xref: /linux/drivers/nvme/host/core.c (revision 45d8b572fac3aa8b49d53c946b3685eaf78a2824)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include "nvme.h"
27 #include "fabrics.h"
28 #include <linux/nvme-auth.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32 
33 #define NVME_MINORS		(1U << MINORBITS)
34 
35 struct nvme_ns_info {
36 	struct nvme_ns_ids ids;
37 	u32 nsid;
38 	__le32 anagrpid;
39 	bool is_shared;
40 	bool is_readonly;
41 	bool is_ready;
42 	bool is_removed;
43 };
44 
45 unsigned int admin_timeout = 60;
46 module_param(admin_timeout, uint, 0644);
47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
48 EXPORT_SYMBOL_GPL(admin_timeout);
49 
50 unsigned int nvme_io_timeout = 30;
51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
53 EXPORT_SYMBOL_GPL(nvme_io_timeout);
54 
55 static unsigned char shutdown_timeout = 5;
56 module_param(shutdown_timeout, byte, 0644);
57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
58 
59 static u8 nvme_max_retries = 5;
60 module_param_named(max_retries, nvme_max_retries, byte, 0644);
61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
62 
63 static unsigned long default_ps_max_latency_us = 100000;
64 module_param(default_ps_max_latency_us, ulong, 0644);
65 MODULE_PARM_DESC(default_ps_max_latency_us,
66 		 "max power saving latency for new devices; use PM QOS to change per device");
67 
68 static bool force_apst;
69 module_param(force_apst, bool, 0644);
70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
71 
72 static unsigned long apst_primary_timeout_ms = 100;
73 module_param(apst_primary_timeout_ms, ulong, 0644);
74 MODULE_PARM_DESC(apst_primary_timeout_ms,
75 	"primary APST timeout in ms");
76 
77 static unsigned long apst_secondary_timeout_ms = 2000;
78 module_param(apst_secondary_timeout_ms, ulong, 0644);
79 MODULE_PARM_DESC(apst_secondary_timeout_ms,
80 	"secondary APST timeout in ms");
81 
82 static unsigned long apst_primary_latency_tol_us = 15000;
83 module_param(apst_primary_latency_tol_us, ulong, 0644);
84 MODULE_PARM_DESC(apst_primary_latency_tol_us,
85 	"primary APST latency tolerance in us");
86 
87 static unsigned long apst_secondary_latency_tol_us = 100000;
88 module_param(apst_secondary_latency_tol_us, ulong, 0644);
89 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
90 	"secondary APST latency tolerance in us");
91 
92 /*
93  * nvme_wq - hosts nvme related works that are not reset or delete
94  * nvme_reset_wq - hosts nvme reset works
95  * nvme_delete_wq - hosts nvme delete works
96  *
97  * nvme_wq will host works such as scan, aen handling, fw activation,
98  * keep-alive, periodic reconnects etc. nvme_reset_wq
99  * runs reset works which also flush works hosted on nvme_wq for
100  * serialization purposes. nvme_delete_wq host controller deletion
101  * works which flush reset works for serialization.
102  */
103 struct workqueue_struct *nvme_wq;
104 EXPORT_SYMBOL_GPL(nvme_wq);
105 
106 struct workqueue_struct *nvme_reset_wq;
107 EXPORT_SYMBOL_GPL(nvme_reset_wq);
108 
109 struct workqueue_struct *nvme_delete_wq;
110 EXPORT_SYMBOL_GPL(nvme_delete_wq);
111 
112 static LIST_HEAD(nvme_subsystems);
113 static DEFINE_MUTEX(nvme_subsystems_lock);
114 
115 static DEFINE_IDA(nvme_instance_ida);
116 static dev_t nvme_ctrl_base_chr_devt;
117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
118 static const struct class nvme_class = {
119 	.name = "nvme",
120 	.dev_uevent = nvme_class_uevent,
121 };
122 
123 static const struct class nvme_subsys_class = {
124 	.name = "nvme-subsystem",
125 };
126 
127 static DEFINE_IDA(nvme_ns_chr_minor_ida);
128 static dev_t nvme_ns_chr_devt;
129 static const struct class nvme_ns_chr_class = {
130 	.name = "nvme-generic",
131 };
132 
133 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
135 					   unsigned nsid);
136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
137 				   struct nvme_command *cmd);
138 
139 void nvme_queue_scan(struct nvme_ctrl *ctrl)
140 {
141 	/*
142 	 * Only new queue scan work when admin and IO queues are both alive
143 	 */
144 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
145 		queue_work(nvme_wq, &ctrl->scan_work);
146 }
147 
148 /*
149  * Use this function to proceed with scheduling reset_work for a controller
150  * that had previously been set to the resetting state. This is intended for
151  * code paths that can't be interrupted by other reset attempts. A hot removal
152  * may prevent this from succeeding.
153  */
154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
155 {
156 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
157 		return -EBUSY;
158 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
159 		return -EBUSY;
160 	return 0;
161 }
162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
163 
164 static void nvme_failfast_work(struct work_struct *work)
165 {
166 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
167 			struct nvme_ctrl, failfast_work);
168 
169 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
170 		return;
171 
172 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
173 	dev_info(ctrl->device, "failfast expired\n");
174 	nvme_kick_requeue_lists(ctrl);
175 }
176 
177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
178 {
179 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
180 		return;
181 
182 	schedule_delayed_work(&ctrl->failfast_work,
183 			      ctrl->opts->fast_io_fail_tmo * HZ);
184 }
185 
186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
187 {
188 	if (!ctrl->opts)
189 		return;
190 
191 	cancel_delayed_work_sync(&ctrl->failfast_work);
192 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
193 }
194 
195 
196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
197 {
198 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
199 		return -EBUSY;
200 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
201 		return -EBUSY;
202 	return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
205 
206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208 	int ret;
209 
210 	ret = nvme_reset_ctrl(ctrl);
211 	if (!ret) {
212 		flush_work(&ctrl->reset_work);
213 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
214 			ret = -ENETRESET;
215 	}
216 
217 	return ret;
218 }
219 
220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
221 {
222 	dev_info(ctrl->device,
223 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
224 
225 	flush_work(&ctrl->reset_work);
226 	nvme_stop_ctrl(ctrl);
227 	nvme_remove_namespaces(ctrl);
228 	ctrl->ops->delete_ctrl(ctrl);
229 	nvme_uninit_ctrl(ctrl);
230 }
231 
232 static void nvme_delete_ctrl_work(struct work_struct *work)
233 {
234 	struct nvme_ctrl *ctrl =
235 		container_of(work, struct nvme_ctrl, delete_work);
236 
237 	nvme_do_delete_ctrl(ctrl);
238 }
239 
240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
241 {
242 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
243 		return -EBUSY;
244 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
245 		return -EBUSY;
246 	return 0;
247 }
248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
249 
250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
251 {
252 	/*
253 	 * Keep a reference until nvme_do_delete_ctrl() complete,
254 	 * since ->delete_ctrl can free the controller.
255 	 */
256 	nvme_get_ctrl(ctrl);
257 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		nvme_do_delete_ctrl(ctrl);
259 	nvme_put_ctrl(ctrl);
260 }
261 
262 static blk_status_t nvme_error_status(u16 status)
263 {
264 	switch (status & 0x7ff) {
265 	case NVME_SC_SUCCESS:
266 		return BLK_STS_OK;
267 	case NVME_SC_CAP_EXCEEDED:
268 		return BLK_STS_NOSPC;
269 	case NVME_SC_LBA_RANGE:
270 	case NVME_SC_CMD_INTERRUPTED:
271 	case NVME_SC_NS_NOT_READY:
272 		return BLK_STS_TARGET;
273 	case NVME_SC_BAD_ATTRIBUTES:
274 	case NVME_SC_ONCS_NOT_SUPPORTED:
275 	case NVME_SC_INVALID_OPCODE:
276 	case NVME_SC_INVALID_FIELD:
277 	case NVME_SC_INVALID_NS:
278 		return BLK_STS_NOTSUPP;
279 	case NVME_SC_WRITE_FAULT:
280 	case NVME_SC_READ_ERROR:
281 	case NVME_SC_UNWRITTEN_BLOCK:
282 	case NVME_SC_ACCESS_DENIED:
283 	case NVME_SC_READ_ONLY:
284 	case NVME_SC_COMPARE_FAILED:
285 		return BLK_STS_MEDIUM;
286 	case NVME_SC_GUARD_CHECK:
287 	case NVME_SC_APPTAG_CHECK:
288 	case NVME_SC_REFTAG_CHECK:
289 	case NVME_SC_INVALID_PI:
290 		return BLK_STS_PROTECTION;
291 	case NVME_SC_RESERVATION_CONFLICT:
292 		return BLK_STS_RESV_CONFLICT;
293 	case NVME_SC_HOST_PATH_ERROR:
294 		return BLK_STS_TRANSPORT;
295 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
296 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
297 	case NVME_SC_ZONE_TOO_MANY_OPEN:
298 		return BLK_STS_ZONE_OPEN_RESOURCE;
299 	default:
300 		return BLK_STS_IOERR;
301 	}
302 }
303 
304 static void nvme_retry_req(struct request *req)
305 {
306 	unsigned long delay = 0;
307 	u16 crd;
308 
309 	/* The mask and shift result must be <= 3 */
310 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
311 	if (crd)
312 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
313 
314 	nvme_req(req)->retries++;
315 	blk_mq_requeue_request(req, false);
316 	blk_mq_delay_kick_requeue_list(req->q, delay);
317 }
318 
319 static void nvme_log_error(struct request *req)
320 {
321 	struct nvme_ns *ns = req->q->queuedata;
322 	struct nvme_request *nr = nvme_req(req);
323 
324 	if (ns) {
325 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
326 		       ns->disk ? ns->disk->disk_name : "?",
327 		       nvme_get_opcode_str(nr->cmd->common.opcode),
328 		       nr->cmd->common.opcode,
329 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
330 		       blk_rq_bytes(req) >> ns->head->lba_shift,
331 		       nvme_get_error_status_str(nr->status),
332 		       nr->status >> 8 & 7,	/* Status Code Type */
333 		       nr->status & 0xff,	/* Status Code */
334 		       nr->status & NVME_SC_MORE ? "MORE " : "",
335 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
336 		return;
337 	}
338 
339 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
340 			   dev_name(nr->ctrl->device),
341 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
342 			   nr->cmd->common.opcode,
343 			   nvme_get_error_status_str(nr->status),
344 			   nr->status >> 8 & 7,	/* Status Code Type */
345 			   nr->status & 0xff,	/* Status Code */
346 			   nr->status & NVME_SC_MORE ? "MORE " : "",
347 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
348 }
349 
350 static void nvme_log_err_passthru(struct request *req)
351 {
352 	struct nvme_ns *ns = req->q->queuedata;
353 	struct nvme_request *nr = nvme_req(req);
354 
355 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
356 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
357 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
358 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
359 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 		nr->cmd->common.opcode,
361 		nvme_get_error_status_str(nr->status),
362 		nr->status >> 8 & 7,	/* Status Code Type */
363 		nr->status & 0xff,	/* Status Code */
364 		nr->status & NVME_SC_MORE ? "MORE " : "",
365 		nr->status & NVME_SC_DNR  ? "DNR "  : "",
366 		nr->cmd->common.cdw10,
367 		nr->cmd->common.cdw11,
368 		nr->cmd->common.cdw12,
369 		nr->cmd->common.cdw13,
370 		nr->cmd->common.cdw14,
371 		nr->cmd->common.cdw14);
372 }
373 
374 enum nvme_disposition {
375 	COMPLETE,
376 	RETRY,
377 	FAILOVER,
378 	AUTHENTICATE,
379 };
380 
381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
382 {
383 	if (likely(nvme_req(req)->status == 0))
384 		return COMPLETE;
385 
386 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
387 		return AUTHENTICATE;
388 
389 	if (blk_noretry_request(req) ||
390 	    (nvme_req(req)->status & NVME_SC_DNR) ||
391 	    nvme_req(req)->retries >= nvme_max_retries)
392 		return COMPLETE;
393 
394 	if (req->cmd_flags & REQ_NVME_MPATH) {
395 		if (nvme_is_path_error(nvme_req(req)->status) ||
396 		    blk_queue_dying(req->q))
397 			return FAILOVER;
398 	} else {
399 		if (blk_queue_dying(req->q))
400 			return COMPLETE;
401 	}
402 
403 	return RETRY;
404 }
405 
406 static inline void nvme_end_req_zoned(struct request *req)
407 {
408 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
409 	    req_op(req) == REQ_OP_ZONE_APPEND) {
410 		struct nvme_ns *ns = req->q->queuedata;
411 
412 		req->__sector = nvme_lba_to_sect(ns->head,
413 			le64_to_cpu(nvme_req(req)->result.u64));
414 	}
415 }
416 
417 static inline void nvme_end_req(struct request *req)
418 {
419 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
420 
421 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
422 		if (blk_rq_is_passthrough(req))
423 			nvme_log_err_passthru(req);
424 		else
425 			nvme_log_error(req);
426 	}
427 	nvme_end_req_zoned(req);
428 	nvme_trace_bio_complete(req);
429 	if (req->cmd_flags & REQ_NVME_MPATH)
430 		nvme_mpath_end_request(req);
431 	blk_mq_end_request(req, status);
432 }
433 
434 void nvme_complete_rq(struct request *req)
435 {
436 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
437 
438 	trace_nvme_complete_rq(req);
439 	nvme_cleanup_cmd(req);
440 
441 	/*
442 	 * Completions of long-running commands should not be able to
443 	 * defer sending of periodic keep alives, since the controller
444 	 * may have completed processing such commands a long time ago
445 	 * (arbitrarily close to command submission time).
446 	 * req->deadline - req->timeout is the command submission time
447 	 * in jiffies.
448 	 */
449 	if (ctrl->kas &&
450 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
451 		ctrl->comp_seen = true;
452 
453 	switch (nvme_decide_disposition(req)) {
454 	case COMPLETE:
455 		nvme_end_req(req);
456 		return;
457 	case RETRY:
458 		nvme_retry_req(req);
459 		return;
460 	case FAILOVER:
461 		nvme_failover_req(req);
462 		return;
463 	case AUTHENTICATE:
464 #ifdef CONFIG_NVME_HOST_AUTH
465 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
466 		nvme_retry_req(req);
467 #else
468 		nvme_end_req(req);
469 #endif
470 		return;
471 	}
472 }
473 EXPORT_SYMBOL_GPL(nvme_complete_rq);
474 
475 void nvme_complete_batch_req(struct request *req)
476 {
477 	trace_nvme_complete_rq(req);
478 	nvme_cleanup_cmd(req);
479 	nvme_end_req_zoned(req);
480 }
481 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
482 
483 /*
484  * Called to unwind from ->queue_rq on a failed command submission so that the
485  * multipathing code gets called to potentially failover to another path.
486  * The caller needs to unwind all transport specific resource allocations and
487  * must return propagate the return value.
488  */
489 blk_status_t nvme_host_path_error(struct request *req)
490 {
491 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
492 	blk_mq_set_request_complete(req);
493 	nvme_complete_rq(req);
494 	return BLK_STS_OK;
495 }
496 EXPORT_SYMBOL_GPL(nvme_host_path_error);
497 
498 bool nvme_cancel_request(struct request *req, void *data)
499 {
500 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
501 				"Cancelling I/O %d", req->tag);
502 
503 	/* don't abort one completed or idle request */
504 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
505 		return true;
506 
507 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
508 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
509 	blk_mq_complete_request(req);
510 	return true;
511 }
512 EXPORT_SYMBOL_GPL(nvme_cancel_request);
513 
514 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
515 {
516 	if (ctrl->tagset) {
517 		blk_mq_tagset_busy_iter(ctrl->tagset,
518 				nvme_cancel_request, ctrl);
519 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
520 	}
521 }
522 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
523 
524 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
525 {
526 	if (ctrl->admin_tagset) {
527 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
528 				nvme_cancel_request, ctrl);
529 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
530 	}
531 }
532 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
533 
534 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
535 		enum nvme_ctrl_state new_state)
536 {
537 	enum nvme_ctrl_state old_state;
538 	unsigned long flags;
539 	bool changed = false;
540 
541 	spin_lock_irqsave(&ctrl->lock, flags);
542 
543 	old_state = nvme_ctrl_state(ctrl);
544 	switch (new_state) {
545 	case NVME_CTRL_LIVE:
546 		switch (old_state) {
547 		case NVME_CTRL_NEW:
548 		case NVME_CTRL_RESETTING:
549 		case NVME_CTRL_CONNECTING:
550 			changed = true;
551 			fallthrough;
552 		default:
553 			break;
554 		}
555 		break;
556 	case NVME_CTRL_RESETTING:
557 		switch (old_state) {
558 		case NVME_CTRL_NEW:
559 		case NVME_CTRL_LIVE:
560 			changed = true;
561 			fallthrough;
562 		default:
563 			break;
564 		}
565 		break;
566 	case NVME_CTRL_CONNECTING:
567 		switch (old_state) {
568 		case NVME_CTRL_NEW:
569 		case NVME_CTRL_RESETTING:
570 			changed = true;
571 			fallthrough;
572 		default:
573 			break;
574 		}
575 		break;
576 	case NVME_CTRL_DELETING:
577 		switch (old_state) {
578 		case NVME_CTRL_LIVE:
579 		case NVME_CTRL_RESETTING:
580 		case NVME_CTRL_CONNECTING:
581 			changed = true;
582 			fallthrough;
583 		default:
584 			break;
585 		}
586 		break;
587 	case NVME_CTRL_DELETING_NOIO:
588 		switch (old_state) {
589 		case NVME_CTRL_DELETING:
590 		case NVME_CTRL_DEAD:
591 			changed = true;
592 			fallthrough;
593 		default:
594 			break;
595 		}
596 		break;
597 	case NVME_CTRL_DEAD:
598 		switch (old_state) {
599 		case NVME_CTRL_DELETING:
600 			changed = true;
601 			fallthrough;
602 		default:
603 			break;
604 		}
605 		break;
606 	default:
607 		break;
608 	}
609 
610 	if (changed) {
611 		WRITE_ONCE(ctrl->state, new_state);
612 		wake_up_all(&ctrl->state_wq);
613 	}
614 
615 	spin_unlock_irqrestore(&ctrl->lock, flags);
616 	if (!changed)
617 		return false;
618 
619 	if (new_state == NVME_CTRL_LIVE) {
620 		if (old_state == NVME_CTRL_CONNECTING)
621 			nvme_stop_failfast_work(ctrl);
622 		nvme_kick_requeue_lists(ctrl);
623 	} else if (new_state == NVME_CTRL_CONNECTING &&
624 		old_state == NVME_CTRL_RESETTING) {
625 		nvme_start_failfast_work(ctrl);
626 	}
627 	return changed;
628 }
629 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
630 
631 /*
632  * Waits for the controller state to be resetting, or returns false if it is
633  * not possible to ever transition to that state.
634  */
635 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
636 {
637 	wait_event(ctrl->state_wq,
638 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
639 		   nvme_state_terminal(ctrl));
640 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
641 }
642 EXPORT_SYMBOL_GPL(nvme_wait_reset);
643 
644 static void nvme_free_ns_head(struct kref *ref)
645 {
646 	struct nvme_ns_head *head =
647 		container_of(ref, struct nvme_ns_head, ref);
648 
649 	nvme_mpath_remove_disk(head);
650 	ida_free(&head->subsys->ns_ida, head->instance);
651 	cleanup_srcu_struct(&head->srcu);
652 	nvme_put_subsystem(head->subsys);
653 	kfree(head);
654 }
655 
656 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
657 {
658 	return kref_get_unless_zero(&head->ref);
659 }
660 
661 void nvme_put_ns_head(struct nvme_ns_head *head)
662 {
663 	kref_put(&head->ref, nvme_free_ns_head);
664 }
665 
666 static void nvme_free_ns(struct kref *kref)
667 {
668 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
669 
670 	put_disk(ns->disk);
671 	nvme_put_ns_head(ns->head);
672 	nvme_put_ctrl(ns->ctrl);
673 	kfree(ns);
674 }
675 
676 static inline bool nvme_get_ns(struct nvme_ns *ns)
677 {
678 	return kref_get_unless_zero(&ns->kref);
679 }
680 
681 void nvme_put_ns(struct nvme_ns *ns)
682 {
683 	kref_put(&ns->kref, nvme_free_ns);
684 }
685 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
686 
687 static inline void nvme_clear_nvme_request(struct request *req)
688 {
689 	nvme_req(req)->status = 0;
690 	nvme_req(req)->retries = 0;
691 	nvme_req(req)->flags = 0;
692 	req->rq_flags |= RQF_DONTPREP;
693 }
694 
695 /* initialize a passthrough request */
696 void nvme_init_request(struct request *req, struct nvme_command *cmd)
697 {
698 	struct nvme_request *nr = nvme_req(req);
699 	bool logging_enabled;
700 
701 	if (req->q->queuedata) {
702 		struct nvme_ns *ns = req->q->disk->private_data;
703 
704 		logging_enabled = ns->head->passthru_err_log_enabled;
705 		req->timeout = NVME_IO_TIMEOUT;
706 	} else { /* no queuedata implies admin queue */
707 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
708 		req->timeout = NVME_ADMIN_TIMEOUT;
709 	}
710 
711 	if (!logging_enabled)
712 		req->rq_flags |= RQF_QUIET;
713 
714 	/* passthru commands should let the driver set the SGL flags */
715 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
716 
717 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
718 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
719 		req->cmd_flags |= REQ_POLLED;
720 	nvme_clear_nvme_request(req);
721 	memcpy(nr->cmd, cmd, sizeof(*cmd));
722 }
723 EXPORT_SYMBOL_GPL(nvme_init_request);
724 
725 /*
726  * For something we're not in a state to send to the device the default action
727  * is to busy it and retry it after the controller state is recovered.  However,
728  * if the controller is deleting or if anything is marked for failfast or
729  * nvme multipath it is immediately failed.
730  *
731  * Note: commands used to initialize the controller will be marked for failfast.
732  * Note: nvme cli/ioctl commands are marked for failfast.
733  */
734 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
735 		struct request *rq)
736 {
737 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
738 
739 	if (state != NVME_CTRL_DELETING_NOIO &&
740 	    state != NVME_CTRL_DELETING &&
741 	    state != NVME_CTRL_DEAD &&
742 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
743 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
744 		return BLK_STS_RESOURCE;
745 	return nvme_host_path_error(rq);
746 }
747 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
748 
749 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
750 		bool queue_live, enum nvme_ctrl_state state)
751 {
752 	struct nvme_request *req = nvme_req(rq);
753 
754 	/*
755 	 * currently we have a problem sending passthru commands
756 	 * on the admin_q if the controller is not LIVE because we can't
757 	 * make sure that they are going out after the admin connect,
758 	 * controller enable and/or other commands in the initialization
759 	 * sequence. until the controller will be LIVE, fail with
760 	 * BLK_STS_RESOURCE so that they will be rescheduled.
761 	 */
762 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
763 		return false;
764 
765 	if (ctrl->ops->flags & NVME_F_FABRICS) {
766 		/*
767 		 * Only allow commands on a live queue, except for the connect
768 		 * command, which is require to set the queue live in the
769 		 * appropinquate states.
770 		 */
771 		switch (state) {
772 		case NVME_CTRL_CONNECTING:
773 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
774 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
775 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
776 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
777 				return true;
778 			break;
779 		default:
780 			break;
781 		case NVME_CTRL_DEAD:
782 			return false;
783 		}
784 	}
785 
786 	return queue_live;
787 }
788 EXPORT_SYMBOL_GPL(__nvme_check_ready);
789 
790 static inline void nvme_setup_flush(struct nvme_ns *ns,
791 		struct nvme_command *cmnd)
792 {
793 	memset(cmnd, 0, sizeof(*cmnd));
794 	cmnd->common.opcode = nvme_cmd_flush;
795 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
796 }
797 
798 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
799 		struct nvme_command *cmnd)
800 {
801 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
802 	struct nvme_dsm_range *range;
803 	struct bio *bio;
804 
805 	/*
806 	 * Some devices do not consider the DSM 'Number of Ranges' field when
807 	 * determining how much data to DMA. Always allocate memory for maximum
808 	 * number of segments to prevent device reading beyond end of buffer.
809 	 */
810 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
811 
812 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
813 	if (!range) {
814 		/*
815 		 * If we fail allocation our range, fallback to the controller
816 		 * discard page. If that's also busy, it's safe to return
817 		 * busy, as we know we can make progress once that's freed.
818 		 */
819 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
820 			return BLK_STS_RESOURCE;
821 
822 		range = page_address(ns->ctrl->discard_page);
823 	}
824 
825 	if (queue_max_discard_segments(req->q) == 1) {
826 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
827 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
828 
829 		range[0].cattr = cpu_to_le32(0);
830 		range[0].nlb = cpu_to_le32(nlb);
831 		range[0].slba = cpu_to_le64(slba);
832 		n = 1;
833 	} else {
834 		__rq_for_each_bio(bio, req) {
835 			u64 slba = nvme_sect_to_lba(ns->head,
836 						    bio->bi_iter.bi_sector);
837 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
838 
839 			if (n < segments) {
840 				range[n].cattr = cpu_to_le32(0);
841 				range[n].nlb = cpu_to_le32(nlb);
842 				range[n].slba = cpu_to_le64(slba);
843 			}
844 			n++;
845 		}
846 	}
847 
848 	if (WARN_ON_ONCE(n != segments)) {
849 		if (virt_to_page(range) == ns->ctrl->discard_page)
850 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
851 		else
852 			kfree(range);
853 		return BLK_STS_IOERR;
854 	}
855 
856 	memset(cmnd, 0, sizeof(*cmnd));
857 	cmnd->dsm.opcode = nvme_cmd_dsm;
858 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
859 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
860 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
861 
862 	bvec_set_virt(&req->special_vec, range, alloc_size);
863 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
864 
865 	return BLK_STS_OK;
866 }
867 
868 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
869 			      struct request *req)
870 {
871 	u32 upper, lower;
872 	u64 ref48;
873 
874 	/* both rw and write zeroes share the same reftag format */
875 	switch (ns->head->guard_type) {
876 	case NVME_NVM_NS_16B_GUARD:
877 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
878 		break;
879 	case NVME_NVM_NS_64B_GUARD:
880 		ref48 = ext_pi_ref_tag(req);
881 		lower = lower_32_bits(ref48);
882 		upper = upper_32_bits(ref48);
883 
884 		cmnd->rw.reftag = cpu_to_le32(lower);
885 		cmnd->rw.cdw3 = cpu_to_le32(upper);
886 		break;
887 	default:
888 		break;
889 	}
890 }
891 
892 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
893 		struct request *req, struct nvme_command *cmnd)
894 {
895 	memset(cmnd, 0, sizeof(*cmnd));
896 
897 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
898 		return nvme_setup_discard(ns, req, cmnd);
899 
900 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
901 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
902 	cmnd->write_zeroes.slba =
903 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
904 	cmnd->write_zeroes.length =
905 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
906 
907 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
908 	    (ns->head->features & NVME_NS_DEAC))
909 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
910 
911 	if (nvme_ns_has_pi(ns->head)) {
912 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
913 
914 		switch (ns->head->pi_type) {
915 		case NVME_NS_DPS_PI_TYPE1:
916 		case NVME_NS_DPS_PI_TYPE2:
917 			nvme_set_ref_tag(ns, cmnd, req);
918 			break;
919 		}
920 	}
921 
922 	return BLK_STS_OK;
923 }
924 
925 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
926 		struct request *req, struct nvme_command *cmnd,
927 		enum nvme_opcode op)
928 {
929 	u16 control = 0;
930 	u32 dsmgmt = 0;
931 
932 	if (req->cmd_flags & REQ_FUA)
933 		control |= NVME_RW_FUA;
934 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
935 		control |= NVME_RW_LR;
936 
937 	if (req->cmd_flags & REQ_RAHEAD)
938 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
939 
940 	cmnd->rw.opcode = op;
941 	cmnd->rw.flags = 0;
942 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
943 	cmnd->rw.cdw2 = 0;
944 	cmnd->rw.cdw3 = 0;
945 	cmnd->rw.metadata = 0;
946 	cmnd->rw.slba =
947 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
948 	cmnd->rw.length =
949 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
950 	cmnd->rw.reftag = 0;
951 	cmnd->rw.apptag = 0;
952 	cmnd->rw.appmask = 0;
953 
954 	if (ns->head->ms) {
955 		/*
956 		 * If formated with metadata, the block layer always provides a
957 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
958 		 * we enable the PRACT bit for protection information or set the
959 		 * namespace capacity to zero to prevent any I/O.
960 		 */
961 		if (!blk_integrity_rq(req)) {
962 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
963 				return BLK_STS_NOTSUPP;
964 			control |= NVME_RW_PRINFO_PRACT;
965 		}
966 
967 		switch (ns->head->pi_type) {
968 		case NVME_NS_DPS_PI_TYPE3:
969 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
970 			break;
971 		case NVME_NS_DPS_PI_TYPE1:
972 		case NVME_NS_DPS_PI_TYPE2:
973 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
974 					NVME_RW_PRINFO_PRCHK_REF;
975 			if (op == nvme_cmd_zone_append)
976 				control |= NVME_RW_APPEND_PIREMAP;
977 			nvme_set_ref_tag(ns, cmnd, req);
978 			break;
979 		}
980 	}
981 
982 	cmnd->rw.control = cpu_to_le16(control);
983 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
984 	return 0;
985 }
986 
987 void nvme_cleanup_cmd(struct request *req)
988 {
989 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
990 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
991 
992 		if (req->special_vec.bv_page == ctrl->discard_page)
993 			clear_bit_unlock(0, &ctrl->discard_page_busy);
994 		else
995 			kfree(bvec_virt(&req->special_vec));
996 	}
997 }
998 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
999 
1000 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1001 {
1002 	struct nvme_command *cmd = nvme_req(req)->cmd;
1003 	blk_status_t ret = BLK_STS_OK;
1004 
1005 	if (!(req->rq_flags & RQF_DONTPREP))
1006 		nvme_clear_nvme_request(req);
1007 
1008 	switch (req_op(req)) {
1009 	case REQ_OP_DRV_IN:
1010 	case REQ_OP_DRV_OUT:
1011 		/* these are setup prior to execution in nvme_init_request() */
1012 		break;
1013 	case REQ_OP_FLUSH:
1014 		nvme_setup_flush(ns, cmd);
1015 		break;
1016 	case REQ_OP_ZONE_RESET_ALL:
1017 	case REQ_OP_ZONE_RESET:
1018 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1019 		break;
1020 	case REQ_OP_ZONE_OPEN:
1021 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1022 		break;
1023 	case REQ_OP_ZONE_CLOSE:
1024 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1025 		break;
1026 	case REQ_OP_ZONE_FINISH:
1027 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1028 		break;
1029 	case REQ_OP_WRITE_ZEROES:
1030 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1031 		break;
1032 	case REQ_OP_DISCARD:
1033 		ret = nvme_setup_discard(ns, req, cmd);
1034 		break;
1035 	case REQ_OP_READ:
1036 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1037 		break;
1038 	case REQ_OP_WRITE:
1039 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1040 		break;
1041 	case REQ_OP_ZONE_APPEND:
1042 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1043 		break;
1044 	default:
1045 		WARN_ON_ONCE(1);
1046 		return BLK_STS_IOERR;
1047 	}
1048 
1049 	cmd->common.command_id = nvme_cid(req);
1050 	trace_nvme_setup_cmd(req, cmd);
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1054 
1055 /*
1056  * Return values:
1057  * 0:  success
1058  * >0: nvme controller's cqe status response
1059  * <0: kernel error in lieu of controller response
1060  */
1061 int nvme_execute_rq(struct request *rq, bool at_head)
1062 {
1063 	blk_status_t status;
1064 
1065 	status = blk_execute_rq(rq, at_head);
1066 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1067 		return -EINTR;
1068 	if (nvme_req(rq)->status)
1069 		return nvme_req(rq)->status;
1070 	return blk_status_to_errno(status);
1071 }
1072 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1073 
1074 /*
1075  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1076  * if the result is positive, it's an NVM Express status code
1077  */
1078 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1079 		union nvme_result *result, void *buffer, unsigned bufflen,
1080 		int qid, nvme_submit_flags_t flags)
1081 {
1082 	struct request *req;
1083 	int ret;
1084 	blk_mq_req_flags_t blk_flags = 0;
1085 
1086 	if (flags & NVME_SUBMIT_NOWAIT)
1087 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1088 	if (flags & NVME_SUBMIT_RESERVED)
1089 		blk_flags |= BLK_MQ_REQ_RESERVED;
1090 	if (qid == NVME_QID_ANY)
1091 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1092 	else
1093 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1094 						qid - 1);
1095 
1096 	if (IS_ERR(req))
1097 		return PTR_ERR(req);
1098 	nvme_init_request(req, cmd);
1099 	if (flags & NVME_SUBMIT_RETRY)
1100 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1101 
1102 	if (buffer && bufflen) {
1103 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1104 		if (ret)
1105 			goto out;
1106 	}
1107 
1108 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1109 	if (result && ret >= 0)
1110 		*result = nvme_req(req)->result;
1111  out:
1112 	blk_mq_free_request(req);
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1116 
1117 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1118 		void *buffer, unsigned bufflen)
1119 {
1120 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1121 			NVME_QID_ANY, 0);
1122 }
1123 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1124 
1125 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1126 {
1127 	u32 effects = 0;
1128 
1129 	if (ns) {
1130 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1131 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1132 			dev_warn_once(ctrl->device,
1133 				"IO command:%02x has unusual effects:%08x\n",
1134 				opcode, effects);
1135 
1136 		/*
1137 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1138 		 * which would deadlock when done on an I/O command.  Note that
1139 		 * We already warn about an unusual effect above.
1140 		 */
1141 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1142 	} else {
1143 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1144 
1145 		/* Ignore execution restrictions if any relaxation bits are set */
1146 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1147 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1148 	}
1149 
1150 	return effects;
1151 }
1152 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1153 
1154 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1155 {
1156 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1157 
1158 	/*
1159 	 * For simplicity, IO to all namespaces is quiesced even if the command
1160 	 * effects say only one namespace is affected.
1161 	 */
1162 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1163 		mutex_lock(&ctrl->scan_lock);
1164 		mutex_lock(&ctrl->subsys->lock);
1165 		nvme_mpath_start_freeze(ctrl->subsys);
1166 		nvme_mpath_wait_freeze(ctrl->subsys);
1167 		nvme_start_freeze(ctrl);
1168 		nvme_wait_freeze(ctrl);
1169 	}
1170 	return effects;
1171 }
1172 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1173 
1174 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1175 		       struct nvme_command *cmd, int status)
1176 {
1177 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1178 		nvme_unfreeze(ctrl);
1179 		nvme_mpath_unfreeze(ctrl->subsys);
1180 		mutex_unlock(&ctrl->subsys->lock);
1181 		mutex_unlock(&ctrl->scan_lock);
1182 	}
1183 	if (effects & NVME_CMD_EFFECTS_CCC) {
1184 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1185 				      &ctrl->flags)) {
1186 			dev_info(ctrl->device,
1187 "controller capabilities changed, reset may be required to take effect.\n");
1188 		}
1189 	}
1190 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1191 		nvme_queue_scan(ctrl);
1192 		flush_work(&ctrl->scan_work);
1193 	}
1194 	if (ns)
1195 		return;
1196 
1197 	switch (cmd->common.opcode) {
1198 	case nvme_admin_set_features:
1199 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1200 		case NVME_FEAT_KATO:
1201 			/*
1202 			 * Keep alive commands interval on the host should be
1203 			 * updated when KATO is modified by Set Features
1204 			 * commands.
1205 			 */
1206 			if (!status)
1207 				nvme_update_keep_alive(ctrl, cmd);
1208 			break;
1209 		default:
1210 			break;
1211 		}
1212 		break;
1213 	default:
1214 		break;
1215 	}
1216 }
1217 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1218 
1219 /*
1220  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1221  *
1222  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1223  *   accounting for transport roundtrip times [..].
1224  */
1225 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1226 {
1227 	unsigned long delay = ctrl->kato * HZ / 2;
1228 
1229 	/*
1230 	 * When using Traffic Based Keep Alive, we need to run
1231 	 * nvme_keep_alive_work at twice the normal frequency, as one
1232 	 * command completion can postpone sending a keep alive command
1233 	 * by up to twice the delay between runs.
1234 	 */
1235 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1236 		delay /= 2;
1237 	return delay;
1238 }
1239 
1240 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1241 {
1242 	unsigned long now = jiffies;
1243 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1244 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1245 
1246 	if (time_after(now, ka_next_check_tm))
1247 		delay = 0;
1248 	else
1249 		delay = ka_next_check_tm - now;
1250 
1251 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1252 }
1253 
1254 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1255 						 blk_status_t status)
1256 {
1257 	struct nvme_ctrl *ctrl = rq->end_io_data;
1258 	unsigned long flags;
1259 	bool startka = false;
1260 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1261 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1262 
1263 	/*
1264 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1265 	 * at the desired frequency.
1266 	 */
1267 	if (rtt <= delay) {
1268 		delay -= rtt;
1269 	} else {
1270 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1271 			 jiffies_to_msecs(rtt));
1272 		delay = 0;
1273 	}
1274 
1275 	blk_mq_free_request(rq);
1276 
1277 	if (status) {
1278 		dev_err(ctrl->device,
1279 			"failed nvme_keep_alive_end_io error=%d\n",
1280 				status);
1281 		return RQ_END_IO_NONE;
1282 	}
1283 
1284 	ctrl->ka_last_check_time = jiffies;
1285 	ctrl->comp_seen = false;
1286 	spin_lock_irqsave(&ctrl->lock, flags);
1287 	if (ctrl->state == NVME_CTRL_LIVE ||
1288 	    ctrl->state == NVME_CTRL_CONNECTING)
1289 		startka = true;
1290 	spin_unlock_irqrestore(&ctrl->lock, flags);
1291 	if (startka)
1292 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1293 	return RQ_END_IO_NONE;
1294 }
1295 
1296 static void nvme_keep_alive_work(struct work_struct *work)
1297 {
1298 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1299 			struct nvme_ctrl, ka_work);
1300 	bool comp_seen = ctrl->comp_seen;
1301 	struct request *rq;
1302 
1303 	ctrl->ka_last_check_time = jiffies;
1304 
1305 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1306 		dev_dbg(ctrl->device,
1307 			"reschedule traffic based keep-alive timer\n");
1308 		ctrl->comp_seen = false;
1309 		nvme_queue_keep_alive_work(ctrl);
1310 		return;
1311 	}
1312 
1313 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1314 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1315 	if (IS_ERR(rq)) {
1316 		/* allocation failure, reset the controller */
1317 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1318 		nvme_reset_ctrl(ctrl);
1319 		return;
1320 	}
1321 	nvme_init_request(rq, &ctrl->ka_cmd);
1322 
1323 	rq->timeout = ctrl->kato * HZ;
1324 	rq->end_io = nvme_keep_alive_end_io;
1325 	rq->end_io_data = ctrl;
1326 	blk_execute_rq_nowait(rq, false);
1327 }
1328 
1329 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1330 {
1331 	if (unlikely(ctrl->kato == 0))
1332 		return;
1333 
1334 	nvme_queue_keep_alive_work(ctrl);
1335 }
1336 
1337 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1338 {
1339 	if (unlikely(ctrl->kato == 0))
1340 		return;
1341 
1342 	cancel_delayed_work_sync(&ctrl->ka_work);
1343 }
1344 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1345 
1346 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1347 				   struct nvme_command *cmd)
1348 {
1349 	unsigned int new_kato =
1350 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1351 
1352 	dev_info(ctrl->device,
1353 		 "keep alive interval updated from %u ms to %u ms\n",
1354 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1355 
1356 	nvme_stop_keep_alive(ctrl);
1357 	ctrl->kato = new_kato;
1358 	nvme_start_keep_alive(ctrl);
1359 }
1360 
1361 /*
1362  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1363  * flag, thus sending any new CNS opcodes has a big chance of not working.
1364  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1365  * (but not for any later version).
1366  */
1367 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1368 {
1369 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1370 		return ctrl->vs < NVME_VS(1, 2, 0);
1371 	return ctrl->vs < NVME_VS(1, 1, 0);
1372 }
1373 
1374 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1375 {
1376 	struct nvme_command c = { };
1377 	int error;
1378 
1379 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1380 	c.identify.opcode = nvme_admin_identify;
1381 	c.identify.cns = NVME_ID_CNS_CTRL;
1382 
1383 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1384 	if (!*id)
1385 		return -ENOMEM;
1386 
1387 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1388 			sizeof(struct nvme_id_ctrl));
1389 	if (error) {
1390 		kfree(*id);
1391 		*id = NULL;
1392 	}
1393 	return error;
1394 }
1395 
1396 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1397 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1398 {
1399 	const char *warn_str = "ctrl returned bogus length:";
1400 	void *data = cur;
1401 
1402 	switch (cur->nidt) {
1403 	case NVME_NIDT_EUI64:
1404 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1405 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1406 				 warn_str, cur->nidl);
1407 			return -1;
1408 		}
1409 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1410 			return NVME_NIDT_EUI64_LEN;
1411 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1412 		return NVME_NIDT_EUI64_LEN;
1413 	case NVME_NIDT_NGUID:
1414 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1415 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1416 				 warn_str, cur->nidl);
1417 			return -1;
1418 		}
1419 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1420 			return NVME_NIDT_NGUID_LEN;
1421 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1422 		return NVME_NIDT_NGUID_LEN;
1423 	case NVME_NIDT_UUID:
1424 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1425 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1426 				 warn_str, cur->nidl);
1427 			return -1;
1428 		}
1429 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1430 			return NVME_NIDT_UUID_LEN;
1431 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1432 		return NVME_NIDT_UUID_LEN;
1433 	case NVME_NIDT_CSI:
1434 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1435 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1436 				 warn_str, cur->nidl);
1437 			return -1;
1438 		}
1439 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1440 		*csi_seen = true;
1441 		return NVME_NIDT_CSI_LEN;
1442 	default:
1443 		/* Skip unknown types */
1444 		return cur->nidl;
1445 	}
1446 }
1447 
1448 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1449 		struct nvme_ns_info *info)
1450 {
1451 	struct nvme_command c = { };
1452 	bool csi_seen = false;
1453 	int status, pos, len;
1454 	void *data;
1455 
1456 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1457 		return 0;
1458 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1459 		return 0;
1460 
1461 	c.identify.opcode = nvme_admin_identify;
1462 	c.identify.nsid = cpu_to_le32(info->nsid);
1463 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1464 
1465 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1466 	if (!data)
1467 		return -ENOMEM;
1468 
1469 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1470 				      NVME_IDENTIFY_DATA_SIZE);
1471 	if (status) {
1472 		dev_warn(ctrl->device,
1473 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1474 			info->nsid, status);
1475 		goto free_data;
1476 	}
1477 
1478 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1479 		struct nvme_ns_id_desc *cur = data + pos;
1480 
1481 		if (cur->nidl == 0)
1482 			break;
1483 
1484 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1485 		if (len < 0)
1486 			break;
1487 
1488 		len += sizeof(*cur);
1489 	}
1490 
1491 	if (nvme_multi_css(ctrl) && !csi_seen) {
1492 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1493 			 info->nsid);
1494 		status = -EINVAL;
1495 	}
1496 
1497 free_data:
1498 	kfree(data);
1499 	return status;
1500 }
1501 
1502 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1503 			struct nvme_id_ns **id)
1504 {
1505 	struct nvme_command c = { };
1506 	int error;
1507 
1508 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1509 	c.identify.opcode = nvme_admin_identify;
1510 	c.identify.nsid = cpu_to_le32(nsid);
1511 	c.identify.cns = NVME_ID_CNS_NS;
1512 
1513 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1514 	if (!*id)
1515 		return -ENOMEM;
1516 
1517 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1518 	if (error) {
1519 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1520 		kfree(*id);
1521 		*id = NULL;
1522 	}
1523 	return error;
1524 }
1525 
1526 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1527 		struct nvme_ns_info *info)
1528 {
1529 	struct nvme_ns_ids *ids = &info->ids;
1530 	struct nvme_id_ns *id;
1531 	int ret;
1532 
1533 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1534 	if (ret)
1535 		return ret;
1536 
1537 	if (id->ncap == 0) {
1538 		/* namespace not allocated or attached */
1539 		info->is_removed = true;
1540 		ret = -ENODEV;
1541 		goto error;
1542 	}
1543 
1544 	info->anagrpid = id->anagrpid;
1545 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1546 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1547 	info->is_ready = true;
1548 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1549 		dev_info(ctrl->device,
1550 			 "Ignoring bogus Namespace Identifiers\n");
1551 	} else {
1552 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1553 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1554 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1555 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1556 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1557 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1558 	}
1559 
1560 error:
1561 	kfree(id);
1562 	return ret;
1563 }
1564 
1565 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1566 		struct nvme_ns_info *info)
1567 {
1568 	struct nvme_id_ns_cs_indep *id;
1569 	struct nvme_command c = {
1570 		.identify.opcode	= nvme_admin_identify,
1571 		.identify.nsid		= cpu_to_le32(info->nsid),
1572 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1573 	};
1574 	int ret;
1575 
1576 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1577 	if (!id)
1578 		return -ENOMEM;
1579 
1580 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1581 	if (!ret) {
1582 		info->anagrpid = id->anagrpid;
1583 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1584 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1585 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1586 	}
1587 	kfree(id);
1588 	return ret;
1589 }
1590 
1591 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1592 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1593 {
1594 	union nvme_result res = { 0 };
1595 	struct nvme_command c = { };
1596 	int ret;
1597 
1598 	c.features.opcode = op;
1599 	c.features.fid = cpu_to_le32(fid);
1600 	c.features.dword11 = cpu_to_le32(dword11);
1601 
1602 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1603 			buffer, buflen, NVME_QID_ANY, 0);
1604 	if (ret >= 0 && result)
1605 		*result = le32_to_cpu(res.u32);
1606 	return ret;
1607 }
1608 
1609 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1610 		      unsigned int dword11, void *buffer, size_t buflen,
1611 		      u32 *result)
1612 {
1613 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1614 			     buflen, result);
1615 }
1616 EXPORT_SYMBOL_GPL(nvme_set_features);
1617 
1618 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1619 		      unsigned int dword11, void *buffer, size_t buflen,
1620 		      u32 *result)
1621 {
1622 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1623 			     buflen, result);
1624 }
1625 EXPORT_SYMBOL_GPL(nvme_get_features);
1626 
1627 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1628 {
1629 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1630 	u32 result;
1631 	int status, nr_io_queues;
1632 
1633 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1634 			&result);
1635 	if (status < 0)
1636 		return status;
1637 
1638 	/*
1639 	 * Degraded controllers might return an error when setting the queue
1640 	 * count.  We still want to be able to bring them online and offer
1641 	 * access to the admin queue, as that might be only way to fix them up.
1642 	 */
1643 	if (status > 0) {
1644 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1645 		*count = 0;
1646 	} else {
1647 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1648 		*count = min(*count, nr_io_queues);
1649 	}
1650 
1651 	return 0;
1652 }
1653 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1654 
1655 #define NVME_AEN_SUPPORTED \
1656 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1657 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1658 
1659 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1660 {
1661 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1662 	int status;
1663 
1664 	if (!supported_aens)
1665 		return;
1666 
1667 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1668 			NULL, 0, &result);
1669 	if (status)
1670 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1671 			 supported_aens);
1672 
1673 	queue_work(nvme_wq, &ctrl->async_event_work);
1674 }
1675 
1676 static int nvme_ns_open(struct nvme_ns *ns)
1677 {
1678 
1679 	/* should never be called due to GENHD_FL_HIDDEN */
1680 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1681 		goto fail;
1682 	if (!nvme_get_ns(ns))
1683 		goto fail;
1684 	if (!try_module_get(ns->ctrl->ops->module))
1685 		goto fail_put_ns;
1686 
1687 	return 0;
1688 
1689 fail_put_ns:
1690 	nvme_put_ns(ns);
1691 fail:
1692 	return -ENXIO;
1693 }
1694 
1695 static void nvme_ns_release(struct nvme_ns *ns)
1696 {
1697 
1698 	module_put(ns->ctrl->ops->module);
1699 	nvme_put_ns(ns);
1700 }
1701 
1702 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1703 {
1704 	return nvme_ns_open(disk->private_data);
1705 }
1706 
1707 static void nvme_release(struct gendisk *disk)
1708 {
1709 	nvme_ns_release(disk->private_data);
1710 }
1711 
1712 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1713 {
1714 	/* some standard values */
1715 	geo->heads = 1 << 6;
1716 	geo->sectors = 1 << 5;
1717 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1718 	return 0;
1719 }
1720 
1721 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head)
1722 {
1723 	struct blk_integrity integrity = { };
1724 
1725 	blk_integrity_unregister(disk);
1726 
1727 	if (!head->ms)
1728 		return true;
1729 
1730 	/*
1731 	 * PI can always be supported as we can ask the controller to simply
1732 	 * insert/strip it, which is not possible for other kinds of metadata.
1733 	 */
1734 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1735 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1736 		return nvme_ns_has_pi(head);
1737 
1738 	switch (head->pi_type) {
1739 	case NVME_NS_DPS_PI_TYPE3:
1740 		switch (head->guard_type) {
1741 		case NVME_NVM_NS_16B_GUARD:
1742 			integrity.profile = &t10_pi_type3_crc;
1743 			integrity.tag_size = sizeof(u16) + sizeof(u32);
1744 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1745 			break;
1746 		case NVME_NVM_NS_64B_GUARD:
1747 			integrity.profile = &ext_pi_type3_crc64;
1748 			integrity.tag_size = sizeof(u16) + 6;
1749 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1750 			break;
1751 		default:
1752 			integrity.profile = NULL;
1753 			break;
1754 		}
1755 		break;
1756 	case NVME_NS_DPS_PI_TYPE1:
1757 	case NVME_NS_DPS_PI_TYPE2:
1758 		switch (head->guard_type) {
1759 		case NVME_NVM_NS_16B_GUARD:
1760 			integrity.profile = &t10_pi_type1_crc;
1761 			integrity.tag_size = sizeof(u16);
1762 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1763 			break;
1764 		case NVME_NVM_NS_64B_GUARD:
1765 			integrity.profile = &ext_pi_type1_crc64;
1766 			integrity.tag_size = sizeof(u16);
1767 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1768 			break;
1769 		default:
1770 			integrity.profile = NULL;
1771 			break;
1772 		}
1773 		break;
1774 	default:
1775 		integrity.profile = NULL;
1776 		break;
1777 	}
1778 
1779 	integrity.tuple_size = head->ms;
1780 	integrity.pi_offset = head->pi_offset;
1781 	blk_integrity_register(disk, &integrity);
1782 	return true;
1783 }
1784 
1785 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1786 {
1787 	struct nvme_ctrl *ctrl = ns->ctrl;
1788 
1789 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1790 		lim->max_hw_discard_sectors =
1791 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1792 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1793 		lim->max_hw_discard_sectors = UINT_MAX;
1794 	else
1795 		lim->max_hw_discard_sectors = 0;
1796 
1797 	lim->discard_granularity = lim->logical_block_size;
1798 
1799 	if (ctrl->dmrl)
1800 		lim->max_discard_segments = ctrl->dmrl;
1801 	else
1802 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1803 }
1804 
1805 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1806 {
1807 	return uuid_equal(&a->uuid, &b->uuid) &&
1808 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1809 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1810 		a->csi == b->csi;
1811 }
1812 
1813 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1814 		struct nvme_id_ns_nvm **nvmp)
1815 {
1816 	struct nvme_command c = {
1817 		.identify.opcode	= nvme_admin_identify,
1818 		.identify.nsid		= cpu_to_le32(nsid),
1819 		.identify.cns		= NVME_ID_CNS_CS_NS,
1820 		.identify.csi		= NVME_CSI_NVM,
1821 	};
1822 	struct nvme_id_ns_nvm *nvm;
1823 	int ret;
1824 
1825 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1826 	if (!nvm)
1827 		return -ENOMEM;
1828 
1829 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1830 	if (ret)
1831 		kfree(nvm);
1832 	else
1833 		*nvmp = nvm;
1834 	return ret;
1835 }
1836 
1837 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1838 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1839 {
1840 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1841 
1842 	/* no support for storage tag formats right now */
1843 	if (nvme_elbaf_sts(elbaf))
1844 		return;
1845 
1846 	head->guard_type = nvme_elbaf_guard_type(elbaf);
1847 	switch (head->guard_type) {
1848 	case NVME_NVM_NS_64B_GUARD:
1849 		head->pi_size = sizeof(struct crc64_pi_tuple);
1850 		break;
1851 	case NVME_NVM_NS_16B_GUARD:
1852 		head->pi_size = sizeof(struct t10_pi_tuple);
1853 		break;
1854 	default:
1855 		break;
1856 	}
1857 }
1858 
1859 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1860 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1861 		struct nvme_id_ns_nvm *nvm)
1862 {
1863 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1864 	head->pi_type = 0;
1865 	head->pi_size = 0;
1866 	head->pi_offset = 0;
1867 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1868 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1869 		return;
1870 
1871 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1872 		nvme_configure_pi_elbas(head, id, nvm);
1873 	} else {
1874 		head->pi_size = sizeof(struct t10_pi_tuple);
1875 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1876 	}
1877 
1878 	if (head->pi_size && head->ms >= head->pi_size)
1879 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1880 	if (!(id->dps & NVME_NS_DPS_PI_FIRST))
1881 		head->pi_offset = head->ms - head->pi_size;
1882 
1883 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1884 		/*
1885 		 * The NVMe over Fabrics specification only supports metadata as
1886 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1887 		 * remap the separate metadata buffer from the block layer.
1888 		 */
1889 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1890 			return;
1891 
1892 		head->features |= NVME_NS_EXT_LBAS;
1893 
1894 		/*
1895 		 * The current fabrics transport drivers support namespace
1896 		 * metadata formats only if nvme_ns_has_pi() returns true.
1897 		 * Suppress support for all other formats so the namespace will
1898 		 * have a 0 capacity and not be usable through the block stack.
1899 		 *
1900 		 * Note, this check will need to be modified if any drivers
1901 		 * gain the ability to use other metadata formats.
1902 		 */
1903 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1904 			head->features |= NVME_NS_METADATA_SUPPORTED;
1905 	} else {
1906 		/*
1907 		 * For PCIe controllers, we can't easily remap the separate
1908 		 * metadata buffer from the block layer and thus require a
1909 		 * separate metadata buffer for block layer metadata/PI support.
1910 		 * We allow extended LBAs for the passthrough interface, though.
1911 		 */
1912 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1913 			head->features |= NVME_NS_EXT_LBAS;
1914 		else
1915 			head->features |= NVME_NS_METADATA_SUPPORTED;
1916 	}
1917 }
1918 
1919 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
1920 {
1921 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
1922 }
1923 
1924 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
1925 		struct queue_limits *lim)
1926 {
1927 	lim->max_hw_sectors = ctrl->max_hw_sectors;
1928 	lim->max_segments = min_t(u32, USHRT_MAX,
1929 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
1930 	lim->max_integrity_segments = ctrl->max_integrity_segments;
1931 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
1932 	lim->max_segment_size = UINT_MAX;
1933 	lim->dma_alignment = 3;
1934 }
1935 
1936 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
1937 		struct queue_limits *lim)
1938 {
1939 	struct nvme_ns_head *head = ns->head;
1940 	u32 bs = 1U << head->lba_shift;
1941 	u32 atomic_bs, phys_bs, io_opt = 0;
1942 	bool valid = true;
1943 
1944 	/*
1945 	 * The block layer can't support LBA sizes larger than the page size
1946 	 * or smaller than a sector size yet, so catch this early and don't
1947 	 * allow block I/O.
1948 	 */
1949 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
1950 		bs = (1 << 9);
1951 		valid = false;
1952 	}
1953 
1954 	atomic_bs = phys_bs = bs;
1955 	if (id->nabo == 0) {
1956 		/*
1957 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1958 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1959 		 * 0 then AWUPF must be used instead.
1960 		 */
1961 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1962 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1963 		else
1964 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1965 	}
1966 
1967 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1968 		/* NPWG = Namespace Preferred Write Granularity */
1969 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1970 		/* NOWS = Namespace Optimal Write Size */
1971 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1972 	}
1973 
1974 	/*
1975 	 * Linux filesystems assume writing a single physical block is
1976 	 * an atomic operation. Hence limit the physical block size to the
1977 	 * value of the Atomic Write Unit Power Fail parameter.
1978 	 */
1979 	lim->logical_block_size = bs;
1980 	lim->physical_block_size = min(phys_bs, atomic_bs);
1981 	lim->io_min = phys_bs;
1982 	lim->io_opt = io_opt;
1983 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1984 		lim->max_write_zeroes_sectors = UINT_MAX;
1985 	else
1986 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
1987 	return valid;
1988 }
1989 
1990 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1991 {
1992 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1993 }
1994 
1995 static inline bool nvme_first_scan(struct gendisk *disk)
1996 {
1997 	/* nvme_alloc_ns() scans the disk prior to adding it */
1998 	return !disk_live(disk);
1999 }
2000 
2001 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2002 		struct queue_limits *lim)
2003 {
2004 	struct nvme_ctrl *ctrl = ns->ctrl;
2005 	u32 iob;
2006 
2007 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2008 	    is_power_of_2(ctrl->max_hw_sectors))
2009 		iob = ctrl->max_hw_sectors;
2010 	else
2011 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2012 
2013 	if (!iob)
2014 		return;
2015 
2016 	if (!is_power_of_2(iob)) {
2017 		if (nvme_first_scan(ns->disk))
2018 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2019 				ns->disk->disk_name, iob);
2020 		return;
2021 	}
2022 
2023 	if (blk_queue_is_zoned(ns->disk->queue)) {
2024 		if (nvme_first_scan(ns->disk))
2025 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2026 				ns->disk->disk_name);
2027 		return;
2028 	}
2029 
2030 	lim->chunk_sectors = iob;
2031 }
2032 
2033 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2034 		struct nvme_ns_info *info)
2035 {
2036 	struct queue_limits lim;
2037 	int ret;
2038 
2039 	blk_mq_freeze_queue(ns->disk->queue);
2040 	lim = queue_limits_start_update(ns->disk->queue);
2041 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2042 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2043 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2044 	blk_mq_unfreeze_queue(ns->disk->queue);
2045 
2046 	/* Hide the block-interface for these devices */
2047 	if (!ret)
2048 		ret = -ENODEV;
2049 	return ret;
2050 }
2051 
2052 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2053 		struct nvme_ns_info *info)
2054 {
2055 	bool vwc = ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT;
2056 	struct queue_limits lim;
2057 	struct nvme_id_ns_nvm *nvm = NULL;
2058 	struct nvme_zone_info zi = {};
2059 	struct nvme_id_ns *id;
2060 	sector_t capacity;
2061 	unsigned lbaf;
2062 	int ret;
2063 
2064 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2065 	if (ret)
2066 		return ret;
2067 
2068 	if (id->ncap == 0) {
2069 		/* namespace not allocated or attached */
2070 		info->is_removed = true;
2071 		ret = -ENXIO;
2072 		goto out;
2073 	}
2074 	lbaf = nvme_lbaf_index(id->flbas);
2075 
2076 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2077 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2078 		if (ret < 0)
2079 			goto out;
2080 	}
2081 
2082 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2083 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2084 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2085 		if (ret < 0)
2086 			goto out;
2087 	}
2088 
2089 	blk_mq_freeze_queue(ns->disk->queue);
2090 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2091 	ns->head->nuse = le64_to_cpu(id->nuse);
2092 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2093 
2094 	lim = queue_limits_start_update(ns->disk->queue);
2095 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2096 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm);
2097 	nvme_set_chunk_sectors(ns, id, &lim);
2098 	if (!nvme_update_disk_info(ns, id, &lim))
2099 		capacity = 0;
2100 	nvme_config_discard(ns, &lim);
2101 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2102 	    ns->head->ids.csi == NVME_CSI_ZNS)
2103 		nvme_update_zone_info(ns, &lim, &zi);
2104 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2105 	if (ret) {
2106 		blk_mq_unfreeze_queue(ns->disk->queue);
2107 		goto out;
2108 	}
2109 
2110 	/*
2111 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2112 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2113 	 * I/O to namespaces with metadata except when the namespace supports
2114 	 * PI, as it can strip/insert in that case.
2115 	 */
2116 	if (!nvme_init_integrity(ns->disk, ns->head))
2117 		capacity = 0;
2118 
2119 	set_capacity_and_notify(ns->disk, capacity);
2120 
2121 	/*
2122 	 * Only set the DEAC bit if the device guarantees that reads from
2123 	 * deallocated data return zeroes.  While the DEAC bit does not
2124 	 * require that, it must be a no-op if reads from deallocated data
2125 	 * do not return zeroes.
2126 	 */
2127 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2128 		ns->head->features |= NVME_NS_DEAC;
2129 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2130 	blk_queue_write_cache(ns->disk->queue, vwc, vwc);
2131 	set_bit(NVME_NS_READY, &ns->flags);
2132 	blk_mq_unfreeze_queue(ns->disk->queue);
2133 
2134 	if (blk_queue_is_zoned(ns->queue)) {
2135 		ret = blk_revalidate_disk_zones(ns->disk, NULL);
2136 		if (ret && !nvme_first_scan(ns->disk))
2137 			goto out;
2138 	}
2139 
2140 	ret = 0;
2141 out:
2142 	kfree(nvm);
2143 	kfree(id);
2144 	return ret;
2145 }
2146 
2147 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2148 {
2149 	bool unsupported = false;
2150 	int ret;
2151 
2152 	switch (info->ids.csi) {
2153 	case NVME_CSI_ZNS:
2154 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2155 			dev_info(ns->ctrl->device,
2156 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2157 				info->nsid);
2158 			ret = nvme_update_ns_info_generic(ns, info);
2159 			break;
2160 		}
2161 		ret = nvme_update_ns_info_block(ns, info);
2162 		break;
2163 	case NVME_CSI_NVM:
2164 		ret = nvme_update_ns_info_block(ns, info);
2165 		break;
2166 	default:
2167 		dev_info(ns->ctrl->device,
2168 			"block device for nsid %u not supported (csi %u)\n",
2169 			info->nsid, info->ids.csi);
2170 		ret = nvme_update_ns_info_generic(ns, info);
2171 		break;
2172 	}
2173 
2174 	/*
2175 	 * If probing fails due an unsupported feature, hide the block device,
2176 	 * but still allow other access.
2177 	 */
2178 	if (ret == -ENODEV) {
2179 		ns->disk->flags |= GENHD_FL_HIDDEN;
2180 		set_bit(NVME_NS_READY, &ns->flags);
2181 		unsupported = true;
2182 		ret = 0;
2183 	}
2184 
2185 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2186 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2187 		struct queue_limits lim;
2188 
2189 		blk_mq_freeze_queue(ns->head->disk->queue);
2190 		if (unsupported)
2191 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2192 		else
2193 			nvme_init_integrity(ns->head->disk, ns->head);
2194 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2195 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2196 		nvme_mpath_revalidate_paths(ns);
2197 
2198 		/*
2199 		 * queue_limits mixes values that are the hardware limitations
2200 		 * for bio splitting with what is the device configuration.
2201 		 *
2202 		 * For NVMe the device configuration can change after e.g. a
2203 		 * Format command, and we really want to pick up the new format
2204 		 * value here.  But we must still stack the queue limits to the
2205 		 * least common denominator for multipathing to split the bios
2206 		 * properly.
2207 		 *
2208 		 * To work around this, we explicitly set the device
2209 		 * configuration to those that we just queried, but only stack
2210 		 * the splitting limits in to make sure we still obey possibly
2211 		 * lower limitations of other controllers.
2212 		 */
2213 		lim = queue_limits_start_update(ns->head->disk->queue);
2214 		lim.logical_block_size = ns_lim->logical_block_size;
2215 		lim.physical_block_size = ns_lim->physical_block_size;
2216 		lim.io_min = ns_lim->io_min;
2217 		lim.io_opt = ns_lim->io_opt;
2218 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2219 					ns->head->disk->disk_name);
2220 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2221 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2222 	}
2223 
2224 	return ret;
2225 }
2226 
2227 #ifdef CONFIG_BLK_SED_OPAL
2228 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2229 		bool send)
2230 {
2231 	struct nvme_ctrl *ctrl = data;
2232 	struct nvme_command cmd = { };
2233 
2234 	if (send)
2235 		cmd.common.opcode = nvme_admin_security_send;
2236 	else
2237 		cmd.common.opcode = nvme_admin_security_recv;
2238 	cmd.common.nsid = 0;
2239 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2240 	cmd.common.cdw11 = cpu_to_le32(len);
2241 
2242 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2243 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2244 }
2245 
2246 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2247 {
2248 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2249 		if (!ctrl->opal_dev)
2250 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2251 		else if (was_suspended)
2252 			opal_unlock_from_suspend(ctrl->opal_dev);
2253 	} else {
2254 		free_opal_dev(ctrl->opal_dev);
2255 		ctrl->opal_dev = NULL;
2256 	}
2257 }
2258 #else
2259 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2260 {
2261 }
2262 #endif /* CONFIG_BLK_SED_OPAL */
2263 
2264 #ifdef CONFIG_BLK_DEV_ZONED
2265 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2266 		unsigned int nr_zones, report_zones_cb cb, void *data)
2267 {
2268 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2269 			data);
2270 }
2271 #else
2272 #define nvme_report_zones	NULL
2273 #endif /* CONFIG_BLK_DEV_ZONED */
2274 
2275 const struct block_device_operations nvme_bdev_ops = {
2276 	.owner		= THIS_MODULE,
2277 	.ioctl		= nvme_ioctl,
2278 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2279 	.open		= nvme_open,
2280 	.release	= nvme_release,
2281 	.getgeo		= nvme_getgeo,
2282 	.report_zones	= nvme_report_zones,
2283 	.pr_ops		= &nvme_pr_ops,
2284 };
2285 
2286 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2287 		u32 timeout, const char *op)
2288 {
2289 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2290 	u32 csts;
2291 	int ret;
2292 
2293 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2294 		if (csts == ~0)
2295 			return -ENODEV;
2296 		if ((csts & mask) == val)
2297 			break;
2298 
2299 		usleep_range(1000, 2000);
2300 		if (fatal_signal_pending(current))
2301 			return -EINTR;
2302 		if (time_after(jiffies, timeout_jiffies)) {
2303 			dev_err(ctrl->device,
2304 				"Device not ready; aborting %s, CSTS=0x%x\n",
2305 				op, csts);
2306 			return -ENODEV;
2307 		}
2308 	}
2309 
2310 	return ret;
2311 }
2312 
2313 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2314 {
2315 	int ret;
2316 
2317 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2318 	if (shutdown)
2319 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2320 	else
2321 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2322 
2323 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2324 	if (ret)
2325 		return ret;
2326 
2327 	if (shutdown) {
2328 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2329 				       NVME_CSTS_SHST_CMPLT,
2330 				       ctrl->shutdown_timeout, "shutdown");
2331 	}
2332 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2333 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2334 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2335 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2336 }
2337 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2338 
2339 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2340 {
2341 	unsigned dev_page_min;
2342 	u32 timeout;
2343 	int ret;
2344 
2345 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2346 	if (ret) {
2347 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2348 		return ret;
2349 	}
2350 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2351 
2352 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2353 		dev_err(ctrl->device,
2354 			"Minimum device page size %u too large for host (%u)\n",
2355 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2356 		return -ENODEV;
2357 	}
2358 
2359 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2360 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2361 	else
2362 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2363 
2364 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS)
2365 		ctrl->ctrl_config |= NVME_CC_CRIME;
2366 
2367 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2368 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2369 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2370 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2371 	if (ret)
2372 		return ret;
2373 
2374 	/* Flush write to device (required if transport is PCI) */
2375 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2376 	if (ret)
2377 		return ret;
2378 
2379 	/* CAP value may change after initial CC write */
2380 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2381 	if (ret)
2382 		return ret;
2383 
2384 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2385 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2386 		u32 crto, ready_timeout;
2387 
2388 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2389 		if (ret) {
2390 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2391 				ret);
2392 			return ret;
2393 		}
2394 
2395 		/*
2396 		 * CRTO should always be greater or equal to CAP.TO, but some
2397 		 * devices are known to get this wrong. Use the larger of the
2398 		 * two values.
2399 		 */
2400 		if (ctrl->ctrl_config & NVME_CC_CRIME)
2401 			ready_timeout = NVME_CRTO_CRIMT(crto);
2402 		else
2403 			ready_timeout = NVME_CRTO_CRWMT(crto);
2404 
2405 		if (ready_timeout < timeout)
2406 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2407 				      crto, ctrl->cap);
2408 		else
2409 			timeout = ready_timeout;
2410 	}
2411 
2412 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2413 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2414 	if (ret)
2415 		return ret;
2416 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2417 			       (timeout + 1) / 2, "initialisation");
2418 }
2419 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2420 
2421 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2422 {
2423 	__le64 ts;
2424 	int ret;
2425 
2426 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2427 		return 0;
2428 
2429 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2430 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2431 			NULL);
2432 	if (ret)
2433 		dev_warn_once(ctrl->device,
2434 			"could not set timestamp (%d)\n", ret);
2435 	return ret;
2436 }
2437 
2438 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2439 {
2440 	struct nvme_feat_host_behavior *host;
2441 	u8 acre = 0, lbafee = 0;
2442 	int ret;
2443 
2444 	/* Don't bother enabling the feature if retry delay is not reported */
2445 	if (ctrl->crdt[0])
2446 		acre = NVME_ENABLE_ACRE;
2447 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2448 		lbafee = NVME_ENABLE_LBAFEE;
2449 
2450 	if (!acre && !lbafee)
2451 		return 0;
2452 
2453 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2454 	if (!host)
2455 		return 0;
2456 
2457 	host->acre = acre;
2458 	host->lbafee = lbafee;
2459 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2460 				host, sizeof(*host), NULL);
2461 	kfree(host);
2462 	return ret;
2463 }
2464 
2465 /*
2466  * The function checks whether the given total (exlat + enlat) latency of
2467  * a power state allows the latter to be used as an APST transition target.
2468  * It does so by comparing the latency to the primary and secondary latency
2469  * tolerances defined by module params. If there's a match, the corresponding
2470  * timeout value is returned and the matching tolerance index (1 or 2) is
2471  * reported.
2472  */
2473 static bool nvme_apst_get_transition_time(u64 total_latency,
2474 		u64 *transition_time, unsigned *last_index)
2475 {
2476 	if (total_latency <= apst_primary_latency_tol_us) {
2477 		if (*last_index == 1)
2478 			return false;
2479 		*last_index = 1;
2480 		*transition_time = apst_primary_timeout_ms;
2481 		return true;
2482 	}
2483 	if (apst_secondary_timeout_ms &&
2484 		total_latency <= apst_secondary_latency_tol_us) {
2485 		if (*last_index <= 2)
2486 			return false;
2487 		*last_index = 2;
2488 		*transition_time = apst_secondary_timeout_ms;
2489 		return true;
2490 	}
2491 	return false;
2492 }
2493 
2494 /*
2495  * APST (Autonomous Power State Transition) lets us program a table of power
2496  * state transitions that the controller will perform automatically.
2497  *
2498  * Depending on module params, one of the two supported techniques will be used:
2499  *
2500  * - If the parameters provide explicit timeouts and tolerances, they will be
2501  *   used to build a table with up to 2 non-operational states to transition to.
2502  *   The default parameter values were selected based on the values used by
2503  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2504  *   regeneration of the APST table in the event of switching between external
2505  *   and battery power, the timeouts and tolerances reflect a compromise
2506  *   between values used by Microsoft for AC and battery scenarios.
2507  * - If not, we'll configure the table with a simple heuristic: we are willing
2508  *   to spend at most 2% of the time transitioning between power states.
2509  *   Therefore, when running in any given state, we will enter the next
2510  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2511  *   microseconds, as long as that state's exit latency is under the requested
2512  *   maximum latency.
2513  *
2514  * We will not autonomously enter any non-operational state for which the total
2515  * latency exceeds ps_max_latency_us.
2516  *
2517  * Users can set ps_max_latency_us to zero to turn off APST.
2518  */
2519 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2520 {
2521 	struct nvme_feat_auto_pst *table;
2522 	unsigned apste = 0;
2523 	u64 max_lat_us = 0;
2524 	__le64 target = 0;
2525 	int max_ps = -1;
2526 	int state;
2527 	int ret;
2528 	unsigned last_lt_index = UINT_MAX;
2529 
2530 	/*
2531 	 * If APST isn't supported or if we haven't been initialized yet,
2532 	 * then don't do anything.
2533 	 */
2534 	if (!ctrl->apsta)
2535 		return 0;
2536 
2537 	if (ctrl->npss > 31) {
2538 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2539 		return 0;
2540 	}
2541 
2542 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2543 	if (!table)
2544 		return 0;
2545 
2546 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2547 		/* Turn off APST. */
2548 		dev_dbg(ctrl->device, "APST disabled\n");
2549 		goto done;
2550 	}
2551 
2552 	/*
2553 	 * Walk through all states from lowest- to highest-power.
2554 	 * According to the spec, lower-numbered states use more power.  NPSS,
2555 	 * despite the name, is the index of the lowest-power state, not the
2556 	 * number of states.
2557 	 */
2558 	for (state = (int)ctrl->npss; state >= 0; state--) {
2559 		u64 total_latency_us, exit_latency_us, transition_ms;
2560 
2561 		if (target)
2562 			table->entries[state] = target;
2563 
2564 		/*
2565 		 * Don't allow transitions to the deepest state if it's quirked
2566 		 * off.
2567 		 */
2568 		if (state == ctrl->npss &&
2569 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2570 			continue;
2571 
2572 		/*
2573 		 * Is this state a useful non-operational state for higher-power
2574 		 * states to autonomously transition to?
2575 		 */
2576 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2577 			continue;
2578 
2579 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2580 		if (exit_latency_us > ctrl->ps_max_latency_us)
2581 			continue;
2582 
2583 		total_latency_us = exit_latency_us +
2584 			le32_to_cpu(ctrl->psd[state].entry_lat);
2585 
2586 		/*
2587 		 * This state is good. It can be used as the APST idle target
2588 		 * for higher power states.
2589 		 */
2590 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2591 			if (!nvme_apst_get_transition_time(total_latency_us,
2592 					&transition_ms, &last_lt_index))
2593 				continue;
2594 		} else {
2595 			transition_ms = total_latency_us + 19;
2596 			do_div(transition_ms, 20);
2597 			if (transition_ms > (1 << 24) - 1)
2598 				transition_ms = (1 << 24) - 1;
2599 		}
2600 
2601 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2602 		if (max_ps == -1)
2603 			max_ps = state;
2604 		if (total_latency_us > max_lat_us)
2605 			max_lat_us = total_latency_us;
2606 	}
2607 
2608 	if (max_ps == -1)
2609 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2610 	else
2611 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2612 			max_ps, max_lat_us, (int)sizeof(*table), table);
2613 	apste = 1;
2614 
2615 done:
2616 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2617 				table, sizeof(*table), NULL);
2618 	if (ret)
2619 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2620 	kfree(table);
2621 	return ret;
2622 }
2623 
2624 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2625 {
2626 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2627 	u64 latency;
2628 
2629 	switch (val) {
2630 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2631 	case PM_QOS_LATENCY_ANY:
2632 		latency = U64_MAX;
2633 		break;
2634 
2635 	default:
2636 		latency = val;
2637 	}
2638 
2639 	if (ctrl->ps_max_latency_us != latency) {
2640 		ctrl->ps_max_latency_us = latency;
2641 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2642 			nvme_configure_apst(ctrl);
2643 	}
2644 }
2645 
2646 struct nvme_core_quirk_entry {
2647 	/*
2648 	 * NVMe model and firmware strings are padded with spaces.  For
2649 	 * simplicity, strings in the quirk table are padded with NULLs
2650 	 * instead.
2651 	 */
2652 	u16 vid;
2653 	const char *mn;
2654 	const char *fr;
2655 	unsigned long quirks;
2656 };
2657 
2658 static const struct nvme_core_quirk_entry core_quirks[] = {
2659 	{
2660 		/*
2661 		 * This Toshiba device seems to die using any APST states.  See:
2662 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2663 		 */
2664 		.vid = 0x1179,
2665 		.mn = "THNSF5256GPUK TOSHIBA",
2666 		.quirks = NVME_QUIRK_NO_APST,
2667 	},
2668 	{
2669 		/*
2670 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2671 		 * condition associated with actions related to suspend to idle
2672 		 * LiteON has resolved the problem in future firmware
2673 		 */
2674 		.vid = 0x14a4,
2675 		.fr = "22301111",
2676 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2677 	},
2678 	{
2679 		/*
2680 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2681 		 * aborts I/O during any load, but more easily reproducible
2682 		 * with discards (fstrim).
2683 		 *
2684 		 * The device is left in a state where it is also not possible
2685 		 * to use "nvme set-feature" to disable APST, but booting with
2686 		 * nvme_core.default_ps_max_latency=0 works.
2687 		 */
2688 		.vid = 0x1e0f,
2689 		.mn = "KCD6XVUL6T40",
2690 		.quirks = NVME_QUIRK_NO_APST,
2691 	},
2692 	{
2693 		/*
2694 		 * The external Samsung X5 SSD fails initialization without a
2695 		 * delay before checking if it is ready and has a whole set of
2696 		 * other problems.  To make this even more interesting, it
2697 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2698 		 * does not need or want these quirks.
2699 		 */
2700 		.vid = 0x144d,
2701 		.mn = "Samsung Portable SSD X5",
2702 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2703 			  NVME_QUIRK_NO_DEEPEST_PS |
2704 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2705 	}
2706 };
2707 
2708 /* match is null-terminated but idstr is space-padded. */
2709 static bool string_matches(const char *idstr, const char *match, size_t len)
2710 {
2711 	size_t matchlen;
2712 
2713 	if (!match)
2714 		return true;
2715 
2716 	matchlen = strlen(match);
2717 	WARN_ON_ONCE(matchlen > len);
2718 
2719 	if (memcmp(idstr, match, matchlen))
2720 		return false;
2721 
2722 	for (; matchlen < len; matchlen++)
2723 		if (idstr[matchlen] != ' ')
2724 			return false;
2725 
2726 	return true;
2727 }
2728 
2729 static bool quirk_matches(const struct nvme_id_ctrl *id,
2730 			  const struct nvme_core_quirk_entry *q)
2731 {
2732 	return q->vid == le16_to_cpu(id->vid) &&
2733 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2734 		string_matches(id->fr, q->fr, sizeof(id->fr));
2735 }
2736 
2737 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2738 		struct nvme_id_ctrl *id)
2739 {
2740 	size_t nqnlen;
2741 	int off;
2742 
2743 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2744 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2745 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2746 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2747 			return;
2748 		}
2749 
2750 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2751 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2752 	}
2753 
2754 	/*
2755 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2756 	 * Base Specification 2.0.  It is slightly different from the format
2757 	 * specified there due to historic reasons, and we can't change it now.
2758 	 */
2759 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2760 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2761 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2762 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2763 	off += sizeof(id->sn);
2764 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2765 	off += sizeof(id->mn);
2766 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2767 }
2768 
2769 static void nvme_release_subsystem(struct device *dev)
2770 {
2771 	struct nvme_subsystem *subsys =
2772 		container_of(dev, struct nvme_subsystem, dev);
2773 
2774 	if (subsys->instance >= 0)
2775 		ida_free(&nvme_instance_ida, subsys->instance);
2776 	kfree(subsys);
2777 }
2778 
2779 static void nvme_destroy_subsystem(struct kref *ref)
2780 {
2781 	struct nvme_subsystem *subsys =
2782 			container_of(ref, struct nvme_subsystem, ref);
2783 
2784 	mutex_lock(&nvme_subsystems_lock);
2785 	list_del(&subsys->entry);
2786 	mutex_unlock(&nvme_subsystems_lock);
2787 
2788 	ida_destroy(&subsys->ns_ida);
2789 	device_del(&subsys->dev);
2790 	put_device(&subsys->dev);
2791 }
2792 
2793 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2794 {
2795 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2796 }
2797 
2798 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2799 {
2800 	struct nvme_subsystem *subsys;
2801 
2802 	lockdep_assert_held(&nvme_subsystems_lock);
2803 
2804 	/*
2805 	 * Fail matches for discovery subsystems. This results
2806 	 * in each discovery controller bound to a unique subsystem.
2807 	 * This avoids issues with validating controller values
2808 	 * that can only be true when there is a single unique subsystem.
2809 	 * There may be multiple and completely independent entities
2810 	 * that provide discovery controllers.
2811 	 */
2812 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2813 		return NULL;
2814 
2815 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2816 		if (strcmp(subsys->subnqn, subsysnqn))
2817 			continue;
2818 		if (!kref_get_unless_zero(&subsys->ref))
2819 			continue;
2820 		return subsys;
2821 	}
2822 
2823 	return NULL;
2824 }
2825 
2826 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2827 {
2828 	return ctrl->opts && ctrl->opts->discovery_nqn;
2829 }
2830 
2831 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2832 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2833 {
2834 	struct nvme_ctrl *tmp;
2835 
2836 	lockdep_assert_held(&nvme_subsystems_lock);
2837 
2838 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2839 		if (nvme_state_terminal(tmp))
2840 			continue;
2841 
2842 		if (tmp->cntlid == ctrl->cntlid) {
2843 			dev_err(ctrl->device,
2844 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2845 				ctrl->cntlid, dev_name(tmp->device),
2846 				subsys->subnqn);
2847 			return false;
2848 		}
2849 
2850 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2851 		    nvme_discovery_ctrl(ctrl))
2852 			continue;
2853 
2854 		dev_err(ctrl->device,
2855 			"Subsystem does not support multiple controllers\n");
2856 		return false;
2857 	}
2858 
2859 	return true;
2860 }
2861 
2862 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2863 {
2864 	struct nvme_subsystem *subsys, *found;
2865 	int ret;
2866 
2867 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2868 	if (!subsys)
2869 		return -ENOMEM;
2870 
2871 	subsys->instance = -1;
2872 	mutex_init(&subsys->lock);
2873 	kref_init(&subsys->ref);
2874 	INIT_LIST_HEAD(&subsys->ctrls);
2875 	INIT_LIST_HEAD(&subsys->nsheads);
2876 	nvme_init_subnqn(subsys, ctrl, id);
2877 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2878 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2879 	subsys->vendor_id = le16_to_cpu(id->vid);
2880 	subsys->cmic = id->cmic;
2881 
2882 	/* Versions prior to 1.4 don't necessarily report a valid type */
2883 	if (id->cntrltype == NVME_CTRL_DISC ||
2884 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2885 		subsys->subtype = NVME_NQN_DISC;
2886 	else
2887 		subsys->subtype = NVME_NQN_NVME;
2888 
2889 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2890 		dev_err(ctrl->device,
2891 			"Subsystem %s is not a discovery controller",
2892 			subsys->subnqn);
2893 		kfree(subsys);
2894 		return -EINVAL;
2895 	}
2896 	subsys->awupf = le16_to_cpu(id->awupf);
2897 	nvme_mpath_default_iopolicy(subsys);
2898 
2899 	subsys->dev.class = &nvme_subsys_class;
2900 	subsys->dev.release = nvme_release_subsystem;
2901 	subsys->dev.groups = nvme_subsys_attrs_groups;
2902 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2903 	device_initialize(&subsys->dev);
2904 
2905 	mutex_lock(&nvme_subsystems_lock);
2906 	found = __nvme_find_get_subsystem(subsys->subnqn);
2907 	if (found) {
2908 		put_device(&subsys->dev);
2909 		subsys = found;
2910 
2911 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2912 			ret = -EINVAL;
2913 			goto out_put_subsystem;
2914 		}
2915 	} else {
2916 		ret = device_add(&subsys->dev);
2917 		if (ret) {
2918 			dev_err(ctrl->device,
2919 				"failed to register subsystem device.\n");
2920 			put_device(&subsys->dev);
2921 			goto out_unlock;
2922 		}
2923 		ida_init(&subsys->ns_ida);
2924 		list_add_tail(&subsys->entry, &nvme_subsystems);
2925 	}
2926 
2927 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2928 				dev_name(ctrl->device));
2929 	if (ret) {
2930 		dev_err(ctrl->device,
2931 			"failed to create sysfs link from subsystem.\n");
2932 		goto out_put_subsystem;
2933 	}
2934 
2935 	if (!found)
2936 		subsys->instance = ctrl->instance;
2937 	ctrl->subsys = subsys;
2938 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2939 	mutex_unlock(&nvme_subsystems_lock);
2940 	return 0;
2941 
2942 out_put_subsystem:
2943 	nvme_put_subsystem(subsys);
2944 out_unlock:
2945 	mutex_unlock(&nvme_subsystems_lock);
2946 	return ret;
2947 }
2948 
2949 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2950 		void *log, size_t size, u64 offset)
2951 {
2952 	struct nvme_command c = { };
2953 	u32 dwlen = nvme_bytes_to_numd(size);
2954 
2955 	c.get_log_page.opcode = nvme_admin_get_log_page;
2956 	c.get_log_page.nsid = cpu_to_le32(nsid);
2957 	c.get_log_page.lid = log_page;
2958 	c.get_log_page.lsp = lsp;
2959 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2960 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2961 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2962 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2963 	c.get_log_page.csi = csi;
2964 
2965 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2966 }
2967 
2968 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2969 				struct nvme_effects_log **log)
2970 {
2971 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
2972 	int ret;
2973 
2974 	if (cel)
2975 		goto out;
2976 
2977 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2978 	if (!cel)
2979 		return -ENOMEM;
2980 
2981 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2982 			cel, sizeof(*cel), 0);
2983 	if (ret) {
2984 		kfree(cel);
2985 		return ret;
2986 	}
2987 
2988 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2989 out:
2990 	*log = cel;
2991 	return 0;
2992 }
2993 
2994 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2995 {
2996 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2997 
2998 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
2999 		return UINT_MAX;
3000 	return val;
3001 }
3002 
3003 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3004 {
3005 	struct nvme_command c = { };
3006 	struct nvme_id_ctrl_nvm *id;
3007 	int ret;
3008 
3009 	/*
3010 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3011 	 * to the write-zeroes, we are cautious and limit the size to the
3012 	 * controllers max_hw_sectors value, which is based on the MDTS field
3013 	 * and possibly other limiting factors.
3014 	 */
3015 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3016 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3017 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3018 	else
3019 		ctrl->max_zeroes_sectors = 0;
3020 
3021 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3022 	    nvme_ctrl_limited_cns(ctrl) ||
3023 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3024 		return 0;
3025 
3026 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3027 	if (!id)
3028 		return -ENOMEM;
3029 
3030 	c.identify.opcode = nvme_admin_identify;
3031 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3032 	c.identify.csi = NVME_CSI_NVM;
3033 
3034 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3035 	if (ret)
3036 		goto free_data;
3037 
3038 	ctrl->dmrl = id->dmrl;
3039 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3040 	if (id->wzsl)
3041 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3042 
3043 free_data:
3044 	if (ret > 0)
3045 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3046 	kfree(id);
3047 	return ret;
3048 }
3049 
3050 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3051 {
3052 	struct nvme_effects_log	*log = ctrl->effects;
3053 
3054 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3055 						NVME_CMD_EFFECTS_NCC |
3056 						NVME_CMD_EFFECTS_CSE_MASK);
3057 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3058 						NVME_CMD_EFFECTS_CSE_MASK);
3059 
3060 	/*
3061 	 * The spec says the result of a security receive command depends on
3062 	 * the previous security send command. As such, many vendors log this
3063 	 * command as one to submitted only when no other commands to the same
3064 	 * namespace are outstanding. The intention is to tell the host to
3065 	 * prevent mixing security send and receive.
3066 	 *
3067 	 * This driver can only enforce such exclusive access against IO
3068 	 * queues, though. We are not readily able to enforce such a rule for
3069 	 * two commands to the admin queue, which is the only queue that
3070 	 * matters for this command.
3071 	 *
3072 	 * Rather than blindly freezing the IO queues for this effect that
3073 	 * doesn't even apply to IO, mask it off.
3074 	 */
3075 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3076 
3077 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3078 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3079 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3080 }
3081 
3082 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3083 {
3084 	int ret = 0;
3085 
3086 	if (ctrl->effects)
3087 		return 0;
3088 
3089 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3090 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3091 		if (ret < 0)
3092 			return ret;
3093 	}
3094 
3095 	if (!ctrl->effects) {
3096 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3097 		if (!ctrl->effects)
3098 			return -ENOMEM;
3099 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3100 	}
3101 
3102 	nvme_init_known_nvm_effects(ctrl);
3103 	return 0;
3104 }
3105 
3106 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3107 {
3108 	/*
3109 	 * In fabrics we need to verify the cntlid matches the
3110 	 * admin connect
3111 	 */
3112 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3113 		dev_err(ctrl->device,
3114 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3115 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3116 		return -EINVAL;
3117 	}
3118 
3119 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3120 		dev_err(ctrl->device,
3121 			"keep-alive support is mandatory for fabrics\n");
3122 		return -EINVAL;
3123 	}
3124 
3125 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3126 		dev_err(ctrl->device,
3127 			"I/O queue command capsule supported size %d < 4\n",
3128 			ctrl->ioccsz);
3129 		return -EINVAL;
3130 	}
3131 
3132 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3133 		dev_err(ctrl->device,
3134 			"I/O queue response capsule supported size %d < 1\n",
3135 			ctrl->iorcsz);
3136 		return -EINVAL;
3137 	}
3138 
3139 	if (!ctrl->maxcmd) {
3140 		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3141 		return -EINVAL;
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3148 {
3149 	struct queue_limits lim;
3150 	struct nvme_id_ctrl *id;
3151 	u32 max_hw_sectors;
3152 	bool prev_apst_enabled;
3153 	int ret;
3154 
3155 	ret = nvme_identify_ctrl(ctrl, &id);
3156 	if (ret) {
3157 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3158 		return -EIO;
3159 	}
3160 
3161 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3162 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3163 
3164 	if (!ctrl->identified) {
3165 		unsigned int i;
3166 
3167 		/*
3168 		 * Check for quirks.  Quirk can depend on firmware version,
3169 		 * so, in principle, the set of quirks present can change
3170 		 * across a reset.  As a possible future enhancement, we
3171 		 * could re-scan for quirks every time we reinitialize
3172 		 * the device, but we'd have to make sure that the driver
3173 		 * behaves intelligently if the quirks change.
3174 		 */
3175 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3176 			if (quirk_matches(id, &core_quirks[i]))
3177 				ctrl->quirks |= core_quirks[i].quirks;
3178 		}
3179 
3180 		ret = nvme_init_subsystem(ctrl, id);
3181 		if (ret)
3182 			goto out_free;
3183 
3184 		ret = nvme_init_effects(ctrl, id);
3185 		if (ret)
3186 			goto out_free;
3187 	}
3188 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3189 	       sizeof(ctrl->subsys->firmware_rev));
3190 
3191 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3192 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3193 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3194 	}
3195 
3196 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3197 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3198 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3199 
3200 	ctrl->oacs = le16_to_cpu(id->oacs);
3201 	ctrl->oncs = le16_to_cpu(id->oncs);
3202 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3203 	ctrl->oaes = le32_to_cpu(id->oaes);
3204 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3205 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3206 
3207 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3208 	ctrl->vwc = id->vwc;
3209 	if (id->mdts)
3210 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3211 	else
3212 		max_hw_sectors = UINT_MAX;
3213 	ctrl->max_hw_sectors =
3214 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3215 
3216 	lim = queue_limits_start_update(ctrl->admin_q);
3217 	nvme_set_ctrl_limits(ctrl, &lim);
3218 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3219 	if (ret)
3220 		goto out_free;
3221 
3222 	ctrl->sgls = le32_to_cpu(id->sgls);
3223 	ctrl->kas = le16_to_cpu(id->kas);
3224 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3225 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3226 
3227 	ctrl->cntrltype = id->cntrltype;
3228 	ctrl->dctype = id->dctype;
3229 
3230 	if (id->rtd3e) {
3231 		/* us -> s */
3232 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3233 
3234 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3235 						 shutdown_timeout, 60);
3236 
3237 		if (ctrl->shutdown_timeout != shutdown_timeout)
3238 			dev_info(ctrl->device,
3239 				 "D3 entry latency set to %u seconds\n",
3240 				 ctrl->shutdown_timeout);
3241 	} else
3242 		ctrl->shutdown_timeout = shutdown_timeout;
3243 
3244 	ctrl->npss = id->npss;
3245 	ctrl->apsta = id->apsta;
3246 	prev_apst_enabled = ctrl->apst_enabled;
3247 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3248 		if (force_apst && id->apsta) {
3249 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3250 			ctrl->apst_enabled = true;
3251 		} else {
3252 			ctrl->apst_enabled = false;
3253 		}
3254 	} else {
3255 		ctrl->apst_enabled = id->apsta;
3256 	}
3257 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3258 
3259 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3260 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3261 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3262 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3263 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3264 
3265 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3266 		if (ret)
3267 			goto out_free;
3268 	} else {
3269 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3270 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3271 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3272 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3273 	}
3274 
3275 	ret = nvme_mpath_init_identify(ctrl, id);
3276 	if (ret < 0)
3277 		goto out_free;
3278 
3279 	if (ctrl->apst_enabled && !prev_apst_enabled)
3280 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3281 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3282 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3283 
3284 out_free:
3285 	kfree(id);
3286 	return ret;
3287 }
3288 
3289 /*
3290  * Initialize the cached copies of the Identify data and various controller
3291  * register in our nvme_ctrl structure.  This should be called as soon as
3292  * the admin queue is fully up and running.
3293  */
3294 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3295 {
3296 	int ret;
3297 
3298 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3299 	if (ret) {
3300 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3301 		return ret;
3302 	}
3303 
3304 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3305 
3306 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3307 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3308 
3309 	ret = nvme_init_identify(ctrl);
3310 	if (ret)
3311 		return ret;
3312 
3313 	ret = nvme_configure_apst(ctrl);
3314 	if (ret < 0)
3315 		return ret;
3316 
3317 	ret = nvme_configure_timestamp(ctrl);
3318 	if (ret < 0)
3319 		return ret;
3320 
3321 	ret = nvme_configure_host_options(ctrl);
3322 	if (ret < 0)
3323 		return ret;
3324 
3325 	nvme_configure_opal(ctrl, was_suspended);
3326 
3327 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3328 		/*
3329 		 * Do not return errors unless we are in a controller reset,
3330 		 * the controller works perfectly fine without hwmon.
3331 		 */
3332 		ret = nvme_hwmon_init(ctrl);
3333 		if (ret == -EINTR)
3334 			return ret;
3335 	}
3336 
3337 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3338 	ctrl->identified = true;
3339 
3340 	nvme_start_keep_alive(ctrl);
3341 
3342 	return 0;
3343 }
3344 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3345 
3346 static int nvme_dev_open(struct inode *inode, struct file *file)
3347 {
3348 	struct nvme_ctrl *ctrl =
3349 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3350 
3351 	switch (nvme_ctrl_state(ctrl)) {
3352 	case NVME_CTRL_LIVE:
3353 		break;
3354 	default:
3355 		return -EWOULDBLOCK;
3356 	}
3357 
3358 	nvme_get_ctrl(ctrl);
3359 	if (!try_module_get(ctrl->ops->module)) {
3360 		nvme_put_ctrl(ctrl);
3361 		return -EINVAL;
3362 	}
3363 
3364 	file->private_data = ctrl;
3365 	return 0;
3366 }
3367 
3368 static int nvme_dev_release(struct inode *inode, struct file *file)
3369 {
3370 	struct nvme_ctrl *ctrl =
3371 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3372 
3373 	module_put(ctrl->ops->module);
3374 	nvme_put_ctrl(ctrl);
3375 	return 0;
3376 }
3377 
3378 static const struct file_operations nvme_dev_fops = {
3379 	.owner		= THIS_MODULE,
3380 	.open		= nvme_dev_open,
3381 	.release	= nvme_dev_release,
3382 	.unlocked_ioctl	= nvme_dev_ioctl,
3383 	.compat_ioctl	= compat_ptr_ioctl,
3384 	.uring_cmd	= nvme_dev_uring_cmd,
3385 };
3386 
3387 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3388 		unsigned nsid)
3389 {
3390 	struct nvme_ns_head *h;
3391 
3392 	lockdep_assert_held(&ctrl->subsys->lock);
3393 
3394 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3395 		/*
3396 		 * Private namespaces can share NSIDs under some conditions.
3397 		 * In that case we can't use the same ns_head for namespaces
3398 		 * with the same NSID.
3399 		 */
3400 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3401 			continue;
3402 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3403 			return h;
3404 	}
3405 
3406 	return NULL;
3407 }
3408 
3409 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3410 		struct nvme_ns_ids *ids)
3411 {
3412 	bool has_uuid = !uuid_is_null(&ids->uuid);
3413 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3414 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3415 	struct nvme_ns_head *h;
3416 
3417 	lockdep_assert_held(&subsys->lock);
3418 
3419 	list_for_each_entry(h, &subsys->nsheads, entry) {
3420 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3421 			return -EINVAL;
3422 		if (has_nguid &&
3423 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3424 			return -EINVAL;
3425 		if (has_eui64 &&
3426 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3427 			return -EINVAL;
3428 	}
3429 
3430 	return 0;
3431 }
3432 
3433 static void nvme_cdev_rel(struct device *dev)
3434 {
3435 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3436 }
3437 
3438 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3439 {
3440 	cdev_device_del(cdev, cdev_device);
3441 	put_device(cdev_device);
3442 }
3443 
3444 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3445 		const struct file_operations *fops, struct module *owner)
3446 {
3447 	int minor, ret;
3448 
3449 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3450 	if (minor < 0)
3451 		return minor;
3452 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3453 	cdev_device->class = &nvme_ns_chr_class;
3454 	cdev_device->release = nvme_cdev_rel;
3455 	device_initialize(cdev_device);
3456 	cdev_init(cdev, fops);
3457 	cdev->owner = owner;
3458 	ret = cdev_device_add(cdev, cdev_device);
3459 	if (ret)
3460 		put_device(cdev_device);
3461 
3462 	return ret;
3463 }
3464 
3465 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3466 {
3467 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3468 }
3469 
3470 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3471 {
3472 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3473 	return 0;
3474 }
3475 
3476 static const struct file_operations nvme_ns_chr_fops = {
3477 	.owner		= THIS_MODULE,
3478 	.open		= nvme_ns_chr_open,
3479 	.release	= nvme_ns_chr_release,
3480 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3481 	.compat_ioctl	= compat_ptr_ioctl,
3482 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3483 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3484 };
3485 
3486 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3487 {
3488 	int ret;
3489 
3490 	ns->cdev_device.parent = ns->ctrl->device;
3491 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3492 			   ns->ctrl->instance, ns->head->instance);
3493 	if (ret)
3494 		return ret;
3495 
3496 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3497 			     ns->ctrl->ops->module);
3498 }
3499 
3500 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3501 		struct nvme_ns_info *info)
3502 {
3503 	struct nvme_ns_head *head;
3504 	size_t size = sizeof(*head);
3505 	int ret = -ENOMEM;
3506 
3507 #ifdef CONFIG_NVME_MULTIPATH
3508 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3509 #endif
3510 
3511 	head = kzalloc(size, GFP_KERNEL);
3512 	if (!head)
3513 		goto out;
3514 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3515 	if (ret < 0)
3516 		goto out_free_head;
3517 	head->instance = ret;
3518 	INIT_LIST_HEAD(&head->list);
3519 	ret = init_srcu_struct(&head->srcu);
3520 	if (ret)
3521 		goto out_ida_remove;
3522 	head->subsys = ctrl->subsys;
3523 	head->ns_id = info->nsid;
3524 	head->ids = info->ids;
3525 	head->shared = info->is_shared;
3526 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3527 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3528 	kref_init(&head->ref);
3529 
3530 	if (head->ids.csi) {
3531 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3532 		if (ret)
3533 			goto out_cleanup_srcu;
3534 	} else
3535 		head->effects = ctrl->effects;
3536 
3537 	ret = nvme_mpath_alloc_disk(ctrl, head);
3538 	if (ret)
3539 		goto out_cleanup_srcu;
3540 
3541 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3542 
3543 	kref_get(&ctrl->subsys->ref);
3544 
3545 	return head;
3546 out_cleanup_srcu:
3547 	cleanup_srcu_struct(&head->srcu);
3548 out_ida_remove:
3549 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3550 out_free_head:
3551 	kfree(head);
3552 out:
3553 	if (ret > 0)
3554 		ret = blk_status_to_errno(nvme_error_status(ret));
3555 	return ERR_PTR(ret);
3556 }
3557 
3558 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3559 		struct nvme_ns_ids *ids)
3560 {
3561 	struct nvme_subsystem *s;
3562 	int ret = 0;
3563 
3564 	/*
3565 	 * Note that this check is racy as we try to avoid holding the global
3566 	 * lock over the whole ns_head creation.  But it is only intended as
3567 	 * a sanity check anyway.
3568 	 */
3569 	mutex_lock(&nvme_subsystems_lock);
3570 	list_for_each_entry(s, &nvme_subsystems, entry) {
3571 		if (s == this)
3572 			continue;
3573 		mutex_lock(&s->lock);
3574 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3575 		mutex_unlock(&s->lock);
3576 		if (ret)
3577 			break;
3578 	}
3579 	mutex_unlock(&nvme_subsystems_lock);
3580 
3581 	return ret;
3582 }
3583 
3584 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3585 {
3586 	struct nvme_ctrl *ctrl = ns->ctrl;
3587 	struct nvme_ns_head *head = NULL;
3588 	int ret;
3589 
3590 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3591 	if (ret) {
3592 		/*
3593 		 * We've found two different namespaces on two different
3594 		 * subsystems that report the same ID.  This is pretty nasty
3595 		 * for anything that actually requires unique device
3596 		 * identification.  In the kernel we need this for multipathing,
3597 		 * and in user space the /dev/disk/by-id/ links rely on it.
3598 		 *
3599 		 * If the device also claims to be multi-path capable back off
3600 		 * here now and refuse the probe the second device as this is a
3601 		 * recipe for data corruption.  If not this is probably a
3602 		 * cheap consumer device if on the PCIe bus, so let the user
3603 		 * proceed and use the shiny toy, but warn that with changing
3604 		 * probing order (which due to our async probing could just be
3605 		 * device taking longer to startup) the other device could show
3606 		 * up at any time.
3607 		 */
3608 		nvme_print_device_info(ctrl);
3609 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3610 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3611 		     info->is_shared)) {
3612 			dev_err(ctrl->device,
3613 				"ignoring nsid %d because of duplicate IDs\n",
3614 				info->nsid);
3615 			return ret;
3616 		}
3617 
3618 		dev_err(ctrl->device,
3619 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3620 		dev_err(ctrl->device,
3621 			"use of /dev/disk/by-id/ may cause data corruption\n");
3622 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3623 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3624 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3625 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3626 	}
3627 
3628 	mutex_lock(&ctrl->subsys->lock);
3629 	head = nvme_find_ns_head(ctrl, info->nsid);
3630 	if (!head) {
3631 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3632 		if (ret) {
3633 			dev_err(ctrl->device,
3634 				"duplicate IDs in subsystem for nsid %d\n",
3635 				info->nsid);
3636 			goto out_unlock;
3637 		}
3638 		head = nvme_alloc_ns_head(ctrl, info);
3639 		if (IS_ERR(head)) {
3640 			ret = PTR_ERR(head);
3641 			goto out_unlock;
3642 		}
3643 	} else {
3644 		ret = -EINVAL;
3645 		if (!info->is_shared || !head->shared) {
3646 			dev_err(ctrl->device,
3647 				"Duplicate unshared namespace %d\n",
3648 				info->nsid);
3649 			goto out_put_ns_head;
3650 		}
3651 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3652 			dev_err(ctrl->device,
3653 				"IDs don't match for shared namespace %d\n",
3654 					info->nsid);
3655 			goto out_put_ns_head;
3656 		}
3657 
3658 		if (!multipath) {
3659 			dev_warn(ctrl->device,
3660 				"Found shared namespace %d, but multipathing not supported.\n",
3661 				info->nsid);
3662 			dev_warn_once(ctrl->device,
3663 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3664 		}
3665 	}
3666 
3667 	list_add_tail_rcu(&ns->siblings, &head->list);
3668 	ns->head = head;
3669 	mutex_unlock(&ctrl->subsys->lock);
3670 	return 0;
3671 
3672 out_put_ns_head:
3673 	nvme_put_ns_head(head);
3674 out_unlock:
3675 	mutex_unlock(&ctrl->subsys->lock);
3676 	return ret;
3677 }
3678 
3679 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3680 {
3681 	struct nvme_ns *ns, *ret = NULL;
3682 
3683 	down_read(&ctrl->namespaces_rwsem);
3684 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3685 		if (ns->head->ns_id == nsid) {
3686 			if (!nvme_get_ns(ns))
3687 				continue;
3688 			ret = ns;
3689 			break;
3690 		}
3691 		if (ns->head->ns_id > nsid)
3692 			break;
3693 	}
3694 	up_read(&ctrl->namespaces_rwsem);
3695 	return ret;
3696 }
3697 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3698 
3699 /*
3700  * Add the namespace to the controller list while keeping the list ordered.
3701  */
3702 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3703 {
3704 	struct nvme_ns *tmp;
3705 
3706 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3707 		if (tmp->head->ns_id < ns->head->ns_id) {
3708 			list_add(&ns->list, &tmp->list);
3709 			return;
3710 		}
3711 	}
3712 	list_add(&ns->list, &ns->ctrl->namespaces);
3713 }
3714 
3715 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3716 {
3717 	struct nvme_ns *ns;
3718 	struct gendisk *disk;
3719 	int node = ctrl->numa_node;
3720 
3721 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3722 	if (!ns)
3723 		return;
3724 
3725 	disk = blk_mq_alloc_disk(ctrl->tagset, NULL, ns);
3726 	if (IS_ERR(disk))
3727 		goto out_free_ns;
3728 	disk->fops = &nvme_bdev_ops;
3729 	disk->private_data = ns;
3730 
3731 	ns->disk = disk;
3732 	ns->queue = disk->queue;
3733 
3734 	if (ctrl->opts && ctrl->opts->data_digest)
3735 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3736 
3737 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3738 	if (ctrl->ops->supports_pci_p2pdma &&
3739 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3740 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3741 
3742 	ns->ctrl = ctrl;
3743 	kref_init(&ns->kref);
3744 
3745 	if (nvme_init_ns_head(ns, info))
3746 		goto out_cleanup_disk;
3747 
3748 	/*
3749 	 * If multipathing is enabled, the device name for all disks and not
3750 	 * just those that represent shared namespaces needs to be based on the
3751 	 * subsystem instance.  Using the controller instance for private
3752 	 * namespaces could lead to naming collisions between shared and private
3753 	 * namespaces if they don't use a common numbering scheme.
3754 	 *
3755 	 * If multipathing is not enabled, disk names must use the controller
3756 	 * instance as shared namespaces will show up as multiple block
3757 	 * devices.
3758 	 */
3759 	if (nvme_ns_head_multipath(ns->head)) {
3760 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3761 			ctrl->instance, ns->head->instance);
3762 		disk->flags |= GENHD_FL_HIDDEN;
3763 	} else if (multipath) {
3764 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3765 			ns->head->instance);
3766 	} else {
3767 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3768 			ns->head->instance);
3769 	}
3770 
3771 	if (nvme_update_ns_info(ns, info))
3772 		goto out_unlink_ns;
3773 
3774 	down_write(&ctrl->namespaces_rwsem);
3775 	/*
3776 	 * Ensure that no namespaces are added to the ctrl list after the queues
3777 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3778 	 */
3779 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3780 		up_write(&ctrl->namespaces_rwsem);
3781 		goto out_unlink_ns;
3782 	}
3783 	nvme_ns_add_to_ctrl_list(ns);
3784 	up_write(&ctrl->namespaces_rwsem);
3785 	nvme_get_ctrl(ctrl);
3786 
3787 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3788 		goto out_cleanup_ns_from_list;
3789 
3790 	if (!nvme_ns_head_multipath(ns->head))
3791 		nvme_add_ns_cdev(ns);
3792 
3793 	nvme_mpath_add_disk(ns, info->anagrpid);
3794 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3795 
3796 	/*
3797 	 * Set ns->disk->device->driver_data to ns so we can access
3798 	 * ns->head->passthru_err_log_enabled in
3799 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3800 	 */
3801 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3802 
3803 	return;
3804 
3805  out_cleanup_ns_from_list:
3806 	nvme_put_ctrl(ctrl);
3807 	down_write(&ctrl->namespaces_rwsem);
3808 	list_del_init(&ns->list);
3809 	up_write(&ctrl->namespaces_rwsem);
3810  out_unlink_ns:
3811 	mutex_lock(&ctrl->subsys->lock);
3812 	list_del_rcu(&ns->siblings);
3813 	if (list_empty(&ns->head->list))
3814 		list_del_init(&ns->head->entry);
3815 	mutex_unlock(&ctrl->subsys->lock);
3816 	nvme_put_ns_head(ns->head);
3817  out_cleanup_disk:
3818 	put_disk(disk);
3819  out_free_ns:
3820 	kfree(ns);
3821 }
3822 
3823 static void nvme_ns_remove(struct nvme_ns *ns)
3824 {
3825 	bool last_path = false;
3826 
3827 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3828 		return;
3829 
3830 	clear_bit(NVME_NS_READY, &ns->flags);
3831 	set_capacity(ns->disk, 0);
3832 	nvme_fault_inject_fini(&ns->fault_inject);
3833 
3834 	/*
3835 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3836 	 * this ns going back into current_path.
3837 	 */
3838 	synchronize_srcu(&ns->head->srcu);
3839 
3840 	/* wait for concurrent submissions */
3841 	if (nvme_mpath_clear_current_path(ns))
3842 		synchronize_srcu(&ns->head->srcu);
3843 
3844 	mutex_lock(&ns->ctrl->subsys->lock);
3845 	list_del_rcu(&ns->siblings);
3846 	if (list_empty(&ns->head->list)) {
3847 		list_del_init(&ns->head->entry);
3848 		last_path = true;
3849 	}
3850 	mutex_unlock(&ns->ctrl->subsys->lock);
3851 
3852 	/* guarantee not available in head->list */
3853 	synchronize_srcu(&ns->head->srcu);
3854 
3855 	if (!nvme_ns_head_multipath(ns->head))
3856 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3857 	del_gendisk(ns->disk);
3858 
3859 	down_write(&ns->ctrl->namespaces_rwsem);
3860 	list_del_init(&ns->list);
3861 	up_write(&ns->ctrl->namespaces_rwsem);
3862 
3863 	if (last_path)
3864 		nvme_mpath_shutdown_disk(ns->head);
3865 	nvme_put_ns(ns);
3866 }
3867 
3868 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3869 {
3870 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3871 
3872 	if (ns) {
3873 		nvme_ns_remove(ns);
3874 		nvme_put_ns(ns);
3875 	}
3876 }
3877 
3878 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3879 {
3880 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3881 
3882 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3883 		dev_err(ns->ctrl->device,
3884 			"identifiers changed for nsid %d\n", ns->head->ns_id);
3885 		goto out;
3886 	}
3887 
3888 	ret = nvme_update_ns_info(ns, info);
3889 out:
3890 	/*
3891 	 * Only remove the namespace if we got a fatal error back from the
3892 	 * device, otherwise ignore the error and just move on.
3893 	 *
3894 	 * TODO: we should probably schedule a delayed retry here.
3895 	 */
3896 	if (ret > 0 && (ret & NVME_SC_DNR))
3897 		nvme_ns_remove(ns);
3898 }
3899 
3900 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3901 {
3902 	struct nvme_ns_info info = { .nsid = nsid };
3903 	struct nvme_ns *ns;
3904 	int ret;
3905 
3906 	if (nvme_identify_ns_descs(ctrl, &info))
3907 		return;
3908 
3909 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3910 		dev_warn(ctrl->device,
3911 			"command set not reported for nsid: %d\n", nsid);
3912 		return;
3913 	}
3914 
3915 	/*
3916 	 * If available try to use the Command Set Idependent Identify Namespace
3917 	 * data structure to find all the generic information that is needed to
3918 	 * set up a namespace.  If not fall back to the legacy version.
3919 	 */
3920 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3921 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3922 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3923 	else
3924 		ret = nvme_ns_info_from_identify(ctrl, &info);
3925 
3926 	if (info.is_removed)
3927 		nvme_ns_remove_by_nsid(ctrl, nsid);
3928 
3929 	/*
3930 	 * Ignore the namespace if it is not ready. We will get an AEN once it
3931 	 * becomes ready and restart the scan.
3932 	 */
3933 	if (ret || !info.is_ready)
3934 		return;
3935 
3936 	ns = nvme_find_get_ns(ctrl, nsid);
3937 	if (ns) {
3938 		nvme_validate_ns(ns, &info);
3939 		nvme_put_ns(ns);
3940 	} else {
3941 		nvme_alloc_ns(ctrl, &info);
3942 	}
3943 }
3944 
3945 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3946 					unsigned nsid)
3947 {
3948 	struct nvme_ns *ns, *next;
3949 	LIST_HEAD(rm_list);
3950 
3951 	down_write(&ctrl->namespaces_rwsem);
3952 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3953 		if (ns->head->ns_id > nsid)
3954 			list_move_tail(&ns->list, &rm_list);
3955 	}
3956 	up_write(&ctrl->namespaces_rwsem);
3957 
3958 	list_for_each_entry_safe(ns, next, &rm_list, list)
3959 		nvme_ns_remove(ns);
3960 
3961 }
3962 
3963 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3964 {
3965 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3966 	__le32 *ns_list;
3967 	u32 prev = 0;
3968 	int ret = 0, i;
3969 
3970 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3971 	if (!ns_list)
3972 		return -ENOMEM;
3973 
3974 	for (;;) {
3975 		struct nvme_command cmd = {
3976 			.identify.opcode	= nvme_admin_identify,
3977 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
3978 			.identify.nsid		= cpu_to_le32(prev),
3979 		};
3980 
3981 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3982 					    NVME_IDENTIFY_DATA_SIZE);
3983 		if (ret) {
3984 			dev_warn(ctrl->device,
3985 				"Identify NS List failed (status=0x%x)\n", ret);
3986 			goto free;
3987 		}
3988 
3989 		for (i = 0; i < nr_entries; i++) {
3990 			u32 nsid = le32_to_cpu(ns_list[i]);
3991 
3992 			if (!nsid)	/* end of the list? */
3993 				goto out;
3994 			nvme_scan_ns(ctrl, nsid);
3995 			while (++prev < nsid)
3996 				nvme_ns_remove_by_nsid(ctrl, prev);
3997 		}
3998 	}
3999  out:
4000 	nvme_remove_invalid_namespaces(ctrl, prev);
4001  free:
4002 	kfree(ns_list);
4003 	return ret;
4004 }
4005 
4006 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4007 {
4008 	struct nvme_id_ctrl *id;
4009 	u32 nn, i;
4010 
4011 	if (nvme_identify_ctrl(ctrl, &id))
4012 		return;
4013 	nn = le32_to_cpu(id->nn);
4014 	kfree(id);
4015 
4016 	for (i = 1; i <= nn; i++)
4017 		nvme_scan_ns(ctrl, i);
4018 
4019 	nvme_remove_invalid_namespaces(ctrl, nn);
4020 }
4021 
4022 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4023 {
4024 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4025 	__le32 *log;
4026 	int error;
4027 
4028 	log = kzalloc(log_size, GFP_KERNEL);
4029 	if (!log)
4030 		return;
4031 
4032 	/*
4033 	 * We need to read the log to clear the AEN, but we don't want to rely
4034 	 * on it for the changed namespace information as userspace could have
4035 	 * raced with us in reading the log page, which could cause us to miss
4036 	 * updates.
4037 	 */
4038 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4039 			NVME_CSI_NVM, log, log_size, 0);
4040 	if (error)
4041 		dev_warn(ctrl->device,
4042 			"reading changed ns log failed: %d\n", error);
4043 
4044 	kfree(log);
4045 }
4046 
4047 static void nvme_scan_work(struct work_struct *work)
4048 {
4049 	struct nvme_ctrl *ctrl =
4050 		container_of(work, struct nvme_ctrl, scan_work);
4051 	int ret;
4052 
4053 	/* No tagset on a live ctrl means IO queues could not created */
4054 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4055 		return;
4056 
4057 	/*
4058 	 * Identify controller limits can change at controller reset due to
4059 	 * new firmware download, even though it is not common we cannot ignore
4060 	 * such scenario. Controller's non-mdts limits are reported in the unit
4061 	 * of logical blocks that is dependent on the format of attached
4062 	 * namespace. Hence re-read the limits at the time of ns allocation.
4063 	 */
4064 	ret = nvme_init_non_mdts_limits(ctrl);
4065 	if (ret < 0) {
4066 		dev_warn(ctrl->device,
4067 			"reading non-mdts-limits failed: %d\n", ret);
4068 		return;
4069 	}
4070 
4071 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4072 		dev_info(ctrl->device, "rescanning namespaces.\n");
4073 		nvme_clear_changed_ns_log(ctrl);
4074 	}
4075 
4076 	mutex_lock(&ctrl->scan_lock);
4077 	if (nvme_ctrl_limited_cns(ctrl)) {
4078 		nvme_scan_ns_sequential(ctrl);
4079 	} else {
4080 		/*
4081 		 * Fall back to sequential scan if DNR is set to handle broken
4082 		 * devices which should support Identify NS List (as per the VS
4083 		 * they report) but don't actually support it.
4084 		 */
4085 		ret = nvme_scan_ns_list(ctrl);
4086 		if (ret > 0 && ret & NVME_SC_DNR)
4087 			nvme_scan_ns_sequential(ctrl);
4088 	}
4089 	mutex_unlock(&ctrl->scan_lock);
4090 }
4091 
4092 /*
4093  * This function iterates the namespace list unlocked to allow recovery from
4094  * controller failure. It is up to the caller to ensure the namespace list is
4095  * not modified by scan work while this function is executing.
4096  */
4097 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4098 {
4099 	struct nvme_ns *ns, *next;
4100 	LIST_HEAD(ns_list);
4101 
4102 	/*
4103 	 * make sure to requeue I/O to all namespaces as these
4104 	 * might result from the scan itself and must complete
4105 	 * for the scan_work to make progress
4106 	 */
4107 	nvme_mpath_clear_ctrl_paths(ctrl);
4108 
4109 	/*
4110 	 * Unquiesce io queues so any pending IO won't hang, especially
4111 	 * those submitted from scan work
4112 	 */
4113 	nvme_unquiesce_io_queues(ctrl);
4114 
4115 	/* prevent racing with ns scanning */
4116 	flush_work(&ctrl->scan_work);
4117 
4118 	/*
4119 	 * The dead states indicates the controller was not gracefully
4120 	 * disconnected. In that case, we won't be able to flush any data while
4121 	 * removing the namespaces' disks; fail all the queues now to avoid
4122 	 * potentially having to clean up the failed sync later.
4123 	 */
4124 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4125 		nvme_mark_namespaces_dead(ctrl);
4126 
4127 	/* this is a no-op when called from the controller reset handler */
4128 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4129 
4130 	down_write(&ctrl->namespaces_rwsem);
4131 	list_splice_init(&ctrl->namespaces, &ns_list);
4132 	up_write(&ctrl->namespaces_rwsem);
4133 
4134 	list_for_each_entry_safe(ns, next, &ns_list, list)
4135 		nvme_ns_remove(ns);
4136 }
4137 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4138 
4139 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4140 {
4141 	const struct nvme_ctrl *ctrl =
4142 		container_of(dev, struct nvme_ctrl, ctrl_device);
4143 	struct nvmf_ctrl_options *opts = ctrl->opts;
4144 	int ret;
4145 
4146 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4147 	if (ret)
4148 		return ret;
4149 
4150 	if (opts) {
4151 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4152 		if (ret)
4153 			return ret;
4154 
4155 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4156 				opts->trsvcid ?: "none");
4157 		if (ret)
4158 			return ret;
4159 
4160 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4161 				opts->host_traddr ?: "none");
4162 		if (ret)
4163 			return ret;
4164 
4165 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4166 				opts->host_iface ?: "none");
4167 	}
4168 	return ret;
4169 }
4170 
4171 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4172 {
4173 	char *envp[2] = { envdata, NULL };
4174 
4175 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4176 }
4177 
4178 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4179 {
4180 	char *envp[2] = { NULL, NULL };
4181 	u32 aen_result = ctrl->aen_result;
4182 
4183 	ctrl->aen_result = 0;
4184 	if (!aen_result)
4185 		return;
4186 
4187 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4188 	if (!envp[0])
4189 		return;
4190 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4191 	kfree(envp[0]);
4192 }
4193 
4194 static void nvme_async_event_work(struct work_struct *work)
4195 {
4196 	struct nvme_ctrl *ctrl =
4197 		container_of(work, struct nvme_ctrl, async_event_work);
4198 
4199 	nvme_aen_uevent(ctrl);
4200 
4201 	/*
4202 	 * The transport drivers must guarantee AER submission here is safe by
4203 	 * flushing ctrl async_event_work after changing the controller state
4204 	 * from LIVE and before freeing the admin queue.
4205 	*/
4206 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4207 		ctrl->ops->submit_async_event(ctrl);
4208 }
4209 
4210 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4211 {
4212 
4213 	u32 csts;
4214 
4215 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4216 		return false;
4217 
4218 	if (csts == ~0)
4219 		return false;
4220 
4221 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4222 }
4223 
4224 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4225 {
4226 	struct nvme_fw_slot_info_log *log;
4227 	u8 next_fw_slot, cur_fw_slot;
4228 
4229 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4230 	if (!log)
4231 		return;
4232 
4233 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4234 			 log, sizeof(*log), 0)) {
4235 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4236 		goto out_free_log;
4237 	}
4238 
4239 	cur_fw_slot = log->afi & 0x7;
4240 	next_fw_slot = (log->afi & 0x70) >> 4;
4241 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4242 		dev_info(ctrl->device,
4243 			 "Firmware is activated after next Controller Level Reset\n");
4244 		goto out_free_log;
4245 	}
4246 
4247 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4248 		sizeof(ctrl->subsys->firmware_rev));
4249 
4250 out_free_log:
4251 	kfree(log);
4252 }
4253 
4254 static void nvme_fw_act_work(struct work_struct *work)
4255 {
4256 	struct nvme_ctrl *ctrl = container_of(work,
4257 				struct nvme_ctrl, fw_act_work);
4258 	unsigned long fw_act_timeout;
4259 
4260 	nvme_auth_stop(ctrl);
4261 
4262 	if (ctrl->mtfa)
4263 		fw_act_timeout = jiffies +
4264 				msecs_to_jiffies(ctrl->mtfa * 100);
4265 	else
4266 		fw_act_timeout = jiffies +
4267 				msecs_to_jiffies(admin_timeout * 1000);
4268 
4269 	nvme_quiesce_io_queues(ctrl);
4270 	while (nvme_ctrl_pp_status(ctrl)) {
4271 		if (time_after(jiffies, fw_act_timeout)) {
4272 			dev_warn(ctrl->device,
4273 				"Fw activation timeout, reset controller\n");
4274 			nvme_try_sched_reset(ctrl);
4275 			return;
4276 		}
4277 		msleep(100);
4278 	}
4279 
4280 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4281 		return;
4282 
4283 	nvme_unquiesce_io_queues(ctrl);
4284 	/* read FW slot information to clear the AER */
4285 	nvme_get_fw_slot_info(ctrl);
4286 
4287 	queue_work(nvme_wq, &ctrl->async_event_work);
4288 }
4289 
4290 static u32 nvme_aer_type(u32 result)
4291 {
4292 	return result & 0x7;
4293 }
4294 
4295 static u32 nvme_aer_subtype(u32 result)
4296 {
4297 	return (result & 0xff00) >> 8;
4298 }
4299 
4300 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4301 {
4302 	u32 aer_notice_type = nvme_aer_subtype(result);
4303 	bool requeue = true;
4304 
4305 	switch (aer_notice_type) {
4306 	case NVME_AER_NOTICE_NS_CHANGED:
4307 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4308 		nvme_queue_scan(ctrl);
4309 		break;
4310 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4311 		/*
4312 		 * We are (ab)using the RESETTING state to prevent subsequent
4313 		 * recovery actions from interfering with the controller's
4314 		 * firmware activation.
4315 		 */
4316 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4317 			requeue = false;
4318 			queue_work(nvme_wq, &ctrl->fw_act_work);
4319 		}
4320 		break;
4321 #ifdef CONFIG_NVME_MULTIPATH
4322 	case NVME_AER_NOTICE_ANA:
4323 		if (!ctrl->ana_log_buf)
4324 			break;
4325 		queue_work(nvme_wq, &ctrl->ana_work);
4326 		break;
4327 #endif
4328 	case NVME_AER_NOTICE_DISC_CHANGED:
4329 		ctrl->aen_result = result;
4330 		break;
4331 	default:
4332 		dev_warn(ctrl->device, "async event result %08x\n", result);
4333 	}
4334 	return requeue;
4335 }
4336 
4337 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4338 {
4339 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4340 	nvme_reset_ctrl(ctrl);
4341 }
4342 
4343 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4344 		volatile union nvme_result *res)
4345 {
4346 	u32 result = le32_to_cpu(res->u32);
4347 	u32 aer_type = nvme_aer_type(result);
4348 	u32 aer_subtype = nvme_aer_subtype(result);
4349 	bool requeue = true;
4350 
4351 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4352 		return;
4353 
4354 	trace_nvme_async_event(ctrl, result);
4355 	switch (aer_type) {
4356 	case NVME_AER_NOTICE:
4357 		requeue = nvme_handle_aen_notice(ctrl, result);
4358 		break;
4359 	case NVME_AER_ERROR:
4360 		/*
4361 		 * For a persistent internal error, don't run async_event_work
4362 		 * to submit a new AER. The controller reset will do it.
4363 		 */
4364 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4365 			nvme_handle_aer_persistent_error(ctrl);
4366 			return;
4367 		}
4368 		fallthrough;
4369 	case NVME_AER_SMART:
4370 	case NVME_AER_CSS:
4371 	case NVME_AER_VS:
4372 		ctrl->aen_result = result;
4373 		break;
4374 	default:
4375 		break;
4376 	}
4377 
4378 	if (requeue)
4379 		queue_work(nvme_wq, &ctrl->async_event_work);
4380 }
4381 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4382 
4383 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4384 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4385 {
4386 	struct queue_limits lim = {};
4387 	int ret;
4388 
4389 	memset(set, 0, sizeof(*set));
4390 	set->ops = ops;
4391 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4392 	if (ctrl->ops->flags & NVME_F_FABRICS)
4393 		/* Reserved for fabric connect and keep alive */
4394 		set->reserved_tags = 2;
4395 	set->numa_node = ctrl->numa_node;
4396 	set->flags = BLK_MQ_F_NO_SCHED;
4397 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4398 		set->flags |= BLK_MQ_F_BLOCKING;
4399 	set->cmd_size = cmd_size;
4400 	set->driver_data = ctrl;
4401 	set->nr_hw_queues = 1;
4402 	set->timeout = NVME_ADMIN_TIMEOUT;
4403 	ret = blk_mq_alloc_tag_set(set);
4404 	if (ret)
4405 		return ret;
4406 
4407 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4408 	if (IS_ERR(ctrl->admin_q)) {
4409 		ret = PTR_ERR(ctrl->admin_q);
4410 		goto out_free_tagset;
4411 	}
4412 
4413 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4414 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4415 		if (IS_ERR(ctrl->fabrics_q)) {
4416 			ret = PTR_ERR(ctrl->fabrics_q);
4417 			goto out_cleanup_admin_q;
4418 		}
4419 	}
4420 
4421 	ctrl->admin_tagset = set;
4422 	return 0;
4423 
4424 out_cleanup_admin_q:
4425 	blk_mq_destroy_queue(ctrl->admin_q);
4426 	blk_put_queue(ctrl->admin_q);
4427 out_free_tagset:
4428 	blk_mq_free_tag_set(set);
4429 	ctrl->admin_q = NULL;
4430 	ctrl->fabrics_q = NULL;
4431 	return ret;
4432 }
4433 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4434 
4435 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4436 {
4437 	blk_mq_destroy_queue(ctrl->admin_q);
4438 	blk_put_queue(ctrl->admin_q);
4439 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4440 		blk_mq_destroy_queue(ctrl->fabrics_q);
4441 		blk_put_queue(ctrl->fabrics_q);
4442 	}
4443 	blk_mq_free_tag_set(ctrl->admin_tagset);
4444 }
4445 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4446 
4447 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4448 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4449 		unsigned int cmd_size)
4450 {
4451 	int ret;
4452 
4453 	memset(set, 0, sizeof(*set));
4454 	set->ops = ops;
4455 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4456 	/*
4457 	 * Some Apple controllers requires tags to be unique across admin and
4458 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4459 	 */
4460 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4461 		set->reserved_tags = NVME_AQ_DEPTH;
4462 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4463 		/* Reserved for fabric connect */
4464 		set->reserved_tags = 1;
4465 	set->numa_node = ctrl->numa_node;
4466 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4467 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4468 		set->flags |= BLK_MQ_F_BLOCKING;
4469 	set->cmd_size = cmd_size,
4470 	set->driver_data = ctrl;
4471 	set->nr_hw_queues = ctrl->queue_count - 1;
4472 	set->timeout = NVME_IO_TIMEOUT;
4473 	set->nr_maps = nr_maps;
4474 	ret = blk_mq_alloc_tag_set(set);
4475 	if (ret)
4476 		return ret;
4477 
4478 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4479 		ctrl->connect_q = blk_mq_alloc_queue(set, NULL, NULL);
4480         	if (IS_ERR(ctrl->connect_q)) {
4481 			ret = PTR_ERR(ctrl->connect_q);
4482 			goto out_free_tag_set;
4483 		}
4484 		blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4485 				   ctrl->connect_q);
4486 	}
4487 
4488 	ctrl->tagset = set;
4489 	return 0;
4490 
4491 out_free_tag_set:
4492 	blk_mq_free_tag_set(set);
4493 	ctrl->connect_q = NULL;
4494 	return ret;
4495 }
4496 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4497 
4498 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4499 {
4500 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4501 		blk_mq_destroy_queue(ctrl->connect_q);
4502 		blk_put_queue(ctrl->connect_q);
4503 	}
4504 	blk_mq_free_tag_set(ctrl->tagset);
4505 }
4506 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4507 
4508 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4509 {
4510 	nvme_mpath_stop(ctrl);
4511 	nvme_auth_stop(ctrl);
4512 	nvme_stop_keep_alive(ctrl);
4513 	nvme_stop_failfast_work(ctrl);
4514 	flush_work(&ctrl->async_event_work);
4515 	cancel_work_sync(&ctrl->fw_act_work);
4516 	if (ctrl->ops->stop_ctrl)
4517 		ctrl->ops->stop_ctrl(ctrl);
4518 }
4519 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4520 
4521 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4522 {
4523 	nvme_enable_aen(ctrl);
4524 
4525 	/*
4526 	 * persistent discovery controllers need to send indication to userspace
4527 	 * to re-read the discovery log page to learn about possible changes
4528 	 * that were missed. We identify persistent discovery controllers by
4529 	 * checking that they started once before, hence are reconnecting back.
4530 	 */
4531 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4532 	    nvme_discovery_ctrl(ctrl))
4533 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4534 
4535 	if (ctrl->queue_count > 1) {
4536 		nvme_queue_scan(ctrl);
4537 		nvme_unquiesce_io_queues(ctrl);
4538 		nvme_mpath_update(ctrl);
4539 	}
4540 
4541 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4542 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4543 }
4544 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4545 
4546 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4547 {
4548 	nvme_hwmon_exit(ctrl);
4549 	nvme_fault_inject_fini(&ctrl->fault_inject);
4550 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4551 	cdev_device_del(&ctrl->cdev, ctrl->device);
4552 	nvme_put_ctrl(ctrl);
4553 }
4554 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4555 
4556 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4557 {
4558 	struct nvme_effects_log	*cel;
4559 	unsigned long i;
4560 
4561 	xa_for_each(&ctrl->cels, i, cel) {
4562 		xa_erase(&ctrl->cels, i);
4563 		kfree(cel);
4564 	}
4565 
4566 	xa_destroy(&ctrl->cels);
4567 }
4568 
4569 static void nvme_free_ctrl(struct device *dev)
4570 {
4571 	struct nvme_ctrl *ctrl =
4572 		container_of(dev, struct nvme_ctrl, ctrl_device);
4573 	struct nvme_subsystem *subsys = ctrl->subsys;
4574 
4575 	if (!subsys || ctrl->instance != subsys->instance)
4576 		ida_free(&nvme_instance_ida, ctrl->instance);
4577 	key_put(ctrl->tls_key);
4578 	nvme_free_cels(ctrl);
4579 	nvme_mpath_uninit(ctrl);
4580 	nvme_auth_stop(ctrl);
4581 	nvme_auth_free(ctrl);
4582 	__free_page(ctrl->discard_page);
4583 	free_opal_dev(ctrl->opal_dev);
4584 
4585 	if (subsys) {
4586 		mutex_lock(&nvme_subsystems_lock);
4587 		list_del(&ctrl->subsys_entry);
4588 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4589 		mutex_unlock(&nvme_subsystems_lock);
4590 	}
4591 
4592 	ctrl->ops->free_ctrl(ctrl);
4593 
4594 	if (subsys)
4595 		nvme_put_subsystem(subsys);
4596 }
4597 
4598 /*
4599  * Initialize a NVMe controller structures.  This needs to be called during
4600  * earliest initialization so that we have the initialized structured around
4601  * during probing.
4602  */
4603 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4604 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4605 {
4606 	int ret;
4607 
4608 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4609 	ctrl->passthru_err_log_enabled = false;
4610 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4611 	spin_lock_init(&ctrl->lock);
4612 	mutex_init(&ctrl->scan_lock);
4613 	INIT_LIST_HEAD(&ctrl->namespaces);
4614 	xa_init(&ctrl->cels);
4615 	init_rwsem(&ctrl->namespaces_rwsem);
4616 	ctrl->dev = dev;
4617 	ctrl->ops = ops;
4618 	ctrl->quirks = quirks;
4619 	ctrl->numa_node = NUMA_NO_NODE;
4620 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4621 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4622 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4623 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4624 	init_waitqueue_head(&ctrl->state_wq);
4625 
4626 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4627 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4628 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4629 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4630 	ctrl->ka_last_check_time = jiffies;
4631 
4632 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4633 			PAGE_SIZE);
4634 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4635 	if (!ctrl->discard_page) {
4636 		ret = -ENOMEM;
4637 		goto out;
4638 	}
4639 
4640 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4641 	if (ret < 0)
4642 		goto out;
4643 	ctrl->instance = ret;
4644 
4645 	device_initialize(&ctrl->ctrl_device);
4646 	ctrl->device = &ctrl->ctrl_device;
4647 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4648 			ctrl->instance);
4649 	ctrl->device->class = &nvme_class;
4650 	ctrl->device->parent = ctrl->dev;
4651 	if (ops->dev_attr_groups)
4652 		ctrl->device->groups = ops->dev_attr_groups;
4653 	else
4654 		ctrl->device->groups = nvme_dev_attr_groups;
4655 	ctrl->device->release = nvme_free_ctrl;
4656 	dev_set_drvdata(ctrl->device, ctrl);
4657 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4658 	if (ret)
4659 		goto out_release_instance;
4660 
4661 	nvme_get_ctrl(ctrl);
4662 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4663 	ctrl->cdev.owner = ops->module;
4664 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4665 	if (ret)
4666 		goto out_free_name;
4667 
4668 	/*
4669 	 * Initialize latency tolerance controls.  The sysfs files won't
4670 	 * be visible to userspace unless the device actually supports APST.
4671 	 */
4672 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4673 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4674 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4675 
4676 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4677 	nvme_mpath_init_ctrl(ctrl);
4678 	ret = nvme_auth_init_ctrl(ctrl);
4679 	if (ret)
4680 		goto out_free_cdev;
4681 
4682 	return 0;
4683 out_free_cdev:
4684 	nvme_fault_inject_fini(&ctrl->fault_inject);
4685 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4686 	cdev_device_del(&ctrl->cdev, ctrl->device);
4687 out_free_name:
4688 	nvme_put_ctrl(ctrl);
4689 	kfree_const(ctrl->device->kobj.name);
4690 out_release_instance:
4691 	ida_free(&nvme_instance_ida, ctrl->instance);
4692 out:
4693 	if (ctrl->discard_page)
4694 		__free_page(ctrl->discard_page);
4695 	return ret;
4696 }
4697 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4698 
4699 /* let I/O to all namespaces fail in preparation for surprise removal */
4700 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4701 {
4702 	struct nvme_ns *ns;
4703 
4704 	down_read(&ctrl->namespaces_rwsem);
4705 	list_for_each_entry(ns, &ctrl->namespaces, list)
4706 		blk_mark_disk_dead(ns->disk);
4707 	up_read(&ctrl->namespaces_rwsem);
4708 }
4709 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4710 
4711 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4712 {
4713 	struct nvme_ns *ns;
4714 
4715 	down_read(&ctrl->namespaces_rwsem);
4716 	list_for_each_entry(ns, &ctrl->namespaces, list)
4717 		blk_mq_unfreeze_queue(ns->queue);
4718 	up_read(&ctrl->namespaces_rwsem);
4719 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4720 }
4721 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4722 
4723 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4724 {
4725 	struct nvme_ns *ns;
4726 
4727 	down_read(&ctrl->namespaces_rwsem);
4728 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4729 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4730 		if (timeout <= 0)
4731 			break;
4732 	}
4733 	up_read(&ctrl->namespaces_rwsem);
4734 	return timeout;
4735 }
4736 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4737 
4738 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4739 {
4740 	struct nvme_ns *ns;
4741 
4742 	down_read(&ctrl->namespaces_rwsem);
4743 	list_for_each_entry(ns, &ctrl->namespaces, list)
4744 		blk_mq_freeze_queue_wait(ns->queue);
4745 	up_read(&ctrl->namespaces_rwsem);
4746 }
4747 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4748 
4749 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4750 {
4751 	struct nvme_ns *ns;
4752 
4753 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4754 	down_read(&ctrl->namespaces_rwsem);
4755 	list_for_each_entry(ns, &ctrl->namespaces, list)
4756 		blk_freeze_queue_start(ns->queue);
4757 	up_read(&ctrl->namespaces_rwsem);
4758 }
4759 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4760 
4761 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4762 {
4763 	if (!ctrl->tagset)
4764 		return;
4765 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4766 		blk_mq_quiesce_tagset(ctrl->tagset);
4767 	else
4768 		blk_mq_wait_quiesce_done(ctrl->tagset);
4769 }
4770 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4771 
4772 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4773 {
4774 	if (!ctrl->tagset)
4775 		return;
4776 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4777 		blk_mq_unquiesce_tagset(ctrl->tagset);
4778 }
4779 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4780 
4781 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4782 {
4783 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4784 		blk_mq_quiesce_queue(ctrl->admin_q);
4785 	else
4786 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4787 }
4788 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4789 
4790 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4791 {
4792 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4793 		blk_mq_unquiesce_queue(ctrl->admin_q);
4794 }
4795 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4796 
4797 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4798 {
4799 	struct nvme_ns *ns;
4800 
4801 	down_read(&ctrl->namespaces_rwsem);
4802 	list_for_each_entry(ns, &ctrl->namespaces, list)
4803 		blk_sync_queue(ns->queue);
4804 	up_read(&ctrl->namespaces_rwsem);
4805 }
4806 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4807 
4808 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4809 {
4810 	nvme_sync_io_queues(ctrl);
4811 	if (ctrl->admin_q)
4812 		blk_sync_queue(ctrl->admin_q);
4813 }
4814 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4815 
4816 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4817 {
4818 	if (file->f_op != &nvme_dev_fops)
4819 		return NULL;
4820 	return file->private_data;
4821 }
4822 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4823 
4824 /*
4825  * Check we didn't inadvertently grow the command structure sizes:
4826  */
4827 static inline void _nvme_check_size(void)
4828 {
4829 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4830 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4831 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4832 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4833 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4834 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4835 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4836 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4837 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4838 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4839 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4840 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4841 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4842 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4843 			NVME_IDENTIFY_DATA_SIZE);
4844 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4845 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4846 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4847 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4848 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4849 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4850 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4851 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4852 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4853 }
4854 
4855 
4856 static int __init nvme_core_init(void)
4857 {
4858 	int result = -ENOMEM;
4859 
4860 	_nvme_check_size();
4861 
4862 	nvme_wq = alloc_workqueue("nvme-wq",
4863 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4864 	if (!nvme_wq)
4865 		goto out;
4866 
4867 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4868 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4869 	if (!nvme_reset_wq)
4870 		goto destroy_wq;
4871 
4872 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4873 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4874 	if (!nvme_delete_wq)
4875 		goto destroy_reset_wq;
4876 
4877 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4878 			NVME_MINORS, "nvme");
4879 	if (result < 0)
4880 		goto destroy_delete_wq;
4881 
4882 	result = class_register(&nvme_class);
4883 	if (result)
4884 		goto unregister_chrdev;
4885 
4886 	result = class_register(&nvme_subsys_class);
4887 	if (result)
4888 		goto destroy_class;
4889 
4890 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4891 				     "nvme-generic");
4892 	if (result < 0)
4893 		goto destroy_subsys_class;
4894 
4895 	result = class_register(&nvme_ns_chr_class);
4896 	if (result)
4897 		goto unregister_generic_ns;
4898 
4899 	result = nvme_init_auth();
4900 	if (result)
4901 		goto destroy_ns_chr;
4902 	return 0;
4903 
4904 destroy_ns_chr:
4905 	class_unregister(&nvme_ns_chr_class);
4906 unregister_generic_ns:
4907 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4908 destroy_subsys_class:
4909 	class_unregister(&nvme_subsys_class);
4910 destroy_class:
4911 	class_unregister(&nvme_class);
4912 unregister_chrdev:
4913 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4914 destroy_delete_wq:
4915 	destroy_workqueue(nvme_delete_wq);
4916 destroy_reset_wq:
4917 	destroy_workqueue(nvme_reset_wq);
4918 destroy_wq:
4919 	destroy_workqueue(nvme_wq);
4920 out:
4921 	return result;
4922 }
4923 
4924 static void __exit nvme_core_exit(void)
4925 {
4926 	nvme_exit_auth();
4927 	class_unregister(&nvme_ns_chr_class);
4928 	class_unregister(&nvme_subsys_class);
4929 	class_unregister(&nvme_class);
4930 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4931 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4932 	destroy_workqueue(nvme_delete_wq);
4933 	destroy_workqueue(nvme_reset_wq);
4934 	destroy_workqueue(nvme_wq);
4935 	ida_destroy(&nvme_ns_chr_minor_ida);
4936 	ida_destroy(&nvme_instance_ida);
4937 }
4938 
4939 MODULE_LICENSE("GPL");
4940 MODULE_VERSION("1.0");
4941 MODULE_DESCRIPTION("NVMe host core framework");
4942 module_init(nvme_core_init);
4943 module_exit(nvme_core_exit);
4944