xref: /linux/drivers/nvme/host/core.c (revision 55223394d56bab42ebac71ba52e0fd8bfdc6fc07)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/list_sort.h>
15 #include <linux/slab.h>
16 #include <linux/types.h>
17 #include <linux/pr.h>
18 #include <linux/ptrace.h>
19 #include <linux/nvme_ioctl.h>
20 #include <linux/t10-pi.h>
21 #include <linux/pm_qos.h>
22 #include <asm/unaligned.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 
30 #define NVME_MINORS		(1U << MINORBITS)
31 
32 unsigned int admin_timeout = 60;
33 module_param(admin_timeout, uint, 0644);
34 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
35 EXPORT_SYMBOL_GPL(admin_timeout);
36 
37 unsigned int nvme_io_timeout = 30;
38 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
39 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
40 EXPORT_SYMBOL_GPL(nvme_io_timeout);
41 
42 static unsigned char shutdown_timeout = 5;
43 module_param(shutdown_timeout, byte, 0644);
44 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
45 
46 static u8 nvme_max_retries = 5;
47 module_param_named(max_retries, nvme_max_retries, byte, 0644);
48 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
49 
50 static unsigned long default_ps_max_latency_us = 100000;
51 module_param(default_ps_max_latency_us, ulong, 0644);
52 MODULE_PARM_DESC(default_ps_max_latency_us,
53 		 "max power saving latency for new devices; use PM QOS to change per device");
54 
55 static bool force_apst;
56 module_param(force_apst, bool, 0644);
57 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
58 
59 static bool streams;
60 module_param(streams, bool, 0644);
61 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
62 
63 /*
64  * nvme_wq - hosts nvme related works that are not reset or delete
65  * nvme_reset_wq - hosts nvme reset works
66  * nvme_delete_wq - hosts nvme delete works
67  *
68  * nvme_wq will host works such are scan, aen handling, fw activation,
69  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
70  * runs reset works which also flush works hosted on nvme_wq for
71  * serialization purposes. nvme_delete_wq host controller deletion
72  * works which flush reset works for serialization.
73  */
74 struct workqueue_struct *nvme_wq;
75 EXPORT_SYMBOL_GPL(nvme_wq);
76 
77 struct workqueue_struct *nvme_reset_wq;
78 EXPORT_SYMBOL_GPL(nvme_reset_wq);
79 
80 struct workqueue_struct *nvme_delete_wq;
81 EXPORT_SYMBOL_GPL(nvme_delete_wq);
82 
83 static DEFINE_IDA(nvme_subsystems_ida);
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86 
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91 
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95 					   unsigned nsid);
96 
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99 	/*
100 	 * Revalidating a dead namespace sets capacity to 0. This will end
101 	 * buffered writers dirtying pages that can't be synced.
102 	 */
103 	if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104 		return;
105 	revalidate_disk(ns->disk);
106 	blk_set_queue_dying(ns->queue);
107 	/* Forcibly unquiesce queues to avoid blocking dispatch */
108 	blk_mq_unquiesce_queue(ns->queue);
109 }
110 
111 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
112 {
113 	/*
114 	 * Only new queue scan work when admin and IO queues are both alive
115 	 */
116 	if (ctrl->state == NVME_CTRL_LIVE)
117 		queue_work(nvme_wq, &ctrl->scan_work);
118 }
119 
120 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
121 {
122 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
123 		return -EBUSY;
124 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
125 		return -EBUSY;
126 	return 0;
127 }
128 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
129 
130 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
131 {
132 	int ret;
133 
134 	ret = nvme_reset_ctrl(ctrl);
135 	if (!ret) {
136 		flush_work(&ctrl->reset_work);
137 		if (ctrl->state != NVME_CTRL_LIVE &&
138 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
139 			ret = -ENETRESET;
140 	}
141 
142 	return ret;
143 }
144 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
145 
146 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
147 {
148 	dev_info(ctrl->device,
149 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
150 
151 	flush_work(&ctrl->reset_work);
152 	nvme_stop_ctrl(ctrl);
153 	nvme_remove_namespaces(ctrl);
154 	ctrl->ops->delete_ctrl(ctrl);
155 	nvme_uninit_ctrl(ctrl);
156 	nvme_put_ctrl(ctrl);
157 }
158 
159 static void nvme_delete_ctrl_work(struct work_struct *work)
160 {
161 	struct nvme_ctrl *ctrl =
162 		container_of(work, struct nvme_ctrl, delete_work);
163 
164 	nvme_do_delete_ctrl(ctrl);
165 }
166 
167 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
168 {
169 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
170 		return -EBUSY;
171 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
172 		return -EBUSY;
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
176 
177 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
178 {
179 	int ret = 0;
180 
181 	/*
182 	 * Keep a reference until nvme_do_delete_ctrl() complete,
183 	 * since ->delete_ctrl can free the controller.
184 	 */
185 	nvme_get_ctrl(ctrl);
186 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
187 		ret = -EBUSY;
188 	if (!ret)
189 		nvme_do_delete_ctrl(ctrl);
190 	nvme_put_ctrl(ctrl);
191 	return ret;
192 }
193 
194 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
195 {
196 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
197 }
198 
199 static blk_status_t nvme_error_status(struct request *req)
200 {
201 	switch (nvme_req(req)->status & 0x7ff) {
202 	case NVME_SC_SUCCESS:
203 		return BLK_STS_OK;
204 	case NVME_SC_CAP_EXCEEDED:
205 		return BLK_STS_NOSPC;
206 	case NVME_SC_LBA_RANGE:
207 		return BLK_STS_TARGET;
208 	case NVME_SC_BAD_ATTRIBUTES:
209 	case NVME_SC_ONCS_NOT_SUPPORTED:
210 	case NVME_SC_INVALID_OPCODE:
211 	case NVME_SC_INVALID_FIELD:
212 	case NVME_SC_INVALID_NS:
213 		return BLK_STS_NOTSUPP;
214 	case NVME_SC_WRITE_FAULT:
215 	case NVME_SC_READ_ERROR:
216 	case NVME_SC_UNWRITTEN_BLOCK:
217 	case NVME_SC_ACCESS_DENIED:
218 	case NVME_SC_READ_ONLY:
219 	case NVME_SC_COMPARE_FAILED:
220 		return BLK_STS_MEDIUM;
221 	case NVME_SC_GUARD_CHECK:
222 	case NVME_SC_APPTAG_CHECK:
223 	case NVME_SC_REFTAG_CHECK:
224 	case NVME_SC_INVALID_PI:
225 		return BLK_STS_PROTECTION;
226 	case NVME_SC_RESERVATION_CONFLICT:
227 		return BLK_STS_NEXUS;
228 	default:
229 		return BLK_STS_IOERR;
230 	}
231 }
232 
233 static inline bool nvme_req_needs_retry(struct request *req)
234 {
235 	if (blk_noretry_request(req))
236 		return false;
237 	if (nvme_req(req)->status & NVME_SC_DNR)
238 		return false;
239 	if (nvme_req(req)->retries >= nvme_max_retries)
240 		return false;
241 	return true;
242 }
243 
244 static void nvme_retry_req(struct request *req)
245 {
246 	struct nvme_ns *ns = req->q->queuedata;
247 	unsigned long delay = 0;
248 	u16 crd;
249 
250 	/* The mask and shift result must be <= 3 */
251 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
252 	if (ns && crd)
253 		delay = ns->ctrl->crdt[crd - 1] * 100;
254 
255 	nvme_req(req)->retries++;
256 	blk_mq_requeue_request(req, false);
257 	blk_mq_delay_kick_requeue_list(req->q, delay);
258 }
259 
260 void nvme_complete_rq(struct request *req)
261 {
262 	blk_status_t status = nvme_error_status(req);
263 
264 	trace_nvme_complete_rq(req);
265 
266 	if (nvme_req(req)->ctrl->kas)
267 		nvme_req(req)->ctrl->comp_seen = true;
268 
269 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
270 		if ((req->cmd_flags & REQ_NVME_MPATH) &&
271 		    blk_path_error(status)) {
272 			nvme_failover_req(req);
273 			return;
274 		}
275 
276 		if (!blk_queue_dying(req->q)) {
277 			nvme_retry_req(req);
278 			return;
279 		}
280 	}
281 	blk_mq_end_request(req, status);
282 }
283 EXPORT_SYMBOL_GPL(nvme_complete_rq);
284 
285 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
286 {
287 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
288 				"Cancelling I/O %d", req->tag);
289 
290 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
291 	blk_mq_complete_request_sync(req);
292 	return true;
293 }
294 EXPORT_SYMBOL_GPL(nvme_cancel_request);
295 
296 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
297 		enum nvme_ctrl_state new_state)
298 {
299 	enum nvme_ctrl_state old_state;
300 	unsigned long flags;
301 	bool changed = false;
302 
303 	spin_lock_irqsave(&ctrl->lock, flags);
304 
305 	old_state = ctrl->state;
306 	switch (new_state) {
307 	case NVME_CTRL_ADMIN_ONLY:
308 		switch (old_state) {
309 		case NVME_CTRL_CONNECTING:
310 			changed = true;
311 			/* FALLTHRU */
312 		default:
313 			break;
314 		}
315 		break;
316 	case NVME_CTRL_LIVE:
317 		switch (old_state) {
318 		case NVME_CTRL_NEW:
319 		case NVME_CTRL_RESETTING:
320 		case NVME_CTRL_CONNECTING:
321 			changed = true;
322 			/* FALLTHRU */
323 		default:
324 			break;
325 		}
326 		break;
327 	case NVME_CTRL_RESETTING:
328 		switch (old_state) {
329 		case NVME_CTRL_NEW:
330 		case NVME_CTRL_LIVE:
331 		case NVME_CTRL_ADMIN_ONLY:
332 			changed = true;
333 			/* FALLTHRU */
334 		default:
335 			break;
336 		}
337 		break;
338 	case NVME_CTRL_CONNECTING:
339 		switch (old_state) {
340 		case NVME_CTRL_NEW:
341 		case NVME_CTRL_RESETTING:
342 			changed = true;
343 			/* FALLTHRU */
344 		default:
345 			break;
346 		}
347 		break;
348 	case NVME_CTRL_DELETING:
349 		switch (old_state) {
350 		case NVME_CTRL_LIVE:
351 		case NVME_CTRL_ADMIN_ONLY:
352 		case NVME_CTRL_RESETTING:
353 		case NVME_CTRL_CONNECTING:
354 			changed = true;
355 			/* FALLTHRU */
356 		default:
357 			break;
358 		}
359 		break;
360 	case NVME_CTRL_DEAD:
361 		switch (old_state) {
362 		case NVME_CTRL_DELETING:
363 			changed = true;
364 			/* FALLTHRU */
365 		default:
366 			break;
367 		}
368 		break;
369 	default:
370 		break;
371 	}
372 
373 	if (changed)
374 		ctrl->state = new_state;
375 
376 	spin_unlock_irqrestore(&ctrl->lock, flags);
377 	if (changed && ctrl->state == NVME_CTRL_LIVE)
378 		nvme_kick_requeue_lists(ctrl);
379 	return changed;
380 }
381 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
382 
383 static void nvme_free_ns_head(struct kref *ref)
384 {
385 	struct nvme_ns_head *head =
386 		container_of(ref, struct nvme_ns_head, ref);
387 
388 	nvme_mpath_remove_disk(head);
389 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
390 	list_del_init(&head->entry);
391 	cleanup_srcu_struct_quiesced(&head->srcu);
392 	nvme_put_subsystem(head->subsys);
393 	kfree(head);
394 }
395 
396 static void nvme_put_ns_head(struct nvme_ns_head *head)
397 {
398 	kref_put(&head->ref, nvme_free_ns_head);
399 }
400 
401 static void nvme_free_ns(struct kref *kref)
402 {
403 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
404 
405 	if (ns->ndev)
406 		nvme_nvm_unregister(ns);
407 
408 	put_disk(ns->disk);
409 	nvme_put_ns_head(ns->head);
410 	nvme_put_ctrl(ns->ctrl);
411 	kfree(ns);
412 }
413 
414 static void nvme_put_ns(struct nvme_ns *ns)
415 {
416 	kref_put(&ns->kref, nvme_free_ns);
417 }
418 
419 static inline void nvme_clear_nvme_request(struct request *req)
420 {
421 	if (!(req->rq_flags & RQF_DONTPREP)) {
422 		nvme_req(req)->retries = 0;
423 		nvme_req(req)->flags = 0;
424 		req->rq_flags |= RQF_DONTPREP;
425 	}
426 }
427 
428 struct request *nvme_alloc_request(struct request_queue *q,
429 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
430 {
431 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
432 	struct request *req;
433 
434 	if (qid == NVME_QID_ANY) {
435 		req = blk_mq_alloc_request(q, op, flags);
436 	} else {
437 		req = blk_mq_alloc_request_hctx(q, op, flags,
438 				qid ? qid - 1 : 0);
439 	}
440 	if (IS_ERR(req))
441 		return req;
442 
443 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
444 	nvme_clear_nvme_request(req);
445 	nvme_req(req)->cmd = cmd;
446 
447 	return req;
448 }
449 EXPORT_SYMBOL_GPL(nvme_alloc_request);
450 
451 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
452 {
453 	struct nvme_command c;
454 
455 	memset(&c, 0, sizeof(c));
456 
457 	c.directive.opcode = nvme_admin_directive_send;
458 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
459 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
460 	c.directive.dtype = NVME_DIR_IDENTIFY;
461 	c.directive.tdtype = NVME_DIR_STREAMS;
462 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
463 
464 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
465 }
466 
467 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
468 {
469 	return nvme_toggle_streams(ctrl, false);
470 }
471 
472 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
473 {
474 	return nvme_toggle_streams(ctrl, true);
475 }
476 
477 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
478 				  struct streams_directive_params *s, u32 nsid)
479 {
480 	struct nvme_command c;
481 
482 	memset(&c, 0, sizeof(c));
483 	memset(s, 0, sizeof(*s));
484 
485 	c.directive.opcode = nvme_admin_directive_recv;
486 	c.directive.nsid = cpu_to_le32(nsid);
487 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
488 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
489 	c.directive.dtype = NVME_DIR_STREAMS;
490 
491 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
492 }
493 
494 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
495 {
496 	struct streams_directive_params s;
497 	int ret;
498 
499 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
500 		return 0;
501 	if (!streams)
502 		return 0;
503 
504 	ret = nvme_enable_streams(ctrl);
505 	if (ret)
506 		return ret;
507 
508 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
509 	if (ret)
510 		return ret;
511 
512 	ctrl->nssa = le16_to_cpu(s.nssa);
513 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
514 		dev_info(ctrl->device, "too few streams (%u) available\n",
515 					ctrl->nssa);
516 		nvme_disable_streams(ctrl);
517 		return 0;
518 	}
519 
520 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
521 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
522 	return 0;
523 }
524 
525 /*
526  * Check if 'req' has a write hint associated with it. If it does, assign
527  * a valid namespace stream to the write.
528  */
529 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
530 				     struct request *req, u16 *control,
531 				     u32 *dsmgmt)
532 {
533 	enum rw_hint streamid = req->write_hint;
534 
535 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
536 		streamid = 0;
537 	else {
538 		streamid--;
539 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
540 			return;
541 
542 		*control |= NVME_RW_DTYPE_STREAMS;
543 		*dsmgmt |= streamid << 16;
544 	}
545 
546 	if (streamid < ARRAY_SIZE(req->q->write_hints))
547 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
548 }
549 
550 static inline void nvme_setup_flush(struct nvme_ns *ns,
551 		struct nvme_command *cmnd)
552 {
553 	cmnd->common.opcode = nvme_cmd_flush;
554 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
555 }
556 
557 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
558 		struct nvme_command *cmnd)
559 {
560 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
561 	struct nvme_dsm_range *range;
562 	struct bio *bio;
563 
564 	range = kmalloc_array(segments, sizeof(*range),
565 				GFP_ATOMIC | __GFP_NOWARN);
566 	if (!range) {
567 		/*
568 		 * If we fail allocation our range, fallback to the controller
569 		 * discard page. If that's also busy, it's safe to return
570 		 * busy, as we know we can make progress once that's freed.
571 		 */
572 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
573 			return BLK_STS_RESOURCE;
574 
575 		range = page_address(ns->ctrl->discard_page);
576 	}
577 
578 	__rq_for_each_bio(bio, req) {
579 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
580 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
581 
582 		if (n < segments) {
583 			range[n].cattr = cpu_to_le32(0);
584 			range[n].nlb = cpu_to_le32(nlb);
585 			range[n].slba = cpu_to_le64(slba);
586 		}
587 		n++;
588 	}
589 
590 	if (WARN_ON_ONCE(n != segments)) {
591 		if (virt_to_page(range) == ns->ctrl->discard_page)
592 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
593 		else
594 			kfree(range);
595 		return BLK_STS_IOERR;
596 	}
597 
598 	cmnd->dsm.opcode = nvme_cmd_dsm;
599 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
600 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
601 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
602 
603 	req->special_vec.bv_page = virt_to_page(range);
604 	req->special_vec.bv_offset = offset_in_page(range);
605 	req->special_vec.bv_len = sizeof(*range) * segments;
606 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
607 
608 	return BLK_STS_OK;
609 }
610 
611 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
612 		struct request *req, struct nvme_command *cmnd)
613 {
614 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
615 		return nvme_setup_discard(ns, req, cmnd);
616 
617 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
618 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
619 	cmnd->write_zeroes.slba =
620 		cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
621 	cmnd->write_zeroes.length =
622 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
623 	cmnd->write_zeroes.control = 0;
624 	return BLK_STS_OK;
625 }
626 
627 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
628 		struct request *req, struct nvme_command *cmnd)
629 {
630 	struct nvme_ctrl *ctrl = ns->ctrl;
631 	u16 control = 0;
632 	u32 dsmgmt = 0;
633 
634 	if (req->cmd_flags & REQ_FUA)
635 		control |= NVME_RW_FUA;
636 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
637 		control |= NVME_RW_LR;
638 
639 	if (req->cmd_flags & REQ_RAHEAD)
640 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
641 
642 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
643 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
644 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
645 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
646 
647 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
648 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
649 
650 	if (ns->ms) {
651 		/*
652 		 * If formated with metadata, the block layer always provides a
653 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
654 		 * we enable the PRACT bit for protection information or set the
655 		 * namespace capacity to zero to prevent any I/O.
656 		 */
657 		if (!blk_integrity_rq(req)) {
658 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
659 				return BLK_STS_NOTSUPP;
660 			control |= NVME_RW_PRINFO_PRACT;
661 		} else if (req_op(req) == REQ_OP_WRITE) {
662 			t10_pi_prepare(req, ns->pi_type);
663 		}
664 
665 		switch (ns->pi_type) {
666 		case NVME_NS_DPS_PI_TYPE3:
667 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
668 			break;
669 		case NVME_NS_DPS_PI_TYPE1:
670 		case NVME_NS_DPS_PI_TYPE2:
671 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
672 					NVME_RW_PRINFO_PRCHK_REF;
673 			cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
674 			break;
675 		}
676 	}
677 
678 	cmnd->rw.control = cpu_to_le16(control);
679 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
680 	return 0;
681 }
682 
683 void nvme_cleanup_cmd(struct request *req)
684 {
685 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
686 	    nvme_req(req)->status == 0) {
687 		struct nvme_ns *ns = req->rq_disk->private_data;
688 
689 		t10_pi_complete(req, ns->pi_type,
690 				blk_rq_bytes(req) >> ns->lba_shift);
691 	}
692 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
693 		struct nvme_ns *ns = req->rq_disk->private_data;
694 		struct page *page = req->special_vec.bv_page;
695 
696 		if (page == ns->ctrl->discard_page)
697 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
698 		else
699 			kfree(page_address(page) + req->special_vec.bv_offset);
700 	}
701 }
702 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
703 
704 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
705 		struct nvme_command *cmd)
706 {
707 	blk_status_t ret = BLK_STS_OK;
708 
709 	nvme_clear_nvme_request(req);
710 
711 	memset(cmd, 0, sizeof(*cmd));
712 	switch (req_op(req)) {
713 	case REQ_OP_DRV_IN:
714 	case REQ_OP_DRV_OUT:
715 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
716 		break;
717 	case REQ_OP_FLUSH:
718 		nvme_setup_flush(ns, cmd);
719 		break;
720 	case REQ_OP_WRITE_ZEROES:
721 		ret = nvme_setup_write_zeroes(ns, req, cmd);
722 		break;
723 	case REQ_OP_DISCARD:
724 		ret = nvme_setup_discard(ns, req, cmd);
725 		break;
726 	case REQ_OP_READ:
727 	case REQ_OP_WRITE:
728 		ret = nvme_setup_rw(ns, req, cmd);
729 		break;
730 	default:
731 		WARN_ON_ONCE(1);
732 		return BLK_STS_IOERR;
733 	}
734 
735 	cmd->common.command_id = req->tag;
736 	trace_nvme_setup_cmd(req, cmd);
737 	return ret;
738 }
739 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
740 
741 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
742 {
743 	struct completion *waiting = rq->end_io_data;
744 
745 	rq->end_io_data = NULL;
746 	complete(waiting);
747 }
748 
749 static void nvme_execute_rq_polled(struct request_queue *q,
750 		struct gendisk *bd_disk, struct request *rq, int at_head)
751 {
752 	DECLARE_COMPLETION_ONSTACK(wait);
753 
754 	WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
755 
756 	rq->cmd_flags |= REQ_HIPRI;
757 	rq->end_io_data = &wait;
758 	blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
759 
760 	while (!completion_done(&wait)) {
761 		blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
762 		cond_resched();
763 	}
764 }
765 
766 /*
767  * Returns 0 on success.  If the result is negative, it's a Linux error code;
768  * if the result is positive, it's an NVM Express status code
769  */
770 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
771 		union nvme_result *result, void *buffer, unsigned bufflen,
772 		unsigned timeout, int qid, int at_head,
773 		blk_mq_req_flags_t flags, bool poll)
774 {
775 	struct request *req;
776 	int ret;
777 
778 	req = nvme_alloc_request(q, cmd, flags, qid);
779 	if (IS_ERR(req))
780 		return PTR_ERR(req);
781 
782 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
783 
784 	if (buffer && bufflen) {
785 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
786 		if (ret)
787 			goto out;
788 	}
789 
790 	if (poll)
791 		nvme_execute_rq_polled(req->q, NULL, req, at_head);
792 	else
793 		blk_execute_rq(req->q, NULL, req, at_head);
794 	if (result)
795 		*result = nvme_req(req)->result;
796 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
797 		ret = -EINTR;
798 	else
799 		ret = nvme_req(req)->status;
800  out:
801 	blk_mq_free_request(req);
802 	return ret;
803 }
804 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
805 
806 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
807 		void *buffer, unsigned bufflen)
808 {
809 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
810 			NVME_QID_ANY, 0, 0, false);
811 }
812 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
813 
814 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
815 		unsigned len, u32 seed, bool write)
816 {
817 	struct bio_integrity_payload *bip;
818 	int ret = -ENOMEM;
819 	void *buf;
820 
821 	buf = kmalloc(len, GFP_KERNEL);
822 	if (!buf)
823 		goto out;
824 
825 	ret = -EFAULT;
826 	if (write && copy_from_user(buf, ubuf, len))
827 		goto out_free_meta;
828 
829 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
830 	if (IS_ERR(bip)) {
831 		ret = PTR_ERR(bip);
832 		goto out_free_meta;
833 	}
834 
835 	bip->bip_iter.bi_size = len;
836 	bip->bip_iter.bi_sector = seed;
837 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
838 			offset_in_page(buf));
839 	if (ret == len)
840 		return buf;
841 	ret = -ENOMEM;
842 out_free_meta:
843 	kfree(buf);
844 out:
845 	return ERR_PTR(ret);
846 }
847 
848 static int nvme_submit_user_cmd(struct request_queue *q,
849 		struct nvme_command *cmd, void __user *ubuffer,
850 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
851 		u32 meta_seed, u32 *result, unsigned timeout)
852 {
853 	bool write = nvme_is_write(cmd);
854 	struct nvme_ns *ns = q->queuedata;
855 	struct gendisk *disk = ns ? ns->disk : NULL;
856 	struct request *req;
857 	struct bio *bio = NULL;
858 	void *meta = NULL;
859 	int ret;
860 
861 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
862 	if (IS_ERR(req))
863 		return PTR_ERR(req);
864 
865 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
866 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
867 
868 	if (ubuffer && bufflen) {
869 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
870 				GFP_KERNEL);
871 		if (ret)
872 			goto out;
873 		bio = req->bio;
874 		bio->bi_disk = disk;
875 		if (disk && meta_buffer && meta_len) {
876 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
877 					meta_seed, write);
878 			if (IS_ERR(meta)) {
879 				ret = PTR_ERR(meta);
880 				goto out_unmap;
881 			}
882 			req->cmd_flags |= REQ_INTEGRITY;
883 		}
884 	}
885 
886 	blk_execute_rq(req->q, disk, req, 0);
887 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
888 		ret = -EINTR;
889 	else
890 		ret = nvme_req(req)->status;
891 	if (result)
892 		*result = le32_to_cpu(nvme_req(req)->result.u32);
893 	if (meta && !ret && !write) {
894 		if (copy_to_user(meta_buffer, meta, meta_len))
895 			ret = -EFAULT;
896 	}
897 	kfree(meta);
898  out_unmap:
899 	if (bio)
900 		blk_rq_unmap_user(bio);
901  out:
902 	blk_mq_free_request(req);
903 	return ret;
904 }
905 
906 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
907 {
908 	struct nvme_ctrl *ctrl = rq->end_io_data;
909 	unsigned long flags;
910 	bool startka = false;
911 
912 	blk_mq_free_request(rq);
913 
914 	if (status) {
915 		dev_err(ctrl->device,
916 			"failed nvme_keep_alive_end_io error=%d\n",
917 				status);
918 		return;
919 	}
920 
921 	ctrl->comp_seen = false;
922 	spin_lock_irqsave(&ctrl->lock, flags);
923 	if (ctrl->state == NVME_CTRL_LIVE ||
924 	    ctrl->state == NVME_CTRL_CONNECTING)
925 		startka = true;
926 	spin_unlock_irqrestore(&ctrl->lock, flags);
927 	if (startka)
928 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
929 }
930 
931 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
932 {
933 	struct request *rq;
934 
935 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
936 			NVME_QID_ANY);
937 	if (IS_ERR(rq))
938 		return PTR_ERR(rq);
939 
940 	rq->timeout = ctrl->kato * HZ;
941 	rq->end_io_data = ctrl;
942 
943 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
944 
945 	return 0;
946 }
947 
948 static void nvme_keep_alive_work(struct work_struct *work)
949 {
950 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
951 			struct nvme_ctrl, ka_work);
952 	bool comp_seen = ctrl->comp_seen;
953 
954 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
955 		dev_dbg(ctrl->device,
956 			"reschedule traffic based keep-alive timer\n");
957 		ctrl->comp_seen = false;
958 		schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
959 		return;
960 	}
961 
962 	if (nvme_keep_alive(ctrl)) {
963 		/* allocation failure, reset the controller */
964 		dev_err(ctrl->device, "keep-alive failed\n");
965 		nvme_reset_ctrl(ctrl);
966 		return;
967 	}
968 }
969 
970 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
971 {
972 	if (unlikely(ctrl->kato == 0))
973 		return;
974 
975 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
976 }
977 
978 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
979 {
980 	if (unlikely(ctrl->kato == 0))
981 		return;
982 
983 	cancel_delayed_work_sync(&ctrl->ka_work);
984 }
985 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
986 
987 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
988 {
989 	struct nvme_command c = { };
990 	int error;
991 
992 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
993 	c.identify.opcode = nvme_admin_identify;
994 	c.identify.cns = NVME_ID_CNS_CTRL;
995 
996 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
997 	if (!*id)
998 		return -ENOMEM;
999 
1000 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1001 			sizeof(struct nvme_id_ctrl));
1002 	if (error)
1003 		kfree(*id);
1004 	return error;
1005 }
1006 
1007 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1008 		struct nvme_ns_ids *ids)
1009 {
1010 	struct nvme_command c = { };
1011 	int status;
1012 	void *data;
1013 	int pos;
1014 	int len;
1015 
1016 	c.identify.opcode = nvme_admin_identify;
1017 	c.identify.nsid = cpu_to_le32(nsid);
1018 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1019 
1020 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1021 	if (!data)
1022 		return -ENOMEM;
1023 
1024 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1025 				      NVME_IDENTIFY_DATA_SIZE);
1026 	if (status)
1027 		goto free_data;
1028 
1029 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1030 		struct nvme_ns_id_desc *cur = data + pos;
1031 
1032 		if (cur->nidl == 0)
1033 			break;
1034 
1035 		switch (cur->nidt) {
1036 		case NVME_NIDT_EUI64:
1037 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1038 				dev_warn(ctrl->device,
1039 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1040 					 cur->nidl);
1041 				goto free_data;
1042 			}
1043 			len = NVME_NIDT_EUI64_LEN;
1044 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1045 			break;
1046 		case NVME_NIDT_NGUID:
1047 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1048 				dev_warn(ctrl->device,
1049 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1050 					 cur->nidl);
1051 				goto free_data;
1052 			}
1053 			len = NVME_NIDT_NGUID_LEN;
1054 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1055 			break;
1056 		case NVME_NIDT_UUID:
1057 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
1058 				dev_warn(ctrl->device,
1059 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1060 					 cur->nidl);
1061 				goto free_data;
1062 			}
1063 			len = NVME_NIDT_UUID_LEN;
1064 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1065 			break;
1066 		default:
1067 			/* Skip unknown types */
1068 			len = cur->nidl;
1069 			break;
1070 		}
1071 
1072 		len += sizeof(*cur);
1073 	}
1074 free_data:
1075 	kfree(data);
1076 	return status;
1077 }
1078 
1079 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1080 {
1081 	struct nvme_command c = { };
1082 
1083 	c.identify.opcode = nvme_admin_identify;
1084 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1085 	c.identify.nsid = cpu_to_le32(nsid);
1086 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1087 				    NVME_IDENTIFY_DATA_SIZE);
1088 }
1089 
1090 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
1091 		unsigned nsid)
1092 {
1093 	struct nvme_id_ns *id;
1094 	struct nvme_command c = { };
1095 	int error;
1096 
1097 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1098 	c.identify.opcode = nvme_admin_identify;
1099 	c.identify.nsid = cpu_to_le32(nsid);
1100 	c.identify.cns = NVME_ID_CNS_NS;
1101 
1102 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1103 	if (!id)
1104 		return NULL;
1105 
1106 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1107 	if (error) {
1108 		dev_warn(ctrl->device, "Identify namespace failed\n");
1109 		kfree(id);
1110 		return NULL;
1111 	}
1112 
1113 	return id;
1114 }
1115 
1116 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
1117 		      void *buffer, size_t buflen, u32 *result)
1118 {
1119 	struct nvme_command c;
1120 	union nvme_result res;
1121 	int ret;
1122 
1123 	memset(&c, 0, sizeof(c));
1124 	c.features.opcode = nvme_admin_set_features;
1125 	c.features.fid = cpu_to_le32(fid);
1126 	c.features.dword11 = cpu_to_le32(dword11);
1127 
1128 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1129 			buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1130 	if (ret >= 0 && result)
1131 		*result = le32_to_cpu(res.u32);
1132 	return ret;
1133 }
1134 
1135 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1136 {
1137 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1138 	u32 result;
1139 	int status, nr_io_queues;
1140 
1141 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1142 			&result);
1143 	if (status < 0)
1144 		return status;
1145 
1146 	/*
1147 	 * Degraded controllers might return an error when setting the queue
1148 	 * count.  We still want to be able to bring them online and offer
1149 	 * access to the admin queue, as that might be only way to fix them up.
1150 	 */
1151 	if (status > 0) {
1152 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1153 		*count = 0;
1154 	} else {
1155 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1156 		*count = min(*count, nr_io_queues);
1157 	}
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1162 
1163 #define NVME_AEN_SUPPORTED \
1164 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1165 
1166 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1167 {
1168 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1169 	int status;
1170 
1171 	if (!supported_aens)
1172 		return;
1173 
1174 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1175 			NULL, 0, &result);
1176 	if (status)
1177 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1178 			 supported_aens);
1179 }
1180 
1181 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1182 {
1183 	struct nvme_user_io io;
1184 	struct nvme_command c;
1185 	unsigned length, meta_len;
1186 	void __user *metadata;
1187 
1188 	if (copy_from_user(&io, uio, sizeof(io)))
1189 		return -EFAULT;
1190 	if (io.flags)
1191 		return -EINVAL;
1192 
1193 	switch (io.opcode) {
1194 	case nvme_cmd_write:
1195 	case nvme_cmd_read:
1196 	case nvme_cmd_compare:
1197 		break;
1198 	default:
1199 		return -EINVAL;
1200 	}
1201 
1202 	length = (io.nblocks + 1) << ns->lba_shift;
1203 	meta_len = (io.nblocks + 1) * ns->ms;
1204 	metadata = (void __user *)(uintptr_t)io.metadata;
1205 
1206 	if (ns->ext) {
1207 		length += meta_len;
1208 		meta_len = 0;
1209 	} else if (meta_len) {
1210 		if ((io.metadata & 3) || !io.metadata)
1211 			return -EINVAL;
1212 	}
1213 
1214 	memset(&c, 0, sizeof(c));
1215 	c.rw.opcode = io.opcode;
1216 	c.rw.flags = io.flags;
1217 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1218 	c.rw.slba = cpu_to_le64(io.slba);
1219 	c.rw.length = cpu_to_le16(io.nblocks);
1220 	c.rw.control = cpu_to_le16(io.control);
1221 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1222 	c.rw.reftag = cpu_to_le32(io.reftag);
1223 	c.rw.apptag = cpu_to_le16(io.apptag);
1224 	c.rw.appmask = cpu_to_le16(io.appmask);
1225 
1226 	return nvme_submit_user_cmd(ns->queue, &c,
1227 			(void __user *)(uintptr_t)io.addr, length,
1228 			metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1229 }
1230 
1231 static u32 nvme_known_admin_effects(u8 opcode)
1232 {
1233 	switch (opcode) {
1234 	case nvme_admin_format_nvm:
1235 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1236 					NVME_CMD_EFFECTS_CSE_MASK;
1237 	case nvme_admin_sanitize_nvm:
1238 		return NVME_CMD_EFFECTS_CSE_MASK;
1239 	default:
1240 		break;
1241 	}
1242 	return 0;
1243 }
1244 
1245 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1246 								u8 opcode)
1247 {
1248 	u32 effects = 0;
1249 
1250 	if (ns) {
1251 		if (ctrl->effects)
1252 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1253 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1254 			dev_warn(ctrl->device,
1255 				 "IO command:%02x has unhandled effects:%08x\n",
1256 				 opcode, effects);
1257 		return 0;
1258 	}
1259 
1260 	if (ctrl->effects)
1261 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1262 	else
1263 		effects = nvme_known_admin_effects(opcode);
1264 
1265 	/*
1266 	 * For simplicity, IO to all namespaces is quiesced even if the command
1267 	 * effects say only one namespace is affected.
1268 	 */
1269 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1270 		mutex_lock(&ctrl->scan_lock);
1271 		nvme_start_freeze(ctrl);
1272 		nvme_wait_freeze(ctrl);
1273 	}
1274 	return effects;
1275 }
1276 
1277 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1278 {
1279 	struct nvme_ns *ns;
1280 
1281 	down_read(&ctrl->namespaces_rwsem);
1282 	list_for_each_entry(ns, &ctrl->namespaces, list)
1283 		if (ns->disk && nvme_revalidate_disk(ns->disk))
1284 			nvme_set_queue_dying(ns);
1285 	up_read(&ctrl->namespaces_rwsem);
1286 
1287 	nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1288 }
1289 
1290 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1291 {
1292 	/*
1293 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1294 	 * prevent memory corruption if a logical block size was changed by
1295 	 * this command.
1296 	 */
1297 	if (effects & NVME_CMD_EFFECTS_LBCC)
1298 		nvme_update_formats(ctrl);
1299 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1300 		nvme_unfreeze(ctrl);
1301 		mutex_unlock(&ctrl->scan_lock);
1302 	}
1303 	if (effects & NVME_CMD_EFFECTS_CCC)
1304 		nvme_init_identify(ctrl);
1305 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1306 		nvme_queue_scan(ctrl);
1307 }
1308 
1309 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1310 			struct nvme_passthru_cmd __user *ucmd)
1311 {
1312 	struct nvme_passthru_cmd cmd;
1313 	struct nvme_command c;
1314 	unsigned timeout = 0;
1315 	u32 effects;
1316 	int status;
1317 
1318 	if (!capable(CAP_SYS_ADMIN))
1319 		return -EACCES;
1320 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1321 		return -EFAULT;
1322 	if (cmd.flags)
1323 		return -EINVAL;
1324 
1325 	memset(&c, 0, sizeof(c));
1326 	c.common.opcode = cmd.opcode;
1327 	c.common.flags = cmd.flags;
1328 	c.common.nsid = cpu_to_le32(cmd.nsid);
1329 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1330 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1331 	c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1332 	c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1333 	c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1334 	c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1335 	c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1336 	c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1337 
1338 	if (cmd.timeout_ms)
1339 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1340 
1341 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1342 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1343 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1344 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1345 			0, &cmd.result, timeout);
1346 	nvme_passthru_end(ctrl, effects);
1347 
1348 	if (status >= 0) {
1349 		if (put_user(cmd.result, &ucmd->result))
1350 			return -EFAULT;
1351 	}
1352 
1353 	return status;
1354 }
1355 
1356 /*
1357  * Issue ioctl requests on the first available path.  Note that unlike normal
1358  * block layer requests we will not retry failed request on another controller.
1359  */
1360 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1361 		struct nvme_ns_head **head, int *srcu_idx)
1362 {
1363 #ifdef CONFIG_NVME_MULTIPATH
1364 	if (disk->fops == &nvme_ns_head_ops) {
1365 		*head = disk->private_data;
1366 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1367 		return nvme_find_path(*head);
1368 	}
1369 #endif
1370 	*head = NULL;
1371 	*srcu_idx = -1;
1372 	return disk->private_data;
1373 }
1374 
1375 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1376 {
1377 	if (head)
1378 		srcu_read_unlock(&head->srcu, idx);
1379 }
1380 
1381 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1382 {
1383 	switch (cmd) {
1384 	case NVME_IOCTL_ID:
1385 		force_successful_syscall_return();
1386 		return ns->head->ns_id;
1387 	case NVME_IOCTL_ADMIN_CMD:
1388 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1389 	case NVME_IOCTL_IO_CMD:
1390 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1391 	case NVME_IOCTL_SUBMIT_IO:
1392 		return nvme_submit_io(ns, (void __user *)arg);
1393 	default:
1394 #ifdef CONFIG_NVM
1395 		if (ns->ndev)
1396 			return nvme_nvm_ioctl(ns, cmd, arg);
1397 #endif
1398 		if (is_sed_ioctl(cmd))
1399 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1400 					 (void __user *) arg);
1401 		return -ENOTTY;
1402 	}
1403 }
1404 
1405 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1406 		unsigned int cmd, unsigned long arg)
1407 {
1408 	struct nvme_ns_head *head = NULL;
1409 	struct nvme_ns *ns;
1410 	int srcu_idx, ret;
1411 
1412 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1413 	if (unlikely(!ns))
1414 		ret = -EWOULDBLOCK;
1415 	else
1416 		ret = nvme_ns_ioctl(ns, cmd, arg);
1417 	nvme_put_ns_from_disk(head, srcu_idx);
1418 	return ret;
1419 }
1420 
1421 static int nvme_open(struct block_device *bdev, fmode_t mode)
1422 {
1423 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1424 
1425 #ifdef CONFIG_NVME_MULTIPATH
1426 	/* should never be called due to GENHD_FL_HIDDEN */
1427 	if (WARN_ON_ONCE(ns->head->disk))
1428 		goto fail;
1429 #endif
1430 	if (!kref_get_unless_zero(&ns->kref))
1431 		goto fail;
1432 	if (!try_module_get(ns->ctrl->ops->module))
1433 		goto fail_put_ns;
1434 
1435 	return 0;
1436 
1437 fail_put_ns:
1438 	nvme_put_ns(ns);
1439 fail:
1440 	return -ENXIO;
1441 }
1442 
1443 static void nvme_release(struct gendisk *disk, fmode_t mode)
1444 {
1445 	struct nvme_ns *ns = disk->private_data;
1446 
1447 	module_put(ns->ctrl->ops->module);
1448 	nvme_put_ns(ns);
1449 }
1450 
1451 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1452 {
1453 	/* some standard values */
1454 	geo->heads = 1 << 6;
1455 	geo->sectors = 1 << 5;
1456 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1457 	return 0;
1458 }
1459 
1460 #ifdef CONFIG_BLK_DEV_INTEGRITY
1461 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1462 {
1463 	struct blk_integrity integrity;
1464 
1465 	memset(&integrity, 0, sizeof(integrity));
1466 	switch (pi_type) {
1467 	case NVME_NS_DPS_PI_TYPE3:
1468 		integrity.profile = &t10_pi_type3_crc;
1469 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1470 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1471 		break;
1472 	case NVME_NS_DPS_PI_TYPE1:
1473 	case NVME_NS_DPS_PI_TYPE2:
1474 		integrity.profile = &t10_pi_type1_crc;
1475 		integrity.tag_size = sizeof(u16);
1476 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1477 		break;
1478 	default:
1479 		integrity.profile = NULL;
1480 		break;
1481 	}
1482 	integrity.tuple_size = ms;
1483 	blk_integrity_register(disk, &integrity);
1484 	blk_queue_max_integrity_segments(disk->queue, 1);
1485 }
1486 #else
1487 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1488 {
1489 }
1490 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1491 
1492 static void nvme_set_chunk_size(struct nvme_ns *ns)
1493 {
1494 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1495 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1496 }
1497 
1498 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1499 {
1500 	struct nvme_ctrl *ctrl = ns->ctrl;
1501 	struct request_queue *queue = disk->queue;
1502 	u32 size = queue_logical_block_size(queue);
1503 
1504 	if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1505 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1506 		return;
1507 	}
1508 
1509 	if (ctrl->nr_streams && ns->sws && ns->sgs)
1510 		size *= ns->sws * ns->sgs;
1511 
1512 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1513 			NVME_DSM_MAX_RANGES);
1514 
1515 	queue->limits.discard_alignment = 0;
1516 	queue->limits.discard_granularity = size;
1517 
1518 	/* If discard is already enabled, don't reset queue limits */
1519 	if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1520 		return;
1521 
1522 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1523 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1524 
1525 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1526 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1527 }
1528 
1529 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1530 {
1531 	u32 max_sectors;
1532 	unsigned short bs = 1 << ns->lba_shift;
1533 
1534 	if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1535 	    (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1536 		return;
1537 	/*
1538 	 * Even though NVMe spec explicitly states that MDTS is not
1539 	 * applicable to the write-zeroes:- "The restriction does not apply to
1540 	 * commands that do not transfer data between the host and the
1541 	 * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1542 	 * In order to be more cautious use controller's max_hw_sectors value
1543 	 * to configure the maximum sectors for the write-zeroes which is
1544 	 * configured based on the controller's MDTS field in the
1545 	 * nvme_init_identify() if available.
1546 	 */
1547 	if (ns->ctrl->max_hw_sectors == UINT_MAX)
1548 		max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1549 	else
1550 		max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1551 
1552 	blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1553 }
1554 
1555 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1556 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1557 {
1558 	memset(ids, 0, sizeof(*ids));
1559 
1560 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1561 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1562 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1563 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1564 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1565 		 /* Don't treat error as fatal we potentially
1566 		  * already have a NGUID or EUI-64
1567 		  */
1568 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1569 			dev_warn(ctrl->device,
1570 				 "%s: Identify Descriptors failed\n", __func__);
1571 	}
1572 }
1573 
1574 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1575 {
1576 	return !uuid_is_null(&ids->uuid) ||
1577 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1578 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1579 }
1580 
1581 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1582 {
1583 	return uuid_equal(&a->uuid, &b->uuid) &&
1584 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1585 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1586 }
1587 
1588 static void nvme_update_disk_info(struct gendisk *disk,
1589 		struct nvme_ns *ns, struct nvme_id_ns *id)
1590 {
1591 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1592 	unsigned short bs = 1 << ns->lba_shift;
1593 
1594 	blk_mq_freeze_queue(disk->queue);
1595 	blk_integrity_unregister(disk);
1596 
1597 	blk_queue_logical_block_size(disk->queue, bs);
1598 	blk_queue_physical_block_size(disk->queue, bs);
1599 	blk_queue_io_min(disk->queue, bs);
1600 
1601 	if (ns->ms && !ns->ext &&
1602 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1603 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1604 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1605 		capacity = 0;
1606 
1607 	set_capacity(disk, capacity);
1608 
1609 	nvme_config_discard(disk, ns);
1610 	nvme_config_write_zeroes(disk, ns);
1611 
1612 	if (id->nsattr & (1 << 0))
1613 		set_disk_ro(disk, true);
1614 	else
1615 		set_disk_ro(disk, false);
1616 
1617 	blk_mq_unfreeze_queue(disk->queue);
1618 }
1619 
1620 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1621 {
1622 	struct nvme_ns *ns = disk->private_data;
1623 
1624 	/*
1625 	 * If identify namespace failed, use default 512 byte block size so
1626 	 * block layer can use before failing read/write for 0 capacity.
1627 	 */
1628 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1629 	if (ns->lba_shift == 0)
1630 		ns->lba_shift = 9;
1631 	ns->noiob = le16_to_cpu(id->noiob);
1632 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1633 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1634 	/* the PI implementation requires metadata equal t10 pi tuple size */
1635 	if (ns->ms == sizeof(struct t10_pi_tuple))
1636 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1637 	else
1638 		ns->pi_type = 0;
1639 
1640 	if (ns->noiob)
1641 		nvme_set_chunk_size(ns);
1642 	nvme_update_disk_info(disk, ns, id);
1643 #ifdef CONFIG_NVME_MULTIPATH
1644 	if (ns->head->disk) {
1645 		nvme_update_disk_info(ns->head->disk, ns, id);
1646 		blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1647 	}
1648 #endif
1649 }
1650 
1651 static int nvme_revalidate_disk(struct gendisk *disk)
1652 {
1653 	struct nvme_ns *ns = disk->private_data;
1654 	struct nvme_ctrl *ctrl = ns->ctrl;
1655 	struct nvme_id_ns *id;
1656 	struct nvme_ns_ids ids;
1657 	int ret = 0;
1658 
1659 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1660 		set_capacity(disk, 0);
1661 		return -ENODEV;
1662 	}
1663 
1664 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1665 	if (!id)
1666 		return -ENODEV;
1667 
1668 	if (id->ncap == 0) {
1669 		ret = -ENODEV;
1670 		goto out;
1671 	}
1672 
1673 	__nvme_revalidate_disk(disk, id);
1674 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1675 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1676 		dev_err(ctrl->device,
1677 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1678 		ret = -ENODEV;
1679 	}
1680 
1681 out:
1682 	kfree(id);
1683 	return ret;
1684 }
1685 
1686 static char nvme_pr_type(enum pr_type type)
1687 {
1688 	switch (type) {
1689 	case PR_WRITE_EXCLUSIVE:
1690 		return 1;
1691 	case PR_EXCLUSIVE_ACCESS:
1692 		return 2;
1693 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1694 		return 3;
1695 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1696 		return 4;
1697 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1698 		return 5;
1699 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1700 		return 6;
1701 	default:
1702 		return 0;
1703 	}
1704 };
1705 
1706 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1707 				u64 key, u64 sa_key, u8 op)
1708 {
1709 	struct nvme_ns_head *head = NULL;
1710 	struct nvme_ns *ns;
1711 	struct nvme_command c;
1712 	int srcu_idx, ret;
1713 	u8 data[16] = { 0, };
1714 
1715 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1716 	if (unlikely(!ns))
1717 		return -EWOULDBLOCK;
1718 
1719 	put_unaligned_le64(key, &data[0]);
1720 	put_unaligned_le64(sa_key, &data[8]);
1721 
1722 	memset(&c, 0, sizeof(c));
1723 	c.common.opcode = op;
1724 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1725 	c.common.cdw10 = cpu_to_le32(cdw10);
1726 
1727 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1728 	nvme_put_ns_from_disk(head, srcu_idx);
1729 	return ret;
1730 }
1731 
1732 static int nvme_pr_register(struct block_device *bdev, u64 old,
1733 		u64 new, unsigned flags)
1734 {
1735 	u32 cdw10;
1736 
1737 	if (flags & ~PR_FL_IGNORE_KEY)
1738 		return -EOPNOTSUPP;
1739 
1740 	cdw10 = old ? 2 : 0;
1741 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1742 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1743 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1744 }
1745 
1746 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1747 		enum pr_type type, unsigned flags)
1748 {
1749 	u32 cdw10;
1750 
1751 	if (flags & ~PR_FL_IGNORE_KEY)
1752 		return -EOPNOTSUPP;
1753 
1754 	cdw10 = nvme_pr_type(type) << 8;
1755 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1756 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1757 }
1758 
1759 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1760 		enum pr_type type, bool abort)
1761 {
1762 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1763 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1764 }
1765 
1766 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1767 {
1768 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1769 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1770 }
1771 
1772 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1773 {
1774 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1775 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1776 }
1777 
1778 static const struct pr_ops nvme_pr_ops = {
1779 	.pr_register	= nvme_pr_register,
1780 	.pr_reserve	= nvme_pr_reserve,
1781 	.pr_release	= nvme_pr_release,
1782 	.pr_preempt	= nvme_pr_preempt,
1783 	.pr_clear	= nvme_pr_clear,
1784 };
1785 
1786 #ifdef CONFIG_BLK_SED_OPAL
1787 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1788 		bool send)
1789 {
1790 	struct nvme_ctrl *ctrl = data;
1791 	struct nvme_command cmd;
1792 
1793 	memset(&cmd, 0, sizeof(cmd));
1794 	if (send)
1795 		cmd.common.opcode = nvme_admin_security_send;
1796 	else
1797 		cmd.common.opcode = nvme_admin_security_recv;
1798 	cmd.common.nsid = 0;
1799 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1800 	cmd.common.cdw11 = cpu_to_le32(len);
1801 
1802 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1803 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1804 }
1805 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1806 #endif /* CONFIG_BLK_SED_OPAL */
1807 
1808 static const struct block_device_operations nvme_fops = {
1809 	.owner		= THIS_MODULE,
1810 	.ioctl		= nvme_ioctl,
1811 	.compat_ioctl	= nvme_ioctl,
1812 	.open		= nvme_open,
1813 	.release	= nvme_release,
1814 	.getgeo		= nvme_getgeo,
1815 	.revalidate_disk= nvme_revalidate_disk,
1816 	.pr_ops		= &nvme_pr_ops,
1817 };
1818 
1819 #ifdef CONFIG_NVME_MULTIPATH
1820 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1821 {
1822 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1823 
1824 	if (!kref_get_unless_zero(&head->ref))
1825 		return -ENXIO;
1826 	return 0;
1827 }
1828 
1829 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1830 {
1831 	nvme_put_ns_head(disk->private_data);
1832 }
1833 
1834 const struct block_device_operations nvme_ns_head_ops = {
1835 	.owner		= THIS_MODULE,
1836 	.open		= nvme_ns_head_open,
1837 	.release	= nvme_ns_head_release,
1838 	.ioctl		= nvme_ioctl,
1839 	.compat_ioctl	= nvme_ioctl,
1840 	.getgeo		= nvme_getgeo,
1841 	.pr_ops		= &nvme_pr_ops,
1842 };
1843 #endif /* CONFIG_NVME_MULTIPATH */
1844 
1845 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1846 {
1847 	unsigned long timeout =
1848 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1849 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1850 	int ret;
1851 
1852 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1853 		if (csts == ~0)
1854 			return -ENODEV;
1855 		if ((csts & NVME_CSTS_RDY) == bit)
1856 			break;
1857 
1858 		msleep(100);
1859 		if (fatal_signal_pending(current))
1860 			return -EINTR;
1861 		if (time_after(jiffies, timeout)) {
1862 			dev_err(ctrl->device,
1863 				"Device not ready; aborting %s\n", enabled ?
1864 						"initialisation" : "reset");
1865 			return -ENODEV;
1866 		}
1867 	}
1868 
1869 	return ret;
1870 }
1871 
1872 /*
1873  * If the device has been passed off to us in an enabled state, just clear
1874  * the enabled bit.  The spec says we should set the 'shutdown notification
1875  * bits', but doing so may cause the device to complete commands to the
1876  * admin queue ... and we don't know what memory that might be pointing at!
1877  */
1878 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1879 {
1880 	int ret;
1881 
1882 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1883 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1884 
1885 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1886 	if (ret)
1887 		return ret;
1888 
1889 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1890 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1891 
1892 	return nvme_wait_ready(ctrl, cap, false);
1893 }
1894 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1895 
1896 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1897 {
1898 	/*
1899 	 * Default to a 4K page size, with the intention to update this
1900 	 * path in the future to accomodate architectures with differing
1901 	 * kernel and IO page sizes.
1902 	 */
1903 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1904 	int ret;
1905 
1906 	if (page_shift < dev_page_min) {
1907 		dev_err(ctrl->device,
1908 			"Minimum device page size %u too large for host (%u)\n",
1909 			1 << dev_page_min, 1 << page_shift);
1910 		return -ENODEV;
1911 	}
1912 
1913 	ctrl->page_size = 1 << page_shift;
1914 
1915 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1916 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1917 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1918 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1919 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1920 
1921 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1922 	if (ret)
1923 		return ret;
1924 	return nvme_wait_ready(ctrl, cap, true);
1925 }
1926 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1927 
1928 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1929 {
1930 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1931 	u32 csts;
1932 	int ret;
1933 
1934 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1935 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1936 
1937 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1938 	if (ret)
1939 		return ret;
1940 
1941 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1942 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1943 			break;
1944 
1945 		msleep(100);
1946 		if (fatal_signal_pending(current))
1947 			return -EINTR;
1948 		if (time_after(jiffies, timeout)) {
1949 			dev_err(ctrl->device,
1950 				"Device shutdown incomplete; abort shutdown\n");
1951 			return -ENODEV;
1952 		}
1953 	}
1954 
1955 	return ret;
1956 }
1957 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1958 
1959 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1960 		struct request_queue *q)
1961 {
1962 	bool vwc = false;
1963 
1964 	if (ctrl->max_hw_sectors) {
1965 		u32 max_segments =
1966 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1967 
1968 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1969 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1970 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1971 	}
1972 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1973 	    is_power_of_2(ctrl->max_hw_sectors))
1974 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1975 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1976 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1977 		vwc = true;
1978 	blk_queue_write_cache(q, vwc, vwc);
1979 }
1980 
1981 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1982 {
1983 	__le64 ts;
1984 	int ret;
1985 
1986 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1987 		return 0;
1988 
1989 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1990 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1991 			NULL);
1992 	if (ret)
1993 		dev_warn_once(ctrl->device,
1994 			"could not set timestamp (%d)\n", ret);
1995 	return ret;
1996 }
1997 
1998 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
1999 {
2000 	struct nvme_feat_host_behavior *host;
2001 	int ret;
2002 
2003 	/* Don't bother enabling the feature if retry delay is not reported */
2004 	if (!ctrl->crdt[0])
2005 		return 0;
2006 
2007 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2008 	if (!host)
2009 		return 0;
2010 
2011 	host->acre = NVME_ENABLE_ACRE;
2012 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2013 				host, sizeof(*host), NULL);
2014 	kfree(host);
2015 	return ret;
2016 }
2017 
2018 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2019 {
2020 	/*
2021 	 * APST (Autonomous Power State Transition) lets us program a
2022 	 * table of power state transitions that the controller will
2023 	 * perform automatically.  We configure it with a simple
2024 	 * heuristic: we are willing to spend at most 2% of the time
2025 	 * transitioning between power states.  Therefore, when running
2026 	 * in any given state, we will enter the next lower-power
2027 	 * non-operational state after waiting 50 * (enlat + exlat)
2028 	 * microseconds, as long as that state's exit latency is under
2029 	 * the requested maximum latency.
2030 	 *
2031 	 * We will not autonomously enter any non-operational state for
2032 	 * which the total latency exceeds ps_max_latency_us.  Users
2033 	 * can set ps_max_latency_us to zero to turn off APST.
2034 	 */
2035 
2036 	unsigned apste;
2037 	struct nvme_feat_auto_pst *table;
2038 	u64 max_lat_us = 0;
2039 	int max_ps = -1;
2040 	int ret;
2041 
2042 	/*
2043 	 * If APST isn't supported or if we haven't been initialized yet,
2044 	 * then don't do anything.
2045 	 */
2046 	if (!ctrl->apsta)
2047 		return 0;
2048 
2049 	if (ctrl->npss > 31) {
2050 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2051 		return 0;
2052 	}
2053 
2054 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2055 	if (!table)
2056 		return 0;
2057 
2058 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2059 		/* Turn off APST. */
2060 		apste = 0;
2061 		dev_dbg(ctrl->device, "APST disabled\n");
2062 	} else {
2063 		__le64 target = cpu_to_le64(0);
2064 		int state;
2065 
2066 		/*
2067 		 * Walk through all states from lowest- to highest-power.
2068 		 * According to the spec, lower-numbered states use more
2069 		 * power.  NPSS, despite the name, is the index of the
2070 		 * lowest-power state, not the number of states.
2071 		 */
2072 		for (state = (int)ctrl->npss; state >= 0; state--) {
2073 			u64 total_latency_us, exit_latency_us, transition_ms;
2074 
2075 			if (target)
2076 				table->entries[state] = target;
2077 
2078 			/*
2079 			 * Don't allow transitions to the deepest state
2080 			 * if it's quirked off.
2081 			 */
2082 			if (state == ctrl->npss &&
2083 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2084 				continue;
2085 
2086 			/*
2087 			 * Is this state a useful non-operational state for
2088 			 * higher-power states to autonomously transition to?
2089 			 */
2090 			if (!(ctrl->psd[state].flags &
2091 			      NVME_PS_FLAGS_NON_OP_STATE))
2092 				continue;
2093 
2094 			exit_latency_us =
2095 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2096 			if (exit_latency_us > ctrl->ps_max_latency_us)
2097 				continue;
2098 
2099 			total_latency_us =
2100 				exit_latency_us +
2101 				le32_to_cpu(ctrl->psd[state].entry_lat);
2102 
2103 			/*
2104 			 * This state is good.  Use it as the APST idle
2105 			 * target for higher power states.
2106 			 */
2107 			transition_ms = total_latency_us + 19;
2108 			do_div(transition_ms, 20);
2109 			if (transition_ms > (1 << 24) - 1)
2110 				transition_ms = (1 << 24) - 1;
2111 
2112 			target = cpu_to_le64((state << 3) |
2113 					     (transition_ms << 8));
2114 
2115 			if (max_ps == -1)
2116 				max_ps = state;
2117 
2118 			if (total_latency_us > max_lat_us)
2119 				max_lat_us = total_latency_us;
2120 		}
2121 
2122 		apste = 1;
2123 
2124 		if (max_ps == -1) {
2125 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2126 		} else {
2127 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2128 				max_ps, max_lat_us, (int)sizeof(*table), table);
2129 		}
2130 	}
2131 
2132 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2133 				table, sizeof(*table), NULL);
2134 	if (ret)
2135 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2136 
2137 	kfree(table);
2138 	return ret;
2139 }
2140 
2141 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2142 {
2143 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2144 	u64 latency;
2145 
2146 	switch (val) {
2147 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2148 	case PM_QOS_LATENCY_ANY:
2149 		latency = U64_MAX;
2150 		break;
2151 
2152 	default:
2153 		latency = val;
2154 	}
2155 
2156 	if (ctrl->ps_max_latency_us != latency) {
2157 		ctrl->ps_max_latency_us = latency;
2158 		nvme_configure_apst(ctrl);
2159 	}
2160 }
2161 
2162 struct nvme_core_quirk_entry {
2163 	/*
2164 	 * NVMe model and firmware strings are padded with spaces.  For
2165 	 * simplicity, strings in the quirk table are padded with NULLs
2166 	 * instead.
2167 	 */
2168 	u16 vid;
2169 	const char *mn;
2170 	const char *fr;
2171 	unsigned long quirks;
2172 };
2173 
2174 static const struct nvme_core_quirk_entry core_quirks[] = {
2175 	{
2176 		/*
2177 		 * This Toshiba device seems to die using any APST states.  See:
2178 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2179 		 */
2180 		.vid = 0x1179,
2181 		.mn = "THNSF5256GPUK TOSHIBA",
2182 		.quirks = NVME_QUIRK_NO_APST,
2183 	}
2184 };
2185 
2186 /* match is null-terminated but idstr is space-padded. */
2187 static bool string_matches(const char *idstr, const char *match, size_t len)
2188 {
2189 	size_t matchlen;
2190 
2191 	if (!match)
2192 		return true;
2193 
2194 	matchlen = strlen(match);
2195 	WARN_ON_ONCE(matchlen > len);
2196 
2197 	if (memcmp(idstr, match, matchlen))
2198 		return false;
2199 
2200 	for (; matchlen < len; matchlen++)
2201 		if (idstr[matchlen] != ' ')
2202 			return false;
2203 
2204 	return true;
2205 }
2206 
2207 static bool quirk_matches(const struct nvme_id_ctrl *id,
2208 			  const struct nvme_core_quirk_entry *q)
2209 {
2210 	return q->vid == le16_to_cpu(id->vid) &&
2211 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2212 		string_matches(id->fr, q->fr, sizeof(id->fr));
2213 }
2214 
2215 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2216 		struct nvme_id_ctrl *id)
2217 {
2218 	size_t nqnlen;
2219 	int off;
2220 
2221 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2222 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2223 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2224 			strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2225 			return;
2226 		}
2227 
2228 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2229 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2230 	}
2231 
2232 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2233 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2234 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2235 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2236 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2237 	off += sizeof(id->sn);
2238 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2239 	off += sizeof(id->mn);
2240 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2241 }
2242 
2243 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2244 {
2245 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2246 	kfree(subsys);
2247 }
2248 
2249 static void nvme_release_subsystem(struct device *dev)
2250 {
2251 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2252 }
2253 
2254 static void nvme_destroy_subsystem(struct kref *ref)
2255 {
2256 	struct nvme_subsystem *subsys =
2257 			container_of(ref, struct nvme_subsystem, ref);
2258 
2259 	mutex_lock(&nvme_subsystems_lock);
2260 	list_del(&subsys->entry);
2261 	mutex_unlock(&nvme_subsystems_lock);
2262 
2263 	ida_destroy(&subsys->ns_ida);
2264 	device_del(&subsys->dev);
2265 	put_device(&subsys->dev);
2266 }
2267 
2268 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2269 {
2270 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2271 }
2272 
2273 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2274 {
2275 	struct nvme_subsystem *subsys;
2276 
2277 	lockdep_assert_held(&nvme_subsystems_lock);
2278 
2279 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2280 		if (strcmp(subsys->subnqn, subsysnqn))
2281 			continue;
2282 		if (!kref_get_unless_zero(&subsys->ref))
2283 			continue;
2284 		return subsys;
2285 	}
2286 
2287 	return NULL;
2288 }
2289 
2290 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2291 	struct device_attribute subsys_attr_##_name = \
2292 		__ATTR(_name, _mode, _show, NULL)
2293 
2294 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2295 				    struct device_attribute *attr,
2296 				    char *buf)
2297 {
2298 	struct nvme_subsystem *subsys =
2299 		container_of(dev, struct nvme_subsystem, dev);
2300 
2301 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2302 }
2303 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2304 
2305 #define nvme_subsys_show_str_function(field)				\
2306 static ssize_t subsys_##field##_show(struct device *dev,		\
2307 			    struct device_attribute *attr, char *buf)	\
2308 {									\
2309 	struct nvme_subsystem *subsys =					\
2310 		container_of(dev, struct nvme_subsystem, dev);		\
2311 	return sprintf(buf, "%.*s\n",					\
2312 		       (int)sizeof(subsys->field), subsys->field);	\
2313 }									\
2314 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2315 
2316 nvme_subsys_show_str_function(model);
2317 nvme_subsys_show_str_function(serial);
2318 nvme_subsys_show_str_function(firmware_rev);
2319 
2320 static struct attribute *nvme_subsys_attrs[] = {
2321 	&subsys_attr_model.attr,
2322 	&subsys_attr_serial.attr,
2323 	&subsys_attr_firmware_rev.attr,
2324 	&subsys_attr_subsysnqn.attr,
2325 #ifdef CONFIG_NVME_MULTIPATH
2326 	&subsys_attr_iopolicy.attr,
2327 #endif
2328 	NULL,
2329 };
2330 
2331 static struct attribute_group nvme_subsys_attrs_group = {
2332 	.attrs = nvme_subsys_attrs,
2333 };
2334 
2335 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2336 	&nvme_subsys_attrs_group,
2337 	NULL,
2338 };
2339 
2340 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2341 {
2342 	int count = 0;
2343 	struct nvme_ctrl *ctrl;
2344 
2345 	mutex_lock(&subsys->lock);
2346 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2347 		if (ctrl->state != NVME_CTRL_DELETING &&
2348 		    ctrl->state != NVME_CTRL_DEAD)
2349 			count++;
2350 	}
2351 	mutex_unlock(&subsys->lock);
2352 
2353 	return count;
2354 }
2355 
2356 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2357 {
2358 	struct nvme_subsystem *subsys, *found;
2359 	int ret;
2360 
2361 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2362 	if (!subsys)
2363 		return -ENOMEM;
2364 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2365 	if (ret < 0) {
2366 		kfree(subsys);
2367 		return ret;
2368 	}
2369 	subsys->instance = ret;
2370 	mutex_init(&subsys->lock);
2371 	kref_init(&subsys->ref);
2372 	INIT_LIST_HEAD(&subsys->ctrls);
2373 	INIT_LIST_HEAD(&subsys->nsheads);
2374 	nvme_init_subnqn(subsys, ctrl, id);
2375 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2376 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2377 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2378 	subsys->vendor_id = le16_to_cpu(id->vid);
2379 	subsys->cmic = id->cmic;
2380 #ifdef CONFIG_NVME_MULTIPATH
2381 	subsys->iopolicy = NVME_IOPOLICY_NUMA;
2382 #endif
2383 
2384 	subsys->dev.class = nvme_subsys_class;
2385 	subsys->dev.release = nvme_release_subsystem;
2386 	subsys->dev.groups = nvme_subsys_attrs_groups;
2387 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2388 	device_initialize(&subsys->dev);
2389 
2390 	mutex_lock(&nvme_subsystems_lock);
2391 	found = __nvme_find_get_subsystem(subsys->subnqn);
2392 	if (found) {
2393 		/*
2394 		 * Verify that the subsystem actually supports multiple
2395 		 * controllers, else bail out.
2396 		 */
2397 		if (!(ctrl->opts && ctrl->opts->discovery_nqn) &&
2398 		    nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2399 			dev_err(ctrl->device,
2400 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2401 				found->subnqn);
2402 			nvme_put_subsystem(found);
2403 			ret = -EINVAL;
2404 			goto out_unlock;
2405 		}
2406 
2407 		__nvme_release_subsystem(subsys);
2408 		subsys = found;
2409 	} else {
2410 		ret = device_add(&subsys->dev);
2411 		if (ret) {
2412 			dev_err(ctrl->device,
2413 				"failed to register subsystem device.\n");
2414 			goto out_unlock;
2415 		}
2416 		ida_init(&subsys->ns_ida);
2417 		list_add_tail(&subsys->entry, &nvme_subsystems);
2418 	}
2419 
2420 	ctrl->subsys = subsys;
2421 	mutex_unlock(&nvme_subsystems_lock);
2422 
2423 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2424 			dev_name(ctrl->device))) {
2425 		dev_err(ctrl->device,
2426 			"failed to create sysfs link from subsystem.\n");
2427 		/* the transport driver will eventually put the subsystem */
2428 		return -EINVAL;
2429 	}
2430 
2431 	mutex_lock(&subsys->lock);
2432 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2433 	mutex_unlock(&subsys->lock);
2434 
2435 	return 0;
2436 
2437 out_unlock:
2438 	mutex_unlock(&nvme_subsystems_lock);
2439 	put_device(&subsys->dev);
2440 	return ret;
2441 }
2442 
2443 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2444 		void *log, size_t size, u64 offset)
2445 {
2446 	struct nvme_command c = { };
2447 	unsigned long dwlen = size / 4 - 1;
2448 
2449 	c.get_log_page.opcode = nvme_admin_get_log_page;
2450 	c.get_log_page.nsid = cpu_to_le32(nsid);
2451 	c.get_log_page.lid = log_page;
2452 	c.get_log_page.lsp = lsp;
2453 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2454 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2455 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2456 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2457 
2458 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2459 }
2460 
2461 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2462 {
2463 	int ret;
2464 
2465 	if (!ctrl->effects)
2466 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2467 
2468 	if (!ctrl->effects)
2469 		return 0;
2470 
2471 	ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2472 			ctrl->effects, sizeof(*ctrl->effects), 0);
2473 	if (ret) {
2474 		kfree(ctrl->effects);
2475 		ctrl->effects = NULL;
2476 	}
2477 	return ret;
2478 }
2479 
2480 /*
2481  * Initialize the cached copies of the Identify data and various controller
2482  * register in our nvme_ctrl structure.  This should be called as soon as
2483  * the admin queue is fully up and running.
2484  */
2485 int nvme_init_identify(struct nvme_ctrl *ctrl)
2486 {
2487 	struct nvme_id_ctrl *id;
2488 	u64 cap;
2489 	int ret, page_shift;
2490 	u32 max_hw_sectors;
2491 	bool prev_apst_enabled;
2492 
2493 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2494 	if (ret) {
2495 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2496 		return ret;
2497 	}
2498 
2499 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2500 	if (ret) {
2501 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2502 		return ret;
2503 	}
2504 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2505 
2506 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2507 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2508 
2509 	ret = nvme_identify_ctrl(ctrl, &id);
2510 	if (ret) {
2511 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2512 		return -EIO;
2513 	}
2514 
2515 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2516 		ret = nvme_get_effects_log(ctrl);
2517 		if (ret < 0)
2518 			goto out_free;
2519 	}
2520 
2521 	if (!ctrl->identified) {
2522 		int i;
2523 
2524 		ret = nvme_init_subsystem(ctrl, id);
2525 		if (ret)
2526 			goto out_free;
2527 
2528 		/*
2529 		 * Check for quirks.  Quirk can depend on firmware version,
2530 		 * so, in principle, the set of quirks present can change
2531 		 * across a reset.  As a possible future enhancement, we
2532 		 * could re-scan for quirks every time we reinitialize
2533 		 * the device, but we'd have to make sure that the driver
2534 		 * behaves intelligently if the quirks change.
2535 		 */
2536 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2537 			if (quirk_matches(id, &core_quirks[i]))
2538 				ctrl->quirks |= core_quirks[i].quirks;
2539 		}
2540 	}
2541 
2542 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2543 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2544 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2545 	}
2546 
2547 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2548 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2549 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2550 
2551 	ctrl->oacs = le16_to_cpu(id->oacs);
2552 	ctrl->oncs = le16_to_cpup(&id->oncs);
2553 	ctrl->oaes = le32_to_cpu(id->oaes);
2554 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2555 	ctrl->vwc = id->vwc;
2556 	if (id->mdts)
2557 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2558 	else
2559 		max_hw_sectors = UINT_MAX;
2560 	ctrl->max_hw_sectors =
2561 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2562 
2563 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2564 	ctrl->sgls = le32_to_cpu(id->sgls);
2565 	ctrl->kas = le16_to_cpu(id->kas);
2566 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
2567 	ctrl->ctratt = le32_to_cpu(id->ctratt);
2568 
2569 	if (id->rtd3e) {
2570 		/* us -> s */
2571 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2572 
2573 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2574 						 shutdown_timeout, 60);
2575 
2576 		if (ctrl->shutdown_timeout != shutdown_timeout)
2577 			dev_info(ctrl->device,
2578 				 "Shutdown timeout set to %u seconds\n",
2579 				 ctrl->shutdown_timeout);
2580 	} else
2581 		ctrl->shutdown_timeout = shutdown_timeout;
2582 
2583 	ctrl->npss = id->npss;
2584 	ctrl->apsta = id->apsta;
2585 	prev_apst_enabled = ctrl->apst_enabled;
2586 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2587 		if (force_apst && id->apsta) {
2588 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2589 			ctrl->apst_enabled = true;
2590 		} else {
2591 			ctrl->apst_enabled = false;
2592 		}
2593 	} else {
2594 		ctrl->apst_enabled = id->apsta;
2595 	}
2596 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2597 
2598 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2599 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2600 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2601 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2602 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2603 
2604 		/*
2605 		 * In fabrics we need to verify the cntlid matches the
2606 		 * admin connect
2607 		 */
2608 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2609 			ret = -EINVAL;
2610 			goto out_free;
2611 		}
2612 
2613 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2614 			dev_err(ctrl->device,
2615 				"keep-alive support is mandatory for fabrics\n");
2616 			ret = -EINVAL;
2617 			goto out_free;
2618 		}
2619 	} else {
2620 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2621 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2622 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2623 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2624 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2625 	}
2626 
2627 	ret = nvme_mpath_init(ctrl, id);
2628 	kfree(id);
2629 
2630 	if (ret < 0)
2631 		return ret;
2632 
2633 	if (ctrl->apst_enabled && !prev_apst_enabled)
2634 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2635 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2636 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2637 
2638 	ret = nvme_configure_apst(ctrl);
2639 	if (ret < 0)
2640 		return ret;
2641 
2642 	ret = nvme_configure_timestamp(ctrl);
2643 	if (ret < 0)
2644 		return ret;
2645 
2646 	ret = nvme_configure_directives(ctrl);
2647 	if (ret < 0)
2648 		return ret;
2649 
2650 	ret = nvme_configure_acre(ctrl);
2651 	if (ret < 0)
2652 		return ret;
2653 
2654 	ctrl->identified = true;
2655 
2656 	return 0;
2657 
2658 out_free:
2659 	kfree(id);
2660 	return ret;
2661 }
2662 EXPORT_SYMBOL_GPL(nvme_init_identify);
2663 
2664 static int nvme_dev_open(struct inode *inode, struct file *file)
2665 {
2666 	struct nvme_ctrl *ctrl =
2667 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2668 
2669 	switch (ctrl->state) {
2670 	case NVME_CTRL_LIVE:
2671 	case NVME_CTRL_ADMIN_ONLY:
2672 		break;
2673 	default:
2674 		return -EWOULDBLOCK;
2675 	}
2676 
2677 	file->private_data = ctrl;
2678 	return 0;
2679 }
2680 
2681 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2682 {
2683 	struct nvme_ns *ns;
2684 	int ret;
2685 
2686 	down_read(&ctrl->namespaces_rwsem);
2687 	if (list_empty(&ctrl->namespaces)) {
2688 		ret = -ENOTTY;
2689 		goto out_unlock;
2690 	}
2691 
2692 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2693 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2694 		dev_warn(ctrl->device,
2695 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2696 		ret = -EINVAL;
2697 		goto out_unlock;
2698 	}
2699 
2700 	dev_warn(ctrl->device,
2701 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2702 	kref_get(&ns->kref);
2703 	up_read(&ctrl->namespaces_rwsem);
2704 
2705 	ret = nvme_user_cmd(ctrl, ns, argp);
2706 	nvme_put_ns(ns);
2707 	return ret;
2708 
2709 out_unlock:
2710 	up_read(&ctrl->namespaces_rwsem);
2711 	return ret;
2712 }
2713 
2714 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2715 		unsigned long arg)
2716 {
2717 	struct nvme_ctrl *ctrl = file->private_data;
2718 	void __user *argp = (void __user *)arg;
2719 
2720 	switch (cmd) {
2721 	case NVME_IOCTL_ADMIN_CMD:
2722 		return nvme_user_cmd(ctrl, NULL, argp);
2723 	case NVME_IOCTL_IO_CMD:
2724 		return nvme_dev_user_cmd(ctrl, argp);
2725 	case NVME_IOCTL_RESET:
2726 		dev_warn(ctrl->device, "resetting controller\n");
2727 		return nvme_reset_ctrl_sync(ctrl);
2728 	case NVME_IOCTL_SUBSYS_RESET:
2729 		return nvme_reset_subsystem(ctrl);
2730 	case NVME_IOCTL_RESCAN:
2731 		nvme_queue_scan(ctrl);
2732 		return 0;
2733 	default:
2734 		return -ENOTTY;
2735 	}
2736 }
2737 
2738 static const struct file_operations nvme_dev_fops = {
2739 	.owner		= THIS_MODULE,
2740 	.open		= nvme_dev_open,
2741 	.unlocked_ioctl	= nvme_dev_ioctl,
2742 	.compat_ioctl	= nvme_dev_ioctl,
2743 };
2744 
2745 static ssize_t nvme_sysfs_reset(struct device *dev,
2746 				struct device_attribute *attr, const char *buf,
2747 				size_t count)
2748 {
2749 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2750 	int ret;
2751 
2752 	ret = nvme_reset_ctrl_sync(ctrl);
2753 	if (ret < 0)
2754 		return ret;
2755 	return count;
2756 }
2757 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2758 
2759 static ssize_t nvme_sysfs_rescan(struct device *dev,
2760 				struct device_attribute *attr, const char *buf,
2761 				size_t count)
2762 {
2763 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2764 
2765 	nvme_queue_scan(ctrl);
2766 	return count;
2767 }
2768 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2769 
2770 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2771 {
2772 	struct gendisk *disk = dev_to_disk(dev);
2773 
2774 	if (disk->fops == &nvme_fops)
2775 		return nvme_get_ns_from_dev(dev)->head;
2776 	else
2777 		return disk->private_data;
2778 }
2779 
2780 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2781 		char *buf)
2782 {
2783 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2784 	struct nvme_ns_ids *ids = &head->ids;
2785 	struct nvme_subsystem *subsys = head->subsys;
2786 	int serial_len = sizeof(subsys->serial);
2787 	int model_len = sizeof(subsys->model);
2788 
2789 	if (!uuid_is_null(&ids->uuid))
2790 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2791 
2792 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2793 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2794 
2795 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2796 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2797 
2798 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2799 				  subsys->serial[serial_len - 1] == '\0'))
2800 		serial_len--;
2801 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2802 				 subsys->model[model_len - 1] == '\0'))
2803 		model_len--;
2804 
2805 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2806 		serial_len, subsys->serial, model_len, subsys->model,
2807 		head->ns_id);
2808 }
2809 static DEVICE_ATTR_RO(wwid);
2810 
2811 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2812 		char *buf)
2813 {
2814 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2815 }
2816 static DEVICE_ATTR_RO(nguid);
2817 
2818 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2819 		char *buf)
2820 {
2821 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2822 
2823 	/* For backward compatibility expose the NGUID to userspace if
2824 	 * we have no UUID set
2825 	 */
2826 	if (uuid_is_null(&ids->uuid)) {
2827 		printk_ratelimited(KERN_WARNING
2828 				   "No UUID available providing old NGUID\n");
2829 		return sprintf(buf, "%pU\n", ids->nguid);
2830 	}
2831 	return sprintf(buf, "%pU\n", &ids->uuid);
2832 }
2833 static DEVICE_ATTR_RO(uuid);
2834 
2835 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2836 		char *buf)
2837 {
2838 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2839 }
2840 static DEVICE_ATTR_RO(eui);
2841 
2842 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2843 		char *buf)
2844 {
2845 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2846 }
2847 static DEVICE_ATTR_RO(nsid);
2848 
2849 static struct attribute *nvme_ns_id_attrs[] = {
2850 	&dev_attr_wwid.attr,
2851 	&dev_attr_uuid.attr,
2852 	&dev_attr_nguid.attr,
2853 	&dev_attr_eui.attr,
2854 	&dev_attr_nsid.attr,
2855 #ifdef CONFIG_NVME_MULTIPATH
2856 	&dev_attr_ana_grpid.attr,
2857 	&dev_attr_ana_state.attr,
2858 #endif
2859 	NULL,
2860 };
2861 
2862 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2863 		struct attribute *a, int n)
2864 {
2865 	struct device *dev = container_of(kobj, struct device, kobj);
2866 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2867 
2868 	if (a == &dev_attr_uuid.attr) {
2869 		if (uuid_is_null(&ids->uuid) &&
2870 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2871 			return 0;
2872 	}
2873 	if (a == &dev_attr_nguid.attr) {
2874 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2875 			return 0;
2876 	}
2877 	if (a == &dev_attr_eui.attr) {
2878 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2879 			return 0;
2880 	}
2881 #ifdef CONFIG_NVME_MULTIPATH
2882 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2883 		if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2884 			return 0;
2885 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2886 			return 0;
2887 	}
2888 #endif
2889 	return a->mode;
2890 }
2891 
2892 static const struct attribute_group nvme_ns_id_attr_group = {
2893 	.attrs		= nvme_ns_id_attrs,
2894 	.is_visible	= nvme_ns_id_attrs_are_visible,
2895 };
2896 
2897 const struct attribute_group *nvme_ns_id_attr_groups[] = {
2898 	&nvme_ns_id_attr_group,
2899 #ifdef CONFIG_NVM
2900 	&nvme_nvm_attr_group,
2901 #endif
2902 	NULL,
2903 };
2904 
2905 #define nvme_show_str_function(field)						\
2906 static ssize_t  field##_show(struct device *dev,				\
2907 			    struct device_attribute *attr, char *buf)		\
2908 {										\
2909         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2910         return sprintf(buf, "%.*s\n",						\
2911 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2912 }										\
2913 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2914 
2915 nvme_show_str_function(model);
2916 nvme_show_str_function(serial);
2917 nvme_show_str_function(firmware_rev);
2918 
2919 #define nvme_show_int_function(field)						\
2920 static ssize_t  field##_show(struct device *dev,				\
2921 			    struct device_attribute *attr, char *buf)		\
2922 {										\
2923         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2924         return sprintf(buf, "%d\n", ctrl->field);	\
2925 }										\
2926 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2927 
2928 nvme_show_int_function(cntlid);
2929 nvme_show_int_function(numa_node);
2930 
2931 static ssize_t nvme_sysfs_delete(struct device *dev,
2932 				struct device_attribute *attr, const char *buf,
2933 				size_t count)
2934 {
2935 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2936 
2937 	if (device_remove_file_self(dev, attr))
2938 		nvme_delete_ctrl_sync(ctrl);
2939 	return count;
2940 }
2941 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2942 
2943 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2944 					 struct device_attribute *attr,
2945 					 char *buf)
2946 {
2947 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2948 
2949 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2950 }
2951 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2952 
2953 static ssize_t nvme_sysfs_show_state(struct device *dev,
2954 				     struct device_attribute *attr,
2955 				     char *buf)
2956 {
2957 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2958 	static const char *const state_name[] = {
2959 		[NVME_CTRL_NEW]		= "new",
2960 		[NVME_CTRL_LIVE]	= "live",
2961 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2962 		[NVME_CTRL_RESETTING]	= "resetting",
2963 		[NVME_CTRL_CONNECTING]	= "connecting",
2964 		[NVME_CTRL_DELETING]	= "deleting",
2965 		[NVME_CTRL_DEAD]	= "dead",
2966 	};
2967 
2968 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2969 	    state_name[ctrl->state])
2970 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2971 
2972 	return sprintf(buf, "unknown state\n");
2973 }
2974 
2975 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2976 
2977 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2978 					 struct device_attribute *attr,
2979 					 char *buf)
2980 {
2981 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2982 
2983 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2984 }
2985 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2986 
2987 static ssize_t nvme_sysfs_show_address(struct device *dev,
2988 					 struct device_attribute *attr,
2989 					 char *buf)
2990 {
2991 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2992 
2993 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2994 }
2995 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2996 
2997 static struct attribute *nvme_dev_attrs[] = {
2998 	&dev_attr_reset_controller.attr,
2999 	&dev_attr_rescan_controller.attr,
3000 	&dev_attr_model.attr,
3001 	&dev_attr_serial.attr,
3002 	&dev_attr_firmware_rev.attr,
3003 	&dev_attr_cntlid.attr,
3004 	&dev_attr_delete_controller.attr,
3005 	&dev_attr_transport.attr,
3006 	&dev_attr_subsysnqn.attr,
3007 	&dev_attr_address.attr,
3008 	&dev_attr_state.attr,
3009 	&dev_attr_numa_node.attr,
3010 	NULL
3011 };
3012 
3013 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3014 		struct attribute *a, int n)
3015 {
3016 	struct device *dev = container_of(kobj, struct device, kobj);
3017 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3018 
3019 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3020 		return 0;
3021 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3022 		return 0;
3023 
3024 	return a->mode;
3025 }
3026 
3027 static struct attribute_group nvme_dev_attrs_group = {
3028 	.attrs		= nvme_dev_attrs,
3029 	.is_visible	= nvme_dev_attrs_are_visible,
3030 };
3031 
3032 static const struct attribute_group *nvme_dev_attr_groups[] = {
3033 	&nvme_dev_attrs_group,
3034 	NULL,
3035 };
3036 
3037 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3038 		unsigned nsid)
3039 {
3040 	struct nvme_ns_head *h;
3041 
3042 	lockdep_assert_held(&subsys->lock);
3043 
3044 	list_for_each_entry(h, &subsys->nsheads, entry) {
3045 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3046 			return h;
3047 	}
3048 
3049 	return NULL;
3050 }
3051 
3052 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3053 		struct nvme_ns_head *new)
3054 {
3055 	struct nvme_ns_head *h;
3056 
3057 	lockdep_assert_held(&subsys->lock);
3058 
3059 	list_for_each_entry(h, &subsys->nsheads, entry) {
3060 		if (nvme_ns_ids_valid(&new->ids) &&
3061 		    !list_empty(&h->list) &&
3062 		    nvme_ns_ids_equal(&new->ids, &h->ids))
3063 			return -EINVAL;
3064 	}
3065 
3066 	return 0;
3067 }
3068 
3069 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3070 		unsigned nsid, struct nvme_id_ns *id)
3071 {
3072 	struct nvme_ns_head *head;
3073 	size_t size = sizeof(*head);
3074 	int ret = -ENOMEM;
3075 
3076 #ifdef CONFIG_NVME_MULTIPATH
3077 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3078 #endif
3079 
3080 	head = kzalloc(size, GFP_KERNEL);
3081 	if (!head)
3082 		goto out;
3083 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3084 	if (ret < 0)
3085 		goto out_free_head;
3086 	head->instance = ret;
3087 	INIT_LIST_HEAD(&head->list);
3088 	ret = init_srcu_struct(&head->srcu);
3089 	if (ret)
3090 		goto out_ida_remove;
3091 	head->subsys = ctrl->subsys;
3092 	head->ns_id = nsid;
3093 	kref_init(&head->ref);
3094 
3095 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3096 
3097 	ret = __nvme_check_ids(ctrl->subsys, head);
3098 	if (ret) {
3099 		dev_err(ctrl->device,
3100 			"duplicate IDs for nsid %d\n", nsid);
3101 		goto out_cleanup_srcu;
3102 	}
3103 
3104 	ret = nvme_mpath_alloc_disk(ctrl, head);
3105 	if (ret)
3106 		goto out_cleanup_srcu;
3107 
3108 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3109 
3110 	kref_get(&ctrl->subsys->ref);
3111 
3112 	return head;
3113 out_cleanup_srcu:
3114 	cleanup_srcu_struct(&head->srcu);
3115 out_ida_remove:
3116 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3117 out_free_head:
3118 	kfree(head);
3119 out:
3120 	return ERR_PTR(ret);
3121 }
3122 
3123 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3124 		struct nvme_id_ns *id)
3125 {
3126 	struct nvme_ctrl *ctrl = ns->ctrl;
3127 	bool is_shared = id->nmic & (1 << 0);
3128 	struct nvme_ns_head *head = NULL;
3129 	int ret = 0;
3130 
3131 	mutex_lock(&ctrl->subsys->lock);
3132 	if (is_shared)
3133 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
3134 	if (!head) {
3135 		head = nvme_alloc_ns_head(ctrl, nsid, id);
3136 		if (IS_ERR(head)) {
3137 			ret = PTR_ERR(head);
3138 			goto out_unlock;
3139 		}
3140 	} else {
3141 		struct nvme_ns_ids ids;
3142 
3143 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
3144 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3145 			dev_err(ctrl->device,
3146 				"IDs don't match for shared namespace %d\n",
3147 					nsid);
3148 			ret = -EINVAL;
3149 			goto out_unlock;
3150 		}
3151 	}
3152 
3153 	list_add_tail(&ns->siblings, &head->list);
3154 	ns->head = head;
3155 
3156 out_unlock:
3157 	mutex_unlock(&ctrl->subsys->lock);
3158 	return ret;
3159 }
3160 
3161 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3162 {
3163 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3164 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3165 
3166 	return nsa->head->ns_id - nsb->head->ns_id;
3167 }
3168 
3169 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3170 {
3171 	struct nvme_ns *ns, *ret = NULL;
3172 
3173 	down_read(&ctrl->namespaces_rwsem);
3174 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3175 		if (ns->head->ns_id == nsid) {
3176 			if (!kref_get_unless_zero(&ns->kref))
3177 				continue;
3178 			ret = ns;
3179 			break;
3180 		}
3181 		if (ns->head->ns_id > nsid)
3182 			break;
3183 	}
3184 	up_read(&ctrl->namespaces_rwsem);
3185 	return ret;
3186 }
3187 
3188 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3189 {
3190 	struct streams_directive_params s;
3191 	int ret;
3192 
3193 	if (!ctrl->nr_streams)
3194 		return 0;
3195 
3196 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3197 	if (ret)
3198 		return ret;
3199 
3200 	ns->sws = le32_to_cpu(s.sws);
3201 	ns->sgs = le16_to_cpu(s.sgs);
3202 
3203 	if (ns->sws) {
3204 		unsigned int bs = 1 << ns->lba_shift;
3205 
3206 		blk_queue_io_min(ns->queue, bs * ns->sws);
3207 		if (ns->sgs)
3208 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3209 	}
3210 
3211 	return 0;
3212 }
3213 
3214 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3215 {
3216 	struct nvme_ns *ns;
3217 	struct gendisk *disk;
3218 	struct nvme_id_ns *id;
3219 	char disk_name[DISK_NAME_LEN];
3220 	int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3221 
3222 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3223 	if (!ns)
3224 		return -ENOMEM;
3225 
3226 	ns->queue = blk_mq_init_queue(ctrl->tagset);
3227 	if (IS_ERR(ns->queue)) {
3228 		ret = PTR_ERR(ns->queue);
3229 		goto out_free_ns;
3230 	}
3231 
3232 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3233 	if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3234 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3235 
3236 	ns->queue->queuedata = ns;
3237 	ns->ctrl = ctrl;
3238 
3239 	kref_init(&ns->kref);
3240 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3241 
3242 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3243 	nvme_set_queue_limits(ctrl, ns->queue);
3244 
3245 	id = nvme_identify_ns(ctrl, nsid);
3246 	if (!id) {
3247 		ret = -EIO;
3248 		goto out_free_queue;
3249 	}
3250 
3251 	if (id->ncap == 0) {
3252 		ret = -EINVAL;
3253 		goto out_free_id;
3254 	}
3255 
3256 	ret = nvme_init_ns_head(ns, nsid, id);
3257 	if (ret)
3258 		goto out_free_id;
3259 	nvme_setup_streams_ns(ctrl, ns);
3260 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3261 
3262 	disk = alloc_disk_node(0, node);
3263 	if (!disk) {
3264 		ret = -ENOMEM;
3265 		goto out_unlink_ns;
3266 	}
3267 
3268 	disk->fops = &nvme_fops;
3269 	disk->private_data = ns;
3270 	disk->queue = ns->queue;
3271 	disk->flags = flags;
3272 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3273 	ns->disk = disk;
3274 
3275 	__nvme_revalidate_disk(disk, id);
3276 
3277 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3278 		ret = nvme_nvm_register(ns, disk_name, node);
3279 		if (ret) {
3280 			dev_warn(ctrl->device, "LightNVM init failure\n");
3281 			goto out_put_disk;
3282 		}
3283 	}
3284 
3285 	down_write(&ctrl->namespaces_rwsem);
3286 	list_add_tail(&ns->list, &ctrl->namespaces);
3287 	up_write(&ctrl->namespaces_rwsem);
3288 
3289 	nvme_get_ctrl(ctrl);
3290 
3291 	device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3292 
3293 	nvme_mpath_add_disk(ns, id);
3294 	nvme_fault_inject_init(ns);
3295 	kfree(id);
3296 
3297 	return 0;
3298  out_put_disk:
3299 	put_disk(ns->disk);
3300  out_unlink_ns:
3301 	mutex_lock(&ctrl->subsys->lock);
3302 	list_del_rcu(&ns->siblings);
3303 	mutex_unlock(&ctrl->subsys->lock);
3304 	nvme_put_ns_head(ns->head);
3305  out_free_id:
3306 	kfree(id);
3307  out_free_queue:
3308 	blk_cleanup_queue(ns->queue);
3309  out_free_ns:
3310 	kfree(ns);
3311 	return ret;
3312 }
3313 
3314 static void nvme_ns_remove(struct nvme_ns *ns)
3315 {
3316 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3317 		return;
3318 
3319 	nvme_fault_inject_fini(ns);
3320 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3321 		del_gendisk(ns->disk);
3322 		blk_cleanup_queue(ns->queue);
3323 		if (blk_get_integrity(ns->disk))
3324 			blk_integrity_unregister(ns->disk);
3325 	}
3326 
3327 	mutex_lock(&ns->ctrl->subsys->lock);
3328 	list_del_rcu(&ns->siblings);
3329 	nvme_mpath_clear_current_path(ns);
3330 	mutex_unlock(&ns->ctrl->subsys->lock);
3331 
3332 	down_write(&ns->ctrl->namespaces_rwsem);
3333 	list_del_init(&ns->list);
3334 	up_write(&ns->ctrl->namespaces_rwsem);
3335 
3336 	synchronize_srcu(&ns->head->srcu);
3337 	nvme_mpath_check_last_path(ns);
3338 	nvme_put_ns(ns);
3339 }
3340 
3341 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3342 {
3343 	struct nvme_ns *ns;
3344 
3345 	ns = nvme_find_get_ns(ctrl, nsid);
3346 	if (ns) {
3347 		if (ns->disk && revalidate_disk(ns->disk))
3348 			nvme_ns_remove(ns);
3349 		nvme_put_ns(ns);
3350 	} else
3351 		nvme_alloc_ns(ctrl, nsid);
3352 }
3353 
3354 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3355 					unsigned nsid)
3356 {
3357 	struct nvme_ns *ns, *next;
3358 	LIST_HEAD(rm_list);
3359 
3360 	down_write(&ctrl->namespaces_rwsem);
3361 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3362 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3363 			list_move_tail(&ns->list, &rm_list);
3364 	}
3365 	up_write(&ctrl->namespaces_rwsem);
3366 
3367 	list_for_each_entry_safe(ns, next, &rm_list, list)
3368 		nvme_ns_remove(ns);
3369 
3370 }
3371 
3372 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3373 {
3374 	struct nvme_ns *ns;
3375 	__le32 *ns_list;
3376 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3377 	int ret = 0;
3378 
3379 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3380 	if (!ns_list)
3381 		return -ENOMEM;
3382 
3383 	for (i = 0; i < num_lists; i++) {
3384 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3385 		if (ret)
3386 			goto free;
3387 
3388 		for (j = 0; j < min(nn, 1024U); j++) {
3389 			nsid = le32_to_cpu(ns_list[j]);
3390 			if (!nsid)
3391 				goto out;
3392 
3393 			nvme_validate_ns(ctrl, nsid);
3394 
3395 			while (++prev < nsid) {
3396 				ns = nvme_find_get_ns(ctrl, prev);
3397 				if (ns) {
3398 					nvme_ns_remove(ns);
3399 					nvme_put_ns(ns);
3400 				}
3401 			}
3402 		}
3403 		nn -= j;
3404 	}
3405  out:
3406 	nvme_remove_invalid_namespaces(ctrl, prev);
3407  free:
3408 	kfree(ns_list);
3409 	return ret;
3410 }
3411 
3412 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3413 {
3414 	unsigned i;
3415 
3416 	for (i = 1; i <= nn; i++)
3417 		nvme_validate_ns(ctrl, i);
3418 
3419 	nvme_remove_invalid_namespaces(ctrl, nn);
3420 }
3421 
3422 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3423 {
3424 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3425 	__le32 *log;
3426 	int error;
3427 
3428 	log = kzalloc(log_size, GFP_KERNEL);
3429 	if (!log)
3430 		return;
3431 
3432 	/*
3433 	 * We need to read the log to clear the AEN, but we don't want to rely
3434 	 * on it for the changed namespace information as userspace could have
3435 	 * raced with us in reading the log page, which could cause us to miss
3436 	 * updates.
3437 	 */
3438 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3439 			log_size, 0);
3440 	if (error)
3441 		dev_warn(ctrl->device,
3442 			"reading changed ns log failed: %d\n", error);
3443 
3444 	kfree(log);
3445 }
3446 
3447 static void nvme_scan_work(struct work_struct *work)
3448 {
3449 	struct nvme_ctrl *ctrl =
3450 		container_of(work, struct nvme_ctrl, scan_work);
3451 	struct nvme_id_ctrl *id;
3452 	unsigned nn;
3453 
3454 	if (ctrl->state != NVME_CTRL_LIVE)
3455 		return;
3456 
3457 	WARN_ON_ONCE(!ctrl->tagset);
3458 
3459 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3460 		dev_info(ctrl->device, "rescanning namespaces.\n");
3461 		nvme_clear_changed_ns_log(ctrl);
3462 	}
3463 
3464 	if (nvme_identify_ctrl(ctrl, &id))
3465 		return;
3466 
3467 	mutex_lock(&ctrl->scan_lock);
3468 	nn = le32_to_cpu(id->nn);
3469 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3470 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3471 		if (!nvme_scan_ns_list(ctrl, nn))
3472 			goto out_free_id;
3473 	}
3474 	nvme_scan_ns_sequential(ctrl, nn);
3475 out_free_id:
3476 	mutex_unlock(&ctrl->scan_lock);
3477 	kfree(id);
3478 	down_write(&ctrl->namespaces_rwsem);
3479 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3480 	up_write(&ctrl->namespaces_rwsem);
3481 }
3482 
3483 /*
3484  * This function iterates the namespace list unlocked to allow recovery from
3485  * controller failure. It is up to the caller to ensure the namespace list is
3486  * not modified by scan work while this function is executing.
3487  */
3488 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3489 {
3490 	struct nvme_ns *ns, *next;
3491 	LIST_HEAD(ns_list);
3492 
3493 	/* prevent racing with ns scanning */
3494 	flush_work(&ctrl->scan_work);
3495 
3496 	/*
3497 	 * The dead states indicates the controller was not gracefully
3498 	 * disconnected. In that case, we won't be able to flush any data while
3499 	 * removing the namespaces' disks; fail all the queues now to avoid
3500 	 * potentially having to clean up the failed sync later.
3501 	 */
3502 	if (ctrl->state == NVME_CTRL_DEAD)
3503 		nvme_kill_queues(ctrl);
3504 
3505 	down_write(&ctrl->namespaces_rwsem);
3506 	list_splice_init(&ctrl->namespaces, &ns_list);
3507 	up_write(&ctrl->namespaces_rwsem);
3508 
3509 	list_for_each_entry_safe(ns, next, &ns_list, list)
3510 		nvme_ns_remove(ns);
3511 }
3512 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3513 
3514 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3515 {
3516 	char *envp[2] = { NULL, NULL };
3517 	u32 aen_result = ctrl->aen_result;
3518 
3519 	ctrl->aen_result = 0;
3520 	if (!aen_result)
3521 		return;
3522 
3523 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3524 	if (!envp[0])
3525 		return;
3526 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3527 	kfree(envp[0]);
3528 }
3529 
3530 static void nvme_async_event_work(struct work_struct *work)
3531 {
3532 	struct nvme_ctrl *ctrl =
3533 		container_of(work, struct nvme_ctrl, async_event_work);
3534 
3535 	nvme_aen_uevent(ctrl);
3536 	ctrl->ops->submit_async_event(ctrl);
3537 }
3538 
3539 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3540 {
3541 
3542 	u32 csts;
3543 
3544 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3545 		return false;
3546 
3547 	if (csts == ~0)
3548 		return false;
3549 
3550 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3551 }
3552 
3553 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3554 {
3555 	struct nvme_fw_slot_info_log *log;
3556 
3557 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3558 	if (!log)
3559 		return;
3560 
3561 	if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3562 			sizeof(*log), 0))
3563 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3564 	kfree(log);
3565 }
3566 
3567 static void nvme_fw_act_work(struct work_struct *work)
3568 {
3569 	struct nvme_ctrl *ctrl = container_of(work,
3570 				struct nvme_ctrl, fw_act_work);
3571 	unsigned long fw_act_timeout;
3572 
3573 	if (ctrl->mtfa)
3574 		fw_act_timeout = jiffies +
3575 				msecs_to_jiffies(ctrl->mtfa * 100);
3576 	else
3577 		fw_act_timeout = jiffies +
3578 				msecs_to_jiffies(admin_timeout * 1000);
3579 
3580 	nvme_stop_queues(ctrl);
3581 	while (nvme_ctrl_pp_status(ctrl)) {
3582 		if (time_after(jiffies, fw_act_timeout)) {
3583 			dev_warn(ctrl->device,
3584 				"Fw activation timeout, reset controller\n");
3585 			nvme_reset_ctrl(ctrl);
3586 			break;
3587 		}
3588 		msleep(100);
3589 	}
3590 
3591 	if (ctrl->state != NVME_CTRL_LIVE)
3592 		return;
3593 
3594 	nvme_start_queues(ctrl);
3595 	/* read FW slot information to clear the AER */
3596 	nvme_get_fw_slot_info(ctrl);
3597 }
3598 
3599 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3600 {
3601 	u32 aer_notice_type = (result & 0xff00) >> 8;
3602 
3603 	switch (aer_notice_type) {
3604 	case NVME_AER_NOTICE_NS_CHANGED:
3605 		trace_nvme_async_event(ctrl, aer_notice_type);
3606 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3607 		nvme_queue_scan(ctrl);
3608 		break;
3609 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3610 		trace_nvme_async_event(ctrl, aer_notice_type);
3611 		queue_work(nvme_wq, &ctrl->fw_act_work);
3612 		break;
3613 #ifdef CONFIG_NVME_MULTIPATH
3614 	case NVME_AER_NOTICE_ANA:
3615 		trace_nvme_async_event(ctrl, aer_notice_type);
3616 		if (!ctrl->ana_log_buf)
3617 			break;
3618 		queue_work(nvme_wq, &ctrl->ana_work);
3619 		break;
3620 #endif
3621 	default:
3622 		dev_warn(ctrl->device, "async event result %08x\n", result);
3623 	}
3624 }
3625 
3626 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3627 		volatile union nvme_result *res)
3628 {
3629 	u32 result = le32_to_cpu(res->u32);
3630 	u32 aer_type = result & 0x07;
3631 
3632 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3633 		return;
3634 
3635 	switch (aer_type) {
3636 	case NVME_AER_NOTICE:
3637 		nvme_handle_aen_notice(ctrl, result);
3638 		break;
3639 	case NVME_AER_ERROR:
3640 	case NVME_AER_SMART:
3641 	case NVME_AER_CSS:
3642 	case NVME_AER_VS:
3643 		trace_nvme_async_event(ctrl, aer_type);
3644 		ctrl->aen_result = result;
3645 		break;
3646 	default:
3647 		break;
3648 	}
3649 	queue_work(nvme_wq, &ctrl->async_event_work);
3650 }
3651 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3652 
3653 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3654 {
3655 	nvme_mpath_stop(ctrl);
3656 	nvme_stop_keep_alive(ctrl);
3657 	flush_work(&ctrl->async_event_work);
3658 	cancel_work_sync(&ctrl->fw_act_work);
3659 }
3660 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3661 
3662 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3663 {
3664 	if (ctrl->kato)
3665 		nvme_start_keep_alive(ctrl);
3666 
3667 	if (ctrl->queue_count > 1) {
3668 		nvme_queue_scan(ctrl);
3669 		nvme_enable_aen(ctrl);
3670 		queue_work(nvme_wq, &ctrl->async_event_work);
3671 		nvme_start_queues(ctrl);
3672 	}
3673 }
3674 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3675 
3676 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3677 {
3678 	cdev_device_del(&ctrl->cdev, ctrl->device);
3679 }
3680 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3681 
3682 static void nvme_free_ctrl(struct device *dev)
3683 {
3684 	struct nvme_ctrl *ctrl =
3685 		container_of(dev, struct nvme_ctrl, ctrl_device);
3686 	struct nvme_subsystem *subsys = ctrl->subsys;
3687 
3688 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3689 	kfree(ctrl->effects);
3690 	nvme_mpath_uninit(ctrl);
3691 	__free_page(ctrl->discard_page);
3692 
3693 	if (subsys) {
3694 		mutex_lock(&subsys->lock);
3695 		list_del(&ctrl->subsys_entry);
3696 		mutex_unlock(&subsys->lock);
3697 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3698 	}
3699 
3700 	ctrl->ops->free_ctrl(ctrl);
3701 
3702 	if (subsys)
3703 		nvme_put_subsystem(subsys);
3704 }
3705 
3706 /*
3707  * Initialize a NVMe controller structures.  This needs to be called during
3708  * earliest initialization so that we have the initialized structured around
3709  * during probing.
3710  */
3711 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3712 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3713 {
3714 	int ret;
3715 
3716 	ctrl->state = NVME_CTRL_NEW;
3717 	spin_lock_init(&ctrl->lock);
3718 	mutex_init(&ctrl->scan_lock);
3719 	INIT_LIST_HEAD(&ctrl->namespaces);
3720 	init_rwsem(&ctrl->namespaces_rwsem);
3721 	ctrl->dev = dev;
3722 	ctrl->ops = ops;
3723 	ctrl->quirks = quirks;
3724 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3725 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3726 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3727 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3728 
3729 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3730 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3731 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3732 
3733 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3734 			PAGE_SIZE);
3735 	ctrl->discard_page = alloc_page(GFP_KERNEL);
3736 	if (!ctrl->discard_page) {
3737 		ret = -ENOMEM;
3738 		goto out;
3739 	}
3740 
3741 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3742 	if (ret < 0)
3743 		goto out;
3744 	ctrl->instance = ret;
3745 
3746 	device_initialize(&ctrl->ctrl_device);
3747 	ctrl->device = &ctrl->ctrl_device;
3748 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3749 	ctrl->device->class = nvme_class;
3750 	ctrl->device->parent = ctrl->dev;
3751 	ctrl->device->groups = nvme_dev_attr_groups;
3752 	ctrl->device->release = nvme_free_ctrl;
3753 	dev_set_drvdata(ctrl->device, ctrl);
3754 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3755 	if (ret)
3756 		goto out_release_instance;
3757 
3758 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3759 	ctrl->cdev.owner = ops->module;
3760 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3761 	if (ret)
3762 		goto out_free_name;
3763 
3764 	/*
3765 	 * Initialize latency tolerance controls.  The sysfs files won't
3766 	 * be visible to userspace unless the device actually supports APST.
3767 	 */
3768 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3769 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3770 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3771 
3772 	return 0;
3773 out_free_name:
3774 	kfree_const(ctrl->device->kobj.name);
3775 out_release_instance:
3776 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3777 out:
3778 	if (ctrl->discard_page)
3779 		__free_page(ctrl->discard_page);
3780 	return ret;
3781 }
3782 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3783 
3784 /**
3785  * nvme_kill_queues(): Ends all namespace queues
3786  * @ctrl: the dead controller that needs to end
3787  *
3788  * Call this function when the driver determines it is unable to get the
3789  * controller in a state capable of servicing IO.
3790  */
3791 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3792 {
3793 	struct nvme_ns *ns;
3794 
3795 	down_read(&ctrl->namespaces_rwsem);
3796 
3797 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3798 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3799 		blk_mq_unquiesce_queue(ctrl->admin_q);
3800 
3801 	list_for_each_entry(ns, &ctrl->namespaces, list)
3802 		nvme_set_queue_dying(ns);
3803 
3804 	up_read(&ctrl->namespaces_rwsem);
3805 }
3806 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3807 
3808 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3809 {
3810 	struct nvme_ns *ns;
3811 
3812 	down_read(&ctrl->namespaces_rwsem);
3813 	list_for_each_entry(ns, &ctrl->namespaces, list)
3814 		blk_mq_unfreeze_queue(ns->queue);
3815 	up_read(&ctrl->namespaces_rwsem);
3816 }
3817 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3818 
3819 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3820 {
3821 	struct nvme_ns *ns;
3822 
3823 	down_read(&ctrl->namespaces_rwsem);
3824 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3825 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3826 		if (timeout <= 0)
3827 			break;
3828 	}
3829 	up_read(&ctrl->namespaces_rwsem);
3830 }
3831 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3832 
3833 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3834 {
3835 	struct nvme_ns *ns;
3836 
3837 	down_read(&ctrl->namespaces_rwsem);
3838 	list_for_each_entry(ns, &ctrl->namespaces, list)
3839 		blk_mq_freeze_queue_wait(ns->queue);
3840 	up_read(&ctrl->namespaces_rwsem);
3841 }
3842 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3843 
3844 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3845 {
3846 	struct nvme_ns *ns;
3847 
3848 	down_read(&ctrl->namespaces_rwsem);
3849 	list_for_each_entry(ns, &ctrl->namespaces, list)
3850 		blk_freeze_queue_start(ns->queue);
3851 	up_read(&ctrl->namespaces_rwsem);
3852 }
3853 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3854 
3855 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3856 {
3857 	struct nvme_ns *ns;
3858 
3859 	down_read(&ctrl->namespaces_rwsem);
3860 	list_for_each_entry(ns, &ctrl->namespaces, list)
3861 		blk_mq_quiesce_queue(ns->queue);
3862 	up_read(&ctrl->namespaces_rwsem);
3863 }
3864 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3865 
3866 void nvme_start_queues(struct nvme_ctrl *ctrl)
3867 {
3868 	struct nvme_ns *ns;
3869 
3870 	down_read(&ctrl->namespaces_rwsem);
3871 	list_for_each_entry(ns, &ctrl->namespaces, list)
3872 		blk_mq_unquiesce_queue(ns->queue);
3873 	up_read(&ctrl->namespaces_rwsem);
3874 }
3875 EXPORT_SYMBOL_GPL(nvme_start_queues);
3876 
3877 int __init nvme_core_init(void)
3878 {
3879 	int result = -ENOMEM;
3880 
3881 	nvme_wq = alloc_workqueue("nvme-wq",
3882 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3883 	if (!nvme_wq)
3884 		goto out;
3885 
3886 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3887 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3888 	if (!nvme_reset_wq)
3889 		goto destroy_wq;
3890 
3891 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3892 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3893 	if (!nvme_delete_wq)
3894 		goto destroy_reset_wq;
3895 
3896 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3897 	if (result < 0)
3898 		goto destroy_delete_wq;
3899 
3900 	nvme_class = class_create(THIS_MODULE, "nvme");
3901 	if (IS_ERR(nvme_class)) {
3902 		result = PTR_ERR(nvme_class);
3903 		goto unregister_chrdev;
3904 	}
3905 
3906 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3907 	if (IS_ERR(nvme_subsys_class)) {
3908 		result = PTR_ERR(nvme_subsys_class);
3909 		goto destroy_class;
3910 	}
3911 	return 0;
3912 
3913 destroy_class:
3914 	class_destroy(nvme_class);
3915 unregister_chrdev:
3916 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3917 destroy_delete_wq:
3918 	destroy_workqueue(nvme_delete_wq);
3919 destroy_reset_wq:
3920 	destroy_workqueue(nvme_reset_wq);
3921 destroy_wq:
3922 	destroy_workqueue(nvme_wq);
3923 out:
3924 	return result;
3925 }
3926 
3927 void __exit nvme_core_exit(void)
3928 {
3929 	ida_destroy(&nvme_subsystems_ida);
3930 	class_destroy(nvme_subsys_class);
3931 	class_destroy(nvme_class);
3932 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3933 	destroy_workqueue(nvme_delete_wq);
3934 	destroy_workqueue(nvme_reset_wq);
3935 	destroy_workqueue(nvme_wq);
3936 }
3937 
3938 MODULE_LICENSE("GPL");
3939 MODULE_VERSION("1.0");
3940 module_init(nvme_core_init);
3941 module_exit(nvme_core_exit);
3942