xref: /linux/drivers/nvme/host/core.c (revision 484e9aa6efaf96a7a5b5fe3216f24973166fbfe3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	bool is_shared;
42 	bool is_readonly;
43 	bool is_ready;
44 	bool is_removed;
45 	bool is_rotational;
46 	bool no_vwc;
47 };
48 
49 unsigned int admin_timeout = 60;
50 module_param(admin_timeout, uint, 0644);
51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
52 EXPORT_SYMBOL_GPL(admin_timeout);
53 
54 unsigned int nvme_io_timeout = 30;
55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
57 EXPORT_SYMBOL_GPL(nvme_io_timeout);
58 
59 static unsigned char shutdown_timeout = 5;
60 module_param(shutdown_timeout, byte, 0644);
61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
62 
63 static u8 nvme_max_retries = 5;
64 module_param_named(max_retries, nvme_max_retries, byte, 0644);
65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
66 
67 static unsigned long default_ps_max_latency_us = 100000;
68 module_param(default_ps_max_latency_us, ulong, 0644);
69 MODULE_PARM_DESC(default_ps_max_latency_us,
70 		 "max power saving latency for new devices; use PM QOS to change per device");
71 
72 static bool force_apst;
73 module_param(force_apst, bool, 0644);
74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
75 
76 static unsigned long apst_primary_timeout_ms = 100;
77 module_param(apst_primary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_primary_timeout_ms,
79 	"primary APST timeout in ms");
80 
81 static unsigned long apst_secondary_timeout_ms = 2000;
82 module_param(apst_secondary_timeout_ms, ulong, 0644);
83 MODULE_PARM_DESC(apst_secondary_timeout_ms,
84 	"secondary APST timeout in ms");
85 
86 static unsigned long apst_primary_latency_tol_us = 15000;
87 module_param(apst_primary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_primary_latency_tol_us,
89 	"primary APST latency tolerance in us");
90 
91 static unsigned long apst_secondary_latency_tol_us = 100000;
92 module_param(apst_secondary_latency_tol_us, ulong, 0644);
93 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
94 	"secondary APST latency tolerance in us");
95 
96 /*
97  * Older kernels didn't enable protection information if it was at an offset.
98  * Newer kernels do, so it breaks reads on the upgrade if such formats were
99  * used in prior kernels since the metadata written did not contain a valid
100  * checksum.
101  */
102 static bool disable_pi_offsets = false;
103 module_param(disable_pi_offsets, bool, 0444);
104 MODULE_PARM_DESC(disable_pi_offsets,
105 	"disable protection information if it has an offset");
106 
107 /*
108  * nvme_wq - hosts nvme related works that are not reset or delete
109  * nvme_reset_wq - hosts nvme reset works
110  * nvme_delete_wq - hosts nvme delete works
111  *
112  * nvme_wq will host works such as scan, aen handling, fw activation,
113  * keep-alive, periodic reconnects etc. nvme_reset_wq
114  * runs reset works which also flush works hosted on nvme_wq for
115  * serialization purposes. nvme_delete_wq host controller deletion
116  * works which flush reset works for serialization.
117  */
118 struct workqueue_struct *nvme_wq;
119 EXPORT_SYMBOL_GPL(nvme_wq);
120 
121 struct workqueue_struct *nvme_reset_wq;
122 EXPORT_SYMBOL_GPL(nvme_reset_wq);
123 
124 struct workqueue_struct *nvme_delete_wq;
125 EXPORT_SYMBOL_GPL(nvme_delete_wq);
126 
127 static LIST_HEAD(nvme_subsystems);
128 DEFINE_MUTEX(nvme_subsystems_lock);
129 
130 static DEFINE_IDA(nvme_instance_ida);
131 static dev_t nvme_ctrl_base_chr_devt;
132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
133 static const struct class nvme_class = {
134 	.name = "nvme",
135 	.dev_uevent = nvme_class_uevent,
136 };
137 
138 static const struct class nvme_subsys_class = {
139 	.name = "nvme-subsystem",
140 };
141 
142 static DEFINE_IDA(nvme_ns_chr_minor_ida);
143 static dev_t nvme_ns_chr_devt;
144 static const struct class nvme_ns_chr_class = {
145 	.name = "nvme-generic",
146 };
147 
148 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
150 					   unsigned nsid);
151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
152 				   struct nvme_command *cmd);
153 
154 void nvme_queue_scan(struct nvme_ctrl *ctrl)
155 {
156 	/*
157 	 * Only new queue scan work when admin and IO queues are both alive
158 	 */
159 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
160 		queue_work(nvme_wq, &ctrl->scan_work);
161 }
162 
163 /*
164  * Use this function to proceed with scheduling reset_work for a controller
165  * that had previously been set to the resetting state. This is intended for
166  * code paths that can't be interrupted by other reset attempts. A hot removal
167  * may prevent this from succeeding.
168  */
169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
170 {
171 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
172 		return -EBUSY;
173 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
174 		return -EBUSY;
175 	return 0;
176 }
177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
178 
179 static void nvme_failfast_work(struct work_struct *work)
180 {
181 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
182 			struct nvme_ctrl, failfast_work);
183 
184 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
185 		return;
186 
187 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
188 	dev_info(ctrl->device, "failfast expired\n");
189 	nvme_kick_requeue_lists(ctrl);
190 }
191 
192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
193 {
194 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
195 		return;
196 
197 	schedule_delayed_work(&ctrl->failfast_work,
198 			      ctrl->opts->fast_io_fail_tmo * HZ);
199 }
200 
201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
202 {
203 	if (!ctrl->opts)
204 		return;
205 
206 	cancel_delayed_work_sync(&ctrl->failfast_work);
207 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
208 }
209 
210 
211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
212 {
213 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
214 		return -EBUSY;
215 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
216 		return -EBUSY;
217 	return 0;
218 }
219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
220 
221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
222 {
223 	int ret;
224 
225 	ret = nvme_reset_ctrl(ctrl);
226 	if (!ret) {
227 		flush_work(&ctrl->reset_work);
228 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
229 			ret = -ENETRESET;
230 	}
231 
232 	return ret;
233 }
234 
235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
236 {
237 	dev_info(ctrl->device,
238 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
239 
240 	flush_work(&ctrl->reset_work);
241 	nvme_stop_ctrl(ctrl);
242 	nvme_remove_namespaces(ctrl);
243 	ctrl->ops->delete_ctrl(ctrl);
244 	nvme_uninit_ctrl(ctrl);
245 }
246 
247 static void nvme_delete_ctrl_work(struct work_struct *work)
248 {
249 	struct nvme_ctrl *ctrl =
250 		container_of(work, struct nvme_ctrl, delete_work);
251 
252 	nvme_do_delete_ctrl(ctrl);
253 }
254 
255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
256 {
257 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		return -EBUSY;
259 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
260 		return -EBUSY;
261 	return 0;
262 }
263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
264 
265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
266 {
267 	/*
268 	 * Keep a reference until nvme_do_delete_ctrl() complete,
269 	 * since ->delete_ctrl can free the controller.
270 	 */
271 	nvme_get_ctrl(ctrl);
272 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
273 		nvme_do_delete_ctrl(ctrl);
274 	nvme_put_ctrl(ctrl);
275 }
276 
277 static blk_status_t nvme_error_status(u16 status)
278 {
279 	switch (status & NVME_SCT_SC_MASK) {
280 	case NVME_SC_SUCCESS:
281 		return BLK_STS_OK;
282 	case NVME_SC_CAP_EXCEEDED:
283 		return BLK_STS_NOSPC;
284 	case NVME_SC_LBA_RANGE:
285 	case NVME_SC_CMD_INTERRUPTED:
286 	case NVME_SC_NS_NOT_READY:
287 		return BLK_STS_TARGET;
288 	case NVME_SC_BAD_ATTRIBUTES:
289 	case NVME_SC_ONCS_NOT_SUPPORTED:
290 	case NVME_SC_INVALID_OPCODE:
291 	case NVME_SC_INVALID_FIELD:
292 	case NVME_SC_INVALID_NS:
293 		return BLK_STS_NOTSUPP;
294 	case NVME_SC_WRITE_FAULT:
295 	case NVME_SC_READ_ERROR:
296 	case NVME_SC_UNWRITTEN_BLOCK:
297 	case NVME_SC_ACCESS_DENIED:
298 	case NVME_SC_READ_ONLY:
299 	case NVME_SC_COMPARE_FAILED:
300 		return BLK_STS_MEDIUM;
301 	case NVME_SC_GUARD_CHECK:
302 	case NVME_SC_APPTAG_CHECK:
303 	case NVME_SC_REFTAG_CHECK:
304 	case NVME_SC_INVALID_PI:
305 		return BLK_STS_PROTECTION;
306 	case NVME_SC_RESERVATION_CONFLICT:
307 		return BLK_STS_RESV_CONFLICT;
308 	case NVME_SC_HOST_PATH_ERROR:
309 		return BLK_STS_TRANSPORT;
310 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
311 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
312 	case NVME_SC_ZONE_TOO_MANY_OPEN:
313 		return BLK_STS_ZONE_OPEN_RESOURCE;
314 	default:
315 		return BLK_STS_IOERR;
316 	}
317 }
318 
319 static void nvme_retry_req(struct request *req)
320 {
321 	unsigned long delay = 0;
322 	u16 crd;
323 
324 	/* The mask and shift result must be <= 3 */
325 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
326 	if (crd)
327 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
328 
329 	nvme_req(req)->retries++;
330 	blk_mq_requeue_request(req, false);
331 	blk_mq_delay_kick_requeue_list(req->q, delay);
332 }
333 
334 static void nvme_log_error(struct request *req)
335 {
336 	struct nvme_ns *ns = req->q->queuedata;
337 	struct nvme_request *nr = nvme_req(req);
338 
339 	if (ns) {
340 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
341 		       ns->disk ? ns->disk->disk_name : "?",
342 		       nvme_get_opcode_str(nr->cmd->common.opcode),
343 		       nr->cmd->common.opcode,
344 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
345 		       blk_rq_bytes(req) >> ns->head->lba_shift,
346 		       nvme_get_error_status_str(nr->status),
347 		       NVME_SCT(nr->status),		/* Status Code Type */
348 		       nr->status & NVME_SC_MASK,	/* Status Code */
349 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
350 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
351 		return;
352 	}
353 
354 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
355 			   dev_name(nr->ctrl->device),
356 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
357 			   nr->cmd->common.opcode,
358 			   nvme_get_error_status_str(nr->status),
359 			   NVME_SCT(nr->status),	/* Status Code Type */
360 			   nr->status & NVME_SC_MASK,	/* Status Code */
361 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
362 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
363 }
364 
365 static void nvme_log_err_passthru(struct request *req)
366 {
367 	struct nvme_ns *ns = req->q->queuedata;
368 	struct nvme_request *nr = nvme_req(req);
369 
370 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
371 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
372 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
373 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
374 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
375 		nr->cmd->common.opcode,
376 		nvme_get_error_status_str(nr->status),
377 		NVME_SCT(nr->status),		/* Status Code Type */
378 		nr->status & NVME_SC_MASK,	/* Status Code */
379 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
380 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
381 		nr->cmd->common.cdw10,
382 		nr->cmd->common.cdw11,
383 		nr->cmd->common.cdw12,
384 		nr->cmd->common.cdw13,
385 		nr->cmd->common.cdw14,
386 		nr->cmd->common.cdw14);
387 }
388 
389 enum nvme_disposition {
390 	COMPLETE,
391 	RETRY,
392 	FAILOVER,
393 	AUTHENTICATE,
394 };
395 
396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
397 {
398 	if (likely(nvme_req(req)->status == 0))
399 		return COMPLETE;
400 
401 	if (blk_noretry_request(req) ||
402 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
403 	    nvme_req(req)->retries >= nvme_max_retries)
404 		return COMPLETE;
405 
406 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
407 		return AUTHENTICATE;
408 
409 	if (req->cmd_flags & REQ_NVME_MPATH) {
410 		if (nvme_is_path_error(nvme_req(req)->status) ||
411 		    blk_queue_dying(req->q))
412 			return FAILOVER;
413 	} else {
414 		if (blk_queue_dying(req->q))
415 			return COMPLETE;
416 	}
417 
418 	return RETRY;
419 }
420 
421 static inline void nvme_end_req_zoned(struct request *req)
422 {
423 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
424 	    req_op(req) == REQ_OP_ZONE_APPEND) {
425 		struct nvme_ns *ns = req->q->queuedata;
426 
427 		req->__sector = nvme_lba_to_sect(ns->head,
428 			le64_to_cpu(nvme_req(req)->result.u64));
429 	}
430 }
431 
432 static inline void __nvme_end_req(struct request *req)
433 {
434 	nvme_end_req_zoned(req);
435 	nvme_trace_bio_complete(req);
436 	if (req->cmd_flags & REQ_NVME_MPATH)
437 		nvme_mpath_end_request(req);
438 }
439 
440 void nvme_end_req(struct request *req)
441 {
442 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
443 
444 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
445 		if (blk_rq_is_passthrough(req))
446 			nvme_log_err_passthru(req);
447 		else
448 			nvme_log_error(req);
449 	}
450 	__nvme_end_req(req);
451 	blk_mq_end_request(req, status);
452 }
453 
454 void nvme_complete_rq(struct request *req)
455 {
456 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
457 
458 	trace_nvme_complete_rq(req);
459 	nvme_cleanup_cmd(req);
460 
461 	/*
462 	 * Completions of long-running commands should not be able to
463 	 * defer sending of periodic keep alives, since the controller
464 	 * may have completed processing such commands a long time ago
465 	 * (arbitrarily close to command submission time).
466 	 * req->deadline - req->timeout is the command submission time
467 	 * in jiffies.
468 	 */
469 	if (ctrl->kas &&
470 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
471 		ctrl->comp_seen = true;
472 
473 	switch (nvme_decide_disposition(req)) {
474 	case COMPLETE:
475 		nvme_end_req(req);
476 		return;
477 	case RETRY:
478 		nvme_retry_req(req);
479 		return;
480 	case FAILOVER:
481 		nvme_failover_req(req);
482 		return;
483 	case AUTHENTICATE:
484 #ifdef CONFIG_NVME_HOST_AUTH
485 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
486 		nvme_retry_req(req);
487 #else
488 		nvme_end_req(req);
489 #endif
490 		return;
491 	}
492 }
493 EXPORT_SYMBOL_GPL(nvme_complete_rq);
494 
495 void nvme_complete_batch_req(struct request *req)
496 {
497 	trace_nvme_complete_rq(req);
498 	nvme_cleanup_cmd(req);
499 	__nvme_end_req(req);
500 }
501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
502 
503 /*
504  * Called to unwind from ->queue_rq on a failed command submission so that the
505  * multipathing code gets called to potentially failover to another path.
506  * The caller needs to unwind all transport specific resource allocations and
507  * must return propagate the return value.
508  */
509 blk_status_t nvme_host_path_error(struct request *req)
510 {
511 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
512 	blk_mq_set_request_complete(req);
513 	nvme_complete_rq(req);
514 	return BLK_STS_OK;
515 }
516 EXPORT_SYMBOL_GPL(nvme_host_path_error);
517 
518 bool nvme_cancel_request(struct request *req, void *data)
519 {
520 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
521 				"Cancelling I/O %d", req->tag);
522 
523 	/* don't abort one completed or idle request */
524 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
525 		return true;
526 
527 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
528 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
529 	blk_mq_complete_request(req);
530 	return true;
531 }
532 EXPORT_SYMBOL_GPL(nvme_cancel_request);
533 
534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
535 {
536 	if (ctrl->tagset) {
537 		blk_mq_tagset_busy_iter(ctrl->tagset,
538 				nvme_cancel_request, ctrl);
539 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
540 	}
541 }
542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
543 
544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
545 {
546 	if (ctrl->admin_tagset) {
547 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
548 				nvme_cancel_request, ctrl);
549 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
550 	}
551 }
552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
553 
554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
555 		enum nvme_ctrl_state new_state)
556 {
557 	enum nvme_ctrl_state old_state;
558 	unsigned long flags;
559 	bool changed = false;
560 
561 	spin_lock_irqsave(&ctrl->lock, flags);
562 
563 	old_state = nvme_ctrl_state(ctrl);
564 	switch (new_state) {
565 	case NVME_CTRL_LIVE:
566 		switch (old_state) {
567 		case NVME_CTRL_NEW:
568 		case NVME_CTRL_RESETTING:
569 		case NVME_CTRL_CONNECTING:
570 			changed = true;
571 			fallthrough;
572 		default:
573 			break;
574 		}
575 		break;
576 	case NVME_CTRL_RESETTING:
577 		switch (old_state) {
578 		case NVME_CTRL_NEW:
579 		case NVME_CTRL_LIVE:
580 			changed = true;
581 			fallthrough;
582 		default:
583 			break;
584 		}
585 		break;
586 	case NVME_CTRL_CONNECTING:
587 		switch (old_state) {
588 		case NVME_CTRL_NEW:
589 		case NVME_CTRL_RESETTING:
590 			changed = true;
591 			fallthrough;
592 		default:
593 			break;
594 		}
595 		break;
596 	case NVME_CTRL_DELETING:
597 		switch (old_state) {
598 		case NVME_CTRL_LIVE:
599 		case NVME_CTRL_RESETTING:
600 		case NVME_CTRL_CONNECTING:
601 			changed = true;
602 			fallthrough;
603 		default:
604 			break;
605 		}
606 		break;
607 	case NVME_CTRL_DELETING_NOIO:
608 		switch (old_state) {
609 		case NVME_CTRL_DELETING:
610 		case NVME_CTRL_DEAD:
611 			changed = true;
612 			fallthrough;
613 		default:
614 			break;
615 		}
616 		break;
617 	case NVME_CTRL_DEAD:
618 		switch (old_state) {
619 		case NVME_CTRL_DELETING:
620 			changed = true;
621 			fallthrough;
622 		default:
623 			break;
624 		}
625 		break;
626 	default:
627 		break;
628 	}
629 
630 	if (changed) {
631 		WRITE_ONCE(ctrl->state, new_state);
632 		wake_up_all(&ctrl->state_wq);
633 	}
634 
635 	spin_unlock_irqrestore(&ctrl->lock, flags);
636 	if (!changed)
637 		return false;
638 
639 	if (new_state == NVME_CTRL_LIVE) {
640 		if (old_state == NVME_CTRL_CONNECTING)
641 			nvme_stop_failfast_work(ctrl);
642 		nvme_kick_requeue_lists(ctrl);
643 	} else if (new_state == NVME_CTRL_CONNECTING &&
644 		old_state == NVME_CTRL_RESETTING) {
645 		nvme_start_failfast_work(ctrl);
646 	}
647 	return changed;
648 }
649 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
650 
651 /*
652  * Waits for the controller state to be resetting, or returns false if it is
653  * not possible to ever transition to that state.
654  */
655 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
656 {
657 	wait_event(ctrl->state_wq,
658 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
659 		   nvme_state_terminal(ctrl));
660 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
661 }
662 EXPORT_SYMBOL_GPL(nvme_wait_reset);
663 
664 static void nvme_free_ns_head(struct kref *ref)
665 {
666 	struct nvme_ns_head *head =
667 		container_of(ref, struct nvme_ns_head, ref);
668 
669 	nvme_mpath_remove_disk(head);
670 	ida_free(&head->subsys->ns_ida, head->instance);
671 	cleanup_srcu_struct(&head->srcu);
672 	nvme_put_subsystem(head->subsys);
673 	kfree(head);
674 }
675 
676 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
677 {
678 	return kref_get_unless_zero(&head->ref);
679 }
680 
681 void nvme_put_ns_head(struct nvme_ns_head *head)
682 {
683 	kref_put(&head->ref, nvme_free_ns_head);
684 }
685 
686 static void nvme_free_ns(struct kref *kref)
687 {
688 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
689 
690 	put_disk(ns->disk);
691 	nvme_put_ns_head(ns->head);
692 	nvme_put_ctrl(ns->ctrl);
693 	kfree(ns);
694 }
695 
696 bool nvme_get_ns(struct nvme_ns *ns)
697 {
698 	return kref_get_unless_zero(&ns->kref);
699 }
700 
701 void nvme_put_ns(struct nvme_ns *ns)
702 {
703 	kref_put(&ns->kref, nvme_free_ns);
704 }
705 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
706 
707 static inline void nvme_clear_nvme_request(struct request *req)
708 {
709 	nvme_req(req)->status = 0;
710 	nvme_req(req)->retries = 0;
711 	nvme_req(req)->flags = 0;
712 	req->rq_flags |= RQF_DONTPREP;
713 }
714 
715 /* initialize a passthrough request */
716 void nvme_init_request(struct request *req, struct nvme_command *cmd)
717 {
718 	struct nvme_request *nr = nvme_req(req);
719 	bool logging_enabled;
720 
721 	if (req->q->queuedata) {
722 		struct nvme_ns *ns = req->q->disk->private_data;
723 
724 		logging_enabled = ns->head->passthru_err_log_enabled;
725 		req->timeout = NVME_IO_TIMEOUT;
726 	} else { /* no queuedata implies admin queue */
727 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
728 		req->timeout = NVME_ADMIN_TIMEOUT;
729 	}
730 
731 	if (!logging_enabled)
732 		req->rq_flags |= RQF_QUIET;
733 
734 	/* passthru commands should let the driver set the SGL flags */
735 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
736 
737 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
738 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
739 		req->cmd_flags |= REQ_POLLED;
740 	nvme_clear_nvme_request(req);
741 	memcpy(nr->cmd, cmd, sizeof(*cmd));
742 }
743 EXPORT_SYMBOL_GPL(nvme_init_request);
744 
745 /*
746  * For something we're not in a state to send to the device the default action
747  * is to busy it and retry it after the controller state is recovered.  However,
748  * if the controller is deleting or if anything is marked for failfast or
749  * nvme multipath it is immediately failed.
750  *
751  * Note: commands used to initialize the controller will be marked for failfast.
752  * Note: nvme cli/ioctl commands are marked for failfast.
753  */
754 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
755 		struct request *rq)
756 {
757 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
758 
759 	if (state != NVME_CTRL_DELETING_NOIO &&
760 	    state != NVME_CTRL_DELETING &&
761 	    state != NVME_CTRL_DEAD &&
762 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
763 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
764 		return BLK_STS_RESOURCE;
765 	return nvme_host_path_error(rq);
766 }
767 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
768 
769 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
770 		bool queue_live, enum nvme_ctrl_state state)
771 {
772 	struct nvme_request *req = nvme_req(rq);
773 
774 	/*
775 	 * currently we have a problem sending passthru commands
776 	 * on the admin_q if the controller is not LIVE because we can't
777 	 * make sure that they are going out after the admin connect,
778 	 * controller enable and/or other commands in the initialization
779 	 * sequence. until the controller will be LIVE, fail with
780 	 * BLK_STS_RESOURCE so that they will be rescheduled.
781 	 */
782 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
783 		return false;
784 
785 	if (ctrl->ops->flags & NVME_F_FABRICS) {
786 		/*
787 		 * Only allow commands on a live queue, except for the connect
788 		 * command, which is require to set the queue live in the
789 		 * appropinquate states.
790 		 */
791 		switch (state) {
792 		case NVME_CTRL_CONNECTING:
793 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
794 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
795 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
796 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
797 				return true;
798 			break;
799 		default:
800 			break;
801 		case NVME_CTRL_DEAD:
802 			return false;
803 		}
804 	}
805 
806 	return queue_live;
807 }
808 EXPORT_SYMBOL_GPL(__nvme_check_ready);
809 
810 static inline void nvme_setup_flush(struct nvme_ns *ns,
811 		struct nvme_command *cmnd)
812 {
813 	memset(cmnd, 0, sizeof(*cmnd));
814 	cmnd->common.opcode = nvme_cmd_flush;
815 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
816 }
817 
818 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
819 		struct nvme_command *cmnd)
820 {
821 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
822 	struct nvme_dsm_range *range;
823 	struct bio *bio;
824 
825 	/*
826 	 * Some devices do not consider the DSM 'Number of Ranges' field when
827 	 * determining how much data to DMA. Always allocate memory for maximum
828 	 * number of segments to prevent device reading beyond end of buffer.
829 	 */
830 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
831 
832 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
833 	if (!range) {
834 		/*
835 		 * If we fail allocation our range, fallback to the controller
836 		 * discard page. If that's also busy, it's safe to return
837 		 * busy, as we know we can make progress once that's freed.
838 		 */
839 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
840 			return BLK_STS_RESOURCE;
841 
842 		range = page_address(ns->ctrl->discard_page);
843 	}
844 
845 	if (queue_max_discard_segments(req->q) == 1) {
846 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
847 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
848 
849 		range[0].cattr = cpu_to_le32(0);
850 		range[0].nlb = cpu_to_le32(nlb);
851 		range[0].slba = cpu_to_le64(slba);
852 		n = 1;
853 	} else {
854 		__rq_for_each_bio(bio, req) {
855 			u64 slba = nvme_sect_to_lba(ns->head,
856 						    bio->bi_iter.bi_sector);
857 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
858 
859 			if (n < segments) {
860 				range[n].cattr = cpu_to_le32(0);
861 				range[n].nlb = cpu_to_le32(nlb);
862 				range[n].slba = cpu_to_le64(slba);
863 			}
864 			n++;
865 		}
866 	}
867 
868 	if (WARN_ON_ONCE(n != segments)) {
869 		if (virt_to_page(range) == ns->ctrl->discard_page)
870 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
871 		else
872 			kfree(range);
873 		return BLK_STS_IOERR;
874 	}
875 
876 	memset(cmnd, 0, sizeof(*cmnd));
877 	cmnd->dsm.opcode = nvme_cmd_dsm;
878 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
879 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
880 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
881 
882 	bvec_set_virt(&req->special_vec, range, alloc_size);
883 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
884 
885 	return BLK_STS_OK;
886 }
887 
888 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
889 {
890 	cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
891 	cmnd->rw.lbatm = cpu_to_le16(0xffff);
892 }
893 
894 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
895 			      struct request *req)
896 {
897 	u32 upper, lower;
898 	u64 ref48;
899 
900 	/* both rw and write zeroes share the same reftag format */
901 	switch (ns->head->guard_type) {
902 	case NVME_NVM_NS_16B_GUARD:
903 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
904 		break;
905 	case NVME_NVM_NS_64B_GUARD:
906 		ref48 = ext_pi_ref_tag(req);
907 		lower = lower_32_bits(ref48);
908 		upper = upper_32_bits(ref48);
909 
910 		cmnd->rw.reftag = cpu_to_le32(lower);
911 		cmnd->rw.cdw3 = cpu_to_le32(upper);
912 		break;
913 	default:
914 		break;
915 	}
916 }
917 
918 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
919 		struct request *req, struct nvme_command *cmnd)
920 {
921 	memset(cmnd, 0, sizeof(*cmnd));
922 
923 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
924 		return nvme_setup_discard(ns, req, cmnd);
925 
926 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
927 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
928 	cmnd->write_zeroes.slba =
929 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
930 	cmnd->write_zeroes.length =
931 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
932 
933 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
934 	    (ns->head->features & NVME_NS_DEAC))
935 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
936 
937 	if (nvme_ns_has_pi(ns->head)) {
938 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
939 
940 		switch (ns->head->pi_type) {
941 		case NVME_NS_DPS_PI_TYPE1:
942 		case NVME_NS_DPS_PI_TYPE2:
943 			nvme_set_ref_tag(ns, cmnd, req);
944 			break;
945 		}
946 	}
947 
948 	return BLK_STS_OK;
949 }
950 
951 /*
952  * NVMe does not support a dedicated command to issue an atomic write. A write
953  * which does adhere to the device atomic limits will silently be executed
954  * non-atomically. The request issuer should ensure that the write is within
955  * the queue atomic writes limits, but just validate this in case it is not.
956  */
957 static bool nvme_valid_atomic_write(struct request *req)
958 {
959 	struct request_queue *q = req->q;
960 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
961 
962 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
963 		return false;
964 
965 	if (boundary_bytes) {
966 		u64 mask = boundary_bytes - 1, imask = ~mask;
967 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
968 		u64 end = start + blk_rq_bytes(req) - 1;
969 
970 		/* If greater then must be crossing a boundary */
971 		if (blk_rq_bytes(req) > boundary_bytes)
972 			return false;
973 
974 		if ((start & imask) != (end & imask))
975 			return false;
976 	}
977 
978 	return true;
979 }
980 
981 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
982 		struct request *req, struct nvme_command *cmnd,
983 		enum nvme_opcode op)
984 {
985 	u16 control = 0;
986 	u32 dsmgmt = 0;
987 
988 	if (req->cmd_flags & REQ_FUA)
989 		control |= NVME_RW_FUA;
990 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
991 		control |= NVME_RW_LR;
992 
993 	if (req->cmd_flags & REQ_RAHEAD)
994 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
995 
996 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
997 		return BLK_STS_INVAL;
998 
999 	cmnd->rw.opcode = op;
1000 	cmnd->rw.flags = 0;
1001 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1002 	cmnd->rw.cdw2 = 0;
1003 	cmnd->rw.cdw3 = 0;
1004 	cmnd->rw.metadata = 0;
1005 	cmnd->rw.slba =
1006 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1007 	cmnd->rw.length =
1008 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1009 	cmnd->rw.reftag = 0;
1010 	cmnd->rw.lbat = 0;
1011 	cmnd->rw.lbatm = 0;
1012 
1013 	if (ns->head->ms) {
1014 		/*
1015 		 * If formated with metadata, the block layer always provides a
1016 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1017 		 * we enable the PRACT bit for protection information or set the
1018 		 * namespace capacity to zero to prevent any I/O.
1019 		 */
1020 		if (!blk_integrity_rq(req)) {
1021 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1022 				return BLK_STS_NOTSUPP;
1023 			control |= NVME_RW_PRINFO_PRACT;
1024 		}
1025 
1026 		if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD))
1027 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1028 		if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) {
1029 			control |= NVME_RW_PRINFO_PRCHK_REF;
1030 			if (op == nvme_cmd_zone_append)
1031 				control |= NVME_RW_APPEND_PIREMAP;
1032 			nvme_set_ref_tag(ns, cmnd, req);
1033 		}
1034 		if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) {
1035 			control |= NVME_RW_PRINFO_PRCHK_APP;
1036 			nvme_set_app_tag(req, cmnd);
1037 		}
1038 	}
1039 
1040 	cmnd->rw.control = cpu_to_le16(control);
1041 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1042 	return 0;
1043 }
1044 
1045 void nvme_cleanup_cmd(struct request *req)
1046 {
1047 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1048 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1049 
1050 		if (req->special_vec.bv_page == ctrl->discard_page)
1051 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1052 		else
1053 			kfree(bvec_virt(&req->special_vec));
1054 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1055 	}
1056 }
1057 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1058 
1059 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1060 {
1061 	struct nvme_command *cmd = nvme_req(req)->cmd;
1062 	blk_status_t ret = BLK_STS_OK;
1063 
1064 	if (!(req->rq_flags & RQF_DONTPREP))
1065 		nvme_clear_nvme_request(req);
1066 
1067 	switch (req_op(req)) {
1068 	case REQ_OP_DRV_IN:
1069 	case REQ_OP_DRV_OUT:
1070 		/* these are setup prior to execution in nvme_init_request() */
1071 		break;
1072 	case REQ_OP_FLUSH:
1073 		nvme_setup_flush(ns, cmd);
1074 		break;
1075 	case REQ_OP_ZONE_RESET_ALL:
1076 	case REQ_OP_ZONE_RESET:
1077 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1078 		break;
1079 	case REQ_OP_ZONE_OPEN:
1080 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1081 		break;
1082 	case REQ_OP_ZONE_CLOSE:
1083 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1084 		break;
1085 	case REQ_OP_ZONE_FINISH:
1086 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1087 		break;
1088 	case REQ_OP_WRITE_ZEROES:
1089 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1090 		break;
1091 	case REQ_OP_DISCARD:
1092 		ret = nvme_setup_discard(ns, req, cmd);
1093 		break;
1094 	case REQ_OP_READ:
1095 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1096 		break;
1097 	case REQ_OP_WRITE:
1098 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1099 		break;
1100 	case REQ_OP_ZONE_APPEND:
1101 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1102 		break;
1103 	default:
1104 		WARN_ON_ONCE(1);
1105 		return BLK_STS_IOERR;
1106 	}
1107 
1108 	cmd->common.command_id = nvme_cid(req);
1109 	trace_nvme_setup_cmd(req, cmd);
1110 	return ret;
1111 }
1112 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1113 
1114 /*
1115  * Return values:
1116  * 0:  success
1117  * >0: nvme controller's cqe status response
1118  * <0: kernel error in lieu of controller response
1119  */
1120 int nvme_execute_rq(struct request *rq, bool at_head)
1121 {
1122 	blk_status_t status;
1123 
1124 	status = blk_execute_rq(rq, at_head);
1125 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1126 		return -EINTR;
1127 	if (nvme_req(rq)->status)
1128 		return nvme_req(rq)->status;
1129 	return blk_status_to_errno(status);
1130 }
1131 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1132 
1133 /*
1134  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1135  * if the result is positive, it's an NVM Express status code
1136  */
1137 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1138 		union nvme_result *result, void *buffer, unsigned bufflen,
1139 		int qid, nvme_submit_flags_t flags)
1140 {
1141 	struct request *req;
1142 	int ret;
1143 	blk_mq_req_flags_t blk_flags = 0;
1144 
1145 	if (flags & NVME_SUBMIT_NOWAIT)
1146 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1147 	if (flags & NVME_SUBMIT_RESERVED)
1148 		blk_flags |= BLK_MQ_REQ_RESERVED;
1149 	if (qid == NVME_QID_ANY)
1150 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1151 	else
1152 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1153 						qid - 1);
1154 
1155 	if (IS_ERR(req))
1156 		return PTR_ERR(req);
1157 	nvme_init_request(req, cmd);
1158 	if (flags & NVME_SUBMIT_RETRY)
1159 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1160 
1161 	if (buffer && bufflen) {
1162 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1163 		if (ret)
1164 			goto out;
1165 	}
1166 
1167 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1168 	if (result && ret >= 0)
1169 		*result = nvme_req(req)->result;
1170  out:
1171 	blk_mq_free_request(req);
1172 	return ret;
1173 }
1174 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1175 
1176 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1177 		void *buffer, unsigned bufflen)
1178 {
1179 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1180 			NVME_QID_ANY, 0);
1181 }
1182 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1183 
1184 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1185 {
1186 	u32 effects = 0;
1187 
1188 	if (ns) {
1189 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1190 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1191 			dev_warn_once(ctrl->device,
1192 				"IO command:%02x has unusual effects:%08x\n",
1193 				opcode, effects);
1194 
1195 		/*
1196 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1197 		 * which would deadlock when done on an I/O command.  Note that
1198 		 * We already warn about an unusual effect above.
1199 		 */
1200 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1201 	} else {
1202 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1203 
1204 		/* Ignore execution restrictions if any relaxation bits are set */
1205 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1206 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1207 	}
1208 
1209 	return effects;
1210 }
1211 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1212 
1213 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1214 {
1215 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1216 
1217 	/*
1218 	 * For simplicity, IO to all namespaces is quiesced even if the command
1219 	 * effects say only one namespace is affected.
1220 	 */
1221 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1222 		mutex_lock(&ctrl->scan_lock);
1223 		mutex_lock(&ctrl->subsys->lock);
1224 		nvme_mpath_start_freeze(ctrl->subsys);
1225 		nvme_mpath_wait_freeze(ctrl->subsys);
1226 		nvme_start_freeze(ctrl);
1227 		nvme_wait_freeze(ctrl);
1228 	}
1229 	return effects;
1230 }
1231 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1232 
1233 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1234 		       struct nvme_command *cmd, int status)
1235 {
1236 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1237 		nvme_unfreeze(ctrl);
1238 		nvme_mpath_unfreeze(ctrl->subsys);
1239 		mutex_unlock(&ctrl->subsys->lock);
1240 		mutex_unlock(&ctrl->scan_lock);
1241 	}
1242 	if (effects & NVME_CMD_EFFECTS_CCC) {
1243 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1244 				      &ctrl->flags)) {
1245 			dev_info(ctrl->device,
1246 "controller capabilities changed, reset may be required to take effect.\n");
1247 		}
1248 	}
1249 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1250 		nvme_queue_scan(ctrl);
1251 		flush_work(&ctrl->scan_work);
1252 	}
1253 	if (ns)
1254 		return;
1255 
1256 	switch (cmd->common.opcode) {
1257 	case nvme_admin_set_features:
1258 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1259 		case NVME_FEAT_KATO:
1260 			/*
1261 			 * Keep alive commands interval on the host should be
1262 			 * updated when KATO is modified by Set Features
1263 			 * commands.
1264 			 */
1265 			if (!status)
1266 				nvme_update_keep_alive(ctrl, cmd);
1267 			break;
1268 		default:
1269 			break;
1270 		}
1271 		break;
1272 	default:
1273 		break;
1274 	}
1275 }
1276 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1277 
1278 /*
1279  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1280  *
1281  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1282  *   accounting for transport roundtrip times [..].
1283  */
1284 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1285 {
1286 	unsigned long delay = ctrl->kato * HZ / 2;
1287 
1288 	/*
1289 	 * When using Traffic Based Keep Alive, we need to run
1290 	 * nvme_keep_alive_work at twice the normal frequency, as one
1291 	 * command completion can postpone sending a keep alive command
1292 	 * by up to twice the delay between runs.
1293 	 */
1294 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1295 		delay /= 2;
1296 	return delay;
1297 }
1298 
1299 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1300 {
1301 	unsigned long now = jiffies;
1302 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1303 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1304 
1305 	if (time_after(now, ka_next_check_tm))
1306 		delay = 0;
1307 	else
1308 		delay = ka_next_check_tm - now;
1309 
1310 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1311 }
1312 
1313 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1314 						 blk_status_t status)
1315 {
1316 	struct nvme_ctrl *ctrl = rq->end_io_data;
1317 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1318 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1319 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1320 
1321 	/*
1322 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1323 	 * at the desired frequency.
1324 	 */
1325 	if (rtt <= delay) {
1326 		delay -= rtt;
1327 	} else {
1328 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1329 			 jiffies_to_msecs(rtt));
1330 		delay = 0;
1331 	}
1332 
1333 	blk_mq_free_request(rq);
1334 
1335 	if (status) {
1336 		dev_err(ctrl->device,
1337 			"failed nvme_keep_alive_end_io error=%d\n",
1338 				status);
1339 		return RQ_END_IO_NONE;
1340 	}
1341 
1342 	ctrl->ka_last_check_time = jiffies;
1343 	ctrl->comp_seen = false;
1344 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1345 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1346 	return RQ_END_IO_NONE;
1347 }
1348 
1349 static void nvme_keep_alive_work(struct work_struct *work)
1350 {
1351 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1352 			struct nvme_ctrl, ka_work);
1353 	bool comp_seen = ctrl->comp_seen;
1354 	struct request *rq;
1355 
1356 	ctrl->ka_last_check_time = jiffies;
1357 
1358 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1359 		dev_dbg(ctrl->device,
1360 			"reschedule traffic based keep-alive timer\n");
1361 		ctrl->comp_seen = false;
1362 		nvme_queue_keep_alive_work(ctrl);
1363 		return;
1364 	}
1365 
1366 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1367 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1368 	if (IS_ERR(rq)) {
1369 		/* allocation failure, reset the controller */
1370 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1371 		nvme_reset_ctrl(ctrl);
1372 		return;
1373 	}
1374 	nvme_init_request(rq, &ctrl->ka_cmd);
1375 
1376 	rq->timeout = ctrl->kato * HZ;
1377 	rq->end_io = nvme_keep_alive_end_io;
1378 	rq->end_io_data = ctrl;
1379 	blk_execute_rq_nowait(rq, false);
1380 }
1381 
1382 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1383 {
1384 	if (unlikely(ctrl->kato == 0))
1385 		return;
1386 
1387 	nvme_queue_keep_alive_work(ctrl);
1388 }
1389 
1390 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1391 {
1392 	if (unlikely(ctrl->kato == 0))
1393 		return;
1394 
1395 	cancel_delayed_work_sync(&ctrl->ka_work);
1396 }
1397 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1398 
1399 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1400 				   struct nvme_command *cmd)
1401 {
1402 	unsigned int new_kato =
1403 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1404 
1405 	dev_info(ctrl->device,
1406 		 "keep alive interval updated from %u ms to %u ms\n",
1407 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1408 
1409 	nvme_stop_keep_alive(ctrl);
1410 	ctrl->kato = new_kato;
1411 	nvme_start_keep_alive(ctrl);
1412 }
1413 
1414 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1415 {
1416 	/*
1417 	 * The CNS field occupies a full byte starting with NVMe 1.2
1418 	 */
1419 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1420 		return true;
1421 
1422 	/*
1423 	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1424 	 * larger than that could get truncated and treated as an incorrect
1425 	 * value.
1426 	 *
1427 	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1428 	 * compliance, so they need to be quirked here.
1429 	 */
1430 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1431 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1432 		return cns <= 3;
1433 
1434 	/*
1435 	 * NVMe 1.0 used a single bit for the CNS value.
1436 	 */
1437 	return cns <= 1;
1438 }
1439 
1440 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1441 {
1442 	struct nvme_command c = { };
1443 	int error;
1444 
1445 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1446 	c.identify.opcode = nvme_admin_identify;
1447 	c.identify.cns = NVME_ID_CNS_CTRL;
1448 
1449 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1450 	if (!*id)
1451 		return -ENOMEM;
1452 
1453 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1454 			sizeof(struct nvme_id_ctrl));
1455 	if (error) {
1456 		kfree(*id);
1457 		*id = NULL;
1458 	}
1459 	return error;
1460 }
1461 
1462 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1463 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1464 {
1465 	const char *warn_str = "ctrl returned bogus length:";
1466 	void *data = cur;
1467 
1468 	switch (cur->nidt) {
1469 	case NVME_NIDT_EUI64:
1470 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1471 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1472 				 warn_str, cur->nidl);
1473 			return -1;
1474 		}
1475 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1476 			return NVME_NIDT_EUI64_LEN;
1477 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1478 		return NVME_NIDT_EUI64_LEN;
1479 	case NVME_NIDT_NGUID:
1480 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1481 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1482 				 warn_str, cur->nidl);
1483 			return -1;
1484 		}
1485 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1486 			return NVME_NIDT_NGUID_LEN;
1487 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1488 		return NVME_NIDT_NGUID_LEN;
1489 	case NVME_NIDT_UUID:
1490 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1491 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1492 				 warn_str, cur->nidl);
1493 			return -1;
1494 		}
1495 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1496 			return NVME_NIDT_UUID_LEN;
1497 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1498 		return NVME_NIDT_UUID_LEN;
1499 	case NVME_NIDT_CSI:
1500 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1501 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1502 				 warn_str, cur->nidl);
1503 			return -1;
1504 		}
1505 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1506 		*csi_seen = true;
1507 		return NVME_NIDT_CSI_LEN;
1508 	default:
1509 		/* Skip unknown types */
1510 		return cur->nidl;
1511 	}
1512 }
1513 
1514 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1515 		struct nvme_ns_info *info)
1516 {
1517 	struct nvme_command c = { };
1518 	bool csi_seen = false;
1519 	int status, pos, len;
1520 	void *data;
1521 
1522 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1523 		return 0;
1524 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1525 		return 0;
1526 
1527 	c.identify.opcode = nvme_admin_identify;
1528 	c.identify.nsid = cpu_to_le32(info->nsid);
1529 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1530 
1531 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1532 	if (!data)
1533 		return -ENOMEM;
1534 
1535 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1536 				      NVME_IDENTIFY_DATA_SIZE);
1537 	if (status) {
1538 		dev_warn(ctrl->device,
1539 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1540 			info->nsid, status);
1541 		goto free_data;
1542 	}
1543 
1544 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1545 		struct nvme_ns_id_desc *cur = data + pos;
1546 
1547 		if (cur->nidl == 0)
1548 			break;
1549 
1550 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1551 		if (len < 0)
1552 			break;
1553 
1554 		len += sizeof(*cur);
1555 	}
1556 
1557 	if (nvme_multi_css(ctrl) && !csi_seen) {
1558 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1559 			 info->nsid);
1560 		status = -EINVAL;
1561 	}
1562 
1563 free_data:
1564 	kfree(data);
1565 	return status;
1566 }
1567 
1568 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1569 			struct nvme_id_ns **id)
1570 {
1571 	struct nvme_command c = { };
1572 	int error;
1573 
1574 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1575 	c.identify.opcode = nvme_admin_identify;
1576 	c.identify.nsid = cpu_to_le32(nsid);
1577 	c.identify.cns = NVME_ID_CNS_NS;
1578 
1579 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1580 	if (!*id)
1581 		return -ENOMEM;
1582 
1583 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1584 	if (error) {
1585 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1586 		kfree(*id);
1587 		*id = NULL;
1588 	}
1589 	return error;
1590 }
1591 
1592 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1593 		struct nvme_ns_info *info)
1594 {
1595 	struct nvme_ns_ids *ids = &info->ids;
1596 	struct nvme_id_ns *id;
1597 	int ret;
1598 
1599 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1600 	if (ret)
1601 		return ret;
1602 
1603 	if (id->ncap == 0) {
1604 		/* namespace not allocated or attached */
1605 		info->is_removed = true;
1606 		ret = -ENODEV;
1607 		goto error;
1608 	}
1609 
1610 	info->anagrpid = id->anagrpid;
1611 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1612 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1613 	info->is_ready = true;
1614 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1615 		dev_info(ctrl->device,
1616 			 "Ignoring bogus Namespace Identifiers\n");
1617 	} else {
1618 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1619 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1620 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1621 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1622 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1623 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1624 	}
1625 
1626 error:
1627 	kfree(id);
1628 	return ret;
1629 }
1630 
1631 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1632 		struct nvme_ns_info *info)
1633 {
1634 	struct nvme_id_ns_cs_indep *id;
1635 	struct nvme_command c = {
1636 		.identify.opcode	= nvme_admin_identify,
1637 		.identify.nsid		= cpu_to_le32(info->nsid),
1638 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1639 	};
1640 	int ret;
1641 
1642 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1643 	if (!id)
1644 		return -ENOMEM;
1645 
1646 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1647 	if (!ret) {
1648 		info->anagrpid = id->anagrpid;
1649 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1650 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1651 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1652 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1653 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1654 	}
1655 	kfree(id);
1656 	return ret;
1657 }
1658 
1659 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1660 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1661 {
1662 	union nvme_result res = { 0 };
1663 	struct nvme_command c = { };
1664 	int ret;
1665 
1666 	c.features.opcode = op;
1667 	c.features.fid = cpu_to_le32(fid);
1668 	c.features.dword11 = cpu_to_le32(dword11);
1669 
1670 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1671 			buffer, buflen, NVME_QID_ANY, 0);
1672 	if (ret >= 0 && result)
1673 		*result = le32_to_cpu(res.u32);
1674 	return ret;
1675 }
1676 
1677 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1678 		      unsigned int dword11, void *buffer, size_t buflen,
1679 		      u32 *result)
1680 {
1681 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1682 			     buflen, result);
1683 }
1684 EXPORT_SYMBOL_GPL(nvme_set_features);
1685 
1686 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1687 		      unsigned int dword11, void *buffer, size_t buflen,
1688 		      u32 *result)
1689 {
1690 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1691 			     buflen, result);
1692 }
1693 EXPORT_SYMBOL_GPL(nvme_get_features);
1694 
1695 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1696 {
1697 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1698 	u32 result;
1699 	int status, nr_io_queues;
1700 
1701 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1702 			&result);
1703 
1704 	/*
1705 	 * It's either a kernel error or the host observed a connection
1706 	 * lost. In either case it's not possible communicate with the
1707 	 * controller and thus enter the error code path.
1708 	 */
1709 	if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1710 		return status;
1711 
1712 	/*
1713 	 * Degraded controllers might return an error when setting the queue
1714 	 * count.  We still want to be able to bring them online and offer
1715 	 * access to the admin queue, as that might be only way to fix them up.
1716 	 */
1717 	if (status > 0) {
1718 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1719 		*count = 0;
1720 	} else {
1721 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1722 		*count = min(*count, nr_io_queues);
1723 	}
1724 
1725 	return 0;
1726 }
1727 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1728 
1729 #define NVME_AEN_SUPPORTED \
1730 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1731 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1732 
1733 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1734 {
1735 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1736 	int status;
1737 
1738 	if (!supported_aens)
1739 		return;
1740 
1741 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1742 			NULL, 0, &result);
1743 	if (status)
1744 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1745 			 supported_aens);
1746 
1747 	queue_work(nvme_wq, &ctrl->async_event_work);
1748 }
1749 
1750 static int nvme_ns_open(struct nvme_ns *ns)
1751 {
1752 
1753 	/* should never be called due to GENHD_FL_HIDDEN */
1754 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1755 		goto fail;
1756 	if (!nvme_get_ns(ns))
1757 		goto fail;
1758 	if (!try_module_get(ns->ctrl->ops->module))
1759 		goto fail_put_ns;
1760 
1761 	return 0;
1762 
1763 fail_put_ns:
1764 	nvme_put_ns(ns);
1765 fail:
1766 	return -ENXIO;
1767 }
1768 
1769 static void nvme_ns_release(struct nvme_ns *ns)
1770 {
1771 
1772 	module_put(ns->ctrl->ops->module);
1773 	nvme_put_ns(ns);
1774 }
1775 
1776 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1777 {
1778 	return nvme_ns_open(disk->private_data);
1779 }
1780 
1781 static void nvme_release(struct gendisk *disk)
1782 {
1783 	nvme_ns_release(disk->private_data);
1784 }
1785 
1786 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1787 {
1788 	/* some standard values */
1789 	geo->heads = 1 << 6;
1790 	geo->sectors = 1 << 5;
1791 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1792 	return 0;
1793 }
1794 
1795 static bool nvme_init_integrity(struct nvme_ns_head *head,
1796 		struct queue_limits *lim, struct nvme_ns_info *info)
1797 {
1798 	struct blk_integrity *bi = &lim->integrity;
1799 
1800 	memset(bi, 0, sizeof(*bi));
1801 
1802 	if (!head->ms)
1803 		return true;
1804 
1805 	/*
1806 	 * PI can always be supported as we can ask the controller to simply
1807 	 * insert/strip it, which is not possible for other kinds of metadata.
1808 	 */
1809 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1810 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1811 		return nvme_ns_has_pi(head);
1812 
1813 	switch (head->pi_type) {
1814 	case NVME_NS_DPS_PI_TYPE3:
1815 		switch (head->guard_type) {
1816 		case NVME_NVM_NS_16B_GUARD:
1817 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1818 			bi->tag_size = sizeof(u16) + sizeof(u32);
1819 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1820 			break;
1821 		case NVME_NVM_NS_64B_GUARD:
1822 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1823 			bi->tag_size = sizeof(u16) + 6;
1824 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1825 			break;
1826 		default:
1827 			break;
1828 		}
1829 		break;
1830 	case NVME_NS_DPS_PI_TYPE1:
1831 	case NVME_NS_DPS_PI_TYPE2:
1832 		switch (head->guard_type) {
1833 		case NVME_NVM_NS_16B_GUARD:
1834 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1835 			bi->tag_size = sizeof(u16);
1836 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1837 				     BLK_INTEGRITY_REF_TAG;
1838 			break;
1839 		case NVME_NVM_NS_64B_GUARD:
1840 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1841 			bi->tag_size = sizeof(u16);
1842 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1843 				     BLK_INTEGRITY_REF_TAG;
1844 			break;
1845 		default:
1846 			break;
1847 		}
1848 		break;
1849 	default:
1850 		break;
1851 	}
1852 
1853 	bi->tuple_size = head->ms;
1854 	bi->pi_offset = info->pi_offset;
1855 	return true;
1856 }
1857 
1858 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1859 {
1860 	struct nvme_ctrl *ctrl = ns->ctrl;
1861 
1862 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1863 		lim->max_hw_discard_sectors =
1864 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1865 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1866 		lim->max_hw_discard_sectors = UINT_MAX;
1867 	else
1868 		lim->max_hw_discard_sectors = 0;
1869 
1870 	lim->discard_granularity = lim->logical_block_size;
1871 
1872 	if (ctrl->dmrl)
1873 		lim->max_discard_segments = ctrl->dmrl;
1874 	else
1875 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1876 }
1877 
1878 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1879 {
1880 	return uuid_equal(&a->uuid, &b->uuid) &&
1881 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1882 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1883 		a->csi == b->csi;
1884 }
1885 
1886 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1887 		struct nvme_id_ns_nvm **nvmp)
1888 {
1889 	struct nvme_command c = {
1890 		.identify.opcode	= nvme_admin_identify,
1891 		.identify.nsid		= cpu_to_le32(nsid),
1892 		.identify.cns		= NVME_ID_CNS_CS_NS,
1893 		.identify.csi		= NVME_CSI_NVM,
1894 	};
1895 	struct nvme_id_ns_nvm *nvm;
1896 	int ret;
1897 
1898 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1899 	if (!nvm)
1900 		return -ENOMEM;
1901 
1902 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1903 	if (ret)
1904 		kfree(nvm);
1905 	else
1906 		*nvmp = nvm;
1907 	return ret;
1908 }
1909 
1910 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1911 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1912 {
1913 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1914 	u8 guard_type;
1915 
1916 	/* no support for storage tag formats right now */
1917 	if (nvme_elbaf_sts(elbaf))
1918 		return;
1919 
1920 	guard_type = nvme_elbaf_guard_type(elbaf);
1921 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1922 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1923 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1924 
1925 	head->guard_type = guard_type;
1926 	switch (head->guard_type) {
1927 	case NVME_NVM_NS_64B_GUARD:
1928 		head->pi_size = sizeof(struct crc64_pi_tuple);
1929 		break;
1930 	case NVME_NVM_NS_16B_GUARD:
1931 		head->pi_size = sizeof(struct t10_pi_tuple);
1932 		break;
1933 	default:
1934 		break;
1935 	}
1936 }
1937 
1938 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1939 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1940 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1941 {
1942 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1943 	head->pi_type = 0;
1944 	head->pi_size = 0;
1945 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1946 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1947 		return;
1948 
1949 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1950 		nvme_configure_pi_elbas(head, id, nvm);
1951 	} else {
1952 		head->pi_size = sizeof(struct t10_pi_tuple);
1953 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1954 	}
1955 
1956 	if (head->pi_size && head->ms >= head->pi_size)
1957 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1958 	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1959 		if (disable_pi_offsets)
1960 			head->pi_type = 0;
1961 		else
1962 			info->pi_offset = head->ms - head->pi_size;
1963 	}
1964 
1965 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1966 		/*
1967 		 * The NVMe over Fabrics specification only supports metadata as
1968 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1969 		 * remap the separate metadata buffer from the block layer.
1970 		 */
1971 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1972 			return;
1973 
1974 		head->features |= NVME_NS_EXT_LBAS;
1975 
1976 		/*
1977 		 * The current fabrics transport drivers support namespace
1978 		 * metadata formats only if nvme_ns_has_pi() returns true.
1979 		 * Suppress support for all other formats so the namespace will
1980 		 * have a 0 capacity and not be usable through the block stack.
1981 		 *
1982 		 * Note, this check will need to be modified if any drivers
1983 		 * gain the ability to use other metadata formats.
1984 		 */
1985 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1986 			head->features |= NVME_NS_METADATA_SUPPORTED;
1987 	} else {
1988 		/*
1989 		 * For PCIe controllers, we can't easily remap the separate
1990 		 * metadata buffer from the block layer and thus require a
1991 		 * separate metadata buffer for block layer metadata/PI support.
1992 		 * We allow extended LBAs for the passthrough interface, though.
1993 		 */
1994 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1995 			head->features |= NVME_NS_EXT_LBAS;
1996 		else
1997 			head->features |= NVME_NS_METADATA_SUPPORTED;
1998 	}
1999 }
2000 
2001 
2002 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
2003 			struct nvme_id_ns *id, struct queue_limits *lim,
2004 			u32 bs, u32 atomic_bs)
2005 {
2006 	unsigned int boundary = 0;
2007 
2008 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
2009 		if (le16_to_cpu(id->nabspf))
2010 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2011 	}
2012 	lim->atomic_write_hw_max = atomic_bs;
2013 	lim->atomic_write_hw_boundary = boundary;
2014 	lim->atomic_write_hw_unit_min = bs;
2015 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2016 	lim->features |= BLK_FEAT_ATOMIC_WRITES;
2017 }
2018 
2019 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2020 {
2021 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2022 }
2023 
2024 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2025 		struct queue_limits *lim)
2026 {
2027 	lim->max_hw_sectors = ctrl->max_hw_sectors;
2028 	lim->max_segments = min_t(u32, USHRT_MAX,
2029 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2030 	lim->max_integrity_segments = ctrl->max_integrity_segments;
2031 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2032 	lim->max_segment_size = UINT_MAX;
2033 	lim->dma_alignment = 3;
2034 }
2035 
2036 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2037 		struct queue_limits *lim)
2038 {
2039 	struct nvme_ns_head *head = ns->head;
2040 	u32 bs = 1U << head->lba_shift;
2041 	u32 atomic_bs, phys_bs, io_opt = 0;
2042 	bool valid = true;
2043 
2044 	/*
2045 	 * The block layer can't support LBA sizes larger than the page size
2046 	 * or smaller than a sector size yet, so catch this early and don't
2047 	 * allow block I/O.
2048 	 */
2049 	if (blk_validate_block_size(bs)) {
2050 		bs = (1 << 9);
2051 		valid = false;
2052 	}
2053 
2054 	atomic_bs = phys_bs = bs;
2055 	if (id->nabo == 0) {
2056 		/*
2057 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2058 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2059 		 * 0 then AWUPF must be used instead.
2060 		 */
2061 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2062 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2063 		else
2064 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2065 
2066 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2067 	}
2068 
2069 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2070 		/* NPWG = Namespace Preferred Write Granularity */
2071 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2072 		/* NOWS = Namespace Optimal Write Size */
2073 		if (id->nows)
2074 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2075 	}
2076 
2077 	/*
2078 	 * Linux filesystems assume writing a single physical block is
2079 	 * an atomic operation. Hence limit the physical block size to the
2080 	 * value of the Atomic Write Unit Power Fail parameter.
2081 	 */
2082 	lim->logical_block_size = bs;
2083 	lim->physical_block_size = min(phys_bs, atomic_bs);
2084 	lim->io_min = phys_bs;
2085 	lim->io_opt = io_opt;
2086 	if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2087 	    (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2088 		lim->max_write_zeroes_sectors = UINT_MAX;
2089 	else
2090 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2091 	return valid;
2092 }
2093 
2094 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2095 {
2096 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2097 }
2098 
2099 static inline bool nvme_first_scan(struct gendisk *disk)
2100 {
2101 	/* nvme_alloc_ns() scans the disk prior to adding it */
2102 	return !disk_live(disk);
2103 }
2104 
2105 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2106 		struct queue_limits *lim)
2107 {
2108 	struct nvme_ctrl *ctrl = ns->ctrl;
2109 	u32 iob;
2110 
2111 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2112 	    is_power_of_2(ctrl->max_hw_sectors))
2113 		iob = ctrl->max_hw_sectors;
2114 	else
2115 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2116 
2117 	if (!iob)
2118 		return;
2119 
2120 	if (!is_power_of_2(iob)) {
2121 		if (nvme_first_scan(ns->disk))
2122 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2123 				ns->disk->disk_name, iob);
2124 		return;
2125 	}
2126 
2127 	if (blk_queue_is_zoned(ns->disk->queue)) {
2128 		if (nvme_first_scan(ns->disk))
2129 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2130 				ns->disk->disk_name);
2131 		return;
2132 	}
2133 
2134 	lim->chunk_sectors = iob;
2135 }
2136 
2137 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2138 		struct nvme_ns_info *info)
2139 {
2140 	struct queue_limits lim;
2141 	unsigned int memflags;
2142 	int ret;
2143 
2144 	lim = queue_limits_start_update(ns->disk->queue);
2145 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2146 
2147 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2148 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2149 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2150 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2151 
2152 	/* Hide the block-interface for these devices */
2153 	if (!ret)
2154 		ret = -ENODEV;
2155 	return ret;
2156 }
2157 
2158 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2159 		struct nvme_ns_info *info)
2160 {
2161 	struct queue_limits lim;
2162 	struct nvme_id_ns_nvm *nvm = NULL;
2163 	struct nvme_zone_info zi = {};
2164 	struct nvme_id_ns *id;
2165 	unsigned int memflags;
2166 	sector_t capacity;
2167 	unsigned lbaf;
2168 	int ret;
2169 
2170 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2171 	if (ret)
2172 		return ret;
2173 
2174 	if (id->ncap == 0) {
2175 		/* namespace not allocated or attached */
2176 		info->is_removed = true;
2177 		ret = -ENXIO;
2178 		goto out;
2179 	}
2180 	lbaf = nvme_lbaf_index(id->flbas);
2181 
2182 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2183 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2184 		if (ret < 0)
2185 			goto out;
2186 	}
2187 
2188 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2189 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2190 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2191 		if (ret < 0)
2192 			goto out;
2193 	}
2194 
2195 	lim = queue_limits_start_update(ns->disk->queue);
2196 
2197 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2198 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2199 	ns->head->nuse = le64_to_cpu(id->nuse);
2200 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2201 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2202 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2203 	nvme_set_chunk_sectors(ns, id, &lim);
2204 	if (!nvme_update_disk_info(ns, id, &lim))
2205 		capacity = 0;
2206 	nvme_config_discard(ns, &lim);
2207 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2208 	    ns->head->ids.csi == NVME_CSI_ZNS)
2209 		nvme_update_zone_info(ns, &lim, &zi);
2210 
2211 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2212 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2213 	else
2214 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2215 
2216 	if (info->is_rotational)
2217 		lim.features |= BLK_FEAT_ROTATIONAL;
2218 
2219 	/*
2220 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2221 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2222 	 * I/O to namespaces with metadata except when the namespace supports
2223 	 * PI, as it can strip/insert in that case.
2224 	 */
2225 	if (!nvme_init_integrity(ns->head, &lim, info))
2226 		capacity = 0;
2227 
2228 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2229 	if (ret) {
2230 		blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2231 		goto out;
2232 	}
2233 
2234 	set_capacity_and_notify(ns->disk, capacity);
2235 
2236 	/*
2237 	 * Only set the DEAC bit if the device guarantees that reads from
2238 	 * deallocated data return zeroes.  While the DEAC bit does not
2239 	 * require that, it must be a no-op if reads from deallocated data
2240 	 * do not return zeroes.
2241 	 */
2242 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2243 		ns->head->features |= NVME_NS_DEAC;
2244 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2245 	set_bit(NVME_NS_READY, &ns->flags);
2246 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2247 
2248 	if (blk_queue_is_zoned(ns->queue)) {
2249 		ret = blk_revalidate_disk_zones(ns->disk);
2250 		if (ret && !nvme_first_scan(ns->disk))
2251 			goto out;
2252 	}
2253 
2254 	ret = 0;
2255 out:
2256 	kfree(nvm);
2257 	kfree(id);
2258 	return ret;
2259 }
2260 
2261 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2262 {
2263 	bool unsupported = false;
2264 	int ret;
2265 
2266 	switch (info->ids.csi) {
2267 	case NVME_CSI_ZNS:
2268 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2269 			dev_info(ns->ctrl->device,
2270 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2271 				info->nsid);
2272 			ret = nvme_update_ns_info_generic(ns, info);
2273 			break;
2274 		}
2275 		ret = nvme_update_ns_info_block(ns, info);
2276 		break;
2277 	case NVME_CSI_NVM:
2278 		ret = nvme_update_ns_info_block(ns, info);
2279 		break;
2280 	default:
2281 		dev_info(ns->ctrl->device,
2282 			"block device for nsid %u not supported (csi %u)\n",
2283 			info->nsid, info->ids.csi);
2284 		ret = nvme_update_ns_info_generic(ns, info);
2285 		break;
2286 	}
2287 
2288 	/*
2289 	 * If probing fails due an unsupported feature, hide the block device,
2290 	 * but still allow other access.
2291 	 */
2292 	if (ret == -ENODEV) {
2293 		ns->disk->flags |= GENHD_FL_HIDDEN;
2294 		set_bit(NVME_NS_READY, &ns->flags);
2295 		unsupported = true;
2296 		ret = 0;
2297 	}
2298 
2299 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2300 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2301 		struct queue_limits lim;
2302 		unsigned int memflags;
2303 
2304 		lim = queue_limits_start_update(ns->head->disk->queue);
2305 		memflags = blk_mq_freeze_queue(ns->head->disk->queue);
2306 		/*
2307 		 * queue_limits mixes values that are the hardware limitations
2308 		 * for bio splitting with what is the device configuration.
2309 		 *
2310 		 * For NVMe the device configuration can change after e.g. a
2311 		 * Format command, and we really want to pick up the new format
2312 		 * value here.  But we must still stack the queue limits to the
2313 		 * least common denominator for multipathing to split the bios
2314 		 * properly.
2315 		 *
2316 		 * To work around this, we explicitly set the device
2317 		 * configuration to those that we just queried, but only stack
2318 		 * the splitting limits in to make sure we still obey possibly
2319 		 * lower limitations of other controllers.
2320 		 */
2321 		lim.logical_block_size = ns_lim->logical_block_size;
2322 		lim.physical_block_size = ns_lim->physical_block_size;
2323 		lim.io_min = ns_lim->io_min;
2324 		lim.io_opt = ns_lim->io_opt;
2325 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2326 					ns->head->disk->disk_name);
2327 		if (unsupported)
2328 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2329 		else
2330 			nvme_init_integrity(ns->head, &lim, info);
2331 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2332 
2333 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2334 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2335 		nvme_mpath_revalidate_paths(ns);
2336 
2337 		blk_mq_unfreeze_queue(ns->head->disk->queue, memflags);
2338 	}
2339 
2340 	return ret;
2341 }
2342 
2343 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2344 		enum blk_unique_id type)
2345 {
2346 	struct nvme_ns_ids *ids = &ns->head->ids;
2347 
2348 	if (type != BLK_UID_EUI64)
2349 		return -EINVAL;
2350 
2351 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2352 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2353 		return sizeof(ids->nguid);
2354 	}
2355 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2356 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2357 		return sizeof(ids->eui64);
2358 	}
2359 
2360 	return -EINVAL;
2361 }
2362 
2363 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2364 		enum blk_unique_id type)
2365 {
2366 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2367 }
2368 
2369 #ifdef CONFIG_BLK_SED_OPAL
2370 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2371 		bool send)
2372 {
2373 	struct nvme_ctrl *ctrl = data;
2374 	struct nvme_command cmd = { };
2375 
2376 	if (send)
2377 		cmd.common.opcode = nvme_admin_security_send;
2378 	else
2379 		cmd.common.opcode = nvme_admin_security_recv;
2380 	cmd.common.nsid = 0;
2381 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2382 	cmd.common.cdw11 = cpu_to_le32(len);
2383 
2384 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2385 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2386 }
2387 
2388 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2389 {
2390 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2391 		if (!ctrl->opal_dev)
2392 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2393 		else if (was_suspended)
2394 			opal_unlock_from_suspend(ctrl->opal_dev);
2395 	} else {
2396 		free_opal_dev(ctrl->opal_dev);
2397 		ctrl->opal_dev = NULL;
2398 	}
2399 }
2400 #else
2401 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2402 {
2403 }
2404 #endif /* CONFIG_BLK_SED_OPAL */
2405 
2406 #ifdef CONFIG_BLK_DEV_ZONED
2407 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2408 		unsigned int nr_zones, report_zones_cb cb, void *data)
2409 {
2410 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2411 			data);
2412 }
2413 #else
2414 #define nvme_report_zones	NULL
2415 #endif /* CONFIG_BLK_DEV_ZONED */
2416 
2417 const struct block_device_operations nvme_bdev_ops = {
2418 	.owner		= THIS_MODULE,
2419 	.ioctl		= nvme_ioctl,
2420 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2421 	.open		= nvme_open,
2422 	.release	= nvme_release,
2423 	.getgeo		= nvme_getgeo,
2424 	.get_unique_id	= nvme_get_unique_id,
2425 	.report_zones	= nvme_report_zones,
2426 	.pr_ops		= &nvme_pr_ops,
2427 };
2428 
2429 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2430 		u32 timeout, const char *op)
2431 {
2432 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2433 	u32 csts;
2434 	int ret;
2435 
2436 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2437 		if (csts == ~0)
2438 			return -ENODEV;
2439 		if ((csts & mask) == val)
2440 			break;
2441 
2442 		usleep_range(1000, 2000);
2443 		if (fatal_signal_pending(current))
2444 			return -EINTR;
2445 		if (time_after(jiffies, timeout_jiffies)) {
2446 			dev_err(ctrl->device,
2447 				"Device not ready; aborting %s, CSTS=0x%x\n",
2448 				op, csts);
2449 			return -ENODEV;
2450 		}
2451 	}
2452 
2453 	return ret;
2454 }
2455 
2456 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2457 {
2458 	int ret;
2459 
2460 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2461 	if (shutdown)
2462 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2463 	else
2464 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2465 
2466 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2467 	if (ret)
2468 		return ret;
2469 
2470 	if (shutdown) {
2471 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2472 				       NVME_CSTS_SHST_CMPLT,
2473 				       ctrl->shutdown_timeout, "shutdown");
2474 	}
2475 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2476 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2477 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2478 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2479 }
2480 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2481 
2482 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2483 {
2484 	unsigned dev_page_min;
2485 	u32 timeout;
2486 	int ret;
2487 
2488 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2489 	if (ret) {
2490 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2491 		return ret;
2492 	}
2493 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2494 
2495 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2496 		dev_err(ctrl->device,
2497 			"Minimum device page size %u too large for host (%u)\n",
2498 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2499 		return -ENODEV;
2500 	}
2501 
2502 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2503 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2504 	else
2505 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2506 
2507 	/*
2508 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2509 	 * makes it possible for media related commands to return the error
2510 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2511 	 * restructured to handle retries, disable CC.CRIME.
2512 	 */
2513 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2514 
2515 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2516 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2517 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2518 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2519 	if (ret)
2520 		return ret;
2521 
2522 	/* CAP value may change after initial CC write */
2523 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2524 	if (ret)
2525 		return ret;
2526 
2527 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2528 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2529 		u32 crto, ready_timeout;
2530 
2531 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2532 		if (ret) {
2533 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2534 				ret);
2535 			return ret;
2536 		}
2537 
2538 		/*
2539 		 * CRTO should always be greater or equal to CAP.TO, but some
2540 		 * devices are known to get this wrong. Use the larger of the
2541 		 * two values.
2542 		 */
2543 		ready_timeout = NVME_CRTO_CRWMT(crto);
2544 
2545 		if (ready_timeout < timeout)
2546 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2547 				      crto, ctrl->cap);
2548 		else
2549 			timeout = ready_timeout;
2550 	}
2551 
2552 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2553 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2554 	if (ret)
2555 		return ret;
2556 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2557 			       (timeout + 1) / 2, "initialisation");
2558 }
2559 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2560 
2561 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2562 {
2563 	__le64 ts;
2564 	int ret;
2565 
2566 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2567 		return 0;
2568 
2569 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2570 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2571 			NULL);
2572 	if (ret)
2573 		dev_warn_once(ctrl->device,
2574 			"could not set timestamp (%d)\n", ret);
2575 	return ret;
2576 }
2577 
2578 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2579 {
2580 	struct nvme_feat_host_behavior *host;
2581 	u8 acre = 0, lbafee = 0;
2582 	int ret;
2583 
2584 	/* Don't bother enabling the feature if retry delay is not reported */
2585 	if (ctrl->crdt[0])
2586 		acre = NVME_ENABLE_ACRE;
2587 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2588 		lbafee = NVME_ENABLE_LBAFEE;
2589 
2590 	if (!acre && !lbafee)
2591 		return 0;
2592 
2593 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2594 	if (!host)
2595 		return 0;
2596 
2597 	host->acre = acre;
2598 	host->lbafee = lbafee;
2599 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2600 				host, sizeof(*host), NULL);
2601 	kfree(host);
2602 	return ret;
2603 }
2604 
2605 /*
2606  * The function checks whether the given total (exlat + enlat) latency of
2607  * a power state allows the latter to be used as an APST transition target.
2608  * It does so by comparing the latency to the primary and secondary latency
2609  * tolerances defined by module params. If there's a match, the corresponding
2610  * timeout value is returned and the matching tolerance index (1 or 2) is
2611  * reported.
2612  */
2613 static bool nvme_apst_get_transition_time(u64 total_latency,
2614 		u64 *transition_time, unsigned *last_index)
2615 {
2616 	if (total_latency <= apst_primary_latency_tol_us) {
2617 		if (*last_index == 1)
2618 			return false;
2619 		*last_index = 1;
2620 		*transition_time = apst_primary_timeout_ms;
2621 		return true;
2622 	}
2623 	if (apst_secondary_timeout_ms &&
2624 		total_latency <= apst_secondary_latency_tol_us) {
2625 		if (*last_index <= 2)
2626 			return false;
2627 		*last_index = 2;
2628 		*transition_time = apst_secondary_timeout_ms;
2629 		return true;
2630 	}
2631 	return false;
2632 }
2633 
2634 /*
2635  * APST (Autonomous Power State Transition) lets us program a table of power
2636  * state transitions that the controller will perform automatically.
2637  *
2638  * Depending on module params, one of the two supported techniques will be used:
2639  *
2640  * - If the parameters provide explicit timeouts and tolerances, they will be
2641  *   used to build a table with up to 2 non-operational states to transition to.
2642  *   The default parameter values were selected based on the values used by
2643  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2644  *   regeneration of the APST table in the event of switching between external
2645  *   and battery power, the timeouts and tolerances reflect a compromise
2646  *   between values used by Microsoft for AC and battery scenarios.
2647  * - If not, we'll configure the table with a simple heuristic: we are willing
2648  *   to spend at most 2% of the time transitioning between power states.
2649  *   Therefore, when running in any given state, we will enter the next
2650  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2651  *   microseconds, as long as that state's exit latency is under the requested
2652  *   maximum latency.
2653  *
2654  * We will not autonomously enter any non-operational state for which the total
2655  * latency exceeds ps_max_latency_us.
2656  *
2657  * Users can set ps_max_latency_us to zero to turn off APST.
2658  */
2659 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2660 {
2661 	struct nvme_feat_auto_pst *table;
2662 	unsigned apste = 0;
2663 	u64 max_lat_us = 0;
2664 	__le64 target = 0;
2665 	int max_ps = -1;
2666 	int state;
2667 	int ret;
2668 	unsigned last_lt_index = UINT_MAX;
2669 
2670 	/*
2671 	 * If APST isn't supported or if we haven't been initialized yet,
2672 	 * then don't do anything.
2673 	 */
2674 	if (!ctrl->apsta)
2675 		return 0;
2676 
2677 	if (ctrl->npss > 31) {
2678 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2679 		return 0;
2680 	}
2681 
2682 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2683 	if (!table)
2684 		return 0;
2685 
2686 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2687 		/* Turn off APST. */
2688 		dev_dbg(ctrl->device, "APST disabled\n");
2689 		goto done;
2690 	}
2691 
2692 	/*
2693 	 * Walk through all states from lowest- to highest-power.
2694 	 * According to the spec, lower-numbered states use more power.  NPSS,
2695 	 * despite the name, is the index of the lowest-power state, not the
2696 	 * number of states.
2697 	 */
2698 	for (state = (int)ctrl->npss; state >= 0; state--) {
2699 		u64 total_latency_us, exit_latency_us, transition_ms;
2700 
2701 		if (target)
2702 			table->entries[state] = target;
2703 
2704 		/*
2705 		 * Don't allow transitions to the deepest state if it's quirked
2706 		 * off.
2707 		 */
2708 		if (state == ctrl->npss &&
2709 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2710 			continue;
2711 
2712 		/*
2713 		 * Is this state a useful non-operational state for higher-power
2714 		 * states to autonomously transition to?
2715 		 */
2716 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2717 			continue;
2718 
2719 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2720 		if (exit_latency_us > ctrl->ps_max_latency_us)
2721 			continue;
2722 
2723 		total_latency_us = exit_latency_us +
2724 			le32_to_cpu(ctrl->psd[state].entry_lat);
2725 
2726 		/*
2727 		 * This state is good. It can be used as the APST idle target
2728 		 * for higher power states.
2729 		 */
2730 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2731 			if (!nvme_apst_get_transition_time(total_latency_us,
2732 					&transition_ms, &last_lt_index))
2733 				continue;
2734 		} else {
2735 			transition_ms = total_latency_us + 19;
2736 			do_div(transition_ms, 20);
2737 			if (transition_ms > (1 << 24) - 1)
2738 				transition_ms = (1 << 24) - 1;
2739 		}
2740 
2741 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2742 		if (max_ps == -1)
2743 			max_ps = state;
2744 		if (total_latency_us > max_lat_us)
2745 			max_lat_us = total_latency_us;
2746 	}
2747 
2748 	if (max_ps == -1)
2749 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2750 	else
2751 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2752 			max_ps, max_lat_us, (int)sizeof(*table), table);
2753 	apste = 1;
2754 
2755 done:
2756 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2757 				table, sizeof(*table), NULL);
2758 	if (ret)
2759 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2760 	kfree(table);
2761 	return ret;
2762 }
2763 
2764 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2765 {
2766 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2767 	u64 latency;
2768 
2769 	switch (val) {
2770 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2771 	case PM_QOS_LATENCY_ANY:
2772 		latency = U64_MAX;
2773 		break;
2774 
2775 	default:
2776 		latency = val;
2777 	}
2778 
2779 	if (ctrl->ps_max_latency_us != latency) {
2780 		ctrl->ps_max_latency_us = latency;
2781 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2782 			nvme_configure_apst(ctrl);
2783 	}
2784 }
2785 
2786 struct nvme_core_quirk_entry {
2787 	/*
2788 	 * NVMe model and firmware strings are padded with spaces.  For
2789 	 * simplicity, strings in the quirk table are padded with NULLs
2790 	 * instead.
2791 	 */
2792 	u16 vid;
2793 	const char *mn;
2794 	const char *fr;
2795 	unsigned long quirks;
2796 };
2797 
2798 static const struct nvme_core_quirk_entry core_quirks[] = {
2799 	{
2800 		/*
2801 		 * This Toshiba device seems to die using any APST states.  See:
2802 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2803 		 */
2804 		.vid = 0x1179,
2805 		.mn = "THNSF5256GPUK TOSHIBA",
2806 		.quirks = NVME_QUIRK_NO_APST,
2807 	},
2808 	{
2809 		/*
2810 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2811 		 * condition associated with actions related to suspend to idle
2812 		 * LiteON has resolved the problem in future firmware
2813 		 */
2814 		.vid = 0x14a4,
2815 		.fr = "22301111",
2816 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2817 	},
2818 	{
2819 		/*
2820 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2821 		 * aborts I/O during any load, but more easily reproducible
2822 		 * with discards (fstrim).
2823 		 *
2824 		 * The device is left in a state where it is also not possible
2825 		 * to use "nvme set-feature" to disable APST, but booting with
2826 		 * nvme_core.default_ps_max_latency=0 works.
2827 		 */
2828 		.vid = 0x1e0f,
2829 		.mn = "KCD6XVUL6T40",
2830 		.quirks = NVME_QUIRK_NO_APST,
2831 	},
2832 	{
2833 		/*
2834 		 * The external Samsung X5 SSD fails initialization without a
2835 		 * delay before checking if it is ready and has a whole set of
2836 		 * other problems.  To make this even more interesting, it
2837 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2838 		 * does not need or want these quirks.
2839 		 */
2840 		.vid = 0x144d,
2841 		.mn = "Samsung Portable SSD X5",
2842 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2843 			  NVME_QUIRK_NO_DEEPEST_PS |
2844 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2845 	}
2846 };
2847 
2848 /* match is null-terminated but idstr is space-padded. */
2849 static bool string_matches(const char *idstr, const char *match, size_t len)
2850 {
2851 	size_t matchlen;
2852 
2853 	if (!match)
2854 		return true;
2855 
2856 	matchlen = strlen(match);
2857 	WARN_ON_ONCE(matchlen > len);
2858 
2859 	if (memcmp(idstr, match, matchlen))
2860 		return false;
2861 
2862 	for (; matchlen < len; matchlen++)
2863 		if (idstr[matchlen] != ' ')
2864 			return false;
2865 
2866 	return true;
2867 }
2868 
2869 static bool quirk_matches(const struct nvme_id_ctrl *id,
2870 			  const struct nvme_core_quirk_entry *q)
2871 {
2872 	return q->vid == le16_to_cpu(id->vid) &&
2873 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2874 		string_matches(id->fr, q->fr, sizeof(id->fr));
2875 }
2876 
2877 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2878 		struct nvme_id_ctrl *id)
2879 {
2880 	size_t nqnlen;
2881 	int off;
2882 
2883 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2884 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2885 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2886 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2887 			return;
2888 		}
2889 
2890 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2891 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2892 	}
2893 
2894 	/*
2895 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2896 	 * Base Specification 2.0.  It is slightly different from the format
2897 	 * specified there due to historic reasons, and we can't change it now.
2898 	 */
2899 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2900 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2901 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2902 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2903 	off += sizeof(id->sn);
2904 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2905 	off += sizeof(id->mn);
2906 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2907 }
2908 
2909 static void nvme_release_subsystem(struct device *dev)
2910 {
2911 	struct nvme_subsystem *subsys =
2912 		container_of(dev, struct nvme_subsystem, dev);
2913 
2914 	if (subsys->instance >= 0)
2915 		ida_free(&nvme_instance_ida, subsys->instance);
2916 	kfree(subsys);
2917 }
2918 
2919 static void nvme_destroy_subsystem(struct kref *ref)
2920 {
2921 	struct nvme_subsystem *subsys =
2922 			container_of(ref, struct nvme_subsystem, ref);
2923 
2924 	mutex_lock(&nvme_subsystems_lock);
2925 	list_del(&subsys->entry);
2926 	mutex_unlock(&nvme_subsystems_lock);
2927 
2928 	ida_destroy(&subsys->ns_ida);
2929 	device_del(&subsys->dev);
2930 	put_device(&subsys->dev);
2931 }
2932 
2933 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2934 {
2935 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2936 }
2937 
2938 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2939 {
2940 	struct nvme_subsystem *subsys;
2941 
2942 	lockdep_assert_held(&nvme_subsystems_lock);
2943 
2944 	/*
2945 	 * Fail matches for discovery subsystems. This results
2946 	 * in each discovery controller bound to a unique subsystem.
2947 	 * This avoids issues with validating controller values
2948 	 * that can only be true when there is a single unique subsystem.
2949 	 * There may be multiple and completely independent entities
2950 	 * that provide discovery controllers.
2951 	 */
2952 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2953 		return NULL;
2954 
2955 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2956 		if (strcmp(subsys->subnqn, subsysnqn))
2957 			continue;
2958 		if (!kref_get_unless_zero(&subsys->ref))
2959 			continue;
2960 		return subsys;
2961 	}
2962 
2963 	return NULL;
2964 }
2965 
2966 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2967 {
2968 	return ctrl->opts && ctrl->opts->discovery_nqn;
2969 }
2970 
2971 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2972 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2973 {
2974 	struct nvme_ctrl *tmp;
2975 
2976 	lockdep_assert_held(&nvme_subsystems_lock);
2977 
2978 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2979 		if (nvme_state_terminal(tmp))
2980 			continue;
2981 
2982 		if (tmp->cntlid == ctrl->cntlid) {
2983 			dev_err(ctrl->device,
2984 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2985 				ctrl->cntlid, dev_name(tmp->device),
2986 				subsys->subnqn);
2987 			return false;
2988 		}
2989 
2990 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2991 		    nvme_discovery_ctrl(ctrl))
2992 			continue;
2993 
2994 		dev_err(ctrl->device,
2995 			"Subsystem does not support multiple controllers\n");
2996 		return false;
2997 	}
2998 
2999 	return true;
3000 }
3001 
3002 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3003 {
3004 	struct nvme_subsystem *subsys, *found;
3005 	int ret;
3006 
3007 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3008 	if (!subsys)
3009 		return -ENOMEM;
3010 
3011 	subsys->instance = -1;
3012 	mutex_init(&subsys->lock);
3013 	kref_init(&subsys->ref);
3014 	INIT_LIST_HEAD(&subsys->ctrls);
3015 	INIT_LIST_HEAD(&subsys->nsheads);
3016 	nvme_init_subnqn(subsys, ctrl, id);
3017 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3018 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
3019 	subsys->vendor_id = le16_to_cpu(id->vid);
3020 	subsys->cmic = id->cmic;
3021 
3022 	/* Versions prior to 1.4 don't necessarily report a valid type */
3023 	if (id->cntrltype == NVME_CTRL_DISC ||
3024 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3025 		subsys->subtype = NVME_NQN_DISC;
3026 	else
3027 		subsys->subtype = NVME_NQN_NVME;
3028 
3029 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3030 		dev_err(ctrl->device,
3031 			"Subsystem %s is not a discovery controller",
3032 			subsys->subnqn);
3033 		kfree(subsys);
3034 		return -EINVAL;
3035 	}
3036 	subsys->awupf = le16_to_cpu(id->awupf);
3037 	nvme_mpath_default_iopolicy(subsys);
3038 
3039 	subsys->dev.class = &nvme_subsys_class;
3040 	subsys->dev.release = nvme_release_subsystem;
3041 	subsys->dev.groups = nvme_subsys_attrs_groups;
3042 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3043 	device_initialize(&subsys->dev);
3044 
3045 	mutex_lock(&nvme_subsystems_lock);
3046 	found = __nvme_find_get_subsystem(subsys->subnqn);
3047 	if (found) {
3048 		put_device(&subsys->dev);
3049 		subsys = found;
3050 
3051 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3052 			ret = -EINVAL;
3053 			goto out_put_subsystem;
3054 		}
3055 	} else {
3056 		ret = device_add(&subsys->dev);
3057 		if (ret) {
3058 			dev_err(ctrl->device,
3059 				"failed to register subsystem device.\n");
3060 			put_device(&subsys->dev);
3061 			goto out_unlock;
3062 		}
3063 		ida_init(&subsys->ns_ida);
3064 		list_add_tail(&subsys->entry, &nvme_subsystems);
3065 	}
3066 
3067 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3068 				dev_name(ctrl->device));
3069 	if (ret) {
3070 		dev_err(ctrl->device,
3071 			"failed to create sysfs link from subsystem.\n");
3072 		goto out_put_subsystem;
3073 	}
3074 
3075 	if (!found)
3076 		subsys->instance = ctrl->instance;
3077 	ctrl->subsys = subsys;
3078 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3079 	mutex_unlock(&nvme_subsystems_lock);
3080 	return 0;
3081 
3082 out_put_subsystem:
3083 	nvme_put_subsystem(subsys);
3084 out_unlock:
3085 	mutex_unlock(&nvme_subsystems_lock);
3086 	return ret;
3087 }
3088 
3089 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3090 		void *log, size_t size, u64 offset)
3091 {
3092 	struct nvme_command c = { };
3093 	u32 dwlen = nvme_bytes_to_numd(size);
3094 
3095 	c.get_log_page.opcode = nvme_admin_get_log_page;
3096 	c.get_log_page.nsid = cpu_to_le32(nsid);
3097 	c.get_log_page.lid = log_page;
3098 	c.get_log_page.lsp = lsp;
3099 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3100 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3101 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3102 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3103 	c.get_log_page.csi = csi;
3104 
3105 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3106 }
3107 
3108 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3109 				struct nvme_effects_log **log)
3110 {
3111 	struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3112 	int ret;
3113 
3114 	if (cel)
3115 		goto out;
3116 
3117 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3118 	if (!cel)
3119 		return -ENOMEM;
3120 
3121 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3122 			cel, sizeof(*cel), 0);
3123 	if (ret) {
3124 		kfree(cel);
3125 		return ret;
3126 	}
3127 
3128 	old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3129 	if (xa_is_err(old)) {
3130 		kfree(cel);
3131 		return xa_err(old);
3132 	}
3133 out:
3134 	*log = cel;
3135 	return 0;
3136 }
3137 
3138 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3139 {
3140 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3141 
3142 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3143 		return UINT_MAX;
3144 	return val;
3145 }
3146 
3147 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3148 {
3149 	struct nvme_command c = { };
3150 	struct nvme_id_ctrl_nvm *id;
3151 	int ret;
3152 
3153 	/*
3154 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3155 	 * to the write-zeroes, we are cautious and limit the size to the
3156 	 * controllers max_hw_sectors value, which is based on the MDTS field
3157 	 * and possibly other limiting factors.
3158 	 */
3159 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3160 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3161 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3162 	else
3163 		ctrl->max_zeroes_sectors = 0;
3164 
3165 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3166 	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3167 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3168 		return 0;
3169 
3170 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3171 	if (!id)
3172 		return -ENOMEM;
3173 
3174 	c.identify.opcode = nvme_admin_identify;
3175 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3176 	c.identify.csi = NVME_CSI_NVM;
3177 
3178 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3179 	if (ret)
3180 		goto free_data;
3181 
3182 	ctrl->dmrl = id->dmrl;
3183 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3184 	if (id->wzsl)
3185 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3186 
3187 free_data:
3188 	if (ret > 0)
3189 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3190 	kfree(id);
3191 	return ret;
3192 }
3193 
3194 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3195 		u8 csi, struct nvme_effects_log **log)
3196 {
3197 	struct nvme_effects_log *effects, *old;
3198 
3199 	effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3200 	if (!effects)
3201 		return -ENOMEM;
3202 
3203 	old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3204 	if (xa_is_err(old)) {
3205 		kfree(effects);
3206 		return xa_err(old);
3207 	}
3208 
3209 	*log = effects;
3210 	return 0;
3211 }
3212 
3213 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3214 {
3215 	struct nvme_effects_log	*log = ctrl->effects;
3216 
3217 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3218 						NVME_CMD_EFFECTS_NCC |
3219 						NVME_CMD_EFFECTS_CSE_MASK);
3220 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3221 						NVME_CMD_EFFECTS_CSE_MASK);
3222 
3223 	/*
3224 	 * The spec says the result of a security receive command depends on
3225 	 * the previous security send command. As such, many vendors log this
3226 	 * command as one to submitted only when no other commands to the same
3227 	 * namespace are outstanding. The intention is to tell the host to
3228 	 * prevent mixing security send and receive.
3229 	 *
3230 	 * This driver can only enforce such exclusive access against IO
3231 	 * queues, though. We are not readily able to enforce such a rule for
3232 	 * two commands to the admin queue, which is the only queue that
3233 	 * matters for this command.
3234 	 *
3235 	 * Rather than blindly freezing the IO queues for this effect that
3236 	 * doesn't even apply to IO, mask it off.
3237 	 */
3238 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3239 
3240 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3241 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3242 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3243 }
3244 
3245 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3246 {
3247 	int ret = 0;
3248 
3249 	if (ctrl->effects)
3250 		return 0;
3251 
3252 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3253 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3254 		if (ret < 0)
3255 			return ret;
3256 	}
3257 
3258 	if (!ctrl->effects) {
3259 		ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3260 		if (ret < 0)
3261 			return ret;
3262 	}
3263 
3264 	nvme_init_known_nvm_effects(ctrl);
3265 	return 0;
3266 }
3267 
3268 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3269 {
3270 	/*
3271 	 * In fabrics we need to verify the cntlid matches the
3272 	 * admin connect
3273 	 */
3274 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3275 		dev_err(ctrl->device,
3276 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3277 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3278 		return -EINVAL;
3279 	}
3280 
3281 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3282 		dev_err(ctrl->device,
3283 			"keep-alive support is mandatory for fabrics\n");
3284 		return -EINVAL;
3285 	}
3286 
3287 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3288 		dev_err(ctrl->device,
3289 			"I/O queue command capsule supported size %d < 4\n",
3290 			ctrl->ioccsz);
3291 		return -EINVAL;
3292 	}
3293 
3294 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3295 		dev_err(ctrl->device,
3296 			"I/O queue response capsule supported size %d < 1\n",
3297 			ctrl->iorcsz);
3298 		return -EINVAL;
3299 	}
3300 
3301 	if (!ctrl->maxcmd) {
3302 		dev_warn(ctrl->device,
3303 			"Firmware bug: maximum outstanding commands is 0\n");
3304 		ctrl->maxcmd = ctrl->sqsize + 1;
3305 	}
3306 
3307 	return 0;
3308 }
3309 
3310 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3311 {
3312 	struct queue_limits lim;
3313 	struct nvme_id_ctrl *id;
3314 	u32 max_hw_sectors;
3315 	bool prev_apst_enabled;
3316 	int ret;
3317 
3318 	ret = nvme_identify_ctrl(ctrl, &id);
3319 	if (ret) {
3320 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3321 		return -EIO;
3322 	}
3323 
3324 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3325 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3326 
3327 	if (!ctrl->identified) {
3328 		unsigned int i;
3329 
3330 		/*
3331 		 * Check for quirks.  Quirk can depend on firmware version,
3332 		 * so, in principle, the set of quirks present can change
3333 		 * across a reset.  As a possible future enhancement, we
3334 		 * could re-scan for quirks every time we reinitialize
3335 		 * the device, but we'd have to make sure that the driver
3336 		 * behaves intelligently if the quirks change.
3337 		 */
3338 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3339 			if (quirk_matches(id, &core_quirks[i]))
3340 				ctrl->quirks |= core_quirks[i].quirks;
3341 		}
3342 
3343 		ret = nvme_init_subsystem(ctrl, id);
3344 		if (ret)
3345 			goto out_free;
3346 
3347 		ret = nvme_init_effects(ctrl, id);
3348 		if (ret)
3349 			goto out_free;
3350 	}
3351 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3352 	       sizeof(ctrl->subsys->firmware_rev));
3353 
3354 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3355 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3356 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3357 	}
3358 
3359 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3360 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3361 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3362 
3363 	ctrl->oacs = le16_to_cpu(id->oacs);
3364 	ctrl->oncs = le16_to_cpu(id->oncs);
3365 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3366 	ctrl->oaes = le32_to_cpu(id->oaes);
3367 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3368 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3369 
3370 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3371 	ctrl->vwc = id->vwc;
3372 	if (id->mdts)
3373 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3374 	else
3375 		max_hw_sectors = UINT_MAX;
3376 	ctrl->max_hw_sectors =
3377 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3378 
3379 	lim = queue_limits_start_update(ctrl->admin_q);
3380 	nvme_set_ctrl_limits(ctrl, &lim);
3381 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3382 	if (ret)
3383 		goto out_free;
3384 
3385 	ctrl->sgls = le32_to_cpu(id->sgls);
3386 	ctrl->kas = le16_to_cpu(id->kas);
3387 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3388 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3389 
3390 	ctrl->cntrltype = id->cntrltype;
3391 	ctrl->dctype = id->dctype;
3392 
3393 	if (id->rtd3e) {
3394 		/* us -> s */
3395 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3396 
3397 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3398 						 shutdown_timeout, 60);
3399 
3400 		if (ctrl->shutdown_timeout != shutdown_timeout)
3401 			dev_info(ctrl->device,
3402 				 "D3 entry latency set to %u seconds\n",
3403 				 ctrl->shutdown_timeout);
3404 	} else
3405 		ctrl->shutdown_timeout = shutdown_timeout;
3406 
3407 	ctrl->npss = id->npss;
3408 	ctrl->apsta = id->apsta;
3409 	prev_apst_enabled = ctrl->apst_enabled;
3410 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3411 		if (force_apst && id->apsta) {
3412 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3413 			ctrl->apst_enabled = true;
3414 		} else {
3415 			ctrl->apst_enabled = false;
3416 		}
3417 	} else {
3418 		ctrl->apst_enabled = id->apsta;
3419 	}
3420 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3421 
3422 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3423 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3424 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3425 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3426 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3427 
3428 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3429 		if (ret)
3430 			goto out_free;
3431 	} else {
3432 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3433 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3434 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3435 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3436 	}
3437 
3438 	ret = nvme_mpath_init_identify(ctrl, id);
3439 	if (ret < 0)
3440 		goto out_free;
3441 
3442 	if (ctrl->apst_enabled && !prev_apst_enabled)
3443 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3444 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3445 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3446 
3447 out_free:
3448 	kfree(id);
3449 	return ret;
3450 }
3451 
3452 /*
3453  * Initialize the cached copies of the Identify data and various controller
3454  * register in our nvme_ctrl structure.  This should be called as soon as
3455  * the admin queue is fully up and running.
3456  */
3457 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3458 {
3459 	int ret;
3460 
3461 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3462 	if (ret) {
3463 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3464 		return ret;
3465 	}
3466 
3467 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3468 
3469 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3470 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3471 
3472 	ret = nvme_init_identify(ctrl);
3473 	if (ret)
3474 		return ret;
3475 
3476 	ret = nvme_configure_apst(ctrl);
3477 	if (ret < 0)
3478 		return ret;
3479 
3480 	ret = nvme_configure_timestamp(ctrl);
3481 	if (ret < 0)
3482 		return ret;
3483 
3484 	ret = nvme_configure_host_options(ctrl);
3485 	if (ret < 0)
3486 		return ret;
3487 
3488 	nvme_configure_opal(ctrl, was_suspended);
3489 
3490 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3491 		/*
3492 		 * Do not return errors unless we are in a controller reset,
3493 		 * the controller works perfectly fine without hwmon.
3494 		 */
3495 		ret = nvme_hwmon_init(ctrl);
3496 		if (ret == -EINTR)
3497 			return ret;
3498 	}
3499 
3500 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3501 	ctrl->identified = true;
3502 
3503 	nvme_start_keep_alive(ctrl);
3504 
3505 	return 0;
3506 }
3507 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3508 
3509 static int nvme_dev_open(struct inode *inode, struct file *file)
3510 {
3511 	struct nvme_ctrl *ctrl =
3512 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3513 
3514 	switch (nvme_ctrl_state(ctrl)) {
3515 	case NVME_CTRL_LIVE:
3516 		break;
3517 	default:
3518 		return -EWOULDBLOCK;
3519 	}
3520 
3521 	nvme_get_ctrl(ctrl);
3522 	if (!try_module_get(ctrl->ops->module)) {
3523 		nvme_put_ctrl(ctrl);
3524 		return -EINVAL;
3525 	}
3526 
3527 	file->private_data = ctrl;
3528 	return 0;
3529 }
3530 
3531 static int nvme_dev_release(struct inode *inode, struct file *file)
3532 {
3533 	struct nvme_ctrl *ctrl =
3534 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3535 
3536 	module_put(ctrl->ops->module);
3537 	nvme_put_ctrl(ctrl);
3538 	return 0;
3539 }
3540 
3541 static const struct file_operations nvme_dev_fops = {
3542 	.owner		= THIS_MODULE,
3543 	.open		= nvme_dev_open,
3544 	.release	= nvme_dev_release,
3545 	.unlocked_ioctl	= nvme_dev_ioctl,
3546 	.compat_ioctl	= compat_ptr_ioctl,
3547 	.uring_cmd	= nvme_dev_uring_cmd,
3548 };
3549 
3550 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3551 		unsigned nsid)
3552 {
3553 	struct nvme_ns_head *h;
3554 
3555 	lockdep_assert_held(&ctrl->subsys->lock);
3556 
3557 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3558 		/*
3559 		 * Private namespaces can share NSIDs under some conditions.
3560 		 * In that case we can't use the same ns_head for namespaces
3561 		 * with the same NSID.
3562 		 */
3563 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3564 			continue;
3565 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3566 			return h;
3567 	}
3568 
3569 	return NULL;
3570 }
3571 
3572 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3573 		struct nvme_ns_ids *ids)
3574 {
3575 	bool has_uuid = !uuid_is_null(&ids->uuid);
3576 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3577 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3578 	struct nvme_ns_head *h;
3579 
3580 	lockdep_assert_held(&subsys->lock);
3581 
3582 	list_for_each_entry(h, &subsys->nsheads, entry) {
3583 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3584 			return -EINVAL;
3585 		if (has_nguid &&
3586 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3587 			return -EINVAL;
3588 		if (has_eui64 &&
3589 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3590 			return -EINVAL;
3591 	}
3592 
3593 	return 0;
3594 }
3595 
3596 static void nvme_cdev_rel(struct device *dev)
3597 {
3598 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3599 }
3600 
3601 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3602 {
3603 	cdev_device_del(cdev, cdev_device);
3604 	put_device(cdev_device);
3605 }
3606 
3607 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3608 		const struct file_operations *fops, struct module *owner)
3609 {
3610 	int minor, ret;
3611 
3612 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3613 	if (minor < 0)
3614 		return minor;
3615 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3616 	cdev_device->class = &nvme_ns_chr_class;
3617 	cdev_device->release = nvme_cdev_rel;
3618 	device_initialize(cdev_device);
3619 	cdev_init(cdev, fops);
3620 	cdev->owner = owner;
3621 	ret = cdev_device_add(cdev, cdev_device);
3622 	if (ret)
3623 		put_device(cdev_device);
3624 
3625 	return ret;
3626 }
3627 
3628 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3629 {
3630 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3631 }
3632 
3633 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3634 {
3635 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3636 	return 0;
3637 }
3638 
3639 static const struct file_operations nvme_ns_chr_fops = {
3640 	.owner		= THIS_MODULE,
3641 	.open		= nvme_ns_chr_open,
3642 	.release	= nvme_ns_chr_release,
3643 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3644 	.compat_ioctl	= compat_ptr_ioctl,
3645 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3646 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3647 };
3648 
3649 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3650 {
3651 	int ret;
3652 
3653 	ns->cdev_device.parent = ns->ctrl->device;
3654 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3655 			   ns->ctrl->instance, ns->head->instance);
3656 	if (ret)
3657 		return ret;
3658 
3659 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3660 			     ns->ctrl->ops->module);
3661 }
3662 
3663 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3664 		struct nvme_ns_info *info)
3665 {
3666 	struct nvme_ns_head *head;
3667 	size_t size = sizeof(*head);
3668 	int ret = -ENOMEM;
3669 
3670 #ifdef CONFIG_NVME_MULTIPATH
3671 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3672 #endif
3673 
3674 	head = kzalloc(size, GFP_KERNEL);
3675 	if (!head)
3676 		goto out;
3677 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3678 	if (ret < 0)
3679 		goto out_free_head;
3680 	head->instance = ret;
3681 	INIT_LIST_HEAD(&head->list);
3682 	ret = init_srcu_struct(&head->srcu);
3683 	if (ret)
3684 		goto out_ida_remove;
3685 	head->subsys = ctrl->subsys;
3686 	head->ns_id = info->nsid;
3687 	head->ids = info->ids;
3688 	head->shared = info->is_shared;
3689 	head->rotational = info->is_rotational;
3690 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3691 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3692 	kref_init(&head->ref);
3693 
3694 	if (head->ids.csi) {
3695 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3696 		if (ret)
3697 			goto out_cleanup_srcu;
3698 	} else
3699 		head->effects = ctrl->effects;
3700 
3701 	ret = nvme_mpath_alloc_disk(ctrl, head);
3702 	if (ret)
3703 		goto out_cleanup_srcu;
3704 
3705 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3706 
3707 	kref_get(&ctrl->subsys->ref);
3708 
3709 	return head;
3710 out_cleanup_srcu:
3711 	cleanup_srcu_struct(&head->srcu);
3712 out_ida_remove:
3713 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3714 out_free_head:
3715 	kfree(head);
3716 out:
3717 	if (ret > 0)
3718 		ret = blk_status_to_errno(nvme_error_status(ret));
3719 	return ERR_PTR(ret);
3720 }
3721 
3722 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3723 		struct nvme_ns_ids *ids)
3724 {
3725 	struct nvme_subsystem *s;
3726 	int ret = 0;
3727 
3728 	/*
3729 	 * Note that this check is racy as we try to avoid holding the global
3730 	 * lock over the whole ns_head creation.  But it is only intended as
3731 	 * a sanity check anyway.
3732 	 */
3733 	mutex_lock(&nvme_subsystems_lock);
3734 	list_for_each_entry(s, &nvme_subsystems, entry) {
3735 		if (s == this)
3736 			continue;
3737 		mutex_lock(&s->lock);
3738 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3739 		mutex_unlock(&s->lock);
3740 		if (ret)
3741 			break;
3742 	}
3743 	mutex_unlock(&nvme_subsystems_lock);
3744 
3745 	return ret;
3746 }
3747 
3748 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3749 {
3750 	struct nvme_ctrl *ctrl = ns->ctrl;
3751 	struct nvme_ns_head *head = NULL;
3752 	int ret;
3753 
3754 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3755 	if (ret) {
3756 		/*
3757 		 * We've found two different namespaces on two different
3758 		 * subsystems that report the same ID.  This is pretty nasty
3759 		 * for anything that actually requires unique device
3760 		 * identification.  In the kernel we need this for multipathing,
3761 		 * and in user space the /dev/disk/by-id/ links rely on it.
3762 		 *
3763 		 * If the device also claims to be multi-path capable back off
3764 		 * here now and refuse the probe the second device as this is a
3765 		 * recipe for data corruption.  If not this is probably a
3766 		 * cheap consumer device if on the PCIe bus, so let the user
3767 		 * proceed and use the shiny toy, but warn that with changing
3768 		 * probing order (which due to our async probing could just be
3769 		 * device taking longer to startup) the other device could show
3770 		 * up at any time.
3771 		 */
3772 		nvme_print_device_info(ctrl);
3773 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3774 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3775 		     info->is_shared)) {
3776 			dev_err(ctrl->device,
3777 				"ignoring nsid %d because of duplicate IDs\n",
3778 				info->nsid);
3779 			return ret;
3780 		}
3781 
3782 		dev_err(ctrl->device,
3783 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3784 		dev_err(ctrl->device,
3785 			"use of /dev/disk/by-id/ may cause data corruption\n");
3786 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3787 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3788 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3789 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3790 	}
3791 
3792 	mutex_lock(&ctrl->subsys->lock);
3793 	head = nvme_find_ns_head(ctrl, info->nsid);
3794 	if (!head) {
3795 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3796 		if (ret) {
3797 			dev_err(ctrl->device,
3798 				"duplicate IDs in subsystem for nsid %d\n",
3799 				info->nsid);
3800 			goto out_unlock;
3801 		}
3802 		head = nvme_alloc_ns_head(ctrl, info);
3803 		if (IS_ERR(head)) {
3804 			ret = PTR_ERR(head);
3805 			goto out_unlock;
3806 		}
3807 	} else {
3808 		ret = -EINVAL;
3809 		if (!info->is_shared || !head->shared) {
3810 			dev_err(ctrl->device,
3811 				"Duplicate unshared namespace %d\n",
3812 				info->nsid);
3813 			goto out_put_ns_head;
3814 		}
3815 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3816 			dev_err(ctrl->device,
3817 				"IDs don't match for shared namespace %d\n",
3818 					info->nsid);
3819 			goto out_put_ns_head;
3820 		}
3821 
3822 		if (!multipath) {
3823 			dev_warn(ctrl->device,
3824 				"Found shared namespace %d, but multipathing not supported.\n",
3825 				info->nsid);
3826 			dev_warn_once(ctrl->device,
3827 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3828 		}
3829 	}
3830 
3831 	list_add_tail_rcu(&ns->siblings, &head->list);
3832 	ns->head = head;
3833 	mutex_unlock(&ctrl->subsys->lock);
3834 	return 0;
3835 
3836 out_put_ns_head:
3837 	nvme_put_ns_head(head);
3838 out_unlock:
3839 	mutex_unlock(&ctrl->subsys->lock);
3840 	return ret;
3841 }
3842 
3843 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3844 {
3845 	struct nvme_ns *ns, *ret = NULL;
3846 	int srcu_idx;
3847 
3848 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3849 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3850 				 srcu_read_lock_held(&ctrl->srcu)) {
3851 		if (ns->head->ns_id == nsid) {
3852 			if (!nvme_get_ns(ns))
3853 				continue;
3854 			ret = ns;
3855 			break;
3856 		}
3857 		if (ns->head->ns_id > nsid)
3858 			break;
3859 	}
3860 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3861 	return ret;
3862 }
3863 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
3864 
3865 /*
3866  * Add the namespace to the controller list while keeping the list ordered.
3867  */
3868 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3869 {
3870 	struct nvme_ns *tmp;
3871 
3872 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3873 		if (tmp->head->ns_id < ns->head->ns_id) {
3874 			list_add_rcu(&ns->list, &tmp->list);
3875 			return;
3876 		}
3877 	}
3878 	list_add(&ns->list, &ns->ctrl->namespaces);
3879 }
3880 
3881 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3882 {
3883 	struct queue_limits lim = { };
3884 	struct nvme_ns *ns;
3885 	struct gendisk *disk;
3886 	int node = ctrl->numa_node;
3887 
3888 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3889 	if (!ns)
3890 		return;
3891 
3892 	if (ctrl->opts && ctrl->opts->data_digest)
3893 		lim.features |= BLK_FEAT_STABLE_WRITES;
3894 	if (ctrl->ops->supports_pci_p2pdma &&
3895 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3896 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3897 
3898 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3899 	if (IS_ERR(disk))
3900 		goto out_free_ns;
3901 	disk->fops = &nvme_bdev_ops;
3902 	disk->private_data = ns;
3903 
3904 	ns->disk = disk;
3905 	ns->queue = disk->queue;
3906 	ns->ctrl = ctrl;
3907 	kref_init(&ns->kref);
3908 
3909 	if (nvme_init_ns_head(ns, info))
3910 		goto out_cleanup_disk;
3911 
3912 	/*
3913 	 * If multipathing is enabled, the device name for all disks and not
3914 	 * just those that represent shared namespaces needs to be based on the
3915 	 * subsystem instance.  Using the controller instance for private
3916 	 * namespaces could lead to naming collisions between shared and private
3917 	 * namespaces if they don't use a common numbering scheme.
3918 	 *
3919 	 * If multipathing is not enabled, disk names must use the controller
3920 	 * instance as shared namespaces will show up as multiple block
3921 	 * devices.
3922 	 */
3923 	if (nvme_ns_head_multipath(ns->head)) {
3924 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3925 			ctrl->instance, ns->head->instance);
3926 		disk->flags |= GENHD_FL_HIDDEN;
3927 	} else if (multipath) {
3928 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3929 			ns->head->instance);
3930 	} else {
3931 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3932 			ns->head->instance);
3933 	}
3934 
3935 	if (nvme_update_ns_info(ns, info))
3936 		goto out_unlink_ns;
3937 
3938 	mutex_lock(&ctrl->namespaces_lock);
3939 	/*
3940 	 * Ensure that no namespaces are added to the ctrl list after the queues
3941 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3942 	 */
3943 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3944 		mutex_unlock(&ctrl->namespaces_lock);
3945 		goto out_unlink_ns;
3946 	}
3947 	nvme_ns_add_to_ctrl_list(ns);
3948 	mutex_unlock(&ctrl->namespaces_lock);
3949 	synchronize_srcu(&ctrl->srcu);
3950 	nvme_get_ctrl(ctrl);
3951 
3952 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3953 		goto out_cleanup_ns_from_list;
3954 
3955 	if (!nvme_ns_head_multipath(ns->head))
3956 		nvme_add_ns_cdev(ns);
3957 
3958 	nvme_mpath_add_disk(ns, info->anagrpid);
3959 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3960 
3961 	/*
3962 	 * Set ns->disk->device->driver_data to ns so we can access
3963 	 * ns->head->passthru_err_log_enabled in
3964 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3965 	 */
3966 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3967 
3968 	return;
3969 
3970  out_cleanup_ns_from_list:
3971 	nvme_put_ctrl(ctrl);
3972 	mutex_lock(&ctrl->namespaces_lock);
3973 	list_del_rcu(&ns->list);
3974 	mutex_unlock(&ctrl->namespaces_lock);
3975 	synchronize_srcu(&ctrl->srcu);
3976  out_unlink_ns:
3977 	mutex_lock(&ctrl->subsys->lock);
3978 	list_del_rcu(&ns->siblings);
3979 	if (list_empty(&ns->head->list))
3980 		list_del_init(&ns->head->entry);
3981 	mutex_unlock(&ctrl->subsys->lock);
3982 	nvme_put_ns_head(ns->head);
3983  out_cleanup_disk:
3984 	put_disk(disk);
3985  out_free_ns:
3986 	kfree(ns);
3987 }
3988 
3989 static void nvme_ns_remove(struct nvme_ns *ns)
3990 {
3991 	bool last_path = false;
3992 
3993 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3994 		return;
3995 
3996 	clear_bit(NVME_NS_READY, &ns->flags);
3997 	set_capacity(ns->disk, 0);
3998 	nvme_fault_inject_fini(&ns->fault_inject);
3999 
4000 	/*
4001 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4002 	 * this ns going back into current_path.
4003 	 */
4004 	synchronize_srcu(&ns->head->srcu);
4005 
4006 	/* wait for concurrent submissions */
4007 	if (nvme_mpath_clear_current_path(ns))
4008 		synchronize_srcu(&ns->head->srcu);
4009 
4010 	mutex_lock(&ns->ctrl->subsys->lock);
4011 	list_del_rcu(&ns->siblings);
4012 	if (list_empty(&ns->head->list)) {
4013 		list_del_init(&ns->head->entry);
4014 		last_path = true;
4015 	}
4016 	mutex_unlock(&ns->ctrl->subsys->lock);
4017 
4018 	/* guarantee not available in head->list */
4019 	synchronize_srcu(&ns->head->srcu);
4020 
4021 	if (!nvme_ns_head_multipath(ns->head))
4022 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4023 	del_gendisk(ns->disk);
4024 
4025 	mutex_lock(&ns->ctrl->namespaces_lock);
4026 	list_del_rcu(&ns->list);
4027 	mutex_unlock(&ns->ctrl->namespaces_lock);
4028 	synchronize_srcu(&ns->ctrl->srcu);
4029 
4030 	if (last_path)
4031 		nvme_mpath_shutdown_disk(ns->head);
4032 	nvme_put_ns(ns);
4033 }
4034 
4035 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4036 {
4037 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4038 
4039 	if (ns) {
4040 		nvme_ns_remove(ns);
4041 		nvme_put_ns(ns);
4042 	}
4043 }
4044 
4045 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4046 {
4047 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4048 
4049 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4050 		dev_err(ns->ctrl->device,
4051 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4052 		goto out;
4053 	}
4054 
4055 	ret = nvme_update_ns_info(ns, info);
4056 out:
4057 	/*
4058 	 * Only remove the namespace if we got a fatal error back from the
4059 	 * device, otherwise ignore the error and just move on.
4060 	 *
4061 	 * TODO: we should probably schedule a delayed retry here.
4062 	 */
4063 	if (ret > 0 && (ret & NVME_STATUS_DNR))
4064 		nvme_ns_remove(ns);
4065 }
4066 
4067 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4068 {
4069 	struct nvme_ns_info info = { .nsid = nsid };
4070 	struct nvme_ns *ns;
4071 	int ret = 1;
4072 
4073 	if (nvme_identify_ns_descs(ctrl, &info))
4074 		return;
4075 
4076 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4077 		dev_warn(ctrl->device,
4078 			"command set not reported for nsid: %d\n", nsid);
4079 		return;
4080 	}
4081 
4082 	/*
4083 	 * If available try to use the Command Set Idependent Identify Namespace
4084 	 * data structure to find all the generic information that is needed to
4085 	 * set up a namespace.  If not fall back to the legacy version.
4086 	 */
4087 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4088 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4089 	    ctrl->vs >= NVME_VS(2, 0, 0))
4090 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4091 	if (ret > 0)
4092 		ret = nvme_ns_info_from_identify(ctrl, &info);
4093 
4094 	if (info.is_removed)
4095 		nvme_ns_remove_by_nsid(ctrl, nsid);
4096 
4097 	/*
4098 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4099 	 * becomes ready and restart the scan.
4100 	 */
4101 	if (ret || !info.is_ready)
4102 		return;
4103 
4104 	ns = nvme_find_get_ns(ctrl, nsid);
4105 	if (ns) {
4106 		nvme_validate_ns(ns, &info);
4107 		nvme_put_ns(ns);
4108 	} else {
4109 		nvme_alloc_ns(ctrl, &info);
4110 	}
4111 }
4112 
4113 /**
4114  * struct async_scan_info - keeps track of controller & NSIDs to scan
4115  * @ctrl:	Controller on which namespaces are being scanned
4116  * @next_nsid:	Index of next NSID to scan in ns_list
4117  * @ns_list:	Pointer to list of NSIDs to scan
4118  *
4119  * Note: There is a single async_scan_info structure shared by all instances
4120  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4121  * operations on next_nsid are critical to ensure each instance scans a unique
4122  * NSID.
4123  */
4124 struct async_scan_info {
4125 	struct nvme_ctrl *ctrl;
4126 	atomic_t next_nsid;
4127 	__le32 *ns_list;
4128 };
4129 
4130 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4131 {
4132 	struct async_scan_info *scan_info = data;
4133 	int idx;
4134 	u32 nsid;
4135 
4136 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4137 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4138 
4139 	nvme_scan_ns(scan_info->ctrl, nsid);
4140 }
4141 
4142 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4143 					unsigned nsid)
4144 {
4145 	struct nvme_ns *ns, *next;
4146 	LIST_HEAD(rm_list);
4147 
4148 	mutex_lock(&ctrl->namespaces_lock);
4149 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4150 		if (ns->head->ns_id > nsid) {
4151 			list_del_rcu(&ns->list);
4152 			synchronize_srcu(&ctrl->srcu);
4153 			list_add_tail_rcu(&ns->list, &rm_list);
4154 		}
4155 	}
4156 	mutex_unlock(&ctrl->namespaces_lock);
4157 
4158 	list_for_each_entry_safe(ns, next, &rm_list, list)
4159 		nvme_ns_remove(ns);
4160 }
4161 
4162 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4163 {
4164 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4165 	__le32 *ns_list;
4166 	u32 prev = 0;
4167 	int ret = 0, i;
4168 	ASYNC_DOMAIN(domain);
4169 	struct async_scan_info scan_info;
4170 
4171 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4172 	if (!ns_list)
4173 		return -ENOMEM;
4174 
4175 	scan_info.ctrl = ctrl;
4176 	scan_info.ns_list = ns_list;
4177 	for (;;) {
4178 		struct nvme_command cmd = {
4179 			.identify.opcode	= nvme_admin_identify,
4180 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4181 			.identify.nsid		= cpu_to_le32(prev),
4182 		};
4183 
4184 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4185 					    NVME_IDENTIFY_DATA_SIZE);
4186 		if (ret) {
4187 			dev_warn(ctrl->device,
4188 				"Identify NS List failed (status=0x%x)\n", ret);
4189 			goto free;
4190 		}
4191 
4192 		atomic_set(&scan_info.next_nsid, 0);
4193 		for (i = 0; i < nr_entries; i++) {
4194 			u32 nsid = le32_to_cpu(ns_list[i]);
4195 
4196 			if (!nsid)	/* end of the list? */
4197 				goto out;
4198 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4199 						&domain);
4200 			while (++prev < nsid)
4201 				nvme_ns_remove_by_nsid(ctrl, prev);
4202 		}
4203 		async_synchronize_full_domain(&domain);
4204 	}
4205  out:
4206 	nvme_remove_invalid_namespaces(ctrl, prev);
4207  free:
4208 	async_synchronize_full_domain(&domain);
4209 	kfree(ns_list);
4210 	return ret;
4211 }
4212 
4213 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4214 {
4215 	struct nvme_id_ctrl *id;
4216 	u32 nn, i;
4217 
4218 	if (nvme_identify_ctrl(ctrl, &id))
4219 		return;
4220 	nn = le32_to_cpu(id->nn);
4221 	kfree(id);
4222 
4223 	for (i = 1; i <= nn; i++)
4224 		nvme_scan_ns(ctrl, i);
4225 
4226 	nvme_remove_invalid_namespaces(ctrl, nn);
4227 }
4228 
4229 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4230 {
4231 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4232 	__le32 *log;
4233 	int error;
4234 
4235 	log = kzalloc(log_size, GFP_KERNEL);
4236 	if (!log)
4237 		return;
4238 
4239 	/*
4240 	 * We need to read the log to clear the AEN, but we don't want to rely
4241 	 * on it for the changed namespace information as userspace could have
4242 	 * raced with us in reading the log page, which could cause us to miss
4243 	 * updates.
4244 	 */
4245 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4246 			NVME_CSI_NVM, log, log_size, 0);
4247 	if (error)
4248 		dev_warn(ctrl->device,
4249 			"reading changed ns log failed: %d\n", error);
4250 
4251 	kfree(log);
4252 }
4253 
4254 static void nvme_scan_work(struct work_struct *work)
4255 {
4256 	struct nvme_ctrl *ctrl =
4257 		container_of(work, struct nvme_ctrl, scan_work);
4258 	int ret;
4259 
4260 	/* No tagset on a live ctrl means IO queues could not created */
4261 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4262 		return;
4263 
4264 	/*
4265 	 * Identify controller limits can change at controller reset due to
4266 	 * new firmware download, even though it is not common we cannot ignore
4267 	 * such scenario. Controller's non-mdts limits are reported in the unit
4268 	 * of logical blocks that is dependent on the format of attached
4269 	 * namespace. Hence re-read the limits at the time of ns allocation.
4270 	 */
4271 	ret = nvme_init_non_mdts_limits(ctrl);
4272 	if (ret < 0) {
4273 		dev_warn(ctrl->device,
4274 			"reading non-mdts-limits failed: %d\n", ret);
4275 		return;
4276 	}
4277 
4278 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4279 		dev_info(ctrl->device, "rescanning namespaces.\n");
4280 		nvme_clear_changed_ns_log(ctrl);
4281 	}
4282 
4283 	mutex_lock(&ctrl->scan_lock);
4284 	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4285 		nvme_scan_ns_sequential(ctrl);
4286 	} else {
4287 		/*
4288 		 * Fall back to sequential scan if DNR is set to handle broken
4289 		 * devices which should support Identify NS List (as per the VS
4290 		 * they report) but don't actually support it.
4291 		 */
4292 		ret = nvme_scan_ns_list(ctrl);
4293 		if (ret > 0 && ret & NVME_STATUS_DNR)
4294 			nvme_scan_ns_sequential(ctrl);
4295 	}
4296 	mutex_unlock(&ctrl->scan_lock);
4297 }
4298 
4299 /*
4300  * This function iterates the namespace list unlocked to allow recovery from
4301  * controller failure. It is up to the caller to ensure the namespace list is
4302  * not modified by scan work while this function is executing.
4303  */
4304 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4305 {
4306 	struct nvme_ns *ns, *next;
4307 	LIST_HEAD(ns_list);
4308 
4309 	/*
4310 	 * make sure to requeue I/O to all namespaces as these
4311 	 * might result from the scan itself and must complete
4312 	 * for the scan_work to make progress
4313 	 */
4314 	nvme_mpath_clear_ctrl_paths(ctrl);
4315 
4316 	/*
4317 	 * Unquiesce io queues so any pending IO won't hang, especially
4318 	 * those submitted from scan work
4319 	 */
4320 	nvme_unquiesce_io_queues(ctrl);
4321 
4322 	/* prevent racing with ns scanning */
4323 	flush_work(&ctrl->scan_work);
4324 
4325 	/*
4326 	 * The dead states indicates the controller was not gracefully
4327 	 * disconnected. In that case, we won't be able to flush any data while
4328 	 * removing the namespaces' disks; fail all the queues now to avoid
4329 	 * potentially having to clean up the failed sync later.
4330 	 */
4331 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4332 		nvme_mark_namespaces_dead(ctrl);
4333 
4334 	/* this is a no-op when called from the controller reset handler */
4335 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4336 
4337 	mutex_lock(&ctrl->namespaces_lock);
4338 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4339 	mutex_unlock(&ctrl->namespaces_lock);
4340 	synchronize_srcu(&ctrl->srcu);
4341 
4342 	list_for_each_entry_safe(ns, next, &ns_list, list)
4343 		nvme_ns_remove(ns);
4344 }
4345 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4346 
4347 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4348 {
4349 	const struct nvme_ctrl *ctrl =
4350 		container_of(dev, struct nvme_ctrl, ctrl_device);
4351 	struct nvmf_ctrl_options *opts = ctrl->opts;
4352 	int ret;
4353 
4354 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4355 	if (ret)
4356 		return ret;
4357 
4358 	if (opts) {
4359 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4360 		if (ret)
4361 			return ret;
4362 
4363 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4364 				opts->trsvcid ?: "none");
4365 		if (ret)
4366 			return ret;
4367 
4368 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4369 				opts->host_traddr ?: "none");
4370 		if (ret)
4371 			return ret;
4372 
4373 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4374 				opts->host_iface ?: "none");
4375 	}
4376 	return ret;
4377 }
4378 
4379 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4380 {
4381 	char *envp[2] = { envdata, NULL };
4382 
4383 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4384 }
4385 
4386 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4387 {
4388 	char *envp[2] = { NULL, NULL };
4389 	u32 aen_result = ctrl->aen_result;
4390 
4391 	ctrl->aen_result = 0;
4392 	if (!aen_result)
4393 		return;
4394 
4395 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4396 	if (!envp[0])
4397 		return;
4398 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4399 	kfree(envp[0]);
4400 }
4401 
4402 static void nvme_async_event_work(struct work_struct *work)
4403 {
4404 	struct nvme_ctrl *ctrl =
4405 		container_of(work, struct nvme_ctrl, async_event_work);
4406 
4407 	nvme_aen_uevent(ctrl);
4408 
4409 	/*
4410 	 * The transport drivers must guarantee AER submission here is safe by
4411 	 * flushing ctrl async_event_work after changing the controller state
4412 	 * from LIVE and before freeing the admin queue.
4413 	*/
4414 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4415 		ctrl->ops->submit_async_event(ctrl);
4416 }
4417 
4418 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4419 {
4420 
4421 	u32 csts;
4422 
4423 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4424 		return false;
4425 
4426 	if (csts == ~0)
4427 		return false;
4428 
4429 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4430 }
4431 
4432 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4433 {
4434 	struct nvme_fw_slot_info_log *log;
4435 	u8 next_fw_slot, cur_fw_slot;
4436 
4437 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4438 	if (!log)
4439 		return;
4440 
4441 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4442 			 log, sizeof(*log), 0)) {
4443 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4444 		goto out_free_log;
4445 	}
4446 
4447 	cur_fw_slot = log->afi & 0x7;
4448 	next_fw_slot = (log->afi & 0x70) >> 4;
4449 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4450 		dev_info(ctrl->device,
4451 			 "Firmware is activated after next Controller Level Reset\n");
4452 		goto out_free_log;
4453 	}
4454 
4455 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4456 		sizeof(ctrl->subsys->firmware_rev));
4457 
4458 out_free_log:
4459 	kfree(log);
4460 }
4461 
4462 static void nvme_fw_act_work(struct work_struct *work)
4463 {
4464 	struct nvme_ctrl *ctrl = container_of(work,
4465 				struct nvme_ctrl, fw_act_work);
4466 	unsigned long fw_act_timeout;
4467 
4468 	nvme_auth_stop(ctrl);
4469 
4470 	if (ctrl->mtfa)
4471 		fw_act_timeout = jiffies +
4472 				msecs_to_jiffies(ctrl->mtfa * 100);
4473 	else
4474 		fw_act_timeout = jiffies +
4475 				msecs_to_jiffies(admin_timeout * 1000);
4476 
4477 	nvme_quiesce_io_queues(ctrl);
4478 	while (nvme_ctrl_pp_status(ctrl)) {
4479 		if (time_after(jiffies, fw_act_timeout)) {
4480 			dev_warn(ctrl->device,
4481 				"Fw activation timeout, reset controller\n");
4482 			nvme_try_sched_reset(ctrl);
4483 			return;
4484 		}
4485 		msleep(100);
4486 	}
4487 
4488 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4489 		return;
4490 
4491 	nvme_unquiesce_io_queues(ctrl);
4492 	/* read FW slot information to clear the AER */
4493 	nvme_get_fw_slot_info(ctrl);
4494 
4495 	queue_work(nvme_wq, &ctrl->async_event_work);
4496 }
4497 
4498 static u32 nvme_aer_type(u32 result)
4499 {
4500 	return result & 0x7;
4501 }
4502 
4503 static u32 nvme_aer_subtype(u32 result)
4504 {
4505 	return (result & 0xff00) >> 8;
4506 }
4507 
4508 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4509 {
4510 	u32 aer_notice_type = nvme_aer_subtype(result);
4511 	bool requeue = true;
4512 
4513 	switch (aer_notice_type) {
4514 	case NVME_AER_NOTICE_NS_CHANGED:
4515 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4516 		nvme_queue_scan(ctrl);
4517 		break;
4518 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4519 		/*
4520 		 * We are (ab)using the RESETTING state to prevent subsequent
4521 		 * recovery actions from interfering with the controller's
4522 		 * firmware activation.
4523 		 */
4524 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4525 			requeue = false;
4526 			queue_work(nvme_wq, &ctrl->fw_act_work);
4527 		}
4528 		break;
4529 #ifdef CONFIG_NVME_MULTIPATH
4530 	case NVME_AER_NOTICE_ANA:
4531 		if (!ctrl->ana_log_buf)
4532 			break;
4533 		queue_work(nvme_wq, &ctrl->ana_work);
4534 		break;
4535 #endif
4536 	case NVME_AER_NOTICE_DISC_CHANGED:
4537 		ctrl->aen_result = result;
4538 		break;
4539 	default:
4540 		dev_warn(ctrl->device, "async event result %08x\n", result);
4541 	}
4542 	return requeue;
4543 }
4544 
4545 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4546 {
4547 	dev_warn(ctrl->device,
4548 		"resetting controller due to persistent internal error\n");
4549 	nvme_reset_ctrl(ctrl);
4550 }
4551 
4552 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4553 		volatile union nvme_result *res)
4554 {
4555 	u32 result = le32_to_cpu(res->u32);
4556 	u32 aer_type = nvme_aer_type(result);
4557 	u32 aer_subtype = nvme_aer_subtype(result);
4558 	bool requeue = true;
4559 
4560 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4561 		return;
4562 
4563 	trace_nvme_async_event(ctrl, result);
4564 	switch (aer_type) {
4565 	case NVME_AER_NOTICE:
4566 		requeue = nvme_handle_aen_notice(ctrl, result);
4567 		break;
4568 	case NVME_AER_ERROR:
4569 		/*
4570 		 * For a persistent internal error, don't run async_event_work
4571 		 * to submit a new AER. The controller reset will do it.
4572 		 */
4573 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4574 			nvme_handle_aer_persistent_error(ctrl);
4575 			return;
4576 		}
4577 		fallthrough;
4578 	case NVME_AER_SMART:
4579 	case NVME_AER_CSS:
4580 	case NVME_AER_VS:
4581 		ctrl->aen_result = result;
4582 		break;
4583 	default:
4584 		break;
4585 	}
4586 
4587 	if (requeue)
4588 		queue_work(nvme_wq, &ctrl->async_event_work);
4589 }
4590 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4591 
4592 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4593 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4594 {
4595 	struct queue_limits lim = {};
4596 	int ret;
4597 
4598 	memset(set, 0, sizeof(*set));
4599 	set->ops = ops;
4600 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4601 	if (ctrl->ops->flags & NVME_F_FABRICS)
4602 		/* Reserved for fabric connect and keep alive */
4603 		set->reserved_tags = 2;
4604 	set->numa_node = ctrl->numa_node;
4605 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4606 		set->flags |= BLK_MQ_F_BLOCKING;
4607 	set->cmd_size = cmd_size;
4608 	set->driver_data = ctrl;
4609 	set->nr_hw_queues = 1;
4610 	set->timeout = NVME_ADMIN_TIMEOUT;
4611 	ret = blk_mq_alloc_tag_set(set);
4612 	if (ret)
4613 		return ret;
4614 
4615 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4616 	if (IS_ERR(ctrl->admin_q)) {
4617 		ret = PTR_ERR(ctrl->admin_q);
4618 		goto out_free_tagset;
4619 	}
4620 
4621 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4622 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4623 		if (IS_ERR(ctrl->fabrics_q)) {
4624 			ret = PTR_ERR(ctrl->fabrics_q);
4625 			goto out_cleanup_admin_q;
4626 		}
4627 	}
4628 
4629 	ctrl->admin_tagset = set;
4630 	return 0;
4631 
4632 out_cleanup_admin_q:
4633 	blk_mq_destroy_queue(ctrl->admin_q);
4634 	blk_put_queue(ctrl->admin_q);
4635 out_free_tagset:
4636 	blk_mq_free_tag_set(set);
4637 	ctrl->admin_q = NULL;
4638 	ctrl->fabrics_q = NULL;
4639 	return ret;
4640 }
4641 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4642 
4643 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4644 {
4645 	/*
4646 	 * As we're about to destroy the queue and free tagset
4647 	 * we can not have keep-alive work running.
4648 	 */
4649 	nvme_stop_keep_alive(ctrl);
4650 	blk_mq_destroy_queue(ctrl->admin_q);
4651 	blk_put_queue(ctrl->admin_q);
4652 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4653 		blk_mq_destroy_queue(ctrl->fabrics_q);
4654 		blk_put_queue(ctrl->fabrics_q);
4655 	}
4656 	blk_mq_free_tag_set(ctrl->admin_tagset);
4657 }
4658 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4659 
4660 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4661 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4662 		unsigned int cmd_size)
4663 {
4664 	int ret;
4665 
4666 	memset(set, 0, sizeof(*set));
4667 	set->ops = ops;
4668 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4669 	/*
4670 	 * Some Apple controllers requires tags to be unique across admin and
4671 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4672 	 */
4673 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4674 		set->reserved_tags = NVME_AQ_DEPTH;
4675 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4676 		/* Reserved for fabric connect */
4677 		set->reserved_tags = 1;
4678 	set->numa_node = ctrl->numa_node;
4679 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4680 		set->flags |= BLK_MQ_F_BLOCKING;
4681 	set->cmd_size = cmd_size;
4682 	set->driver_data = ctrl;
4683 	set->nr_hw_queues = ctrl->queue_count - 1;
4684 	set->timeout = NVME_IO_TIMEOUT;
4685 	set->nr_maps = nr_maps;
4686 	ret = blk_mq_alloc_tag_set(set);
4687 	if (ret)
4688 		return ret;
4689 
4690 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4691 		struct queue_limits lim = {
4692 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4693 		};
4694 
4695 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4696         	if (IS_ERR(ctrl->connect_q)) {
4697 			ret = PTR_ERR(ctrl->connect_q);
4698 			goto out_free_tag_set;
4699 		}
4700 	}
4701 
4702 	ctrl->tagset = set;
4703 	return 0;
4704 
4705 out_free_tag_set:
4706 	blk_mq_free_tag_set(set);
4707 	ctrl->connect_q = NULL;
4708 	return ret;
4709 }
4710 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4711 
4712 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4713 {
4714 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4715 		blk_mq_destroy_queue(ctrl->connect_q);
4716 		blk_put_queue(ctrl->connect_q);
4717 	}
4718 	blk_mq_free_tag_set(ctrl->tagset);
4719 }
4720 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4721 
4722 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4723 {
4724 	nvme_mpath_stop(ctrl);
4725 	nvme_auth_stop(ctrl);
4726 	nvme_stop_failfast_work(ctrl);
4727 	flush_work(&ctrl->async_event_work);
4728 	cancel_work_sync(&ctrl->fw_act_work);
4729 	if (ctrl->ops->stop_ctrl)
4730 		ctrl->ops->stop_ctrl(ctrl);
4731 }
4732 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4733 
4734 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4735 {
4736 	nvme_enable_aen(ctrl);
4737 
4738 	/*
4739 	 * persistent discovery controllers need to send indication to userspace
4740 	 * to re-read the discovery log page to learn about possible changes
4741 	 * that were missed. We identify persistent discovery controllers by
4742 	 * checking that they started once before, hence are reconnecting back.
4743 	 */
4744 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4745 	    nvme_discovery_ctrl(ctrl))
4746 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4747 
4748 	if (ctrl->queue_count > 1) {
4749 		nvme_queue_scan(ctrl);
4750 		nvme_unquiesce_io_queues(ctrl);
4751 		nvme_mpath_update(ctrl);
4752 	}
4753 
4754 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4755 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4756 }
4757 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4758 
4759 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4760 {
4761 	nvme_stop_keep_alive(ctrl);
4762 	nvme_hwmon_exit(ctrl);
4763 	nvme_fault_inject_fini(&ctrl->fault_inject);
4764 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4765 	cdev_device_del(&ctrl->cdev, ctrl->device);
4766 	nvme_put_ctrl(ctrl);
4767 }
4768 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4769 
4770 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4771 {
4772 	struct nvme_effects_log	*cel;
4773 	unsigned long i;
4774 
4775 	xa_for_each(&ctrl->cels, i, cel) {
4776 		xa_erase(&ctrl->cels, i);
4777 		kfree(cel);
4778 	}
4779 
4780 	xa_destroy(&ctrl->cels);
4781 }
4782 
4783 static void nvme_free_ctrl(struct device *dev)
4784 {
4785 	struct nvme_ctrl *ctrl =
4786 		container_of(dev, struct nvme_ctrl, ctrl_device);
4787 	struct nvme_subsystem *subsys = ctrl->subsys;
4788 
4789 	if (!subsys || ctrl->instance != subsys->instance)
4790 		ida_free(&nvme_instance_ida, ctrl->instance);
4791 	nvme_free_cels(ctrl);
4792 	nvme_mpath_uninit(ctrl);
4793 	cleanup_srcu_struct(&ctrl->srcu);
4794 	nvme_auth_stop(ctrl);
4795 	nvme_auth_free(ctrl);
4796 	__free_page(ctrl->discard_page);
4797 	free_opal_dev(ctrl->opal_dev);
4798 
4799 	if (subsys) {
4800 		mutex_lock(&nvme_subsystems_lock);
4801 		list_del(&ctrl->subsys_entry);
4802 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4803 		mutex_unlock(&nvme_subsystems_lock);
4804 	}
4805 
4806 	ctrl->ops->free_ctrl(ctrl);
4807 
4808 	if (subsys)
4809 		nvme_put_subsystem(subsys);
4810 }
4811 
4812 /*
4813  * Initialize a NVMe controller structures.  This needs to be called during
4814  * earliest initialization so that we have the initialized structured around
4815  * during probing.
4816  *
4817  * On success, the caller must use the nvme_put_ctrl() to release this when
4818  * needed, which also invokes the ops->free_ctrl() callback.
4819  */
4820 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4821 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4822 {
4823 	int ret;
4824 
4825 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4826 	ctrl->passthru_err_log_enabled = false;
4827 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4828 	spin_lock_init(&ctrl->lock);
4829 	mutex_init(&ctrl->namespaces_lock);
4830 
4831 	ret = init_srcu_struct(&ctrl->srcu);
4832 	if (ret)
4833 		return ret;
4834 
4835 	mutex_init(&ctrl->scan_lock);
4836 	INIT_LIST_HEAD(&ctrl->namespaces);
4837 	xa_init(&ctrl->cels);
4838 	ctrl->dev = dev;
4839 	ctrl->ops = ops;
4840 	ctrl->quirks = quirks;
4841 	ctrl->numa_node = NUMA_NO_NODE;
4842 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4843 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4844 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4845 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4846 	init_waitqueue_head(&ctrl->state_wq);
4847 
4848 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4849 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4850 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4851 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4852 	ctrl->ka_last_check_time = jiffies;
4853 
4854 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4855 			PAGE_SIZE);
4856 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4857 	if (!ctrl->discard_page) {
4858 		ret = -ENOMEM;
4859 		goto out;
4860 	}
4861 
4862 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4863 	if (ret < 0)
4864 		goto out;
4865 	ctrl->instance = ret;
4866 
4867 	ret = nvme_auth_init_ctrl(ctrl);
4868 	if (ret)
4869 		goto out_release_instance;
4870 
4871 	nvme_mpath_init_ctrl(ctrl);
4872 
4873 	device_initialize(&ctrl->ctrl_device);
4874 	ctrl->device = &ctrl->ctrl_device;
4875 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4876 			ctrl->instance);
4877 	ctrl->device->class = &nvme_class;
4878 	ctrl->device->parent = ctrl->dev;
4879 	if (ops->dev_attr_groups)
4880 		ctrl->device->groups = ops->dev_attr_groups;
4881 	else
4882 		ctrl->device->groups = nvme_dev_attr_groups;
4883 	ctrl->device->release = nvme_free_ctrl;
4884 	dev_set_drvdata(ctrl->device, ctrl);
4885 
4886 	return ret;
4887 
4888 out_release_instance:
4889 	ida_free(&nvme_instance_ida, ctrl->instance);
4890 out:
4891 	if (ctrl->discard_page)
4892 		__free_page(ctrl->discard_page);
4893 	cleanup_srcu_struct(&ctrl->srcu);
4894 	return ret;
4895 }
4896 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4897 
4898 /*
4899  * On success, returns with an elevated controller reference and caller must
4900  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4901  */
4902 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4903 {
4904 	int ret;
4905 
4906 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4907 	if (ret)
4908 		return ret;
4909 
4910 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4911 	ctrl->cdev.owner = ctrl->ops->module;
4912 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4913 	if (ret)
4914 		return ret;
4915 
4916 	/*
4917 	 * Initialize latency tolerance controls.  The sysfs files won't
4918 	 * be visible to userspace unless the device actually supports APST.
4919 	 */
4920 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4921 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4922 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4923 
4924 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4925 	nvme_get_ctrl(ctrl);
4926 
4927 	return 0;
4928 }
4929 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4930 
4931 /* let I/O to all namespaces fail in preparation for surprise removal */
4932 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4933 {
4934 	struct nvme_ns *ns;
4935 	int srcu_idx;
4936 
4937 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4938 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4939 				 srcu_read_lock_held(&ctrl->srcu))
4940 		blk_mark_disk_dead(ns->disk);
4941 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4942 }
4943 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4944 
4945 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4946 {
4947 	struct nvme_ns *ns;
4948 	int srcu_idx;
4949 
4950 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4951 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4952 				 srcu_read_lock_held(&ctrl->srcu))
4953 		blk_mq_unfreeze_queue_non_owner(ns->queue);
4954 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4955 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4956 }
4957 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4958 
4959 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4960 {
4961 	struct nvme_ns *ns;
4962 	int srcu_idx;
4963 
4964 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4965 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4966 				 srcu_read_lock_held(&ctrl->srcu)) {
4967 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4968 		if (timeout <= 0)
4969 			break;
4970 	}
4971 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4972 	return timeout;
4973 }
4974 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4975 
4976 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4977 {
4978 	struct nvme_ns *ns;
4979 	int srcu_idx;
4980 
4981 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4982 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4983 				 srcu_read_lock_held(&ctrl->srcu))
4984 		blk_mq_freeze_queue_wait(ns->queue);
4985 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4986 }
4987 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4988 
4989 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4990 {
4991 	struct nvme_ns *ns;
4992 	int srcu_idx;
4993 
4994 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4995 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4996 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4997 				 srcu_read_lock_held(&ctrl->srcu))
4998 		/*
4999 		 * Typical non_owner use case is from pci driver, in which
5000 		 * start_freeze is called from timeout work function, but
5001 		 * unfreeze is done in reset work context
5002 		 */
5003 		blk_freeze_queue_start_non_owner(ns->queue);
5004 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5005 }
5006 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5007 
5008 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5009 {
5010 	if (!ctrl->tagset)
5011 		return;
5012 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5013 		blk_mq_quiesce_tagset(ctrl->tagset);
5014 	else
5015 		blk_mq_wait_quiesce_done(ctrl->tagset);
5016 }
5017 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5018 
5019 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5020 {
5021 	if (!ctrl->tagset)
5022 		return;
5023 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5024 		blk_mq_unquiesce_tagset(ctrl->tagset);
5025 }
5026 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5027 
5028 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5029 {
5030 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5031 		blk_mq_quiesce_queue(ctrl->admin_q);
5032 	else
5033 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5034 }
5035 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5036 
5037 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5038 {
5039 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5040 		blk_mq_unquiesce_queue(ctrl->admin_q);
5041 }
5042 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5043 
5044 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5045 {
5046 	struct nvme_ns *ns;
5047 	int srcu_idx;
5048 
5049 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5050 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5051 				 srcu_read_lock_held(&ctrl->srcu))
5052 		blk_sync_queue(ns->queue);
5053 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5054 }
5055 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5056 
5057 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5058 {
5059 	nvme_sync_io_queues(ctrl);
5060 	if (ctrl->admin_q)
5061 		blk_sync_queue(ctrl->admin_q);
5062 }
5063 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5064 
5065 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5066 {
5067 	if (file->f_op != &nvme_dev_fops)
5068 		return NULL;
5069 	return file->private_data;
5070 }
5071 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5072 
5073 /*
5074  * Check we didn't inadvertently grow the command structure sizes:
5075  */
5076 static inline void _nvme_check_size(void)
5077 {
5078 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5079 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5080 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5081 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5082 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5083 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5084 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5085 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5086 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5087 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5088 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5089 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5090 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5091 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5092 			NVME_IDENTIFY_DATA_SIZE);
5093 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5094 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5095 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5096 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5097 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5098 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5099 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5100 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5101 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5102 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5103 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5104 }
5105 
5106 
5107 static int __init nvme_core_init(void)
5108 {
5109 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5110 	int result = -ENOMEM;
5111 
5112 	_nvme_check_size();
5113 
5114 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5115 	if (!nvme_wq)
5116 		goto out;
5117 
5118 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5119 	if (!nvme_reset_wq)
5120 		goto destroy_wq;
5121 
5122 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5123 	if (!nvme_delete_wq)
5124 		goto destroy_reset_wq;
5125 
5126 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5127 			NVME_MINORS, "nvme");
5128 	if (result < 0)
5129 		goto destroy_delete_wq;
5130 
5131 	result = class_register(&nvme_class);
5132 	if (result)
5133 		goto unregister_chrdev;
5134 
5135 	result = class_register(&nvme_subsys_class);
5136 	if (result)
5137 		goto destroy_class;
5138 
5139 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5140 				     "nvme-generic");
5141 	if (result < 0)
5142 		goto destroy_subsys_class;
5143 
5144 	result = class_register(&nvme_ns_chr_class);
5145 	if (result)
5146 		goto unregister_generic_ns;
5147 
5148 	result = nvme_init_auth();
5149 	if (result)
5150 		goto destroy_ns_chr;
5151 	return 0;
5152 
5153 destroy_ns_chr:
5154 	class_unregister(&nvme_ns_chr_class);
5155 unregister_generic_ns:
5156 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5157 destroy_subsys_class:
5158 	class_unregister(&nvme_subsys_class);
5159 destroy_class:
5160 	class_unregister(&nvme_class);
5161 unregister_chrdev:
5162 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5163 destroy_delete_wq:
5164 	destroy_workqueue(nvme_delete_wq);
5165 destroy_reset_wq:
5166 	destroy_workqueue(nvme_reset_wq);
5167 destroy_wq:
5168 	destroy_workqueue(nvme_wq);
5169 out:
5170 	return result;
5171 }
5172 
5173 static void __exit nvme_core_exit(void)
5174 {
5175 	nvme_exit_auth();
5176 	class_unregister(&nvme_ns_chr_class);
5177 	class_unregister(&nvme_subsys_class);
5178 	class_unregister(&nvme_class);
5179 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5180 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5181 	destroy_workqueue(nvme_delete_wq);
5182 	destroy_workqueue(nvme_reset_wq);
5183 	destroy_workqueue(nvme_wq);
5184 	ida_destroy(&nvme_ns_chr_minor_ida);
5185 	ida_destroy(&nvme_instance_ida);
5186 }
5187 
5188 MODULE_LICENSE("GPL");
5189 MODULE_VERSION("1.0");
5190 MODULE_DESCRIPTION("NVMe host core framework");
5191 module_init(nvme_core_init);
5192 module_exit(nvme_core_exit);
5193