xref: /linux/drivers/nvme/host/core.c (revision 4e15fa8305deecdf20233558ed9f7a8a62b708fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	bool is_shared;
42 	bool is_readonly;
43 	bool is_ready;
44 	bool is_removed;
45 	bool is_rotational;
46 	bool no_vwc;
47 };
48 
49 unsigned int admin_timeout = 60;
50 module_param(admin_timeout, uint, 0644);
51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
52 EXPORT_SYMBOL_GPL(admin_timeout);
53 
54 unsigned int nvme_io_timeout = 30;
55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
57 EXPORT_SYMBOL_GPL(nvme_io_timeout);
58 
59 static unsigned char shutdown_timeout = 5;
60 module_param(shutdown_timeout, byte, 0644);
61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
62 
63 static u8 nvme_max_retries = 5;
64 module_param_named(max_retries, nvme_max_retries, byte, 0644);
65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
66 
67 static unsigned long default_ps_max_latency_us = 100000;
68 module_param(default_ps_max_latency_us, ulong, 0644);
69 MODULE_PARM_DESC(default_ps_max_latency_us,
70 		 "max power saving latency for new devices; use PM QOS to change per device");
71 
72 static bool force_apst;
73 module_param(force_apst, bool, 0644);
74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
75 
76 static unsigned long apst_primary_timeout_ms = 100;
77 module_param(apst_primary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_primary_timeout_ms,
79 	"primary APST timeout in ms");
80 
81 static unsigned long apst_secondary_timeout_ms = 2000;
82 module_param(apst_secondary_timeout_ms, ulong, 0644);
83 MODULE_PARM_DESC(apst_secondary_timeout_ms,
84 	"secondary APST timeout in ms");
85 
86 static unsigned long apst_primary_latency_tol_us = 15000;
87 module_param(apst_primary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_primary_latency_tol_us,
89 	"primary APST latency tolerance in us");
90 
91 static unsigned long apst_secondary_latency_tol_us = 100000;
92 module_param(apst_secondary_latency_tol_us, ulong, 0644);
93 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
94 	"secondary APST latency tolerance in us");
95 
96 /*
97  * Older kernels didn't enable protection information if it was at an offset.
98  * Newer kernels do, so it breaks reads on the upgrade if such formats were
99  * used in prior kernels since the metadata written did not contain a valid
100  * checksum.
101  */
102 static bool disable_pi_offsets = false;
103 module_param(disable_pi_offsets, bool, 0444);
104 MODULE_PARM_DESC(disable_pi_offsets,
105 	"disable protection information if it has an offset");
106 
107 /*
108  * nvme_wq - hosts nvme related works that are not reset or delete
109  * nvme_reset_wq - hosts nvme reset works
110  * nvme_delete_wq - hosts nvme delete works
111  *
112  * nvme_wq will host works such as scan, aen handling, fw activation,
113  * keep-alive, periodic reconnects etc. nvme_reset_wq
114  * runs reset works which also flush works hosted on nvme_wq for
115  * serialization purposes. nvme_delete_wq host controller deletion
116  * works which flush reset works for serialization.
117  */
118 struct workqueue_struct *nvme_wq;
119 EXPORT_SYMBOL_GPL(nvme_wq);
120 
121 struct workqueue_struct *nvme_reset_wq;
122 EXPORT_SYMBOL_GPL(nvme_reset_wq);
123 
124 struct workqueue_struct *nvme_delete_wq;
125 EXPORT_SYMBOL_GPL(nvme_delete_wq);
126 
127 static LIST_HEAD(nvme_subsystems);
128 DEFINE_MUTEX(nvme_subsystems_lock);
129 
130 static DEFINE_IDA(nvme_instance_ida);
131 static dev_t nvme_ctrl_base_chr_devt;
132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
133 static const struct class nvme_class = {
134 	.name = "nvme",
135 	.dev_uevent = nvme_class_uevent,
136 };
137 
138 static const struct class nvme_subsys_class = {
139 	.name = "nvme-subsystem",
140 };
141 
142 static DEFINE_IDA(nvme_ns_chr_minor_ida);
143 static dev_t nvme_ns_chr_devt;
144 static const struct class nvme_ns_chr_class = {
145 	.name = "nvme-generic",
146 };
147 
148 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
150 					   unsigned nsid);
151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
152 				   struct nvme_command *cmd);
153 
154 void nvme_queue_scan(struct nvme_ctrl *ctrl)
155 {
156 	/*
157 	 * Only new queue scan work when admin and IO queues are both alive
158 	 */
159 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
160 		queue_work(nvme_wq, &ctrl->scan_work);
161 }
162 
163 /*
164  * Use this function to proceed with scheduling reset_work for a controller
165  * that had previously been set to the resetting state. This is intended for
166  * code paths that can't be interrupted by other reset attempts. A hot removal
167  * may prevent this from succeeding.
168  */
169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
170 {
171 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
172 		return -EBUSY;
173 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
174 		return -EBUSY;
175 	return 0;
176 }
177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
178 
179 static void nvme_failfast_work(struct work_struct *work)
180 {
181 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
182 			struct nvme_ctrl, failfast_work);
183 
184 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
185 		return;
186 
187 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
188 	dev_info(ctrl->device, "failfast expired\n");
189 	nvme_kick_requeue_lists(ctrl);
190 }
191 
192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
193 {
194 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
195 		return;
196 
197 	schedule_delayed_work(&ctrl->failfast_work,
198 			      ctrl->opts->fast_io_fail_tmo * HZ);
199 }
200 
201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
202 {
203 	if (!ctrl->opts)
204 		return;
205 
206 	cancel_delayed_work_sync(&ctrl->failfast_work);
207 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
208 }
209 
210 
211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
212 {
213 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
214 		return -EBUSY;
215 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
216 		return -EBUSY;
217 	return 0;
218 }
219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
220 
221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
222 {
223 	int ret;
224 
225 	ret = nvme_reset_ctrl(ctrl);
226 	if (!ret) {
227 		flush_work(&ctrl->reset_work);
228 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
229 			ret = -ENETRESET;
230 	}
231 
232 	return ret;
233 }
234 
235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
236 {
237 	dev_info(ctrl->device,
238 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
239 
240 	flush_work(&ctrl->reset_work);
241 	nvme_stop_ctrl(ctrl);
242 	nvme_remove_namespaces(ctrl);
243 	ctrl->ops->delete_ctrl(ctrl);
244 	nvme_uninit_ctrl(ctrl);
245 }
246 
247 static void nvme_delete_ctrl_work(struct work_struct *work)
248 {
249 	struct nvme_ctrl *ctrl =
250 		container_of(work, struct nvme_ctrl, delete_work);
251 
252 	nvme_do_delete_ctrl(ctrl);
253 }
254 
255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
256 {
257 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		return -EBUSY;
259 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
260 		return -EBUSY;
261 	return 0;
262 }
263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
264 
265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
266 {
267 	/*
268 	 * Keep a reference until nvme_do_delete_ctrl() complete,
269 	 * since ->delete_ctrl can free the controller.
270 	 */
271 	nvme_get_ctrl(ctrl);
272 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
273 		nvme_do_delete_ctrl(ctrl);
274 	nvme_put_ctrl(ctrl);
275 }
276 
277 static blk_status_t nvme_error_status(u16 status)
278 {
279 	switch (status & NVME_SCT_SC_MASK) {
280 	case NVME_SC_SUCCESS:
281 		return BLK_STS_OK;
282 	case NVME_SC_CAP_EXCEEDED:
283 		return BLK_STS_NOSPC;
284 	case NVME_SC_LBA_RANGE:
285 	case NVME_SC_CMD_INTERRUPTED:
286 	case NVME_SC_NS_NOT_READY:
287 		return BLK_STS_TARGET;
288 	case NVME_SC_BAD_ATTRIBUTES:
289 	case NVME_SC_ONCS_NOT_SUPPORTED:
290 	case NVME_SC_INVALID_OPCODE:
291 	case NVME_SC_INVALID_FIELD:
292 	case NVME_SC_INVALID_NS:
293 		return BLK_STS_NOTSUPP;
294 	case NVME_SC_WRITE_FAULT:
295 	case NVME_SC_READ_ERROR:
296 	case NVME_SC_UNWRITTEN_BLOCK:
297 	case NVME_SC_ACCESS_DENIED:
298 	case NVME_SC_READ_ONLY:
299 	case NVME_SC_COMPARE_FAILED:
300 		return BLK_STS_MEDIUM;
301 	case NVME_SC_GUARD_CHECK:
302 	case NVME_SC_APPTAG_CHECK:
303 	case NVME_SC_REFTAG_CHECK:
304 	case NVME_SC_INVALID_PI:
305 		return BLK_STS_PROTECTION;
306 	case NVME_SC_RESERVATION_CONFLICT:
307 		return BLK_STS_RESV_CONFLICT;
308 	case NVME_SC_HOST_PATH_ERROR:
309 		return BLK_STS_TRANSPORT;
310 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
311 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
312 	case NVME_SC_ZONE_TOO_MANY_OPEN:
313 		return BLK_STS_ZONE_OPEN_RESOURCE;
314 	default:
315 		return BLK_STS_IOERR;
316 	}
317 }
318 
319 static void nvme_retry_req(struct request *req)
320 {
321 	unsigned long delay = 0;
322 	u16 crd;
323 
324 	/* The mask and shift result must be <= 3 */
325 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
326 	if (crd)
327 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
328 
329 	nvme_req(req)->retries++;
330 	blk_mq_requeue_request(req, false);
331 	blk_mq_delay_kick_requeue_list(req->q, delay);
332 }
333 
334 static void nvme_log_error(struct request *req)
335 {
336 	struct nvme_ns *ns = req->q->queuedata;
337 	struct nvme_request *nr = nvme_req(req);
338 
339 	if (ns) {
340 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
341 		       ns->disk ? ns->disk->disk_name : "?",
342 		       nvme_get_opcode_str(nr->cmd->common.opcode),
343 		       nr->cmd->common.opcode,
344 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
345 		       blk_rq_bytes(req) >> ns->head->lba_shift,
346 		       nvme_get_error_status_str(nr->status),
347 		       NVME_SCT(nr->status),		/* Status Code Type */
348 		       nr->status & NVME_SC_MASK,	/* Status Code */
349 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
350 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
351 		return;
352 	}
353 
354 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
355 			   dev_name(nr->ctrl->device),
356 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
357 			   nr->cmd->common.opcode,
358 			   nvme_get_error_status_str(nr->status),
359 			   NVME_SCT(nr->status),	/* Status Code Type */
360 			   nr->status & NVME_SC_MASK,	/* Status Code */
361 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
362 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
363 }
364 
365 static void nvme_log_err_passthru(struct request *req)
366 {
367 	struct nvme_ns *ns = req->q->queuedata;
368 	struct nvme_request *nr = nvme_req(req);
369 
370 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
371 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
372 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
373 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
374 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
375 		nr->cmd->common.opcode,
376 		nvme_get_error_status_str(nr->status),
377 		NVME_SCT(nr->status),		/* Status Code Type */
378 		nr->status & NVME_SC_MASK,	/* Status Code */
379 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
380 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
381 		nr->cmd->common.cdw10,
382 		nr->cmd->common.cdw11,
383 		nr->cmd->common.cdw12,
384 		nr->cmd->common.cdw13,
385 		nr->cmd->common.cdw14,
386 		nr->cmd->common.cdw14);
387 }
388 
389 enum nvme_disposition {
390 	COMPLETE,
391 	RETRY,
392 	FAILOVER,
393 	AUTHENTICATE,
394 };
395 
396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
397 {
398 	if (likely(nvme_req(req)->status == 0))
399 		return COMPLETE;
400 
401 	if (blk_noretry_request(req) ||
402 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
403 	    nvme_req(req)->retries >= nvme_max_retries)
404 		return COMPLETE;
405 
406 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
407 		return AUTHENTICATE;
408 
409 	if (req->cmd_flags & REQ_NVME_MPATH) {
410 		if (nvme_is_path_error(nvme_req(req)->status) ||
411 		    blk_queue_dying(req->q))
412 			return FAILOVER;
413 	} else {
414 		if (blk_queue_dying(req->q))
415 			return COMPLETE;
416 	}
417 
418 	return RETRY;
419 }
420 
421 static inline void nvme_end_req_zoned(struct request *req)
422 {
423 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
424 	    req_op(req) == REQ_OP_ZONE_APPEND) {
425 		struct nvme_ns *ns = req->q->queuedata;
426 
427 		req->__sector = nvme_lba_to_sect(ns->head,
428 			le64_to_cpu(nvme_req(req)->result.u64));
429 	}
430 }
431 
432 static inline void __nvme_end_req(struct request *req)
433 {
434 	nvme_end_req_zoned(req);
435 	nvme_trace_bio_complete(req);
436 	if (req->cmd_flags & REQ_NVME_MPATH)
437 		nvme_mpath_end_request(req);
438 }
439 
440 void nvme_end_req(struct request *req)
441 {
442 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
443 
444 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
445 		if (blk_rq_is_passthrough(req))
446 			nvme_log_err_passthru(req);
447 		else
448 			nvme_log_error(req);
449 	}
450 	__nvme_end_req(req);
451 	blk_mq_end_request(req, status);
452 }
453 
454 void nvme_complete_rq(struct request *req)
455 {
456 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
457 
458 	trace_nvme_complete_rq(req);
459 	nvme_cleanup_cmd(req);
460 
461 	/*
462 	 * Completions of long-running commands should not be able to
463 	 * defer sending of periodic keep alives, since the controller
464 	 * may have completed processing such commands a long time ago
465 	 * (arbitrarily close to command submission time).
466 	 * req->deadline - req->timeout is the command submission time
467 	 * in jiffies.
468 	 */
469 	if (ctrl->kas &&
470 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
471 		ctrl->comp_seen = true;
472 
473 	switch (nvme_decide_disposition(req)) {
474 	case COMPLETE:
475 		nvme_end_req(req);
476 		return;
477 	case RETRY:
478 		nvme_retry_req(req);
479 		return;
480 	case FAILOVER:
481 		nvme_failover_req(req);
482 		return;
483 	case AUTHENTICATE:
484 #ifdef CONFIG_NVME_HOST_AUTH
485 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
486 		nvme_retry_req(req);
487 #else
488 		nvme_end_req(req);
489 #endif
490 		return;
491 	}
492 }
493 EXPORT_SYMBOL_GPL(nvme_complete_rq);
494 
495 void nvme_complete_batch_req(struct request *req)
496 {
497 	trace_nvme_complete_rq(req);
498 	nvme_cleanup_cmd(req);
499 	__nvme_end_req(req);
500 }
501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
502 
503 /*
504  * Called to unwind from ->queue_rq on a failed command submission so that the
505  * multipathing code gets called to potentially failover to another path.
506  * The caller needs to unwind all transport specific resource allocations and
507  * must return propagate the return value.
508  */
509 blk_status_t nvme_host_path_error(struct request *req)
510 {
511 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
512 	blk_mq_set_request_complete(req);
513 	nvme_complete_rq(req);
514 	return BLK_STS_OK;
515 }
516 EXPORT_SYMBOL_GPL(nvme_host_path_error);
517 
518 bool nvme_cancel_request(struct request *req, void *data)
519 {
520 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
521 				"Cancelling I/O %d", req->tag);
522 
523 	/* don't abort one completed or idle request */
524 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
525 		return true;
526 
527 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
528 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
529 	blk_mq_complete_request(req);
530 	return true;
531 }
532 EXPORT_SYMBOL_GPL(nvme_cancel_request);
533 
534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
535 {
536 	if (ctrl->tagset) {
537 		blk_mq_tagset_busy_iter(ctrl->tagset,
538 				nvme_cancel_request, ctrl);
539 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
540 	}
541 }
542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
543 
544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
545 {
546 	if (ctrl->admin_tagset) {
547 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
548 				nvme_cancel_request, ctrl);
549 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
550 	}
551 }
552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
553 
554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
555 		enum nvme_ctrl_state new_state)
556 {
557 	enum nvme_ctrl_state old_state;
558 	unsigned long flags;
559 	bool changed = false;
560 
561 	spin_lock_irqsave(&ctrl->lock, flags);
562 
563 	old_state = nvme_ctrl_state(ctrl);
564 	switch (new_state) {
565 	case NVME_CTRL_LIVE:
566 		switch (old_state) {
567 		case NVME_CTRL_NEW:
568 		case NVME_CTRL_RESETTING:
569 		case NVME_CTRL_CONNECTING:
570 			changed = true;
571 			fallthrough;
572 		default:
573 			break;
574 		}
575 		break;
576 	case NVME_CTRL_RESETTING:
577 		switch (old_state) {
578 		case NVME_CTRL_NEW:
579 		case NVME_CTRL_LIVE:
580 			changed = true;
581 			fallthrough;
582 		default:
583 			break;
584 		}
585 		break;
586 	case NVME_CTRL_CONNECTING:
587 		switch (old_state) {
588 		case NVME_CTRL_NEW:
589 		case NVME_CTRL_RESETTING:
590 			changed = true;
591 			fallthrough;
592 		default:
593 			break;
594 		}
595 		break;
596 	case NVME_CTRL_DELETING:
597 		switch (old_state) {
598 		case NVME_CTRL_LIVE:
599 		case NVME_CTRL_RESETTING:
600 		case NVME_CTRL_CONNECTING:
601 			changed = true;
602 			fallthrough;
603 		default:
604 			break;
605 		}
606 		break;
607 	case NVME_CTRL_DELETING_NOIO:
608 		switch (old_state) {
609 		case NVME_CTRL_DELETING:
610 		case NVME_CTRL_DEAD:
611 			changed = true;
612 			fallthrough;
613 		default:
614 			break;
615 		}
616 		break;
617 	case NVME_CTRL_DEAD:
618 		switch (old_state) {
619 		case NVME_CTRL_DELETING:
620 			changed = true;
621 			fallthrough;
622 		default:
623 			break;
624 		}
625 		break;
626 	default:
627 		break;
628 	}
629 
630 	if (changed) {
631 		WRITE_ONCE(ctrl->state, new_state);
632 		wake_up_all(&ctrl->state_wq);
633 	}
634 
635 	spin_unlock_irqrestore(&ctrl->lock, flags);
636 	if (!changed)
637 		return false;
638 
639 	if (new_state == NVME_CTRL_LIVE) {
640 		if (old_state == NVME_CTRL_CONNECTING)
641 			nvme_stop_failfast_work(ctrl);
642 		nvme_kick_requeue_lists(ctrl);
643 	} else if (new_state == NVME_CTRL_CONNECTING &&
644 		old_state == NVME_CTRL_RESETTING) {
645 		nvme_start_failfast_work(ctrl);
646 	}
647 	return changed;
648 }
649 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
650 
651 /*
652  * Waits for the controller state to be resetting, or returns false if it is
653  * not possible to ever transition to that state.
654  */
655 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
656 {
657 	wait_event(ctrl->state_wq,
658 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
659 		   nvme_state_terminal(ctrl));
660 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
661 }
662 EXPORT_SYMBOL_GPL(nvme_wait_reset);
663 
664 static void nvme_free_ns_head(struct kref *ref)
665 {
666 	struct nvme_ns_head *head =
667 		container_of(ref, struct nvme_ns_head, ref);
668 
669 	nvme_mpath_remove_disk(head);
670 	ida_free(&head->subsys->ns_ida, head->instance);
671 	cleanup_srcu_struct(&head->srcu);
672 	nvme_put_subsystem(head->subsys);
673 	kfree(head);
674 }
675 
676 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
677 {
678 	return kref_get_unless_zero(&head->ref);
679 }
680 
681 void nvme_put_ns_head(struct nvme_ns_head *head)
682 {
683 	kref_put(&head->ref, nvme_free_ns_head);
684 }
685 
686 static void nvme_free_ns(struct kref *kref)
687 {
688 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
689 
690 	put_disk(ns->disk);
691 	nvme_put_ns_head(ns->head);
692 	nvme_put_ctrl(ns->ctrl);
693 	kfree(ns);
694 }
695 
696 bool nvme_get_ns(struct nvme_ns *ns)
697 {
698 	return kref_get_unless_zero(&ns->kref);
699 }
700 
701 void nvme_put_ns(struct nvme_ns *ns)
702 {
703 	kref_put(&ns->kref, nvme_free_ns);
704 }
705 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
706 
707 static inline void nvme_clear_nvme_request(struct request *req)
708 {
709 	nvme_req(req)->status = 0;
710 	nvme_req(req)->retries = 0;
711 	nvme_req(req)->flags = 0;
712 	req->rq_flags |= RQF_DONTPREP;
713 }
714 
715 /* initialize a passthrough request */
716 void nvme_init_request(struct request *req, struct nvme_command *cmd)
717 {
718 	struct nvme_request *nr = nvme_req(req);
719 	bool logging_enabled;
720 
721 	if (req->q->queuedata) {
722 		struct nvme_ns *ns = req->q->disk->private_data;
723 
724 		logging_enabled = ns->head->passthru_err_log_enabled;
725 		req->timeout = NVME_IO_TIMEOUT;
726 	} else { /* no queuedata implies admin queue */
727 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
728 		req->timeout = NVME_ADMIN_TIMEOUT;
729 	}
730 
731 	if (!logging_enabled)
732 		req->rq_flags |= RQF_QUIET;
733 
734 	/* passthru commands should let the driver set the SGL flags */
735 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
736 
737 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
738 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
739 		req->cmd_flags |= REQ_POLLED;
740 	nvme_clear_nvme_request(req);
741 	memcpy(nr->cmd, cmd, sizeof(*cmd));
742 }
743 EXPORT_SYMBOL_GPL(nvme_init_request);
744 
745 /*
746  * For something we're not in a state to send to the device the default action
747  * is to busy it and retry it after the controller state is recovered.  However,
748  * if the controller is deleting or if anything is marked for failfast or
749  * nvme multipath it is immediately failed.
750  *
751  * Note: commands used to initialize the controller will be marked for failfast.
752  * Note: nvme cli/ioctl commands are marked for failfast.
753  */
754 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
755 		struct request *rq)
756 {
757 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
758 
759 	if (state != NVME_CTRL_DELETING_NOIO &&
760 	    state != NVME_CTRL_DELETING &&
761 	    state != NVME_CTRL_DEAD &&
762 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
763 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
764 		return BLK_STS_RESOURCE;
765 	return nvme_host_path_error(rq);
766 }
767 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
768 
769 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
770 		bool queue_live, enum nvme_ctrl_state state)
771 {
772 	struct nvme_request *req = nvme_req(rq);
773 
774 	/*
775 	 * currently we have a problem sending passthru commands
776 	 * on the admin_q if the controller is not LIVE because we can't
777 	 * make sure that they are going out after the admin connect,
778 	 * controller enable and/or other commands in the initialization
779 	 * sequence. until the controller will be LIVE, fail with
780 	 * BLK_STS_RESOURCE so that they will be rescheduled.
781 	 */
782 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
783 		return false;
784 
785 	if (ctrl->ops->flags & NVME_F_FABRICS) {
786 		/*
787 		 * Only allow commands on a live queue, except for the connect
788 		 * command, which is require to set the queue live in the
789 		 * appropinquate states.
790 		 */
791 		switch (state) {
792 		case NVME_CTRL_CONNECTING:
793 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
794 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
795 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
796 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
797 				return true;
798 			break;
799 		default:
800 			break;
801 		case NVME_CTRL_DEAD:
802 			return false;
803 		}
804 	}
805 
806 	return queue_live;
807 }
808 EXPORT_SYMBOL_GPL(__nvme_check_ready);
809 
810 static inline void nvme_setup_flush(struct nvme_ns *ns,
811 		struct nvme_command *cmnd)
812 {
813 	memset(cmnd, 0, sizeof(*cmnd));
814 	cmnd->common.opcode = nvme_cmd_flush;
815 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
816 }
817 
818 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
819 		struct nvme_command *cmnd)
820 {
821 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
822 	struct nvme_dsm_range *range;
823 	struct bio *bio;
824 
825 	/*
826 	 * Some devices do not consider the DSM 'Number of Ranges' field when
827 	 * determining how much data to DMA. Always allocate memory for maximum
828 	 * number of segments to prevent device reading beyond end of buffer.
829 	 */
830 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
831 
832 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
833 	if (!range) {
834 		/*
835 		 * If we fail allocation our range, fallback to the controller
836 		 * discard page. If that's also busy, it's safe to return
837 		 * busy, as we know we can make progress once that's freed.
838 		 */
839 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
840 			return BLK_STS_RESOURCE;
841 
842 		range = page_address(ns->ctrl->discard_page);
843 	}
844 
845 	if (queue_max_discard_segments(req->q) == 1) {
846 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
847 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
848 
849 		range[0].cattr = cpu_to_le32(0);
850 		range[0].nlb = cpu_to_le32(nlb);
851 		range[0].slba = cpu_to_le64(slba);
852 		n = 1;
853 	} else {
854 		__rq_for_each_bio(bio, req) {
855 			u64 slba = nvme_sect_to_lba(ns->head,
856 						    bio->bi_iter.bi_sector);
857 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
858 
859 			if (n < segments) {
860 				range[n].cattr = cpu_to_le32(0);
861 				range[n].nlb = cpu_to_le32(nlb);
862 				range[n].slba = cpu_to_le64(slba);
863 			}
864 			n++;
865 		}
866 	}
867 
868 	if (WARN_ON_ONCE(n != segments)) {
869 		if (virt_to_page(range) == ns->ctrl->discard_page)
870 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
871 		else
872 			kfree(range);
873 		return BLK_STS_IOERR;
874 	}
875 
876 	memset(cmnd, 0, sizeof(*cmnd));
877 	cmnd->dsm.opcode = nvme_cmd_dsm;
878 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
879 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
880 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
881 
882 	bvec_set_virt(&req->special_vec, range, alloc_size);
883 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
884 
885 	return BLK_STS_OK;
886 }
887 
888 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
889 			      struct request *req)
890 {
891 	u32 upper, lower;
892 	u64 ref48;
893 
894 	/* both rw and write zeroes share the same reftag format */
895 	switch (ns->head->guard_type) {
896 	case NVME_NVM_NS_16B_GUARD:
897 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
898 		break;
899 	case NVME_NVM_NS_64B_GUARD:
900 		ref48 = ext_pi_ref_tag(req);
901 		lower = lower_32_bits(ref48);
902 		upper = upper_32_bits(ref48);
903 
904 		cmnd->rw.reftag = cpu_to_le32(lower);
905 		cmnd->rw.cdw3 = cpu_to_le32(upper);
906 		break;
907 	default:
908 		break;
909 	}
910 }
911 
912 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
913 		struct request *req, struct nvme_command *cmnd)
914 {
915 	memset(cmnd, 0, sizeof(*cmnd));
916 
917 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
918 		return nvme_setup_discard(ns, req, cmnd);
919 
920 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
921 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
922 	cmnd->write_zeroes.slba =
923 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
924 	cmnd->write_zeroes.length =
925 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
926 
927 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
928 	    (ns->head->features & NVME_NS_DEAC))
929 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
930 
931 	if (nvme_ns_has_pi(ns->head)) {
932 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
933 
934 		switch (ns->head->pi_type) {
935 		case NVME_NS_DPS_PI_TYPE1:
936 		case NVME_NS_DPS_PI_TYPE2:
937 			nvme_set_ref_tag(ns, cmnd, req);
938 			break;
939 		}
940 	}
941 
942 	return BLK_STS_OK;
943 }
944 
945 /*
946  * NVMe does not support a dedicated command to issue an atomic write. A write
947  * which does adhere to the device atomic limits will silently be executed
948  * non-atomically. The request issuer should ensure that the write is within
949  * the queue atomic writes limits, but just validate this in case it is not.
950  */
951 static bool nvme_valid_atomic_write(struct request *req)
952 {
953 	struct request_queue *q = req->q;
954 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
955 
956 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
957 		return false;
958 
959 	if (boundary_bytes) {
960 		u64 mask = boundary_bytes - 1, imask = ~mask;
961 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
962 		u64 end = start + blk_rq_bytes(req) - 1;
963 
964 		/* If greater then must be crossing a boundary */
965 		if (blk_rq_bytes(req) > boundary_bytes)
966 			return false;
967 
968 		if ((start & imask) != (end & imask))
969 			return false;
970 	}
971 
972 	return true;
973 }
974 
975 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
976 		struct request *req, struct nvme_command *cmnd,
977 		enum nvme_opcode op)
978 {
979 	u16 control = 0;
980 	u32 dsmgmt = 0;
981 
982 	if (req->cmd_flags & REQ_FUA)
983 		control |= NVME_RW_FUA;
984 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
985 		control |= NVME_RW_LR;
986 
987 	if (req->cmd_flags & REQ_RAHEAD)
988 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
989 
990 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
991 		return BLK_STS_INVAL;
992 
993 	cmnd->rw.opcode = op;
994 	cmnd->rw.flags = 0;
995 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
996 	cmnd->rw.cdw2 = 0;
997 	cmnd->rw.cdw3 = 0;
998 	cmnd->rw.metadata = 0;
999 	cmnd->rw.slba =
1000 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1001 	cmnd->rw.length =
1002 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1003 	cmnd->rw.reftag = 0;
1004 	cmnd->rw.lbat = 0;
1005 	cmnd->rw.lbatm = 0;
1006 
1007 	if (ns->head->ms) {
1008 		/*
1009 		 * If formated with metadata, the block layer always provides a
1010 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1011 		 * we enable the PRACT bit for protection information or set the
1012 		 * namespace capacity to zero to prevent any I/O.
1013 		 */
1014 		if (!blk_integrity_rq(req)) {
1015 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1016 				return BLK_STS_NOTSUPP;
1017 			control |= NVME_RW_PRINFO_PRACT;
1018 		}
1019 
1020 		switch (ns->head->pi_type) {
1021 		case NVME_NS_DPS_PI_TYPE3:
1022 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1023 			break;
1024 		case NVME_NS_DPS_PI_TYPE1:
1025 		case NVME_NS_DPS_PI_TYPE2:
1026 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
1027 					NVME_RW_PRINFO_PRCHK_REF;
1028 			if (op == nvme_cmd_zone_append)
1029 				control |= NVME_RW_APPEND_PIREMAP;
1030 			nvme_set_ref_tag(ns, cmnd, req);
1031 			break;
1032 		}
1033 	}
1034 
1035 	cmnd->rw.control = cpu_to_le16(control);
1036 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1037 	return 0;
1038 }
1039 
1040 void nvme_cleanup_cmd(struct request *req)
1041 {
1042 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1043 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1044 
1045 		if (req->special_vec.bv_page == ctrl->discard_page)
1046 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1047 		else
1048 			kfree(bvec_virt(&req->special_vec));
1049 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1050 	}
1051 }
1052 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1053 
1054 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1055 {
1056 	struct nvme_command *cmd = nvme_req(req)->cmd;
1057 	blk_status_t ret = BLK_STS_OK;
1058 
1059 	if (!(req->rq_flags & RQF_DONTPREP))
1060 		nvme_clear_nvme_request(req);
1061 
1062 	switch (req_op(req)) {
1063 	case REQ_OP_DRV_IN:
1064 	case REQ_OP_DRV_OUT:
1065 		/* these are setup prior to execution in nvme_init_request() */
1066 		break;
1067 	case REQ_OP_FLUSH:
1068 		nvme_setup_flush(ns, cmd);
1069 		break;
1070 	case REQ_OP_ZONE_RESET_ALL:
1071 	case REQ_OP_ZONE_RESET:
1072 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1073 		break;
1074 	case REQ_OP_ZONE_OPEN:
1075 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1076 		break;
1077 	case REQ_OP_ZONE_CLOSE:
1078 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1079 		break;
1080 	case REQ_OP_ZONE_FINISH:
1081 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1082 		break;
1083 	case REQ_OP_WRITE_ZEROES:
1084 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1085 		break;
1086 	case REQ_OP_DISCARD:
1087 		ret = nvme_setup_discard(ns, req, cmd);
1088 		break;
1089 	case REQ_OP_READ:
1090 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1091 		break;
1092 	case REQ_OP_WRITE:
1093 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1094 		break;
1095 	case REQ_OP_ZONE_APPEND:
1096 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1097 		break;
1098 	default:
1099 		WARN_ON_ONCE(1);
1100 		return BLK_STS_IOERR;
1101 	}
1102 
1103 	cmd->common.command_id = nvme_cid(req);
1104 	trace_nvme_setup_cmd(req, cmd);
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1108 
1109 /*
1110  * Return values:
1111  * 0:  success
1112  * >0: nvme controller's cqe status response
1113  * <0: kernel error in lieu of controller response
1114  */
1115 int nvme_execute_rq(struct request *rq, bool at_head)
1116 {
1117 	blk_status_t status;
1118 
1119 	status = blk_execute_rq(rq, at_head);
1120 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1121 		return -EINTR;
1122 	if (nvme_req(rq)->status)
1123 		return nvme_req(rq)->status;
1124 	return blk_status_to_errno(status);
1125 }
1126 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1127 
1128 /*
1129  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1130  * if the result is positive, it's an NVM Express status code
1131  */
1132 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1133 		union nvme_result *result, void *buffer, unsigned bufflen,
1134 		int qid, nvme_submit_flags_t flags)
1135 {
1136 	struct request *req;
1137 	int ret;
1138 	blk_mq_req_flags_t blk_flags = 0;
1139 
1140 	if (flags & NVME_SUBMIT_NOWAIT)
1141 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1142 	if (flags & NVME_SUBMIT_RESERVED)
1143 		blk_flags |= BLK_MQ_REQ_RESERVED;
1144 	if (qid == NVME_QID_ANY)
1145 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1146 	else
1147 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1148 						qid - 1);
1149 
1150 	if (IS_ERR(req))
1151 		return PTR_ERR(req);
1152 	nvme_init_request(req, cmd);
1153 	if (flags & NVME_SUBMIT_RETRY)
1154 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1155 
1156 	if (buffer && bufflen) {
1157 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1158 		if (ret)
1159 			goto out;
1160 	}
1161 
1162 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1163 	if (result && ret >= 0)
1164 		*result = nvme_req(req)->result;
1165  out:
1166 	blk_mq_free_request(req);
1167 	return ret;
1168 }
1169 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1170 
1171 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1172 		void *buffer, unsigned bufflen)
1173 {
1174 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1175 			NVME_QID_ANY, 0);
1176 }
1177 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1178 
1179 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1180 {
1181 	u32 effects = 0;
1182 
1183 	if (ns) {
1184 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1185 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1186 			dev_warn_once(ctrl->device,
1187 				"IO command:%02x has unusual effects:%08x\n",
1188 				opcode, effects);
1189 
1190 		/*
1191 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1192 		 * which would deadlock when done on an I/O command.  Note that
1193 		 * We already warn about an unusual effect above.
1194 		 */
1195 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1196 	} else {
1197 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1198 
1199 		/* Ignore execution restrictions if any relaxation bits are set */
1200 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1201 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1202 	}
1203 
1204 	return effects;
1205 }
1206 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1207 
1208 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1209 {
1210 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1211 
1212 	/*
1213 	 * For simplicity, IO to all namespaces is quiesced even if the command
1214 	 * effects say only one namespace is affected.
1215 	 */
1216 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1217 		mutex_lock(&ctrl->scan_lock);
1218 		mutex_lock(&ctrl->subsys->lock);
1219 		nvme_mpath_start_freeze(ctrl->subsys);
1220 		nvme_mpath_wait_freeze(ctrl->subsys);
1221 		nvme_start_freeze(ctrl);
1222 		nvme_wait_freeze(ctrl);
1223 	}
1224 	return effects;
1225 }
1226 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1227 
1228 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1229 		       struct nvme_command *cmd, int status)
1230 {
1231 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1232 		nvme_unfreeze(ctrl);
1233 		nvme_mpath_unfreeze(ctrl->subsys);
1234 		mutex_unlock(&ctrl->subsys->lock);
1235 		mutex_unlock(&ctrl->scan_lock);
1236 	}
1237 	if (effects & NVME_CMD_EFFECTS_CCC) {
1238 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1239 				      &ctrl->flags)) {
1240 			dev_info(ctrl->device,
1241 "controller capabilities changed, reset may be required to take effect.\n");
1242 		}
1243 	}
1244 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1245 		nvme_queue_scan(ctrl);
1246 		flush_work(&ctrl->scan_work);
1247 	}
1248 	if (ns)
1249 		return;
1250 
1251 	switch (cmd->common.opcode) {
1252 	case nvme_admin_set_features:
1253 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1254 		case NVME_FEAT_KATO:
1255 			/*
1256 			 * Keep alive commands interval on the host should be
1257 			 * updated when KATO is modified by Set Features
1258 			 * commands.
1259 			 */
1260 			if (!status)
1261 				nvme_update_keep_alive(ctrl, cmd);
1262 			break;
1263 		default:
1264 			break;
1265 		}
1266 		break;
1267 	default:
1268 		break;
1269 	}
1270 }
1271 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1272 
1273 /*
1274  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1275  *
1276  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1277  *   accounting for transport roundtrip times [..].
1278  */
1279 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1280 {
1281 	unsigned long delay = ctrl->kato * HZ / 2;
1282 
1283 	/*
1284 	 * When using Traffic Based Keep Alive, we need to run
1285 	 * nvme_keep_alive_work at twice the normal frequency, as one
1286 	 * command completion can postpone sending a keep alive command
1287 	 * by up to twice the delay between runs.
1288 	 */
1289 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1290 		delay /= 2;
1291 	return delay;
1292 }
1293 
1294 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1295 {
1296 	unsigned long now = jiffies;
1297 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1298 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1299 
1300 	if (time_after(now, ka_next_check_tm))
1301 		delay = 0;
1302 	else
1303 		delay = ka_next_check_tm - now;
1304 
1305 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1306 }
1307 
1308 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1309 						 blk_status_t status)
1310 {
1311 	struct nvme_ctrl *ctrl = rq->end_io_data;
1312 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1313 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1314 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1315 
1316 	/*
1317 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1318 	 * at the desired frequency.
1319 	 */
1320 	if (rtt <= delay) {
1321 		delay -= rtt;
1322 	} else {
1323 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1324 			 jiffies_to_msecs(rtt));
1325 		delay = 0;
1326 	}
1327 
1328 	blk_mq_free_request(rq);
1329 
1330 	if (status) {
1331 		dev_err(ctrl->device,
1332 			"failed nvme_keep_alive_end_io error=%d\n",
1333 				status);
1334 		return RQ_END_IO_NONE;
1335 	}
1336 
1337 	ctrl->ka_last_check_time = jiffies;
1338 	ctrl->comp_seen = false;
1339 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1340 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1341 	return RQ_END_IO_NONE;
1342 }
1343 
1344 static void nvme_keep_alive_work(struct work_struct *work)
1345 {
1346 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1347 			struct nvme_ctrl, ka_work);
1348 	bool comp_seen = ctrl->comp_seen;
1349 	struct request *rq;
1350 
1351 	ctrl->ka_last_check_time = jiffies;
1352 
1353 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1354 		dev_dbg(ctrl->device,
1355 			"reschedule traffic based keep-alive timer\n");
1356 		ctrl->comp_seen = false;
1357 		nvme_queue_keep_alive_work(ctrl);
1358 		return;
1359 	}
1360 
1361 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1362 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1363 	if (IS_ERR(rq)) {
1364 		/* allocation failure, reset the controller */
1365 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1366 		nvme_reset_ctrl(ctrl);
1367 		return;
1368 	}
1369 	nvme_init_request(rq, &ctrl->ka_cmd);
1370 
1371 	rq->timeout = ctrl->kato * HZ;
1372 	rq->end_io = nvme_keep_alive_end_io;
1373 	rq->end_io_data = ctrl;
1374 	blk_execute_rq_nowait(rq, false);
1375 }
1376 
1377 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1378 {
1379 	if (unlikely(ctrl->kato == 0))
1380 		return;
1381 
1382 	nvme_queue_keep_alive_work(ctrl);
1383 }
1384 
1385 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1386 {
1387 	if (unlikely(ctrl->kato == 0))
1388 		return;
1389 
1390 	cancel_delayed_work_sync(&ctrl->ka_work);
1391 }
1392 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1393 
1394 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1395 				   struct nvme_command *cmd)
1396 {
1397 	unsigned int new_kato =
1398 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1399 
1400 	dev_info(ctrl->device,
1401 		 "keep alive interval updated from %u ms to %u ms\n",
1402 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1403 
1404 	nvme_stop_keep_alive(ctrl);
1405 	ctrl->kato = new_kato;
1406 	nvme_start_keep_alive(ctrl);
1407 }
1408 
1409 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1410 {
1411 	/*
1412 	 * The CNS field occupies a full byte starting with NVMe 1.2
1413 	 */
1414 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1415 		return true;
1416 
1417 	/*
1418 	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1419 	 * larger than that could get truncated and treated as an incorrect
1420 	 * value.
1421 	 *
1422 	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1423 	 * compliance, so they need to be quirked here.
1424 	 */
1425 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1426 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1427 		return cns <= 3;
1428 
1429 	/*
1430 	 * NVMe 1.0 used a single bit for the CNS value.
1431 	 */
1432 	return cns <= 1;
1433 }
1434 
1435 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1436 {
1437 	struct nvme_command c = { };
1438 	int error;
1439 
1440 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1441 	c.identify.opcode = nvme_admin_identify;
1442 	c.identify.cns = NVME_ID_CNS_CTRL;
1443 
1444 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1445 	if (!*id)
1446 		return -ENOMEM;
1447 
1448 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1449 			sizeof(struct nvme_id_ctrl));
1450 	if (error) {
1451 		kfree(*id);
1452 		*id = NULL;
1453 	}
1454 	return error;
1455 }
1456 
1457 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1458 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1459 {
1460 	const char *warn_str = "ctrl returned bogus length:";
1461 	void *data = cur;
1462 
1463 	switch (cur->nidt) {
1464 	case NVME_NIDT_EUI64:
1465 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1466 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1467 				 warn_str, cur->nidl);
1468 			return -1;
1469 		}
1470 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1471 			return NVME_NIDT_EUI64_LEN;
1472 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1473 		return NVME_NIDT_EUI64_LEN;
1474 	case NVME_NIDT_NGUID:
1475 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1476 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1477 				 warn_str, cur->nidl);
1478 			return -1;
1479 		}
1480 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1481 			return NVME_NIDT_NGUID_LEN;
1482 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1483 		return NVME_NIDT_NGUID_LEN;
1484 	case NVME_NIDT_UUID:
1485 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1486 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1487 				 warn_str, cur->nidl);
1488 			return -1;
1489 		}
1490 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1491 			return NVME_NIDT_UUID_LEN;
1492 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1493 		return NVME_NIDT_UUID_LEN;
1494 	case NVME_NIDT_CSI:
1495 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1496 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1497 				 warn_str, cur->nidl);
1498 			return -1;
1499 		}
1500 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1501 		*csi_seen = true;
1502 		return NVME_NIDT_CSI_LEN;
1503 	default:
1504 		/* Skip unknown types */
1505 		return cur->nidl;
1506 	}
1507 }
1508 
1509 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1510 		struct nvme_ns_info *info)
1511 {
1512 	struct nvme_command c = { };
1513 	bool csi_seen = false;
1514 	int status, pos, len;
1515 	void *data;
1516 
1517 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1518 		return 0;
1519 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1520 		return 0;
1521 
1522 	c.identify.opcode = nvme_admin_identify;
1523 	c.identify.nsid = cpu_to_le32(info->nsid);
1524 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1525 
1526 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1527 	if (!data)
1528 		return -ENOMEM;
1529 
1530 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1531 				      NVME_IDENTIFY_DATA_SIZE);
1532 	if (status) {
1533 		dev_warn(ctrl->device,
1534 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1535 			info->nsid, status);
1536 		goto free_data;
1537 	}
1538 
1539 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1540 		struct nvme_ns_id_desc *cur = data + pos;
1541 
1542 		if (cur->nidl == 0)
1543 			break;
1544 
1545 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1546 		if (len < 0)
1547 			break;
1548 
1549 		len += sizeof(*cur);
1550 	}
1551 
1552 	if (nvme_multi_css(ctrl) && !csi_seen) {
1553 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1554 			 info->nsid);
1555 		status = -EINVAL;
1556 	}
1557 
1558 free_data:
1559 	kfree(data);
1560 	return status;
1561 }
1562 
1563 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1564 			struct nvme_id_ns **id)
1565 {
1566 	struct nvme_command c = { };
1567 	int error;
1568 
1569 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1570 	c.identify.opcode = nvme_admin_identify;
1571 	c.identify.nsid = cpu_to_le32(nsid);
1572 	c.identify.cns = NVME_ID_CNS_NS;
1573 
1574 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1575 	if (!*id)
1576 		return -ENOMEM;
1577 
1578 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1579 	if (error) {
1580 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1581 		kfree(*id);
1582 		*id = NULL;
1583 	}
1584 	return error;
1585 }
1586 
1587 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1588 		struct nvme_ns_info *info)
1589 {
1590 	struct nvme_ns_ids *ids = &info->ids;
1591 	struct nvme_id_ns *id;
1592 	int ret;
1593 
1594 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1595 	if (ret)
1596 		return ret;
1597 
1598 	if (id->ncap == 0) {
1599 		/* namespace not allocated or attached */
1600 		info->is_removed = true;
1601 		ret = -ENODEV;
1602 		goto error;
1603 	}
1604 
1605 	info->anagrpid = id->anagrpid;
1606 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1607 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1608 	info->is_ready = true;
1609 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1610 		dev_info(ctrl->device,
1611 			 "Ignoring bogus Namespace Identifiers\n");
1612 	} else {
1613 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1614 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1615 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1616 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1617 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1618 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1619 	}
1620 
1621 error:
1622 	kfree(id);
1623 	return ret;
1624 }
1625 
1626 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1627 		struct nvme_ns_info *info)
1628 {
1629 	struct nvme_id_ns_cs_indep *id;
1630 	struct nvme_command c = {
1631 		.identify.opcode	= nvme_admin_identify,
1632 		.identify.nsid		= cpu_to_le32(info->nsid),
1633 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1634 	};
1635 	int ret;
1636 
1637 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1638 	if (!id)
1639 		return -ENOMEM;
1640 
1641 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1642 	if (!ret) {
1643 		info->anagrpid = id->anagrpid;
1644 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1645 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1646 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1647 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1648 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1649 	}
1650 	kfree(id);
1651 	return ret;
1652 }
1653 
1654 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1655 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1656 {
1657 	union nvme_result res = { 0 };
1658 	struct nvme_command c = { };
1659 	int ret;
1660 
1661 	c.features.opcode = op;
1662 	c.features.fid = cpu_to_le32(fid);
1663 	c.features.dword11 = cpu_to_le32(dword11);
1664 
1665 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1666 			buffer, buflen, NVME_QID_ANY, 0);
1667 	if (ret >= 0 && result)
1668 		*result = le32_to_cpu(res.u32);
1669 	return ret;
1670 }
1671 
1672 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1673 		      unsigned int dword11, void *buffer, size_t buflen,
1674 		      u32 *result)
1675 {
1676 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1677 			     buflen, result);
1678 }
1679 EXPORT_SYMBOL_GPL(nvme_set_features);
1680 
1681 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1682 		      unsigned int dword11, void *buffer, size_t buflen,
1683 		      u32 *result)
1684 {
1685 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1686 			     buflen, result);
1687 }
1688 EXPORT_SYMBOL_GPL(nvme_get_features);
1689 
1690 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1691 {
1692 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1693 	u32 result;
1694 	int status, nr_io_queues;
1695 
1696 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1697 			&result);
1698 	if (status < 0)
1699 		return status;
1700 
1701 	/*
1702 	 * Degraded controllers might return an error when setting the queue
1703 	 * count.  We still want to be able to bring them online and offer
1704 	 * access to the admin queue, as that might be only way to fix them up.
1705 	 */
1706 	if (status > 0) {
1707 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1708 		*count = 0;
1709 	} else {
1710 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1711 		*count = min(*count, nr_io_queues);
1712 	}
1713 
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1717 
1718 #define NVME_AEN_SUPPORTED \
1719 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1720 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1721 
1722 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1723 {
1724 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1725 	int status;
1726 
1727 	if (!supported_aens)
1728 		return;
1729 
1730 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1731 			NULL, 0, &result);
1732 	if (status)
1733 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1734 			 supported_aens);
1735 
1736 	queue_work(nvme_wq, &ctrl->async_event_work);
1737 }
1738 
1739 static int nvme_ns_open(struct nvme_ns *ns)
1740 {
1741 
1742 	/* should never be called due to GENHD_FL_HIDDEN */
1743 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1744 		goto fail;
1745 	if (!nvme_get_ns(ns))
1746 		goto fail;
1747 	if (!try_module_get(ns->ctrl->ops->module))
1748 		goto fail_put_ns;
1749 
1750 	return 0;
1751 
1752 fail_put_ns:
1753 	nvme_put_ns(ns);
1754 fail:
1755 	return -ENXIO;
1756 }
1757 
1758 static void nvme_ns_release(struct nvme_ns *ns)
1759 {
1760 
1761 	module_put(ns->ctrl->ops->module);
1762 	nvme_put_ns(ns);
1763 }
1764 
1765 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1766 {
1767 	return nvme_ns_open(disk->private_data);
1768 }
1769 
1770 static void nvme_release(struct gendisk *disk)
1771 {
1772 	nvme_ns_release(disk->private_data);
1773 }
1774 
1775 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1776 {
1777 	/* some standard values */
1778 	geo->heads = 1 << 6;
1779 	geo->sectors = 1 << 5;
1780 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1781 	return 0;
1782 }
1783 
1784 static bool nvme_init_integrity(struct nvme_ns_head *head,
1785 		struct queue_limits *lim, struct nvme_ns_info *info)
1786 {
1787 	struct blk_integrity *bi = &lim->integrity;
1788 
1789 	memset(bi, 0, sizeof(*bi));
1790 
1791 	if (!head->ms)
1792 		return true;
1793 
1794 	/*
1795 	 * PI can always be supported as we can ask the controller to simply
1796 	 * insert/strip it, which is not possible for other kinds of metadata.
1797 	 */
1798 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1799 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1800 		return nvme_ns_has_pi(head);
1801 
1802 	switch (head->pi_type) {
1803 	case NVME_NS_DPS_PI_TYPE3:
1804 		switch (head->guard_type) {
1805 		case NVME_NVM_NS_16B_GUARD:
1806 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1807 			bi->tag_size = sizeof(u16) + sizeof(u32);
1808 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1809 			break;
1810 		case NVME_NVM_NS_64B_GUARD:
1811 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1812 			bi->tag_size = sizeof(u16) + 6;
1813 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1814 			break;
1815 		default:
1816 			break;
1817 		}
1818 		break;
1819 	case NVME_NS_DPS_PI_TYPE1:
1820 	case NVME_NS_DPS_PI_TYPE2:
1821 		switch (head->guard_type) {
1822 		case NVME_NVM_NS_16B_GUARD:
1823 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1824 			bi->tag_size = sizeof(u16);
1825 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1826 				     BLK_INTEGRITY_REF_TAG;
1827 			break;
1828 		case NVME_NVM_NS_64B_GUARD:
1829 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1830 			bi->tag_size = sizeof(u16);
1831 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1832 				     BLK_INTEGRITY_REF_TAG;
1833 			break;
1834 		default:
1835 			break;
1836 		}
1837 		break;
1838 	default:
1839 		break;
1840 	}
1841 
1842 	bi->tuple_size = head->ms;
1843 	bi->pi_offset = info->pi_offset;
1844 	return true;
1845 }
1846 
1847 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1848 {
1849 	struct nvme_ctrl *ctrl = ns->ctrl;
1850 
1851 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1852 		lim->max_hw_discard_sectors =
1853 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1854 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1855 		lim->max_hw_discard_sectors = UINT_MAX;
1856 	else
1857 		lim->max_hw_discard_sectors = 0;
1858 
1859 	lim->discard_granularity = lim->logical_block_size;
1860 
1861 	if (ctrl->dmrl)
1862 		lim->max_discard_segments = ctrl->dmrl;
1863 	else
1864 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1865 }
1866 
1867 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1868 {
1869 	return uuid_equal(&a->uuid, &b->uuid) &&
1870 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1871 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1872 		a->csi == b->csi;
1873 }
1874 
1875 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1876 		struct nvme_id_ns_nvm **nvmp)
1877 {
1878 	struct nvme_command c = {
1879 		.identify.opcode	= nvme_admin_identify,
1880 		.identify.nsid		= cpu_to_le32(nsid),
1881 		.identify.cns		= NVME_ID_CNS_CS_NS,
1882 		.identify.csi		= NVME_CSI_NVM,
1883 	};
1884 	struct nvme_id_ns_nvm *nvm;
1885 	int ret;
1886 
1887 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1888 	if (!nvm)
1889 		return -ENOMEM;
1890 
1891 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1892 	if (ret)
1893 		kfree(nvm);
1894 	else
1895 		*nvmp = nvm;
1896 	return ret;
1897 }
1898 
1899 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1900 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1901 {
1902 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1903 	u8 guard_type;
1904 
1905 	/* no support for storage tag formats right now */
1906 	if (nvme_elbaf_sts(elbaf))
1907 		return;
1908 
1909 	guard_type = nvme_elbaf_guard_type(elbaf);
1910 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1911 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1912 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1913 
1914 	head->guard_type = guard_type;
1915 	switch (head->guard_type) {
1916 	case NVME_NVM_NS_64B_GUARD:
1917 		head->pi_size = sizeof(struct crc64_pi_tuple);
1918 		break;
1919 	case NVME_NVM_NS_16B_GUARD:
1920 		head->pi_size = sizeof(struct t10_pi_tuple);
1921 		break;
1922 	default:
1923 		break;
1924 	}
1925 }
1926 
1927 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1928 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1929 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1930 {
1931 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1932 	head->pi_type = 0;
1933 	head->pi_size = 0;
1934 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1935 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1936 		return;
1937 
1938 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1939 		nvme_configure_pi_elbas(head, id, nvm);
1940 	} else {
1941 		head->pi_size = sizeof(struct t10_pi_tuple);
1942 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1943 	}
1944 
1945 	if (head->pi_size && head->ms >= head->pi_size)
1946 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1947 	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1948 		if (disable_pi_offsets)
1949 			head->pi_type = 0;
1950 		else
1951 			info->pi_offset = head->ms - head->pi_size;
1952 	}
1953 
1954 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1955 		/*
1956 		 * The NVMe over Fabrics specification only supports metadata as
1957 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1958 		 * remap the separate metadata buffer from the block layer.
1959 		 */
1960 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1961 			return;
1962 
1963 		head->features |= NVME_NS_EXT_LBAS;
1964 
1965 		/*
1966 		 * The current fabrics transport drivers support namespace
1967 		 * metadata formats only if nvme_ns_has_pi() returns true.
1968 		 * Suppress support for all other formats so the namespace will
1969 		 * have a 0 capacity and not be usable through the block stack.
1970 		 *
1971 		 * Note, this check will need to be modified if any drivers
1972 		 * gain the ability to use other metadata formats.
1973 		 */
1974 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1975 			head->features |= NVME_NS_METADATA_SUPPORTED;
1976 	} else {
1977 		/*
1978 		 * For PCIe controllers, we can't easily remap the separate
1979 		 * metadata buffer from the block layer and thus require a
1980 		 * separate metadata buffer for block layer metadata/PI support.
1981 		 * We allow extended LBAs for the passthrough interface, though.
1982 		 */
1983 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1984 			head->features |= NVME_NS_EXT_LBAS;
1985 		else
1986 			head->features |= NVME_NS_METADATA_SUPPORTED;
1987 	}
1988 }
1989 
1990 
1991 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1992 			struct nvme_id_ns *id, struct queue_limits *lim,
1993 			u32 bs, u32 atomic_bs)
1994 {
1995 	unsigned int boundary = 0;
1996 
1997 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1998 		if (le16_to_cpu(id->nabspf))
1999 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2000 	}
2001 	lim->atomic_write_hw_max = atomic_bs;
2002 	lim->atomic_write_hw_boundary = boundary;
2003 	lim->atomic_write_hw_unit_min = bs;
2004 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2005 }
2006 
2007 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2008 {
2009 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2010 }
2011 
2012 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2013 		struct queue_limits *lim)
2014 {
2015 	lim->max_hw_sectors = ctrl->max_hw_sectors;
2016 	lim->max_segments = min_t(u32, USHRT_MAX,
2017 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2018 	lim->max_integrity_segments = ctrl->max_integrity_segments;
2019 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2020 	lim->max_segment_size = UINT_MAX;
2021 	lim->dma_alignment = 3;
2022 }
2023 
2024 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2025 		struct queue_limits *lim)
2026 {
2027 	struct nvme_ns_head *head = ns->head;
2028 	u32 bs = 1U << head->lba_shift;
2029 	u32 atomic_bs, phys_bs, io_opt = 0;
2030 	bool valid = true;
2031 
2032 	/*
2033 	 * The block layer can't support LBA sizes larger than the page size
2034 	 * or smaller than a sector size yet, so catch this early and don't
2035 	 * allow block I/O.
2036 	 */
2037 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
2038 		bs = (1 << 9);
2039 		valid = false;
2040 	}
2041 
2042 	atomic_bs = phys_bs = bs;
2043 	if (id->nabo == 0) {
2044 		/*
2045 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2046 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2047 		 * 0 then AWUPF must be used instead.
2048 		 */
2049 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2050 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2051 		else
2052 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2053 
2054 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2055 	}
2056 
2057 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2058 		/* NPWG = Namespace Preferred Write Granularity */
2059 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2060 		/* NOWS = Namespace Optimal Write Size */
2061 		if (id->nows)
2062 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2063 	}
2064 
2065 	/*
2066 	 * Linux filesystems assume writing a single physical block is
2067 	 * an atomic operation. Hence limit the physical block size to the
2068 	 * value of the Atomic Write Unit Power Fail parameter.
2069 	 */
2070 	lim->logical_block_size = bs;
2071 	lim->physical_block_size = min(phys_bs, atomic_bs);
2072 	lim->io_min = phys_bs;
2073 	lim->io_opt = io_opt;
2074 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2075 		lim->max_write_zeroes_sectors = UINT_MAX;
2076 	else
2077 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2078 	return valid;
2079 }
2080 
2081 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2082 {
2083 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2084 }
2085 
2086 static inline bool nvme_first_scan(struct gendisk *disk)
2087 {
2088 	/* nvme_alloc_ns() scans the disk prior to adding it */
2089 	return !disk_live(disk);
2090 }
2091 
2092 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2093 		struct queue_limits *lim)
2094 {
2095 	struct nvme_ctrl *ctrl = ns->ctrl;
2096 	u32 iob;
2097 
2098 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2099 	    is_power_of_2(ctrl->max_hw_sectors))
2100 		iob = ctrl->max_hw_sectors;
2101 	else
2102 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2103 
2104 	if (!iob)
2105 		return;
2106 
2107 	if (!is_power_of_2(iob)) {
2108 		if (nvme_first_scan(ns->disk))
2109 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2110 				ns->disk->disk_name, iob);
2111 		return;
2112 	}
2113 
2114 	if (blk_queue_is_zoned(ns->disk->queue)) {
2115 		if (nvme_first_scan(ns->disk))
2116 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2117 				ns->disk->disk_name);
2118 		return;
2119 	}
2120 
2121 	lim->chunk_sectors = iob;
2122 }
2123 
2124 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2125 		struct nvme_ns_info *info)
2126 {
2127 	struct queue_limits lim;
2128 	int ret;
2129 
2130 	blk_mq_freeze_queue(ns->disk->queue);
2131 	lim = queue_limits_start_update(ns->disk->queue);
2132 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2133 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2134 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2135 	blk_mq_unfreeze_queue(ns->disk->queue);
2136 
2137 	/* Hide the block-interface for these devices */
2138 	if (!ret)
2139 		ret = -ENODEV;
2140 	return ret;
2141 }
2142 
2143 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2144 		struct nvme_ns_info *info)
2145 {
2146 	struct queue_limits lim;
2147 	struct nvme_id_ns_nvm *nvm = NULL;
2148 	struct nvme_zone_info zi = {};
2149 	struct nvme_id_ns *id;
2150 	sector_t capacity;
2151 	unsigned lbaf;
2152 	int ret;
2153 
2154 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2155 	if (ret)
2156 		return ret;
2157 
2158 	if (id->ncap == 0) {
2159 		/* namespace not allocated or attached */
2160 		info->is_removed = true;
2161 		ret = -ENXIO;
2162 		goto out;
2163 	}
2164 	lbaf = nvme_lbaf_index(id->flbas);
2165 
2166 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2167 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2168 		if (ret < 0)
2169 			goto out;
2170 	}
2171 
2172 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2173 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2174 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2175 		if (ret < 0)
2176 			goto out;
2177 	}
2178 
2179 	blk_mq_freeze_queue(ns->disk->queue);
2180 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2181 	ns->head->nuse = le64_to_cpu(id->nuse);
2182 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2183 
2184 	lim = queue_limits_start_update(ns->disk->queue);
2185 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2186 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2187 	nvme_set_chunk_sectors(ns, id, &lim);
2188 	if (!nvme_update_disk_info(ns, id, &lim))
2189 		capacity = 0;
2190 	nvme_config_discard(ns, &lim);
2191 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2192 	    ns->head->ids.csi == NVME_CSI_ZNS)
2193 		nvme_update_zone_info(ns, &lim, &zi);
2194 
2195 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2196 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2197 	else
2198 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2199 
2200 	if (info->is_rotational)
2201 		lim.features |= BLK_FEAT_ROTATIONAL;
2202 
2203 	/*
2204 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2205 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2206 	 * I/O to namespaces with metadata except when the namespace supports
2207 	 * PI, as it can strip/insert in that case.
2208 	 */
2209 	if (!nvme_init_integrity(ns->head, &lim, info))
2210 		capacity = 0;
2211 
2212 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2213 	if (ret) {
2214 		blk_mq_unfreeze_queue(ns->disk->queue);
2215 		goto out;
2216 	}
2217 
2218 	set_capacity_and_notify(ns->disk, capacity);
2219 
2220 	/*
2221 	 * Only set the DEAC bit if the device guarantees that reads from
2222 	 * deallocated data return zeroes.  While the DEAC bit does not
2223 	 * require that, it must be a no-op if reads from deallocated data
2224 	 * do not return zeroes.
2225 	 */
2226 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2227 		ns->head->features |= NVME_NS_DEAC;
2228 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2229 	set_bit(NVME_NS_READY, &ns->flags);
2230 	blk_mq_unfreeze_queue(ns->disk->queue);
2231 
2232 	if (blk_queue_is_zoned(ns->queue)) {
2233 		ret = blk_revalidate_disk_zones(ns->disk);
2234 		if (ret && !nvme_first_scan(ns->disk))
2235 			goto out;
2236 	}
2237 
2238 	ret = 0;
2239 out:
2240 	kfree(nvm);
2241 	kfree(id);
2242 	return ret;
2243 }
2244 
2245 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2246 {
2247 	bool unsupported = false;
2248 	int ret;
2249 
2250 	switch (info->ids.csi) {
2251 	case NVME_CSI_ZNS:
2252 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2253 			dev_info(ns->ctrl->device,
2254 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2255 				info->nsid);
2256 			ret = nvme_update_ns_info_generic(ns, info);
2257 			break;
2258 		}
2259 		ret = nvme_update_ns_info_block(ns, info);
2260 		break;
2261 	case NVME_CSI_NVM:
2262 		ret = nvme_update_ns_info_block(ns, info);
2263 		break;
2264 	default:
2265 		dev_info(ns->ctrl->device,
2266 			"block device for nsid %u not supported (csi %u)\n",
2267 			info->nsid, info->ids.csi);
2268 		ret = nvme_update_ns_info_generic(ns, info);
2269 		break;
2270 	}
2271 
2272 	/*
2273 	 * If probing fails due an unsupported feature, hide the block device,
2274 	 * but still allow other access.
2275 	 */
2276 	if (ret == -ENODEV) {
2277 		ns->disk->flags |= GENHD_FL_HIDDEN;
2278 		set_bit(NVME_NS_READY, &ns->flags);
2279 		unsupported = true;
2280 		ret = 0;
2281 	}
2282 
2283 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2284 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2285 		struct queue_limits lim;
2286 
2287 		blk_mq_freeze_queue(ns->head->disk->queue);
2288 		/*
2289 		 * queue_limits mixes values that are the hardware limitations
2290 		 * for bio splitting with what is the device configuration.
2291 		 *
2292 		 * For NVMe the device configuration can change after e.g. a
2293 		 * Format command, and we really want to pick up the new format
2294 		 * value here.  But we must still stack the queue limits to the
2295 		 * least common denominator for multipathing to split the bios
2296 		 * properly.
2297 		 *
2298 		 * To work around this, we explicitly set the device
2299 		 * configuration to those that we just queried, but only stack
2300 		 * the splitting limits in to make sure we still obey possibly
2301 		 * lower limitations of other controllers.
2302 		 */
2303 		lim = queue_limits_start_update(ns->head->disk->queue);
2304 		lim.logical_block_size = ns_lim->logical_block_size;
2305 		lim.physical_block_size = ns_lim->physical_block_size;
2306 		lim.io_min = ns_lim->io_min;
2307 		lim.io_opt = ns_lim->io_opt;
2308 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2309 					ns->head->disk->disk_name);
2310 		if (unsupported)
2311 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2312 		else
2313 			nvme_init_integrity(ns->head, &lim, info);
2314 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2315 
2316 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2317 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2318 		nvme_mpath_revalidate_paths(ns);
2319 
2320 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2321 	}
2322 
2323 	return ret;
2324 }
2325 
2326 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2327 		enum blk_unique_id type)
2328 {
2329 	struct nvme_ns_ids *ids = &ns->head->ids;
2330 
2331 	if (type != BLK_UID_EUI64)
2332 		return -EINVAL;
2333 
2334 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2335 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2336 		return sizeof(ids->nguid);
2337 	}
2338 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2339 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2340 		return sizeof(ids->eui64);
2341 	}
2342 
2343 	return -EINVAL;
2344 }
2345 
2346 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2347 		enum blk_unique_id type)
2348 {
2349 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2350 }
2351 
2352 #ifdef CONFIG_BLK_SED_OPAL
2353 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2354 		bool send)
2355 {
2356 	struct nvme_ctrl *ctrl = data;
2357 	struct nvme_command cmd = { };
2358 
2359 	if (send)
2360 		cmd.common.opcode = nvme_admin_security_send;
2361 	else
2362 		cmd.common.opcode = nvme_admin_security_recv;
2363 	cmd.common.nsid = 0;
2364 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2365 	cmd.common.cdw11 = cpu_to_le32(len);
2366 
2367 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2368 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2369 }
2370 
2371 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2372 {
2373 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2374 		if (!ctrl->opal_dev)
2375 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2376 		else if (was_suspended)
2377 			opal_unlock_from_suspend(ctrl->opal_dev);
2378 	} else {
2379 		free_opal_dev(ctrl->opal_dev);
2380 		ctrl->opal_dev = NULL;
2381 	}
2382 }
2383 #else
2384 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2385 {
2386 }
2387 #endif /* CONFIG_BLK_SED_OPAL */
2388 
2389 #ifdef CONFIG_BLK_DEV_ZONED
2390 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2391 		unsigned int nr_zones, report_zones_cb cb, void *data)
2392 {
2393 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2394 			data);
2395 }
2396 #else
2397 #define nvme_report_zones	NULL
2398 #endif /* CONFIG_BLK_DEV_ZONED */
2399 
2400 const struct block_device_operations nvme_bdev_ops = {
2401 	.owner		= THIS_MODULE,
2402 	.ioctl		= nvme_ioctl,
2403 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2404 	.open		= nvme_open,
2405 	.release	= nvme_release,
2406 	.getgeo		= nvme_getgeo,
2407 	.get_unique_id	= nvme_get_unique_id,
2408 	.report_zones	= nvme_report_zones,
2409 	.pr_ops		= &nvme_pr_ops,
2410 };
2411 
2412 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2413 		u32 timeout, const char *op)
2414 {
2415 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2416 	u32 csts;
2417 	int ret;
2418 
2419 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2420 		if (csts == ~0)
2421 			return -ENODEV;
2422 		if ((csts & mask) == val)
2423 			break;
2424 
2425 		usleep_range(1000, 2000);
2426 		if (fatal_signal_pending(current))
2427 			return -EINTR;
2428 		if (time_after(jiffies, timeout_jiffies)) {
2429 			dev_err(ctrl->device,
2430 				"Device not ready; aborting %s, CSTS=0x%x\n",
2431 				op, csts);
2432 			return -ENODEV;
2433 		}
2434 	}
2435 
2436 	return ret;
2437 }
2438 
2439 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2440 {
2441 	int ret;
2442 
2443 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2444 	if (shutdown)
2445 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2446 	else
2447 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2448 
2449 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2450 	if (ret)
2451 		return ret;
2452 
2453 	if (shutdown) {
2454 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2455 				       NVME_CSTS_SHST_CMPLT,
2456 				       ctrl->shutdown_timeout, "shutdown");
2457 	}
2458 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2459 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2460 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2461 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2462 }
2463 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2464 
2465 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2466 {
2467 	unsigned dev_page_min;
2468 	u32 timeout;
2469 	int ret;
2470 
2471 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2472 	if (ret) {
2473 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2474 		return ret;
2475 	}
2476 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2477 
2478 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2479 		dev_err(ctrl->device,
2480 			"Minimum device page size %u too large for host (%u)\n",
2481 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2482 		return -ENODEV;
2483 	}
2484 
2485 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2486 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2487 	else
2488 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2489 
2490 	/*
2491 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2492 	 * makes it possible for media related commands to return the error
2493 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2494 	 * restructured to handle retries, disable CC.CRIME.
2495 	 */
2496 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2497 
2498 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2499 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2500 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2501 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2502 	if (ret)
2503 		return ret;
2504 
2505 	/* CAP value may change after initial CC write */
2506 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2507 	if (ret)
2508 		return ret;
2509 
2510 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2511 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2512 		u32 crto, ready_timeout;
2513 
2514 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2515 		if (ret) {
2516 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2517 				ret);
2518 			return ret;
2519 		}
2520 
2521 		/*
2522 		 * CRTO should always be greater or equal to CAP.TO, but some
2523 		 * devices are known to get this wrong. Use the larger of the
2524 		 * two values.
2525 		 */
2526 		ready_timeout = NVME_CRTO_CRWMT(crto);
2527 
2528 		if (ready_timeout < timeout)
2529 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2530 				      crto, ctrl->cap);
2531 		else
2532 			timeout = ready_timeout;
2533 	}
2534 
2535 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2536 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2537 	if (ret)
2538 		return ret;
2539 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2540 			       (timeout + 1) / 2, "initialisation");
2541 }
2542 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2543 
2544 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2545 {
2546 	__le64 ts;
2547 	int ret;
2548 
2549 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2550 		return 0;
2551 
2552 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2553 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2554 			NULL);
2555 	if (ret)
2556 		dev_warn_once(ctrl->device,
2557 			"could not set timestamp (%d)\n", ret);
2558 	return ret;
2559 }
2560 
2561 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2562 {
2563 	struct nvme_feat_host_behavior *host;
2564 	u8 acre = 0, lbafee = 0;
2565 	int ret;
2566 
2567 	/* Don't bother enabling the feature if retry delay is not reported */
2568 	if (ctrl->crdt[0])
2569 		acre = NVME_ENABLE_ACRE;
2570 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2571 		lbafee = NVME_ENABLE_LBAFEE;
2572 
2573 	if (!acre && !lbafee)
2574 		return 0;
2575 
2576 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2577 	if (!host)
2578 		return 0;
2579 
2580 	host->acre = acre;
2581 	host->lbafee = lbafee;
2582 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2583 				host, sizeof(*host), NULL);
2584 	kfree(host);
2585 	return ret;
2586 }
2587 
2588 /*
2589  * The function checks whether the given total (exlat + enlat) latency of
2590  * a power state allows the latter to be used as an APST transition target.
2591  * It does so by comparing the latency to the primary and secondary latency
2592  * tolerances defined by module params. If there's a match, the corresponding
2593  * timeout value is returned and the matching tolerance index (1 or 2) is
2594  * reported.
2595  */
2596 static bool nvme_apst_get_transition_time(u64 total_latency,
2597 		u64 *transition_time, unsigned *last_index)
2598 {
2599 	if (total_latency <= apst_primary_latency_tol_us) {
2600 		if (*last_index == 1)
2601 			return false;
2602 		*last_index = 1;
2603 		*transition_time = apst_primary_timeout_ms;
2604 		return true;
2605 	}
2606 	if (apst_secondary_timeout_ms &&
2607 		total_latency <= apst_secondary_latency_tol_us) {
2608 		if (*last_index <= 2)
2609 			return false;
2610 		*last_index = 2;
2611 		*transition_time = apst_secondary_timeout_ms;
2612 		return true;
2613 	}
2614 	return false;
2615 }
2616 
2617 /*
2618  * APST (Autonomous Power State Transition) lets us program a table of power
2619  * state transitions that the controller will perform automatically.
2620  *
2621  * Depending on module params, one of the two supported techniques will be used:
2622  *
2623  * - If the parameters provide explicit timeouts and tolerances, they will be
2624  *   used to build a table with up to 2 non-operational states to transition to.
2625  *   The default parameter values were selected based on the values used by
2626  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2627  *   regeneration of the APST table in the event of switching between external
2628  *   and battery power, the timeouts and tolerances reflect a compromise
2629  *   between values used by Microsoft for AC and battery scenarios.
2630  * - If not, we'll configure the table with a simple heuristic: we are willing
2631  *   to spend at most 2% of the time transitioning between power states.
2632  *   Therefore, when running in any given state, we will enter the next
2633  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2634  *   microseconds, as long as that state's exit latency is under the requested
2635  *   maximum latency.
2636  *
2637  * We will not autonomously enter any non-operational state for which the total
2638  * latency exceeds ps_max_latency_us.
2639  *
2640  * Users can set ps_max_latency_us to zero to turn off APST.
2641  */
2642 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2643 {
2644 	struct nvme_feat_auto_pst *table;
2645 	unsigned apste = 0;
2646 	u64 max_lat_us = 0;
2647 	__le64 target = 0;
2648 	int max_ps = -1;
2649 	int state;
2650 	int ret;
2651 	unsigned last_lt_index = UINT_MAX;
2652 
2653 	/*
2654 	 * If APST isn't supported or if we haven't been initialized yet,
2655 	 * then don't do anything.
2656 	 */
2657 	if (!ctrl->apsta)
2658 		return 0;
2659 
2660 	if (ctrl->npss > 31) {
2661 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2662 		return 0;
2663 	}
2664 
2665 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2666 	if (!table)
2667 		return 0;
2668 
2669 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2670 		/* Turn off APST. */
2671 		dev_dbg(ctrl->device, "APST disabled\n");
2672 		goto done;
2673 	}
2674 
2675 	/*
2676 	 * Walk through all states from lowest- to highest-power.
2677 	 * According to the spec, lower-numbered states use more power.  NPSS,
2678 	 * despite the name, is the index of the lowest-power state, not the
2679 	 * number of states.
2680 	 */
2681 	for (state = (int)ctrl->npss; state >= 0; state--) {
2682 		u64 total_latency_us, exit_latency_us, transition_ms;
2683 
2684 		if (target)
2685 			table->entries[state] = target;
2686 
2687 		/*
2688 		 * Don't allow transitions to the deepest state if it's quirked
2689 		 * off.
2690 		 */
2691 		if (state == ctrl->npss &&
2692 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2693 			continue;
2694 
2695 		/*
2696 		 * Is this state a useful non-operational state for higher-power
2697 		 * states to autonomously transition to?
2698 		 */
2699 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2700 			continue;
2701 
2702 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2703 		if (exit_latency_us > ctrl->ps_max_latency_us)
2704 			continue;
2705 
2706 		total_latency_us = exit_latency_us +
2707 			le32_to_cpu(ctrl->psd[state].entry_lat);
2708 
2709 		/*
2710 		 * This state is good. It can be used as the APST idle target
2711 		 * for higher power states.
2712 		 */
2713 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2714 			if (!nvme_apst_get_transition_time(total_latency_us,
2715 					&transition_ms, &last_lt_index))
2716 				continue;
2717 		} else {
2718 			transition_ms = total_latency_us + 19;
2719 			do_div(transition_ms, 20);
2720 			if (transition_ms > (1 << 24) - 1)
2721 				transition_ms = (1 << 24) - 1;
2722 		}
2723 
2724 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2725 		if (max_ps == -1)
2726 			max_ps = state;
2727 		if (total_latency_us > max_lat_us)
2728 			max_lat_us = total_latency_us;
2729 	}
2730 
2731 	if (max_ps == -1)
2732 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2733 	else
2734 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2735 			max_ps, max_lat_us, (int)sizeof(*table), table);
2736 	apste = 1;
2737 
2738 done:
2739 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2740 				table, sizeof(*table), NULL);
2741 	if (ret)
2742 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2743 	kfree(table);
2744 	return ret;
2745 }
2746 
2747 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2748 {
2749 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2750 	u64 latency;
2751 
2752 	switch (val) {
2753 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2754 	case PM_QOS_LATENCY_ANY:
2755 		latency = U64_MAX;
2756 		break;
2757 
2758 	default:
2759 		latency = val;
2760 	}
2761 
2762 	if (ctrl->ps_max_latency_us != latency) {
2763 		ctrl->ps_max_latency_us = latency;
2764 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2765 			nvme_configure_apst(ctrl);
2766 	}
2767 }
2768 
2769 struct nvme_core_quirk_entry {
2770 	/*
2771 	 * NVMe model and firmware strings are padded with spaces.  For
2772 	 * simplicity, strings in the quirk table are padded with NULLs
2773 	 * instead.
2774 	 */
2775 	u16 vid;
2776 	const char *mn;
2777 	const char *fr;
2778 	unsigned long quirks;
2779 };
2780 
2781 static const struct nvme_core_quirk_entry core_quirks[] = {
2782 	{
2783 		/*
2784 		 * This Toshiba device seems to die using any APST states.  See:
2785 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2786 		 */
2787 		.vid = 0x1179,
2788 		.mn = "THNSF5256GPUK TOSHIBA",
2789 		.quirks = NVME_QUIRK_NO_APST,
2790 	},
2791 	{
2792 		/*
2793 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2794 		 * condition associated with actions related to suspend to idle
2795 		 * LiteON has resolved the problem in future firmware
2796 		 */
2797 		.vid = 0x14a4,
2798 		.fr = "22301111",
2799 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2800 	},
2801 	{
2802 		/*
2803 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2804 		 * aborts I/O during any load, but more easily reproducible
2805 		 * with discards (fstrim).
2806 		 *
2807 		 * The device is left in a state where it is also not possible
2808 		 * to use "nvme set-feature" to disable APST, but booting with
2809 		 * nvme_core.default_ps_max_latency=0 works.
2810 		 */
2811 		.vid = 0x1e0f,
2812 		.mn = "KCD6XVUL6T40",
2813 		.quirks = NVME_QUIRK_NO_APST,
2814 	},
2815 	{
2816 		/*
2817 		 * The external Samsung X5 SSD fails initialization without a
2818 		 * delay before checking if it is ready and has a whole set of
2819 		 * other problems.  To make this even more interesting, it
2820 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2821 		 * does not need or want these quirks.
2822 		 */
2823 		.vid = 0x144d,
2824 		.mn = "Samsung Portable SSD X5",
2825 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2826 			  NVME_QUIRK_NO_DEEPEST_PS |
2827 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2828 	}
2829 };
2830 
2831 /* match is null-terminated but idstr is space-padded. */
2832 static bool string_matches(const char *idstr, const char *match, size_t len)
2833 {
2834 	size_t matchlen;
2835 
2836 	if (!match)
2837 		return true;
2838 
2839 	matchlen = strlen(match);
2840 	WARN_ON_ONCE(matchlen > len);
2841 
2842 	if (memcmp(idstr, match, matchlen))
2843 		return false;
2844 
2845 	for (; matchlen < len; matchlen++)
2846 		if (idstr[matchlen] != ' ')
2847 			return false;
2848 
2849 	return true;
2850 }
2851 
2852 static bool quirk_matches(const struct nvme_id_ctrl *id,
2853 			  const struct nvme_core_quirk_entry *q)
2854 {
2855 	return q->vid == le16_to_cpu(id->vid) &&
2856 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2857 		string_matches(id->fr, q->fr, sizeof(id->fr));
2858 }
2859 
2860 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2861 		struct nvme_id_ctrl *id)
2862 {
2863 	size_t nqnlen;
2864 	int off;
2865 
2866 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2867 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2868 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2869 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2870 			return;
2871 		}
2872 
2873 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2874 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2875 	}
2876 
2877 	/*
2878 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2879 	 * Base Specification 2.0.  It is slightly different from the format
2880 	 * specified there due to historic reasons, and we can't change it now.
2881 	 */
2882 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2883 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2884 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2885 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2886 	off += sizeof(id->sn);
2887 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2888 	off += sizeof(id->mn);
2889 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2890 }
2891 
2892 static void nvme_release_subsystem(struct device *dev)
2893 {
2894 	struct nvme_subsystem *subsys =
2895 		container_of(dev, struct nvme_subsystem, dev);
2896 
2897 	if (subsys->instance >= 0)
2898 		ida_free(&nvme_instance_ida, subsys->instance);
2899 	kfree(subsys);
2900 }
2901 
2902 static void nvme_destroy_subsystem(struct kref *ref)
2903 {
2904 	struct nvme_subsystem *subsys =
2905 			container_of(ref, struct nvme_subsystem, ref);
2906 
2907 	mutex_lock(&nvme_subsystems_lock);
2908 	list_del(&subsys->entry);
2909 	mutex_unlock(&nvme_subsystems_lock);
2910 
2911 	ida_destroy(&subsys->ns_ida);
2912 	device_del(&subsys->dev);
2913 	put_device(&subsys->dev);
2914 }
2915 
2916 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2917 {
2918 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2919 }
2920 
2921 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2922 {
2923 	struct nvme_subsystem *subsys;
2924 
2925 	lockdep_assert_held(&nvme_subsystems_lock);
2926 
2927 	/*
2928 	 * Fail matches for discovery subsystems. This results
2929 	 * in each discovery controller bound to a unique subsystem.
2930 	 * This avoids issues with validating controller values
2931 	 * that can only be true when there is a single unique subsystem.
2932 	 * There may be multiple and completely independent entities
2933 	 * that provide discovery controllers.
2934 	 */
2935 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2936 		return NULL;
2937 
2938 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2939 		if (strcmp(subsys->subnqn, subsysnqn))
2940 			continue;
2941 		if (!kref_get_unless_zero(&subsys->ref))
2942 			continue;
2943 		return subsys;
2944 	}
2945 
2946 	return NULL;
2947 }
2948 
2949 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2950 {
2951 	return ctrl->opts && ctrl->opts->discovery_nqn;
2952 }
2953 
2954 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2955 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2956 {
2957 	struct nvme_ctrl *tmp;
2958 
2959 	lockdep_assert_held(&nvme_subsystems_lock);
2960 
2961 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2962 		if (nvme_state_terminal(tmp))
2963 			continue;
2964 
2965 		if (tmp->cntlid == ctrl->cntlid) {
2966 			dev_err(ctrl->device,
2967 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2968 				ctrl->cntlid, dev_name(tmp->device),
2969 				subsys->subnqn);
2970 			return false;
2971 		}
2972 
2973 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2974 		    nvme_discovery_ctrl(ctrl))
2975 			continue;
2976 
2977 		dev_err(ctrl->device,
2978 			"Subsystem does not support multiple controllers\n");
2979 		return false;
2980 	}
2981 
2982 	return true;
2983 }
2984 
2985 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2986 {
2987 	struct nvme_subsystem *subsys, *found;
2988 	int ret;
2989 
2990 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2991 	if (!subsys)
2992 		return -ENOMEM;
2993 
2994 	subsys->instance = -1;
2995 	mutex_init(&subsys->lock);
2996 	kref_init(&subsys->ref);
2997 	INIT_LIST_HEAD(&subsys->ctrls);
2998 	INIT_LIST_HEAD(&subsys->nsheads);
2999 	nvme_init_subnqn(subsys, ctrl, id);
3000 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3001 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
3002 	subsys->vendor_id = le16_to_cpu(id->vid);
3003 	subsys->cmic = id->cmic;
3004 
3005 	/* Versions prior to 1.4 don't necessarily report a valid type */
3006 	if (id->cntrltype == NVME_CTRL_DISC ||
3007 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3008 		subsys->subtype = NVME_NQN_DISC;
3009 	else
3010 		subsys->subtype = NVME_NQN_NVME;
3011 
3012 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3013 		dev_err(ctrl->device,
3014 			"Subsystem %s is not a discovery controller",
3015 			subsys->subnqn);
3016 		kfree(subsys);
3017 		return -EINVAL;
3018 	}
3019 	subsys->awupf = le16_to_cpu(id->awupf);
3020 	nvme_mpath_default_iopolicy(subsys);
3021 
3022 	subsys->dev.class = &nvme_subsys_class;
3023 	subsys->dev.release = nvme_release_subsystem;
3024 	subsys->dev.groups = nvme_subsys_attrs_groups;
3025 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3026 	device_initialize(&subsys->dev);
3027 
3028 	mutex_lock(&nvme_subsystems_lock);
3029 	found = __nvme_find_get_subsystem(subsys->subnqn);
3030 	if (found) {
3031 		put_device(&subsys->dev);
3032 		subsys = found;
3033 
3034 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3035 			ret = -EINVAL;
3036 			goto out_put_subsystem;
3037 		}
3038 	} else {
3039 		ret = device_add(&subsys->dev);
3040 		if (ret) {
3041 			dev_err(ctrl->device,
3042 				"failed to register subsystem device.\n");
3043 			put_device(&subsys->dev);
3044 			goto out_unlock;
3045 		}
3046 		ida_init(&subsys->ns_ida);
3047 		list_add_tail(&subsys->entry, &nvme_subsystems);
3048 	}
3049 
3050 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3051 				dev_name(ctrl->device));
3052 	if (ret) {
3053 		dev_err(ctrl->device,
3054 			"failed to create sysfs link from subsystem.\n");
3055 		goto out_put_subsystem;
3056 	}
3057 
3058 	if (!found)
3059 		subsys->instance = ctrl->instance;
3060 	ctrl->subsys = subsys;
3061 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3062 	mutex_unlock(&nvme_subsystems_lock);
3063 	return 0;
3064 
3065 out_put_subsystem:
3066 	nvme_put_subsystem(subsys);
3067 out_unlock:
3068 	mutex_unlock(&nvme_subsystems_lock);
3069 	return ret;
3070 }
3071 
3072 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3073 		void *log, size_t size, u64 offset)
3074 {
3075 	struct nvme_command c = { };
3076 	u32 dwlen = nvme_bytes_to_numd(size);
3077 
3078 	c.get_log_page.opcode = nvme_admin_get_log_page;
3079 	c.get_log_page.nsid = cpu_to_le32(nsid);
3080 	c.get_log_page.lid = log_page;
3081 	c.get_log_page.lsp = lsp;
3082 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3083 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3084 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3085 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3086 	c.get_log_page.csi = csi;
3087 
3088 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3089 }
3090 
3091 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3092 				struct nvme_effects_log **log)
3093 {
3094 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3095 	int ret;
3096 
3097 	if (cel)
3098 		goto out;
3099 
3100 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3101 	if (!cel)
3102 		return -ENOMEM;
3103 
3104 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3105 			cel, sizeof(*cel), 0);
3106 	if (ret) {
3107 		kfree(cel);
3108 		return ret;
3109 	}
3110 
3111 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3112 out:
3113 	*log = cel;
3114 	return 0;
3115 }
3116 
3117 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3118 {
3119 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3120 
3121 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3122 		return UINT_MAX;
3123 	return val;
3124 }
3125 
3126 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3127 {
3128 	struct nvme_command c = { };
3129 	struct nvme_id_ctrl_nvm *id;
3130 	int ret;
3131 
3132 	/*
3133 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3134 	 * to the write-zeroes, we are cautious and limit the size to the
3135 	 * controllers max_hw_sectors value, which is based on the MDTS field
3136 	 * and possibly other limiting factors.
3137 	 */
3138 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3139 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3140 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3141 	else
3142 		ctrl->max_zeroes_sectors = 0;
3143 
3144 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3145 	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3146 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3147 		return 0;
3148 
3149 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3150 	if (!id)
3151 		return -ENOMEM;
3152 
3153 	c.identify.opcode = nvme_admin_identify;
3154 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3155 	c.identify.csi = NVME_CSI_NVM;
3156 
3157 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3158 	if (ret)
3159 		goto free_data;
3160 
3161 	ctrl->dmrl = id->dmrl;
3162 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3163 	if (id->wzsl)
3164 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3165 
3166 free_data:
3167 	if (ret > 0)
3168 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3169 	kfree(id);
3170 	return ret;
3171 }
3172 
3173 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3174 {
3175 	struct nvme_effects_log	*log = ctrl->effects;
3176 
3177 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3178 						NVME_CMD_EFFECTS_NCC |
3179 						NVME_CMD_EFFECTS_CSE_MASK);
3180 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3181 						NVME_CMD_EFFECTS_CSE_MASK);
3182 
3183 	/*
3184 	 * The spec says the result of a security receive command depends on
3185 	 * the previous security send command. As such, many vendors log this
3186 	 * command as one to submitted only when no other commands to the same
3187 	 * namespace are outstanding. The intention is to tell the host to
3188 	 * prevent mixing security send and receive.
3189 	 *
3190 	 * This driver can only enforce such exclusive access against IO
3191 	 * queues, though. We are not readily able to enforce such a rule for
3192 	 * two commands to the admin queue, which is the only queue that
3193 	 * matters for this command.
3194 	 *
3195 	 * Rather than blindly freezing the IO queues for this effect that
3196 	 * doesn't even apply to IO, mask it off.
3197 	 */
3198 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3199 
3200 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3201 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3202 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3203 }
3204 
3205 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3206 {
3207 	int ret = 0;
3208 
3209 	if (ctrl->effects)
3210 		return 0;
3211 
3212 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3213 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3214 		if (ret < 0)
3215 			return ret;
3216 	}
3217 
3218 	if (!ctrl->effects) {
3219 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3220 		if (!ctrl->effects)
3221 			return -ENOMEM;
3222 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3223 	}
3224 
3225 	nvme_init_known_nvm_effects(ctrl);
3226 	return 0;
3227 }
3228 
3229 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3230 {
3231 	/*
3232 	 * In fabrics we need to verify the cntlid matches the
3233 	 * admin connect
3234 	 */
3235 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3236 		dev_err(ctrl->device,
3237 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3238 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3239 		return -EINVAL;
3240 	}
3241 
3242 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3243 		dev_err(ctrl->device,
3244 			"keep-alive support is mandatory for fabrics\n");
3245 		return -EINVAL;
3246 	}
3247 
3248 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3249 		dev_err(ctrl->device,
3250 			"I/O queue command capsule supported size %d < 4\n",
3251 			ctrl->ioccsz);
3252 		return -EINVAL;
3253 	}
3254 
3255 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3256 		dev_err(ctrl->device,
3257 			"I/O queue response capsule supported size %d < 1\n",
3258 			ctrl->iorcsz);
3259 		return -EINVAL;
3260 	}
3261 
3262 	if (!ctrl->maxcmd) {
3263 		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3264 		return -EINVAL;
3265 	}
3266 
3267 	return 0;
3268 }
3269 
3270 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3271 {
3272 	struct queue_limits lim;
3273 	struct nvme_id_ctrl *id;
3274 	u32 max_hw_sectors;
3275 	bool prev_apst_enabled;
3276 	int ret;
3277 
3278 	ret = nvme_identify_ctrl(ctrl, &id);
3279 	if (ret) {
3280 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3281 		return -EIO;
3282 	}
3283 
3284 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3285 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3286 
3287 	if (!ctrl->identified) {
3288 		unsigned int i;
3289 
3290 		/*
3291 		 * Check for quirks.  Quirk can depend on firmware version,
3292 		 * so, in principle, the set of quirks present can change
3293 		 * across a reset.  As a possible future enhancement, we
3294 		 * could re-scan for quirks every time we reinitialize
3295 		 * the device, but we'd have to make sure that the driver
3296 		 * behaves intelligently if the quirks change.
3297 		 */
3298 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3299 			if (quirk_matches(id, &core_quirks[i]))
3300 				ctrl->quirks |= core_quirks[i].quirks;
3301 		}
3302 
3303 		ret = nvme_init_subsystem(ctrl, id);
3304 		if (ret)
3305 			goto out_free;
3306 
3307 		ret = nvme_init_effects(ctrl, id);
3308 		if (ret)
3309 			goto out_free;
3310 	}
3311 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3312 	       sizeof(ctrl->subsys->firmware_rev));
3313 
3314 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3315 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3316 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3317 	}
3318 
3319 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3320 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3321 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3322 
3323 	ctrl->oacs = le16_to_cpu(id->oacs);
3324 	ctrl->oncs = le16_to_cpu(id->oncs);
3325 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3326 	ctrl->oaes = le32_to_cpu(id->oaes);
3327 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3328 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3329 
3330 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3331 	ctrl->vwc = id->vwc;
3332 	if (id->mdts)
3333 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3334 	else
3335 		max_hw_sectors = UINT_MAX;
3336 	ctrl->max_hw_sectors =
3337 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3338 
3339 	lim = queue_limits_start_update(ctrl->admin_q);
3340 	nvme_set_ctrl_limits(ctrl, &lim);
3341 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3342 	if (ret)
3343 		goto out_free;
3344 
3345 	ctrl->sgls = le32_to_cpu(id->sgls);
3346 	ctrl->kas = le16_to_cpu(id->kas);
3347 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3348 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3349 
3350 	ctrl->cntrltype = id->cntrltype;
3351 	ctrl->dctype = id->dctype;
3352 
3353 	if (id->rtd3e) {
3354 		/* us -> s */
3355 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3356 
3357 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3358 						 shutdown_timeout, 60);
3359 
3360 		if (ctrl->shutdown_timeout != shutdown_timeout)
3361 			dev_info(ctrl->device,
3362 				 "D3 entry latency set to %u seconds\n",
3363 				 ctrl->shutdown_timeout);
3364 	} else
3365 		ctrl->shutdown_timeout = shutdown_timeout;
3366 
3367 	ctrl->npss = id->npss;
3368 	ctrl->apsta = id->apsta;
3369 	prev_apst_enabled = ctrl->apst_enabled;
3370 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3371 		if (force_apst && id->apsta) {
3372 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3373 			ctrl->apst_enabled = true;
3374 		} else {
3375 			ctrl->apst_enabled = false;
3376 		}
3377 	} else {
3378 		ctrl->apst_enabled = id->apsta;
3379 	}
3380 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3381 
3382 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3383 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3384 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3385 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3386 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3387 
3388 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3389 		if (ret)
3390 			goto out_free;
3391 	} else {
3392 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3393 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3394 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3395 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3396 	}
3397 
3398 	ret = nvme_mpath_init_identify(ctrl, id);
3399 	if (ret < 0)
3400 		goto out_free;
3401 
3402 	if (ctrl->apst_enabled && !prev_apst_enabled)
3403 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3404 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3405 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3406 
3407 out_free:
3408 	kfree(id);
3409 	return ret;
3410 }
3411 
3412 /*
3413  * Initialize the cached copies of the Identify data and various controller
3414  * register in our nvme_ctrl structure.  This should be called as soon as
3415  * the admin queue is fully up and running.
3416  */
3417 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3418 {
3419 	int ret;
3420 
3421 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3422 	if (ret) {
3423 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3424 		return ret;
3425 	}
3426 
3427 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3428 
3429 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3430 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3431 
3432 	ret = nvme_init_identify(ctrl);
3433 	if (ret)
3434 		return ret;
3435 
3436 	ret = nvme_configure_apst(ctrl);
3437 	if (ret < 0)
3438 		return ret;
3439 
3440 	ret = nvme_configure_timestamp(ctrl);
3441 	if (ret < 0)
3442 		return ret;
3443 
3444 	ret = nvme_configure_host_options(ctrl);
3445 	if (ret < 0)
3446 		return ret;
3447 
3448 	nvme_configure_opal(ctrl, was_suspended);
3449 
3450 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3451 		/*
3452 		 * Do not return errors unless we are in a controller reset,
3453 		 * the controller works perfectly fine without hwmon.
3454 		 */
3455 		ret = nvme_hwmon_init(ctrl);
3456 		if (ret == -EINTR)
3457 			return ret;
3458 	}
3459 
3460 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3461 	ctrl->identified = true;
3462 
3463 	nvme_start_keep_alive(ctrl);
3464 
3465 	return 0;
3466 }
3467 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3468 
3469 static int nvme_dev_open(struct inode *inode, struct file *file)
3470 {
3471 	struct nvme_ctrl *ctrl =
3472 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3473 
3474 	switch (nvme_ctrl_state(ctrl)) {
3475 	case NVME_CTRL_LIVE:
3476 		break;
3477 	default:
3478 		return -EWOULDBLOCK;
3479 	}
3480 
3481 	nvme_get_ctrl(ctrl);
3482 	if (!try_module_get(ctrl->ops->module)) {
3483 		nvme_put_ctrl(ctrl);
3484 		return -EINVAL;
3485 	}
3486 
3487 	file->private_data = ctrl;
3488 	return 0;
3489 }
3490 
3491 static int nvme_dev_release(struct inode *inode, struct file *file)
3492 {
3493 	struct nvme_ctrl *ctrl =
3494 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3495 
3496 	module_put(ctrl->ops->module);
3497 	nvme_put_ctrl(ctrl);
3498 	return 0;
3499 }
3500 
3501 static const struct file_operations nvme_dev_fops = {
3502 	.owner		= THIS_MODULE,
3503 	.open		= nvme_dev_open,
3504 	.release	= nvme_dev_release,
3505 	.unlocked_ioctl	= nvme_dev_ioctl,
3506 	.compat_ioctl	= compat_ptr_ioctl,
3507 	.uring_cmd	= nvme_dev_uring_cmd,
3508 };
3509 
3510 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3511 		unsigned nsid)
3512 {
3513 	struct nvme_ns_head *h;
3514 
3515 	lockdep_assert_held(&ctrl->subsys->lock);
3516 
3517 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3518 		/*
3519 		 * Private namespaces can share NSIDs under some conditions.
3520 		 * In that case we can't use the same ns_head for namespaces
3521 		 * with the same NSID.
3522 		 */
3523 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3524 			continue;
3525 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3526 			return h;
3527 	}
3528 
3529 	return NULL;
3530 }
3531 
3532 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3533 		struct nvme_ns_ids *ids)
3534 {
3535 	bool has_uuid = !uuid_is_null(&ids->uuid);
3536 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3537 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3538 	struct nvme_ns_head *h;
3539 
3540 	lockdep_assert_held(&subsys->lock);
3541 
3542 	list_for_each_entry(h, &subsys->nsheads, entry) {
3543 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3544 			return -EINVAL;
3545 		if (has_nguid &&
3546 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3547 			return -EINVAL;
3548 		if (has_eui64 &&
3549 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3550 			return -EINVAL;
3551 	}
3552 
3553 	return 0;
3554 }
3555 
3556 static void nvme_cdev_rel(struct device *dev)
3557 {
3558 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3559 }
3560 
3561 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3562 {
3563 	cdev_device_del(cdev, cdev_device);
3564 	put_device(cdev_device);
3565 }
3566 
3567 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3568 		const struct file_operations *fops, struct module *owner)
3569 {
3570 	int minor, ret;
3571 
3572 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3573 	if (minor < 0)
3574 		return minor;
3575 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3576 	cdev_device->class = &nvme_ns_chr_class;
3577 	cdev_device->release = nvme_cdev_rel;
3578 	device_initialize(cdev_device);
3579 	cdev_init(cdev, fops);
3580 	cdev->owner = owner;
3581 	ret = cdev_device_add(cdev, cdev_device);
3582 	if (ret)
3583 		put_device(cdev_device);
3584 
3585 	return ret;
3586 }
3587 
3588 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3589 {
3590 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3591 }
3592 
3593 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3594 {
3595 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3596 	return 0;
3597 }
3598 
3599 static const struct file_operations nvme_ns_chr_fops = {
3600 	.owner		= THIS_MODULE,
3601 	.open		= nvme_ns_chr_open,
3602 	.release	= nvme_ns_chr_release,
3603 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3604 	.compat_ioctl	= compat_ptr_ioctl,
3605 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3606 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3607 };
3608 
3609 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3610 {
3611 	int ret;
3612 
3613 	ns->cdev_device.parent = ns->ctrl->device;
3614 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3615 			   ns->ctrl->instance, ns->head->instance);
3616 	if (ret)
3617 		return ret;
3618 
3619 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3620 			     ns->ctrl->ops->module);
3621 }
3622 
3623 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3624 		struct nvme_ns_info *info)
3625 {
3626 	struct nvme_ns_head *head;
3627 	size_t size = sizeof(*head);
3628 	int ret = -ENOMEM;
3629 
3630 #ifdef CONFIG_NVME_MULTIPATH
3631 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3632 #endif
3633 
3634 	head = kzalloc(size, GFP_KERNEL);
3635 	if (!head)
3636 		goto out;
3637 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3638 	if (ret < 0)
3639 		goto out_free_head;
3640 	head->instance = ret;
3641 	INIT_LIST_HEAD(&head->list);
3642 	ret = init_srcu_struct(&head->srcu);
3643 	if (ret)
3644 		goto out_ida_remove;
3645 	head->subsys = ctrl->subsys;
3646 	head->ns_id = info->nsid;
3647 	head->ids = info->ids;
3648 	head->shared = info->is_shared;
3649 	head->rotational = info->is_rotational;
3650 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3651 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3652 	kref_init(&head->ref);
3653 
3654 	if (head->ids.csi) {
3655 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3656 		if (ret)
3657 			goto out_cleanup_srcu;
3658 	} else
3659 		head->effects = ctrl->effects;
3660 
3661 	ret = nvme_mpath_alloc_disk(ctrl, head);
3662 	if (ret)
3663 		goto out_cleanup_srcu;
3664 
3665 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3666 
3667 	kref_get(&ctrl->subsys->ref);
3668 
3669 	return head;
3670 out_cleanup_srcu:
3671 	cleanup_srcu_struct(&head->srcu);
3672 out_ida_remove:
3673 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3674 out_free_head:
3675 	kfree(head);
3676 out:
3677 	if (ret > 0)
3678 		ret = blk_status_to_errno(nvme_error_status(ret));
3679 	return ERR_PTR(ret);
3680 }
3681 
3682 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3683 		struct nvme_ns_ids *ids)
3684 {
3685 	struct nvme_subsystem *s;
3686 	int ret = 0;
3687 
3688 	/*
3689 	 * Note that this check is racy as we try to avoid holding the global
3690 	 * lock over the whole ns_head creation.  But it is only intended as
3691 	 * a sanity check anyway.
3692 	 */
3693 	mutex_lock(&nvme_subsystems_lock);
3694 	list_for_each_entry(s, &nvme_subsystems, entry) {
3695 		if (s == this)
3696 			continue;
3697 		mutex_lock(&s->lock);
3698 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3699 		mutex_unlock(&s->lock);
3700 		if (ret)
3701 			break;
3702 	}
3703 	mutex_unlock(&nvme_subsystems_lock);
3704 
3705 	return ret;
3706 }
3707 
3708 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3709 {
3710 	struct nvme_ctrl *ctrl = ns->ctrl;
3711 	struct nvme_ns_head *head = NULL;
3712 	int ret;
3713 
3714 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3715 	if (ret) {
3716 		/*
3717 		 * We've found two different namespaces on two different
3718 		 * subsystems that report the same ID.  This is pretty nasty
3719 		 * for anything that actually requires unique device
3720 		 * identification.  In the kernel we need this for multipathing,
3721 		 * and in user space the /dev/disk/by-id/ links rely on it.
3722 		 *
3723 		 * If the device also claims to be multi-path capable back off
3724 		 * here now and refuse the probe the second device as this is a
3725 		 * recipe for data corruption.  If not this is probably a
3726 		 * cheap consumer device if on the PCIe bus, so let the user
3727 		 * proceed and use the shiny toy, but warn that with changing
3728 		 * probing order (which due to our async probing could just be
3729 		 * device taking longer to startup) the other device could show
3730 		 * up at any time.
3731 		 */
3732 		nvme_print_device_info(ctrl);
3733 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3734 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3735 		     info->is_shared)) {
3736 			dev_err(ctrl->device,
3737 				"ignoring nsid %d because of duplicate IDs\n",
3738 				info->nsid);
3739 			return ret;
3740 		}
3741 
3742 		dev_err(ctrl->device,
3743 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3744 		dev_err(ctrl->device,
3745 			"use of /dev/disk/by-id/ may cause data corruption\n");
3746 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3747 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3748 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3749 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3750 	}
3751 
3752 	mutex_lock(&ctrl->subsys->lock);
3753 	head = nvme_find_ns_head(ctrl, info->nsid);
3754 	if (!head) {
3755 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3756 		if (ret) {
3757 			dev_err(ctrl->device,
3758 				"duplicate IDs in subsystem for nsid %d\n",
3759 				info->nsid);
3760 			goto out_unlock;
3761 		}
3762 		head = nvme_alloc_ns_head(ctrl, info);
3763 		if (IS_ERR(head)) {
3764 			ret = PTR_ERR(head);
3765 			goto out_unlock;
3766 		}
3767 	} else {
3768 		ret = -EINVAL;
3769 		if (!info->is_shared || !head->shared) {
3770 			dev_err(ctrl->device,
3771 				"Duplicate unshared namespace %d\n",
3772 				info->nsid);
3773 			goto out_put_ns_head;
3774 		}
3775 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3776 			dev_err(ctrl->device,
3777 				"IDs don't match for shared namespace %d\n",
3778 					info->nsid);
3779 			goto out_put_ns_head;
3780 		}
3781 
3782 		if (!multipath) {
3783 			dev_warn(ctrl->device,
3784 				"Found shared namespace %d, but multipathing not supported.\n",
3785 				info->nsid);
3786 			dev_warn_once(ctrl->device,
3787 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3788 		}
3789 	}
3790 
3791 	list_add_tail_rcu(&ns->siblings, &head->list);
3792 	ns->head = head;
3793 	mutex_unlock(&ctrl->subsys->lock);
3794 	return 0;
3795 
3796 out_put_ns_head:
3797 	nvme_put_ns_head(head);
3798 out_unlock:
3799 	mutex_unlock(&ctrl->subsys->lock);
3800 	return ret;
3801 }
3802 
3803 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3804 {
3805 	struct nvme_ns *ns, *ret = NULL;
3806 	int srcu_idx;
3807 
3808 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3809 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3810 				 srcu_read_lock_held(&ctrl->srcu)) {
3811 		if (ns->head->ns_id == nsid) {
3812 			if (!nvme_get_ns(ns))
3813 				continue;
3814 			ret = ns;
3815 			break;
3816 		}
3817 		if (ns->head->ns_id > nsid)
3818 			break;
3819 	}
3820 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3821 	return ret;
3822 }
3823 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3824 
3825 /*
3826  * Add the namespace to the controller list while keeping the list ordered.
3827  */
3828 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3829 {
3830 	struct nvme_ns *tmp;
3831 
3832 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3833 		if (tmp->head->ns_id < ns->head->ns_id) {
3834 			list_add_rcu(&ns->list, &tmp->list);
3835 			return;
3836 		}
3837 	}
3838 	list_add(&ns->list, &ns->ctrl->namespaces);
3839 }
3840 
3841 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3842 {
3843 	struct queue_limits lim = { };
3844 	struct nvme_ns *ns;
3845 	struct gendisk *disk;
3846 	int node = ctrl->numa_node;
3847 
3848 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3849 	if (!ns)
3850 		return;
3851 
3852 	if (ctrl->opts && ctrl->opts->data_digest)
3853 		lim.features |= BLK_FEAT_STABLE_WRITES;
3854 	if (ctrl->ops->supports_pci_p2pdma &&
3855 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3856 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3857 
3858 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3859 	if (IS_ERR(disk))
3860 		goto out_free_ns;
3861 	disk->fops = &nvme_bdev_ops;
3862 	disk->private_data = ns;
3863 
3864 	ns->disk = disk;
3865 	ns->queue = disk->queue;
3866 	ns->ctrl = ctrl;
3867 	kref_init(&ns->kref);
3868 
3869 	if (nvme_init_ns_head(ns, info))
3870 		goto out_cleanup_disk;
3871 
3872 	/*
3873 	 * If multipathing is enabled, the device name for all disks and not
3874 	 * just those that represent shared namespaces needs to be based on the
3875 	 * subsystem instance.  Using the controller instance for private
3876 	 * namespaces could lead to naming collisions between shared and private
3877 	 * namespaces if they don't use a common numbering scheme.
3878 	 *
3879 	 * If multipathing is not enabled, disk names must use the controller
3880 	 * instance as shared namespaces will show up as multiple block
3881 	 * devices.
3882 	 */
3883 	if (nvme_ns_head_multipath(ns->head)) {
3884 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3885 			ctrl->instance, ns->head->instance);
3886 		disk->flags |= GENHD_FL_HIDDEN;
3887 	} else if (multipath) {
3888 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3889 			ns->head->instance);
3890 	} else {
3891 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3892 			ns->head->instance);
3893 	}
3894 
3895 	if (nvme_update_ns_info(ns, info))
3896 		goto out_unlink_ns;
3897 
3898 	mutex_lock(&ctrl->namespaces_lock);
3899 	/*
3900 	 * Ensure that no namespaces are added to the ctrl list after the queues
3901 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3902 	 */
3903 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3904 		mutex_unlock(&ctrl->namespaces_lock);
3905 		goto out_unlink_ns;
3906 	}
3907 	nvme_ns_add_to_ctrl_list(ns);
3908 	mutex_unlock(&ctrl->namespaces_lock);
3909 	synchronize_srcu(&ctrl->srcu);
3910 	nvme_get_ctrl(ctrl);
3911 
3912 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3913 		goto out_cleanup_ns_from_list;
3914 
3915 	if (!nvme_ns_head_multipath(ns->head))
3916 		nvme_add_ns_cdev(ns);
3917 
3918 	nvme_mpath_add_disk(ns, info->anagrpid);
3919 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3920 
3921 	/*
3922 	 * Set ns->disk->device->driver_data to ns so we can access
3923 	 * ns->head->passthru_err_log_enabled in
3924 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3925 	 */
3926 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3927 
3928 	return;
3929 
3930  out_cleanup_ns_from_list:
3931 	nvme_put_ctrl(ctrl);
3932 	mutex_lock(&ctrl->namespaces_lock);
3933 	list_del_rcu(&ns->list);
3934 	mutex_unlock(&ctrl->namespaces_lock);
3935 	synchronize_srcu(&ctrl->srcu);
3936  out_unlink_ns:
3937 	mutex_lock(&ctrl->subsys->lock);
3938 	list_del_rcu(&ns->siblings);
3939 	if (list_empty(&ns->head->list))
3940 		list_del_init(&ns->head->entry);
3941 	mutex_unlock(&ctrl->subsys->lock);
3942 	nvme_put_ns_head(ns->head);
3943  out_cleanup_disk:
3944 	put_disk(disk);
3945  out_free_ns:
3946 	kfree(ns);
3947 }
3948 
3949 static void nvme_ns_remove(struct nvme_ns *ns)
3950 {
3951 	bool last_path = false;
3952 
3953 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3954 		return;
3955 
3956 	clear_bit(NVME_NS_READY, &ns->flags);
3957 	set_capacity(ns->disk, 0);
3958 	nvme_fault_inject_fini(&ns->fault_inject);
3959 
3960 	/*
3961 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3962 	 * this ns going back into current_path.
3963 	 */
3964 	synchronize_srcu(&ns->head->srcu);
3965 
3966 	/* wait for concurrent submissions */
3967 	if (nvme_mpath_clear_current_path(ns))
3968 		synchronize_srcu(&ns->head->srcu);
3969 
3970 	mutex_lock(&ns->ctrl->subsys->lock);
3971 	list_del_rcu(&ns->siblings);
3972 	if (list_empty(&ns->head->list)) {
3973 		list_del_init(&ns->head->entry);
3974 		last_path = true;
3975 	}
3976 	mutex_unlock(&ns->ctrl->subsys->lock);
3977 
3978 	/* guarantee not available in head->list */
3979 	synchronize_srcu(&ns->head->srcu);
3980 
3981 	if (!nvme_ns_head_multipath(ns->head))
3982 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3983 	del_gendisk(ns->disk);
3984 
3985 	mutex_lock(&ns->ctrl->namespaces_lock);
3986 	list_del_rcu(&ns->list);
3987 	mutex_unlock(&ns->ctrl->namespaces_lock);
3988 	synchronize_srcu(&ns->ctrl->srcu);
3989 
3990 	if (last_path)
3991 		nvme_mpath_shutdown_disk(ns->head);
3992 	nvme_put_ns(ns);
3993 }
3994 
3995 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3996 {
3997 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3998 
3999 	if (ns) {
4000 		nvme_ns_remove(ns);
4001 		nvme_put_ns(ns);
4002 	}
4003 }
4004 
4005 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4006 {
4007 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4008 
4009 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4010 		dev_err(ns->ctrl->device,
4011 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4012 		goto out;
4013 	}
4014 
4015 	ret = nvme_update_ns_info(ns, info);
4016 out:
4017 	/*
4018 	 * Only remove the namespace if we got a fatal error back from the
4019 	 * device, otherwise ignore the error and just move on.
4020 	 *
4021 	 * TODO: we should probably schedule a delayed retry here.
4022 	 */
4023 	if (ret > 0 && (ret & NVME_STATUS_DNR))
4024 		nvme_ns_remove(ns);
4025 }
4026 
4027 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4028 {
4029 	struct nvme_ns_info info = { .nsid = nsid };
4030 	struct nvme_ns *ns;
4031 	int ret = 1;
4032 
4033 	if (nvme_identify_ns_descs(ctrl, &info))
4034 		return;
4035 
4036 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4037 		dev_warn(ctrl->device,
4038 			"command set not reported for nsid: %d\n", nsid);
4039 		return;
4040 	}
4041 
4042 	/*
4043 	 * If available try to use the Command Set Idependent Identify Namespace
4044 	 * data structure to find all the generic information that is needed to
4045 	 * set up a namespace.  If not fall back to the legacy version.
4046 	 */
4047 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4048 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4049 	    ctrl->vs >= NVME_VS(2, 0, 0))
4050 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4051 	if (ret > 0)
4052 		ret = nvme_ns_info_from_identify(ctrl, &info);
4053 
4054 	if (info.is_removed)
4055 		nvme_ns_remove_by_nsid(ctrl, nsid);
4056 
4057 	/*
4058 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4059 	 * becomes ready and restart the scan.
4060 	 */
4061 	if (ret || !info.is_ready)
4062 		return;
4063 
4064 	ns = nvme_find_get_ns(ctrl, nsid);
4065 	if (ns) {
4066 		nvme_validate_ns(ns, &info);
4067 		nvme_put_ns(ns);
4068 	} else {
4069 		nvme_alloc_ns(ctrl, &info);
4070 	}
4071 }
4072 
4073 /**
4074  * struct async_scan_info - keeps track of controller & NSIDs to scan
4075  * @ctrl:	Controller on which namespaces are being scanned
4076  * @next_nsid:	Index of next NSID to scan in ns_list
4077  * @ns_list:	Pointer to list of NSIDs to scan
4078  *
4079  * Note: There is a single async_scan_info structure shared by all instances
4080  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4081  * operations on next_nsid are critical to ensure each instance scans a unique
4082  * NSID.
4083  */
4084 struct async_scan_info {
4085 	struct nvme_ctrl *ctrl;
4086 	atomic_t next_nsid;
4087 	__le32 *ns_list;
4088 };
4089 
4090 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4091 {
4092 	struct async_scan_info *scan_info = data;
4093 	int idx;
4094 	u32 nsid;
4095 
4096 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4097 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4098 
4099 	nvme_scan_ns(scan_info->ctrl, nsid);
4100 }
4101 
4102 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4103 					unsigned nsid)
4104 {
4105 	struct nvme_ns *ns, *next;
4106 	LIST_HEAD(rm_list);
4107 
4108 	mutex_lock(&ctrl->namespaces_lock);
4109 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4110 		if (ns->head->ns_id > nsid) {
4111 			list_del_rcu(&ns->list);
4112 			synchronize_srcu(&ctrl->srcu);
4113 			list_add_tail_rcu(&ns->list, &rm_list);
4114 		}
4115 	}
4116 	mutex_unlock(&ctrl->namespaces_lock);
4117 
4118 	list_for_each_entry_safe(ns, next, &rm_list, list)
4119 		nvme_ns_remove(ns);
4120 }
4121 
4122 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4123 {
4124 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4125 	__le32 *ns_list;
4126 	u32 prev = 0;
4127 	int ret = 0, i;
4128 	ASYNC_DOMAIN(domain);
4129 	struct async_scan_info scan_info;
4130 
4131 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4132 	if (!ns_list)
4133 		return -ENOMEM;
4134 
4135 	scan_info.ctrl = ctrl;
4136 	scan_info.ns_list = ns_list;
4137 	for (;;) {
4138 		struct nvme_command cmd = {
4139 			.identify.opcode	= nvme_admin_identify,
4140 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4141 			.identify.nsid		= cpu_to_le32(prev),
4142 		};
4143 
4144 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4145 					    NVME_IDENTIFY_DATA_SIZE);
4146 		if (ret) {
4147 			dev_warn(ctrl->device,
4148 				"Identify NS List failed (status=0x%x)\n", ret);
4149 			goto free;
4150 		}
4151 
4152 		atomic_set(&scan_info.next_nsid, 0);
4153 		for (i = 0; i < nr_entries; i++) {
4154 			u32 nsid = le32_to_cpu(ns_list[i]);
4155 
4156 			if (!nsid)	/* end of the list? */
4157 				goto out;
4158 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4159 						&domain);
4160 			while (++prev < nsid)
4161 				nvme_ns_remove_by_nsid(ctrl, prev);
4162 		}
4163 		async_synchronize_full_domain(&domain);
4164 	}
4165  out:
4166 	nvme_remove_invalid_namespaces(ctrl, prev);
4167  free:
4168 	async_synchronize_full_domain(&domain);
4169 	kfree(ns_list);
4170 	return ret;
4171 }
4172 
4173 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4174 {
4175 	struct nvme_id_ctrl *id;
4176 	u32 nn, i;
4177 
4178 	if (nvme_identify_ctrl(ctrl, &id))
4179 		return;
4180 	nn = le32_to_cpu(id->nn);
4181 	kfree(id);
4182 
4183 	for (i = 1; i <= nn; i++)
4184 		nvme_scan_ns(ctrl, i);
4185 
4186 	nvme_remove_invalid_namespaces(ctrl, nn);
4187 }
4188 
4189 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4190 {
4191 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4192 	__le32 *log;
4193 	int error;
4194 
4195 	log = kzalloc(log_size, GFP_KERNEL);
4196 	if (!log)
4197 		return;
4198 
4199 	/*
4200 	 * We need to read the log to clear the AEN, but we don't want to rely
4201 	 * on it for the changed namespace information as userspace could have
4202 	 * raced with us in reading the log page, which could cause us to miss
4203 	 * updates.
4204 	 */
4205 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4206 			NVME_CSI_NVM, log, log_size, 0);
4207 	if (error)
4208 		dev_warn(ctrl->device,
4209 			"reading changed ns log failed: %d\n", error);
4210 
4211 	kfree(log);
4212 }
4213 
4214 static void nvme_scan_work(struct work_struct *work)
4215 {
4216 	struct nvme_ctrl *ctrl =
4217 		container_of(work, struct nvme_ctrl, scan_work);
4218 	int ret;
4219 
4220 	/* No tagset on a live ctrl means IO queues could not created */
4221 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4222 		return;
4223 
4224 	/*
4225 	 * Identify controller limits can change at controller reset due to
4226 	 * new firmware download, even though it is not common we cannot ignore
4227 	 * such scenario. Controller's non-mdts limits are reported in the unit
4228 	 * of logical blocks that is dependent on the format of attached
4229 	 * namespace. Hence re-read the limits at the time of ns allocation.
4230 	 */
4231 	ret = nvme_init_non_mdts_limits(ctrl);
4232 	if (ret < 0) {
4233 		dev_warn(ctrl->device,
4234 			"reading non-mdts-limits failed: %d\n", ret);
4235 		return;
4236 	}
4237 
4238 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4239 		dev_info(ctrl->device, "rescanning namespaces.\n");
4240 		nvme_clear_changed_ns_log(ctrl);
4241 	}
4242 
4243 	mutex_lock(&ctrl->scan_lock);
4244 	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4245 		nvme_scan_ns_sequential(ctrl);
4246 	} else {
4247 		/*
4248 		 * Fall back to sequential scan if DNR is set to handle broken
4249 		 * devices which should support Identify NS List (as per the VS
4250 		 * they report) but don't actually support it.
4251 		 */
4252 		ret = nvme_scan_ns_list(ctrl);
4253 		if (ret > 0 && ret & NVME_STATUS_DNR)
4254 			nvme_scan_ns_sequential(ctrl);
4255 	}
4256 	mutex_unlock(&ctrl->scan_lock);
4257 }
4258 
4259 /*
4260  * This function iterates the namespace list unlocked to allow recovery from
4261  * controller failure. It is up to the caller to ensure the namespace list is
4262  * not modified by scan work while this function is executing.
4263  */
4264 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4265 {
4266 	struct nvme_ns *ns, *next;
4267 	LIST_HEAD(ns_list);
4268 
4269 	/*
4270 	 * make sure to requeue I/O to all namespaces as these
4271 	 * might result from the scan itself and must complete
4272 	 * for the scan_work to make progress
4273 	 */
4274 	nvme_mpath_clear_ctrl_paths(ctrl);
4275 
4276 	/*
4277 	 * Unquiesce io queues so any pending IO won't hang, especially
4278 	 * those submitted from scan work
4279 	 */
4280 	nvme_unquiesce_io_queues(ctrl);
4281 
4282 	/* prevent racing with ns scanning */
4283 	flush_work(&ctrl->scan_work);
4284 
4285 	/*
4286 	 * The dead states indicates the controller was not gracefully
4287 	 * disconnected. In that case, we won't be able to flush any data while
4288 	 * removing the namespaces' disks; fail all the queues now to avoid
4289 	 * potentially having to clean up the failed sync later.
4290 	 */
4291 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4292 		nvme_mark_namespaces_dead(ctrl);
4293 
4294 	/* this is a no-op when called from the controller reset handler */
4295 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4296 
4297 	mutex_lock(&ctrl->namespaces_lock);
4298 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4299 	mutex_unlock(&ctrl->namespaces_lock);
4300 	synchronize_srcu(&ctrl->srcu);
4301 
4302 	list_for_each_entry_safe(ns, next, &ns_list, list)
4303 		nvme_ns_remove(ns);
4304 }
4305 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4306 
4307 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4308 {
4309 	const struct nvme_ctrl *ctrl =
4310 		container_of(dev, struct nvme_ctrl, ctrl_device);
4311 	struct nvmf_ctrl_options *opts = ctrl->opts;
4312 	int ret;
4313 
4314 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4315 	if (ret)
4316 		return ret;
4317 
4318 	if (opts) {
4319 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4320 		if (ret)
4321 			return ret;
4322 
4323 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4324 				opts->trsvcid ?: "none");
4325 		if (ret)
4326 			return ret;
4327 
4328 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4329 				opts->host_traddr ?: "none");
4330 		if (ret)
4331 			return ret;
4332 
4333 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4334 				opts->host_iface ?: "none");
4335 	}
4336 	return ret;
4337 }
4338 
4339 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4340 {
4341 	char *envp[2] = { envdata, NULL };
4342 
4343 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4344 }
4345 
4346 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4347 {
4348 	char *envp[2] = { NULL, NULL };
4349 	u32 aen_result = ctrl->aen_result;
4350 
4351 	ctrl->aen_result = 0;
4352 	if (!aen_result)
4353 		return;
4354 
4355 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4356 	if (!envp[0])
4357 		return;
4358 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4359 	kfree(envp[0]);
4360 }
4361 
4362 static void nvme_async_event_work(struct work_struct *work)
4363 {
4364 	struct nvme_ctrl *ctrl =
4365 		container_of(work, struct nvme_ctrl, async_event_work);
4366 
4367 	nvme_aen_uevent(ctrl);
4368 
4369 	/*
4370 	 * The transport drivers must guarantee AER submission here is safe by
4371 	 * flushing ctrl async_event_work after changing the controller state
4372 	 * from LIVE and before freeing the admin queue.
4373 	*/
4374 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4375 		ctrl->ops->submit_async_event(ctrl);
4376 }
4377 
4378 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4379 {
4380 
4381 	u32 csts;
4382 
4383 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4384 		return false;
4385 
4386 	if (csts == ~0)
4387 		return false;
4388 
4389 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4390 }
4391 
4392 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4393 {
4394 	struct nvme_fw_slot_info_log *log;
4395 	u8 next_fw_slot, cur_fw_slot;
4396 
4397 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4398 	if (!log)
4399 		return;
4400 
4401 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4402 			 log, sizeof(*log), 0)) {
4403 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4404 		goto out_free_log;
4405 	}
4406 
4407 	cur_fw_slot = log->afi & 0x7;
4408 	next_fw_slot = (log->afi & 0x70) >> 4;
4409 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4410 		dev_info(ctrl->device,
4411 			 "Firmware is activated after next Controller Level Reset\n");
4412 		goto out_free_log;
4413 	}
4414 
4415 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4416 		sizeof(ctrl->subsys->firmware_rev));
4417 
4418 out_free_log:
4419 	kfree(log);
4420 }
4421 
4422 static void nvme_fw_act_work(struct work_struct *work)
4423 {
4424 	struct nvme_ctrl *ctrl = container_of(work,
4425 				struct nvme_ctrl, fw_act_work);
4426 	unsigned long fw_act_timeout;
4427 
4428 	nvme_auth_stop(ctrl);
4429 
4430 	if (ctrl->mtfa)
4431 		fw_act_timeout = jiffies +
4432 				msecs_to_jiffies(ctrl->mtfa * 100);
4433 	else
4434 		fw_act_timeout = jiffies +
4435 				msecs_to_jiffies(admin_timeout * 1000);
4436 
4437 	nvme_quiesce_io_queues(ctrl);
4438 	while (nvme_ctrl_pp_status(ctrl)) {
4439 		if (time_after(jiffies, fw_act_timeout)) {
4440 			dev_warn(ctrl->device,
4441 				"Fw activation timeout, reset controller\n");
4442 			nvme_try_sched_reset(ctrl);
4443 			return;
4444 		}
4445 		msleep(100);
4446 	}
4447 
4448 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4449 		return;
4450 
4451 	nvme_unquiesce_io_queues(ctrl);
4452 	/* read FW slot information to clear the AER */
4453 	nvme_get_fw_slot_info(ctrl);
4454 
4455 	queue_work(nvme_wq, &ctrl->async_event_work);
4456 }
4457 
4458 static u32 nvme_aer_type(u32 result)
4459 {
4460 	return result & 0x7;
4461 }
4462 
4463 static u32 nvme_aer_subtype(u32 result)
4464 {
4465 	return (result & 0xff00) >> 8;
4466 }
4467 
4468 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4469 {
4470 	u32 aer_notice_type = nvme_aer_subtype(result);
4471 	bool requeue = true;
4472 
4473 	switch (aer_notice_type) {
4474 	case NVME_AER_NOTICE_NS_CHANGED:
4475 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4476 		nvme_queue_scan(ctrl);
4477 		break;
4478 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4479 		/*
4480 		 * We are (ab)using the RESETTING state to prevent subsequent
4481 		 * recovery actions from interfering with the controller's
4482 		 * firmware activation.
4483 		 */
4484 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4485 			requeue = false;
4486 			queue_work(nvme_wq, &ctrl->fw_act_work);
4487 		}
4488 		break;
4489 #ifdef CONFIG_NVME_MULTIPATH
4490 	case NVME_AER_NOTICE_ANA:
4491 		if (!ctrl->ana_log_buf)
4492 			break;
4493 		queue_work(nvme_wq, &ctrl->ana_work);
4494 		break;
4495 #endif
4496 	case NVME_AER_NOTICE_DISC_CHANGED:
4497 		ctrl->aen_result = result;
4498 		break;
4499 	default:
4500 		dev_warn(ctrl->device, "async event result %08x\n", result);
4501 	}
4502 	return requeue;
4503 }
4504 
4505 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4506 {
4507 	dev_warn(ctrl->device,
4508 		"resetting controller due to persistent internal error\n");
4509 	nvme_reset_ctrl(ctrl);
4510 }
4511 
4512 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4513 		volatile union nvme_result *res)
4514 {
4515 	u32 result = le32_to_cpu(res->u32);
4516 	u32 aer_type = nvme_aer_type(result);
4517 	u32 aer_subtype = nvme_aer_subtype(result);
4518 	bool requeue = true;
4519 
4520 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4521 		return;
4522 
4523 	trace_nvme_async_event(ctrl, result);
4524 	switch (aer_type) {
4525 	case NVME_AER_NOTICE:
4526 		requeue = nvme_handle_aen_notice(ctrl, result);
4527 		break;
4528 	case NVME_AER_ERROR:
4529 		/*
4530 		 * For a persistent internal error, don't run async_event_work
4531 		 * to submit a new AER. The controller reset will do it.
4532 		 */
4533 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4534 			nvme_handle_aer_persistent_error(ctrl);
4535 			return;
4536 		}
4537 		fallthrough;
4538 	case NVME_AER_SMART:
4539 	case NVME_AER_CSS:
4540 	case NVME_AER_VS:
4541 		ctrl->aen_result = result;
4542 		break;
4543 	default:
4544 		break;
4545 	}
4546 
4547 	if (requeue)
4548 		queue_work(nvme_wq, &ctrl->async_event_work);
4549 }
4550 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4551 
4552 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4553 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4554 {
4555 	struct queue_limits lim = {};
4556 	int ret;
4557 
4558 	memset(set, 0, sizeof(*set));
4559 	set->ops = ops;
4560 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4561 	if (ctrl->ops->flags & NVME_F_FABRICS)
4562 		/* Reserved for fabric connect and keep alive */
4563 		set->reserved_tags = 2;
4564 	set->numa_node = ctrl->numa_node;
4565 	set->flags = BLK_MQ_F_NO_SCHED;
4566 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4567 		set->flags |= BLK_MQ_F_BLOCKING;
4568 	set->cmd_size = cmd_size;
4569 	set->driver_data = ctrl;
4570 	set->nr_hw_queues = 1;
4571 	set->timeout = NVME_ADMIN_TIMEOUT;
4572 	ret = blk_mq_alloc_tag_set(set);
4573 	if (ret)
4574 		return ret;
4575 
4576 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4577 	if (IS_ERR(ctrl->admin_q)) {
4578 		ret = PTR_ERR(ctrl->admin_q);
4579 		goto out_free_tagset;
4580 	}
4581 
4582 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4583 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4584 		if (IS_ERR(ctrl->fabrics_q)) {
4585 			ret = PTR_ERR(ctrl->fabrics_q);
4586 			goto out_cleanup_admin_q;
4587 		}
4588 	}
4589 
4590 	ctrl->admin_tagset = set;
4591 	return 0;
4592 
4593 out_cleanup_admin_q:
4594 	blk_mq_destroy_queue(ctrl->admin_q);
4595 	blk_put_queue(ctrl->admin_q);
4596 out_free_tagset:
4597 	blk_mq_free_tag_set(set);
4598 	ctrl->admin_q = NULL;
4599 	ctrl->fabrics_q = NULL;
4600 	return ret;
4601 }
4602 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4603 
4604 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4605 {
4606 	/*
4607 	 * As we're about to destroy the queue and free tagset
4608 	 * we can not have keep-alive work running.
4609 	 */
4610 	nvme_stop_keep_alive(ctrl);
4611 	blk_mq_destroy_queue(ctrl->admin_q);
4612 	blk_put_queue(ctrl->admin_q);
4613 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4614 		blk_mq_destroy_queue(ctrl->fabrics_q);
4615 		blk_put_queue(ctrl->fabrics_q);
4616 	}
4617 	blk_mq_free_tag_set(ctrl->admin_tagset);
4618 }
4619 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4620 
4621 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4622 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4623 		unsigned int cmd_size)
4624 {
4625 	int ret;
4626 
4627 	memset(set, 0, sizeof(*set));
4628 	set->ops = ops;
4629 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4630 	/*
4631 	 * Some Apple controllers requires tags to be unique across admin and
4632 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4633 	 */
4634 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4635 		set->reserved_tags = NVME_AQ_DEPTH;
4636 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4637 		/* Reserved for fabric connect */
4638 		set->reserved_tags = 1;
4639 	set->numa_node = ctrl->numa_node;
4640 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4641 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4642 		set->flags |= BLK_MQ_F_BLOCKING;
4643 	set->cmd_size = cmd_size;
4644 	set->driver_data = ctrl;
4645 	set->nr_hw_queues = ctrl->queue_count - 1;
4646 	set->timeout = NVME_IO_TIMEOUT;
4647 	set->nr_maps = nr_maps;
4648 	ret = blk_mq_alloc_tag_set(set);
4649 	if (ret)
4650 		return ret;
4651 
4652 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4653 		struct queue_limits lim = {
4654 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4655 		};
4656 
4657 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4658         	if (IS_ERR(ctrl->connect_q)) {
4659 			ret = PTR_ERR(ctrl->connect_q);
4660 			goto out_free_tag_set;
4661 		}
4662 	}
4663 
4664 	ctrl->tagset = set;
4665 	return 0;
4666 
4667 out_free_tag_set:
4668 	blk_mq_free_tag_set(set);
4669 	ctrl->connect_q = NULL;
4670 	return ret;
4671 }
4672 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4673 
4674 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4675 {
4676 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4677 		blk_mq_destroy_queue(ctrl->connect_q);
4678 		blk_put_queue(ctrl->connect_q);
4679 	}
4680 	blk_mq_free_tag_set(ctrl->tagset);
4681 }
4682 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4683 
4684 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4685 {
4686 	nvme_mpath_stop(ctrl);
4687 	nvme_auth_stop(ctrl);
4688 	nvme_stop_failfast_work(ctrl);
4689 	flush_work(&ctrl->async_event_work);
4690 	cancel_work_sync(&ctrl->fw_act_work);
4691 	if (ctrl->ops->stop_ctrl)
4692 		ctrl->ops->stop_ctrl(ctrl);
4693 }
4694 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4695 
4696 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4697 {
4698 	nvme_enable_aen(ctrl);
4699 
4700 	/*
4701 	 * persistent discovery controllers need to send indication to userspace
4702 	 * to re-read the discovery log page to learn about possible changes
4703 	 * that were missed. We identify persistent discovery controllers by
4704 	 * checking that they started once before, hence are reconnecting back.
4705 	 */
4706 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4707 	    nvme_discovery_ctrl(ctrl))
4708 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4709 
4710 	if (ctrl->queue_count > 1) {
4711 		nvme_queue_scan(ctrl);
4712 		nvme_unquiesce_io_queues(ctrl);
4713 		nvme_mpath_update(ctrl);
4714 	}
4715 
4716 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4717 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4718 }
4719 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4720 
4721 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4722 {
4723 	nvme_stop_keep_alive(ctrl);
4724 	nvme_hwmon_exit(ctrl);
4725 	nvme_fault_inject_fini(&ctrl->fault_inject);
4726 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4727 	cdev_device_del(&ctrl->cdev, ctrl->device);
4728 	nvme_put_ctrl(ctrl);
4729 }
4730 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4731 
4732 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4733 {
4734 	struct nvme_effects_log	*cel;
4735 	unsigned long i;
4736 
4737 	xa_for_each(&ctrl->cels, i, cel) {
4738 		xa_erase(&ctrl->cels, i);
4739 		kfree(cel);
4740 	}
4741 
4742 	xa_destroy(&ctrl->cels);
4743 }
4744 
4745 static void nvme_free_ctrl(struct device *dev)
4746 {
4747 	struct nvme_ctrl *ctrl =
4748 		container_of(dev, struct nvme_ctrl, ctrl_device);
4749 	struct nvme_subsystem *subsys = ctrl->subsys;
4750 
4751 	if (!subsys || ctrl->instance != subsys->instance)
4752 		ida_free(&nvme_instance_ida, ctrl->instance);
4753 	nvme_free_cels(ctrl);
4754 	nvme_mpath_uninit(ctrl);
4755 	cleanup_srcu_struct(&ctrl->srcu);
4756 	nvme_auth_stop(ctrl);
4757 	nvme_auth_free(ctrl);
4758 	__free_page(ctrl->discard_page);
4759 	free_opal_dev(ctrl->opal_dev);
4760 
4761 	if (subsys) {
4762 		mutex_lock(&nvme_subsystems_lock);
4763 		list_del(&ctrl->subsys_entry);
4764 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4765 		mutex_unlock(&nvme_subsystems_lock);
4766 	}
4767 
4768 	ctrl->ops->free_ctrl(ctrl);
4769 
4770 	if (subsys)
4771 		nvme_put_subsystem(subsys);
4772 }
4773 
4774 /*
4775  * Initialize a NVMe controller structures.  This needs to be called during
4776  * earliest initialization so that we have the initialized structured around
4777  * during probing.
4778  *
4779  * On success, the caller must use the nvme_put_ctrl() to release this when
4780  * needed, which also invokes the ops->free_ctrl() callback.
4781  */
4782 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4783 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4784 {
4785 	int ret;
4786 
4787 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4788 	ctrl->passthru_err_log_enabled = false;
4789 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4790 	spin_lock_init(&ctrl->lock);
4791 	mutex_init(&ctrl->namespaces_lock);
4792 
4793 	ret = init_srcu_struct(&ctrl->srcu);
4794 	if (ret)
4795 		return ret;
4796 
4797 	mutex_init(&ctrl->scan_lock);
4798 	INIT_LIST_HEAD(&ctrl->namespaces);
4799 	xa_init(&ctrl->cels);
4800 	ctrl->dev = dev;
4801 	ctrl->ops = ops;
4802 	ctrl->quirks = quirks;
4803 	ctrl->numa_node = NUMA_NO_NODE;
4804 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4805 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4806 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4807 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4808 	init_waitqueue_head(&ctrl->state_wq);
4809 
4810 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4811 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4812 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4813 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4814 	ctrl->ka_last_check_time = jiffies;
4815 
4816 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4817 			PAGE_SIZE);
4818 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4819 	if (!ctrl->discard_page) {
4820 		ret = -ENOMEM;
4821 		goto out;
4822 	}
4823 
4824 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4825 	if (ret < 0)
4826 		goto out;
4827 	ctrl->instance = ret;
4828 
4829 	ret = nvme_auth_init_ctrl(ctrl);
4830 	if (ret)
4831 		goto out_release_instance;
4832 
4833 	nvme_mpath_init_ctrl(ctrl);
4834 
4835 	device_initialize(&ctrl->ctrl_device);
4836 	ctrl->device = &ctrl->ctrl_device;
4837 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4838 			ctrl->instance);
4839 	ctrl->device->class = &nvme_class;
4840 	ctrl->device->parent = ctrl->dev;
4841 	if (ops->dev_attr_groups)
4842 		ctrl->device->groups = ops->dev_attr_groups;
4843 	else
4844 		ctrl->device->groups = nvme_dev_attr_groups;
4845 	ctrl->device->release = nvme_free_ctrl;
4846 	dev_set_drvdata(ctrl->device, ctrl);
4847 
4848 	return ret;
4849 
4850 out_release_instance:
4851 	ida_free(&nvme_instance_ida, ctrl->instance);
4852 out:
4853 	if (ctrl->discard_page)
4854 		__free_page(ctrl->discard_page);
4855 	cleanup_srcu_struct(&ctrl->srcu);
4856 	return ret;
4857 }
4858 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4859 
4860 /*
4861  * On success, returns with an elevated controller reference and caller must
4862  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4863  */
4864 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4865 {
4866 	int ret;
4867 
4868 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4869 	if (ret)
4870 		return ret;
4871 
4872 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4873 	ctrl->cdev.owner = ctrl->ops->module;
4874 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4875 	if (ret)
4876 		return ret;
4877 
4878 	/*
4879 	 * Initialize latency tolerance controls.  The sysfs files won't
4880 	 * be visible to userspace unless the device actually supports APST.
4881 	 */
4882 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4883 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4884 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4885 
4886 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4887 	nvme_get_ctrl(ctrl);
4888 
4889 	return 0;
4890 }
4891 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4892 
4893 /* let I/O to all namespaces fail in preparation for surprise removal */
4894 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4895 {
4896 	struct nvme_ns *ns;
4897 	int srcu_idx;
4898 
4899 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4900 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4901 				 srcu_read_lock_held(&ctrl->srcu))
4902 		blk_mark_disk_dead(ns->disk);
4903 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4904 }
4905 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4906 
4907 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4908 {
4909 	struct nvme_ns *ns;
4910 	int srcu_idx;
4911 
4912 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4913 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4914 				 srcu_read_lock_held(&ctrl->srcu))
4915 		blk_mq_unfreeze_queue_non_owner(ns->queue);
4916 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4917 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4918 }
4919 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4920 
4921 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4922 {
4923 	struct nvme_ns *ns;
4924 	int srcu_idx;
4925 
4926 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4927 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4928 				 srcu_read_lock_held(&ctrl->srcu)) {
4929 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4930 		if (timeout <= 0)
4931 			break;
4932 	}
4933 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4934 	return timeout;
4935 }
4936 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4937 
4938 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4939 {
4940 	struct nvme_ns *ns;
4941 	int srcu_idx;
4942 
4943 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4944 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4945 				 srcu_read_lock_held(&ctrl->srcu))
4946 		blk_mq_freeze_queue_wait(ns->queue);
4947 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4948 }
4949 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4950 
4951 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4952 {
4953 	struct nvme_ns *ns;
4954 	int srcu_idx;
4955 
4956 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4957 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4958 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4959 				 srcu_read_lock_held(&ctrl->srcu))
4960 		/*
4961 		 * Typical non_owner use case is from pci driver, in which
4962 		 * start_freeze is called from timeout work function, but
4963 		 * unfreeze is done in reset work context
4964 		 */
4965 		blk_freeze_queue_start_non_owner(ns->queue);
4966 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4967 }
4968 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4969 
4970 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4971 {
4972 	if (!ctrl->tagset)
4973 		return;
4974 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4975 		blk_mq_quiesce_tagset(ctrl->tagset);
4976 	else
4977 		blk_mq_wait_quiesce_done(ctrl->tagset);
4978 }
4979 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4980 
4981 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4982 {
4983 	if (!ctrl->tagset)
4984 		return;
4985 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4986 		blk_mq_unquiesce_tagset(ctrl->tagset);
4987 }
4988 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4989 
4990 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4991 {
4992 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4993 		blk_mq_quiesce_queue(ctrl->admin_q);
4994 	else
4995 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4996 }
4997 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4998 
4999 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5000 {
5001 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5002 		blk_mq_unquiesce_queue(ctrl->admin_q);
5003 }
5004 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5005 
5006 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5007 {
5008 	struct nvme_ns *ns;
5009 	int srcu_idx;
5010 
5011 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5012 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5013 				 srcu_read_lock_held(&ctrl->srcu))
5014 		blk_sync_queue(ns->queue);
5015 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5016 }
5017 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5018 
5019 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5020 {
5021 	nvme_sync_io_queues(ctrl);
5022 	if (ctrl->admin_q)
5023 		blk_sync_queue(ctrl->admin_q);
5024 }
5025 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5026 
5027 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5028 {
5029 	if (file->f_op != &nvme_dev_fops)
5030 		return NULL;
5031 	return file->private_data;
5032 }
5033 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5034 
5035 /*
5036  * Check we didn't inadvertently grow the command structure sizes:
5037  */
5038 static inline void _nvme_check_size(void)
5039 {
5040 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5041 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5042 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5043 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5044 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5045 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5046 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5047 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5048 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5049 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5050 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5051 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5052 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5053 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5054 			NVME_IDENTIFY_DATA_SIZE);
5055 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5056 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5057 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5058 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5059 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5060 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5061 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5062 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5063 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5064 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5065 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5066 }
5067 
5068 
5069 static int __init nvme_core_init(void)
5070 {
5071 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5072 	int result = -ENOMEM;
5073 
5074 	_nvme_check_size();
5075 
5076 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5077 	if (!nvme_wq)
5078 		goto out;
5079 
5080 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5081 	if (!nvme_reset_wq)
5082 		goto destroy_wq;
5083 
5084 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5085 	if (!nvme_delete_wq)
5086 		goto destroy_reset_wq;
5087 
5088 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5089 			NVME_MINORS, "nvme");
5090 	if (result < 0)
5091 		goto destroy_delete_wq;
5092 
5093 	result = class_register(&nvme_class);
5094 	if (result)
5095 		goto unregister_chrdev;
5096 
5097 	result = class_register(&nvme_subsys_class);
5098 	if (result)
5099 		goto destroy_class;
5100 
5101 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5102 				     "nvme-generic");
5103 	if (result < 0)
5104 		goto destroy_subsys_class;
5105 
5106 	result = class_register(&nvme_ns_chr_class);
5107 	if (result)
5108 		goto unregister_generic_ns;
5109 
5110 	result = nvme_init_auth();
5111 	if (result)
5112 		goto destroy_ns_chr;
5113 	return 0;
5114 
5115 destroy_ns_chr:
5116 	class_unregister(&nvme_ns_chr_class);
5117 unregister_generic_ns:
5118 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5119 destroy_subsys_class:
5120 	class_unregister(&nvme_subsys_class);
5121 destroy_class:
5122 	class_unregister(&nvme_class);
5123 unregister_chrdev:
5124 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5125 destroy_delete_wq:
5126 	destroy_workqueue(nvme_delete_wq);
5127 destroy_reset_wq:
5128 	destroy_workqueue(nvme_reset_wq);
5129 destroy_wq:
5130 	destroy_workqueue(nvme_wq);
5131 out:
5132 	return result;
5133 }
5134 
5135 static void __exit nvme_core_exit(void)
5136 {
5137 	nvme_exit_auth();
5138 	class_unregister(&nvme_ns_chr_class);
5139 	class_unregister(&nvme_subsys_class);
5140 	class_unregister(&nvme_class);
5141 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5142 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5143 	destroy_workqueue(nvme_delete_wq);
5144 	destroy_workqueue(nvme_reset_wq);
5145 	destroy_workqueue(nvme_wq);
5146 	ida_destroy(&nvme_ns_chr_minor_ida);
5147 	ida_destroy(&nvme_instance_ida);
5148 }
5149 
5150 MODULE_LICENSE("GPL");
5151 MODULE_VERSION("1.0");
5152 MODULE_DESCRIPTION("NVMe host core framework");
5153 module_init(nvme_core_init);
5154 module_exit(nvme_core_exit);
5155