1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/async.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-mq.h> 10 #include <linux/blk-integrity.h> 11 #include <linux/compat.h> 12 #include <linux/delay.h> 13 #include <linux/errno.h> 14 #include <linux/hdreg.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/pr.h> 21 #include <linux/ptrace.h> 22 #include <linux/nvme_ioctl.h> 23 #include <linux/pm_qos.h> 24 #include <linux/ratelimit.h> 25 #include <linux/unaligned.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 #include <linux/nvme-auth.h> 30 31 #define CREATE_TRACE_POINTS 32 #include "trace.h" 33 34 #define NVME_MINORS (1U << MINORBITS) 35 36 struct nvme_ns_info { 37 struct nvme_ns_ids ids; 38 u32 nsid; 39 __le32 anagrpid; 40 u8 pi_offset; 41 bool is_shared; 42 bool is_readonly; 43 bool is_ready; 44 bool is_removed; 45 bool is_rotational; 46 bool no_vwc; 47 }; 48 49 unsigned int admin_timeout = 60; 50 module_param(admin_timeout, uint, 0644); 51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 52 EXPORT_SYMBOL_GPL(admin_timeout); 53 54 unsigned int nvme_io_timeout = 30; 55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 57 EXPORT_SYMBOL_GPL(nvme_io_timeout); 58 59 static unsigned char shutdown_timeout = 5; 60 module_param(shutdown_timeout, byte, 0644); 61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 62 63 static u8 nvme_max_retries = 5; 64 module_param_named(max_retries, nvme_max_retries, byte, 0644); 65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 66 67 static unsigned long default_ps_max_latency_us = 100000; 68 module_param(default_ps_max_latency_us, ulong, 0644); 69 MODULE_PARM_DESC(default_ps_max_latency_us, 70 "max power saving latency for new devices; use PM QOS to change per device"); 71 72 static bool force_apst; 73 module_param(force_apst, bool, 0644); 74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 75 76 static unsigned long apst_primary_timeout_ms = 100; 77 module_param(apst_primary_timeout_ms, ulong, 0644); 78 MODULE_PARM_DESC(apst_primary_timeout_ms, 79 "primary APST timeout in ms"); 80 81 static unsigned long apst_secondary_timeout_ms = 2000; 82 module_param(apst_secondary_timeout_ms, ulong, 0644); 83 MODULE_PARM_DESC(apst_secondary_timeout_ms, 84 "secondary APST timeout in ms"); 85 86 static unsigned long apst_primary_latency_tol_us = 15000; 87 module_param(apst_primary_latency_tol_us, ulong, 0644); 88 MODULE_PARM_DESC(apst_primary_latency_tol_us, 89 "primary APST latency tolerance in us"); 90 91 static unsigned long apst_secondary_latency_tol_us = 100000; 92 module_param(apst_secondary_latency_tol_us, ulong, 0644); 93 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 94 "secondary APST latency tolerance in us"); 95 96 /* 97 * Older kernels didn't enable protection information if it was at an offset. 98 * Newer kernels do, so it breaks reads on the upgrade if such formats were 99 * used in prior kernels since the metadata written did not contain a valid 100 * checksum. 101 */ 102 static bool disable_pi_offsets = false; 103 module_param(disable_pi_offsets, bool, 0444); 104 MODULE_PARM_DESC(disable_pi_offsets, 105 "disable protection information if it has an offset"); 106 107 /* 108 * nvme_wq - hosts nvme related works that are not reset or delete 109 * nvme_reset_wq - hosts nvme reset works 110 * nvme_delete_wq - hosts nvme delete works 111 * 112 * nvme_wq will host works such as scan, aen handling, fw activation, 113 * keep-alive, periodic reconnects etc. nvme_reset_wq 114 * runs reset works which also flush works hosted on nvme_wq for 115 * serialization purposes. nvme_delete_wq host controller deletion 116 * works which flush reset works for serialization. 117 */ 118 struct workqueue_struct *nvme_wq; 119 EXPORT_SYMBOL_GPL(nvme_wq); 120 121 struct workqueue_struct *nvme_reset_wq; 122 EXPORT_SYMBOL_GPL(nvme_reset_wq); 123 124 struct workqueue_struct *nvme_delete_wq; 125 EXPORT_SYMBOL_GPL(nvme_delete_wq); 126 127 static LIST_HEAD(nvme_subsystems); 128 DEFINE_MUTEX(nvme_subsystems_lock); 129 130 static DEFINE_IDA(nvme_instance_ida); 131 static dev_t nvme_ctrl_base_chr_devt; 132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 133 static const struct class nvme_class = { 134 .name = "nvme", 135 .dev_uevent = nvme_class_uevent, 136 }; 137 138 static const struct class nvme_subsys_class = { 139 .name = "nvme-subsystem", 140 }; 141 142 static DEFINE_IDA(nvme_ns_chr_minor_ida); 143 static dev_t nvme_ns_chr_devt; 144 static const struct class nvme_ns_chr_class = { 145 .name = "nvme-generic", 146 }; 147 148 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 150 unsigned nsid); 151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 152 struct nvme_command *cmd); 153 154 void nvme_queue_scan(struct nvme_ctrl *ctrl) 155 { 156 /* 157 * Only new queue scan work when admin and IO queues are both alive 158 */ 159 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 160 queue_work(nvme_wq, &ctrl->scan_work); 161 } 162 163 /* 164 * Use this function to proceed with scheduling reset_work for a controller 165 * that had previously been set to the resetting state. This is intended for 166 * code paths that can't be interrupted by other reset attempts. A hot removal 167 * may prevent this from succeeding. 168 */ 169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 170 { 171 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 172 return -EBUSY; 173 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 174 return -EBUSY; 175 return 0; 176 } 177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 178 179 static void nvme_failfast_work(struct work_struct *work) 180 { 181 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 182 struct nvme_ctrl, failfast_work); 183 184 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 185 return; 186 187 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 188 dev_info(ctrl->device, "failfast expired\n"); 189 nvme_kick_requeue_lists(ctrl); 190 } 191 192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 193 { 194 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 195 return; 196 197 schedule_delayed_work(&ctrl->failfast_work, 198 ctrl->opts->fast_io_fail_tmo * HZ); 199 } 200 201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 202 { 203 if (!ctrl->opts) 204 return; 205 206 cancel_delayed_work_sync(&ctrl->failfast_work); 207 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 208 } 209 210 211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 212 { 213 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 214 return -EBUSY; 215 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 216 return -EBUSY; 217 return 0; 218 } 219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 220 221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 222 { 223 int ret; 224 225 ret = nvme_reset_ctrl(ctrl); 226 if (!ret) { 227 flush_work(&ctrl->reset_work); 228 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 229 ret = -ENETRESET; 230 } 231 232 return ret; 233 } 234 235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 236 { 237 dev_info(ctrl->device, 238 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 239 240 flush_work(&ctrl->reset_work); 241 nvme_stop_ctrl(ctrl); 242 nvme_remove_namespaces(ctrl); 243 ctrl->ops->delete_ctrl(ctrl); 244 nvme_uninit_ctrl(ctrl); 245 } 246 247 static void nvme_delete_ctrl_work(struct work_struct *work) 248 { 249 struct nvme_ctrl *ctrl = 250 container_of(work, struct nvme_ctrl, delete_work); 251 252 nvme_do_delete_ctrl(ctrl); 253 } 254 255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 256 { 257 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 258 return -EBUSY; 259 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 260 return -EBUSY; 261 return 0; 262 } 263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 264 265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 266 { 267 /* 268 * Keep a reference until nvme_do_delete_ctrl() complete, 269 * since ->delete_ctrl can free the controller. 270 */ 271 nvme_get_ctrl(ctrl); 272 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 273 nvme_do_delete_ctrl(ctrl); 274 nvme_put_ctrl(ctrl); 275 } 276 277 static blk_status_t nvme_error_status(u16 status) 278 { 279 switch (status & NVME_SCT_SC_MASK) { 280 case NVME_SC_SUCCESS: 281 return BLK_STS_OK; 282 case NVME_SC_CAP_EXCEEDED: 283 return BLK_STS_NOSPC; 284 case NVME_SC_LBA_RANGE: 285 case NVME_SC_CMD_INTERRUPTED: 286 case NVME_SC_NS_NOT_READY: 287 return BLK_STS_TARGET; 288 case NVME_SC_BAD_ATTRIBUTES: 289 case NVME_SC_ONCS_NOT_SUPPORTED: 290 case NVME_SC_INVALID_OPCODE: 291 case NVME_SC_INVALID_FIELD: 292 case NVME_SC_INVALID_NS: 293 return BLK_STS_NOTSUPP; 294 case NVME_SC_WRITE_FAULT: 295 case NVME_SC_READ_ERROR: 296 case NVME_SC_UNWRITTEN_BLOCK: 297 case NVME_SC_ACCESS_DENIED: 298 case NVME_SC_READ_ONLY: 299 case NVME_SC_COMPARE_FAILED: 300 return BLK_STS_MEDIUM; 301 case NVME_SC_GUARD_CHECK: 302 case NVME_SC_APPTAG_CHECK: 303 case NVME_SC_REFTAG_CHECK: 304 case NVME_SC_INVALID_PI: 305 return BLK_STS_PROTECTION; 306 case NVME_SC_RESERVATION_CONFLICT: 307 return BLK_STS_RESV_CONFLICT; 308 case NVME_SC_HOST_PATH_ERROR: 309 return BLK_STS_TRANSPORT; 310 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 311 return BLK_STS_ZONE_ACTIVE_RESOURCE; 312 case NVME_SC_ZONE_TOO_MANY_OPEN: 313 return BLK_STS_ZONE_OPEN_RESOURCE; 314 default: 315 return BLK_STS_IOERR; 316 } 317 } 318 319 static void nvme_retry_req(struct request *req) 320 { 321 unsigned long delay = 0; 322 u16 crd; 323 324 /* The mask and shift result must be <= 3 */ 325 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; 326 if (crd) 327 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 328 329 nvme_req(req)->retries++; 330 blk_mq_requeue_request(req, false); 331 blk_mq_delay_kick_requeue_list(req->q, delay); 332 } 333 334 static void nvme_log_error(struct request *req) 335 { 336 struct nvme_ns *ns = req->q->queuedata; 337 struct nvme_request *nr = nvme_req(req); 338 339 if (ns) { 340 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 341 ns->disk ? ns->disk->disk_name : "?", 342 nvme_get_opcode_str(nr->cmd->common.opcode), 343 nr->cmd->common.opcode, 344 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 345 blk_rq_bytes(req) >> ns->head->lba_shift, 346 nvme_get_error_status_str(nr->status), 347 NVME_SCT(nr->status), /* Status Code Type */ 348 nr->status & NVME_SC_MASK, /* Status Code */ 349 nr->status & NVME_STATUS_MORE ? "MORE " : "", 350 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 351 return; 352 } 353 354 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 355 dev_name(nr->ctrl->device), 356 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 357 nr->cmd->common.opcode, 358 nvme_get_error_status_str(nr->status), 359 NVME_SCT(nr->status), /* Status Code Type */ 360 nr->status & NVME_SC_MASK, /* Status Code */ 361 nr->status & NVME_STATUS_MORE ? "MORE " : "", 362 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 363 } 364 365 static void nvme_log_err_passthru(struct request *req) 366 { 367 struct nvme_ns *ns = req->q->queuedata; 368 struct nvme_request *nr = nvme_req(req); 369 370 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 371 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 372 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 373 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 374 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 375 nr->cmd->common.opcode, 376 nvme_get_error_status_str(nr->status), 377 NVME_SCT(nr->status), /* Status Code Type */ 378 nr->status & NVME_SC_MASK, /* Status Code */ 379 nr->status & NVME_STATUS_MORE ? "MORE " : "", 380 nr->status & NVME_STATUS_DNR ? "DNR " : "", 381 nr->cmd->common.cdw10, 382 nr->cmd->common.cdw11, 383 nr->cmd->common.cdw12, 384 nr->cmd->common.cdw13, 385 nr->cmd->common.cdw14, 386 nr->cmd->common.cdw14); 387 } 388 389 enum nvme_disposition { 390 COMPLETE, 391 RETRY, 392 FAILOVER, 393 AUTHENTICATE, 394 }; 395 396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 397 { 398 if (likely(nvme_req(req)->status == 0)) 399 return COMPLETE; 400 401 if (blk_noretry_request(req) || 402 (nvme_req(req)->status & NVME_STATUS_DNR) || 403 nvme_req(req)->retries >= nvme_max_retries) 404 return COMPLETE; 405 406 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) 407 return AUTHENTICATE; 408 409 if (req->cmd_flags & REQ_NVME_MPATH) { 410 if (nvme_is_path_error(nvme_req(req)->status) || 411 blk_queue_dying(req->q)) 412 return FAILOVER; 413 } else { 414 if (blk_queue_dying(req->q)) 415 return COMPLETE; 416 } 417 418 return RETRY; 419 } 420 421 static inline void nvme_end_req_zoned(struct request *req) 422 { 423 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 424 req_op(req) == REQ_OP_ZONE_APPEND) { 425 struct nvme_ns *ns = req->q->queuedata; 426 427 req->__sector = nvme_lba_to_sect(ns->head, 428 le64_to_cpu(nvme_req(req)->result.u64)); 429 } 430 } 431 432 static inline void __nvme_end_req(struct request *req) 433 { 434 nvme_end_req_zoned(req); 435 nvme_trace_bio_complete(req); 436 if (req->cmd_flags & REQ_NVME_MPATH) 437 nvme_mpath_end_request(req); 438 } 439 440 void nvme_end_req(struct request *req) 441 { 442 blk_status_t status = nvme_error_status(nvme_req(req)->status); 443 444 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 445 if (blk_rq_is_passthrough(req)) 446 nvme_log_err_passthru(req); 447 else 448 nvme_log_error(req); 449 } 450 __nvme_end_req(req); 451 blk_mq_end_request(req, status); 452 } 453 454 void nvme_complete_rq(struct request *req) 455 { 456 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 457 458 trace_nvme_complete_rq(req); 459 nvme_cleanup_cmd(req); 460 461 /* 462 * Completions of long-running commands should not be able to 463 * defer sending of periodic keep alives, since the controller 464 * may have completed processing such commands a long time ago 465 * (arbitrarily close to command submission time). 466 * req->deadline - req->timeout is the command submission time 467 * in jiffies. 468 */ 469 if (ctrl->kas && 470 req->deadline - req->timeout >= ctrl->ka_last_check_time) 471 ctrl->comp_seen = true; 472 473 switch (nvme_decide_disposition(req)) { 474 case COMPLETE: 475 nvme_end_req(req); 476 return; 477 case RETRY: 478 nvme_retry_req(req); 479 return; 480 case FAILOVER: 481 nvme_failover_req(req); 482 return; 483 case AUTHENTICATE: 484 #ifdef CONFIG_NVME_HOST_AUTH 485 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 486 nvme_retry_req(req); 487 #else 488 nvme_end_req(req); 489 #endif 490 return; 491 } 492 } 493 EXPORT_SYMBOL_GPL(nvme_complete_rq); 494 495 void nvme_complete_batch_req(struct request *req) 496 { 497 trace_nvme_complete_rq(req); 498 nvme_cleanup_cmd(req); 499 __nvme_end_req(req); 500 } 501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 502 503 /* 504 * Called to unwind from ->queue_rq on a failed command submission so that the 505 * multipathing code gets called to potentially failover to another path. 506 * The caller needs to unwind all transport specific resource allocations and 507 * must return propagate the return value. 508 */ 509 blk_status_t nvme_host_path_error(struct request *req) 510 { 511 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 512 blk_mq_set_request_complete(req); 513 nvme_complete_rq(req); 514 return BLK_STS_OK; 515 } 516 EXPORT_SYMBOL_GPL(nvme_host_path_error); 517 518 bool nvme_cancel_request(struct request *req, void *data) 519 { 520 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 521 "Cancelling I/O %d", req->tag); 522 523 /* don't abort one completed or idle request */ 524 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 525 return true; 526 527 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 528 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 529 blk_mq_complete_request(req); 530 return true; 531 } 532 EXPORT_SYMBOL_GPL(nvme_cancel_request); 533 534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 535 { 536 if (ctrl->tagset) { 537 blk_mq_tagset_busy_iter(ctrl->tagset, 538 nvme_cancel_request, ctrl); 539 blk_mq_tagset_wait_completed_request(ctrl->tagset); 540 } 541 } 542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 543 544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 545 { 546 if (ctrl->admin_tagset) { 547 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 548 nvme_cancel_request, ctrl); 549 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 550 } 551 } 552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 553 554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 555 enum nvme_ctrl_state new_state) 556 { 557 enum nvme_ctrl_state old_state; 558 unsigned long flags; 559 bool changed = false; 560 561 spin_lock_irqsave(&ctrl->lock, flags); 562 563 old_state = nvme_ctrl_state(ctrl); 564 switch (new_state) { 565 case NVME_CTRL_LIVE: 566 switch (old_state) { 567 case NVME_CTRL_NEW: 568 case NVME_CTRL_RESETTING: 569 case NVME_CTRL_CONNECTING: 570 changed = true; 571 fallthrough; 572 default: 573 break; 574 } 575 break; 576 case NVME_CTRL_RESETTING: 577 switch (old_state) { 578 case NVME_CTRL_NEW: 579 case NVME_CTRL_LIVE: 580 changed = true; 581 fallthrough; 582 default: 583 break; 584 } 585 break; 586 case NVME_CTRL_CONNECTING: 587 switch (old_state) { 588 case NVME_CTRL_NEW: 589 case NVME_CTRL_RESETTING: 590 changed = true; 591 fallthrough; 592 default: 593 break; 594 } 595 break; 596 case NVME_CTRL_DELETING: 597 switch (old_state) { 598 case NVME_CTRL_LIVE: 599 case NVME_CTRL_RESETTING: 600 case NVME_CTRL_CONNECTING: 601 changed = true; 602 fallthrough; 603 default: 604 break; 605 } 606 break; 607 case NVME_CTRL_DELETING_NOIO: 608 switch (old_state) { 609 case NVME_CTRL_DELETING: 610 case NVME_CTRL_DEAD: 611 changed = true; 612 fallthrough; 613 default: 614 break; 615 } 616 break; 617 case NVME_CTRL_DEAD: 618 switch (old_state) { 619 case NVME_CTRL_DELETING: 620 changed = true; 621 fallthrough; 622 default: 623 break; 624 } 625 break; 626 default: 627 break; 628 } 629 630 if (changed) { 631 WRITE_ONCE(ctrl->state, new_state); 632 wake_up_all(&ctrl->state_wq); 633 } 634 635 spin_unlock_irqrestore(&ctrl->lock, flags); 636 if (!changed) 637 return false; 638 639 if (new_state == NVME_CTRL_LIVE) { 640 if (old_state == NVME_CTRL_CONNECTING) 641 nvme_stop_failfast_work(ctrl); 642 nvme_kick_requeue_lists(ctrl); 643 } else if (new_state == NVME_CTRL_CONNECTING && 644 old_state == NVME_CTRL_RESETTING) { 645 nvme_start_failfast_work(ctrl); 646 } 647 return changed; 648 } 649 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 650 651 /* 652 * Waits for the controller state to be resetting, or returns false if it is 653 * not possible to ever transition to that state. 654 */ 655 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 656 { 657 wait_event(ctrl->state_wq, 658 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 659 nvme_state_terminal(ctrl)); 660 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 661 } 662 EXPORT_SYMBOL_GPL(nvme_wait_reset); 663 664 static void nvme_free_ns_head(struct kref *ref) 665 { 666 struct nvme_ns_head *head = 667 container_of(ref, struct nvme_ns_head, ref); 668 669 nvme_mpath_remove_disk(head); 670 ida_free(&head->subsys->ns_ida, head->instance); 671 cleanup_srcu_struct(&head->srcu); 672 nvme_put_subsystem(head->subsys); 673 kfree(head); 674 } 675 676 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 677 { 678 return kref_get_unless_zero(&head->ref); 679 } 680 681 void nvme_put_ns_head(struct nvme_ns_head *head) 682 { 683 kref_put(&head->ref, nvme_free_ns_head); 684 } 685 686 static void nvme_free_ns(struct kref *kref) 687 { 688 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 689 690 put_disk(ns->disk); 691 nvme_put_ns_head(ns->head); 692 nvme_put_ctrl(ns->ctrl); 693 kfree(ns); 694 } 695 696 bool nvme_get_ns(struct nvme_ns *ns) 697 { 698 return kref_get_unless_zero(&ns->kref); 699 } 700 701 void nvme_put_ns(struct nvme_ns *ns) 702 { 703 kref_put(&ns->kref, nvme_free_ns); 704 } 705 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU"); 706 707 static inline void nvme_clear_nvme_request(struct request *req) 708 { 709 nvme_req(req)->status = 0; 710 nvme_req(req)->retries = 0; 711 nvme_req(req)->flags = 0; 712 req->rq_flags |= RQF_DONTPREP; 713 } 714 715 /* initialize a passthrough request */ 716 void nvme_init_request(struct request *req, struct nvme_command *cmd) 717 { 718 struct nvme_request *nr = nvme_req(req); 719 bool logging_enabled; 720 721 if (req->q->queuedata) { 722 struct nvme_ns *ns = req->q->disk->private_data; 723 724 logging_enabled = ns->head->passthru_err_log_enabled; 725 req->timeout = NVME_IO_TIMEOUT; 726 } else { /* no queuedata implies admin queue */ 727 logging_enabled = nr->ctrl->passthru_err_log_enabled; 728 req->timeout = NVME_ADMIN_TIMEOUT; 729 } 730 731 if (!logging_enabled) 732 req->rq_flags |= RQF_QUIET; 733 734 /* passthru commands should let the driver set the SGL flags */ 735 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 736 737 req->cmd_flags |= REQ_FAILFAST_DRIVER; 738 if (req->mq_hctx->type == HCTX_TYPE_POLL) 739 req->cmd_flags |= REQ_POLLED; 740 nvme_clear_nvme_request(req); 741 memcpy(nr->cmd, cmd, sizeof(*cmd)); 742 } 743 EXPORT_SYMBOL_GPL(nvme_init_request); 744 745 /* 746 * For something we're not in a state to send to the device the default action 747 * is to busy it and retry it after the controller state is recovered. However, 748 * if the controller is deleting or if anything is marked for failfast or 749 * nvme multipath it is immediately failed. 750 * 751 * Note: commands used to initialize the controller will be marked for failfast. 752 * Note: nvme cli/ioctl commands are marked for failfast. 753 */ 754 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 755 struct request *rq) 756 { 757 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 758 759 if (state != NVME_CTRL_DELETING_NOIO && 760 state != NVME_CTRL_DELETING && 761 state != NVME_CTRL_DEAD && 762 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 763 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 764 return BLK_STS_RESOURCE; 765 return nvme_host_path_error(rq); 766 } 767 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 768 769 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 770 bool queue_live, enum nvme_ctrl_state state) 771 { 772 struct nvme_request *req = nvme_req(rq); 773 774 /* 775 * currently we have a problem sending passthru commands 776 * on the admin_q if the controller is not LIVE because we can't 777 * make sure that they are going out after the admin connect, 778 * controller enable and/or other commands in the initialization 779 * sequence. until the controller will be LIVE, fail with 780 * BLK_STS_RESOURCE so that they will be rescheduled. 781 */ 782 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 783 return false; 784 785 if (ctrl->ops->flags & NVME_F_FABRICS) { 786 /* 787 * Only allow commands on a live queue, except for the connect 788 * command, which is require to set the queue live in the 789 * appropinquate states. 790 */ 791 switch (state) { 792 case NVME_CTRL_CONNECTING: 793 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 794 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 795 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 796 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 797 return true; 798 break; 799 default: 800 break; 801 case NVME_CTRL_DEAD: 802 return false; 803 } 804 } 805 806 return queue_live; 807 } 808 EXPORT_SYMBOL_GPL(__nvme_check_ready); 809 810 static inline void nvme_setup_flush(struct nvme_ns *ns, 811 struct nvme_command *cmnd) 812 { 813 memset(cmnd, 0, sizeof(*cmnd)); 814 cmnd->common.opcode = nvme_cmd_flush; 815 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 816 } 817 818 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 819 struct nvme_command *cmnd) 820 { 821 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 822 struct nvme_dsm_range *range; 823 struct bio *bio; 824 825 /* 826 * Some devices do not consider the DSM 'Number of Ranges' field when 827 * determining how much data to DMA. Always allocate memory for maximum 828 * number of segments to prevent device reading beyond end of buffer. 829 */ 830 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 831 832 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 833 if (!range) { 834 /* 835 * If we fail allocation our range, fallback to the controller 836 * discard page. If that's also busy, it's safe to return 837 * busy, as we know we can make progress once that's freed. 838 */ 839 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 840 return BLK_STS_RESOURCE; 841 842 range = page_address(ns->ctrl->discard_page); 843 } 844 845 if (queue_max_discard_segments(req->q) == 1) { 846 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 847 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 848 849 range[0].cattr = cpu_to_le32(0); 850 range[0].nlb = cpu_to_le32(nlb); 851 range[0].slba = cpu_to_le64(slba); 852 n = 1; 853 } else { 854 __rq_for_each_bio(bio, req) { 855 u64 slba = nvme_sect_to_lba(ns->head, 856 bio->bi_iter.bi_sector); 857 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 858 859 if (n < segments) { 860 range[n].cattr = cpu_to_le32(0); 861 range[n].nlb = cpu_to_le32(nlb); 862 range[n].slba = cpu_to_le64(slba); 863 } 864 n++; 865 } 866 } 867 868 if (WARN_ON_ONCE(n != segments)) { 869 if (virt_to_page(range) == ns->ctrl->discard_page) 870 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 871 else 872 kfree(range); 873 return BLK_STS_IOERR; 874 } 875 876 memset(cmnd, 0, sizeof(*cmnd)); 877 cmnd->dsm.opcode = nvme_cmd_dsm; 878 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 879 cmnd->dsm.nr = cpu_to_le32(segments - 1); 880 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 881 882 bvec_set_virt(&req->special_vec, range, alloc_size); 883 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 884 885 return BLK_STS_OK; 886 } 887 888 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd) 889 { 890 cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag); 891 cmnd->rw.lbatm = cpu_to_le16(0xffff); 892 } 893 894 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 895 struct request *req) 896 { 897 u32 upper, lower; 898 u64 ref48; 899 900 /* both rw and write zeroes share the same reftag format */ 901 switch (ns->head->guard_type) { 902 case NVME_NVM_NS_16B_GUARD: 903 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 904 break; 905 case NVME_NVM_NS_64B_GUARD: 906 ref48 = ext_pi_ref_tag(req); 907 lower = lower_32_bits(ref48); 908 upper = upper_32_bits(ref48); 909 910 cmnd->rw.reftag = cpu_to_le32(lower); 911 cmnd->rw.cdw3 = cpu_to_le32(upper); 912 break; 913 default: 914 break; 915 } 916 } 917 918 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 919 struct request *req, struct nvme_command *cmnd) 920 { 921 memset(cmnd, 0, sizeof(*cmnd)); 922 923 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 924 return nvme_setup_discard(ns, req, cmnd); 925 926 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 927 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 928 cmnd->write_zeroes.slba = 929 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 930 cmnd->write_zeroes.length = 931 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 932 933 if (!(req->cmd_flags & REQ_NOUNMAP) && 934 (ns->head->features & NVME_NS_DEAC)) 935 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 936 937 if (nvme_ns_has_pi(ns->head)) { 938 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 939 940 switch (ns->head->pi_type) { 941 case NVME_NS_DPS_PI_TYPE1: 942 case NVME_NS_DPS_PI_TYPE2: 943 nvme_set_ref_tag(ns, cmnd, req); 944 break; 945 } 946 } 947 948 return BLK_STS_OK; 949 } 950 951 /* 952 * NVMe does not support a dedicated command to issue an atomic write. A write 953 * which does adhere to the device atomic limits will silently be executed 954 * non-atomically. The request issuer should ensure that the write is within 955 * the queue atomic writes limits, but just validate this in case it is not. 956 */ 957 static bool nvme_valid_atomic_write(struct request *req) 958 { 959 struct request_queue *q = req->q; 960 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); 961 962 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) 963 return false; 964 965 if (boundary_bytes) { 966 u64 mask = boundary_bytes - 1, imask = ~mask; 967 u64 start = blk_rq_pos(req) << SECTOR_SHIFT; 968 u64 end = start + blk_rq_bytes(req) - 1; 969 970 /* If greater then must be crossing a boundary */ 971 if (blk_rq_bytes(req) > boundary_bytes) 972 return false; 973 974 if ((start & imask) != (end & imask)) 975 return false; 976 } 977 978 return true; 979 } 980 981 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 982 struct request *req, struct nvme_command *cmnd, 983 enum nvme_opcode op) 984 { 985 u16 control = 0; 986 u32 dsmgmt = 0; 987 988 if (req->cmd_flags & REQ_FUA) 989 control |= NVME_RW_FUA; 990 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 991 control |= NVME_RW_LR; 992 993 if (req->cmd_flags & REQ_RAHEAD) 994 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 995 996 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) 997 return BLK_STS_INVAL; 998 999 cmnd->rw.opcode = op; 1000 cmnd->rw.flags = 0; 1001 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 1002 cmnd->rw.cdw2 = 0; 1003 cmnd->rw.cdw3 = 0; 1004 cmnd->rw.metadata = 0; 1005 cmnd->rw.slba = 1006 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 1007 cmnd->rw.length = 1008 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 1009 cmnd->rw.reftag = 0; 1010 cmnd->rw.lbat = 0; 1011 cmnd->rw.lbatm = 0; 1012 1013 if (ns->head->ms) { 1014 /* 1015 * If formated with metadata, the block layer always provides a 1016 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 1017 * we enable the PRACT bit for protection information or set the 1018 * namespace capacity to zero to prevent any I/O. 1019 */ 1020 if (!blk_integrity_rq(req)) { 1021 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 1022 return BLK_STS_NOTSUPP; 1023 control |= NVME_RW_PRINFO_PRACT; 1024 } 1025 1026 if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD)) 1027 control |= NVME_RW_PRINFO_PRCHK_GUARD; 1028 if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) { 1029 control |= NVME_RW_PRINFO_PRCHK_REF; 1030 if (op == nvme_cmd_zone_append) 1031 control |= NVME_RW_APPEND_PIREMAP; 1032 nvme_set_ref_tag(ns, cmnd, req); 1033 } 1034 if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) { 1035 control |= NVME_RW_PRINFO_PRCHK_APP; 1036 nvme_set_app_tag(req, cmnd); 1037 } 1038 } 1039 1040 cmnd->rw.control = cpu_to_le16(control); 1041 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 1042 return 0; 1043 } 1044 1045 void nvme_cleanup_cmd(struct request *req) 1046 { 1047 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 1048 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 1049 1050 if (req->special_vec.bv_page == ctrl->discard_page) 1051 clear_bit_unlock(0, &ctrl->discard_page_busy); 1052 else 1053 kfree(bvec_virt(&req->special_vec)); 1054 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; 1055 } 1056 } 1057 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1058 1059 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1060 { 1061 struct nvme_command *cmd = nvme_req(req)->cmd; 1062 blk_status_t ret = BLK_STS_OK; 1063 1064 if (!(req->rq_flags & RQF_DONTPREP)) 1065 nvme_clear_nvme_request(req); 1066 1067 switch (req_op(req)) { 1068 case REQ_OP_DRV_IN: 1069 case REQ_OP_DRV_OUT: 1070 /* these are setup prior to execution in nvme_init_request() */ 1071 break; 1072 case REQ_OP_FLUSH: 1073 nvme_setup_flush(ns, cmd); 1074 break; 1075 case REQ_OP_ZONE_RESET_ALL: 1076 case REQ_OP_ZONE_RESET: 1077 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1078 break; 1079 case REQ_OP_ZONE_OPEN: 1080 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1081 break; 1082 case REQ_OP_ZONE_CLOSE: 1083 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1084 break; 1085 case REQ_OP_ZONE_FINISH: 1086 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1087 break; 1088 case REQ_OP_WRITE_ZEROES: 1089 ret = nvme_setup_write_zeroes(ns, req, cmd); 1090 break; 1091 case REQ_OP_DISCARD: 1092 ret = nvme_setup_discard(ns, req, cmd); 1093 break; 1094 case REQ_OP_READ: 1095 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1096 break; 1097 case REQ_OP_WRITE: 1098 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1099 break; 1100 case REQ_OP_ZONE_APPEND: 1101 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1102 break; 1103 default: 1104 WARN_ON_ONCE(1); 1105 return BLK_STS_IOERR; 1106 } 1107 1108 cmd->common.command_id = nvme_cid(req); 1109 trace_nvme_setup_cmd(req, cmd); 1110 return ret; 1111 } 1112 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1113 1114 /* 1115 * Return values: 1116 * 0: success 1117 * >0: nvme controller's cqe status response 1118 * <0: kernel error in lieu of controller response 1119 */ 1120 int nvme_execute_rq(struct request *rq, bool at_head) 1121 { 1122 blk_status_t status; 1123 1124 status = blk_execute_rq(rq, at_head); 1125 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1126 return -EINTR; 1127 if (nvme_req(rq)->status) 1128 return nvme_req(rq)->status; 1129 return blk_status_to_errno(status); 1130 } 1131 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU"); 1132 1133 /* 1134 * Returns 0 on success. If the result is negative, it's a Linux error code; 1135 * if the result is positive, it's an NVM Express status code 1136 */ 1137 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1138 union nvme_result *result, void *buffer, unsigned bufflen, 1139 int qid, nvme_submit_flags_t flags) 1140 { 1141 struct request *req; 1142 int ret; 1143 blk_mq_req_flags_t blk_flags = 0; 1144 1145 if (flags & NVME_SUBMIT_NOWAIT) 1146 blk_flags |= BLK_MQ_REQ_NOWAIT; 1147 if (flags & NVME_SUBMIT_RESERVED) 1148 blk_flags |= BLK_MQ_REQ_RESERVED; 1149 if (qid == NVME_QID_ANY) 1150 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1151 else 1152 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1153 qid - 1); 1154 1155 if (IS_ERR(req)) 1156 return PTR_ERR(req); 1157 nvme_init_request(req, cmd); 1158 if (flags & NVME_SUBMIT_RETRY) 1159 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1160 1161 if (buffer && bufflen) { 1162 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1163 if (ret) 1164 goto out; 1165 } 1166 1167 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1168 if (result && ret >= 0) 1169 *result = nvme_req(req)->result; 1170 out: 1171 blk_mq_free_request(req); 1172 return ret; 1173 } 1174 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1175 1176 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1177 void *buffer, unsigned bufflen) 1178 { 1179 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1180 NVME_QID_ANY, 0); 1181 } 1182 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1183 1184 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1185 { 1186 u32 effects = 0; 1187 1188 if (ns) { 1189 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1190 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1191 dev_warn_once(ctrl->device, 1192 "IO command:%02x has unusual effects:%08x\n", 1193 opcode, effects); 1194 1195 /* 1196 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1197 * which would deadlock when done on an I/O command. Note that 1198 * We already warn about an unusual effect above. 1199 */ 1200 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1201 } else { 1202 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1203 1204 /* Ignore execution restrictions if any relaxation bits are set */ 1205 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1206 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1207 } 1208 1209 return effects; 1210 } 1211 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU"); 1212 1213 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1214 { 1215 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1216 1217 /* 1218 * For simplicity, IO to all namespaces is quiesced even if the command 1219 * effects say only one namespace is affected. 1220 */ 1221 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1222 mutex_lock(&ctrl->scan_lock); 1223 mutex_lock(&ctrl->subsys->lock); 1224 nvme_mpath_start_freeze(ctrl->subsys); 1225 nvme_mpath_wait_freeze(ctrl->subsys); 1226 nvme_start_freeze(ctrl); 1227 nvme_wait_freeze(ctrl); 1228 } 1229 return effects; 1230 } 1231 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU"); 1232 1233 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1234 struct nvme_command *cmd, int status) 1235 { 1236 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1237 nvme_unfreeze(ctrl); 1238 nvme_mpath_unfreeze(ctrl->subsys); 1239 mutex_unlock(&ctrl->subsys->lock); 1240 mutex_unlock(&ctrl->scan_lock); 1241 } 1242 if (effects & NVME_CMD_EFFECTS_CCC) { 1243 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1244 &ctrl->flags)) { 1245 dev_info(ctrl->device, 1246 "controller capabilities changed, reset may be required to take effect.\n"); 1247 } 1248 } 1249 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1250 nvme_queue_scan(ctrl); 1251 flush_work(&ctrl->scan_work); 1252 } 1253 if (ns) 1254 return; 1255 1256 switch (cmd->common.opcode) { 1257 case nvme_admin_set_features: 1258 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1259 case NVME_FEAT_KATO: 1260 /* 1261 * Keep alive commands interval on the host should be 1262 * updated when KATO is modified by Set Features 1263 * commands. 1264 */ 1265 if (!status) 1266 nvme_update_keep_alive(ctrl, cmd); 1267 break; 1268 default: 1269 break; 1270 } 1271 break; 1272 default: 1273 break; 1274 } 1275 } 1276 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU"); 1277 1278 /* 1279 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1280 * 1281 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1282 * accounting for transport roundtrip times [..]. 1283 */ 1284 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1285 { 1286 unsigned long delay = ctrl->kato * HZ / 2; 1287 1288 /* 1289 * When using Traffic Based Keep Alive, we need to run 1290 * nvme_keep_alive_work at twice the normal frequency, as one 1291 * command completion can postpone sending a keep alive command 1292 * by up to twice the delay between runs. 1293 */ 1294 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1295 delay /= 2; 1296 return delay; 1297 } 1298 1299 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1300 { 1301 unsigned long now = jiffies; 1302 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1303 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1304 1305 if (time_after(now, ka_next_check_tm)) 1306 delay = 0; 1307 else 1308 delay = ka_next_check_tm - now; 1309 1310 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1311 } 1312 1313 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1314 blk_status_t status) 1315 { 1316 struct nvme_ctrl *ctrl = rq->end_io_data; 1317 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1318 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1319 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 1320 1321 /* 1322 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1323 * at the desired frequency. 1324 */ 1325 if (rtt <= delay) { 1326 delay -= rtt; 1327 } else { 1328 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1329 jiffies_to_msecs(rtt)); 1330 delay = 0; 1331 } 1332 1333 blk_mq_free_request(rq); 1334 1335 if (status) { 1336 dev_err(ctrl->device, 1337 "failed nvme_keep_alive_end_io error=%d\n", 1338 status); 1339 return RQ_END_IO_NONE; 1340 } 1341 1342 ctrl->ka_last_check_time = jiffies; 1343 ctrl->comp_seen = false; 1344 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING) 1345 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1346 return RQ_END_IO_NONE; 1347 } 1348 1349 static void nvme_keep_alive_work(struct work_struct *work) 1350 { 1351 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1352 struct nvme_ctrl, ka_work); 1353 bool comp_seen = ctrl->comp_seen; 1354 struct request *rq; 1355 1356 ctrl->ka_last_check_time = jiffies; 1357 1358 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1359 dev_dbg(ctrl->device, 1360 "reschedule traffic based keep-alive timer\n"); 1361 ctrl->comp_seen = false; 1362 nvme_queue_keep_alive_work(ctrl); 1363 return; 1364 } 1365 1366 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1367 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1368 if (IS_ERR(rq)) { 1369 /* allocation failure, reset the controller */ 1370 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1371 nvme_reset_ctrl(ctrl); 1372 return; 1373 } 1374 nvme_init_request(rq, &ctrl->ka_cmd); 1375 1376 rq->timeout = ctrl->kato * HZ; 1377 rq->end_io = nvme_keep_alive_end_io; 1378 rq->end_io_data = ctrl; 1379 blk_execute_rq_nowait(rq, false); 1380 } 1381 1382 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1383 { 1384 if (unlikely(ctrl->kato == 0)) 1385 return; 1386 1387 nvme_queue_keep_alive_work(ctrl); 1388 } 1389 1390 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1391 { 1392 if (unlikely(ctrl->kato == 0)) 1393 return; 1394 1395 cancel_delayed_work_sync(&ctrl->ka_work); 1396 } 1397 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1398 1399 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1400 struct nvme_command *cmd) 1401 { 1402 unsigned int new_kato = 1403 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1404 1405 dev_info(ctrl->device, 1406 "keep alive interval updated from %u ms to %u ms\n", 1407 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1408 1409 nvme_stop_keep_alive(ctrl); 1410 ctrl->kato = new_kato; 1411 nvme_start_keep_alive(ctrl); 1412 } 1413 1414 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns) 1415 { 1416 /* 1417 * The CNS field occupies a full byte starting with NVMe 1.2 1418 */ 1419 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1420 return true; 1421 1422 /* 1423 * NVMe 1.1 expanded the CNS value to two bits, which means values 1424 * larger than that could get truncated and treated as an incorrect 1425 * value. 1426 * 1427 * Qemu implemented 1.0 behavior for controllers claiming 1.1 1428 * compliance, so they need to be quirked here. 1429 */ 1430 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1431 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) 1432 return cns <= 3; 1433 1434 /* 1435 * NVMe 1.0 used a single bit for the CNS value. 1436 */ 1437 return cns <= 1; 1438 } 1439 1440 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1441 { 1442 struct nvme_command c = { }; 1443 int error; 1444 1445 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1446 c.identify.opcode = nvme_admin_identify; 1447 c.identify.cns = NVME_ID_CNS_CTRL; 1448 1449 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1450 if (!*id) 1451 return -ENOMEM; 1452 1453 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1454 sizeof(struct nvme_id_ctrl)); 1455 if (error) { 1456 kfree(*id); 1457 *id = NULL; 1458 } 1459 return error; 1460 } 1461 1462 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1463 struct nvme_ns_id_desc *cur, bool *csi_seen) 1464 { 1465 const char *warn_str = "ctrl returned bogus length:"; 1466 void *data = cur; 1467 1468 switch (cur->nidt) { 1469 case NVME_NIDT_EUI64: 1470 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1471 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1472 warn_str, cur->nidl); 1473 return -1; 1474 } 1475 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1476 return NVME_NIDT_EUI64_LEN; 1477 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1478 return NVME_NIDT_EUI64_LEN; 1479 case NVME_NIDT_NGUID: 1480 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1481 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1482 warn_str, cur->nidl); 1483 return -1; 1484 } 1485 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1486 return NVME_NIDT_NGUID_LEN; 1487 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1488 return NVME_NIDT_NGUID_LEN; 1489 case NVME_NIDT_UUID: 1490 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1491 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1492 warn_str, cur->nidl); 1493 return -1; 1494 } 1495 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1496 return NVME_NIDT_UUID_LEN; 1497 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1498 return NVME_NIDT_UUID_LEN; 1499 case NVME_NIDT_CSI: 1500 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1501 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1502 warn_str, cur->nidl); 1503 return -1; 1504 } 1505 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1506 *csi_seen = true; 1507 return NVME_NIDT_CSI_LEN; 1508 default: 1509 /* Skip unknown types */ 1510 return cur->nidl; 1511 } 1512 } 1513 1514 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1515 struct nvme_ns_info *info) 1516 { 1517 struct nvme_command c = { }; 1518 bool csi_seen = false; 1519 int status, pos, len; 1520 void *data; 1521 1522 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1523 return 0; 1524 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1525 return 0; 1526 1527 c.identify.opcode = nvme_admin_identify; 1528 c.identify.nsid = cpu_to_le32(info->nsid); 1529 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1530 1531 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1532 if (!data) 1533 return -ENOMEM; 1534 1535 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1536 NVME_IDENTIFY_DATA_SIZE); 1537 if (status) { 1538 dev_warn(ctrl->device, 1539 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1540 info->nsid, status); 1541 goto free_data; 1542 } 1543 1544 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1545 struct nvme_ns_id_desc *cur = data + pos; 1546 1547 if (cur->nidl == 0) 1548 break; 1549 1550 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1551 if (len < 0) 1552 break; 1553 1554 len += sizeof(*cur); 1555 } 1556 1557 if (nvme_multi_css(ctrl) && !csi_seen) { 1558 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1559 info->nsid); 1560 status = -EINVAL; 1561 } 1562 1563 free_data: 1564 kfree(data); 1565 return status; 1566 } 1567 1568 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1569 struct nvme_id_ns **id) 1570 { 1571 struct nvme_command c = { }; 1572 int error; 1573 1574 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1575 c.identify.opcode = nvme_admin_identify; 1576 c.identify.nsid = cpu_to_le32(nsid); 1577 c.identify.cns = NVME_ID_CNS_NS; 1578 1579 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1580 if (!*id) 1581 return -ENOMEM; 1582 1583 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1584 if (error) { 1585 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1586 kfree(*id); 1587 *id = NULL; 1588 } 1589 return error; 1590 } 1591 1592 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1593 struct nvme_ns_info *info) 1594 { 1595 struct nvme_ns_ids *ids = &info->ids; 1596 struct nvme_id_ns *id; 1597 int ret; 1598 1599 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1600 if (ret) 1601 return ret; 1602 1603 if (id->ncap == 0) { 1604 /* namespace not allocated or attached */ 1605 info->is_removed = true; 1606 ret = -ENODEV; 1607 goto error; 1608 } 1609 1610 info->anagrpid = id->anagrpid; 1611 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1612 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1613 info->is_ready = true; 1614 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1615 dev_info(ctrl->device, 1616 "Ignoring bogus Namespace Identifiers\n"); 1617 } else { 1618 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1619 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1620 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1621 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1622 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1623 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1624 } 1625 1626 error: 1627 kfree(id); 1628 return ret; 1629 } 1630 1631 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1632 struct nvme_ns_info *info) 1633 { 1634 struct nvme_id_ns_cs_indep *id; 1635 struct nvme_command c = { 1636 .identify.opcode = nvme_admin_identify, 1637 .identify.nsid = cpu_to_le32(info->nsid), 1638 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1639 }; 1640 int ret; 1641 1642 id = kmalloc(sizeof(*id), GFP_KERNEL); 1643 if (!id) 1644 return -ENOMEM; 1645 1646 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1647 if (!ret) { 1648 info->anagrpid = id->anagrpid; 1649 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1650 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1651 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1652 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL; 1653 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT; 1654 } 1655 kfree(id); 1656 return ret; 1657 } 1658 1659 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1660 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1661 { 1662 union nvme_result res = { 0 }; 1663 struct nvme_command c = { }; 1664 int ret; 1665 1666 c.features.opcode = op; 1667 c.features.fid = cpu_to_le32(fid); 1668 c.features.dword11 = cpu_to_le32(dword11); 1669 1670 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1671 buffer, buflen, NVME_QID_ANY, 0); 1672 if (ret >= 0 && result) 1673 *result = le32_to_cpu(res.u32); 1674 return ret; 1675 } 1676 1677 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1678 unsigned int dword11, void *buffer, size_t buflen, 1679 u32 *result) 1680 { 1681 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1682 buflen, result); 1683 } 1684 EXPORT_SYMBOL_GPL(nvme_set_features); 1685 1686 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1687 unsigned int dword11, void *buffer, size_t buflen, 1688 u32 *result) 1689 { 1690 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1691 buflen, result); 1692 } 1693 EXPORT_SYMBOL_GPL(nvme_get_features); 1694 1695 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1696 { 1697 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1698 u32 result; 1699 int status, nr_io_queues; 1700 1701 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1702 &result); 1703 1704 /* 1705 * It's either a kernel error or the host observed a connection 1706 * lost. In either case it's not possible communicate with the 1707 * controller and thus enter the error code path. 1708 */ 1709 if (status < 0 || status == NVME_SC_HOST_PATH_ERROR) 1710 return status; 1711 1712 /* 1713 * Degraded controllers might return an error when setting the queue 1714 * count. We still want to be able to bring them online and offer 1715 * access to the admin queue, as that might be only way to fix them up. 1716 */ 1717 if (status > 0) { 1718 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1719 *count = 0; 1720 } else { 1721 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1722 *count = min(*count, nr_io_queues); 1723 } 1724 1725 return 0; 1726 } 1727 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1728 1729 #define NVME_AEN_SUPPORTED \ 1730 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1731 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1732 1733 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1734 { 1735 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1736 int status; 1737 1738 if (!supported_aens) 1739 return; 1740 1741 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1742 NULL, 0, &result); 1743 if (status) 1744 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1745 supported_aens); 1746 1747 queue_work(nvme_wq, &ctrl->async_event_work); 1748 } 1749 1750 static int nvme_ns_open(struct nvme_ns *ns) 1751 { 1752 1753 /* should never be called due to GENHD_FL_HIDDEN */ 1754 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1755 goto fail; 1756 if (!nvme_get_ns(ns)) 1757 goto fail; 1758 if (!try_module_get(ns->ctrl->ops->module)) 1759 goto fail_put_ns; 1760 1761 return 0; 1762 1763 fail_put_ns: 1764 nvme_put_ns(ns); 1765 fail: 1766 return -ENXIO; 1767 } 1768 1769 static void nvme_ns_release(struct nvme_ns *ns) 1770 { 1771 1772 module_put(ns->ctrl->ops->module); 1773 nvme_put_ns(ns); 1774 } 1775 1776 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1777 { 1778 return nvme_ns_open(disk->private_data); 1779 } 1780 1781 static void nvme_release(struct gendisk *disk) 1782 { 1783 nvme_ns_release(disk->private_data); 1784 } 1785 1786 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1787 { 1788 /* some standard values */ 1789 geo->heads = 1 << 6; 1790 geo->sectors = 1 << 5; 1791 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1792 return 0; 1793 } 1794 1795 static bool nvme_init_integrity(struct nvme_ns_head *head, 1796 struct queue_limits *lim, struct nvme_ns_info *info) 1797 { 1798 struct blk_integrity *bi = &lim->integrity; 1799 1800 memset(bi, 0, sizeof(*bi)); 1801 1802 if (!head->ms) 1803 return true; 1804 1805 /* 1806 * PI can always be supported as we can ask the controller to simply 1807 * insert/strip it, which is not possible for other kinds of metadata. 1808 */ 1809 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1810 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1811 return nvme_ns_has_pi(head); 1812 1813 switch (head->pi_type) { 1814 case NVME_NS_DPS_PI_TYPE3: 1815 switch (head->guard_type) { 1816 case NVME_NVM_NS_16B_GUARD: 1817 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1818 bi->tag_size = sizeof(u16) + sizeof(u32); 1819 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1820 break; 1821 case NVME_NVM_NS_64B_GUARD: 1822 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1823 bi->tag_size = sizeof(u16) + 6; 1824 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1825 break; 1826 default: 1827 break; 1828 } 1829 break; 1830 case NVME_NS_DPS_PI_TYPE1: 1831 case NVME_NS_DPS_PI_TYPE2: 1832 switch (head->guard_type) { 1833 case NVME_NVM_NS_16B_GUARD: 1834 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1835 bi->tag_size = sizeof(u16); 1836 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1837 BLK_INTEGRITY_REF_TAG; 1838 break; 1839 case NVME_NVM_NS_64B_GUARD: 1840 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1841 bi->tag_size = sizeof(u16); 1842 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1843 BLK_INTEGRITY_REF_TAG; 1844 break; 1845 default: 1846 break; 1847 } 1848 break; 1849 default: 1850 break; 1851 } 1852 1853 bi->tuple_size = head->ms; 1854 bi->pi_offset = info->pi_offset; 1855 return true; 1856 } 1857 1858 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1859 { 1860 struct nvme_ctrl *ctrl = ns->ctrl; 1861 1862 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1863 lim->max_hw_discard_sectors = 1864 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1865 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1866 lim->max_hw_discard_sectors = UINT_MAX; 1867 else 1868 lim->max_hw_discard_sectors = 0; 1869 1870 lim->discard_granularity = lim->logical_block_size; 1871 1872 if (ctrl->dmrl) 1873 lim->max_discard_segments = ctrl->dmrl; 1874 else 1875 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1876 } 1877 1878 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1879 { 1880 return uuid_equal(&a->uuid, &b->uuid) && 1881 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1882 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1883 a->csi == b->csi; 1884 } 1885 1886 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1887 struct nvme_id_ns_nvm **nvmp) 1888 { 1889 struct nvme_command c = { 1890 .identify.opcode = nvme_admin_identify, 1891 .identify.nsid = cpu_to_le32(nsid), 1892 .identify.cns = NVME_ID_CNS_CS_NS, 1893 .identify.csi = NVME_CSI_NVM, 1894 }; 1895 struct nvme_id_ns_nvm *nvm; 1896 int ret; 1897 1898 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1899 if (!nvm) 1900 return -ENOMEM; 1901 1902 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1903 if (ret) 1904 kfree(nvm); 1905 else 1906 *nvmp = nvm; 1907 return ret; 1908 } 1909 1910 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1911 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1912 { 1913 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1914 u8 guard_type; 1915 1916 /* no support for storage tag formats right now */ 1917 if (nvme_elbaf_sts(elbaf)) 1918 return; 1919 1920 guard_type = nvme_elbaf_guard_type(elbaf); 1921 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && 1922 guard_type == NVME_NVM_NS_QTYPE_GUARD) 1923 guard_type = nvme_elbaf_qualified_guard_type(elbaf); 1924 1925 head->guard_type = guard_type; 1926 switch (head->guard_type) { 1927 case NVME_NVM_NS_64B_GUARD: 1928 head->pi_size = sizeof(struct crc64_pi_tuple); 1929 break; 1930 case NVME_NVM_NS_16B_GUARD: 1931 head->pi_size = sizeof(struct t10_pi_tuple); 1932 break; 1933 default: 1934 break; 1935 } 1936 } 1937 1938 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1939 struct nvme_ns_head *head, struct nvme_id_ns *id, 1940 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) 1941 { 1942 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1943 head->pi_type = 0; 1944 head->pi_size = 0; 1945 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1946 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1947 return; 1948 1949 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1950 nvme_configure_pi_elbas(head, id, nvm); 1951 } else { 1952 head->pi_size = sizeof(struct t10_pi_tuple); 1953 head->guard_type = NVME_NVM_NS_16B_GUARD; 1954 } 1955 1956 if (head->pi_size && head->ms >= head->pi_size) 1957 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1958 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) { 1959 if (disable_pi_offsets) 1960 head->pi_type = 0; 1961 else 1962 info->pi_offset = head->ms - head->pi_size; 1963 } 1964 1965 if (ctrl->ops->flags & NVME_F_FABRICS) { 1966 /* 1967 * The NVMe over Fabrics specification only supports metadata as 1968 * part of the extended data LBA. We rely on HCA/HBA support to 1969 * remap the separate metadata buffer from the block layer. 1970 */ 1971 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1972 return; 1973 1974 head->features |= NVME_NS_EXT_LBAS; 1975 1976 /* 1977 * The current fabrics transport drivers support namespace 1978 * metadata formats only if nvme_ns_has_pi() returns true. 1979 * Suppress support for all other formats so the namespace will 1980 * have a 0 capacity and not be usable through the block stack. 1981 * 1982 * Note, this check will need to be modified if any drivers 1983 * gain the ability to use other metadata formats. 1984 */ 1985 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1986 head->features |= NVME_NS_METADATA_SUPPORTED; 1987 } else { 1988 /* 1989 * For PCIe controllers, we can't easily remap the separate 1990 * metadata buffer from the block layer and thus require a 1991 * separate metadata buffer for block layer metadata/PI support. 1992 * We allow extended LBAs for the passthrough interface, though. 1993 */ 1994 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1995 head->features |= NVME_NS_EXT_LBAS; 1996 else 1997 head->features |= NVME_NS_METADATA_SUPPORTED; 1998 } 1999 } 2000 2001 2002 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, 2003 struct nvme_id_ns *id, struct queue_limits *lim, 2004 u32 bs, u32 atomic_bs) 2005 { 2006 unsigned int boundary = 0; 2007 2008 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { 2009 if (le16_to_cpu(id->nabspf)) 2010 boundary = (le16_to_cpu(id->nabspf) + 1) * bs; 2011 } 2012 lim->atomic_write_hw_max = atomic_bs; 2013 lim->atomic_write_hw_boundary = boundary; 2014 lim->atomic_write_hw_unit_min = bs; 2015 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); 2016 lim->features |= BLK_FEAT_ATOMIC_WRITES; 2017 } 2018 2019 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 2020 { 2021 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 2022 } 2023 2024 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 2025 struct queue_limits *lim) 2026 { 2027 lim->max_hw_sectors = ctrl->max_hw_sectors; 2028 lim->max_segments = min_t(u32, USHRT_MAX, 2029 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 2030 lim->max_integrity_segments = ctrl->max_integrity_segments; 2031 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 2032 lim->max_segment_size = UINT_MAX; 2033 lim->dma_alignment = 3; 2034 } 2035 2036 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 2037 struct queue_limits *lim) 2038 { 2039 struct nvme_ns_head *head = ns->head; 2040 u32 bs = 1U << head->lba_shift; 2041 u32 atomic_bs, phys_bs, io_opt = 0; 2042 bool valid = true; 2043 2044 /* 2045 * The block layer can't support LBA sizes larger than the page size 2046 * or smaller than a sector size yet, so catch this early and don't 2047 * allow block I/O. 2048 */ 2049 if (blk_validate_block_size(bs)) { 2050 bs = (1 << 9); 2051 valid = false; 2052 } 2053 2054 atomic_bs = phys_bs = bs; 2055 if (id->nabo == 0) { 2056 /* 2057 * Bit 1 indicates whether NAWUPF is defined for this namespace 2058 * and whether it should be used instead of AWUPF. If NAWUPF == 2059 * 0 then AWUPF must be used instead. 2060 */ 2061 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 2062 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2063 else 2064 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2065 2066 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); 2067 } 2068 2069 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2070 /* NPWG = Namespace Preferred Write Granularity */ 2071 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2072 /* NOWS = Namespace Optimal Write Size */ 2073 if (id->nows) 2074 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2075 } 2076 2077 /* 2078 * Linux filesystems assume writing a single physical block is 2079 * an atomic operation. Hence limit the physical block size to the 2080 * value of the Atomic Write Unit Power Fail parameter. 2081 */ 2082 lim->logical_block_size = bs; 2083 lim->physical_block_size = min(phys_bs, atomic_bs); 2084 lim->io_min = phys_bs; 2085 lim->io_opt = io_opt; 2086 if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) && 2087 (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)) 2088 lim->max_write_zeroes_sectors = UINT_MAX; 2089 else 2090 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 2091 return valid; 2092 } 2093 2094 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 2095 { 2096 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 2097 } 2098 2099 static inline bool nvme_first_scan(struct gendisk *disk) 2100 { 2101 /* nvme_alloc_ns() scans the disk prior to adding it */ 2102 return !disk_live(disk); 2103 } 2104 2105 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2106 struct queue_limits *lim) 2107 { 2108 struct nvme_ctrl *ctrl = ns->ctrl; 2109 u32 iob; 2110 2111 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2112 is_power_of_2(ctrl->max_hw_sectors)) 2113 iob = ctrl->max_hw_sectors; 2114 else 2115 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2116 2117 if (!iob) 2118 return; 2119 2120 if (!is_power_of_2(iob)) { 2121 if (nvme_first_scan(ns->disk)) 2122 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2123 ns->disk->disk_name, iob); 2124 return; 2125 } 2126 2127 if (blk_queue_is_zoned(ns->disk->queue)) { 2128 if (nvme_first_scan(ns->disk)) 2129 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2130 ns->disk->disk_name); 2131 return; 2132 } 2133 2134 lim->chunk_sectors = iob; 2135 } 2136 2137 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2138 struct nvme_ns_info *info) 2139 { 2140 struct queue_limits lim; 2141 unsigned int memflags; 2142 int ret; 2143 2144 lim = queue_limits_start_update(ns->disk->queue); 2145 nvme_set_ctrl_limits(ns->ctrl, &lim); 2146 2147 memflags = blk_mq_freeze_queue(ns->disk->queue); 2148 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2149 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2150 blk_mq_unfreeze_queue(ns->disk->queue, memflags); 2151 2152 /* Hide the block-interface for these devices */ 2153 if (!ret) 2154 ret = -ENODEV; 2155 return ret; 2156 } 2157 2158 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2159 struct nvme_ns_info *info) 2160 { 2161 struct queue_limits lim; 2162 struct nvme_id_ns_nvm *nvm = NULL; 2163 struct nvme_zone_info zi = {}; 2164 struct nvme_id_ns *id; 2165 unsigned int memflags; 2166 sector_t capacity; 2167 unsigned lbaf; 2168 int ret; 2169 2170 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2171 if (ret) 2172 return ret; 2173 2174 if (id->ncap == 0) { 2175 /* namespace not allocated or attached */ 2176 info->is_removed = true; 2177 ret = -ENXIO; 2178 goto out; 2179 } 2180 lbaf = nvme_lbaf_index(id->flbas); 2181 2182 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2183 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2184 if (ret < 0) 2185 goto out; 2186 } 2187 2188 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2189 ns->head->ids.csi == NVME_CSI_ZNS) { 2190 ret = nvme_query_zone_info(ns, lbaf, &zi); 2191 if (ret < 0) 2192 goto out; 2193 } 2194 2195 lim = queue_limits_start_update(ns->disk->queue); 2196 2197 memflags = blk_mq_freeze_queue(ns->disk->queue); 2198 ns->head->lba_shift = id->lbaf[lbaf].ds; 2199 ns->head->nuse = le64_to_cpu(id->nuse); 2200 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2201 nvme_set_ctrl_limits(ns->ctrl, &lim); 2202 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info); 2203 nvme_set_chunk_sectors(ns, id, &lim); 2204 if (!nvme_update_disk_info(ns, id, &lim)) 2205 capacity = 0; 2206 nvme_config_discard(ns, &lim); 2207 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2208 ns->head->ids.csi == NVME_CSI_ZNS) 2209 nvme_update_zone_info(ns, &lim, &zi); 2210 2211 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc) 2212 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2213 else 2214 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2215 2216 if (info->is_rotational) 2217 lim.features |= BLK_FEAT_ROTATIONAL; 2218 2219 /* 2220 * Register a metadata profile for PI, or the plain non-integrity NVMe 2221 * metadata masquerading as Type 0 if supported, otherwise reject block 2222 * I/O to namespaces with metadata except when the namespace supports 2223 * PI, as it can strip/insert in that case. 2224 */ 2225 if (!nvme_init_integrity(ns->head, &lim, info)) 2226 capacity = 0; 2227 2228 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2229 if (ret) { 2230 blk_mq_unfreeze_queue(ns->disk->queue, memflags); 2231 goto out; 2232 } 2233 2234 set_capacity_and_notify(ns->disk, capacity); 2235 2236 /* 2237 * Only set the DEAC bit if the device guarantees that reads from 2238 * deallocated data return zeroes. While the DEAC bit does not 2239 * require that, it must be a no-op if reads from deallocated data 2240 * do not return zeroes. 2241 */ 2242 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2243 ns->head->features |= NVME_NS_DEAC; 2244 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2245 set_bit(NVME_NS_READY, &ns->flags); 2246 blk_mq_unfreeze_queue(ns->disk->queue, memflags); 2247 2248 if (blk_queue_is_zoned(ns->queue)) { 2249 ret = blk_revalidate_disk_zones(ns->disk); 2250 if (ret && !nvme_first_scan(ns->disk)) 2251 goto out; 2252 } 2253 2254 ret = 0; 2255 out: 2256 kfree(nvm); 2257 kfree(id); 2258 return ret; 2259 } 2260 2261 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2262 { 2263 bool unsupported = false; 2264 int ret; 2265 2266 switch (info->ids.csi) { 2267 case NVME_CSI_ZNS: 2268 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2269 dev_info(ns->ctrl->device, 2270 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2271 info->nsid); 2272 ret = nvme_update_ns_info_generic(ns, info); 2273 break; 2274 } 2275 ret = nvme_update_ns_info_block(ns, info); 2276 break; 2277 case NVME_CSI_NVM: 2278 ret = nvme_update_ns_info_block(ns, info); 2279 break; 2280 default: 2281 dev_info(ns->ctrl->device, 2282 "block device for nsid %u not supported (csi %u)\n", 2283 info->nsid, info->ids.csi); 2284 ret = nvme_update_ns_info_generic(ns, info); 2285 break; 2286 } 2287 2288 /* 2289 * If probing fails due an unsupported feature, hide the block device, 2290 * but still allow other access. 2291 */ 2292 if (ret == -ENODEV) { 2293 ns->disk->flags |= GENHD_FL_HIDDEN; 2294 set_bit(NVME_NS_READY, &ns->flags); 2295 unsupported = true; 2296 ret = 0; 2297 } 2298 2299 if (!ret && nvme_ns_head_multipath(ns->head)) { 2300 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2301 struct queue_limits lim; 2302 unsigned int memflags; 2303 2304 lim = queue_limits_start_update(ns->head->disk->queue); 2305 memflags = blk_mq_freeze_queue(ns->head->disk->queue); 2306 /* 2307 * queue_limits mixes values that are the hardware limitations 2308 * for bio splitting with what is the device configuration. 2309 * 2310 * For NVMe the device configuration can change after e.g. a 2311 * Format command, and we really want to pick up the new format 2312 * value here. But we must still stack the queue limits to the 2313 * least common denominator for multipathing to split the bios 2314 * properly. 2315 * 2316 * To work around this, we explicitly set the device 2317 * configuration to those that we just queried, but only stack 2318 * the splitting limits in to make sure we still obey possibly 2319 * lower limitations of other controllers. 2320 */ 2321 lim.logical_block_size = ns_lim->logical_block_size; 2322 lim.physical_block_size = ns_lim->physical_block_size; 2323 lim.io_min = ns_lim->io_min; 2324 lim.io_opt = ns_lim->io_opt; 2325 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2326 ns->head->disk->disk_name); 2327 if (unsupported) 2328 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2329 else 2330 nvme_init_integrity(ns->head, &lim, info); 2331 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2332 2333 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2334 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2335 nvme_mpath_revalidate_paths(ns); 2336 2337 blk_mq_unfreeze_queue(ns->head->disk->queue, memflags); 2338 } 2339 2340 return ret; 2341 } 2342 2343 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], 2344 enum blk_unique_id type) 2345 { 2346 struct nvme_ns_ids *ids = &ns->head->ids; 2347 2348 if (type != BLK_UID_EUI64) 2349 return -EINVAL; 2350 2351 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { 2352 memcpy(id, &ids->nguid, sizeof(ids->nguid)); 2353 return sizeof(ids->nguid); 2354 } 2355 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { 2356 memcpy(id, &ids->eui64, sizeof(ids->eui64)); 2357 return sizeof(ids->eui64); 2358 } 2359 2360 return -EINVAL; 2361 } 2362 2363 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], 2364 enum blk_unique_id type) 2365 { 2366 return nvme_ns_get_unique_id(disk->private_data, id, type); 2367 } 2368 2369 #ifdef CONFIG_BLK_SED_OPAL 2370 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2371 bool send) 2372 { 2373 struct nvme_ctrl *ctrl = data; 2374 struct nvme_command cmd = { }; 2375 2376 if (send) 2377 cmd.common.opcode = nvme_admin_security_send; 2378 else 2379 cmd.common.opcode = nvme_admin_security_recv; 2380 cmd.common.nsid = 0; 2381 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2382 cmd.common.cdw11 = cpu_to_le32(len); 2383 2384 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2385 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2386 } 2387 2388 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2389 { 2390 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2391 if (!ctrl->opal_dev) 2392 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2393 else if (was_suspended) 2394 opal_unlock_from_suspend(ctrl->opal_dev); 2395 } else { 2396 free_opal_dev(ctrl->opal_dev); 2397 ctrl->opal_dev = NULL; 2398 } 2399 } 2400 #else 2401 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2402 { 2403 } 2404 #endif /* CONFIG_BLK_SED_OPAL */ 2405 2406 #ifdef CONFIG_BLK_DEV_ZONED 2407 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2408 unsigned int nr_zones, report_zones_cb cb, void *data) 2409 { 2410 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2411 data); 2412 } 2413 #else 2414 #define nvme_report_zones NULL 2415 #endif /* CONFIG_BLK_DEV_ZONED */ 2416 2417 const struct block_device_operations nvme_bdev_ops = { 2418 .owner = THIS_MODULE, 2419 .ioctl = nvme_ioctl, 2420 .compat_ioctl = blkdev_compat_ptr_ioctl, 2421 .open = nvme_open, 2422 .release = nvme_release, 2423 .getgeo = nvme_getgeo, 2424 .get_unique_id = nvme_get_unique_id, 2425 .report_zones = nvme_report_zones, 2426 .pr_ops = &nvme_pr_ops, 2427 }; 2428 2429 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2430 u32 timeout, const char *op) 2431 { 2432 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2433 u32 csts; 2434 int ret; 2435 2436 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2437 if (csts == ~0) 2438 return -ENODEV; 2439 if ((csts & mask) == val) 2440 break; 2441 2442 usleep_range(1000, 2000); 2443 if (fatal_signal_pending(current)) 2444 return -EINTR; 2445 if (time_after(jiffies, timeout_jiffies)) { 2446 dev_err(ctrl->device, 2447 "Device not ready; aborting %s, CSTS=0x%x\n", 2448 op, csts); 2449 return -ENODEV; 2450 } 2451 } 2452 2453 return ret; 2454 } 2455 2456 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2457 { 2458 int ret; 2459 2460 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2461 if (shutdown) 2462 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2463 else 2464 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2465 2466 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2467 if (ret) 2468 return ret; 2469 2470 if (shutdown) { 2471 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2472 NVME_CSTS_SHST_CMPLT, 2473 ctrl->shutdown_timeout, "shutdown"); 2474 } 2475 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2476 msleep(NVME_QUIRK_DELAY_AMOUNT); 2477 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2478 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2479 } 2480 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2481 2482 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2483 { 2484 unsigned dev_page_min; 2485 u32 timeout; 2486 int ret; 2487 2488 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2489 if (ret) { 2490 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2491 return ret; 2492 } 2493 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2494 2495 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2496 dev_err(ctrl->device, 2497 "Minimum device page size %u too large for host (%u)\n", 2498 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2499 return -ENODEV; 2500 } 2501 2502 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2503 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2504 else 2505 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2506 2507 /* 2508 * Setting CRIME results in CSTS.RDY before the media is ready. This 2509 * makes it possible for media related commands to return the error 2510 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is 2511 * restructured to handle retries, disable CC.CRIME. 2512 */ 2513 ctrl->ctrl_config &= ~NVME_CC_CRIME; 2514 2515 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2516 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2517 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2518 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2519 if (ret) 2520 return ret; 2521 2522 /* CAP value may change after initial CC write */ 2523 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2524 if (ret) 2525 return ret; 2526 2527 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2528 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2529 u32 crto, ready_timeout; 2530 2531 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2532 if (ret) { 2533 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2534 ret); 2535 return ret; 2536 } 2537 2538 /* 2539 * CRTO should always be greater or equal to CAP.TO, but some 2540 * devices are known to get this wrong. Use the larger of the 2541 * two values. 2542 */ 2543 ready_timeout = NVME_CRTO_CRWMT(crto); 2544 2545 if (ready_timeout < timeout) 2546 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2547 crto, ctrl->cap); 2548 else 2549 timeout = ready_timeout; 2550 } 2551 2552 ctrl->ctrl_config |= NVME_CC_ENABLE; 2553 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2554 if (ret) 2555 return ret; 2556 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2557 (timeout + 1) / 2, "initialisation"); 2558 } 2559 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2560 2561 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2562 { 2563 __le64 ts; 2564 int ret; 2565 2566 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2567 return 0; 2568 2569 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2570 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2571 NULL); 2572 if (ret) 2573 dev_warn_once(ctrl->device, 2574 "could not set timestamp (%d)\n", ret); 2575 return ret; 2576 } 2577 2578 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2579 { 2580 struct nvme_feat_host_behavior *host; 2581 u8 acre = 0, lbafee = 0; 2582 int ret; 2583 2584 /* Don't bother enabling the feature if retry delay is not reported */ 2585 if (ctrl->crdt[0]) 2586 acre = NVME_ENABLE_ACRE; 2587 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2588 lbafee = NVME_ENABLE_LBAFEE; 2589 2590 if (!acre && !lbafee) 2591 return 0; 2592 2593 host = kzalloc(sizeof(*host), GFP_KERNEL); 2594 if (!host) 2595 return 0; 2596 2597 host->acre = acre; 2598 host->lbafee = lbafee; 2599 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2600 host, sizeof(*host), NULL); 2601 kfree(host); 2602 return ret; 2603 } 2604 2605 /* 2606 * The function checks whether the given total (exlat + enlat) latency of 2607 * a power state allows the latter to be used as an APST transition target. 2608 * It does so by comparing the latency to the primary and secondary latency 2609 * tolerances defined by module params. If there's a match, the corresponding 2610 * timeout value is returned and the matching tolerance index (1 or 2) is 2611 * reported. 2612 */ 2613 static bool nvme_apst_get_transition_time(u64 total_latency, 2614 u64 *transition_time, unsigned *last_index) 2615 { 2616 if (total_latency <= apst_primary_latency_tol_us) { 2617 if (*last_index == 1) 2618 return false; 2619 *last_index = 1; 2620 *transition_time = apst_primary_timeout_ms; 2621 return true; 2622 } 2623 if (apst_secondary_timeout_ms && 2624 total_latency <= apst_secondary_latency_tol_us) { 2625 if (*last_index <= 2) 2626 return false; 2627 *last_index = 2; 2628 *transition_time = apst_secondary_timeout_ms; 2629 return true; 2630 } 2631 return false; 2632 } 2633 2634 /* 2635 * APST (Autonomous Power State Transition) lets us program a table of power 2636 * state transitions that the controller will perform automatically. 2637 * 2638 * Depending on module params, one of the two supported techniques will be used: 2639 * 2640 * - If the parameters provide explicit timeouts and tolerances, they will be 2641 * used to build a table with up to 2 non-operational states to transition to. 2642 * The default parameter values were selected based on the values used by 2643 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2644 * regeneration of the APST table in the event of switching between external 2645 * and battery power, the timeouts and tolerances reflect a compromise 2646 * between values used by Microsoft for AC and battery scenarios. 2647 * - If not, we'll configure the table with a simple heuristic: we are willing 2648 * to spend at most 2% of the time transitioning between power states. 2649 * Therefore, when running in any given state, we will enter the next 2650 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2651 * microseconds, as long as that state's exit latency is under the requested 2652 * maximum latency. 2653 * 2654 * We will not autonomously enter any non-operational state for which the total 2655 * latency exceeds ps_max_latency_us. 2656 * 2657 * Users can set ps_max_latency_us to zero to turn off APST. 2658 */ 2659 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2660 { 2661 struct nvme_feat_auto_pst *table; 2662 unsigned apste = 0; 2663 u64 max_lat_us = 0; 2664 __le64 target = 0; 2665 int max_ps = -1; 2666 int state; 2667 int ret; 2668 unsigned last_lt_index = UINT_MAX; 2669 2670 /* 2671 * If APST isn't supported or if we haven't been initialized yet, 2672 * then don't do anything. 2673 */ 2674 if (!ctrl->apsta) 2675 return 0; 2676 2677 if (ctrl->npss > 31) { 2678 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2679 return 0; 2680 } 2681 2682 table = kzalloc(sizeof(*table), GFP_KERNEL); 2683 if (!table) 2684 return 0; 2685 2686 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2687 /* Turn off APST. */ 2688 dev_dbg(ctrl->device, "APST disabled\n"); 2689 goto done; 2690 } 2691 2692 /* 2693 * Walk through all states from lowest- to highest-power. 2694 * According to the spec, lower-numbered states use more power. NPSS, 2695 * despite the name, is the index of the lowest-power state, not the 2696 * number of states. 2697 */ 2698 for (state = (int)ctrl->npss; state >= 0; state--) { 2699 u64 total_latency_us, exit_latency_us, transition_ms; 2700 2701 if (target) 2702 table->entries[state] = target; 2703 2704 /* 2705 * Don't allow transitions to the deepest state if it's quirked 2706 * off. 2707 */ 2708 if (state == ctrl->npss && 2709 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2710 continue; 2711 2712 /* 2713 * Is this state a useful non-operational state for higher-power 2714 * states to autonomously transition to? 2715 */ 2716 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2717 continue; 2718 2719 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2720 if (exit_latency_us > ctrl->ps_max_latency_us) 2721 continue; 2722 2723 total_latency_us = exit_latency_us + 2724 le32_to_cpu(ctrl->psd[state].entry_lat); 2725 2726 /* 2727 * This state is good. It can be used as the APST idle target 2728 * for higher power states. 2729 */ 2730 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2731 if (!nvme_apst_get_transition_time(total_latency_us, 2732 &transition_ms, &last_lt_index)) 2733 continue; 2734 } else { 2735 transition_ms = total_latency_us + 19; 2736 do_div(transition_ms, 20); 2737 if (transition_ms > (1 << 24) - 1) 2738 transition_ms = (1 << 24) - 1; 2739 } 2740 2741 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2742 if (max_ps == -1) 2743 max_ps = state; 2744 if (total_latency_us > max_lat_us) 2745 max_lat_us = total_latency_us; 2746 } 2747 2748 if (max_ps == -1) 2749 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2750 else 2751 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2752 max_ps, max_lat_us, (int)sizeof(*table), table); 2753 apste = 1; 2754 2755 done: 2756 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2757 table, sizeof(*table), NULL); 2758 if (ret) 2759 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2760 kfree(table); 2761 return ret; 2762 } 2763 2764 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2765 { 2766 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2767 u64 latency; 2768 2769 switch (val) { 2770 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2771 case PM_QOS_LATENCY_ANY: 2772 latency = U64_MAX; 2773 break; 2774 2775 default: 2776 latency = val; 2777 } 2778 2779 if (ctrl->ps_max_latency_us != latency) { 2780 ctrl->ps_max_latency_us = latency; 2781 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2782 nvme_configure_apst(ctrl); 2783 } 2784 } 2785 2786 struct nvme_core_quirk_entry { 2787 /* 2788 * NVMe model and firmware strings are padded with spaces. For 2789 * simplicity, strings in the quirk table are padded with NULLs 2790 * instead. 2791 */ 2792 u16 vid; 2793 const char *mn; 2794 const char *fr; 2795 unsigned long quirks; 2796 }; 2797 2798 static const struct nvme_core_quirk_entry core_quirks[] = { 2799 { 2800 /* 2801 * This Toshiba device seems to die using any APST states. See: 2802 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2803 */ 2804 .vid = 0x1179, 2805 .mn = "THNSF5256GPUK TOSHIBA", 2806 .quirks = NVME_QUIRK_NO_APST, 2807 }, 2808 { 2809 /* 2810 * This LiteON CL1-3D*-Q11 firmware version has a race 2811 * condition associated with actions related to suspend to idle 2812 * LiteON has resolved the problem in future firmware 2813 */ 2814 .vid = 0x14a4, 2815 .fr = "22301111", 2816 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2817 }, 2818 { 2819 /* 2820 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2821 * aborts I/O during any load, but more easily reproducible 2822 * with discards (fstrim). 2823 * 2824 * The device is left in a state where it is also not possible 2825 * to use "nvme set-feature" to disable APST, but booting with 2826 * nvme_core.default_ps_max_latency=0 works. 2827 */ 2828 .vid = 0x1e0f, 2829 .mn = "KCD6XVUL6T40", 2830 .quirks = NVME_QUIRK_NO_APST, 2831 }, 2832 { 2833 /* 2834 * The external Samsung X5 SSD fails initialization without a 2835 * delay before checking if it is ready and has a whole set of 2836 * other problems. To make this even more interesting, it 2837 * shares the PCI ID with internal Samsung 970 Evo Plus that 2838 * does not need or want these quirks. 2839 */ 2840 .vid = 0x144d, 2841 .mn = "Samsung Portable SSD X5", 2842 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2843 NVME_QUIRK_NO_DEEPEST_PS | 2844 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2845 } 2846 }; 2847 2848 /* match is null-terminated but idstr is space-padded. */ 2849 static bool string_matches(const char *idstr, const char *match, size_t len) 2850 { 2851 size_t matchlen; 2852 2853 if (!match) 2854 return true; 2855 2856 matchlen = strlen(match); 2857 WARN_ON_ONCE(matchlen > len); 2858 2859 if (memcmp(idstr, match, matchlen)) 2860 return false; 2861 2862 for (; matchlen < len; matchlen++) 2863 if (idstr[matchlen] != ' ') 2864 return false; 2865 2866 return true; 2867 } 2868 2869 static bool quirk_matches(const struct nvme_id_ctrl *id, 2870 const struct nvme_core_quirk_entry *q) 2871 { 2872 return q->vid == le16_to_cpu(id->vid) && 2873 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2874 string_matches(id->fr, q->fr, sizeof(id->fr)); 2875 } 2876 2877 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2878 struct nvme_id_ctrl *id) 2879 { 2880 size_t nqnlen; 2881 int off; 2882 2883 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2884 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2885 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2886 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2887 return; 2888 } 2889 2890 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2891 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2892 } 2893 2894 /* 2895 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2896 * Base Specification 2.0. It is slightly different from the format 2897 * specified there due to historic reasons, and we can't change it now. 2898 */ 2899 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2900 "nqn.2014.08.org.nvmexpress:%04x%04x", 2901 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2902 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2903 off += sizeof(id->sn); 2904 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2905 off += sizeof(id->mn); 2906 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2907 } 2908 2909 static void nvme_release_subsystem(struct device *dev) 2910 { 2911 struct nvme_subsystem *subsys = 2912 container_of(dev, struct nvme_subsystem, dev); 2913 2914 if (subsys->instance >= 0) 2915 ida_free(&nvme_instance_ida, subsys->instance); 2916 kfree(subsys); 2917 } 2918 2919 static void nvme_destroy_subsystem(struct kref *ref) 2920 { 2921 struct nvme_subsystem *subsys = 2922 container_of(ref, struct nvme_subsystem, ref); 2923 2924 mutex_lock(&nvme_subsystems_lock); 2925 list_del(&subsys->entry); 2926 mutex_unlock(&nvme_subsystems_lock); 2927 2928 ida_destroy(&subsys->ns_ida); 2929 device_del(&subsys->dev); 2930 put_device(&subsys->dev); 2931 } 2932 2933 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2934 { 2935 kref_put(&subsys->ref, nvme_destroy_subsystem); 2936 } 2937 2938 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2939 { 2940 struct nvme_subsystem *subsys; 2941 2942 lockdep_assert_held(&nvme_subsystems_lock); 2943 2944 /* 2945 * Fail matches for discovery subsystems. This results 2946 * in each discovery controller bound to a unique subsystem. 2947 * This avoids issues with validating controller values 2948 * that can only be true when there is a single unique subsystem. 2949 * There may be multiple and completely independent entities 2950 * that provide discovery controllers. 2951 */ 2952 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2953 return NULL; 2954 2955 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2956 if (strcmp(subsys->subnqn, subsysnqn)) 2957 continue; 2958 if (!kref_get_unless_zero(&subsys->ref)) 2959 continue; 2960 return subsys; 2961 } 2962 2963 return NULL; 2964 } 2965 2966 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2967 { 2968 return ctrl->opts && ctrl->opts->discovery_nqn; 2969 } 2970 2971 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2972 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2973 { 2974 struct nvme_ctrl *tmp; 2975 2976 lockdep_assert_held(&nvme_subsystems_lock); 2977 2978 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2979 if (nvme_state_terminal(tmp)) 2980 continue; 2981 2982 if (tmp->cntlid == ctrl->cntlid) { 2983 dev_err(ctrl->device, 2984 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2985 ctrl->cntlid, dev_name(tmp->device), 2986 subsys->subnqn); 2987 return false; 2988 } 2989 2990 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2991 nvme_discovery_ctrl(ctrl)) 2992 continue; 2993 2994 dev_err(ctrl->device, 2995 "Subsystem does not support multiple controllers\n"); 2996 return false; 2997 } 2998 2999 return true; 3000 } 3001 3002 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3003 { 3004 struct nvme_subsystem *subsys, *found; 3005 int ret; 3006 3007 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 3008 if (!subsys) 3009 return -ENOMEM; 3010 3011 subsys->instance = -1; 3012 mutex_init(&subsys->lock); 3013 kref_init(&subsys->ref); 3014 INIT_LIST_HEAD(&subsys->ctrls); 3015 INIT_LIST_HEAD(&subsys->nsheads); 3016 nvme_init_subnqn(subsys, ctrl, id); 3017 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 3018 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 3019 subsys->vendor_id = le16_to_cpu(id->vid); 3020 subsys->cmic = id->cmic; 3021 3022 /* Versions prior to 1.4 don't necessarily report a valid type */ 3023 if (id->cntrltype == NVME_CTRL_DISC || 3024 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 3025 subsys->subtype = NVME_NQN_DISC; 3026 else 3027 subsys->subtype = NVME_NQN_NVME; 3028 3029 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 3030 dev_err(ctrl->device, 3031 "Subsystem %s is not a discovery controller", 3032 subsys->subnqn); 3033 kfree(subsys); 3034 return -EINVAL; 3035 } 3036 subsys->awupf = le16_to_cpu(id->awupf); 3037 nvme_mpath_default_iopolicy(subsys); 3038 3039 subsys->dev.class = &nvme_subsys_class; 3040 subsys->dev.release = nvme_release_subsystem; 3041 subsys->dev.groups = nvme_subsys_attrs_groups; 3042 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 3043 device_initialize(&subsys->dev); 3044 3045 mutex_lock(&nvme_subsystems_lock); 3046 found = __nvme_find_get_subsystem(subsys->subnqn); 3047 if (found) { 3048 put_device(&subsys->dev); 3049 subsys = found; 3050 3051 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 3052 ret = -EINVAL; 3053 goto out_put_subsystem; 3054 } 3055 } else { 3056 ret = device_add(&subsys->dev); 3057 if (ret) { 3058 dev_err(ctrl->device, 3059 "failed to register subsystem device.\n"); 3060 put_device(&subsys->dev); 3061 goto out_unlock; 3062 } 3063 ida_init(&subsys->ns_ida); 3064 list_add_tail(&subsys->entry, &nvme_subsystems); 3065 } 3066 3067 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 3068 dev_name(ctrl->device)); 3069 if (ret) { 3070 dev_err(ctrl->device, 3071 "failed to create sysfs link from subsystem.\n"); 3072 goto out_put_subsystem; 3073 } 3074 3075 if (!found) 3076 subsys->instance = ctrl->instance; 3077 ctrl->subsys = subsys; 3078 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3079 mutex_unlock(&nvme_subsystems_lock); 3080 return 0; 3081 3082 out_put_subsystem: 3083 nvme_put_subsystem(subsys); 3084 out_unlock: 3085 mutex_unlock(&nvme_subsystems_lock); 3086 return ret; 3087 } 3088 3089 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3090 void *log, size_t size, u64 offset) 3091 { 3092 struct nvme_command c = { }; 3093 u32 dwlen = nvme_bytes_to_numd(size); 3094 3095 c.get_log_page.opcode = nvme_admin_get_log_page; 3096 c.get_log_page.nsid = cpu_to_le32(nsid); 3097 c.get_log_page.lid = log_page; 3098 c.get_log_page.lsp = lsp; 3099 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3100 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3101 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3102 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3103 c.get_log_page.csi = csi; 3104 3105 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3106 } 3107 3108 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3109 struct nvme_effects_log **log) 3110 { 3111 struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi); 3112 int ret; 3113 3114 if (cel) 3115 goto out; 3116 3117 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3118 if (!cel) 3119 return -ENOMEM; 3120 3121 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3122 cel, sizeof(*cel), 0); 3123 if (ret) { 3124 kfree(cel); 3125 return ret; 3126 } 3127 3128 old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3129 if (xa_is_err(old)) { 3130 kfree(cel); 3131 return xa_err(old); 3132 } 3133 out: 3134 *log = cel; 3135 return 0; 3136 } 3137 3138 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3139 { 3140 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3141 3142 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3143 return UINT_MAX; 3144 return val; 3145 } 3146 3147 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3148 { 3149 struct nvme_command c = { }; 3150 struct nvme_id_ctrl_nvm *id; 3151 int ret; 3152 3153 /* 3154 * Even though NVMe spec explicitly states that MDTS is not applicable 3155 * to the write-zeroes, we are cautious and limit the size to the 3156 * controllers max_hw_sectors value, which is based on the MDTS field 3157 * and possibly other limiting factors. 3158 */ 3159 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3160 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3161 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3162 else 3163 ctrl->max_zeroes_sectors = 0; 3164 3165 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3166 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) || 3167 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3168 return 0; 3169 3170 id = kzalloc(sizeof(*id), GFP_KERNEL); 3171 if (!id) 3172 return -ENOMEM; 3173 3174 c.identify.opcode = nvme_admin_identify; 3175 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3176 c.identify.csi = NVME_CSI_NVM; 3177 3178 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3179 if (ret) 3180 goto free_data; 3181 3182 ctrl->dmrl = id->dmrl; 3183 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3184 if (id->wzsl) 3185 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3186 3187 free_data: 3188 if (ret > 0) 3189 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3190 kfree(id); 3191 return ret; 3192 } 3193 3194 static int nvme_init_effects_log(struct nvme_ctrl *ctrl, 3195 u8 csi, struct nvme_effects_log **log) 3196 { 3197 struct nvme_effects_log *effects, *old; 3198 3199 effects = kzalloc(sizeof(*effects), GFP_KERNEL); 3200 if (!effects) 3201 return -ENOMEM; 3202 3203 old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL); 3204 if (xa_is_err(old)) { 3205 kfree(effects); 3206 return xa_err(old); 3207 } 3208 3209 *log = effects; 3210 return 0; 3211 } 3212 3213 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3214 { 3215 struct nvme_effects_log *log = ctrl->effects; 3216 3217 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3218 NVME_CMD_EFFECTS_NCC | 3219 NVME_CMD_EFFECTS_CSE_MASK); 3220 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3221 NVME_CMD_EFFECTS_CSE_MASK); 3222 3223 /* 3224 * The spec says the result of a security receive command depends on 3225 * the previous security send command. As such, many vendors log this 3226 * command as one to submitted only when no other commands to the same 3227 * namespace are outstanding. The intention is to tell the host to 3228 * prevent mixing security send and receive. 3229 * 3230 * This driver can only enforce such exclusive access against IO 3231 * queues, though. We are not readily able to enforce such a rule for 3232 * two commands to the admin queue, which is the only queue that 3233 * matters for this command. 3234 * 3235 * Rather than blindly freezing the IO queues for this effect that 3236 * doesn't even apply to IO, mask it off. 3237 */ 3238 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3239 3240 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3241 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3242 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3243 } 3244 3245 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3246 { 3247 int ret = 0; 3248 3249 if (ctrl->effects) 3250 return 0; 3251 3252 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3253 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3254 if (ret < 0) 3255 return ret; 3256 } 3257 3258 if (!ctrl->effects) { 3259 ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3260 if (ret < 0) 3261 return ret; 3262 } 3263 3264 nvme_init_known_nvm_effects(ctrl); 3265 return 0; 3266 } 3267 3268 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3269 { 3270 /* 3271 * In fabrics we need to verify the cntlid matches the 3272 * admin connect 3273 */ 3274 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3275 dev_err(ctrl->device, 3276 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3277 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3278 return -EINVAL; 3279 } 3280 3281 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3282 dev_err(ctrl->device, 3283 "keep-alive support is mandatory for fabrics\n"); 3284 return -EINVAL; 3285 } 3286 3287 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3288 dev_err(ctrl->device, 3289 "I/O queue command capsule supported size %d < 4\n", 3290 ctrl->ioccsz); 3291 return -EINVAL; 3292 } 3293 3294 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3295 dev_err(ctrl->device, 3296 "I/O queue response capsule supported size %d < 1\n", 3297 ctrl->iorcsz); 3298 return -EINVAL; 3299 } 3300 3301 if (!ctrl->maxcmd) { 3302 dev_warn(ctrl->device, 3303 "Firmware bug: maximum outstanding commands is 0\n"); 3304 ctrl->maxcmd = ctrl->sqsize + 1; 3305 } 3306 3307 return 0; 3308 } 3309 3310 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3311 { 3312 struct queue_limits lim; 3313 struct nvme_id_ctrl *id; 3314 u32 max_hw_sectors; 3315 bool prev_apst_enabled; 3316 int ret; 3317 3318 ret = nvme_identify_ctrl(ctrl, &id); 3319 if (ret) { 3320 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3321 return -EIO; 3322 } 3323 3324 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3325 ctrl->cntlid = le16_to_cpu(id->cntlid); 3326 3327 if (!ctrl->identified) { 3328 unsigned int i; 3329 3330 /* 3331 * Check for quirks. Quirk can depend on firmware version, 3332 * so, in principle, the set of quirks present can change 3333 * across a reset. As a possible future enhancement, we 3334 * could re-scan for quirks every time we reinitialize 3335 * the device, but we'd have to make sure that the driver 3336 * behaves intelligently if the quirks change. 3337 */ 3338 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3339 if (quirk_matches(id, &core_quirks[i])) 3340 ctrl->quirks |= core_quirks[i].quirks; 3341 } 3342 3343 ret = nvme_init_subsystem(ctrl, id); 3344 if (ret) 3345 goto out_free; 3346 3347 ret = nvme_init_effects(ctrl, id); 3348 if (ret) 3349 goto out_free; 3350 } 3351 memcpy(ctrl->subsys->firmware_rev, id->fr, 3352 sizeof(ctrl->subsys->firmware_rev)); 3353 3354 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3355 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3356 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3357 } 3358 3359 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3360 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3361 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3362 3363 ctrl->oacs = le16_to_cpu(id->oacs); 3364 ctrl->oncs = le16_to_cpu(id->oncs); 3365 ctrl->mtfa = le16_to_cpu(id->mtfa); 3366 ctrl->oaes = le32_to_cpu(id->oaes); 3367 ctrl->wctemp = le16_to_cpu(id->wctemp); 3368 ctrl->cctemp = le16_to_cpu(id->cctemp); 3369 3370 atomic_set(&ctrl->abort_limit, id->acl + 1); 3371 ctrl->vwc = id->vwc; 3372 if (id->mdts) 3373 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3374 else 3375 max_hw_sectors = UINT_MAX; 3376 ctrl->max_hw_sectors = 3377 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3378 3379 lim = queue_limits_start_update(ctrl->admin_q); 3380 nvme_set_ctrl_limits(ctrl, &lim); 3381 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3382 if (ret) 3383 goto out_free; 3384 3385 ctrl->sgls = le32_to_cpu(id->sgls); 3386 ctrl->kas = le16_to_cpu(id->kas); 3387 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3388 ctrl->ctratt = le32_to_cpu(id->ctratt); 3389 3390 ctrl->cntrltype = id->cntrltype; 3391 ctrl->dctype = id->dctype; 3392 3393 if (id->rtd3e) { 3394 /* us -> s */ 3395 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3396 3397 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3398 shutdown_timeout, 60); 3399 3400 if (ctrl->shutdown_timeout != shutdown_timeout) 3401 dev_info(ctrl->device, 3402 "D3 entry latency set to %u seconds\n", 3403 ctrl->shutdown_timeout); 3404 } else 3405 ctrl->shutdown_timeout = shutdown_timeout; 3406 3407 ctrl->npss = id->npss; 3408 ctrl->apsta = id->apsta; 3409 prev_apst_enabled = ctrl->apst_enabled; 3410 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3411 if (force_apst && id->apsta) { 3412 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3413 ctrl->apst_enabled = true; 3414 } else { 3415 ctrl->apst_enabled = false; 3416 } 3417 } else { 3418 ctrl->apst_enabled = id->apsta; 3419 } 3420 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3421 3422 if (ctrl->ops->flags & NVME_F_FABRICS) { 3423 ctrl->icdoff = le16_to_cpu(id->icdoff); 3424 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3425 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3426 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3427 3428 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3429 if (ret) 3430 goto out_free; 3431 } else { 3432 ctrl->hmpre = le32_to_cpu(id->hmpre); 3433 ctrl->hmmin = le32_to_cpu(id->hmmin); 3434 ctrl->hmminds = le32_to_cpu(id->hmminds); 3435 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3436 } 3437 3438 ret = nvme_mpath_init_identify(ctrl, id); 3439 if (ret < 0) 3440 goto out_free; 3441 3442 if (ctrl->apst_enabled && !prev_apst_enabled) 3443 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3444 else if (!ctrl->apst_enabled && prev_apst_enabled) 3445 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3446 3447 out_free: 3448 kfree(id); 3449 return ret; 3450 } 3451 3452 /* 3453 * Initialize the cached copies of the Identify data and various controller 3454 * register in our nvme_ctrl structure. This should be called as soon as 3455 * the admin queue is fully up and running. 3456 */ 3457 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3458 { 3459 int ret; 3460 3461 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3462 if (ret) { 3463 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3464 return ret; 3465 } 3466 3467 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3468 3469 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3470 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3471 3472 ret = nvme_init_identify(ctrl); 3473 if (ret) 3474 return ret; 3475 3476 ret = nvme_configure_apst(ctrl); 3477 if (ret < 0) 3478 return ret; 3479 3480 ret = nvme_configure_timestamp(ctrl); 3481 if (ret < 0) 3482 return ret; 3483 3484 ret = nvme_configure_host_options(ctrl); 3485 if (ret < 0) 3486 return ret; 3487 3488 nvme_configure_opal(ctrl, was_suspended); 3489 3490 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3491 /* 3492 * Do not return errors unless we are in a controller reset, 3493 * the controller works perfectly fine without hwmon. 3494 */ 3495 ret = nvme_hwmon_init(ctrl); 3496 if (ret == -EINTR) 3497 return ret; 3498 } 3499 3500 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3501 ctrl->identified = true; 3502 3503 nvme_start_keep_alive(ctrl); 3504 3505 return 0; 3506 } 3507 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3508 3509 static int nvme_dev_open(struct inode *inode, struct file *file) 3510 { 3511 struct nvme_ctrl *ctrl = 3512 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3513 3514 switch (nvme_ctrl_state(ctrl)) { 3515 case NVME_CTRL_LIVE: 3516 break; 3517 default: 3518 return -EWOULDBLOCK; 3519 } 3520 3521 nvme_get_ctrl(ctrl); 3522 if (!try_module_get(ctrl->ops->module)) { 3523 nvme_put_ctrl(ctrl); 3524 return -EINVAL; 3525 } 3526 3527 file->private_data = ctrl; 3528 return 0; 3529 } 3530 3531 static int nvme_dev_release(struct inode *inode, struct file *file) 3532 { 3533 struct nvme_ctrl *ctrl = 3534 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3535 3536 module_put(ctrl->ops->module); 3537 nvme_put_ctrl(ctrl); 3538 return 0; 3539 } 3540 3541 static const struct file_operations nvme_dev_fops = { 3542 .owner = THIS_MODULE, 3543 .open = nvme_dev_open, 3544 .release = nvme_dev_release, 3545 .unlocked_ioctl = nvme_dev_ioctl, 3546 .compat_ioctl = compat_ptr_ioctl, 3547 .uring_cmd = nvme_dev_uring_cmd, 3548 }; 3549 3550 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3551 unsigned nsid) 3552 { 3553 struct nvme_ns_head *h; 3554 3555 lockdep_assert_held(&ctrl->subsys->lock); 3556 3557 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3558 /* 3559 * Private namespaces can share NSIDs under some conditions. 3560 * In that case we can't use the same ns_head for namespaces 3561 * with the same NSID. 3562 */ 3563 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3564 continue; 3565 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3566 return h; 3567 } 3568 3569 return NULL; 3570 } 3571 3572 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3573 struct nvme_ns_ids *ids) 3574 { 3575 bool has_uuid = !uuid_is_null(&ids->uuid); 3576 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3577 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3578 struct nvme_ns_head *h; 3579 3580 lockdep_assert_held(&subsys->lock); 3581 3582 list_for_each_entry(h, &subsys->nsheads, entry) { 3583 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3584 return -EINVAL; 3585 if (has_nguid && 3586 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3587 return -EINVAL; 3588 if (has_eui64 && 3589 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3590 return -EINVAL; 3591 } 3592 3593 return 0; 3594 } 3595 3596 static void nvme_cdev_rel(struct device *dev) 3597 { 3598 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3599 } 3600 3601 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3602 { 3603 cdev_device_del(cdev, cdev_device); 3604 put_device(cdev_device); 3605 } 3606 3607 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3608 const struct file_operations *fops, struct module *owner) 3609 { 3610 int minor, ret; 3611 3612 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3613 if (minor < 0) 3614 return minor; 3615 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3616 cdev_device->class = &nvme_ns_chr_class; 3617 cdev_device->release = nvme_cdev_rel; 3618 device_initialize(cdev_device); 3619 cdev_init(cdev, fops); 3620 cdev->owner = owner; 3621 ret = cdev_device_add(cdev, cdev_device); 3622 if (ret) 3623 put_device(cdev_device); 3624 3625 return ret; 3626 } 3627 3628 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3629 { 3630 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3631 } 3632 3633 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3634 { 3635 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3636 return 0; 3637 } 3638 3639 static const struct file_operations nvme_ns_chr_fops = { 3640 .owner = THIS_MODULE, 3641 .open = nvme_ns_chr_open, 3642 .release = nvme_ns_chr_release, 3643 .unlocked_ioctl = nvme_ns_chr_ioctl, 3644 .compat_ioctl = compat_ptr_ioctl, 3645 .uring_cmd = nvme_ns_chr_uring_cmd, 3646 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3647 }; 3648 3649 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3650 { 3651 int ret; 3652 3653 ns->cdev_device.parent = ns->ctrl->device; 3654 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3655 ns->ctrl->instance, ns->head->instance); 3656 if (ret) 3657 return ret; 3658 3659 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3660 ns->ctrl->ops->module); 3661 } 3662 3663 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3664 struct nvme_ns_info *info) 3665 { 3666 struct nvme_ns_head *head; 3667 size_t size = sizeof(*head); 3668 int ret = -ENOMEM; 3669 3670 #ifdef CONFIG_NVME_MULTIPATH 3671 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3672 #endif 3673 3674 head = kzalloc(size, GFP_KERNEL); 3675 if (!head) 3676 goto out; 3677 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3678 if (ret < 0) 3679 goto out_free_head; 3680 head->instance = ret; 3681 INIT_LIST_HEAD(&head->list); 3682 ret = init_srcu_struct(&head->srcu); 3683 if (ret) 3684 goto out_ida_remove; 3685 head->subsys = ctrl->subsys; 3686 head->ns_id = info->nsid; 3687 head->ids = info->ids; 3688 head->shared = info->is_shared; 3689 head->rotational = info->is_rotational; 3690 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3691 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3692 kref_init(&head->ref); 3693 3694 if (head->ids.csi) { 3695 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3696 if (ret) 3697 goto out_cleanup_srcu; 3698 } else 3699 head->effects = ctrl->effects; 3700 3701 ret = nvme_mpath_alloc_disk(ctrl, head); 3702 if (ret) 3703 goto out_cleanup_srcu; 3704 3705 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3706 3707 kref_get(&ctrl->subsys->ref); 3708 3709 return head; 3710 out_cleanup_srcu: 3711 cleanup_srcu_struct(&head->srcu); 3712 out_ida_remove: 3713 ida_free(&ctrl->subsys->ns_ida, head->instance); 3714 out_free_head: 3715 kfree(head); 3716 out: 3717 if (ret > 0) 3718 ret = blk_status_to_errno(nvme_error_status(ret)); 3719 return ERR_PTR(ret); 3720 } 3721 3722 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3723 struct nvme_ns_ids *ids) 3724 { 3725 struct nvme_subsystem *s; 3726 int ret = 0; 3727 3728 /* 3729 * Note that this check is racy as we try to avoid holding the global 3730 * lock over the whole ns_head creation. But it is only intended as 3731 * a sanity check anyway. 3732 */ 3733 mutex_lock(&nvme_subsystems_lock); 3734 list_for_each_entry(s, &nvme_subsystems, entry) { 3735 if (s == this) 3736 continue; 3737 mutex_lock(&s->lock); 3738 ret = nvme_subsys_check_duplicate_ids(s, ids); 3739 mutex_unlock(&s->lock); 3740 if (ret) 3741 break; 3742 } 3743 mutex_unlock(&nvme_subsystems_lock); 3744 3745 return ret; 3746 } 3747 3748 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3749 { 3750 struct nvme_ctrl *ctrl = ns->ctrl; 3751 struct nvme_ns_head *head = NULL; 3752 int ret; 3753 3754 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3755 if (ret) { 3756 /* 3757 * We've found two different namespaces on two different 3758 * subsystems that report the same ID. This is pretty nasty 3759 * for anything that actually requires unique device 3760 * identification. In the kernel we need this for multipathing, 3761 * and in user space the /dev/disk/by-id/ links rely on it. 3762 * 3763 * If the device also claims to be multi-path capable back off 3764 * here now and refuse the probe the second device as this is a 3765 * recipe for data corruption. If not this is probably a 3766 * cheap consumer device if on the PCIe bus, so let the user 3767 * proceed and use the shiny toy, but warn that with changing 3768 * probing order (which due to our async probing could just be 3769 * device taking longer to startup) the other device could show 3770 * up at any time. 3771 */ 3772 nvme_print_device_info(ctrl); 3773 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3774 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3775 info->is_shared)) { 3776 dev_err(ctrl->device, 3777 "ignoring nsid %d because of duplicate IDs\n", 3778 info->nsid); 3779 return ret; 3780 } 3781 3782 dev_err(ctrl->device, 3783 "clearing duplicate IDs for nsid %d\n", info->nsid); 3784 dev_err(ctrl->device, 3785 "use of /dev/disk/by-id/ may cause data corruption\n"); 3786 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3787 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3788 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3789 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3790 } 3791 3792 mutex_lock(&ctrl->subsys->lock); 3793 head = nvme_find_ns_head(ctrl, info->nsid); 3794 if (!head) { 3795 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3796 if (ret) { 3797 dev_err(ctrl->device, 3798 "duplicate IDs in subsystem for nsid %d\n", 3799 info->nsid); 3800 goto out_unlock; 3801 } 3802 head = nvme_alloc_ns_head(ctrl, info); 3803 if (IS_ERR(head)) { 3804 ret = PTR_ERR(head); 3805 goto out_unlock; 3806 } 3807 } else { 3808 ret = -EINVAL; 3809 if (!info->is_shared || !head->shared) { 3810 dev_err(ctrl->device, 3811 "Duplicate unshared namespace %d\n", 3812 info->nsid); 3813 goto out_put_ns_head; 3814 } 3815 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3816 dev_err(ctrl->device, 3817 "IDs don't match for shared namespace %d\n", 3818 info->nsid); 3819 goto out_put_ns_head; 3820 } 3821 3822 if (!multipath) { 3823 dev_warn(ctrl->device, 3824 "Found shared namespace %d, but multipathing not supported.\n", 3825 info->nsid); 3826 dev_warn_once(ctrl->device, 3827 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3828 } 3829 } 3830 3831 list_add_tail_rcu(&ns->siblings, &head->list); 3832 ns->head = head; 3833 mutex_unlock(&ctrl->subsys->lock); 3834 return 0; 3835 3836 out_put_ns_head: 3837 nvme_put_ns_head(head); 3838 out_unlock: 3839 mutex_unlock(&ctrl->subsys->lock); 3840 return ret; 3841 } 3842 3843 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3844 { 3845 struct nvme_ns *ns, *ret = NULL; 3846 int srcu_idx; 3847 3848 srcu_idx = srcu_read_lock(&ctrl->srcu); 3849 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 3850 srcu_read_lock_held(&ctrl->srcu)) { 3851 if (ns->head->ns_id == nsid) { 3852 if (!nvme_get_ns(ns)) 3853 continue; 3854 ret = ns; 3855 break; 3856 } 3857 if (ns->head->ns_id > nsid) 3858 break; 3859 } 3860 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3861 return ret; 3862 } 3863 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU"); 3864 3865 /* 3866 * Add the namespace to the controller list while keeping the list ordered. 3867 */ 3868 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3869 { 3870 struct nvme_ns *tmp; 3871 3872 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3873 if (tmp->head->ns_id < ns->head->ns_id) { 3874 list_add_rcu(&ns->list, &tmp->list); 3875 return; 3876 } 3877 } 3878 list_add(&ns->list, &ns->ctrl->namespaces); 3879 } 3880 3881 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3882 { 3883 struct queue_limits lim = { }; 3884 struct nvme_ns *ns; 3885 struct gendisk *disk; 3886 int node = ctrl->numa_node; 3887 3888 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3889 if (!ns) 3890 return; 3891 3892 if (ctrl->opts && ctrl->opts->data_digest) 3893 lim.features |= BLK_FEAT_STABLE_WRITES; 3894 if (ctrl->ops->supports_pci_p2pdma && 3895 ctrl->ops->supports_pci_p2pdma(ctrl)) 3896 lim.features |= BLK_FEAT_PCI_P2PDMA; 3897 3898 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); 3899 if (IS_ERR(disk)) 3900 goto out_free_ns; 3901 disk->fops = &nvme_bdev_ops; 3902 disk->private_data = ns; 3903 3904 ns->disk = disk; 3905 ns->queue = disk->queue; 3906 ns->ctrl = ctrl; 3907 kref_init(&ns->kref); 3908 3909 if (nvme_init_ns_head(ns, info)) 3910 goto out_cleanup_disk; 3911 3912 /* 3913 * If multipathing is enabled, the device name for all disks and not 3914 * just those that represent shared namespaces needs to be based on the 3915 * subsystem instance. Using the controller instance for private 3916 * namespaces could lead to naming collisions between shared and private 3917 * namespaces if they don't use a common numbering scheme. 3918 * 3919 * If multipathing is not enabled, disk names must use the controller 3920 * instance as shared namespaces will show up as multiple block 3921 * devices. 3922 */ 3923 if (nvme_ns_head_multipath(ns->head)) { 3924 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3925 ctrl->instance, ns->head->instance); 3926 disk->flags |= GENHD_FL_HIDDEN; 3927 } else if (multipath) { 3928 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3929 ns->head->instance); 3930 } else { 3931 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3932 ns->head->instance); 3933 } 3934 3935 if (nvme_update_ns_info(ns, info)) 3936 goto out_unlink_ns; 3937 3938 mutex_lock(&ctrl->namespaces_lock); 3939 /* 3940 * Ensure that no namespaces are added to the ctrl list after the queues 3941 * are frozen, thereby avoiding a deadlock between scan and reset. 3942 */ 3943 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3944 mutex_unlock(&ctrl->namespaces_lock); 3945 goto out_unlink_ns; 3946 } 3947 nvme_ns_add_to_ctrl_list(ns); 3948 mutex_unlock(&ctrl->namespaces_lock); 3949 synchronize_srcu(&ctrl->srcu); 3950 nvme_get_ctrl(ctrl); 3951 3952 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3953 goto out_cleanup_ns_from_list; 3954 3955 if (!nvme_ns_head_multipath(ns->head)) 3956 nvme_add_ns_cdev(ns); 3957 3958 nvme_mpath_add_disk(ns, info->anagrpid); 3959 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3960 3961 /* 3962 * Set ns->disk->device->driver_data to ns so we can access 3963 * ns->head->passthru_err_log_enabled in 3964 * nvme_io_passthru_err_log_enabled_[store | show](). 3965 */ 3966 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3967 3968 return; 3969 3970 out_cleanup_ns_from_list: 3971 nvme_put_ctrl(ctrl); 3972 mutex_lock(&ctrl->namespaces_lock); 3973 list_del_rcu(&ns->list); 3974 mutex_unlock(&ctrl->namespaces_lock); 3975 synchronize_srcu(&ctrl->srcu); 3976 out_unlink_ns: 3977 mutex_lock(&ctrl->subsys->lock); 3978 list_del_rcu(&ns->siblings); 3979 if (list_empty(&ns->head->list)) 3980 list_del_init(&ns->head->entry); 3981 mutex_unlock(&ctrl->subsys->lock); 3982 nvme_put_ns_head(ns->head); 3983 out_cleanup_disk: 3984 put_disk(disk); 3985 out_free_ns: 3986 kfree(ns); 3987 } 3988 3989 static void nvme_ns_remove(struct nvme_ns *ns) 3990 { 3991 bool last_path = false; 3992 3993 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3994 return; 3995 3996 clear_bit(NVME_NS_READY, &ns->flags); 3997 set_capacity(ns->disk, 0); 3998 nvme_fault_inject_fini(&ns->fault_inject); 3999 4000 /* 4001 * Ensure that !NVME_NS_READY is seen by other threads to prevent 4002 * this ns going back into current_path. 4003 */ 4004 synchronize_srcu(&ns->head->srcu); 4005 4006 /* wait for concurrent submissions */ 4007 if (nvme_mpath_clear_current_path(ns)) 4008 synchronize_srcu(&ns->head->srcu); 4009 4010 mutex_lock(&ns->ctrl->subsys->lock); 4011 list_del_rcu(&ns->siblings); 4012 if (list_empty(&ns->head->list)) { 4013 list_del_init(&ns->head->entry); 4014 last_path = true; 4015 } 4016 mutex_unlock(&ns->ctrl->subsys->lock); 4017 4018 /* guarantee not available in head->list */ 4019 synchronize_srcu(&ns->head->srcu); 4020 4021 if (!nvme_ns_head_multipath(ns->head)) 4022 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4023 del_gendisk(ns->disk); 4024 4025 mutex_lock(&ns->ctrl->namespaces_lock); 4026 list_del_rcu(&ns->list); 4027 mutex_unlock(&ns->ctrl->namespaces_lock); 4028 synchronize_srcu(&ns->ctrl->srcu); 4029 4030 if (last_path) 4031 nvme_mpath_shutdown_disk(ns->head); 4032 nvme_put_ns(ns); 4033 } 4034 4035 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4036 { 4037 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4038 4039 if (ns) { 4040 nvme_ns_remove(ns); 4041 nvme_put_ns(ns); 4042 } 4043 } 4044 4045 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 4046 { 4047 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; 4048 4049 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 4050 dev_err(ns->ctrl->device, 4051 "identifiers changed for nsid %d\n", ns->head->ns_id); 4052 goto out; 4053 } 4054 4055 ret = nvme_update_ns_info(ns, info); 4056 out: 4057 /* 4058 * Only remove the namespace if we got a fatal error back from the 4059 * device, otherwise ignore the error and just move on. 4060 * 4061 * TODO: we should probably schedule a delayed retry here. 4062 */ 4063 if (ret > 0 && (ret & NVME_STATUS_DNR)) 4064 nvme_ns_remove(ns); 4065 } 4066 4067 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4068 { 4069 struct nvme_ns_info info = { .nsid = nsid }; 4070 struct nvme_ns *ns; 4071 int ret = 1; 4072 4073 if (nvme_identify_ns_descs(ctrl, &info)) 4074 return; 4075 4076 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4077 dev_warn(ctrl->device, 4078 "command set not reported for nsid: %d\n", nsid); 4079 return; 4080 } 4081 4082 /* 4083 * If available try to use the Command Set Idependent Identify Namespace 4084 * data structure to find all the generic information that is needed to 4085 * set up a namespace. If not fall back to the legacy version. 4086 */ 4087 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4088 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) || 4089 ctrl->vs >= NVME_VS(2, 0, 0)) 4090 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 4091 if (ret > 0) 4092 ret = nvme_ns_info_from_identify(ctrl, &info); 4093 4094 if (info.is_removed) 4095 nvme_ns_remove_by_nsid(ctrl, nsid); 4096 4097 /* 4098 * Ignore the namespace if it is not ready. We will get an AEN once it 4099 * becomes ready and restart the scan. 4100 */ 4101 if (ret || !info.is_ready) 4102 return; 4103 4104 ns = nvme_find_get_ns(ctrl, nsid); 4105 if (ns) { 4106 nvme_validate_ns(ns, &info); 4107 nvme_put_ns(ns); 4108 } else { 4109 nvme_alloc_ns(ctrl, &info); 4110 } 4111 } 4112 4113 /** 4114 * struct async_scan_info - keeps track of controller & NSIDs to scan 4115 * @ctrl: Controller on which namespaces are being scanned 4116 * @next_nsid: Index of next NSID to scan in ns_list 4117 * @ns_list: Pointer to list of NSIDs to scan 4118 * 4119 * Note: There is a single async_scan_info structure shared by all instances 4120 * of nvme_scan_ns_async() scanning a given controller, so the atomic 4121 * operations on next_nsid are critical to ensure each instance scans a unique 4122 * NSID. 4123 */ 4124 struct async_scan_info { 4125 struct nvme_ctrl *ctrl; 4126 atomic_t next_nsid; 4127 __le32 *ns_list; 4128 }; 4129 4130 static void nvme_scan_ns_async(void *data, async_cookie_t cookie) 4131 { 4132 struct async_scan_info *scan_info = data; 4133 int idx; 4134 u32 nsid; 4135 4136 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid); 4137 nsid = le32_to_cpu(scan_info->ns_list[idx]); 4138 4139 nvme_scan_ns(scan_info->ctrl, nsid); 4140 } 4141 4142 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4143 unsigned nsid) 4144 { 4145 struct nvme_ns *ns, *next; 4146 LIST_HEAD(rm_list); 4147 4148 mutex_lock(&ctrl->namespaces_lock); 4149 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4150 if (ns->head->ns_id > nsid) { 4151 list_del_rcu(&ns->list); 4152 synchronize_srcu(&ctrl->srcu); 4153 list_add_tail_rcu(&ns->list, &rm_list); 4154 } 4155 } 4156 mutex_unlock(&ctrl->namespaces_lock); 4157 4158 list_for_each_entry_safe(ns, next, &rm_list, list) 4159 nvme_ns_remove(ns); 4160 } 4161 4162 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4163 { 4164 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4165 __le32 *ns_list; 4166 u32 prev = 0; 4167 int ret = 0, i; 4168 ASYNC_DOMAIN(domain); 4169 struct async_scan_info scan_info; 4170 4171 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4172 if (!ns_list) 4173 return -ENOMEM; 4174 4175 scan_info.ctrl = ctrl; 4176 scan_info.ns_list = ns_list; 4177 for (;;) { 4178 struct nvme_command cmd = { 4179 .identify.opcode = nvme_admin_identify, 4180 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4181 .identify.nsid = cpu_to_le32(prev), 4182 }; 4183 4184 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4185 NVME_IDENTIFY_DATA_SIZE); 4186 if (ret) { 4187 dev_warn(ctrl->device, 4188 "Identify NS List failed (status=0x%x)\n", ret); 4189 goto free; 4190 } 4191 4192 atomic_set(&scan_info.next_nsid, 0); 4193 for (i = 0; i < nr_entries; i++) { 4194 u32 nsid = le32_to_cpu(ns_list[i]); 4195 4196 if (!nsid) /* end of the list? */ 4197 goto out; 4198 async_schedule_domain(nvme_scan_ns_async, &scan_info, 4199 &domain); 4200 while (++prev < nsid) 4201 nvme_ns_remove_by_nsid(ctrl, prev); 4202 } 4203 async_synchronize_full_domain(&domain); 4204 } 4205 out: 4206 nvme_remove_invalid_namespaces(ctrl, prev); 4207 free: 4208 async_synchronize_full_domain(&domain); 4209 kfree(ns_list); 4210 return ret; 4211 } 4212 4213 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4214 { 4215 struct nvme_id_ctrl *id; 4216 u32 nn, i; 4217 4218 if (nvme_identify_ctrl(ctrl, &id)) 4219 return; 4220 nn = le32_to_cpu(id->nn); 4221 kfree(id); 4222 4223 for (i = 1; i <= nn; i++) 4224 nvme_scan_ns(ctrl, i); 4225 4226 nvme_remove_invalid_namespaces(ctrl, nn); 4227 } 4228 4229 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4230 { 4231 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4232 __le32 *log; 4233 int error; 4234 4235 log = kzalloc(log_size, GFP_KERNEL); 4236 if (!log) 4237 return; 4238 4239 /* 4240 * We need to read the log to clear the AEN, but we don't want to rely 4241 * on it for the changed namespace information as userspace could have 4242 * raced with us in reading the log page, which could cause us to miss 4243 * updates. 4244 */ 4245 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4246 NVME_CSI_NVM, log, log_size, 0); 4247 if (error) 4248 dev_warn(ctrl->device, 4249 "reading changed ns log failed: %d\n", error); 4250 4251 kfree(log); 4252 } 4253 4254 static void nvme_scan_work(struct work_struct *work) 4255 { 4256 struct nvme_ctrl *ctrl = 4257 container_of(work, struct nvme_ctrl, scan_work); 4258 int ret; 4259 4260 /* No tagset on a live ctrl means IO queues could not created */ 4261 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4262 return; 4263 4264 /* 4265 * Identify controller limits can change at controller reset due to 4266 * new firmware download, even though it is not common we cannot ignore 4267 * such scenario. Controller's non-mdts limits are reported in the unit 4268 * of logical blocks that is dependent on the format of attached 4269 * namespace. Hence re-read the limits at the time of ns allocation. 4270 */ 4271 ret = nvme_init_non_mdts_limits(ctrl); 4272 if (ret < 0) { 4273 dev_warn(ctrl->device, 4274 "reading non-mdts-limits failed: %d\n", ret); 4275 return; 4276 } 4277 4278 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4279 dev_info(ctrl->device, "rescanning namespaces.\n"); 4280 nvme_clear_changed_ns_log(ctrl); 4281 } 4282 4283 mutex_lock(&ctrl->scan_lock); 4284 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) { 4285 nvme_scan_ns_sequential(ctrl); 4286 } else { 4287 /* 4288 * Fall back to sequential scan if DNR is set to handle broken 4289 * devices which should support Identify NS List (as per the VS 4290 * they report) but don't actually support it. 4291 */ 4292 ret = nvme_scan_ns_list(ctrl); 4293 if (ret > 0 && ret & NVME_STATUS_DNR) 4294 nvme_scan_ns_sequential(ctrl); 4295 } 4296 mutex_unlock(&ctrl->scan_lock); 4297 } 4298 4299 /* 4300 * This function iterates the namespace list unlocked to allow recovery from 4301 * controller failure. It is up to the caller to ensure the namespace list is 4302 * not modified by scan work while this function is executing. 4303 */ 4304 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4305 { 4306 struct nvme_ns *ns, *next; 4307 LIST_HEAD(ns_list); 4308 4309 /* 4310 * make sure to requeue I/O to all namespaces as these 4311 * might result from the scan itself and must complete 4312 * for the scan_work to make progress 4313 */ 4314 nvme_mpath_clear_ctrl_paths(ctrl); 4315 4316 /* 4317 * Unquiesce io queues so any pending IO won't hang, especially 4318 * those submitted from scan work 4319 */ 4320 nvme_unquiesce_io_queues(ctrl); 4321 4322 /* prevent racing with ns scanning */ 4323 flush_work(&ctrl->scan_work); 4324 4325 /* 4326 * The dead states indicates the controller was not gracefully 4327 * disconnected. In that case, we won't be able to flush any data while 4328 * removing the namespaces' disks; fail all the queues now to avoid 4329 * potentially having to clean up the failed sync later. 4330 */ 4331 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4332 nvme_mark_namespaces_dead(ctrl); 4333 4334 /* this is a no-op when called from the controller reset handler */ 4335 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4336 4337 mutex_lock(&ctrl->namespaces_lock); 4338 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4339 mutex_unlock(&ctrl->namespaces_lock); 4340 synchronize_srcu(&ctrl->srcu); 4341 4342 list_for_each_entry_safe(ns, next, &ns_list, list) 4343 nvme_ns_remove(ns); 4344 } 4345 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4346 4347 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4348 { 4349 const struct nvme_ctrl *ctrl = 4350 container_of(dev, struct nvme_ctrl, ctrl_device); 4351 struct nvmf_ctrl_options *opts = ctrl->opts; 4352 int ret; 4353 4354 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4355 if (ret) 4356 return ret; 4357 4358 if (opts) { 4359 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4360 if (ret) 4361 return ret; 4362 4363 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4364 opts->trsvcid ?: "none"); 4365 if (ret) 4366 return ret; 4367 4368 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4369 opts->host_traddr ?: "none"); 4370 if (ret) 4371 return ret; 4372 4373 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4374 opts->host_iface ?: "none"); 4375 } 4376 return ret; 4377 } 4378 4379 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4380 { 4381 char *envp[2] = { envdata, NULL }; 4382 4383 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4384 } 4385 4386 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4387 { 4388 char *envp[2] = { NULL, NULL }; 4389 u32 aen_result = ctrl->aen_result; 4390 4391 ctrl->aen_result = 0; 4392 if (!aen_result) 4393 return; 4394 4395 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4396 if (!envp[0]) 4397 return; 4398 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4399 kfree(envp[0]); 4400 } 4401 4402 static void nvme_async_event_work(struct work_struct *work) 4403 { 4404 struct nvme_ctrl *ctrl = 4405 container_of(work, struct nvme_ctrl, async_event_work); 4406 4407 nvme_aen_uevent(ctrl); 4408 4409 /* 4410 * The transport drivers must guarantee AER submission here is safe by 4411 * flushing ctrl async_event_work after changing the controller state 4412 * from LIVE and before freeing the admin queue. 4413 */ 4414 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4415 ctrl->ops->submit_async_event(ctrl); 4416 } 4417 4418 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4419 { 4420 4421 u32 csts; 4422 4423 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4424 return false; 4425 4426 if (csts == ~0) 4427 return false; 4428 4429 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4430 } 4431 4432 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4433 { 4434 struct nvme_fw_slot_info_log *log; 4435 u8 next_fw_slot, cur_fw_slot; 4436 4437 log = kmalloc(sizeof(*log), GFP_KERNEL); 4438 if (!log) 4439 return; 4440 4441 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4442 log, sizeof(*log), 0)) { 4443 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4444 goto out_free_log; 4445 } 4446 4447 cur_fw_slot = log->afi & 0x7; 4448 next_fw_slot = (log->afi & 0x70) >> 4; 4449 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4450 dev_info(ctrl->device, 4451 "Firmware is activated after next Controller Level Reset\n"); 4452 goto out_free_log; 4453 } 4454 4455 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4456 sizeof(ctrl->subsys->firmware_rev)); 4457 4458 out_free_log: 4459 kfree(log); 4460 } 4461 4462 static void nvme_fw_act_work(struct work_struct *work) 4463 { 4464 struct nvme_ctrl *ctrl = container_of(work, 4465 struct nvme_ctrl, fw_act_work); 4466 unsigned long fw_act_timeout; 4467 4468 nvme_auth_stop(ctrl); 4469 4470 if (ctrl->mtfa) 4471 fw_act_timeout = jiffies + 4472 msecs_to_jiffies(ctrl->mtfa * 100); 4473 else 4474 fw_act_timeout = jiffies + 4475 msecs_to_jiffies(admin_timeout * 1000); 4476 4477 nvme_quiesce_io_queues(ctrl); 4478 while (nvme_ctrl_pp_status(ctrl)) { 4479 if (time_after(jiffies, fw_act_timeout)) { 4480 dev_warn(ctrl->device, 4481 "Fw activation timeout, reset controller\n"); 4482 nvme_try_sched_reset(ctrl); 4483 return; 4484 } 4485 msleep(100); 4486 } 4487 4488 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4489 return; 4490 4491 nvme_unquiesce_io_queues(ctrl); 4492 /* read FW slot information to clear the AER */ 4493 nvme_get_fw_slot_info(ctrl); 4494 4495 queue_work(nvme_wq, &ctrl->async_event_work); 4496 } 4497 4498 static u32 nvme_aer_type(u32 result) 4499 { 4500 return result & 0x7; 4501 } 4502 4503 static u32 nvme_aer_subtype(u32 result) 4504 { 4505 return (result & 0xff00) >> 8; 4506 } 4507 4508 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4509 { 4510 u32 aer_notice_type = nvme_aer_subtype(result); 4511 bool requeue = true; 4512 4513 switch (aer_notice_type) { 4514 case NVME_AER_NOTICE_NS_CHANGED: 4515 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4516 nvme_queue_scan(ctrl); 4517 break; 4518 case NVME_AER_NOTICE_FW_ACT_STARTING: 4519 /* 4520 * We are (ab)using the RESETTING state to prevent subsequent 4521 * recovery actions from interfering with the controller's 4522 * firmware activation. 4523 */ 4524 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4525 requeue = false; 4526 queue_work(nvme_wq, &ctrl->fw_act_work); 4527 } 4528 break; 4529 #ifdef CONFIG_NVME_MULTIPATH 4530 case NVME_AER_NOTICE_ANA: 4531 if (!ctrl->ana_log_buf) 4532 break; 4533 queue_work(nvme_wq, &ctrl->ana_work); 4534 break; 4535 #endif 4536 case NVME_AER_NOTICE_DISC_CHANGED: 4537 ctrl->aen_result = result; 4538 break; 4539 default: 4540 dev_warn(ctrl->device, "async event result %08x\n", result); 4541 } 4542 return requeue; 4543 } 4544 4545 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4546 { 4547 dev_warn(ctrl->device, 4548 "resetting controller due to persistent internal error\n"); 4549 nvme_reset_ctrl(ctrl); 4550 } 4551 4552 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4553 volatile union nvme_result *res) 4554 { 4555 u32 result = le32_to_cpu(res->u32); 4556 u32 aer_type = nvme_aer_type(result); 4557 u32 aer_subtype = nvme_aer_subtype(result); 4558 bool requeue = true; 4559 4560 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4561 return; 4562 4563 trace_nvme_async_event(ctrl, result); 4564 switch (aer_type) { 4565 case NVME_AER_NOTICE: 4566 requeue = nvme_handle_aen_notice(ctrl, result); 4567 break; 4568 case NVME_AER_ERROR: 4569 /* 4570 * For a persistent internal error, don't run async_event_work 4571 * to submit a new AER. The controller reset will do it. 4572 */ 4573 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4574 nvme_handle_aer_persistent_error(ctrl); 4575 return; 4576 } 4577 fallthrough; 4578 case NVME_AER_SMART: 4579 case NVME_AER_CSS: 4580 case NVME_AER_VS: 4581 ctrl->aen_result = result; 4582 break; 4583 default: 4584 break; 4585 } 4586 4587 if (requeue) 4588 queue_work(nvme_wq, &ctrl->async_event_work); 4589 } 4590 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4591 4592 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4593 const struct blk_mq_ops *ops, unsigned int cmd_size) 4594 { 4595 struct queue_limits lim = {}; 4596 int ret; 4597 4598 memset(set, 0, sizeof(*set)); 4599 set->ops = ops; 4600 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4601 if (ctrl->ops->flags & NVME_F_FABRICS) 4602 /* Reserved for fabric connect and keep alive */ 4603 set->reserved_tags = 2; 4604 set->numa_node = ctrl->numa_node; 4605 if (ctrl->ops->flags & NVME_F_BLOCKING) 4606 set->flags |= BLK_MQ_F_BLOCKING; 4607 set->cmd_size = cmd_size; 4608 set->driver_data = ctrl; 4609 set->nr_hw_queues = 1; 4610 set->timeout = NVME_ADMIN_TIMEOUT; 4611 ret = blk_mq_alloc_tag_set(set); 4612 if (ret) 4613 return ret; 4614 4615 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4616 if (IS_ERR(ctrl->admin_q)) { 4617 ret = PTR_ERR(ctrl->admin_q); 4618 goto out_free_tagset; 4619 } 4620 4621 if (ctrl->ops->flags & NVME_F_FABRICS) { 4622 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4623 if (IS_ERR(ctrl->fabrics_q)) { 4624 ret = PTR_ERR(ctrl->fabrics_q); 4625 goto out_cleanup_admin_q; 4626 } 4627 } 4628 4629 ctrl->admin_tagset = set; 4630 return 0; 4631 4632 out_cleanup_admin_q: 4633 blk_mq_destroy_queue(ctrl->admin_q); 4634 blk_put_queue(ctrl->admin_q); 4635 out_free_tagset: 4636 blk_mq_free_tag_set(set); 4637 ctrl->admin_q = NULL; 4638 ctrl->fabrics_q = NULL; 4639 return ret; 4640 } 4641 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4642 4643 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4644 { 4645 /* 4646 * As we're about to destroy the queue and free tagset 4647 * we can not have keep-alive work running. 4648 */ 4649 nvme_stop_keep_alive(ctrl); 4650 blk_mq_destroy_queue(ctrl->admin_q); 4651 blk_put_queue(ctrl->admin_q); 4652 if (ctrl->ops->flags & NVME_F_FABRICS) { 4653 blk_mq_destroy_queue(ctrl->fabrics_q); 4654 blk_put_queue(ctrl->fabrics_q); 4655 } 4656 blk_mq_free_tag_set(ctrl->admin_tagset); 4657 } 4658 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4659 4660 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4661 const struct blk_mq_ops *ops, unsigned int nr_maps, 4662 unsigned int cmd_size) 4663 { 4664 int ret; 4665 4666 memset(set, 0, sizeof(*set)); 4667 set->ops = ops; 4668 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4669 /* 4670 * Some Apple controllers requires tags to be unique across admin and 4671 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4672 */ 4673 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4674 set->reserved_tags = NVME_AQ_DEPTH; 4675 else if (ctrl->ops->flags & NVME_F_FABRICS) 4676 /* Reserved for fabric connect */ 4677 set->reserved_tags = 1; 4678 set->numa_node = ctrl->numa_node; 4679 if (ctrl->ops->flags & NVME_F_BLOCKING) 4680 set->flags |= BLK_MQ_F_BLOCKING; 4681 set->cmd_size = cmd_size; 4682 set->driver_data = ctrl; 4683 set->nr_hw_queues = ctrl->queue_count - 1; 4684 set->timeout = NVME_IO_TIMEOUT; 4685 set->nr_maps = nr_maps; 4686 ret = blk_mq_alloc_tag_set(set); 4687 if (ret) 4688 return ret; 4689 4690 if (ctrl->ops->flags & NVME_F_FABRICS) { 4691 struct queue_limits lim = { 4692 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, 4693 }; 4694 4695 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); 4696 if (IS_ERR(ctrl->connect_q)) { 4697 ret = PTR_ERR(ctrl->connect_q); 4698 goto out_free_tag_set; 4699 } 4700 } 4701 4702 ctrl->tagset = set; 4703 return 0; 4704 4705 out_free_tag_set: 4706 blk_mq_free_tag_set(set); 4707 ctrl->connect_q = NULL; 4708 return ret; 4709 } 4710 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4711 4712 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4713 { 4714 if (ctrl->ops->flags & NVME_F_FABRICS) { 4715 blk_mq_destroy_queue(ctrl->connect_q); 4716 blk_put_queue(ctrl->connect_q); 4717 } 4718 blk_mq_free_tag_set(ctrl->tagset); 4719 } 4720 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4721 4722 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4723 { 4724 nvme_mpath_stop(ctrl); 4725 nvme_auth_stop(ctrl); 4726 nvme_stop_failfast_work(ctrl); 4727 flush_work(&ctrl->async_event_work); 4728 cancel_work_sync(&ctrl->fw_act_work); 4729 if (ctrl->ops->stop_ctrl) 4730 ctrl->ops->stop_ctrl(ctrl); 4731 } 4732 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4733 4734 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4735 { 4736 nvme_enable_aen(ctrl); 4737 4738 /* 4739 * persistent discovery controllers need to send indication to userspace 4740 * to re-read the discovery log page to learn about possible changes 4741 * that were missed. We identify persistent discovery controllers by 4742 * checking that they started once before, hence are reconnecting back. 4743 */ 4744 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4745 nvme_discovery_ctrl(ctrl)) 4746 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4747 4748 if (ctrl->queue_count > 1) { 4749 nvme_queue_scan(ctrl); 4750 nvme_unquiesce_io_queues(ctrl); 4751 nvme_mpath_update(ctrl); 4752 } 4753 4754 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4755 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4756 } 4757 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4758 4759 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4760 { 4761 nvme_stop_keep_alive(ctrl); 4762 nvme_hwmon_exit(ctrl); 4763 nvme_fault_inject_fini(&ctrl->fault_inject); 4764 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4765 cdev_device_del(&ctrl->cdev, ctrl->device); 4766 nvme_put_ctrl(ctrl); 4767 } 4768 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4769 4770 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4771 { 4772 struct nvme_effects_log *cel; 4773 unsigned long i; 4774 4775 xa_for_each(&ctrl->cels, i, cel) { 4776 xa_erase(&ctrl->cels, i); 4777 kfree(cel); 4778 } 4779 4780 xa_destroy(&ctrl->cels); 4781 } 4782 4783 static void nvme_free_ctrl(struct device *dev) 4784 { 4785 struct nvme_ctrl *ctrl = 4786 container_of(dev, struct nvme_ctrl, ctrl_device); 4787 struct nvme_subsystem *subsys = ctrl->subsys; 4788 4789 if (!subsys || ctrl->instance != subsys->instance) 4790 ida_free(&nvme_instance_ida, ctrl->instance); 4791 nvme_free_cels(ctrl); 4792 nvme_mpath_uninit(ctrl); 4793 cleanup_srcu_struct(&ctrl->srcu); 4794 nvme_auth_stop(ctrl); 4795 nvme_auth_free(ctrl); 4796 __free_page(ctrl->discard_page); 4797 free_opal_dev(ctrl->opal_dev); 4798 4799 if (subsys) { 4800 mutex_lock(&nvme_subsystems_lock); 4801 list_del(&ctrl->subsys_entry); 4802 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4803 mutex_unlock(&nvme_subsystems_lock); 4804 } 4805 4806 ctrl->ops->free_ctrl(ctrl); 4807 4808 if (subsys) 4809 nvme_put_subsystem(subsys); 4810 } 4811 4812 /* 4813 * Initialize a NVMe controller structures. This needs to be called during 4814 * earliest initialization so that we have the initialized structured around 4815 * during probing. 4816 * 4817 * On success, the caller must use the nvme_put_ctrl() to release this when 4818 * needed, which also invokes the ops->free_ctrl() callback. 4819 */ 4820 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4821 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4822 { 4823 int ret; 4824 4825 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4826 ctrl->passthru_err_log_enabled = false; 4827 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4828 spin_lock_init(&ctrl->lock); 4829 mutex_init(&ctrl->namespaces_lock); 4830 4831 ret = init_srcu_struct(&ctrl->srcu); 4832 if (ret) 4833 return ret; 4834 4835 mutex_init(&ctrl->scan_lock); 4836 INIT_LIST_HEAD(&ctrl->namespaces); 4837 xa_init(&ctrl->cels); 4838 ctrl->dev = dev; 4839 ctrl->ops = ops; 4840 ctrl->quirks = quirks; 4841 ctrl->numa_node = NUMA_NO_NODE; 4842 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4843 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4844 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4845 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4846 init_waitqueue_head(&ctrl->state_wq); 4847 4848 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4849 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4850 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4851 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4852 ctrl->ka_last_check_time = jiffies; 4853 4854 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4855 PAGE_SIZE); 4856 ctrl->discard_page = alloc_page(GFP_KERNEL); 4857 if (!ctrl->discard_page) { 4858 ret = -ENOMEM; 4859 goto out; 4860 } 4861 4862 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4863 if (ret < 0) 4864 goto out; 4865 ctrl->instance = ret; 4866 4867 ret = nvme_auth_init_ctrl(ctrl); 4868 if (ret) 4869 goto out_release_instance; 4870 4871 nvme_mpath_init_ctrl(ctrl); 4872 4873 device_initialize(&ctrl->ctrl_device); 4874 ctrl->device = &ctrl->ctrl_device; 4875 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4876 ctrl->instance); 4877 ctrl->device->class = &nvme_class; 4878 ctrl->device->parent = ctrl->dev; 4879 if (ops->dev_attr_groups) 4880 ctrl->device->groups = ops->dev_attr_groups; 4881 else 4882 ctrl->device->groups = nvme_dev_attr_groups; 4883 ctrl->device->release = nvme_free_ctrl; 4884 dev_set_drvdata(ctrl->device, ctrl); 4885 4886 return ret; 4887 4888 out_release_instance: 4889 ida_free(&nvme_instance_ida, ctrl->instance); 4890 out: 4891 if (ctrl->discard_page) 4892 __free_page(ctrl->discard_page); 4893 cleanup_srcu_struct(&ctrl->srcu); 4894 return ret; 4895 } 4896 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4897 4898 /* 4899 * On success, returns with an elevated controller reference and caller must 4900 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. 4901 */ 4902 int nvme_add_ctrl(struct nvme_ctrl *ctrl) 4903 { 4904 int ret; 4905 4906 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4907 if (ret) 4908 return ret; 4909 4910 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4911 ctrl->cdev.owner = ctrl->ops->module; 4912 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4913 if (ret) 4914 return ret; 4915 4916 /* 4917 * Initialize latency tolerance controls. The sysfs files won't 4918 * be visible to userspace unless the device actually supports APST. 4919 */ 4920 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4921 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4922 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4923 4924 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4925 nvme_get_ctrl(ctrl); 4926 4927 return 0; 4928 } 4929 EXPORT_SYMBOL_GPL(nvme_add_ctrl); 4930 4931 /* let I/O to all namespaces fail in preparation for surprise removal */ 4932 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4933 { 4934 struct nvme_ns *ns; 4935 int srcu_idx; 4936 4937 srcu_idx = srcu_read_lock(&ctrl->srcu); 4938 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4939 srcu_read_lock_held(&ctrl->srcu)) 4940 blk_mark_disk_dead(ns->disk); 4941 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4942 } 4943 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4944 4945 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4946 { 4947 struct nvme_ns *ns; 4948 int srcu_idx; 4949 4950 srcu_idx = srcu_read_lock(&ctrl->srcu); 4951 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4952 srcu_read_lock_held(&ctrl->srcu)) 4953 blk_mq_unfreeze_queue_non_owner(ns->queue); 4954 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4955 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4956 } 4957 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4958 4959 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4960 { 4961 struct nvme_ns *ns; 4962 int srcu_idx; 4963 4964 srcu_idx = srcu_read_lock(&ctrl->srcu); 4965 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4966 srcu_read_lock_held(&ctrl->srcu)) { 4967 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4968 if (timeout <= 0) 4969 break; 4970 } 4971 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4972 return timeout; 4973 } 4974 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4975 4976 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4977 { 4978 struct nvme_ns *ns; 4979 int srcu_idx; 4980 4981 srcu_idx = srcu_read_lock(&ctrl->srcu); 4982 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4983 srcu_read_lock_held(&ctrl->srcu)) 4984 blk_mq_freeze_queue_wait(ns->queue); 4985 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4986 } 4987 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4988 4989 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4990 { 4991 struct nvme_ns *ns; 4992 int srcu_idx; 4993 4994 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4995 srcu_idx = srcu_read_lock(&ctrl->srcu); 4996 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4997 srcu_read_lock_held(&ctrl->srcu)) 4998 /* 4999 * Typical non_owner use case is from pci driver, in which 5000 * start_freeze is called from timeout work function, but 5001 * unfreeze is done in reset work context 5002 */ 5003 blk_freeze_queue_start_non_owner(ns->queue); 5004 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5005 } 5006 EXPORT_SYMBOL_GPL(nvme_start_freeze); 5007 5008 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 5009 { 5010 if (!ctrl->tagset) 5011 return; 5012 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5013 blk_mq_quiesce_tagset(ctrl->tagset); 5014 else 5015 blk_mq_wait_quiesce_done(ctrl->tagset); 5016 } 5017 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 5018 5019 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 5020 { 5021 if (!ctrl->tagset) 5022 return; 5023 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5024 blk_mq_unquiesce_tagset(ctrl->tagset); 5025 } 5026 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 5027 5028 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 5029 { 5030 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5031 blk_mq_quiesce_queue(ctrl->admin_q); 5032 else 5033 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 5034 } 5035 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 5036 5037 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 5038 { 5039 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5040 blk_mq_unquiesce_queue(ctrl->admin_q); 5041 } 5042 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 5043 5044 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 5045 { 5046 struct nvme_ns *ns; 5047 int srcu_idx; 5048 5049 srcu_idx = srcu_read_lock(&ctrl->srcu); 5050 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 5051 srcu_read_lock_held(&ctrl->srcu)) 5052 blk_sync_queue(ns->queue); 5053 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5054 } 5055 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 5056 5057 void nvme_sync_queues(struct nvme_ctrl *ctrl) 5058 { 5059 nvme_sync_io_queues(ctrl); 5060 if (ctrl->admin_q) 5061 blk_sync_queue(ctrl->admin_q); 5062 } 5063 EXPORT_SYMBOL_GPL(nvme_sync_queues); 5064 5065 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 5066 { 5067 if (file->f_op != &nvme_dev_fops) 5068 return NULL; 5069 return file->private_data; 5070 } 5071 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU"); 5072 5073 /* 5074 * Check we didn't inadvertently grow the command structure sizes: 5075 */ 5076 static inline void _nvme_check_size(void) 5077 { 5078 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 5079 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 5080 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 5081 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 5082 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 5083 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 5084 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 5085 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 5086 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 5087 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 5088 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 5089 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 5090 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 5091 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 5092 NVME_IDENTIFY_DATA_SIZE); 5093 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 5094 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 5095 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 5096 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 5097 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 5098 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 5099 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512); 5100 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512); 5101 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 5102 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 5103 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 5104 } 5105 5106 5107 static int __init nvme_core_init(void) 5108 { 5109 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS; 5110 int result = -ENOMEM; 5111 5112 _nvme_check_size(); 5113 5114 nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0); 5115 if (!nvme_wq) 5116 goto out; 5117 5118 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0); 5119 if (!nvme_reset_wq) 5120 goto destroy_wq; 5121 5122 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0); 5123 if (!nvme_delete_wq) 5124 goto destroy_reset_wq; 5125 5126 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5127 NVME_MINORS, "nvme"); 5128 if (result < 0) 5129 goto destroy_delete_wq; 5130 5131 result = class_register(&nvme_class); 5132 if (result) 5133 goto unregister_chrdev; 5134 5135 result = class_register(&nvme_subsys_class); 5136 if (result) 5137 goto destroy_class; 5138 5139 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5140 "nvme-generic"); 5141 if (result < 0) 5142 goto destroy_subsys_class; 5143 5144 result = class_register(&nvme_ns_chr_class); 5145 if (result) 5146 goto unregister_generic_ns; 5147 5148 result = nvme_init_auth(); 5149 if (result) 5150 goto destroy_ns_chr; 5151 return 0; 5152 5153 destroy_ns_chr: 5154 class_unregister(&nvme_ns_chr_class); 5155 unregister_generic_ns: 5156 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5157 destroy_subsys_class: 5158 class_unregister(&nvme_subsys_class); 5159 destroy_class: 5160 class_unregister(&nvme_class); 5161 unregister_chrdev: 5162 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5163 destroy_delete_wq: 5164 destroy_workqueue(nvme_delete_wq); 5165 destroy_reset_wq: 5166 destroy_workqueue(nvme_reset_wq); 5167 destroy_wq: 5168 destroy_workqueue(nvme_wq); 5169 out: 5170 return result; 5171 } 5172 5173 static void __exit nvme_core_exit(void) 5174 { 5175 nvme_exit_auth(); 5176 class_unregister(&nvme_ns_chr_class); 5177 class_unregister(&nvme_subsys_class); 5178 class_unregister(&nvme_class); 5179 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5180 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5181 destroy_workqueue(nvme_delete_wq); 5182 destroy_workqueue(nvme_reset_wq); 5183 destroy_workqueue(nvme_wq); 5184 ida_destroy(&nvme_ns_chr_minor_ida); 5185 ida_destroy(&nvme_instance_ida); 5186 } 5187 5188 MODULE_LICENSE("GPL"); 5189 MODULE_VERSION("1.0"); 5190 MODULE_DESCRIPTION("NVMe host core framework"); 5191 module_init(nvme_core_init); 5192 module_exit(nvme_core_exit); 5193