return BLK_STS_OK;
267 	case NVME_SC_CAP_EXCEEDED:
268 		return BLK_STS_NOSPC;
269 	case NVME_SC_LBA_RANGE:
270 	case NVME_SC_CMD_INTERRUPTED:
271 	case NVME_SC_NS_NOT_READY:
272 		return BLK_STS_TARGET;
273 	case NVME_SC_BAD_ATTRIBUTES:
274 	case NVME_SC_ONCS_NOT_SUPPORTED:
275 	case NVME_SC_INVALID_OPCODE:
276 	case NVME_SC_INVALID_FIELD:
277 	case NVME_SC_INVALID_NS:
278 		return BLK_STS_NOTSUPP;
279 	case NVME_SC_WRITE_FAULT:
280 	case NVME_SC_READ_ERROR:
281 	case NVME_SC_UNWRITTEN_BLOCK:
282 	case NVME_SC_ACCESS_DENIED:
283 	case NVME_SC_READ_ONLY:
284 	case NVME_SC_COMPARE_FAILED:
285 		return BLK_STS_MEDIUM;
286 	case NVME_SC_GUARD_CHECK:
287 	case NVME_SC_APPTAG_CHECK:
288 	case NVME_SC_REFTAG_CHECK:
289 	case NVME_SC_INVALID_PI:
290 		return BLK_STS_PROTECTION;
291 	case NVME_SC_RESERVATION_CONFLICT:
292 		return BLK_STS_RESV_CONFLICT;
293 	case NVME_SC_HOST_PATH_ERROR:
294 		return BLK_STS_TRANSPORT;
295 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 	case NVME_SC_ZONE_TOO_MANY_OPEN:
298 		return BLK_STS_ZONE_OPEN_RESOURCE;
299 	default:
300 		return BLK_STS_IOERR;
301 	}
302 }
303 
304 static void nvme_retry_req(struct request *req)
305 {
306 	unsigned long delay = 0;
307 	u16 crd;
308 
309 	/* The mask and shift result must be <= 3 */
310 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311 	if (crd)
312 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313 
314 	nvme_req(req)->retries++;
315 	blk_mq_requeue_request(req, false);
316 	blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318 
319 static void nvme_log_error(struct request *req)
320 {
321 	struct nvme_ns *ns = req->q->queuedata;
322 	struct nvme_request *nr = nvme_req(req);
323 
324 	if (ns) {
325 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
326 		       ns->disk ? ns->disk->disk_name : "?",
327 		       nvme_get_opcode_str(nr->cmd->common.opcode),
328 		       nr->cmd->common.opcode,
329 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
330 		       blk_rq_bytes(req) >> ns->head->lba_shift,
331 		       nvme_get_error_status_str(nr->status),
332 		       nr->status >> 8 & 7,	/* Status Code Type */
333 		       nr->status & 0xff,	/* Status Code */
334 		       nr->status & NVME_SC_MORE ? "MORE " : "",
335 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
336 		return;
337 	}
338 
339 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
340 			   dev_name(nr->ctrl->device),
341 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
342 			   nr->cmd->common.opcode,
343 			   nvme_get_error_status_str(nr->status),
344 			   nr->status >> 8 & 7,	/* Status Code Type */
345 			   nr->status & 0xff,	/* Status Code */
346 			   nr->status & NVME_SC_MORE ? "MORE " : "",
347 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
348 }
349 
350 static void nvme_log_err_passthru(struct request *req)
351 {
352 	struct nvme_ns *ns = req->q->queuedata;
353 	struct nvme_request *nr = nvme_req(req);
354 
355 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
356 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
357 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
358 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
359 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 		nr->cmd->common.opcode,
361 		nvme_get_error_status_str(nr->status),
362 		nr->status >> 8 & 7,	/* Status Code Type */
363 		nr->status & 0xff,	/* Status Code */
364 		nr->status & NVME_SC_MORE ? "MORE " : "",
365 		nr->status & NVME_SC_DNR  ? "DNR "  : "",
366 		nr->cmd->common.cdw10,
367 		nr->cmd->common.cdw11,
368 		nr->cmd->common.cdw12,
369 		nr->cmd->common.cdw13,
370 		nr->cmd->common.cdw14,
371 		nr->cmd->common.cdw14);
372 }
373 
374 enum nvme_disposition {
375 	COMPLETE,
376 	RETRY,
377 	FAILOVER,
378 	AUTHENTICATE,
379 };
380 
381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
382 {
383 	if (likely(nvme_req(req)->status == 0))
384 		return COMPLETE;
385 
386 	if (blk_noretry_request(req) ||
387 	    (nvme_req(req)->status & NVME_SC_DNR) ||
388 	    nvme_req(req)->retries >= nvme_max_retries)
389 		return COMPLETE;
390 
391 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
392 		return AUTHENTICATE;
393 
394 	if (req->cmd_flags & REQ_NVME_MPATH) {
395 		if (nvme_is_path_error(nvme_req(req)->status) ||
396 		    blk_queue_dying(req->q))
397 			return FAILOVER;
398 	} else {
399 		if (blk_queue_dying(req->q))
400 			return COMPLETE;
401 	}
402 
403 	return RETRY;
404 }
405 
406 static inline void nvme_end_req_zoned(struct request *req)
407 {
408 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
409 	    req_op(req) == REQ_OP_ZONE_APPEND) {
410 		struct nvme_ns *ns = req->q->queuedata;
411 
412 		req->__sector = nvme_lba_to_sect(ns->head,
413 			le64_to_cpu(nvme_req(req)->result.u64));
414 	}
415 }
416 
417 static inline void __nvme_end_req(struct request *req)
418 {
419 	nvme_end_req_zoned(req);
420 	nvme_trace_bio_complete(req);
421 	if (req->cmd_flags & REQ_NVME_MPATH)
422 		nvme_mpath_end_request(req);
423 }
424 
425 void nvme_end_req(struct request *req)
426 {
427 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
428 
429 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
430 		if (blk_rq_is_passthrough(req))
431 			nvme_log_err_passthru(req);
432 		else
433 			nvme_log_error(req);
434 	}
435 	__nvme_end_req(req);
436 	blk_mq_end_request(req, status);
437 }
438 
439 void nvme_complete_rq(struct request *req)
440 {
441 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
442 
443 	trace_nvme_complete_rq(req);
444 	nvme_cleanup_cmd(req);
445 
446 	/*
447 	 * Completions of long-running commands should not be able to
448 	 * defer sending of periodic keep alives, since the controller
449 	 * may have completed processing such commands a long time ago
450 	 * (arbitrarily close to command submission time).
451 	 * req->deadline - req->timeout is the command submission time
452 	 * in jiffies.
453 	 */
454 	if (ctrl->kas &&
455 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
456 		ctrl->comp_seen = true;
457 
458 	switch (nvme_decide_disposition(req)) {
459 	case COMPLETE:
460 		nvme_end_req(req);
461 		return;
462 	case RETRY:
463 		nvme_retry_req(req);
464 		return;
465 	case FAILOVER:
466 		nvme_failover_req(req);
467 		return;
468 	case AUTHENTICATE:
469 #ifdef CONFIG_NVME_HOST_AUTH
470 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
471 		nvme_retry_req(req);
472 #else
473 		nvme_end_req(req);
474 #endif
475 		return;
476 	}
477 }
478 EXPORT_SYMBOL_GPL(nvme_complete_rq);
479 
480 void nvme_complete_batch_req(struct request *req)
481 {
482 	trace_nvme_complete_rq(req);
483 	nvme_cleanup_cmd(req);
484 	__nvme_end_req(req);
485 }
486 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
487 
488 /*
489  * Called to unwind from ->queue_rq on a failed command submission so that the
490  * multipathing code gets called to potentially failover to another path.
491  * The caller needs to unwind all transport specific resource allocations and
492  * must return propagate the return value.
493  */
494 blk_status_t nvme_host_path_error(struct request *req)
495 {
496 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
497 	blk_mq_set_request_complete(req);
498 	nvme_complete_rq(req);
499 	return BLK_STS_OK;
500 }
501 EXPORT_SYMBOL_GPL(nvme_host_path_error);
502 
503 bool nvme_cancel_request(struct request *req, void *data)
504 {
505 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
506 				"Cancelling I/O %d", req->tag);
507 
508 	/* don't abort one completed or idle request */
509 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
510 		return true;
511 
512 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
513 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
514 	blk_mq_complete_request(req);
515 	return true;
516 }
517 EXPORT_SYMBOL_GPL(nvme_cancel_request);
518 
519 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
520 {
521 	if (ctrl->tagset) {
522 		blk_mq_tagset_busy_iter(ctrl->tagset,
523 				nvme_cancel_request, ctrl);
524 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
525 	}
526 }
527 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
528 
529 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
530 {
531 	if (ctrl->admin_tagset) {
532 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
533 				nvme_cancel_request, ctrl);
534 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
535 	}
536 }
537 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
538 
539 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
540 		enum nvme_ctrl_state new_state)
541 {
542 	enum nvme_ctrl_state old_state;
543 	unsigned long flags;
544 	bool changed = false;
545 
546 	spin_lock_irqsave(&ctrl->lock, flags);
547 
548 	old_state = nvme_ctrl_state(ctrl);
549 	switch (new_state) {
550 	case NVME_CTRL_LIVE:
551 		switch (old_state) {
552 		case NVME_CTRL_NEW:
553 		case NVME_CTRL_RESETTING:
554 		case NVME_CTRL_CONNECTING:
555 			changed = true;
556 			fallthrough;
557 		default:
558 			break;
559 		}
560 		break;
561 	case NVME_CTRL_RESETTING:
562 		switch (old_state) {
563 		case NVME_CTRL_NEW:
564 		case NVME_CTRL_LIVE:
565 			changed = true;
566 			fallthrough;
567 		default:
568 			break;
569 		}
570 		break;
571 	case NVME_CTRL_CONNECTING:
572 		switch (old_state) {
573 		case NVME_CTRL_NEW:
574 		case NVME_CTRL_RESETTING:
575 			changed = true;
576 			fallthrough;
577 		default:
578 			break;
579 		}
580 		break;
581 	case NVME_CTRL_DELETING:
582 		switch (old_state) {
583 		case NVME_CTRL_LIVE:
584 		case NVME_CTRL_RESETTING:
585 		case NVME_CTRL_CONNECTING:
586 			changed = true;
587 			fallthrough;
588 		default:
589 			break;
590 		}
591 		break;
592 	case NVME_CTRL_DELETING_NOIO:
593 		switch (old_state) {
594 		case NVME_CTRL_DELETING:
595 		case NVME_CTRL_DEAD:
596 			changed = true;
597 			fallthrough;
598 		default:
599 			break;
600 		}
601 		break;
602 	case NVME_CTRL_DEAD:
603 		switch (old_state) {
604 		case NVME_CTRL_DELETING:
605 			changed = true;
606 			fallthrough;
607 		default:
608 			break;
609 		}
610 		break;
611 	default:
612 		break;
613 	}
614 
615 	if (changed) {
616 		WRITE_ONCE(ctrl->state, new_state);
617 		wake_up_all(&ctrl->state_wq);
618 	}
619 
620 	spin_unlock_irqrestore(&ctrl->lock, flags);
621 	if (!changed)
622 		return false;
623 
624 	if (new_state == NVME_CTRL_LIVE) {
625 		if (old_state == NVME_CTRL_CONNECTING)
626 			nvme_stop_failfast_work(ctrl);
627 		nvme_kick_requeue_lists(ctrl);
628 	} else if (new_state == NVME_CTRL_CONNECTING &&
629 		old_state == NVME_CTRL_RESETTING) {
630 		nvme_start_failfast_work(ctrl);
631 	}
632 	return changed;
633 }
634 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
635 
636 /*
637  * Waits for the controller state to be resetting, or returns false if it is
638  * not possible to ever transition to that state.
639  */
640 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
641 {
642 	wait_event(ctrl->state_wq,
643 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
644 		   nvme_state_terminal(ctrl));
645 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
646 }
647 EXPORT_SYMBOL_GPL(nvme_wait_reset);
648 
649 static void nvme_free_ns_head(struct kref *ref)
650 {
651 	struct nvme_ns_head *head =
652 		container_of(ref, struct nvme_ns_head, ref);
653 
654 	nvme_mpath_remove_disk(head);
655 	ida_free(&head->subsys->ns_ida, head->instance);
656 	cleanup_srcu_struct(&head->srcu);
657 	nvme_put_subsystem(head->subsys);
658 	kfree(head);
659 }
660 
661 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
662 {
663 	return kref_get_unless_zero(&head->ref);
664 }
665 
666 void nvme_put_ns_head(struct nvme_ns_head *head)
667 {
668 	kref_put(&head->ref, nvme_free_ns_head);
669 }
670 
671 static void nvme_free_ns(struct kref *kref)
672 {
673 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
674 
675 	put_disk(ns->disk);
676 	nvme_put_ns_head(ns->head);
677 	nvme_put_ctrl(ns->ctrl);
678 	kfree(ns);
679 }
680 
681 bool nvme_get_ns(struct nvme_ns *ns)
682 {
683 	return kref_get_unless_zero(&ns->kref);
684 }
685 
686 void nvme_put_ns(struct nvme_ns *ns)
687 {
688 	kref_put(&ns->kref, nvme_free_ns);
689 }
690 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
691 
692 static inline void nvme_clear_nvme_request(struct request *req)
693 {
694 	nvme_req(req)->status = 0;
695 	nvme_req(req)->retries = 0;
696 	nvme_req(req)->flags = 0;
697 	req->rq_flags |= RQF_DONTPREP;
698 }
699 
700 /* initialize a passthrough request */
701 void nvme_init_request(struct request *req, struct nvme_command *cmd)
702 {
703 	struct nvme_request *nr = nvme_req(req);
704 	bool logging_enabled;
705 
706 	if (req->q->queuedata) {
707 		struct nvme_ns *ns = req->q->disk->private_data;
708 
709 		logging_enabled = ns->head->passthru_err_log_enabled;
710 		req->timeout = NVME_IO_TIMEOUT;
711 	} else { /* no queuedata implies admin queue */
712 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
713 		req->timeout = NVME_ADMIN_TIMEOUT;
714 	}
715 
716 	if (!logging_enabled)
717 		req->rq_flags |= RQF_QUIET;
718 
719 	/* passthru commands should let the driver set the SGL flags */
720 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
721 
722 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
723 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
724 		req->cmd_flags |= REQ_POLLED;
725 	nvme_clear_nvme_request(req);
726 	memcpy(nr->cmd, cmd, sizeof(*cmd));
727 }
728 EXPORT_SYMBOL_GPL(nvme_init_request);
729 
730 /*
731  * For something we're not in a state to send to the device the default action
732  * is to busy it and retry it after the controller state is recovered.  However,
733  * if the controller is deleting or if anything is marked for failfast or
734  * nvme multipath it is immediately failed.
735  *
736  * Note: commands used to initialize the controller will be marked for failfast.
737  * Note: nvme cli/ioctl commands are marked for failfast.
738  */
739 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
740 		struct request *rq)
741 {
742 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
743 
744 	if (state != NVME_CTRL_DELETING_NOIO &&
745 	    state != NVME_CTRL_DELETING &&
746 	    state != NVME_CTRL_DEAD &&
747 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
748 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
749 		return BLK_STS_RESOURCE;
750 	return nvme_host_path_error(rq);
751 }
752 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
753 
754 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
755 		bool queue_live, enum nvme_ctrl_state state)
756 {
757 	struct nvme_request *req = nvme_req(rq);
758 
759 	/*
760 	 * currently we have a problem sending passthru commands
761 	 * on the admin_q if the controller is not LIVE because we can't
762 	 * make sure that they are going out after the admin connect,
763 	 * controller enable and/or other commands in the initialization
764 	 * sequence. until the controller will be LIVE, fail with
765 	 * BLK_STS_RESOURCE so that they will be rescheduled.
766 	 */
767 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
768 		return false;
769 
770 	if (ctrl->ops->flags & NVME_F_FABRICS) {
771 		/*
772 		 * Only allow commands on a live queue, except for the connect
773 		 * command, which is require to set the queue live in the
774 		 * appropinquate states.
775 		 */
776 		switch (state) {
777 		case NVME_CTRL_CONNECTING:
778 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
779 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
780 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
781 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
782 				return true;
783 			break;
784 		default:
785 			break;
786 		case NVME_CTRL_DEAD:
787 			return false;
788 		}
789 	}
790 
791 	return queue_live;
792 }
793 EXPORT_SYMBOL_GPL(__nvme_check_ready);
794 
795 static inline void nvme_setup_flush(struct nvme_ns *ns,
796 		struct nvme_command *cmnd)
797 {
798 	memset(cmnd, 0, sizeof(*cmnd));
799 	cmnd->common.opcode = nvme_cmd_flush;
800 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
801 }
802 
803 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
804 		struct nvme_command *cmnd)
805 {
806 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
807 	struct nvme_dsm_range *range;
808 	struct bio *bio;
809 
810 	/*
811 	 * Some devices do not consider the DSM 'Number of Ranges' field when
812 	 * determining how much data to DMA. Always allocate memory for maximum
813 	 * number of segments to prevent device reading beyond end of buffer.
814 	 */
815 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
816 
817 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
818 	if (!range) {
819 		/*
820 		 * If we fail allocation our range, fallback to the controller
821 		 * discard page. If that's also busy, it's safe to return
822 		 * busy, as we know we can make progress once that's freed.
823 		 */
824 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
825 			return BLK_STS_RESOURCE;
826 
827 		range = page_address(ns->ctrl->discard_page);
828 	}
829 
830 	if (queue_max_discard_segments(req->q) == 1) {
831 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
832 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
833 
834 		range[0].cattr = cpu_to_le32(0);
835 		range[0].nlb = cpu_to_le32(nlb);
836 		range[0].slba = cpu_to_le64(slba);
837 		n = 1;
838 	} else {
839 		__rq_for_each_bio(bio, req) {
840 			u64 slba = nvme_sect_to_lba(ns->head,
841 						    bio->bi_iter.bi_sector);
842 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
843 
844 			if (n < segments) {
845 				range[n].cattr = cpu_to_le32(0);
846 				range[n].nlb = cpu_to_le32(nlb);
847 				range[n].slba = cpu_to_le64(slba);
848 			}
849 			n++;
850 		}
851 	}
852 
853 	if (WARN_ON_ONCE(n != segments)) {
854 		if (virt_to_page(range) == ns->ctrl->discard_page)
855 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
856 		else
857 			kfree(range);
858 		return BLK_STS_IOERR;
859 	}
860 
861 	memset(cmnd, 0, sizeof(*cmnd));
862 	cmnd->dsm.opcode = nvme_cmd_dsm;
863 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
864 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
865 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
866 
867 	bvec_set_virt(&req->special_vec, range, alloc_size);
868 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
869 
870 	return BLK_STS_OK;
871 }
872 
873 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
874 			      struct request *req)
875 {
876 	u32 upper, lower;
877 	u64 ref48;
878 
879 	/* both rw and write zeroes share the same reftag format */
880 	switch (ns->head->guard_type) {
881 	case NVME_NVM_NS_16B_GUARD:
882 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
883 		break;
884 	case NVME_NVM_NS_64B_GUARD:
885 		ref48 = ext_pi_ref_tag(req);
886 		lower = lower_32_bits(ref48);
887 		upper = upper_32_bits(ref48);
888 
889 		cmnd->rw.reftag = cpu_to_le32(lower);
890 		cmnd->rw.cdw3 = cpu_to_le32(upper);
891 		break;
892 	default:
893 		break;
894 	}
895 }
896 
897 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
898 		struct request *req, struct nvme_command *cmnd)
899 {
900 	memset(cmnd, 0, sizeof(*cmnd));
901 
902 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
903 		return nvme_setup_discard(ns, req, cmnd);
904 
905 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
906 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
907 	cmnd->write_zeroes.slba =
908 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
909 	cmnd->write_zeroes.length =
910 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
911 
912 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
913 	    (ns->head->features & NVME_NS_DEAC))
914 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
915 
916 	if (nvme_ns_has_pi(ns->head)) {
917 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
918 
919 		switch (ns->head->pi_type) {
920 		case NVME_NS_DPS_PI_TYPE1:
921 		case NVME_NS_DPS_PI_TYPE2:
922 			nvme_set_ref_tag(ns, cmnd, req);
923 			break;
924 		}
925 	}
926 
927 	return BLK_STS_OK;
928 }
929 
930 /*
931  * NVMe does not support a dedicated command to issue an atomic write. A write
932  * which does adhere to the device atomic limits will silently be executed
933  * non-atomically. The request issuer should ensure that the write is within
934  * the queue atomic writes limits, but just validate this in case it is not.
935  */
936 static bool nvme_valid_atomic_write(struct request *req)
937 {
938 	struct request_queue *q = req->q;
939 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
940 
941 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
942 		return false;
943 
944 	if (boundary_bytes) {
945 		u64 mask = boundary_bytes - 1, imask = ~mask;
946 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
947 		u64 end = start + blk_rq_bytes(req) - 1;
948 
949 		/* If greater then must be crossing a boundary */
950 		if (blk_rq_bytes(req) > boundary_bytes)
951 			return false;
952 
953 		if ((start & imask) != (end & imask))
954 			return false;
955 	}
956 
957 	return true;
958 }
959 
960 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
961 		struct request *req, struct nvme_command *cmnd,
962 		enum nvme_opcode op)
963 {
964 	u16 control = 0;
965 	u32 dsmgmt = 0;
966 
967 	if (req->cmd_flags & REQ_FUA)
968 		control |= NVME_RW_FUA;
969 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
970 		control |= NVME_RW_LR;
971 
972 	if (req->cmd_flags & REQ_RAHEAD)
973 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
974 
975 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
976 		return BLK_STS_INVAL;
977 
978 	cmnd->rw.opcode = op;
979 	cmnd->rw.flags = 0;
980 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
981 	cmnd->rw.cdw2 = 0;
982 	cmnd->rw.cdw3 = 0;
983 	cmnd->rw.metadata = 0;
984 	cmnd->rw.slba =
985 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
986 	cmnd->rw.length =
987 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
988 	cmnd->rw.reftag = 0;
989 	cmnd->rw.apptag = 0;
990 	cmnd->rw.appmask = 0;
991 
992 	if (ns->head->ms) {
993 		/*
994 		 * If formated with metadata, the block layer always provides a
995 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
996 		 * we enable the PRACT bit for protection information or set the
997 		 * namespace capacity to zero to prevent any I/O.
998 		 */
999 		if (!blk_integrity_rq(req)) {
1000 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1001 				return BLK_STS_NOTSUPP;
1002 			control |= NVME_RW_PRINFO_PRACT;
1003 		}
1004 
1005 		switch (ns->head->pi_type) {
1006 		case NVME_NS_DPS_PI_TYPE3:
1007 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1008 			break;
1009 		case NVME_NS_DPS_PI_TYPE1:
1010 		case NVME_NS_DPS_PI_TYPE2:
1011 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
1012 					NVME_RW_PRINFO_PRCHK_REF;
1013 			if (op == nvme_cmd_zone_append)
1014 				control |= NVME_RW_APPEND_PIREMAP;
1015 			nvme_set_ref_tag(ns, cmnd, req);
1016 			break;
1017 		}
1018 	}
1019 
1020 	cmnd->rw.control = cpu_to_le16(control);
1021 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1022 	return 0;
1023 }
1024 
1025 void nvme_cleanup_cmd(struct request *req)
1026 {
1027 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1028 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1029 
1030 		if (req->special_vec.bv_page == ctrl->discard_page)
1031 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1032 		else
1033 			kfree(bvec_virt(&req->special_vec));
1034 	}
1035 }
1036 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1037 
1038 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1039 {
1040 	struct nvme_command *cmd = nvme_req(req)->cmd;
1041 	blk_status_t ret = BLK_STS_OK;
1042 
1043 	if (!(req->rq_flags & RQF_DONTPREP))
1044 		nvme_clear_nvme_request(req);
1045 
1046 	switch (req_op(req)) {
1047 	case REQ_OP_DRV_IN:
1048 	case REQ_OP_DRV_OUT:
1049 		/* these are setup prior to execution in nvme_init_request() */
1050 		break;
1051 	case REQ_OP_FLUSH:
1052 		nvme_setup_flush(ns, cmd);
1053 		break;
1054 	case REQ_OP_ZONE_RESET_ALL:
1055 	case REQ_OP_ZONE_RESET:
1056 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1057 		break;
1058 	case REQ_OP_ZONE_OPEN:
1059 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1060 		break;
1061 	case REQ_OP_ZONE_CLOSE:
1062 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1063 		break;
1064 	case REQ_OP_ZONE_FINISH:
1065 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1066 		break;
1067 	case REQ_OP_WRITE_ZEROES:
1068 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1069 		break;
1070 	case REQ_OP_DISCARD:
1071 		ret = nvme_setup_discard(ns, req, cmd);
1072 		break;
1073 	case REQ_OP_READ:
1074 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1075 		break;
1076 	case REQ_OP_WRITE:
1077 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1078 		break;
1079 	case REQ_OP_ZONE_APPEND:
1080 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1081 		break;
1082 	default:
1083 		WARN_ON_ONCE(1);
1084 		return BLK_STS_IOERR;
1085 	}
1086 
1087 	cmd->common.command_id = nvme_cid(req);
1088 	trace_nvme_setup_cmd(req, cmd);
1089 	return ret;
1090 }
1091 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1092 
1093 /*
1094  * Return values:
1095  * 0:  success
1096  * >0: nvme controller's cqe status response
1097  * <0: kernel error in lieu of controller response
1098  */
1099 int nvme_execute_rq(struct request *rq, bool at_head)
1100 {
1101 	blk_status_t status;
1102 
1103 	status = blk_execute_rq(rq, at_head);
1104 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1105 		return -EINTR;
1106 	if (nvme_req(rq)->status)
1107 		return nvme_req(rq)->status;
1108 	return blk_status_to_errno(status);
1109 }
1110 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1111 
1112 /*
1113  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1114  * if the result is positive, it's an NVM Express status code
1115  */
1116 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1117 		union nvme_result *result, void *buffer, unsigned bufflen,
1118 		int qid, nvme_submit_flags_t flags)
1119 {
1120 	struct request *req;
1121 	int ret;
1122 	blk_mq_req_flags_t blk_flags = 0;
1123 
1124 	if (flags & NVME_SUBMIT_NOWAIT)
1125 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1126 	if (flags & NVME_SUBMIT_RESERVED)
1127 		blk_flags |= BLK_MQ_REQ_RESERVED;
1128 	if (qid == NVME_QID_ANY)
1129 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1130 	else
1131 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1132 						qid - 1);
1133 
1134 	if (IS_ERR(req))
1135 		return PTR_ERR(req);
1136 	nvme_init_request(req, cmd);
1137 	if (flags & NVME_SUBMIT_RETRY)
1138 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1139 
1140 	if (buffer && bufflen) {
1141 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1142 		if (ret)
1143 			goto out;
1144 	}
1145 
1146 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1147 	if (result && ret >= 0)
1148 		*result = nvme_req(req)->result;
1149  out:
1150 	blk_mq_free_request(req);
1151 	return ret;
1152 }
1153 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1154 
1155 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1156 		void *buffer, unsigned bufflen)
1157 {
1158 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1159 			NVME_QID_ANY, 0);
1160 }
1161 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1162 
1163 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1164 {
1165 	u32 effects = 0;
1166 
1167 	if (ns) {
1168 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1169 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1170 			dev_warn_once(ctrl->device,
1171 				"IO command:%02x has unusual effects:%08x\n",
1172 				opcode, effects);
1173 
1174 		/*
1175 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1176 		 * which would deadlock when done on an I/O command.  Note that
1177 		 * We already warn about an unusual effect above.
1178 		 */
1179 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1180 	} else {
1181 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1182 
1183 		/* Ignore execution restrictions if any relaxation bits are set */
1184 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1185 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1186 	}
1187 
1188 	return effects;
1189 }
1190 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1191 
1192 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1193 {
1194 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1195 
1196 	/*
1197 	 * For simplicity, IO to all namespaces is quiesced even if the command
1198 	 * effects say only one namespace is affected.
1199 	 */
1200 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1201 		mutex_lock(&ctrl->scan_lock);
1202 		mutex_lock(&ctrl->subsys->lock);
1203 		nvme_mpath_start_freeze(ctrl->subsys);
1204 		nvme_mpath_wait_freeze(ctrl->subsys);
1205 		nvme_start_freeze(ctrl);
1206 		nvme_wait_freeze(ctrl);
1207 	}
1208 	return effects;
1209 }
1210 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1211 
1212 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1213 		       struct nvme_command *cmd, int status)
1214 {
1215 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1216 		nvme_unfreeze(ctrl);
1217 		nvme_mpath_unfreeze(ctrl->subsys);
1218 		mutex_unlock(&ctrl->subsys->lock);
1219 		mutex_unlock(&ctrl->scan_lock);
1220 	}
1221 	if (effects & NVME_CMD_EFFECTS_CCC) {
1222 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1223 				      &ctrl->flags)) {
1224 			dev_info(ctrl->device,
1225 "controller capabilities changed, reset may be required to take effect.\n");
1226 		}
1227 	}
1228 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1229 		nvme_queue_scan(ctrl);
1230 		flush_work(&ctrl->scan_work);
1231 	}
1232 	if (ns)
1233 		return;
1234 
1235 	switch (cmd->common.opcode) {
1236 	case nvme_admin_set_features:
1237 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1238 		case NVME_FEAT_KATO:
1239 			/*
1240 			 * Keep alive commands interval on the host should be
1241 			 * updated when KATO is modified by Set Features
1242 			 * commands.
1243 			 */
1244 			if (!status)
1245 				nvme_update_keep_alive(ctrl, cmd);
1246 			break;
1247 		default:
1248 			break;
1249 		}
1250 		break;
1251 	default:
1252 		break;
1253 	}
1254 }
1255 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1256 
1257 /*
1258  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1259  *
1260  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1261  *   accounting for transport roundtrip times [..].
1262  */
1263 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1264 {
1265 	unsigned long delay = ctrl->kato * HZ / 2;
1266 
1267 	/*
1268 	 * When using Traffic Based Keep Alive, we need to run
1269 	 * nvme_keep_alive_work at twice the normal frequency, as one
1270 	 * command completion can postpone sending a keep alive command
1271 	 * by up to twice the delay between runs.
1272 	 */
1273 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1274 		delay /= 2;
1275 	return delay;
1276 }
1277 
1278 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1279 {
1280 	unsigned long now = jiffies;
1281 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1282 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1283 
1284 	if (time_after(now, ka_next_check_tm))
1285 		delay = 0;
1286 	else
1287 		delay = ka_next_check_tm - now;
1288 
1289 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1290 }
1291 
1292 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1293 						 blk_status_t status)
1294 {
1295 	struct nvme_ctrl *ctrl = rq->end_io_data;
1296 	unsigned long flags;
1297 	bool startka = false;
1298 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1299 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1300 
1301 	/*
1302 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1303 	 * at the desired frequency.
1304 	 */
1305 	if (rtt <= delay) {
1306 		delay -= rtt;
1307 	} else {
1308 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1309 			 jiffies_to_msecs(rtt));
1310 		delay = 0;
1311 	}
1312 
1313 	blk_mq_free_request(rq);
1314 
1315 	if (status) {
1316 		dev_err(ctrl->device,
1317 			"failed nvme_keep_alive_end_io error=%d\n",
1318 				status);
1319 		return RQ_END_IO_NONE;
1320 	}
1321 
1322 	ctrl->ka_last_check_time = jiffies;
1323 	ctrl->comp_seen = false;
1324 	spin_lock_irqsave(&ctrl->lock, flags);
1325 	if (ctrl->state == NVME_CTRL_LIVE ||
1326 	    ctrl->state == NVME_CTRL_CONNECTING)
1327 		startka = true;
1328 	spin_unlock_irqrestore(&ctrl->lock, flags);
1329 	if (startka)
1330 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1331 	return RQ_END_IO_NONE;
1332 }
1333 
1334 static void nvme_keep_alive_work(struct work_struct *work)
1335 {
1336 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1337 			struct nvme_ctrl, ka_work);
1338 	bool comp_seen = ctrl->comp_seen;
1339 	struct request *rq;
1340 
1341 	ctrl->ka_last_check_time = jiffies;
1342 
1343 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1344 		dev_dbg(ctrl->device,
1345 			"reschedule traffic based keep-alive timer\n");
1346 		ctrl->comp_seen = false;
1347 		nvme_queue_keep_alive_work(ctrl);
1348 		return;
1349 	}
1350 
1351 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1352 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1353 	if (IS_ERR(rq)) {
1354 		/* allocation failure, reset the controller */
1355 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1356 		nvme_reset_ctrl(ctrl);
1357 		return;
1358 	}
1359 	nvme_init_request(rq, &ctrl->ka_cmd);
1360 
1361 	rq->timeout = ctrl->kato * HZ;
1362 	rq->end_io = nvme_keep_alive_end_io;
1363 	rq->end_io_data = ctrl;
1364 	blk_execute_rq_nowait(rq, false);
1365 }
1366 
1367 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1368 {
1369 	if (unlikely(ctrl->kato == 0))
1370 		return;
1371 
1372 	nvme_queue_keep_alive_work(ctrl);
1373 }
1374 
1375 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1376 {
1377 	if (unlikely(ctrl->kato == 0))
1378 		return;
1379 
1380 	cancel_delayed_work_sync(&ctrl->ka_work);
1381 }
1382 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1383 
1384 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1385 				   struct nvme_command *cmd)
1386 {
1387 	unsigned int new_kato =
1388 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1389 
1390 	dev_info(ctrl->device,
1391 		 "keep alive interval updated from %u ms to %u ms\n",
1392 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1393 
1394 	nvme_stop_keep_alive(ctrl);
1395 	ctrl->kato = new_kato;
1396 	nvme_start_keep_alive(ctrl);
1397 }
1398 
1399 /*
1400  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1401  * flag, thus sending any new CNS opcodes has a big chance of not working.
1402  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1403  * (but not for any later version).
1404  */
1405 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1406 {
1407 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1408 		return ctrl->vs < NVME_VS(1, 2, 0);
1409 	return ctrl->vs < NVME_VS(1, 1, 0);
1410 }
1411 
1412 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1413 {
1414 	struct nvme_command c = { };
1415 	int error;
1416 
1417 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1418 	c.identify.opcode = nvme_admin_identify;
1419 	c.identify.cns = NVME_ID_CNS_CTRL;
1420 
1421 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1422 	if (!*id)
1423 		return -ENOMEM;
1424 
1425 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1426 			sizeof(struct nvme_id_ctrl));
1427 	if (error) {
1428 		kfree(*id);
1429 		*id = NULL;
1430 	}
1431 	return error;
1432 }
1433 
1434 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1435 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1436 {
1437 	const char *warn_str = "ctrl returned bogus length:";
1438 	void *data = cur;
1439 
1440 	switch (cur->nidt) {
1441 	case NVME_NIDT_EUI64:
1442 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1443 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1444 				 warn_str, cur->nidl);
1445 			return -1;
1446 		}
1447 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1448 			return NVME_NIDT_EUI64_LEN;
1449 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1450 		return NVME_NIDT_EUI64_LEN;
1451 	case NVME_NIDT_NGUID:
1452 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1453 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1454 				 warn_str, cur->nidl);
1455 			return -1;
1456 		}
1457 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1458 			return NVME_NIDT_NGUID_LEN;
1459 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1460 		return NVME_NIDT_NGUID_LEN;
1461 	case NVME_NIDT_UUID:
1462 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1463 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1464 				 warn_str, cur->nidl);
1465 			return -1;
1466 		}
1467 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1468 			return NVME_NIDT_UUID_LEN;
1469 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1470 		return NVME_NIDT_UUID_LEN;
1471 	case NVME_NIDT_CSI:
1472 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1473 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1474 				 warn_str, cur->nidl);
1475 			return -1;
1476 		}
1477 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1478 		*csi_seen = true;
1479 		return NVME_NIDT_CSI_LEN;
1480 	default:
1481 		/* Skip unknown types */
1482 		return cur->nidl;
1483 	}
1484 }
1485 
1486 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1487 		struct nvme_ns_info *info)
1488 {
1489 	struct nvme_command c = { };
1490 	bool csi_seen = false;
1491 	int status, pos, len;
1492 	void *data;
1493 
1494 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1495 		return 0;
1496 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1497 		return 0;
1498 
1499 	c.identify.opcode = nvme_admin_identify;
1500 	c.identify.nsid = cpu_to_le32(info->nsid);
1501 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1502 
1503 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1504 	if (!data)
1505 		return -ENOMEM;
1506 
1507 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1508 				      NVME_IDENTIFY_DATA_SIZE);
1509 	if (status) {
1510 		dev_warn(ctrl->device,
1511 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1512 			info->nsid, status);
1513 		goto free_data;
1514 	}
1515 
1516 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1517 		struct nvme_ns_id_desc *cur = data + pos;
1518 
1519 		if (cur->nidl == 0)
1520 			break;
1521 
1522 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1523 		if (len < 0)
1524 			break;
1525 
1526 		len += sizeof(*cur);
1527 	}
1528 
1529 	if (nvme_multi_css(ctrl) && !csi_seen) {
1530 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1531 			 info->nsid);
1532 		status = -EINVAL;
1533 	}
1534 
1535 free_data:
1536 	kfree(data);
1537 	return status;
1538 }
1539 
1540 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1541 			struct nvme_id_ns **id)
1542 {
1543 	struct nvme_command c = { };
1544 	int error;
1545 
1546 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1547 	c.identify.opcode = nvme_admin_identify;
1548 	c.identify.nsid = cpu_to_le32(nsid);
1549 	c.identify.cns = NVME_ID_CNS_NS;
1550 
1551 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1552 	if (!*id)
1553 		return -ENOMEM;
1554 
1555 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1556 	if (error) {
1557 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1558 		kfree(*id);
1559 		*id = NULL;
1560 	}
1561 	return error;
1562 }
1563 
1564 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1565 		struct nvme_ns_info *info)
1566 {
1567 	struct nvme_ns_ids *ids = &info->ids;
1568 	struct nvme_id_ns *id;
1569 	int ret;
1570 
1571 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1572 	if (ret)
1573 		return ret;
1574 
1575 	if (id->ncap == 0) {
1576 		/* namespace not allocated or attached */
1577 		info->is_removed = true;
1578 		ret = -ENODEV;
1579 		goto error;
1580 	}
1581 
1582 	info->anagrpid = id->anagrpid;
1583 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1584 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1585 	info->is_ready = true;
1586 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1587 		dev_info(ctrl->device,
1588 			 "Ignoring bogus Namespace Identifiers\n");
1589 	} else {
1590 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1591 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1592 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1593 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1594 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1595 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1596 	}
1597 
1598 error:
1599 	kfree(id);
1600 	return ret;
1601 }
1602 
1603 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1604 		struct nvme_ns_info *info)
1605 {
1606 	struct nvme_id_ns_cs_indep *id;
1607 	struct nvme_command c = {
1608 		.identify.opcode	= nvme_admin_identify,
1609 		.identify.nsid		= cpu_to_le32(info->nsid),
1610 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1611 	};
1612 	int ret;
1613 
1614 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1615 	if (!id)
1616 		return -ENOMEM;
1617 
1618 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1619 	if (!ret) {
1620 		info->anagrpid = id->anagrpid;
1621 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1622 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1623 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1624 	}
1625 	kfree(id);
1626 	return ret;
1627 }
1628 
1629 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1630 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1631 {
1632 	union nvme_result res = { 0 };
1633 	struct nvme_command c = { };
1634 	int ret;
1635 
1636 	c.features.opcode = op;
1637 	c.features.fid = cpu_to_le32(fid);
1638 	c.features.dword11 = cpu_to_le32(dword11);
1639 
1640 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1641 			buffer, buflen, NVME_QID_ANY, 0);
1642 	if (ret >= 0 && result)
1643 		*result = le32_to_cpu(res.u32);
1644 	return ret;
1645 }
1646 
1647 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1648 		      unsigned int dword11, void *buffer, size_t buflen,
1649 		      u32 *result)
1650 {
1651 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1652 			     buflen, result);
1653 }
1654 EXPORT_SYMBOL_GPL(nvme_set_features);
1655 
1656 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1657 		      unsigned int dword11, void *buffer, size_t buflen,
1658 		      u32 *result)
1659 {
1660 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1661 			     buflen, result);
1662 }
1663 EXPORT_SYMBOL_GPL(nvme_get_features);
1664 
1665 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1666 {
1667 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1668 	u32 result;
1669 	int status, nr_io_queues;
1670 
1671 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1672 			&result);
1673 	if (status < 0)
1674 		return status;
1675 
1676 	/*
1677 	 * Degraded controllers might return an error when setting the queue
1678 	 * count.  We still want to be able to bring them online and offer
1679 	 * access to the admin queue, as that might be only way to fix them up.
1680 	 */
1681 	if (status > 0) {
1682 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1683 		*count = 0;
1684 	} else {
1685 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1686 		*count = min(*count, nr_io_queues);
1687 	}
1688 
1689 	return 0;
1690 }
1691 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1692 
1693 #define NVME_AEN_SUPPORTED \
1694 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1695 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1696 
1697 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1698 {
1699 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1700 	int status;
1701 
1702 	if (!supported_aens)
1703 		return;
1704 
1705 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1706 			NULL, 0, &result);
1707 	if (status)
1708 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1709 			 supported_aens);
1710 
1711 	queue_work(nvme_wq, &ctrl->async_event_work);
1712 }
1713 
1714 static int nvme_ns_open(struct nvme_ns *ns)
1715 {
1716 
1717 	/* should never be called due to GENHD_FL_HIDDEN */
1718 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1719 		goto fail;
1720 	if (!nvme_get_ns(ns))
1721 		goto fail;
1722 	if (!try_module_get(ns->ctrl->ops->module))
1723 		goto fail_put_ns;
1724 
1725 	return 0;
1726 
1727 fail_put_ns:
1728 	nvme_put_ns(ns);
1729 fail:
1730 	return -ENXIO;
1731 }
1732 
1733 static void nvme_ns_release(struct nvme_ns *ns)
1734 {
1735 
1736 	module_put(ns->ctrl->ops->module);
1737 	nvme_put_ns(ns);
1738 }
1739 
1740 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1741 {
1742 	return nvme_ns_open(disk->private_data);
1743 }
1744 
1745 static void nvme_release(struct gendisk *disk)
1746 {
1747 	nvme_ns_release(disk->private_data);
1748 }
1749 
1750 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1751 {
1752 	/* some standard values */
1753 	geo->heads = 1 << 6;
1754 	geo->sectors = 1 << 5;
1755 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1756 	return 0;
1757 }
1758 
1759 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head,
1760 		struct queue_limits *lim)
1761 {
1762 	struct blk_integrity *bi = &lim->integrity;
1763 
1764 	memset(bi, 0, sizeof(*bi));
1765 
1766 	if (!head->ms)
1767 		return true;
1768 
1769 	/*
1770 	 * PI can always be supported as we can ask the controller to simply
1771 	 * insert/strip it, which is not possible for other kinds of metadata.
1772 	 */
1773 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1774 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1775 		return nvme_ns_has_pi(head);
1776 
1777 	switch (head->pi_type) {
1778 	case NVME_NS_DPS_PI_TYPE3:
1779 		switch (head->guard_type) {
1780 		case NVME_NVM_NS_16B_GUARD:
1781 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1782 			bi->tag_size = sizeof(u16) + sizeof(u32);
1783 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1784 			break;
1785 		case NVME_NVM_NS_64B_GUARD:
1786 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1787 			bi->tag_size = sizeof(u16) + 6;
1788 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1789 			break;
1790 		default:
1791 			break;
1792 		}
1793 		break;
1794 	case NVME_NS_DPS_PI_TYPE1:
1795 	case NVME_NS_DPS_PI_TYPE2:
1796 		switch (head->guard_type) {
1797 		case NVME_NVM_NS_16B_GUARD:
1798 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1799 			bi->tag_size = sizeof(u16);
1800 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1801 				     BLK_INTEGRITY_REF_TAG;
1802 			break;
1803 		case NVME_NVM_NS_64B_GUARD:
1804 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1805 			bi->tag_size = sizeof(u16);
1806 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1807 				     BLK_INTEGRITY_REF_TAG;
1808 			break;
1809 		default:
1810 			break;
1811 		}
1812 		break;
1813 	default:
1814 		break;
1815 	}
1816 
1817 	bi->tuple_size = head->ms;
1818 	bi->pi_offset = head->pi_offset;
1819 	return true;
1820 }
1821 
1822 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1823 {
1824 	struct nvme_ctrl *ctrl = ns->ctrl;
1825 
1826 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1827 		lim->max_hw_discard_sectors =
1828 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1829 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1830 		lim->max_hw_discard_sectors = UINT_MAX;
1831 	else
1832 		lim->max_hw_discard_sectors = 0;
1833 
1834 	lim->discard_granularity = lim->logical_block_size;
1835 
1836 	if (ctrl->dmrl)
1837 		lim->max_discard_segments = ctrl->dmrl;
1838 	else
1839 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1840 }
1841 
1842 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1843 {
1844 	return uuid_equal(&a->uuid, &b->uuid) &&
1845 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1846 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1847 		a->csi == b->csi;
1848 }
1849 
1850 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1851 		struct nvme_id_ns_nvm **nvmp)
1852 {
1853 	struct nvme_command c = {
1854 		.identify.opcode	= nvme_admin_identify,
1855 		.identify.nsid		= cpu_to_le32(nsid),
1856 		.identify.cns		= NVME_ID_CNS_CS_NS,
1857 		.identify.csi		= NVME_CSI_NVM,
1858 	};
1859 	struct nvme_id_ns_nvm *nvm;
1860 	int ret;
1861 
1862 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1863 	if (!nvm)
1864 		return -ENOMEM;
1865 
1866 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1867 	if (ret)
1868 		kfree(nvm);
1869 	else
1870 		*nvmp = nvm;
1871 	return ret;
1872 }
1873 
1874 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1875 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1876 {
1877 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1878 
1879 	/* no support for storage tag formats right now */
1880 	if (nvme_elbaf_sts(elbaf))
1881 		return;
1882 
1883 	head->guard_type = nvme_elbaf_guard_type(elbaf);
1884 	switch (head->guard_type) {
1885 	case NVME_NVM_NS_64B_GUARD:
1886 		head->pi_size = sizeof(struct crc64_pi_tuple);
1887 		break;
1888 	case NVME_NVM_NS_16B_GUARD:
1889 		head->pi_size = sizeof(struct t10_pi_tuple);
1890 		break;
1891 	default:
1892 		break;
1893 	}
1894 }
1895 
1896 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1897 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1898 		struct nvme_id_ns_nvm *nvm)
1899 {
1900 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1901 	head->pi_type = 0;
1902 	head->pi_size = 0;
1903 	head->pi_offset = 0;
1904 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1905 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1906 		return;
1907 
1908 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1909 		nvme_configure_pi_elbas(head, id, nvm);
1910 	} else {
1911 		head->pi_size = sizeof(struct t10_pi_tuple);
1912 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1913 	}
1914 
1915 	if (head->pi_size && head->ms >= head->pi_size)
1916 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1917 	if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1918 		head->pi_offset = head->ms - head->pi_size;
1919 
1920 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1921 		/*
1922 		 * The NVMe over Fabrics specification only supports metadata as
1923 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1924 		 * remap the separate metadata buffer from the block layer.
1925 		 */
1926 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1927 			return;
1928 
1929 		head->features |= NVME_NS_EXT_LBAS;
1930 
1931 		/*
1932 		 * The current fabrics transport drivers support namespace
1933 		 * metadata formats only if nvme_ns_has_pi() returns true.
1934 		 * Suppress support for all other formats so the namespace will
1935 		 * have a 0 capacity and not be usable through the block stack.
1936 		 *
1937 		 * Note, this check will need to be modified if any drivers
1938 		 * gain the ability to use other metadata formats.
1939 		 */
1940 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1941 			head->features |= NVME_NS_METADATA_SUPPORTED;
1942 	} else {
1943 		/*
1944 		 * For PCIe controllers, we can't easily remap the separate
1945 		 * metadata buffer from the block layer and thus require a
1946 		 * separate metadata buffer for block layer metadata/PI support.
1947 		 * We allow extended LBAs for the passthrough interface, though.
1948 		 */
1949 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1950 			head->features |= NVME_NS_EXT_LBAS;
1951 		else
1952 			head->features |= NVME_NS_METADATA_SUPPORTED;
1953 	}
1954 }
1955 
1956 
1957 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1958 			struct nvme_id_ns *id, struct queue_limits *lim,
1959 			u32 bs, u32 atomic_bs)
1960 {
1961 	unsigned int boundary = 0;
1962 
1963 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1964 		if (le16_to_cpu(id->nabspf))
1965 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
1966 	}
1967 	lim->atomic_write_hw_max = atomic_bs;
1968 	lim->atomic_write_hw_boundary = boundary;
1969 	lim->atomic_write_hw_unit_min = bs;
1970 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
1971 }
1972 
1973 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1974 {
1975 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1976 }
1977 
1978 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1979 		struct queue_limits *lim)
1980 {
1981 	lim->max_hw_sectors = ctrl->max_hw_sectors;
1982 	lim->max_segments = min_t(u32, USHRT_MAX,
1983 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1984 	lim->max_integrity_segments = ctrl->max_integrity_segments;
1985 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1986 	lim->max_segment_size = UINT_MAX;
1987 	lim->dma_alignment = 3;
1988 }
1989 
1990 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1991 		struct queue_limits *lim)
1992 {
1993 	struct nvme_ns_head *head = ns->head;
1994 	u32 bs = 1U << head->lba_shift;
1995 	u32 atomic_bs, phys_bs, io_opt = 0;
1996 	bool valid = true;
1997 
1998 	/*
1999 	 * The block layer can't support LBA sizes larger than the page size
2000 	 * or smaller than a sector size yet, so catch this early and don't
2001 	 * allow block I/O.
2002 	 */
2003 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
2004 		bs = (1 << 9);
2005 		valid = false;
2006 	}
2007 
2008 	atomic_bs = phys_bs = bs;
2009 	if (id->nabo == 0) {
2010 		/*
2011 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2012 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2013 		 * 0 then AWUPF must be used instead.
2014 		 */
2015 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2016 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2017 		else
2018 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2019 
2020 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2021 	}
2022 
2023 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2024 		/* NPWG = Namespace Preferred Write Granularity */
2025 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2026 		/* NOWS = Namespace Optimal Write Size */
2027 		io_opt = bs * (1 + le16_to_cpu(id->nows));
2028 	}
2029 
2030 	/*
2031 	 * Linux filesystems assume writing a single physical block is
2032 	 * an atomic operation. Hence limit the physical block size to the
2033 	 * value of the Atomic Write Unit Power Fail parameter.
2034 	 */
2035 	lim->logical_block_size = bs;
2036 	lim->physical_block_size = min(phys_bs, atomic_bs);
2037 	lim->io_min = phys_bs;
2038 	lim->io_opt = io_opt;
2039 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2040 		lim->max_write_zeroes_sectors = UINT_MAX;
2041 	else
2042 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2043 	return valid;
2044 }
2045 
2046 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2047 {
2048 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2049 }
2050 
2051 static inline bool nvme_first_scan(struct gendisk *disk)
2052 {
2053 	/* nvme_alloc_ns() scans the disk prior to adding it */
2054 	return !disk_live(disk);
2055 }
2056 
2057 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2058 		struct queue_limits *lim)
2059 {
2060 	struct nvme_ctrl *ctrl = ns->ctrl;
2061 	u32 iob;
2062 
2063 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2064 	    is_power_of_2(ctrl->max_hw_sectors))
2065 		iob = ctrl->max_hw_sectors;
2066 	else
2067 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2068 
2069 	if (!iob)
2070 		return;
2071 
2072 	if (!is_power_of_2(iob)) {
2073 		if (nvme_first_scan(ns->disk))
2074 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2075 				ns->disk->disk_name, iob);
2076 		return;
2077 	}
2078 
2079 	if (blk_queue_is_zoned(ns->disk->queue)) {
2080 		if (nvme_first_scan(ns->disk))
2081 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2082 				ns->disk->disk_name);
2083 		return;
2084 	}
2085 
2086 	lim->chunk_sectors = iob;
2087 }
2088 
2089 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2090 		struct nvme_ns_info *info)
2091 {
2092 	struct queue_limits lim;
2093 	int ret;
2094 
2095 	blk_mq_freeze_queue(ns->disk->queue);
2096 	lim = queue_limits_start_update(ns->disk->queue);
2097 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2098 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2099 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2100 	blk_mq_unfreeze_queue(ns->disk->queue);
2101 
2102 	/* Hide the block-interface for these devices */
2103 	if (!ret)
2104 		ret = -ENODEV;
2105 	return ret;
2106 }
2107 
2108 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2109 		struct nvme_ns_info *info)
2110 {
2111 	struct queue_limits lim;
2112 	struct nvme_id_ns_nvm *nvm = NULL;
2113 	struct nvme_zone_info zi = {};
2114 	struct nvme_id_ns *id;
2115 	sector_t capacity;
2116 	unsigned lbaf;
2117 	int ret;
2118 
2119 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2120 	if (ret)
2121 		return ret;
2122 
2123 	if (id->ncap == 0) {
2124 		/* namespace not allocated or attached */
2125 		info->is_removed = true;
2126 		ret = -ENXIO;
2127 		goto out;
2128 	}
2129 	lbaf = nvme_lbaf_index(id->flbas);
2130 
2131 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2132 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2133 		if (ret < 0)
2134 			goto out;
2135 	}
2136 
2137 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2138 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2139 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2140 		if (ret < 0)
2141 			goto out;
2142 	}
2143 
2144 	blk_mq_freeze_queue(ns->disk->queue);
2145 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2146 	ns->head->nuse = le64_to_cpu(id->nuse);
2147 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2148 
2149 	lim = queue_limits_start_update(ns->disk->queue);
2150 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2151 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm);
2152 	nvme_set_chunk_sectors(ns, id, &lim);
2153 	if (!nvme_update_disk_info(ns, id, &lim))
2154 		capacity = 0;
2155 	nvme_config_discard(ns, &lim);
2156 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2157 	    ns->head->ids.csi == NVME_CSI_ZNS)
2158 		nvme_update_zone_info(ns, &lim, &zi);
2159 
2160 	if (ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2161 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2162 	else
2163 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2164 
2165 	/*
2166 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2167 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2168 	 * I/O to namespaces with metadata except when the namespace supports
2169 	 * PI, as it can strip/insert in that case.
2170 	 */
2171 	if (!nvme_init_integrity(ns->disk, ns->head, &lim))
2172 		capacity = 0;
2173 
2174 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2175 	if (ret) {
2176 		blk_mq_unfreeze_queue(ns->disk->queue);
2177 		goto out;
2178 	}
2179 
2180 	set_capacity_and_notify(ns->disk, capacity);
2181 
2182 	/*
2183 	 * Only set the DEAC bit if the device guarantees that reads from
2184 	 * deallocated data return zeroes.  While the DEAC bit does not
2185 	 * require that, it must be a no-op if reads from deallocated data
2186 	 * do not return zeroes.
2187 	 */
2188 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2189 		ns->head->features |= NVME_NS_DEAC;
2190 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2191 	set_bit(NVME_NS_READY, &ns->flags);
2192 	blk_mq_unfreeze_queue(ns->disk->queue);
2193 
2194 	if (blk_queue_is_zoned(ns->queue)) {
2195 		ret = blk_revalidate_disk_zones(ns->disk);
2196 		if (ret && !nvme_first_scan(ns->disk))
2197 			goto out;
2198 	}
2199 
2200 	ret = 0;
2201 out:
2202 	kfree(nvm);
2203 	kfree(id);
2204 	return ret;
2205 }
2206 
2207 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2208 {
2209 	bool unsupported = false;
2210 	int ret;
2211 
2212 	switch (info->ids.csi) {
2213 	case NVME_CSI_ZNS:
2214 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2215 			dev_info(ns->ctrl->device,
2216 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2217 				info->nsid);
2218 			ret = nvme_update_ns_info_generic(ns, info);
2219 			break;
2220 		}
2221 		ret = nvme_update_ns_info_block(ns, info);
2222 		break;
2223 	case NVME_CSI_NVM:
2224 		ret = nvme_update_ns_info_block(ns, info);
2225 		break;
2226 	default:
2227 		dev_info(ns->ctrl->device,
2228 			"block device for nsid %u not supported (csi %u)\n",
2229 			info->nsid, info->ids.csi);
2230 		ret = nvme_update_ns_info_generic(ns, info);
2231 		break;
2232 	}
2233 
2234 	/*
2235 	 * If probing fails due an unsupported feature, hide the block device,
2236 	 * but still allow other access.
2237 	 */
2238 	if (ret == -ENODEV) {
2239 		ns->disk->flags |= GENHD_FL_HIDDEN;
2240 		set_bit(NVME_NS_READY, &ns->flags);
2241 		unsupported = true;
2242 		ret = 0;
2243 	}
2244 
2245 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2246 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2247 		struct queue_limits lim;
2248 
2249 		blk_mq_freeze_queue(ns->head->disk->queue);
2250 		/*
2251 		 * queue_limits mixes values that are the hardware limitations
2252 		 * for bio splitting with what is the device configuration.
2253 		 *
2254 		 * For NVMe the device configuration can change after e.g. a
2255 		 * Format command, and we really want to pick up the new format
2256 		 * value here.  But we must still stack the queue limits to the
2257 		 * least common denominator for multipathing to split the bios
2258 		 * properly.
2259 		 *
2260 		 * To work around this, we explicitly set the device
2261 		 * configuration to those that we just queried, but only stack
2262 		 * the splitting limits in to make sure we still obey possibly
2263 		 * lower limitations of other controllers.
2264 		 */
2265 		lim = queue_limits_start_update(ns->head->disk->queue);
2266 		lim.logical_block_size = ns_lim->logical_block_size;
2267 		lim.physical_block_size = ns_lim->physical_block_size;
2268 		lim.io_min = ns_lim->io_min;
2269 		lim.io_opt = ns_lim->io_opt;
2270 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2271 					ns->head->disk->disk_name);
2272 		if (unsupported)
2273 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2274 		else
2275 			nvme_init_integrity(ns->head->disk, ns->head, &lim);
2276 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2277 
2278 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2279 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2280 		nvme_mpath_revalidate_paths(ns);
2281 
2282 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2283 	}
2284 
2285 	return ret;
2286 }
2287 
2288 #ifdef CONFIG_BLK_SED_OPAL
2289 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2290 		bool send)
2291 {
2292 	struct nvme_ctrl *ctrl = data;
2293 	struct nvme_command cmd = { };
2294 
2295 	if (send)
2296 		cmd.common.opcode = nvme_admin_security_send;
2297 	else
2298 		cmd.common.opcode = nvme_admin_security_recv;
2299 	cmd.common.nsid = 0;
2300 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2301 	cmd.common.cdw11 = cpu_to_le32(len);
2302 
2303 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2304 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2305 }
2306 
2307 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2308 {
2309 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2310 		if (!ctrl->opal_dev)
2311 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2312 		else if (was_suspended)
2313 			opal_unlock_from_suspend(ctrl->opal_dev);
2314 	} else {
2315 		free_opal_dev(ctrl->opal_dev);
2316 		ctrl->opal_dev = NULL;
2317 	}
2318 }
2319 #else
2320 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2321 {
2322 }
2323 #endif /* CONFIG_BLK_SED_OPAL */
2324 
2325 #ifdef CONFIG_BLK_DEV_ZONED
2326 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2327 		unsigned int nr_zones, report_zones_cb cb, void *data)
2328 {
2329 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2330 			data);
2331 }
2332 #else
2333 #define nvme_report_zones	NULL
2334 #endif /* CONFIG_BLK_DEV_ZONED */
2335 
2336 const struct block_device_operations nvme_bdev_ops = {
2337 	.owner		= THIS_MODULE,
2338 	.ioctl		= nvme_ioctl,
2339 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2340 	.open		= nvme_open,
2341 	.release	= nvme_release,
2342 	.getgeo		= nvme_getgeo,
2343 	.report_zones	= nvme_report_zones,
2344 	.pr_ops		= &nvme_pr_ops,
2345 };
2346 
2347 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2348 		u32 timeout, const char *op)
2349 {
2350 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2351 	u32 csts;
2352 	int ret;
2353 
2354 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2355 		if (csts == ~0)
2356 			return -ENODEV;
2357 		if ((csts & mask) == val)
2358 			break;
2359 
2360 		usleep_range(1000, 2000);
2361 		if (fatal_signal_pending(current))
2362 			return -EINTR;
2363 		if (time_after(jiffies, timeout_jiffies)) {
2364 			dev_err(ctrl->device,
2365 				"Device not ready; aborting %s, CSTS=0x%x\n",
2366 				op, csts);
2367 			return -ENODEV;
2368 		}
2369 	}
2370 
2371 	return ret;
2372 }
2373 
2374 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2375 {
2376 	int ret;
2377 
2378 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2379 	if (shutdown)
2380 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2381 	else
2382 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2383 
2384 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2385 	if (ret)
2386 		return ret;
2387 
2388 	if (shutdown) {
2389 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2390 				       NVME_CSTS_SHST_CMPLT,
2391 				       ctrl->shutdown_timeout, "shutdown");
2392 	}
2393 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2394 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2395 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2396 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2397 }
2398 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2399 
2400 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2401 {
2402 	unsigned dev_page_min;
2403 	u32 timeout;
2404 	int ret;
2405 
2406 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2407 	if (ret) {
2408 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2409 		return ret;
2410 	}
2411 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2412 
2413 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2414 		dev_err(ctrl->device,
2415 			"Minimum device page size %u too large for host (%u)\n",
2416 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2417 		return -ENODEV;
2418 	}
2419 
2420 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2421 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2422 	else
2423 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2424 
2425 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2426 		ctrl->ctrl_config |= NVME_CC_CRIME;
2427 
2428 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2429 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2430 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2431 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2432 	if (ret)
2433 		return ret;
2434 
2435 	/* Flush write to device (required if transport is PCI) */
2436 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2437 	if (ret)
2438 		return ret;
2439 
2440 	/* CAP value may change after initial CC write */
2441 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2442 	if (ret)
2443 		return ret;
2444 
2445 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2446 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2447 		u32 crto, ready_timeout;
2448 
2449 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2450 		if (ret) {
2451 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2452 				ret);
2453 			return ret;
2454 		}
2455 
2456 		/*
2457 		 * CRTO should always be greater or equal to CAP.TO, but some
2458 		 * devices are known to get this wrong. Use the larger of the
2459 		 * two values.
2460 		 */
2461 		if (ctrl->ctrl_config & NVME_CC_CRIME)
2462 			ready_timeout = NVME_CRTO_CRIMT(crto);
2463 		else
2464 			ready_timeout = NVME_CRTO_CRWMT(crto);
2465 
2466 		if (ready_timeout < timeout)
2467 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2468 				      crto, ctrl->cap);
2469 		else
2470 			timeout = ready_timeout;
2471 	}
2472 
2473 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2474 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2475 	if (ret)
2476 		return ret;
2477 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2478 			       (timeout + 1) / 2, "initialisation");
2479 }
2480 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2481 
2482 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2483 {
2484 	__le64 ts;
2485 	int ret;
2486 
2487 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2488 		return 0;
2489 
2490 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2491 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2492 			NULL);
2493 	if (ret)
2494 		dev_warn_once(ctrl->device,
2495 			"could not set timestamp (%d)\n", ret);
2496 	return ret;
2497 }
2498 
2499 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2500 {
2501 	struct nvme_feat_host_behavior *host;
2502 	u8 acre = 0, lbafee = 0;
2503 	int ret;
2504 
2505 	/* Don't bother enabling the feature if retry delay is not reported */
2506 	if (ctrl->crdt[0])
2507 		acre = NVME_ENABLE_ACRE;
2508 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2509 		lbafee = NVME_ENABLE_LBAFEE;
2510 
2511 	if (!acre && !lbafee)
2512 		return 0;
2513 
2514 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2515 	if (!host)
2516 		return 0;
2517 
2518 	host->acre = acre;
2519 	host->lbafee = lbafee;
2520 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2521 				host, sizeof(*host), NULL);
2522 	kfree(host);
2523 	return ret;
2524 }
2525 
2526 /*
2527  * The function checks whether the given total (exlat + enlat) latency of
2528  * a power state allows the latter to be used as an APST transition target.
2529  * It does so by comparing the latency to the primary and secondary latency
2530  * tolerances defined by module params. If there's a match, the corresponding
2531  * timeout value is returned and the matching tolerance index (1 or 2) is
2532  * reported.
2533  */
2534 static bool nvme_apst_get_transition_time(u64 total_latency,
2535 		u64 *transition_time, unsigned *last_index)
2536 {
2537 	if (total_latency <= apst_primary_latency_tol_us) {
2538 		if (*last_index == 1)
2539 			return false;
2540 		*last_index = 1;
2541 		*transition_time = apst_primary_timeout_ms;
2542 		return true;
2543 	}
2544 	if (apst_secondary_timeout_ms &&
2545 		total_latency <= apst_secondary_latency_tol_us) {
2546 		if (*last_index <= 2)
2547 			return false;
2548 		*last_index = 2;
2549 		*transition_time = apst_secondary_timeout_ms;
2550 		return true;
2551 	}
2552 	return false;
2553 }
2554 
2555 /*
2556  * APST (Autonomous Power State Transition) lets us program a table of power
2557  * state transitions that the controller will perform automatically.
2558  *
2559  * Depending on module params, one of the two supported techniques will be used:
2560  *
2561  * - If the parameters provide explicit timeouts and tolerances, they will be
2562  *   used to build a table with up to 2 non-operational states to transition to.
2563  *   The default parameter values were selected based on the values used by
2564  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2565  *   regeneration of the APST table in the event of switching between external
2566  *   and battery power, the timeouts and tolerances reflect a compromise
2567  *   between values used by Microsoft for AC and battery scenarios.
2568  * - If not, we'll configure the table with a simple heuristic: we are willing
2569  *   to spend at most 2% of the time transitioning between power states.
2570  *   Therefore, when running in any given state, we will enter the next
2571  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2572  *   microseconds, as long as that state's exit latency is under the requested
2573  *   maximum latency.
2574  *
2575  * We will not autonomously enter any non-operational state for which the total
2576  * latency exceeds ps_max_latency_us.
2577  *
2578  * Users can set ps_max_latency_us to zero to turn off APST.
2579  */
2580 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2581 {
2582 	struct nvme_feat_auto_pst *table;
2583 	unsigned apste = 0;
2584 	u64 max_lat_us = 0;
2585 	__le64 target = 0;
2586 	int max_ps = -1;
2587 	int state;
2588 	int ret;
2589 	unsigned last_lt_index = UINT_MAX;
2590 
2591 	/*
2592 	 * If APST isn't supported or if we haven't been initialized yet,
2593 	 * then don't do anything.
2594 	 */
2595 	if (!ctrl->apsta)
2596 		return 0;
2597 
2598 	if (ctrl->npss > 31) {
2599 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2600 		return 0;
2601 	}
2602 
2603 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2604 	if (!table)
2605 		return 0;
2606 
2607 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2608 		/* Turn off APST. */
2609 		dev_dbg(ctrl->device, "APST disabled\n");
2610 		goto done;
2611 	}
2612 
2613 	/*
2614 	 * Walk through all states from lowest- to highest-power.
2615 	 * According to the spec, lower-numbered states use more power.  NPSS,
2616 	 * despite the name, is the index of the lowest-power state, not the
2617 	 * number of states.
2618 	 */
2619 	for (state = (int)ctrl->npss; state >= 0; state--) {
2620 		u64 total_latency_us, exit_latency_us, transition_ms;
2621 
2622 		if (target)
2623 			table->entries[state] = target;
2624 
2625 		/*
2626 		 * Don't allow transitions to the deepest state if it's quirked
2627 		 * off.
2628 		 */
2629 		if (state == ctrl->npss &&
2630 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2631 			continue;
2632 
2633 		/*
2634 		 * Is this state a useful non-operational state for higher-power
2635 		 * states to autonomously transition to?
2636 		 */
2637 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2638 			continue;
2639 
2640 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2641 		if (exit_latency_us > ctrl->ps_max_latency_us)
2642 			continue;
2643 
2644 		total_latency_us = exit_latency_us +
2645 			le32_to_cpu(ctrl->psd[state].entry_lat);
2646 
2647 		/*
2648 		 * This state is good. It can be used as the APST idle target
2649 		 * for higher power states.
2650 		 */
2651 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2652 			if (!nvme_apst_get_transition_time(total_latency_us,
2653 					&transition_ms, &last_lt_index))
2654 				continue;
2655 		} else {
2656 			transition_ms = total_latency_us + 19;
2657 			do_div(transition_ms, 20);
2658 			if (transition_ms > (1 << 24) - 1)
2659 				transition_ms = (1 << 24) - 1;
2660 		}
2661 
2662 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2663 		if (max_ps == -1)
2664 			max_ps = state;
2665 		if (total_latency_us > max_lat_us)
2666 			max_lat_us = total_latency_us;
2667 	}
2668 
2669 	if (max_ps == -1)
2670 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2671 	else
2672 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2673 			max_ps, max_lat_us, (int)sizeof(*table), table);
2674 	apste = 1;
2675 
2676 done:
2677 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2678 				table, sizeof(*table), NULL);
2679 	if (ret)
2680 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2681 	kfree(table);
2682 	return ret;
2683 }
2684 
2685 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2686 {
2687 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2688 	u64 latency;
2689 
2690 	switch (val) {
2691 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2692 	case PM_QOS_LATENCY_ANY:
2693 		latency = U64_MAX;
2694 		break;
2695 
2696 	default:
2697 		latency = val;
2698 	}
2699 
2700 	if (ctrl->ps_max_latency_us != latency) {
2701 		ctrl->ps_max_latency_us = latency;
2702 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2703 			nvme_configure_apst(ctrl);
2704 	}
2705 }
2706 
2707 struct nvme_core_quirk_entry {
2708 	/*
2709 	 * NVMe model and firmware strings are padded with spaces.  For
2710 	 * simplicity, strings in the quirk table are padded with NULLs
2711 	 * instead.
2712 	 */
2713 	u16 vid;
2714 	const char *mn;
2715 	const char *fr;
2716 	unsigned long quirks;
2717 };
2718 
2719 static const struct nvme_core_quirk_entry core_quirks[] = {
2720 	{
2721 		/*
2722 		 * This Toshiba device seems to die using any APST states.  See:
2723 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2724 		 */
2725 		.vid = 0x1179,
2726 		.mn = "THNSF5256GPUK TOSHIBA",
2727 		.quirks = NVME_QUIRK_NO_APST,
2728 	},
2729 	{
2730 		/*
2731 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2732 		 * condition associated with actions related to suspend to idle
2733 		 * LiteON has resolved the problem in future firmware
2734 		 */
2735 		.vid = 0x14a4,
2736 		.fr = "22301111",
2737 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2738 	},
2739 	{
2740 		/*
2741 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2742 		 * aborts I/O during any load, but more easily reproducible
2743 		 * with discards (fstrim).
2744 		 *
2745 		 * The device is left in a state where it is also not possible
2746 		 * to use "nvme set-feature" to disable APST, but booting with
2747 		 * nvme_core.default_ps_max_latency=0 works.
2748 		 */
2749 		.vid = 0x1e0f,
2750 		.mn = "KCD6XVUL6T40",
2751 		.quirks = NVME_QUIRK_NO_APST,
2752 	},
2753 	{
2754 		/*
2755 		 * The external Samsung X5 SSD fails initialization without a
2756 		 * delay before checking if it is ready and has a whole set of
2757 		 * other problems.  To make this even more interesting, it
2758 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2759 		 * does not need or want these quirks.
2760 		 */
2761 		.vid = 0x144d,
2762 		.mn = "Samsung Portable SSD X5",
2763 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2764 			  NVME_QUIRK_NO_DEEPEST_PS |
2765 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2766 	}
2767 };
2768 
2769 /* match is null-terminated but idstr is space-padded. */
2770 static bool string_matches(const char *idstr, const char *match, size_t len)
2771 {
2772 	size_t matchlen;
2773 
2774 	if (!match)
2775 		return true;
2776 
2777 	matchlen = strlen(match);
2778 	WARN_ON_ONCE(matchlen > len);
2779 
2780 	if (memcmp(idstr, match, matchlen))
2781 		return false;
2782 
2783 	for (; matchlen < len; matchlen++)
2784 		if (idstr[matchlen] != ' ')
2785 			return false;
2786 
2787 	return true;
2788 }
2789 
2790 static bool quirk_matches(const struct nvme_id_ctrl *id,
2791 			  const struct nvme_core_quirk_entry *q)
2792 {
2793 	return q->vid == le16_to_cpu(id->vid) &&
2794 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2795 		string_matches(id->fr, q->fr, sizeof(id->fr));
2796 }
2797 
2798 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2799 		struct nvme_id_ctrl *id)
2800 {
2801 	size_t nqnlen;
2802 	int off;
2803 
2804 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2805 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2806 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2807 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2808 			return;
2809 		}
2810 
2811 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2812 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2813 	}
2814 
2815 	/*
2816 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2817 	 * Base Specification 2.0.  It is slightly different from the format
2818 	 * specified there due to historic reasons, and we can't change it now.
2819 	 */
2820 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2821 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2822 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2823 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2824 	off += sizeof(id->sn);
2825 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2826 	off += sizeof(id->mn);
2827 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2828 }
2829 
2830 static void nvme_release_subsystem(struct device *dev)
2831 {
2832 	struct nvme_subsystem *subsys =
2833 		container_of(dev, struct nvme_subsystem, dev);
2834 
2835 	if (subsys->instance >= 0)
2836 		ida_free(&nvme_instance_ida, subsys->instance);
2837 	kfree(subsys);
2838 }
2839 
2840 static void nvme_destroy_subsystem(struct kref *ref)
2841 {
2842 	struct nvme_subsystem *subsys =
2843 			container_of(ref, struct nvme_subsystem, ref);
2844 
2845 	mutex_lock(&nvme_subsystems_lock);
2846 	list_del(&subsys->entry);
2847 	mutex_unlock(&nvme_subsystems_lock);
2848 
2849 	ida_destroy(&subsys->ns_ida);
2850 	device_del(&subsys->dev);
2851 	put_device(&subsys->dev);
2852 }
2853 
2854 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2855 {
2856 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2857 }
2858 
2859 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2860 {
2861 	struct nvme_subsystem *subsys;
2862 
2863 	lockdep_assert_held(&nvme_subsystems_lock);
2864 
2865 	/*
2866 	 * Fail matches for discovery subsystems. This results
2867 	 * in each discovery controller bound to a unique subsystem.
2868 	 * This avoids issues with validating controller values
2869 	 * that can only be true when there is a single unique subsystem.
2870 	 * There may be multiple and completely independent entities
2871 	 * that provide discovery controllers.
2872 	 */
2873 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2874 		return NULL;
2875 
2876 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2877 		if (strcmp(subsys->subnqn, subsysnqn))
2878 			continue;
2879 		if (!kref_get_unless_zero(&subsys->ref))
2880 			continue;
2881 		return subsys;
2882 	}
2883 
2884 	return NULL;
2885 }
2886 
2887 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2888 {
2889 	return ctrl->opts && ctrl->opts->discovery_nqn;
2890 }
2891 
2892 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2893 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2894 {
2895 	struct nvme_ctrl *tmp;
2896 
2897 	lockdep_assert_held(&nvme_subsystems_lock);
2898 
2899 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2900 		if (nvme_state_terminal(tmp))
2901 			continue;
2902 
2903 		if (tmp->cntlid == ctrl->cntlid) {
2904 			dev_err(ctrl->device,
2905 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2906 				ctrl->cntlid, dev_name(tmp->device),
2907 				subsys->subnqn);
2908 			return false;
2909 		}
2910 
2911 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2912 		    nvme_discovery_ctrl(ctrl))
2913 			continue;
2914 
2915 		dev_err(ctrl->device,
2916 			"Subsystem does not support multiple controllers\n");
2917 		return false;
2918 	}
2919 
2920 	return true;
2921 }
2922 
2923 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2924 {
2925 	struct nvme_subsystem *subsys, *found;
2926 	int ret;
2927 
2928 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2929 	if (!subsys)
2930 		return -ENOMEM;
2931 
2932 	subsys->instance = -1;
2933 	mutex_init(&subsys->lock);
2934 	kref_init(&subsys->ref);
2935 	INIT_LIST_HEAD(&subsys->ctrls);
2936 	INIT_LIST_HEAD(&subsys->nsheads);
2937 	nvme_init_subnqn(subsys, ctrl, id);
2938 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2939 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2940 	subsys->vendor_id = le16_to_cpu(id->vid);
2941 	subsys->cmic = id->cmic;
2942 
2943 	/* Versions prior to 1.4 don't necessarily report a valid type */
2944 	if (id->cntrltype == NVME_CTRL_DISC ||
2945 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2946 		subsys->subtype = NVME_NQN_DISC;
2947 	else
2948 		subsys->subtype = NVME_NQN_NVME;
2949 
2950 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2951 		dev_err(ctrl->device,
2952 			"Subsystem %s is not a discovery controller",
2953 			subsys->subnqn);
2954 		kfree(subsys);
2955 		return -EINVAL;
2956 	}
2957 	subsys->awupf = le16_to_cpu(id->awupf);
2958 	nvme_mpath_default_iopolicy(subsys);
2959 
2960 	subsys->dev.class = &nvme_subsys_class;
2961 	subsys->dev.release = nvme_release_subsystem;
2962 	subsys->dev.groups = nvme_subsys_attrs_groups;
2963 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2964 	device_initialize(&subsys->dev);
2965 
2966 	mutex_lock(&nvme_subsystems_lock);
2967 	found = __nvme_find_get_subsystem(subsys->subnqn);
2968 	if (found) {
2969 		put_device(&subsys->dev);
2970 		subsys = found;
2971 
2972 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2973 			ret = -EINVAL;
2974 			goto out_put_subsystem;
2975 		}
2976 	} else {
2977 		ret = device_add(&subsys->dev);
2978 		if (ret) {
2979 			dev_err(ctrl->device,
2980 				"failed to register subsystem device.\n");
2981 			put_device(&subsys->dev);
2982 			goto out_unlock;
2983 		}
2984 		ida_init(&subsys->ns_ida);
2985 		list_add_tail(&subsys->entry, &nvme_subsystems);
2986 	}
2987 
2988 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2989 				dev_name(ctrl->device));
2990 	if (ret) {
2991 		dev_err(ctrl->device,
2992 			"failed to create sysfs link from subsystem.\n");
2993 		goto out_put_subsystem;
2994 	}
2995 
2996 	if (!found)
2997 		subsys->instance = ctrl->instance;
2998 	ctrl->subsys = subsys;
2999 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3000 	mutex_unlock(&nvme_subsystems_lock);
3001 	return 0;
3002 
3003 out_put_subsystem:
3004 	nvme_put_subsystem(subsys);
3005 out_unlock:
3006 	mutex_unlock(&nvme_subsystems_lock);
3007 	return ret;
3008 }
3009 
3010 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3011 		void *log, size_t size, u64 offset)
3012 {
3013 	struct nvme_command c = { };
3014 	u32 dwlen = nvme_bytes_to_numd(size);
3015 
3016 	c.get_log_page.opcode = nvme_admin_get_log_page;
3017 	c.get_log_page.nsid = cpu_to_le32(nsid);
3018 	c.get_log_page.lid = log_page;
3019 	c.get_log_page.lsp = lsp;
3020 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3021 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3022 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3023 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3024 	c.get_log_page.csi = csi;
3025 
3026 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3027 }
3028 
3029 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3030 				struct nvme_effects_log **log)
3031 {
3032 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3033 	int ret;
3034 
3035 	if (cel)
3036 		goto out;
3037 
3038 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3039 	if (!cel)
3040 		return -ENOMEM;
3041 
3042 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3043 			cel, sizeof(*cel), 0);
3044 	if (ret) {
3045 		kfree(cel);
3046 		return ret;
3047 	}
3048 
3049 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3050 out:
3051 	*log = cel;
3052 	return 0;
3053 }
3054 
3055 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3056 {
3057 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3058 
3059 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3060 		return UINT_MAX;
3061 	return val;
3062 }
3063 
3064 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3065 {
3066 	struct nvme_command c = { };
3067 	struct nvme_id_ctrl_nvm *id;
3068 	int ret;
3069 
3070 	/*
3071 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3072 	 * to the write-zeroes, we are cautious and limit the size to the
3073 	 * controllers max_hw_sectors value, which is based on the MDTS field
3074 	 * and possibly other limiting factors.
3075 	 */
3076 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3077 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3078 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3079 	else
3080 		ctrl->max_zeroes_sectors = 0;
3081 
3082 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3083 	    nvme_ctrl_limited_cns(ctrl) ||
3084 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3085 		return 0;
3086 
3087 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3088 	if (!id)
3089 		return -ENOMEM;
3090 
3091 	c.identify.opcode = nvme_admin_identify;
3092 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3093 	c.identify.csi = NVME_CSI_NVM;
3094 
3095 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3096 	if (ret)
3097 		goto free_data;
3098 
3099 	ctrl->dmrl = id->dmrl;
3100 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3101 	if (id->wzsl)
3102 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3103 
3104 free_data:
3105 	if (ret > 0)
3106 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3107 	kfree(id);
3108 	return ret;
3109 }
3110 
3111 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3112 {
3113 	struct nvme_effects_log	*log = ctrl->effects;
3114 
3115 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3116 						NVME_CMD_EFFECTS_NCC |
3117 						NVME_CMD_EFFECTS_CSE_MASK);
3118 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3119 						NVME_CMD_EFFECTS_CSE_MASK);
3120 
3121 	/*
3122 	 * The spec says the result of a security receive command depends on
3123 	 * the previous security send command. As such, many vendors log this
3124 	 * command as one to submitted only when no other commands to the same
3125 	 * namespace are outstanding. The intention is to tell the host to
3126 	 * prevent mixing security send and receive.
3127 	 *
3128 	 * This driver can only enforce such exclusive access against IO
3129 	 * queues, though. We are not readily able to enforce such a rule for
3130 	 * two commands to the admin queue, which is the only queue that
3131 	 * matters for this command.
3132 	 *
3133 	 * Rather than blindly freezing the IO queues for this effect that
3134 	 * doesn't even apply to IO, mask it off.
3135 	 */
3136 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3137 
3138 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3139 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3140 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3141 }
3142 
3143 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3144 {
3145 	int ret = 0;
3146 
3147 	if (ctrl->effects)
3148 		return 0;
3149 
3150 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3151 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3152 		if (ret < 0)
3153 			return ret;
3154 	}
3155 
3156 	if (!ctrl->effects) {
3157 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3158 		if (!ctrl->effects)
3159 			return -ENOMEM;
3160 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3161 	}
3162 
3163 	nvme_init_known_nvm_effects(ctrl);
3164 	return 0;
3165 }
3166 
3167 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3168 {
3169 	/*
3170 	 * In fabrics we need to verify the cntlid matches the
3171 	 * admin connect
3172 	 */
3173 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3174 		dev_err(ctrl->device,
3175 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3176 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3177 		return -EINVAL;
3178 	}
3179 
3180 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3181 		dev_err(ctrl->device,
3182 			"keep-alive support is mandatory for fabrics\n");
3183 		return -EINVAL;
3184 	}
3185 
3186 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3187 		dev_err(ctrl->device,
3188 			"I/O queue command capsule supported size %d < 4\n",
3189 			ctrl->ioccsz);
3190 		return -EINVAL;
3191 	}
3192 
3193 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3194 		dev_err(ctrl->device,
3195 			"I/O queue response capsule supported size %d < 1\n",
3196 			ctrl->iorcsz);
3197 		return -EINVAL;
3198 	}
3199 
3200 	if (!ctrl->maxcmd) {
3201 		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3202 		return -EINVAL;
3203 	}
3204 
3205 	return 0;
3206 }
3207 
3208 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3209 {
3210 	struct queue_limits lim;
3211 	struct nvme_id_ctrl *id;
3212 	u32 max_hw_sectors;
3213 	bool prev_apst_enabled;
3214 	int ret;
3215 
3216 	ret = nvme_identify_ctrl(ctrl, &id);
3217 	if (ret) {
3218 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3219 		return -EIO;
3220 	}
3221 
3222 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3223 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3224 
3225 	if (!ctrl->identified) {
3226 		unsigned int i;
3227 
3228 		/*
3229 		 * Check for quirks.  Quirk can depend on firmware version,
3230 		 * so, in principle, the set of quirks present can change
3231 		 * across a reset.  As a possible future enhancement, we
3232 		 * could re-scan for quirks every time we reinitialize
3233 		 * the device, but we'd have to make sure that the driver
3234 		 * behaves intelligently if the quirks change.
3235 		 */
3236 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3237 			if (quirk_matches(id, &core_quirks[i]))
3238 				ctrl->quirks |= core_quirks[i].quirks;
3239 		}
3240 
3241 		ret = nvme_init_subsystem(ctrl, id);
3242 		if (ret)
3243 			goto out_free;
3244 
3245 		ret = nvme_init_effects(ctrl, id);
3246 		if (ret)
3247 			goto out_free;
3248 	}
3249 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3250 	       sizeof(ctrl->subsys->firmware_rev));
3251 
3252 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3253 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3254 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3255 	}
3256 
3257 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3258 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3259 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3260 
3261 	ctrl->oacs = le16_to_cpu(id->oacs);
3262 	ctrl->oncs = le16_to_cpu(id->oncs);
3263 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3264 	ctrl->oaes = le32_to_cpu(id->oaes);
3265 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3266 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3267 
3268 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3269 	ctrl->vwc = id->vwc;
3270 	if (id->mdts)
3271 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3272 	else
3273 		max_hw_sectors = UINT_MAX;
3274 	ctrl->max_hw_sectors =
3275 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3276 
3277 	lim = queue_limits_start_update(ctrl->admin_q);
3278 	nvme_set_ctrl_limits(ctrl, &lim);
3279 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3280 	if (ret)
3281 		goto out_free;
3282 
3283 	ctrl->sgls = le32_to_cpu(id->sgls);
3284 	ctrl->kas = le16_to_cpu(id->kas);
3285 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3286 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3287 
3288 	ctrl->cntrltype = id->cntrltype;
3289 	ctrl->dctype = id->dctype;
3290 
3291 	if (id->rtd3e) {
3292 		/* us -> s */
3293 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3294 
3295 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3296 						 shutdown_timeout, 60);
3297 
3298 		if (ctrl->shutdown_timeout != shutdown_timeout)
3299 			dev_info(ctrl->device,
3300 				 "D3 entry latency set to %u seconds\n",
3301 				 ctrl->shutdown_timeout);
3302 	} else
3303 		ctrl->shutdown_timeout = shutdown_timeout;
3304 
3305 	ctrl->npss = id->npss;
3306 	ctrl->apsta = id->apsta;
3307 	prev_apst_enabled = ctrl->apst_enabled;
3308 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3309 		if (force_apst && id->apsta) {
3310 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3311 			ctrl->apst_enabled = true;
3312 		} else {
3313 			ctrl->apst_enabled = false;
3314 		}
3315 	} else {
3316 		ctrl->apst_enabled = id->apsta;
3317 	}
3318 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3319 
3320 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3321 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3322 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3323 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3324 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3325 
3326 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3327 		if (ret)
3328 			goto out_free;
3329 	} else {
3330 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3331 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3332 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3333 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3334 	}
3335 
3336 	ret = nvme_mpath_init_identify(ctrl, id);
3337 	if (ret < 0)
3338 		goto out_free;
3339 
3340 	if (ctrl->apst_enabled && !prev_apst_enabled)
3341 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3342 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3343 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3344 
3345 out_free:
3346 	kfree(id);
3347 	return ret;
3348 }
3349 
3350 /*
3351  * Initialize the cached copies of the Identify data and various controller
3352  * register in our nvme_ctrl structure.  This should be called as soon as
3353  * the admin queue is fully up and running.
3354  */
3355 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3356 {
3357 	int ret;
3358 
3359 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3360 	if (ret) {
3361 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3362 		return ret;
3363 	}
3364 
3365 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3366 
3367 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3368 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3369 
3370 	ret = nvme_init_identify(ctrl);
3371 	if (ret)
3372 		return ret;
3373 
3374 	ret = nvme_configure_apst(ctrl);
3375 	if (ret < 0)
3376 		return ret;
3377 
3378 	ret = nvme_configure_timestamp(ctrl);
3379 	if (ret < 0)
3380 		return ret;
3381 
3382 	ret = nvme_configure_host_options(ctrl);
3383 	if (ret < 0)
3384 		return ret;
3385 
3386 	nvme_configure_opal(ctrl, was_suspended);
3387 
3388 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3389 		/*
3390 		 * Do not return errors unless we are in a controller reset,
3391 		 * the controller works perfectly fine without hwmon.
3392 		 */
3393 		ret = nvme_hwmon_init(ctrl);
3394 		if (ret == -EINTR)
3395 			return ret;
3396 	}
3397 
3398 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3399 	ctrl->identified = true;
3400 
3401 	nvme_start_keep_alive(ctrl);
3402 
3403 	return 0;
3404 }
3405 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3406 
3407 static int nvme_dev_open(struct inode *inode, struct file *file)
3408 {
3409 	struct nvme_ctrl *ctrl =
3410 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3411 
3412 	switch (nvme_ctrl_state(ctrl)) {
3413 	case NVME_CTRL_LIVE:
3414 		break;
3415 	default:
3416 		return -EWOULDBLOCK;
3417 	}
3418 
3419 	nvme_get_ctrl(ctrl);
3420 	if (!try_module_get(ctrl->ops->module)) {
3421 		nvme_put_ctrl(ctrl);
3422 		return -EINVAL;
3423 	}
3424 
3425 	file->private_data = ctrl;
3426 	return 0;
3427 }
3428 
3429 static int nvme_dev_release(struct inode *inode, struct file *file)
3430 {
3431 	struct nvme_ctrl *ctrl =
3432 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3433 
3434 	module_put(ctrl->ops->module);
3435 	nvme_put_ctrl(ctrl);
3436 	return 0;
3437 }
3438 
3439 static const struct file_operations nvme_dev_fops = {
3440 	.owner		= THIS_MODULE,
3441 	.open		= nvme_dev_open,
3442 	.release	= nvme_dev_release,
3443 	.unlocked_ioctl	= nvme_dev_ioctl,
3444 	.compat_ioctl	= compat_ptr_ioctl,
3445 	.uring_cmd	= nvme_dev_uring_cmd,
3446 };
3447 
3448 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3449 		unsigned nsid)
3450 {
3451 	struct nvme_ns_head *h;
3452 
3453 	lockdep_assert_held(&ctrl->subsys->lock);
3454 
3455 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3456 		/*
3457 		 * Private namespaces can share NSIDs under some conditions.
3458 		 * In that case we can't use the same ns_head for namespaces
3459 		 * with the same NSID.
3460 		 */
3461 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3462 			continue;
3463 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3464 			return h;
3465 	}
3466 
3467 	return NULL;
3468 }
3469 
3470 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3471 		struct nvme_ns_ids *ids)
3472 {
3473 	bool has_uuid = !uuid_is_null(&ids->uuid);
3474 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3475 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3476 	struct nvme_ns_head *h;
3477 
3478 	lockdep_assert_held(&subsys->lock);
3479 
3480 	list_for_each_entry(h, &subsys->nsheads, entry) {
3481 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3482 			return -EINVAL;
3483 		if (has_nguid &&
3484 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3485 			return -EINVAL;
3486 		if (has_eui64 &&
3487 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3488 			return -EINVAL;
3489 	}
3490 
3491 	return 0;
3492 }
3493 
3494 static void nvme_cdev_rel(struct device *dev)
3495 {
3496 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3497 }
3498 
3499 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3500 {
3501 	cdev_device_del(cdev, cdev_device);
3502 	put_device(cdev_device);
3503 }
3504 
3505 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3506 		const struct file_operations *fops, struct module *owner)
3507 {
3508 	int minor, ret;
3509 
3510 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3511 	if (minor < 0)
3512 		return minor;
3513 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3514 	cdev_device->class = &nvme_ns_chr_class;
3515 	cdev_device->release = nvme_cdev_rel;
3516 	device_initialize(cdev_device);
3517 	cdev_init(cdev, fops);
3518 	cdev->owner = owner;
3519 	ret = cdev_device_add(cdev, cdev_device);
3520 	if (ret)
3521 		put_device(cdev_device);
3522 
3523 	return ret;
3524 }
3525 
3526 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3527 {
3528 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3529 }
3530 
3531 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3532 {
3533 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3534 	return 0;
3535 }
3536 
3537 static const struct file_operations nvme_ns_chr_fops = {
3538 	.owner		= THIS_MODULE,
3539 	.open		= nvme_ns_chr_open,
3540 	.release	= nvme_ns_chr_release,
3541 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3542 	.compat_ioctl	= compat_ptr_ioctl,
3543 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3544 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3545 };
3546 
3547 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3548 {
3549 	int ret;
3550 
3551 	ns->cdev_device.parent = ns->ctrl->device;
3552 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3553 			   ns->ctrl->instance, ns->head->instance);
3554 	if (ret)
3555 		return ret;
3556 
3557 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3558 			     ns->ctrl->ops->module);
3559 }
3560 
3561 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3562 		struct nvme_ns_info *info)
3563 {
3564 	struct nvme_ns_head *head;
3565 	size_t size = sizeof(*head);
3566 	int ret = -ENOMEM;
3567 
3568 #ifdef CONFIG_NVME_MULTIPATH
3569 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3570 #endif
3571 
3572 	head = kzalloc(size, GFP_KERNEL);
3573 	if (!head)
3574 		goto out;
3575 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3576 	if (ret < 0)
3577 		goto out_free_head;
3578 	head->instance = ret;
3579 	INIT_LIST_HEAD(&head->list);
3580 	ret = init_srcu_struct(&head->srcu);
3581 	if (ret)
3582 		goto out_ida_remove;
3583 	head->subsys = ctrl->subsys;
3584 	head->ns_id = info->nsid;
3585 	head->ids = info->ids;
3586 	head->shared = info->is_shared;
3587 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3588 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3589 	kref_init(&head->ref);
3590 
3591 	if (head->ids.csi) {
3592 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3593 		if (ret)
3594 			goto out_cleanup_srcu;
3595 	} else
3596 		head->effects = ctrl->effects;
3597 
3598 	ret = nvme_mpath_alloc_disk(ctrl, head);
3599 	if (ret)
3600 		goto out_cleanup_srcu;
3601 
3602 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3603 
3604 	kref_get(&ctrl->subsys->ref);
3605 
3606 	return head;
3607 out_cleanup_srcu:
3608 	cleanup_srcu_struct(&head->srcu);
3609 out_ida_remove:
3610 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3611 out_free_head:
3612 	kfree(head);
3613 out:
3614 	if (ret > 0)
3615 		ret = blk_status_to_errno(nvme_error_status(ret));
3616 	return ERR_PTR(ret);
3617 }
3618 
3619 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3620 		struct nvme_ns_ids *ids)
3621 {
3622 	struct nvme_subsystem *s;
3623 	int ret = 0;
3624 
3625 	/*
3626 	 * Note that this check is racy as we try to avoid holding the global
3627 	 * lock over the whole ns_head creation.  But it is only intended as
3628 	 * a sanity check anyway.
3629 	 */
3630 	mutex_lock(&nvme_subsystems_lock);
3631 	list_for_each_entry(s, &nvme_subsystems, entry) {
3632 		if (s == this)
3633 			continue;
3634 		mutex_lock(&s->lock);
3635 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3636 		mutex_unlock(&s->lock);
3637 		if (ret)
3638 			break;
3639 	}
3640 	mutex_unlock(&nvme_subsystems_lock);
3641 
3642 	return ret;
3643 }
3644 
3645 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3646 {
3647 	struct nvme_ctrl *ctrl = ns->ctrl;
3648 	struct nvme_ns_head *head = NULL;
3649 	int ret;
3650 
3651 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3652 	if (ret) {
3653 		/*
3654 		 * We've found two different namespaces on two different
3655 		 * subsystems that report the same ID.  This is pretty nasty
3656 		 * for anything that actually requires unique device
3657 		 * identification.  In the kernel we need this for multipathing,
3658 		 * and in user space the /dev/disk/by-id/ links rely on it.
3659 		 *
3660 		 * If the device also claims to be multi-path capable back off
3661 		 * here now and refuse the probe the second device as this is a
3662 		 * recipe for data corruption.  If not this is probably a
3663 		 * cheap consumer device if on the PCIe bus, so let the user
3664 		 * proceed and use the shiny toy, but warn that with changing
3665 		 * probing order (which due to our async probing could just be
3666 		 * device taking longer to startup) the other device could show
3667 		 * up at any time.
3668 		 */
3669 		nvme_print_device_info(ctrl);
3670 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3671 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3672 		     info->is_shared)) {
3673 			dev_err(ctrl->device,
3674 				"ignoring nsid %d because of duplicate IDs\n",
3675 				info->nsid);
3676 			return ret;
3677 		}
3678 
3679 		dev_err(ctrl->device,
3680 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3681 		dev_err(ctrl->device,
3682 			"use of /dev/disk/by-id/ may cause data corruption\n");
3683 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3684 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3685 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3686 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3687 	}
3688 
3689 	mutex_lock(&ctrl->subsys->lock);
3690 	head = nvme_find_ns_head(ctrl, info->nsid);
3691 	if (!head) {
3692 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3693 		if (ret) {
3694 			dev_err(ctrl->device,
3695 				"duplicate IDs in subsystem for nsid %d\n",
3696 				info->nsid);
3697 			goto out_unlock;
3698 		}
3699 		head = nvme_alloc_ns_head(ctrl, info);
3700 		if (IS_ERR(head)) {
3701 			ret = PTR_ERR(head);
3702 			goto out_unlock;
3703 		}
3704 	} else {
3705 		ret = -EINVAL;
3706 		if (!info->is_shared || !head->shared) {
3707 			dev_err(ctrl->device,
3708 				"Duplicate unshared namespace %d\n",
3709 				info->nsid);
3710 			goto out_put_ns_head;
3711 		}
3712 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3713 			dev_err(ctrl->device,
3714 				"IDs don't match for shared namespace %d\n",
3715 					info->nsid);
3716 			goto out_put_ns_head;
3717 		}
3718 
3719 		if (!multipath) {
3720 			dev_warn(ctrl->device,
3721 				"Found shared namespace %d, but multipathing not supported.\n",
3722 				info->nsid);
3723 			dev_warn_once(ctrl->device,
3724 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3725 		}
3726 	}
3727 
3728 	list_add_tail_rcu(&ns->siblings, &head->list);
3729 	ns->head = head;
3730 	mutex_unlock(&ctrl->subsys->lock);
3731 	return 0;
3732 
3733 out_put_ns_head:
3734 	nvme_put_ns_head(head);
3735 out_unlock:
3736 	mutex_unlock(&ctrl->subsys->lock);
3737 	return ret;
3738 }
3739 
3740 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3741 {
3742 	struct nvme_ns *ns, *ret = NULL;
3743 	int srcu_idx;
3744 
3745 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3746 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
3747 		if (ns->head->ns_id == nsid) {
3748 			if (!nvme_get_ns(ns))
3749 				continue;
3750 			ret = ns;
3751 			break;
3752 		}
3753 		if (ns->head->ns_id > nsid)
3754 			break;
3755 	}
3756 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3757 	return ret;
3758 }
3759 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3760 
3761 /*
3762  * Add the namespace to the controller list while keeping the list ordered.
3763  */
3764 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3765 {
3766 	struct nvme_ns *tmp;
3767 
3768 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3769 		if (tmp->head->ns_id < ns->head->ns_id) {
3770 			list_add_rcu(&ns->list, &tmp->list);
3771 			return;
3772 		}
3773 	}
3774 	list_add(&ns->list, &ns->ctrl->namespaces);
3775 }
3776 
3777 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3778 {
3779 	struct queue_limits lim = { };
3780 	struct nvme_ns *ns;
3781 	struct gendisk *disk;
3782 	int node = ctrl->numa_node;
3783 
3784 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3785 	if (!ns)
3786 		return;
3787 
3788 	if (ctrl->opts && ctrl->opts->data_digest)
3789 		lim.features |= BLK_FEAT_STABLE_WRITES;
3790 	if (ctrl->ops->supports_pci_p2pdma &&
3791 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3792 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3793 
3794 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3795 	if (IS_ERR(disk))
3796 		goto out_free_ns;
3797 	disk->fops = &nvme_bdev_ops;
3798 	disk->private_data = ns;
3799 
3800 	ns->disk = disk;
3801 	ns->queue = disk->queue;
3802 	ns->ctrl = ctrl;
3803 	kref_init(&ns->kref);
3804 
3805 	if (nvme_init_ns_head(ns, info))
3806 		goto out_cleanup_disk;
3807 
3808 	/*
3809 	 * If multipathing is enabled, the device name for all disks and not
3810 	 * just those that represent shared namespaces needs to be based on the
3811 	 * subsystem instance.  Using the controller instance for private
3812 	 * namespaces could lead to naming collisions between shared and private
3813 	 * namespaces if they don't use a common numbering scheme.
3814 	 *
3815 	 * If multipathing is not enabled, disk names must use the controller
3816 	 * instance as shared namespaces will show up as multiple block
3817 	 * devices.
3818 	 */
3819 	if (nvme_ns_head_multipath(ns->head)) {
3820 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3821 			ctrl->instance, ns->head->instance);
3822 		disk->flags |= GENHD_FL_HIDDEN;
3823 	} else if (multipath) {
3824 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3825 			ns->head->instance);
3826 	} else {
3827 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3828 			ns->head->instance);
3829 	}
3830 
3831 	if (nvme_update_ns_info(ns, info))
3832 		goto out_unlink_ns;
3833 
3834 	mutex_lock(&ctrl->namespaces_lock);
3835 	/*
3836 	 * Ensure that no namespaces are added to the ctrl list after the queues
3837 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3838 	 */
3839 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3840 		mutex_unlock(&ctrl->namespaces_lock);
3841 		goto out_unlink_ns;
3842 	}
3843 	nvme_ns_add_to_ctrl_list(ns);
3844 	mutex_unlock(&ctrl->namespaces_lock);
3845 	synchronize_srcu(&ctrl->srcu);
3846 	nvme_get_ctrl(ctrl);
3847 
3848 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3849 		goto out_cleanup_ns_from_list;
3850 
3851 	if (!nvme_ns_head_multipath(ns->head))
3852 		nvme_add_ns_cdev(ns);
3853 
3854 	nvme_mpath_add_disk(ns, info->anagrpid);
3855 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3856 
3857 	/*
3858 	 * Set ns->disk->device->driver_data to ns so we can access
3859 	 * ns->head->passthru_err_log_enabled in
3860 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3861 	 */
3862 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3863 
3864 	return;
3865 
3866  out_cleanup_ns_from_list:
3867 	nvme_put_ctrl(ctrl);
3868 	mutex_lock(&ctrl->namespaces_lock);
3869 	list_del_rcu(&ns->list);
3870 	mutex_unlock(&ctrl->namespaces_lock);
3871 	synchronize_srcu(&ctrl->srcu);
3872  out_unlink_ns:
3873 	mutex_lock(&ctrl->subsys->lock);
3874 	list_del_rcu(&ns->siblings);
3875 	if (list_empty(&ns->head->list))
3876 		list_del_init(&ns->head->entry);
3877 	mutex_unlock(&ctrl->subsys->lock);
3878 	nvme_put_ns_head(ns->head);
3879  out_cleanup_disk:
3880 	put_disk(disk);
3881  out_free_ns:
3882 	kfree(ns);
3883 }
3884 
3885 static void nvme_ns_remove(struct nvme_ns *ns)
3886 {
3887 	bool last_path = false;
3888 
3889 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3890 		return;
3891 
3892 	clear_bit(NVME_NS_READY, &ns->flags);
3893 	set_capacity(ns->disk, 0);
3894 	nvme_fault_inject_fini(&ns->fault_inject);
3895 
3896 	/*
3897 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3898 	 * this ns going back into current_path.
3899 	 */
3900 	synchronize_srcu(&ns->head->srcu);
3901 
3902 	/* wait for concurrent submissions */
3903 	if (nvme_mpath_clear_current_path(ns))
3904 		synchronize_srcu(&ns->head->srcu);
3905 
3906 	mutex_lock(&ns->ctrl->subsys->lock);
3907 	list_del_rcu(&ns->siblings);
3908 	if (list_empty(&ns->head->list)) {
3909 		list_del_init(&ns->head->entry);
3910 		last_path = true;
3911 	}
3912 	mutex_unlock(&ns->ctrl->subsys->lock);
3913 
3914 	/* guarantee not available in head->list */
3915 	synchronize_srcu(&ns->head->srcu);
3916 
3917 	if (!nvme_ns_head_multipath(ns->head))
3918 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3919 	del_gendisk(ns->disk);
3920 
3921 	mutex_lock(&ns->ctrl->namespaces_lock);
3922 	list_del_rcu(&ns->list);
3923 	mutex_unlock(&ns->ctrl->namespaces_lock);
3924 	synchronize_srcu(&ns->ctrl->srcu);
3925 
3926 	if (last_path)
3927 		nvme_mpath_shutdown_disk(ns->head);
3928 	nvme_put_ns(ns);
3929 }
3930 
3931 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3932 {
3933 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3934 
3935 	if (ns) {
3936 		nvme_ns_remove(ns);
3937 		nvme_put_ns(ns);
3938 	}
3939 }
3940 
3941 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3942 {
3943 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3944 
3945 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3946 		dev_err(ns->ctrl->device,
3947 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3948 		goto out;
3949 	}
3950 
3951 	ret = nvme_update_ns_info(ns, info);
3952 out:
3953 	/*
3954 	 * Only remove the namespace if we got a fatal error back from the
3955 	 * device, otherwise ignore the error and just move on.
3956 	 *
3957 	 * TODO: we should probably schedule a delayed retry here.
3958 	 */
3959 	if (ret > 0 && (ret & NVME_SC_DNR))
3960 		nvme_ns_remove(ns);
3961 }
3962 
3963 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3964 {
3965 	struct nvme_ns_info info = { .nsid = nsid };
3966 	struct nvme_ns *ns;
3967 	int ret;
3968 
3969 	if (nvme_identify_ns_descs(ctrl, &info))
3970 		return;
3971 
3972 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3973 		dev_warn(ctrl->device,
3974 			"command set not reported for nsid: %d\n", nsid);
3975 		return;
3976 	}
3977 
3978 	/*
3979 	 * If available try to use the Command Set Idependent Identify Namespace
3980 	 * data structure to find all the generic information that is needed to
3981 	 * set up a namespace.  If not fall back to the legacy version.
3982 	 */
3983 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3984 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3985 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3986 	else
3987 		ret = nvme_ns_info_from_identify(ctrl, &info);
3988 
3989 	if (info.is_removed)
3990 		nvme_ns_remove_by_nsid(ctrl, nsid);
3991 
3992 	/*
3993 	 * Ignore the namespace if it is not ready. We will get an AEN once it
3994 	 * becomes ready and restart the scan.
3995 	 */
3996 	if (ret || !info.is_ready)
3997 		return;
3998 
3999 	ns = nvme_find_get_ns(ctrl, nsid);
4000 	if (ns) {
4001 		nvme_validate_ns(ns, &info);
4002 		nvme_put_ns(ns);
4003 	} else {
4004 		nvme_alloc_ns(ctrl, &info);
4005 	}
4006 }
4007 
4008 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4009 					unsigned nsid)
4010 {
4011 	struct nvme_ns *ns, *next;
4012 	LIST_HEAD(rm_list);
4013 
4014 	mutex_lock(&ctrl->namespaces_lock);
4015 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4016 		if (ns->head->ns_id > nsid)
4017 			list_splice_init_rcu(&ns->list, &rm_list,
4018 					     synchronize_rcu);
4019 	}
4020 	mutex_unlock(&ctrl->namespaces_lock);
4021 	synchronize_srcu(&ctrl->srcu);
4022 
4023 	list_for_each_entry_safe(ns, next, &rm_list, list)
4024 		nvme_ns_remove(ns);
4025 }
4026 
4027 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4028 {
4029 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4030 	__le32 *ns_list;
4031 	u32 prev = 0;
4032 	int ret = 0, i;
4033 
4034 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4035 	if (!ns_list)
4036 		return -ENOMEM;
4037 
4038 	for (;;) {
4039 		struct nvme_command cmd = {
4040 			.identify.opcode	= nvme_admin_identify,
4041 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4042 			.identify.nsid		= cpu_to_le32(prev),
4043 		};
4044 
4045 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4046 					    NVME_IDENTIFY_DATA_SIZE);
4047 		if (ret) {
4048 			dev_warn(ctrl->device,
4049 				"Identify NS List failed (status=0x%x)\n", ret);
4050 			goto free;
4051 		}
4052 
4053 		for (i = 0; i < nr_entries; i++) {
4054 			u32 nsid = le32_to_cpu(ns_list[i]);
4055 
4056 			if (!nsid)	/* end of the list? */
4057 				goto out;
4058 			nvme_scan_ns(ctrl, nsid);
4059 			while (++prev < nsid)
4060 				nvme_ns_remove_by_nsid(ctrl, prev);
4061 		}
4062 	}
4063  out:
4064 	nvme_remove_invalid_namespaces(ctrl, prev);
4065  free:
4066 	kfree(ns_list);
4067 	return ret;
4068 }
4069 
4070 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4071 {
4072 	struct nvme_id_ctrl *id;
4073 	u32 nn, i;
4074 
4075 	if (nvme_identify_ctrl(ctrl, &id))
4076 		return;
4077 	nn = le32_to_cpu(id->nn);
4078 	kfree(id);
4079 
4080 	for (i = 1; i <= nn; i++)
4081 		nvme_scan_ns(ctrl, i);
4082 
4083 	nvme_remove_invalid_namespaces(ctrl, nn);
4084 }
4085 
4086 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4087 {
4088 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4089 	__le32 *log;
4090 	int error;
4091 
4092 	log = kzalloc(log_size, GFP_KERNEL);
4093 	if (!log)
4094 		return;
4095 
4096 	/*
4097 	 * We need to read the log to clear the AEN, but we don't want to rely
4098 	 * on it for the changed namespace information as userspace could have
4099 	 * raced with us in reading the log page, which could cause us to miss
4100 	 * updates.
4101 	 */
4102 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4103 			NVME_CSI_NVM, log, log_size, 0);
4104 	if (error)
4105 		dev_warn(ctrl->device,
4106 			"reading changed ns log failed: %d\n", error);
4107 
4108 	kfree(log);
4109 }
4110 
4111 static void nvme_scan_work(struct work_struct *work)
4112 {
4113 	struct nvme_ctrl *ctrl =
4114 		container_of(work, struct nvme_ctrl, scan_work);
4115 	int ret;
4116 
4117 	/* No tagset on a live ctrl means IO queues could not created */
4118 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4119 		return;
4120 
4121 	/*
4122 	 * Identify controller limits can change at controller reset due to
4123 	 * new firmware download, even though it is not common we cannot ignore
4124 	 * such scenario. Controller's non-mdts limits are reported in the unit
4125 	 * of logical blocks that is dependent on the format of attached
4126 	 * namespace. Hence re-read the limits at the time of ns allocation.
4127 	 */
4128 	ret = nvme_init_non_mdts_limits(ctrl);
4129 	if (ret < 0) {
4130 		dev_warn(ctrl->device,
4131 			"reading non-mdts-limits failed: %d\n", ret);
4132 		return;
4133 	}
4134 
4135 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4136 		dev_info(ctrl->device, "rescanning namespaces.\n");
4137 		nvme_clear_changed_ns_log(ctrl);
4138 	}
4139 
4140 	mutex_lock(&ctrl->scan_lock);
4141 	if (nvme_ctrl_limited_cns(ctrl)) {
4142 		nvme_scan_ns_sequential(ctrl);
4143 	} else {
4144 		/*
4145 		 * Fall back to sequential scan if DNR is set to handle broken
4146 		 * devices which should support Identify NS List (as per the VS
4147 		 * they report) but don't actually support it.
4148 		 */
4149 		ret = nvme_scan_ns_list(ctrl);
4150 		if (ret > 0 && ret & NVME_SC_DNR)
4151 			nvme_scan_ns_sequential(ctrl);
4152 	}
4153 	mutex_unlock(&ctrl->scan_lock);
4154 }
4155 
4156 /*
4157  * This function iterates the namespace list unlocked to allow recovery from
4158  * controller failure. It is up to the caller to ensure the namespace list is
4159  * not modified by scan work while this function is executing.
4160  */
4161 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4162 {
4163 	struct nvme_ns *ns, *next;
4164 	LIST_HEAD(ns_list);
4165 
4166 	/*
4167 	 * make sure to requeue I/O to all namespaces as these
4168 	 * might result from the scan itself and must complete
4169 	 * for the scan_work to make progress
4170 	 */
4171 	nvme_mpath_clear_ctrl_paths(ctrl);
4172 
4173 	/*
4174 	 * Unquiesce io queues so any pending IO won't hang, especially
4175 	 * those submitted from scan work
4176 	 */
4177 	nvme_unquiesce_io_queues(ctrl);
4178 
4179 	/* prevent racing with ns scanning */
4180 	flush_work(&ctrl->scan_work);
4181 
4182 	/*
4183 	 * The dead states indicates the controller was not gracefully
4184 	 * disconnected. In that case, we won't be able to flush any data while
4185 	 * removing the namespaces' disks; fail all the queues now to avoid
4186 	 * potentially having to clean up the failed sync later.
4187 	 */
4188 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4189 		nvme_mark_namespaces_dead(ctrl);
4190 
4191 	/* this is a no-op when called from the controller reset handler */
4192 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4193 
4194 	mutex_lock(&ctrl->namespaces_lock);
4195 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4196 	mutex_unlock(&ctrl->namespaces_lock);
4197 	synchronize_srcu(&ctrl->srcu);
4198 
4199 	list_for_each_entry_safe(ns, next, &ns_list, list)
4200 		nvme_ns_remove(ns);
4201 }
4202 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4203 
4204 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4205 {
4206 	const struct nvme_ctrl *ctrl =
4207 		container_of(dev, struct nvme_ctrl, ctrl_device);
4208 	struct nvmf_ctrl_options *opts = ctrl->opts;
4209 	int ret;
4210 
4211 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4212 	if (ret)
4213 		return ret;
4214 
4215 	if (opts) {
4216 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4217 		if (ret)
4218 			return ret;
4219 
4220 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4221 				opts->trsvcid ?: "none");
4222 		if (ret)
4223 			return ret;
4224 
4225 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4226 				opts->host_traddr ?: "none");
4227 		if (ret)
4228 			return ret;
4229 
4230 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4231 				opts->host_iface ?: "none");
4232 	}
4233 	return ret;
4234 }
4235 
4236 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4237 {
4238 	char *envp[2] = { envdata, NULL };
4239 
4240 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4241 }
4242 
4243 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4244 {
4245 	char *envp[2] = { NULL, NULL };
4246 	u32 aen_result = ctrl->aen_result;
4247 
4248 	ctrl->aen_result = 0;
4249 	if (!aen_result)
4250 		return;
4251 
4252 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4253 	if (!envp[0])
4254 		return;
4255 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4256 	kfree(envp[0]);
4257 }
4258 
4259 static void nvme_async_event_work(struct work_struct *work)
4260 {
4261 	struct nvme_ctrl *ctrl =
4262 		container_of(work, struct nvme_ctrl, async_event_work);
4263 
4264 	nvme_aen_uevent(ctrl);
4265 
4266 	/*
4267 	 * The transport drivers must guarantee AER submission here is safe by
4268 	 * flushing ctrl async_event_work after changing the controller state
4269 	 * from LIVE and before freeing the admin queue.
4270 	*/
4271 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4272 		ctrl->ops->submit_async_event(ctrl);
4273 }
4274 
4275 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4276 {
4277 
4278 	u32 csts;
4279 
4280 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4281 		return false;
4282 
4283 	if (csts == ~0)
4284 		return false;
4285 
4286 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4287 }
4288 
4289 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4290 {
4291 	struct nvme_fw_slot_info_log *log;
4292 	u8 next_fw_slot, cur_fw_slot;
4293 
4294 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4295 	if (!log)
4296 		return;
4297 
4298 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4299 			 log, sizeof(*log), 0)) {
4300 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4301 		goto out_free_log;
4302 	}
4303 
4304 	cur_fw_slot = log->afi & 0x7;
4305 	next_fw_slot = (log->afi & 0x70) >> 4;
4306 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4307 		dev_info(ctrl->device,
4308 			 "Firmware is activated after next Controller Level Reset\n");
4309 		goto out_free_log;
4310 	}
4311 
4312 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4313 		sizeof(ctrl->subsys->firmware_rev));
4314 
4315 out_free_log:
4316 	kfree(log);
4317 }
4318 
4319 static void nvme_fw_act_work(struct work_struct *work)
4320 {
4321 	struct nvme_ctrl *ctrl = container_of(work,
4322 				struct nvme_ctrl, fw_act_work);
4323 	unsigned long fw_act_timeout;
4324 
4325 	nvme_auth_stop(ctrl);
4326 
4327 	if (ctrl->mtfa)
4328 		fw_act_timeout = jiffies +
4329 				msecs_to_jiffies(ctrl->mtfa * 100);
4330 	else
4331 		fw_act_timeout = jiffies +
4332 				msecs_to_jiffies(admin_timeout * 1000);
4333 
4334 	nvme_quiesce_io_queues(ctrl);
4335 	while (nvme_ctrl_pp_status(ctrl)) {
4336 		if (time_after(jiffies, fw_act_timeout)) {
4337 			dev_warn(ctrl->device,
4338 				"Fw activation timeout, reset controller\n");
4339 			nvme_try_sched_reset(ctrl);
4340 			return;
4341 		}
4342 		msleep(100);
4343 	}
4344 
4345 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4346 		return;
4347 
4348 	nvme_unquiesce_io_queues(ctrl);
4349 	/* read FW slot information to clear the AER */
4350 	nvme_get_fw_slot_info(ctrl);
4351 
4352 	queue_work(nvme_wq, &ctrl->async_event_work);
4353 }
4354 
4355 static u32 nvme_aer_type(u32 result)
4356 {
4357 	return result & 0x7;
4358 }
4359 
4360 static u32 nvme_aer_subtype(u32 result)
4361 {
4362 	return (result & 0xff00) >> 8;
4363 }
4364 
4365 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4366 {
4367 	u32 aer_notice_type = nvme_aer_subtype(result);
4368 	bool requeue = true;
4369 
4370 	switch (aer_notice_type) {
4371 	case NVME_AER_NOTICE_NS_CHANGED:
4372 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4373 		nvme_queue_scan(ctrl);
4374 		break;
4375 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4376 		/*
4377 		 * We are (ab)using the RESETTING state to prevent subsequent
4378 		 * recovery actions from interfering with the controller's
4379 		 * firmware activation.
4380 		 */
4381 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4382 			requeue = false;
4383 			queue_work(nvme_wq, &ctrl->fw_act_work);
4384 		}
4385 		break;
4386 #ifdef CONFIG_NVME_MULTIPATH
4387 	case NVME_AER_NOTICE_ANA:
4388 		if (!ctrl->ana_log_buf)
4389 			break;
4390 		queue_work(nvme_wq, &ctrl->ana_work);
4391 		break;
4392 #endif
4393 	case NVME_AER_NOTICE_DISC_CHANGED:
4394 		ctrl->aen_result = result;
4395 		break;
4396 	default:
4397 		dev_warn(ctrl->device, "async event result %08x\n", result);
4398 	}
4399 	return requeue;
4400 }
4401 
4402 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4403 {
4404 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4405 	nvme_reset_ctrl(ctrl);
4406 }
4407 
4408 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4409 		volatile union nvme_result *res)
4410 {
4411 	u32 result = le32_to_cpu(res->u32);
4412 	u32 aer_type = nvme_aer_type(result);
4413 	u32 aer_subtype = nvme_aer_subtype(result);
4414 	bool requeue = true;
4415 
4416 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4417 		return;
4418 
4419 	trace_nvme_async_event(ctrl, result);
4420 	switch (aer_type) {
4421 	case NVME_AER_NOTICE:
4422 		requeue = nvme_handle_aen_notice(ctrl, result);
4423 		break;
4424 	case NVME_AER_ERROR:
4425 		/*
4426 		 * For a persistent internal error, don't run async_event_work
4427 		 * to submit a new AER. The controller reset will do it.
4428 		 */
4429 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4430 			nvme_handle_aer_persistent_error(ctrl);
4431 			return;
4432 		}
4433 		fallthrough;
4434 	case NVME_AER_SMART:
4435 	case NVME_AER_CSS:
4436 	case NVME_AER_VS:
4437 		ctrl->aen_result = result;
4438 		break;
4439 	default:
4440 		break;
4441 	}
4442 
4443 	if (requeue)
4444 		queue_work(nvme_wq, &ctrl->async_event_work);
4445 }
4446 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4447 
4448 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4449 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4450 {
4451 	struct queue_limits lim = {};
4452 	int ret;
4453 
4454 	memset(set, 0, sizeof(*set));
4455 	set->ops = ops;
4456 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4457 	if (ctrl->ops->flags & NVME_F_FABRICS)
4458 		/* Reserved for fabric connect and keep alive */
4459 		set->reserved_tags = 2;
4460 	set->numa_node = ctrl->numa_node;
4461 	set->flags = BLK_MQ_F_NO_SCHED;
4462 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4463 		set->flags |= BLK_MQ_F_BLOCKING;
4464 	set->cmd_size = cmd_size;
4465 	set->driver_data = ctrl;
4466 	set->nr_hw_queues = 1;
4467 	set->timeout = NVME_ADMIN_TIMEOUT;
4468 	ret = blk_mq_alloc_tag_set(set);
4469 	if (ret)
4470 		return ret;
4471 
4472 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4473 	if (IS_ERR(ctrl->admin_q)) {
4474 		ret = PTR_ERR(ctrl->admin_q);
4475 		goto out_free_tagset;
4476 	}
4477 
4478 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4479 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4480 		if (IS_ERR(ctrl->fabrics_q)) {
4481 			ret = PTR_ERR(ctrl->fabrics_q);
4482 			goto out_cleanup_admin_q;
4483 		}
4484 	}
4485 
4486 	ctrl->admin_tagset = set;
4487 	return 0;
4488 
4489 out_cleanup_admin_q:
4490 	blk_mq_destroy_queue(ctrl->admin_q);
4491 	blk_put_queue(ctrl->admin_q);
4492 out_free_tagset:
4493 	blk_mq_free_tag_set(set);
4494 	ctrl->admin_q = NULL;
4495 	ctrl->fabrics_q = NULL;
4496 	return ret;
4497 }
4498 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4499 
4500 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4501 {
4502 	blk_mq_destroy_queue(ctrl->admin_q);
4503 	blk_put_queue(ctrl->admin_q);
4504 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4505 		blk_mq_destroy_queue(ctrl->fabrics_q);
4506 		blk_put_queue(ctrl->fabrics_q);
4507 	}
4508 	blk_mq_free_tag_set(ctrl->admin_tagset);
4509 }
4510 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4511 
4512 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4513 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4514 		unsigned int cmd_size)
4515 {
4516 	int ret;
4517 
4518 	memset(set, 0, sizeof(*set));
4519 	set->ops = ops;
4520 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4521 	/*
4522 	 * Some Apple controllers requires tags to be unique across admin and
4523 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4524 	 */
4525 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4526 		set->reserved_tags = NVME_AQ_DEPTH;
4527 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4528 		/* Reserved for fabric connect */
4529 		set->reserved_tags = 1;
4530 	set->numa_node = ctrl->numa_node;
4531 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4532 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4533 		set->flags |= BLK_MQ_F_BLOCKING;
4534 	set->cmd_size = cmd_size,
4535 	set->driver_data = ctrl;
4536 	set->nr_hw_queues = ctrl->queue_count - 1;
4537 	set->timeout = NVME_IO_TIMEOUT;
4538 	set->nr_maps = nr_maps;
4539 	ret = blk_mq_alloc_tag_set(set);
4540 	if (ret)
4541 		return ret;
4542 
4543 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4544 		struct queue_limits lim = {
4545 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4546 		};
4547 
4548 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4549         	if (IS_ERR(ctrl->connect_q)) {
4550 			ret = PTR_ERR(ctrl->connect_q);
4551 			goto out_free_tag_set;
4552 		}
4553 	}
4554 
4555 	ctrl->tagset = set;
4556 	return 0;
4557 
4558 out_free_tag_set:
4559 	blk_mq_free_tag_set(set);
4560 	ctrl->connect_q = NULL;
4561 	return ret;
4562 }
4563 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4564 
4565 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4566 {
4567 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4568 		blk_mq_destroy_queue(ctrl->connect_q);
4569 		blk_put_queue(ctrl->connect_q);
4570 	}
4571 	blk_mq_free_tag_set(ctrl->tagset);
4572 }
4573 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4574 
4575 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4576 {
4577 	nvme_mpath_stop(ctrl);
4578 	nvme_auth_stop(ctrl);
4579 	nvme_stop_keep_alive(ctrl);
4580 	nvme_stop_failfast_work(ctrl);
4581 	flush_work(&ctrl->async_event_work);
4582 	cancel_work_sync(&ctrl->fw_act_work);
4583 	if (ctrl->ops->stop_ctrl)
4584 		ctrl->ops->stop_ctrl(ctrl);
4585 }
4586 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4587 
4588 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4589 {
4590 	nvme_enable_aen(ctrl);
4591 
4592 	/*
4593 	 * persistent discovery controllers need to send indication to userspace
4594 	 * to re-read the discovery log page to learn about possible changes
4595 	 * that were missed. We identify persistent discovery controllers by
4596 	 * checking that they started once before, hence are reconnecting back.
4597 	 */
4598 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4599 	    nvme_discovery_ctrl(ctrl))
4600 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4601 
4602 	if (ctrl->queue_count > 1) {
4603 		nvme_queue_scan(ctrl);
4604 		nvme_unquiesce_io_queues(ctrl);
4605 		nvme_mpath_update(ctrl);
4606 	}
4607 
4608 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4609 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4610 }
4611 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4612 
4613 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4614 {
4615 	nvme_hwmon_exit(ctrl);
4616 	nvme_fault_inject_fini(&ctrl->fault_inject);
4617 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4618 	cdev_device_del(&ctrl->cdev, ctrl->device);
4619 	nvme_put_ctrl(ctrl);
4620 }
4621 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4622 
4623 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4624 {
4625 	struct nvme_effects_log	*cel;
4626 	unsigned long i;
4627 
4628 	xa_for_each(&ctrl->cels, i, cel) {
4629 		xa_erase(&ctrl->cels, i);
4630 		kfree(cel);
4631 	}
4632 
4633 	xa_destroy(&ctrl->cels);
4634 }
4635 
4636 static void nvme_free_ctrl(struct device *dev)
4637 {
4638 	struct nvme_ctrl *ctrl =
4639 		container_of(dev, struct nvme_ctrl, ctrl_device);
4640 	struct nvme_subsystem *subsys = ctrl->subsys;
4641 
4642 	if (!subsys || ctrl->instance != subsys->instance)
4643 		ida_free(&nvme_instance_ida, ctrl->instance);
4644 	key_put(ctrl->tls_key);
4645 	nvme_free_cels(ctrl);
4646 	nvme_mpath_uninit(ctrl);
4647 	cleanup_srcu_struct(&ctrl->srcu);
4648 	nvme_auth_stop(ctrl);
4649 	nvme_auth_free(ctrl);
4650 	__free_page(ctrl->discard_page);
4651 	free_opal_dev(ctrl->opal_dev);
4652 
4653 	if (subsys) {
4654 		mutex_lock(&nvme_subsystems_lock);
4655 		list_del(&ctrl->subsys_entry);
4656 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4657 		mutex_unlock(&nvme_subsystems_lock);
4658 	}
4659 
4660 	ctrl->ops->free_ctrl(ctrl);
4661 
4662 	if (subsys)
4663 		nvme_put_subsystem(subsys);
4664 }
4665 
4666 /*
4667  * Initialize a NVMe controller structures.  This needs to be called during
4668  * earliest initialization so that we have the initialized structured around
4669  * during probing.
4670  */
4671 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4672 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4673 {
4674 	int ret;
4675 
4676 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4677 	ctrl->passthru_err_log_enabled = false;
4678 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4679 	spin_lock_init(&ctrl->lock);
4680 	mutex_init(&ctrl->namespaces_lock);
4681 
4682 	ret = init_srcu_struct(&ctrl->srcu);
4683 	if (ret)
4684 		return ret;
4685 
4686 	mutex_init(&ctrl->scan_lock);
4687 	INIT_LIST_HEAD(&ctrl->namespaces);
4688 	xa_init(&ctrl->cels);
4689 	ctrl->dev = dev;
4690 	ctrl->ops = ops;
4691 	ctrl->quirks = quirks;
4692 	ctrl->numa_node = NUMA_NO_NODE;
4693 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4694 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4695 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4696 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4697 	init_waitqueue_head(&ctrl->state_wq);
4698 
4699 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4700 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4701 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4702 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4703 	ctrl->ka_last_check_time = jiffies;
4704 
4705 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4706 			PAGE_SIZE);
4707 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4708 	if (!ctrl->discard_page) {
4709 		ret = -ENOMEM;
4710 		goto out;
4711 	}
4712 
4713 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4714 	if (ret < 0)
4715 		goto out;
4716 	ctrl->instance = ret;
4717 
4718 	device_initialize(&ctrl->ctrl_device);
4719 	ctrl->device = &ctrl->ctrl_device;
4720 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4721 			ctrl->instance);
4722 	ctrl->device->class = &nvme_class;
4723 	ctrl->device->parent = ctrl->dev;
4724 	if (ops->dev_attr_groups)
4725 		ctrl->device->groups = ops->dev_attr_groups;
4726 	else
4727 		ctrl->device->groups = nvme_dev_attr_groups;
4728 	ctrl->device->release = nvme_free_ctrl;
4729 	dev_set_drvdata(ctrl->device, ctrl);
4730 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4731 	if (ret)
4732 		goto out_release_instance;
4733 
4734 	nvme_get_ctrl(ctrl);
4735 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4736 	ctrl->cdev.owner = ops->module;
4737 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4738 	if (ret)
4739 		goto out_free_name;
4740 
4741 	/*
4742 	 * Initialize latency tolerance controls.  The sysfs files won't
4743 	 * be visible to userspace unless the device actually supports APST.
4744 	 */
4745 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4746 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4747 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4748 
4749 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4750 	nvme_mpath_init_ctrl(ctrl);
4751 	ret = nvme_auth_init_ctrl(ctrl);
4752 	if (ret)
4753 		goto out_free_cdev;
4754 
4755 	return 0;
4756 out_free_cdev:
4757 	nvme_fault_inject_fini(&ctrl->fault_inject);
4758 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4759 	cdev_device_del(&ctrl->cdev, ctrl->device);
4760 out_free_name:
4761 	nvme_put_ctrl(ctrl);
4762 	kfree_const(ctrl->device->kobj.name);
4763 out_release_instance:
4764 	ida_free(&nvme_instance_ida, ctrl->instance);
4765 out:
4766 	if (ctrl->discard_page)
4767 		__free_page(ctrl->discard_page);
4768 	cleanup_srcu_struct(&ctrl->srcu);
4769 	return ret;
4770 }
4771 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4772 
4773 /* let I/O to all namespaces fail in preparation for surprise removal */
4774 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4775 {
4776 	struct nvme_ns *ns;
4777 	int srcu_idx;
4778 
4779 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4780 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4781 		blk_mark_disk_dead(ns->disk);
4782 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4783 }
4784 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4785 
4786 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4787 {
4788 	struct nvme_ns *ns;
4789 	int srcu_idx;
4790 
4791 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4792 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4793 		blk_mq_unfreeze_queue(ns->queue);
4794 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4795 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4796 }
4797 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4798 
4799 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4800 {
4801 	struct nvme_ns *ns;
4802 	int srcu_idx;
4803 
4804 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4805 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
4806 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4807 		if (timeout <= 0)
4808 			break;
4809 	}
4810 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4811 	return timeout;
4812 }
4813 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4814 
4815 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4816 {
4817 	struct nvme_ns *ns;
4818 	int srcu_idx;
4819 
4820 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4821 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4822 		blk_mq_freeze_queue_wait(ns->queue);
4823 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4824 }
4825 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4826 
4827 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4828 {
4829 	struct nvme_ns *ns;
4830 	int srcu_idx;
4831 
4832 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4833 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4834 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4835 		blk_freeze_queue_start(ns->queue);
4836 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4837 }
4838 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4839 
4840 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4841 {
4842 	if (!ctrl->tagset)
4843 		return;
4844 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4845 		blk_mq_quiesce_tagset(ctrl->tagset);
4846 	else
4847 		blk_mq_wait_quiesce_done(ctrl->tagset);
4848 }
4849 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4850 
4851 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4852 {
4853 	if (!ctrl->tagset)
4854 		return;
4855 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4856 		blk_mq_unquiesce_tagset(ctrl->tagset);
4857 }
4858 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4859 
4860 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4861 {
4862 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4863 		blk_mq_quiesce_queue(ctrl->admin_q);
4864 	else
4865 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4866 }
4867 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4868 
4869 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4870 {
4871 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4872 		blk_mq_unquiesce_queue(ctrl->admin_q);
4873 }
4874 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4875 
4876 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4877 {
4878 	struct nvme_ns *ns;
4879 	int srcu_idx;
4880 
4881 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4882 	list_for_each_entry_rcu(ns, &ctrl->namespaces, list)
4883 		blk_sync_queue(ns->queue);
4884 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4885 }
4886 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4887 
4888 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4889 {
4890 	nvme_sync_io_queues(ctrl);
4891 	if (ctrl->admin_q)
4892 		blk_sync_queue(ctrl->admin_q);
4893 }
4894 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4895 
4896 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4897 {
4898 	if (file->f_op != &nvme_dev_fops)
4899 		return NULL;
4900 	return file->private_data;
4901 }
4902 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4903 
4904 /*
4905  * Check we didn't inadvertently grow the command structure sizes:
4906  */
4907 static inline void _nvme_check_size(void)
4908 {
4909 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4910 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4911 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4912 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4913 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4914 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4915 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4916 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4917 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4918 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4919 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4920 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4921 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4922 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4923 			NVME_IDENTIFY_DATA_SIZE);
4924 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4925 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4926 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4927 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4928 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4929 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4930 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4931 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4932 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4933 }
4934 
4935 
4936 static int __init nvme_core_init(void)
4937 {
4938 	int result = -ENOMEM;
4939 
4940 	_nvme_check_size();
4941 
4942 	nvme_wq = alloc_workqueue("nvme-wq",
4943 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4944 	if (!nvme_wq)
4945 		goto out;
4946 
4947 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4948 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4949 	if (!nvme_reset_wq)
4950 		goto destroy_wq;
4951 
4952 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4953 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4954 	if (!nvme_delete_wq)
4955 		goto destroy_reset_wq;
4956 
4957 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4958 			NVME_MINORS, "nvme");
4959 	if (result < 0)
4960 		goto destroy_delete_wq;
4961 
4962 	result = class_register(&nvme_class);
4963 	if (result)
4964 		goto unregister_chrdev;
4965 
4966 	result = class_register(&nvme_subsys_class);
4967 	if (result)
4968 		goto destroy_class;
4969 
4970 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4971 				     "nvme-generic");
4972 	if (result < 0)
4973 		goto destroy_subsys_class;
4974 
4975 	result = class_register(&nvme_ns_chr_class);
4976 	if (result)
4977 		goto unregister_generic_ns;
4978 
4979 	result = nvme_init_auth();
4980 	if (result)
4981 		goto destroy_ns_chr;
4982 	return 0;
4983 
4984 destroy_ns_chr:
4985 	class_unregister(&nvme_ns_chr_class);
4986 unregister_generic_ns:
4987 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4988 destroy_subsys_class:
4989 	class_unregister(&nvme_subsys_class);
4990 destroy_class:
4991 	class_unregister(&nvme_class);
4992 unregister_chrdev:
4993 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4994 destroy_delete_wq:
4995 	destroy_workqueue(nvme_delete_wq);
4996 destroy_reset_wq:
4997 	destroy_workqueue(nvme_reset_wq);
4998 destroy_wq:
4999 	destroy_workqueue(nvme_wq);
5000 out:
5001 	return result;
5002 }
5003 
5004 static void __exit nvme_core_exit(void)
5005 {
5006 	nvme_exit_auth();
5007 	class_unregister(&nvme_ns_chr_class);
5008 	class_unregister(&nvme_subsys_class);
5009 	class_unregister(&nvme_class);
5010 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5011 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5012 	destroy_workqueue(nvme_delete_wq);
5013 	destroy_workqueue(nvme_reset_wq);
5014 	destroy_workqueue(nvme_wq);
5015 	ida_destroy(&nvme_ns_chr_minor_ida);
5016 	ida_destroy(&nvme_instance_ida);
5017 }
5018 
5019 MODULE_LICENSE("GPL");
5020 MODULE_VERSION("1.0");
5021 MODULE_DESCRIPTION("NVMe host core framework");
5022 module_init(nvme_core_init);
5023 module_exit(nvme_core_exit);
5024