xref: /linux/drivers/nvme/host/core.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	bool is_shared;
42 	bool is_readonly;
43 	bool is_ready;
44 	bool is_removed;
45 	bool is_rotational;
46 	bool no_vwc;
47 };
48 
49 unsigned int admin_timeout = 60;
50 module_param(admin_timeout, uint, 0644);
51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
52 EXPORT_SYMBOL_GPL(admin_timeout);
53 
54 unsigned int nvme_io_timeout = 30;
55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
57 EXPORT_SYMBOL_GPL(nvme_io_timeout);
58 
59 static unsigned char shutdown_timeout = 5;
60 module_param(shutdown_timeout, byte, 0644);
61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
62 
63 static u8 nvme_max_retries = 5;
64 module_param_named(max_retries, nvme_max_retries, byte, 0644);
65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
66 
67 static unsigned long default_ps_max_latency_us = 100000;
68 module_param(default_ps_max_latency_us, ulong, 0644);
69 MODULE_PARM_DESC(default_ps_max_latency_us,
70 		 "max power saving latency for new devices; use PM QOS to change per device");
71 
72 static bool force_apst;
73 module_param(force_apst, bool, 0644);
74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
75 
76 static unsigned long apst_primary_timeout_ms = 100;
77 module_param(apst_primary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_primary_timeout_ms,
79 	"primary APST timeout in ms");
80 
81 static unsigned long apst_secondary_timeout_ms = 2000;
82 module_param(apst_secondary_timeout_ms, ulong, 0644);
83 MODULE_PARM_DESC(apst_secondary_timeout_ms,
84 	"secondary APST timeout in ms");
85 
86 static unsigned long apst_primary_latency_tol_us = 15000;
87 module_param(apst_primary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_primary_latency_tol_us,
89 	"primary APST latency tolerance in us");
90 
91 static unsigned long apst_secondary_latency_tol_us = 100000;
92 module_param(apst_secondary_latency_tol_us, ulong, 0644);
93 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
94 	"secondary APST latency tolerance in us");
95 
96 /*
97  * Older kernels didn't enable protection information if it was at an offset.
98  * Newer kernels do, so it breaks reads on the upgrade if such formats were
99  * used in prior kernels since the metadata written did not contain a valid
100  * checksum.
101  */
102 static bool disable_pi_offsets = false;
103 module_param(disable_pi_offsets, bool, 0444);
104 MODULE_PARM_DESC(disable_pi_offsets,
105 	"disable protection information if it has an offset");
106 
107 /*
108  * nvme_wq - hosts nvme related works that are not reset or delete
109  * nvme_reset_wq - hosts nvme reset works
110  * nvme_delete_wq - hosts nvme delete works
111  *
112  * nvme_wq will host works such as scan, aen handling, fw activation,
113  * keep-alive, periodic reconnects etc. nvme_reset_wq
114  * runs reset works which also flush works hosted on nvme_wq for
115  * serialization purposes. nvme_delete_wq host controller deletion
116  * works which flush reset works for serialization.
117  */
118 struct workqueue_struct *nvme_wq;
119 EXPORT_SYMBOL_GPL(nvme_wq);
120 
121 struct workqueue_struct *nvme_reset_wq;
122 EXPORT_SYMBOL_GPL(nvme_reset_wq);
123 
124 struct workqueue_struct *nvme_delete_wq;
125 EXPORT_SYMBOL_GPL(nvme_delete_wq);
126 
127 static LIST_HEAD(nvme_subsystems);
128 DEFINE_MUTEX(nvme_subsystems_lock);
129 
130 static DEFINE_IDA(nvme_instance_ida);
131 static dev_t nvme_ctrl_base_chr_devt;
132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
133 static const struct class nvme_class = {
134 	.name = "nvme",
135 	.dev_uevent = nvme_class_uevent,
136 };
137 
138 static const struct class nvme_subsys_class = {
139 	.name = "nvme-subsystem",
140 };
141 
142 static DEFINE_IDA(nvme_ns_chr_minor_ida);
143 static dev_t nvme_ns_chr_devt;
144 static const struct class nvme_ns_chr_class = {
145 	.name = "nvme-generic",
146 };
147 
148 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
150 					   unsigned nsid);
151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
152 				   struct nvme_command *cmd);
153 
154 void nvme_queue_scan(struct nvme_ctrl *ctrl)
155 {
156 	/*
157 	 * Only new queue scan work when admin and IO queues are both alive
158 	 */
159 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
160 		queue_work(nvme_wq, &ctrl->scan_work);
161 }
162 
163 /*
164  * Use this function to proceed with scheduling reset_work for a controller
165  * that had previously been set to the resetting state. This is intended for
166  * code paths that can't be interrupted by other reset attempts. A hot removal
167  * may prevent this from succeeding.
168  */
169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
170 {
171 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
172 		return -EBUSY;
173 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
174 		return -EBUSY;
175 	return 0;
176 }
177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
178 
179 static void nvme_failfast_work(struct work_struct *work)
180 {
181 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
182 			struct nvme_ctrl, failfast_work);
183 
184 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
185 		return;
186 
187 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
188 	dev_info(ctrl->device, "failfast expired\n");
189 	nvme_kick_requeue_lists(ctrl);
190 }
191 
192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
193 {
194 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
195 		return;
196 
197 	schedule_delayed_work(&ctrl->failfast_work,
198 			      ctrl->opts->fast_io_fail_tmo * HZ);
199 }
200 
201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
202 {
203 	if (!ctrl->opts)
204 		return;
205 
206 	cancel_delayed_work_sync(&ctrl->failfast_work);
207 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
208 }
209 
210 
211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
212 {
213 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
214 		return -EBUSY;
215 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
216 		return -EBUSY;
217 	return 0;
218 }
219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
220 
221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
222 {
223 	int ret;
224 
225 	ret = nvme_reset_ctrl(ctrl);
226 	if (!ret) {
227 		flush_work(&ctrl->reset_work);
228 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
229 			ret = -ENETRESET;
230 	}
231 
232 	return ret;
233 }
234 
235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
236 {
237 	dev_info(ctrl->device,
238 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
239 
240 	flush_work(&ctrl->reset_work);
241 	nvme_stop_ctrl(ctrl);
242 	nvme_remove_namespaces(ctrl);
243 	ctrl->ops->delete_ctrl(ctrl);
244 	nvme_uninit_ctrl(ctrl);
245 }
246 
247 static void nvme_delete_ctrl_work(struct work_struct *work)
248 {
249 	struct nvme_ctrl *ctrl =
250 		container_of(work, struct nvme_ctrl, delete_work);
251 
252 	nvme_do_delete_ctrl(ctrl);
253 }
254 
255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
256 {
257 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		return -EBUSY;
259 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
260 		return -EBUSY;
261 	return 0;
262 }
263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
264 
265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
266 {
267 	/*
268 	 * Keep a reference until nvme_do_delete_ctrl() complete,
269 	 * since ->delete_ctrl can free the controller.
270 	 */
271 	nvme_get_ctrl(ctrl);
272 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
273 		nvme_do_delete_ctrl(ctrl);
274 	nvme_put_ctrl(ctrl);
275 }
276 
277 static blk_status_t nvme_error_status(u16 status)
278 {
279 	switch (status & NVME_SCT_SC_MASK) {
280 	case NVME_SC_SUCCESS:
281 		return BLK_STS_OK;
282 	case NVME_SC_CAP_EXCEEDED:
283 		return BLK_STS_NOSPC;
284 	case NVME_SC_LBA_RANGE:
285 	case NVME_SC_CMD_INTERRUPTED:
286 	case NVME_SC_NS_NOT_READY:
287 		return BLK_STS_TARGET;
288 	case NVME_SC_BAD_ATTRIBUTES:
289 	case NVME_SC_ONCS_NOT_SUPPORTED:
290 	case NVME_SC_INVALID_OPCODE:
291 	case NVME_SC_INVALID_FIELD:
292 	case NVME_SC_INVALID_NS:
293 		return BLK_STS_NOTSUPP;
294 	case NVME_SC_WRITE_FAULT:
295 	case NVME_SC_READ_ERROR:
296 	case NVME_SC_UNWRITTEN_BLOCK:
297 	case NVME_SC_ACCESS_DENIED:
298 	case NVME_SC_READ_ONLY:
299 	case NVME_SC_COMPARE_FAILED:
300 		return BLK_STS_MEDIUM;
301 	case NVME_SC_GUARD_CHECK:
302 	case NVME_SC_APPTAG_CHECK:
303 	case NVME_SC_REFTAG_CHECK:
304 	case NVME_SC_INVALID_PI:
305 		return BLK_STS_PROTECTION;
306 	case NVME_SC_RESERVATION_CONFLICT:
307 		return BLK_STS_RESV_CONFLICT;
308 	case NVME_SC_HOST_PATH_ERROR:
309 		return BLK_STS_TRANSPORT;
310 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
311 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
312 	case NVME_SC_ZONE_TOO_MANY_OPEN:
313 		return BLK_STS_ZONE_OPEN_RESOURCE;
314 	default:
315 		return BLK_STS_IOERR;
316 	}
317 }
318 
319 static void nvme_retry_req(struct request *req)
320 {
321 	unsigned long delay = 0;
322 	u16 crd;
323 
324 	/* The mask and shift result must be <= 3 */
325 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
326 	if (crd)
327 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
328 
329 	nvme_req(req)->retries++;
330 	blk_mq_requeue_request(req, false);
331 	blk_mq_delay_kick_requeue_list(req->q, delay);
332 }
333 
334 static void nvme_log_error(struct request *req)
335 {
336 	struct nvme_ns *ns = req->q->queuedata;
337 	struct nvme_request *nr = nvme_req(req);
338 
339 	if (ns) {
340 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
341 		       ns->disk ? ns->disk->disk_name : "?",
342 		       nvme_get_opcode_str(nr->cmd->common.opcode),
343 		       nr->cmd->common.opcode,
344 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
345 		       blk_rq_bytes(req) >> ns->head->lba_shift,
346 		       nvme_get_error_status_str(nr->status),
347 		       NVME_SCT(nr->status),		/* Status Code Type */
348 		       nr->status & NVME_SC_MASK,	/* Status Code */
349 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
350 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
351 		return;
352 	}
353 
354 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
355 			   dev_name(nr->ctrl->device),
356 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
357 			   nr->cmd->common.opcode,
358 			   nvme_get_error_status_str(nr->status),
359 			   NVME_SCT(nr->status),	/* Status Code Type */
360 			   nr->status & NVME_SC_MASK,	/* Status Code */
361 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
362 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
363 }
364 
365 static void nvme_log_err_passthru(struct request *req)
366 {
367 	struct nvme_ns *ns = req->q->queuedata;
368 	struct nvme_request *nr = nvme_req(req);
369 
370 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
371 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
372 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
373 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
374 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
375 		nr->cmd->common.opcode,
376 		nvme_get_error_status_str(nr->status),
377 		NVME_SCT(nr->status),		/* Status Code Type */
378 		nr->status & NVME_SC_MASK,	/* Status Code */
379 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
380 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
381 		nr->cmd->common.cdw10,
382 		nr->cmd->common.cdw11,
383 		nr->cmd->common.cdw12,
384 		nr->cmd->common.cdw13,
385 		nr->cmd->common.cdw14,
386 		nr->cmd->common.cdw14);
387 }
388 
389 enum nvme_disposition {
390 	COMPLETE,
391 	RETRY,
392 	FAILOVER,
393 	AUTHENTICATE,
394 };
395 
396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
397 {
398 	if (likely(nvme_req(req)->status == 0))
399 		return COMPLETE;
400 
401 	if (blk_noretry_request(req) ||
402 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
403 	    nvme_req(req)->retries >= nvme_max_retries)
404 		return COMPLETE;
405 
406 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
407 		return AUTHENTICATE;
408 
409 	if (req->cmd_flags & REQ_NVME_MPATH) {
410 		if (nvme_is_path_error(nvme_req(req)->status) ||
411 		    blk_queue_dying(req->q))
412 			return FAILOVER;
413 	} else {
414 		if (blk_queue_dying(req->q))
415 			return COMPLETE;
416 	}
417 
418 	return RETRY;
419 }
420 
421 static inline void nvme_end_req_zoned(struct request *req)
422 {
423 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
424 	    req_op(req) == REQ_OP_ZONE_APPEND) {
425 		struct nvme_ns *ns = req->q->queuedata;
426 
427 		req->__sector = nvme_lba_to_sect(ns->head,
428 			le64_to_cpu(nvme_req(req)->result.u64));
429 	}
430 }
431 
432 static inline void __nvme_end_req(struct request *req)
433 {
434 	nvme_end_req_zoned(req);
435 	nvme_trace_bio_complete(req);
436 	if (req->cmd_flags & REQ_NVME_MPATH)
437 		nvme_mpath_end_request(req);
438 }
439 
440 void nvme_end_req(struct request *req)
441 {
442 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
443 
444 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
445 		if (blk_rq_is_passthrough(req))
446 			nvme_log_err_passthru(req);
447 		else
448 			nvme_log_error(req);
449 	}
450 	__nvme_end_req(req);
451 	blk_mq_end_request(req, status);
452 }
453 
454 void nvme_complete_rq(struct request *req)
455 {
456 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
457 
458 	trace_nvme_complete_rq(req);
459 	nvme_cleanup_cmd(req);
460 
461 	/*
462 	 * Completions of long-running commands should not be able to
463 	 * defer sending of periodic keep alives, since the controller
464 	 * may have completed processing such commands a long time ago
465 	 * (arbitrarily close to command submission time).
466 	 * req->deadline - req->timeout is the command submission time
467 	 * in jiffies.
468 	 */
469 	if (ctrl->kas &&
470 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
471 		ctrl->comp_seen = true;
472 
473 	switch (nvme_decide_disposition(req)) {
474 	case COMPLETE:
475 		nvme_end_req(req);
476 		return;
477 	case RETRY:
478 		nvme_retry_req(req);
479 		return;
480 	case FAILOVER:
481 		nvme_failover_req(req);
482 		return;
483 	case AUTHENTICATE:
484 #ifdef CONFIG_NVME_HOST_AUTH
485 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
486 		nvme_retry_req(req);
487 #else
488 		nvme_end_req(req);
489 #endif
490 		return;
491 	}
492 }
493 EXPORT_SYMBOL_GPL(nvme_complete_rq);
494 
495 void nvme_complete_batch_req(struct request *req)
496 {
497 	trace_nvme_complete_rq(req);
498 	nvme_cleanup_cmd(req);
499 	__nvme_end_req(req);
500 }
501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
502 
503 /*
504  * Called to unwind from ->queue_rq on a failed command submission so that the
505  * multipathing code gets called to potentially failover to another path.
506  * The caller needs to unwind all transport specific resource allocations and
507  * must return propagate the return value.
508  */
509 blk_status_t nvme_host_path_error(struct request *req)
510 {
511 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
512 	blk_mq_set_request_complete(req);
513 	nvme_complete_rq(req);
514 	return BLK_STS_OK;
515 }
516 EXPORT_SYMBOL_GPL(nvme_host_path_error);
517 
518 bool nvme_cancel_request(struct request *req, void *data)
519 {
520 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
521 				"Cancelling I/O %d", req->tag);
522 
523 	/* don't abort one completed or idle request */
524 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
525 		return true;
526 
527 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
528 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
529 	blk_mq_complete_request(req);
530 	return true;
531 }
532 EXPORT_SYMBOL_GPL(nvme_cancel_request);
533 
534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
535 {
536 	if (ctrl->tagset) {
537 		blk_mq_tagset_busy_iter(ctrl->tagset,
538 				nvme_cancel_request, ctrl);
539 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
540 	}
541 }
542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
543 
544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
545 {
546 	if (ctrl->admin_tagset) {
547 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
548 				nvme_cancel_request, ctrl);
549 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
550 	}
551 }
552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
553 
554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
555 		enum nvme_ctrl_state new_state)
556 {
557 	enum nvme_ctrl_state old_state;
558 	unsigned long flags;
559 	bool changed = false;
560 
561 	spin_lock_irqsave(&ctrl->lock, flags);
562 
563 	old_state = nvme_ctrl_state(ctrl);
564 	switch (new_state) {
565 	case NVME_CTRL_LIVE:
566 		switch (old_state) {
567 		case NVME_CTRL_NEW:
568 		case NVME_CTRL_RESETTING:
569 		case NVME_CTRL_CONNECTING:
570 			changed = true;
571 			fallthrough;
572 		default:
573 			break;
574 		}
575 		break;
576 	case NVME_CTRL_RESETTING:
577 		switch (old_state) {
578 		case NVME_CTRL_NEW:
579 		case NVME_CTRL_LIVE:
580 			changed = true;
581 			fallthrough;
582 		default:
583 			break;
584 		}
585 		break;
586 	case NVME_CTRL_CONNECTING:
587 		switch (old_state) {
588 		case NVME_CTRL_NEW:
589 		case NVME_CTRL_RESETTING:
590 			changed = true;
591 			fallthrough;
592 		default:
593 			break;
594 		}
595 		break;
596 	case NVME_CTRL_DELETING:
597 		switch (old_state) {
598 		case NVME_CTRL_LIVE:
599 		case NVME_CTRL_RESETTING:
600 		case NVME_CTRL_CONNECTING:
601 			changed = true;
602 			fallthrough;
603 		default:
604 			break;
605 		}
606 		break;
607 	case NVME_CTRL_DELETING_NOIO:
608 		switch (old_state) {
609 		case NVME_CTRL_DELETING:
610 		case NVME_CTRL_DEAD:
611 			changed = true;
612 			fallthrough;
613 		default:
614 			break;
615 		}
616 		break;
617 	case NVME_CTRL_DEAD:
618 		switch (old_state) {
619 		case NVME_CTRL_DELETING:
620 			changed = true;
621 			fallthrough;
622 		default:
623 			break;
624 		}
625 		break;
626 	default:
627 		break;
628 	}
629 
630 	if (changed) {
631 		WRITE_ONCE(ctrl->state, new_state);
632 		wake_up_all(&ctrl->state_wq);
633 	}
634 
635 	spin_unlock_irqrestore(&ctrl->lock, flags);
636 	if (!changed)
637 		return false;
638 
639 	if (new_state == NVME_CTRL_LIVE) {
640 		if (old_state == NVME_CTRL_CONNECTING)
641 			nvme_stop_failfast_work(ctrl);
642 		nvme_kick_requeue_lists(ctrl);
643 	} else if (new_state == NVME_CTRL_CONNECTING &&
644 		old_state == NVME_CTRL_RESETTING) {
645 		nvme_start_failfast_work(ctrl);
646 	}
647 	return changed;
648 }
649 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
650 
651 /*
652  * Waits for the controller state to be resetting, or returns false if it is
653  * not possible to ever transition to that state.
654  */
655 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
656 {
657 	wait_event(ctrl->state_wq,
658 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
659 		   nvme_state_terminal(ctrl));
660 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
661 }
662 EXPORT_SYMBOL_GPL(nvme_wait_reset);
663 
664 static void nvme_free_ns_head(struct kref *ref)
665 {
666 	struct nvme_ns_head *head =
667 		container_of(ref, struct nvme_ns_head, ref);
668 
669 	nvme_mpath_remove_disk(head);
670 	ida_free(&head->subsys->ns_ida, head->instance);
671 	cleanup_srcu_struct(&head->srcu);
672 	nvme_put_subsystem(head->subsys);
673 	kfree(head);
674 }
675 
676 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
677 {
678 	return kref_get_unless_zero(&head->ref);
679 }
680 
681 void nvme_put_ns_head(struct nvme_ns_head *head)
682 {
683 	kref_put(&head->ref, nvme_free_ns_head);
684 }
685 
686 static void nvme_free_ns(struct kref *kref)
687 {
688 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
689 
690 	put_disk(ns->disk);
691 	nvme_put_ns_head(ns->head);
692 	nvme_put_ctrl(ns->ctrl);
693 	kfree(ns);
694 }
695 
696 bool nvme_get_ns(struct nvme_ns *ns)
697 {
698 	return kref_get_unless_zero(&ns->kref);
699 }
700 
701 void nvme_put_ns(struct nvme_ns *ns)
702 {
703 	kref_put(&ns->kref, nvme_free_ns);
704 }
705 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
706 
707 static inline void nvme_clear_nvme_request(struct request *req)
708 {
709 	nvme_req(req)->status = 0;
710 	nvme_req(req)->retries = 0;
711 	nvme_req(req)->flags = 0;
712 	req->rq_flags |= RQF_DONTPREP;
713 }
714 
715 /* initialize a passthrough request */
716 void nvme_init_request(struct request *req, struct nvme_command *cmd)
717 {
718 	struct nvme_request *nr = nvme_req(req);
719 	bool logging_enabled;
720 
721 	if (req->q->queuedata) {
722 		struct nvme_ns *ns = req->q->disk->private_data;
723 
724 		logging_enabled = ns->head->passthru_err_log_enabled;
725 		req->timeout = NVME_IO_TIMEOUT;
726 	} else { /* no queuedata implies admin queue */
727 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
728 		req->timeout = NVME_ADMIN_TIMEOUT;
729 	}
730 
731 	if (!logging_enabled)
732 		req->rq_flags |= RQF_QUIET;
733 
734 	/* passthru commands should let the driver set the SGL flags */
735 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
736 
737 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
738 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
739 		req->cmd_flags |= REQ_POLLED;
740 	nvme_clear_nvme_request(req);
741 	memcpy(nr->cmd, cmd, sizeof(*cmd));
742 }
743 EXPORT_SYMBOL_GPL(nvme_init_request);
744 
745 /*
746  * For something we're not in a state to send to the device the default action
747  * is to busy it and retry it after the controller state is recovered.  However,
748  * if the controller is deleting or if anything is marked for failfast or
749  * nvme multipath it is immediately failed.
750  *
751  * Note: commands used to initialize the controller will be marked for failfast.
752  * Note: nvme cli/ioctl commands are marked for failfast.
753  */
754 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
755 		struct request *rq)
756 {
757 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
758 
759 	if (state != NVME_CTRL_DELETING_NOIO &&
760 	    state != NVME_CTRL_DELETING &&
761 	    state != NVME_CTRL_DEAD &&
762 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
763 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
764 		return BLK_STS_RESOURCE;
765 	return nvme_host_path_error(rq);
766 }
767 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
768 
769 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
770 		bool queue_live, enum nvme_ctrl_state state)
771 {
772 	struct nvme_request *req = nvme_req(rq);
773 
774 	/*
775 	 * currently we have a problem sending passthru commands
776 	 * on the admin_q if the controller is not LIVE because we can't
777 	 * make sure that they are going out after the admin connect,
778 	 * controller enable and/or other commands in the initialization
779 	 * sequence. until the controller will be LIVE, fail with
780 	 * BLK_STS_RESOURCE so that they will be rescheduled.
781 	 */
782 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
783 		return false;
784 
785 	if (ctrl->ops->flags & NVME_F_FABRICS) {
786 		/*
787 		 * Only allow commands on a live queue, except for the connect
788 		 * command, which is require to set the queue live in the
789 		 * appropinquate states.
790 		 */
791 		switch (state) {
792 		case NVME_CTRL_CONNECTING:
793 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
794 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
795 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
796 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
797 				return true;
798 			break;
799 		default:
800 			break;
801 		case NVME_CTRL_DEAD:
802 			return false;
803 		}
804 	}
805 
806 	return queue_live;
807 }
808 EXPORT_SYMBOL_GPL(__nvme_check_ready);
809 
810 static inline void nvme_setup_flush(struct nvme_ns *ns,
811 		struct nvme_command *cmnd)
812 {
813 	memset(cmnd, 0, sizeof(*cmnd));
814 	cmnd->common.opcode = nvme_cmd_flush;
815 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
816 }
817 
818 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
819 		struct nvme_command *cmnd)
820 {
821 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
822 	struct nvme_dsm_range *range;
823 	struct bio *bio;
824 
825 	/*
826 	 * Some devices do not consider the DSM 'Number of Ranges' field when
827 	 * determining how much data to DMA. Always allocate memory for maximum
828 	 * number of segments to prevent device reading beyond end of buffer.
829 	 */
830 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
831 
832 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
833 	if (!range) {
834 		/*
835 		 * If we fail allocation our range, fallback to the controller
836 		 * discard page. If that's also busy, it's safe to return
837 		 * busy, as we know we can make progress once that's freed.
838 		 */
839 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
840 			return BLK_STS_RESOURCE;
841 
842 		range = page_address(ns->ctrl->discard_page);
843 	}
844 
845 	if (queue_max_discard_segments(req->q) == 1) {
846 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
847 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
848 
849 		range[0].cattr = cpu_to_le32(0);
850 		range[0].nlb = cpu_to_le32(nlb);
851 		range[0].slba = cpu_to_le64(slba);
852 		n = 1;
853 	} else {
854 		__rq_for_each_bio(bio, req) {
855 			u64 slba = nvme_sect_to_lba(ns->head,
856 						    bio->bi_iter.bi_sector);
857 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
858 
859 			if (n < segments) {
860 				range[n].cattr = cpu_to_le32(0);
861 				range[n].nlb = cpu_to_le32(nlb);
862 				range[n].slba = cpu_to_le64(slba);
863 			}
864 			n++;
865 		}
866 	}
867 
868 	if (WARN_ON_ONCE(n != segments)) {
869 		if (virt_to_page(range) == ns->ctrl->discard_page)
870 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
871 		else
872 			kfree(range);
873 		return BLK_STS_IOERR;
874 	}
875 
876 	memset(cmnd, 0, sizeof(*cmnd));
877 	cmnd->dsm.opcode = nvme_cmd_dsm;
878 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
879 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
880 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
881 
882 	bvec_set_virt(&req->special_vec, range, alloc_size);
883 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
884 
885 	return BLK_STS_OK;
886 }
887 
888 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
889 			      struct request *req)
890 {
891 	u32 upper, lower;
892 	u64 ref48;
893 
894 	/* both rw and write zeroes share the same reftag format */
895 	switch (ns->head->guard_type) {
896 	case NVME_NVM_NS_16B_GUARD:
897 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
898 		break;
899 	case NVME_NVM_NS_64B_GUARD:
900 		ref48 = ext_pi_ref_tag(req);
901 		lower = lower_32_bits(ref48);
902 		upper = upper_32_bits(ref48);
903 
904 		cmnd->rw.reftag = cpu_to_le32(lower);
905 		cmnd->rw.cdw3 = cpu_to_le32(upper);
906 		break;
907 	default:
908 		break;
909 	}
910 }
911 
912 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
913 		struct request *req, struct nvme_command *cmnd)
914 {
915 	memset(cmnd, 0, sizeof(*cmnd));
916 
917 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
918 		return nvme_setup_discard(ns, req, cmnd);
919 
920 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
921 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
922 	cmnd->write_zeroes.slba =
923 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
924 	cmnd->write_zeroes.length =
925 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
926 
927 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
928 	    (ns->head->features & NVME_NS_DEAC))
929 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
930 
931 	if (nvme_ns_has_pi(ns->head)) {
932 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
933 
934 		switch (ns->head->pi_type) {
935 		case NVME_NS_DPS_PI_TYPE1:
936 		case NVME_NS_DPS_PI_TYPE2:
937 			nvme_set_ref_tag(ns, cmnd, req);
938 			break;
939 		}
940 	}
941 
942 	return BLK_STS_OK;
943 }
944 
945 /*
946  * NVMe does not support a dedicated command to issue an atomic write. A write
947  * which does adhere to the device atomic limits will silently be executed
948  * non-atomically. The request issuer should ensure that the write is within
949  * the queue atomic writes limits, but just validate this in case it is not.
950  */
951 static bool nvme_valid_atomic_write(struct request *req)
952 {
953 	struct request_queue *q = req->q;
954 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
955 
956 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
957 		return false;
958 
959 	if (boundary_bytes) {
960 		u64 mask = boundary_bytes - 1, imask = ~mask;
961 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
962 		u64 end = start + blk_rq_bytes(req) - 1;
963 
964 		/* If greater then must be crossing a boundary */
965 		if (blk_rq_bytes(req) > boundary_bytes)
966 			return false;
967 
968 		if ((start & imask) != (end & imask))
969 			return false;
970 	}
971 
972 	return true;
973 }
974 
975 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
976 		struct request *req, struct nvme_command *cmnd,
977 		enum nvme_opcode op)
978 {
979 	u16 control = 0;
980 	u32 dsmgmt = 0;
981 
982 	if (req->cmd_flags & REQ_FUA)
983 		control |= NVME_RW_FUA;
984 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
985 		control |= NVME_RW_LR;
986 
987 	if (req->cmd_flags & REQ_RAHEAD)
988 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
989 
990 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
991 		return BLK_STS_INVAL;
992 
993 	cmnd->rw.opcode = op;
994 	cmnd->rw.flags = 0;
995 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
996 	cmnd->rw.cdw2 = 0;
997 	cmnd->rw.cdw3 = 0;
998 	cmnd->rw.metadata = 0;
999 	cmnd->rw.slba =
1000 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1001 	cmnd->rw.length =
1002 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1003 	cmnd->rw.reftag = 0;
1004 	cmnd->rw.lbat = 0;
1005 	cmnd->rw.lbatm = 0;
1006 
1007 	if (ns->head->ms) {
1008 		/*
1009 		 * If formated with metadata, the block layer always provides a
1010 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1011 		 * we enable the PRACT bit for protection information or set the
1012 		 * namespace capacity to zero to prevent any I/O.
1013 		 */
1014 		if (!blk_integrity_rq(req)) {
1015 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1016 				return BLK_STS_NOTSUPP;
1017 			control |= NVME_RW_PRINFO_PRACT;
1018 		}
1019 
1020 		switch (ns->head->pi_type) {
1021 		case NVME_NS_DPS_PI_TYPE3:
1022 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1023 			break;
1024 		case NVME_NS_DPS_PI_TYPE1:
1025 		case NVME_NS_DPS_PI_TYPE2:
1026 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
1027 					NVME_RW_PRINFO_PRCHK_REF;
1028 			if (op == nvme_cmd_zone_append)
1029 				control |= NVME_RW_APPEND_PIREMAP;
1030 			nvme_set_ref_tag(ns, cmnd, req);
1031 			break;
1032 		}
1033 	}
1034 
1035 	cmnd->rw.control = cpu_to_le16(control);
1036 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1037 	return 0;
1038 }
1039 
1040 void nvme_cleanup_cmd(struct request *req)
1041 {
1042 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1043 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1044 
1045 		if (req->special_vec.bv_page == ctrl->discard_page)
1046 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1047 		else
1048 			kfree(bvec_virt(&req->special_vec));
1049 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1050 	}
1051 }
1052 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1053 
1054 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1055 {
1056 	struct nvme_command *cmd = nvme_req(req)->cmd;
1057 	blk_status_t ret = BLK_STS_OK;
1058 
1059 	if (!(req->rq_flags & RQF_DONTPREP))
1060 		nvme_clear_nvme_request(req);
1061 
1062 	switch (req_op(req)) {
1063 	case REQ_OP_DRV_IN:
1064 	case REQ_OP_DRV_OUT:
1065 		/* these are setup prior to execution in nvme_init_request() */
1066 		break;
1067 	case REQ_OP_FLUSH:
1068 		nvme_setup_flush(ns, cmd);
1069 		break;
1070 	case REQ_OP_ZONE_RESET_ALL:
1071 	case REQ_OP_ZONE_RESET:
1072 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1073 		break;
1074 	case REQ_OP_ZONE_OPEN:
1075 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1076 		break;
1077 	case REQ_OP_ZONE_CLOSE:
1078 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1079 		break;
1080 	case REQ_OP_ZONE_FINISH:
1081 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1082 		break;
1083 	case REQ_OP_WRITE_ZEROES:
1084 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1085 		break;
1086 	case REQ_OP_DISCARD:
1087 		ret = nvme_setup_discard(ns, req, cmd);
1088 		break;
1089 	case REQ_OP_READ:
1090 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1091 		break;
1092 	case REQ_OP_WRITE:
1093 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1094 		break;
1095 	case REQ_OP_ZONE_APPEND:
1096 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1097 		break;
1098 	default:
1099 		WARN_ON_ONCE(1);
1100 		return BLK_STS_IOERR;
1101 	}
1102 
1103 	cmd->common.command_id = nvme_cid(req);
1104 	trace_nvme_setup_cmd(req, cmd);
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1108 
1109 /*
1110  * Return values:
1111  * 0:  success
1112  * >0: nvme controller's cqe status response
1113  * <0: kernel error in lieu of controller response
1114  */
1115 int nvme_execute_rq(struct request *rq, bool at_head)
1116 {
1117 	blk_status_t status;
1118 
1119 	status = blk_execute_rq(rq, at_head);
1120 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1121 		return -EINTR;
1122 	if (nvme_req(rq)->status)
1123 		return nvme_req(rq)->status;
1124 	return blk_status_to_errno(status);
1125 }
1126 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1127 
1128 /*
1129  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1130  * if the result is positive, it's an NVM Express status code
1131  */
1132 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1133 		union nvme_result *result, void *buffer, unsigned bufflen,
1134 		int qid, nvme_submit_flags_t flags)
1135 {
1136 	struct request *req;
1137 	int ret;
1138 	blk_mq_req_flags_t blk_flags = 0;
1139 
1140 	if (flags & NVME_SUBMIT_NOWAIT)
1141 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1142 	if (flags & NVME_SUBMIT_RESERVED)
1143 		blk_flags |= BLK_MQ_REQ_RESERVED;
1144 	if (qid == NVME_QID_ANY)
1145 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1146 	else
1147 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1148 						qid - 1);
1149 
1150 	if (IS_ERR(req))
1151 		return PTR_ERR(req);
1152 	nvme_init_request(req, cmd);
1153 	if (flags & NVME_SUBMIT_RETRY)
1154 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1155 
1156 	if (buffer && bufflen) {
1157 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1158 		if (ret)
1159 			goto out;
1160 	}
1161 
1162 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1163 	if (result && ret >= 0)
1164 		*result = nvme_req(req)->result;
1165  out:
1166 	blk_mq_free_request(req);
1167 	return ret;
1168 }
1169 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1170 
1171 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1172 		void *buffer, unsigned bufflen)
1173 {
1174 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1175 			NVME_QID_ANY, 0);
1176 }
1177 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1178 
1179 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1180 {
1181 	u32 effects = 0;
1182 
1183 	if (ns) {
1184 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1185 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1186 			dev_warn_once(ctrl->device,
1187 				"IO command:%02x has unusual effects:%08x\n",
1188 				opcode, effects);
1189 
1190 		/*
1191 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1192 		 * which would deadlock when done on an I/O command.  Note that
1193 		 * We already warn about an unusual effect above.
1194 		 */
1195 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1196 	} else {
1197 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1198 
1199 		/* Ignore execution restrictions if any relaxation bits are set */
1200 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1201 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1202 	}
1203 
1204 	return effects;
1205 }
1206 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1207 
1208 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1209 {
1210 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1211 
1212 	/*
1213 	 * For simplicity, IO to all namespaces is quiesced even if the command
1214 	 * effects say only one namespace is affected.
1215 	 */
1216 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1217 		mutex_lock(&ctrl->scan_lock);
1218 		mutex_lock(&ctrl->subsys->lock);
1219 		nvme_mpath_start_freeze(ctrl->subsys);
1220 		nvme_mpath_wait_freeze(ctrl->subsys);
1221 		nvme_start_freeze(ctrl);
1222 		nvme_wait_freeze(ctrl);
1223 	}
1224 	return effects;
1225 }
1226 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1227 
1228 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1229 		       struct nvme_command *cmd, int status)
1230 {
1231 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1232 		nvme_unfreeze(ctrl);
1233 		nvme_mpath_unfreeze(ctrl->subsys);
1234 		mutex_unlock(&ctrl->subsys->lock);
1235 		mutex_unlock(&ctrl->scan_lock);
1236 	}
1237 	if (effects & NVME_CMD_EFFECTS_CCC) {
1238 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1239 				      &ctrl->flags)) {
1240 			dev_info(ctrl->device,
1241 "controller capabilities changed, reset may be required to take effect.\n");
1242 		}
1243 	}
1244 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1245 		nvme_queue_scan(ctrl);
1246 		flush_work(&ctrl->scan_work);
1247 	}
1248 	if (ns)
1249 		return;
1250 
1251 	switch (cmd->common.opcode) {
1252 	case nvme_admin_set_features:
1253 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1254 		case NVME_FEAT_KATO:
1255 			/*
1256 			 * Keep alive commands interval on the host should be
1257 			 * updated when KATO is modified by Set Features
1258 			 * commands.
1259 			 */
1260 			if (!status)
1261 				nvme_update_keep_alive(ctrl, cmd);
1262 			break;
1263 		default:
1264 			break;
1265 		}
1266 		break;
1267 	default:
1268 		break;
1269 	}
1270 }
1271 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1272 
1273 /*
1274  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1275  *
1276  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1277  *   accounting for transport roundtrip times [..].
1278  */
1279 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1280 {
1281 	unsigned long delay = ctrl->kato * HZ / 2;
1282 
1283 	/*
1284 	 * When using Traffic Based Keep Alive, we need to run
1285 	 * nvme_keep_alive_work at twice the normal frequency, as one
1286 	 * command completion can postpone sending a keep alive command
1287 	 * by up to twice the delay between runs.
1288 	 */
1289 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1290 		delay /= 2;
1291 	return delay;
1292 }
1293 
1294 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1295 {
1296 	unsigned long now = jiffies;
1297 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1298 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1299 
1300 	if (time_after(now, ka_next_check_tm))
1301 		delay = 0;
1302 	else
1303 		delay = ka_next_check_tm - now;
1304 
1305 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1306 }
1307 
1308 static void nvme_keep_alive_finish(struct request *rq,
1309 		blk_status_t status, struct nvme_ctrl *ctrl)
1310 {
1311 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1312 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1313 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1314 
1315 	/*
1316 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1317 	 * at the desired frequency.
1318 	 */
1319 	if (rtt <= delay) {
1320 		delay -= rtt;
1321 	} else {
1322 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1323 			 jiffies_to_msecs(rtt));
1324 		delay = 0;
1325 	}
1326 
1327 	if (status) {
1328 		dev_err(ctrl->device,
1329 			"failed nvme_keep_alive_end_io error=%d\n",
1330 				status);
1331 		return;
1332 	}
1333 
1334 	ctrl->ka_last_check_time = jiffies;
1335 	ctrl->comp_seen = false;
1336 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1337 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1338 }
1339 
1340 static void nvme_keep_alive_work(struct work_struct *work)
1341 {
1342 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1343 			struct nvme_ctrl, ka_work);
1344 	bool comp_seen = ctrl->comp_seen;
1345 	struct request *rq;
1346 	blk_status_t status;
1347 
1348 	ctrl->ka_last_check_time = jiffies;
1349 
1350 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1351 		dev_dbg(ctrl->device,
1352 			"reschedule traffic based keep-alive timer\n");
1353 		ctrl->comp_seen = false;
1354 		nvme_queue_keep_alive_work(ctrl);
1355 		return;
1356 	}
1357 
1358 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1359 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1360 	if (IS_ERR(rq)) {
1361 		/* allocation failure, reset the controller */
1362 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1363 		nvme_reset_ctrl(ctrl);
1364 		return;
1365 	}
1366 	nvme_init_request(rq, &ctrl->ka_cmd);
1367 
1368 	rq->timeout = ctrl->kato * HZ;
1369 	status = blk_execute_rq(rq, false);
1370 	nvme_keep_alive_finish(rq, status, ctrl);
1371 	blk_mq_free_request(rq);
1372 }
1373 
1374 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1375 {
1376 	if (unlikely(ctrl->kato == 0))
1377 		return;
1378 
1379 	nvme_queue_keep_alive_work(ctrl);
1380 }
1381 
1382 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1383 {
1384 	if (unlikely(ctrl->kato == 0))
1385 		return;
1386 
1387 	cancel_delayed_work_sync(&ctrl->ka_work);
1388 }
1389 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1390 
1391 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1392 				   struct nvme_command *cmd)
1393 {
1394 	unsigned int new_kato =
1395 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1396 
1397 	dev_info(ctrl->device,
1398 		 "keep alive interval updated from %u ms to %u ms\n",
1399 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1400 
1401 	nvme_stop_keep_alive(ctrl);
1402 	ctrl->kato = new_kato;
1403 	nvme_start_keep_alive(ctrl);
1404 }
1405 
1406 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1407 {
1408 	/*
1409 	 * The CNS field occupies a full byte starting with NVMe 1.2
1410 	 */
1411 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1412 		return true;
1413 
1414 	/*
1415 	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1416 	 * larger than that could get truncated and treated as an incorrect
1417 	 * value.
1418 	 *
1419 	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1420 	 * compliance, so they need to be quirked here.
1421 	 */
1422 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1423 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1424 		return cns <= 3;
1425 
1426 	/*
1427 	 * NVMe 1.0 used a single bit for the CNS value.
1428 	 */
1429 	return cns <= 1;
1430 }
1431 
1432 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1433 {
1434 	struct nvme_command c = { };
1435 	int error;
1436 
1437 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1438 	c.identify.opcode = nvme_admin_identify;
1439 	c.identify.cns = NVME_ID_CNS_CTRL;
1440 
1441 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1442 	if (!*id)
1443 		return -ENOMEM;
1444 
1445 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1446 			sizeof(struct nvme_id_ctrl));
1447 	if (error) {
1448 		kfree(*id);
1449 		*id = NULL;
1450 	}
1451 	return error;
1452 }
1453 
1454 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1455 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1456 {
1457 	const char *warn_str = "ctrl returned bogus length:";
1458 	void *data = cur;
1459 
1460 	switch (cur->nidt) {
1461 	case NVME_NIDT_EUI64:
1462 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1463 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1464 				 warn_str, cur->nidl);
1465 			return -1;
1466 		}
1467 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1468 			return NVME_NIDT_EUI64_LEN;
1469 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1470 		return NVME_NIDT_EUI64_LEN;
1471 	case NVME_NIDT_NGUID:
1472 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1473 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1474 				 warn_str, cur->nidl);
1475 			return -1;
1476 		}
1477 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1478 			return NVME_NIDT_NGUID_LEN;
1479 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1480 		return NVME_NIDT_NGUID_LEN;
1481 	case NVME_NIDT_UUID:
1482 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1483 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1484 				 warn_str, cur->nidl);
1485 			return -1;
1486 		}
1487 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1488 			return NVME_NIDT_UUID_LEN;
1489 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1490 		return NVME_NIDT_UUID_LEN;
1491 	case NVME_NIDT_CSI:
1492 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1493 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1494 				 warn_str, cur->nidl);
1495 			return -1;
1496 		}
1497 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1498 		*csi_seen = true;
1499 		return NVME_NIDT_CSI_LEN;
1500 	default:
1501 		/* Skip unknown types */
1502 		return cur->nidl;
1503 	}
1504 }
1505 
1506 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1507 		struct nvme_ns_info *info)
1508 {
1509 	struct nvme_command c = { };
1510 	bool csi_seen = false;
1511 	int status, pos, len;
1512 	void *data;
1513 
1514 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1515 		return 0;
1516 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1517 		return 0;
1518 
1519 	c.identify.opcode = nvme_admin_identify;
1520 	c.identify.nsid = cpu_to_le32(info->nsid);
1521 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1522 
1523 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1524 	if (!data)
1525 		return -ENOMEM;
1526 
1527 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1528 				      NVME_IDENTIFY_DATA_SIZE);
1529 	if (status) {
1530 		dev_warn(ctrl->device,
1531 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1532 			info->nsid, status);
1533 		goto free_data;
1534 	}
1535 
1536 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1537 		struct nvme_ns_id_desc *cur = data + pos;
1538 
1539 		if (cur->nidl == 0)
1540 			break;
1541 
1542 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1543 		if (len < 0)
1544 			break;
1545 
1546 		len += sizeof(*cur);
1547 	}
1548 
1549 	if (nvme_multi_css(ctrl) && !csi_seen) {
1550 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1551 			 info->nsid);
1552 		status = -EINVAL;
1553 	}
1554 
1555 free_data:
1556 	kfree(data);
1557 	return status;
1558 }
1559 
1560 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1561 			struct nvme_id_ns **id)
1562 {
1563 	struct nvme_command c = { };
1564 	int error;
1565 
1566 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1567 	c.identify.opcode = nvme_admin_identify;
1568 	c.identify.nsid = cpu_to_le32(nsid);
1569 	c.identify.cns = NVME_ID_CNS_NS;
1570 
1571 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1572 	if (!*id)
1573 		return -ENOMEM;
1574 
1575 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1576 	if (error) {
1577 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1578 		kfree(*id);
1579 		*id = NULL;
1580 	}
1581 	return error;
1582 }
1583 
1584 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1585 		struct nvme_ns_info *info)
1586 {
1587 	struct nvme_ns_ids *ids = &info->ids;
1588 	struct nvme_id_ns *id;
1589 	int ret;
1590 
1591 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1592 	if (ret)
1593 		return ret;
1594 
1595 	if (id->ncap == 0) {
1596 		/* namespace not allocated or attached */
1597 		info->is_removed = true;
1598 		ret = -ENODEV;
1599 		goto error;
1600 	}
1601 
1602 	info->anagrpid = id->anagrpid;
1603 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1604 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1605 	info->is_ready = true;
1606 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1607 		dev_info(ctrl->device,
1608 			 "Ignoring bogus Namespace Identifiers\n");
1609 	} else {
1610 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1611 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1612 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1613 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1614 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1615 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1616 	}
1617 
1618 error:
1619 	kfree(id);
1620 	return ret;
1621 }
1622 
1623 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1624 		struct nvme_ns_info *info)
1625 {
1626 	struct nvme_id_ns_cs_indep *id;
1627 	struct nvme_command c = {
1628 		.identify.opcode	= nvme_admin_identify,
1629 		.identify.nsid		= cpu_to_le32(info->nsid),
1630 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1631 	};
1632 	int ret;
1633 
1634 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1635 	if (!id)
1636 		return -ENOMEM;
1637 
1638 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1639 	if (!ret) {
1640 		info->anagrpid = id->anagrpid;
1641 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1642 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1643 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1644 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1645 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1646 	}
1647 	kfree(id);
1648 	return ret;
1649 }
1650 
1651 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1652 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1653 {
1654 	union nvme_result res = { 0 };
1655 	struct nvme_command c = { };
1656 	int ret;
1657 
1658 	c.features.opcode = op;
1659 	c.features.fid = cpu_to_le32(fid);
1660 	c.features.dword11 = cpu_to_le32(dword11);
1661 
1662 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1663 			buffer, buflen, NVME_QID_ANY, 0);
1664 	if (ret >= 0 && result)
1665 		*result = le32_to_cpu(res.u32);
1666 	return ret;
1667 }
1668 
1669 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1670 		      unsigned int dword11, void *buffer, size_t buflen,
1671 		      u32 *result)
1672 {
1673 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1674 			     buflen, result);
1675 }
1676 EXPORT_SYMBOL_GPL(nvme_set_features);
1677 
1678 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1679 		      unsigned int dword11, void *buffer, size_t buflen,
1680 		      u32 *result)
1681 {
1682 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1683 			     buflen, result);
1684 }
1685 EXPORT_SYMBOL_GPL(nvme_get_features);
1686 
1687 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1688 {
1689 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1690 	u32 result;
1691 	int status, nr_io_queues;
1692 
1693 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1694 			&result);
1695 	if (status < 0)
1696 		return status;
1697 
1698 	/*
1699 	 * Degraded controllers might return an error when setting the queue
1700 	 * count.  We still want to be able to bring them online and offer
1701 	 * access to the admin queue, as that might be only way to fix them up.
1702 	 */
1703 	if (status > 0) {
1704 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1705 		*count = 0;
1706 	} else {
1707 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1708 		*count = min(*count, nr_io_queues);
1709 	}
1710 
1711 	return 0;
1712 }
1713 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1714 
1715 #define NVME_AEN_SUPPORTED \
1716 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1717 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1718 
1719 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1720 {
1721 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1722 	int status;
1723 
1724 	if (!supported_aens)
1725 		return;
1726 
1727 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1728 			NULL, 0, &result);
1729 	if (status)
1730 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1731 			 supported_aens);
1732 
1733 	queue_work(nvme_wq, &ctrl->async_event_work);
1734 }
1735 
1736 static int nvme_ns_open(struct nvme_ns *ns)
1737 {
1738 
1739 	/* should never be called due to GENHD_FL_HIDDEN */
1740 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1741 		goto fail;
1742 	if (!nvme_get_ns(ns))
1743 		goto fail;
1744 	if (!try_module_get(ns->ctrl->ops->module))
1745 		goto fail_put_ns;
1746 
1747 	return 0;
1748 
1749 fail_put_ns:
1750 	nvme_put_ns(ns);
1751 fail:
1752 	return -ENXIO;
1753 }
1754 
1755 static void nvme_ns_release(struct nvme_ns *ns)
1756 {
1757 
1758 	module_put(ns->ctrl->ops->module);
1759 	nvme_put_ns(ns);
1760 }
1761 
1762 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1763 {
1764 	return nvme_ns_open(disk->private_data);
1765 }
1766 
1767 static void nvme_release(struct gendisk *disk)
1768 {
1769 	nvme_ns_release(disk->private_data);
1770 }
1771 
1772 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1773 {
1774 	/* some standard values */
1775 	geo->heads = 1 << 6;
1776 	geo->sectors = 1 << 5;
1777 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1778 	return 0;
1779 }
1780 
1781 static bool nvme_init_integrity(struct nvme_ns_head *head,
1782 		struct queue_limits *lim, struct nvme_ns_info *info)
1783 {
1784 	struct blk_integrity *bi = &lim->integrity;
1785 
1786 	memset(bi, 0, sizeof(*bi));
1787 
1788 	if (!head->ms)
1789 		return true;
1790 
1791 	/*
1792 	 * PI can always be supported as we can ask the controller to simply
1793 	 * insert/strip it, which is not possible for other kinds of metadata.
1794 	 */
1795 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1796 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1797 		return nvme_ns_has_pi(head);
1798 
1799 	switch (head->pi_type) {
1800 	case NVME_NS_DPS_PI_TYPE3:
1801 		switch (head->guard_type) {
1802 		case NVME_NVM_NS_16B_GUARD:
1803 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1804 			bi->tag_size = sizeof(u16) + sizeof(u32);
1805 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1806 			break;
1807 		case NVME_NVM_NS_64B_GUARD:
1808 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1809 			bi->tag_size = sizeof(u16) + 6;
1810 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1811 			break;
1812 		default:
1813 			break;
1814 		}
1815 		break;
1816 	case NVME_NS_DPS_PI_TYPE1:
1817 	case NVME_NS_DPS_PI_TYPE2:
1818 		switch (head->guard_type) {
1819 		case NVME_NVM_NS_16B_GUARD:
1820 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1821 			bi->tag_size = sizeof(u16);
1822 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1823 				     BLK_INTEGRITY_REF_TAG;
1824 			break;
1825 		case NVME_NVM_NS_64B_GUARD:
1826 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1827 			bi->tag_size = sizeof(u16);
1828 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1829 				     BLK_INTEGRITY_REF_TAG;
1830 			break;
1831 		default:
1832 			break;
1833 		}
1834 		break;
1835 	default:
1836 		break;
1837 	}
1838 
1839 	bi->tuple_size = head->ms;
1840 	bi->pi_offset = info->pi_offset;
1841 	return true;
1842 }
1843 
1844 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1845 {
1846 	struct nvme_ctrl *ctrl = ns->ctrl;
1847 
1848 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1849 		lim->max_hw_discard_sectors =
1850 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1851 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1852 		lim->max_hw_discard_sectors = UINT_MAX;
1853 	else
1854 		lim->max_hw_discard_sectors = 0;
1855 
1856 	lim->discard_granularity = lim->logical_block_size;
1857 
1858 	if (ctrl->dmrl)
1859 		lim->max_discard_segments = ctrl->dmrl;
1860 	else
1861 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1862 }
1863 
1864 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1865 {
1866 	return uuid_equal(&a->uuid, &b->uuid) &&
1867 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1868 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1869 		a->csi == b->csi;
1870 }
1871 
1872 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1873 		struct nvme_id_ns_nvm **nvmp)
1874 {
1875 	struct nvme_command c = {
1876 		.identify.opcode	= nvme_admin_identify,
1877 		.identify.nsid		= cpu_to_le32(nsid),
1878 		.identify.cns		= NVME_ID_CNS_CS_NS,
1879 		.identify.csi		= NVME_CSI_NVM,
1880 	};
1881 	struct nvme_id_ns_nvm *nvm;
1882 	int ret;
1883 
1884 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1885 	if (!nvm)
1886 		return -ENOMEM;
1887 
1888 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1889 	if (ret)
1890 		kfree(nvm);
1891 	else
1892 		*nvmp = nvm;
1893 	return ret;
1894 }
1895 
1896 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1897 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1898 {
1899 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1900 	u8 guard_type;
1901 
1902 	/* no support for storage tag formats right now */
1903 	if (nvme_elbaf_sts(elbaf))
1904 		return;
1905 
1906 	guard_type = nvme_elbaf_guard_type(elbaf);
1907 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1908 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1909 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1910 
1911 	head->guard_type = guard_type;
1912 	switch (head->guard_type) {
1913 	case NVME_NVM_NS_64B_GUARD:
1914 		head->pi_size = sizeof(struct crc64_pi_tuple);
1915 		break;
1916 	case NVME_NVM_NS_16B_GUARD:
1917 		head->pi_size = sizeof(struct t10_pi_tuple);
1918 		break;
1919 	default:
1920 		break;
1921 	}
1922 }
1923 
1924 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1925 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1926 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1927 {
1928 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1929 	head->pi_type = 0;
1930 	head->pi_size = 0;
1931 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1932 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1933 		return;
1934 
1935 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1936 		nvme_configure_pi_elbas(head, id, nvm);
1937 	} else {
1938 		head->pi_size = sizeof(struct t10_pi_tuple);
1939 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1940 	}
1941 
1942 	if (head->pi_size && head->ms >= head->pi_size)
1943 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1944 	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1945 		if (disable_pi_offsets)
1946 			head->pi_type = 0;
1947 		else
1948 			info->pi_offset = head->ms - head->pi_size;
1949 	}
1950 
1951 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1952 		/*
1953 		 * The NVMe over Fabrics specification only supports metadata as
1954 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1955 		 * remap the separate metadata buffer from the block layer.
1956 		 */
1957 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1958 			return;
1959 
1960 		head->features |= NVME_NS_EXT_LBAS;
1961 
1962 		/*
1963 		 * The current fabrics transport drivers support namespace
1964 		 * metadata formats only if nvme_ns_has_pi() returns true.
1965 		 * Suppress support for all other formats so the namespace will
1966 		 * have a 0 capacity and not be usable through the block stack.
1967 		 *
1968 		 * Note, this check will need to be modified if any drivers
1969 		 * gain the ability to use other metadata formats.
1970 		 */
1971 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1972 			head->features |= NVME_NS_METADATA_SUPPORTED;
1973 	} else {
1974 		/*
1975 		 * For PCIe controllers, we can't easily remap the separate
1976 		 * metadata buffer from the block layer and thus require a
1977 		 * separate metadata buffer for block layer metadata/PI support.
1978 		 * We allow extended LBAs for the passthrough interface, though.
1979 		 */
1980 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1981 			head->features |= NVME_NS_EXT_LBAS;
1982 		else
1983 			head->features |= NVME_NS_METADATA_SUPPORTED;
1984 	}
1985 }
1986 
1987 
1988 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1989 			struct nvme_id_ns *id, struct queue_limits *lim,
1990 			u32 bs, u32 atomic_bs)
1991 {
1992 	unsigned int boundary = 0;
1993 
1994 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1995 		if (le16_to_cpu(id->nabspf))
1996 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
1997 	}
1998 	lim->atomic_write_hw_max = atomic_bs;
1999 	lim->atomic_write_hw_boundary = boundary;
2000 	lim->atomic_write_hw_unit_min = bs;
2001 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2002 }
2003 
2004 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2005 {
2006 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2007 }
2008 
2009 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2010 		struct queue_limits *lim)
2011 {
2012 	lim->max_hw_sectors = ctrl->max_hw_sectors;
2013 	lim->max_segments = min_t(u32, USHRT_MAX,
2014 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2015 	lim->max_integrity_segments = ctrl->max_integrity_segments;
2016 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2017 	lim->max_segment_size = UINT_MAX;
2018 	lim->dma_alignment = 3;
2019 }
2020 
2021 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2022 		struct queue_limits *lim)
2023 {
2024 	struct nvme_ns_head *head = ns->head;
2025 	u32 bs = 1U << head->lba_shift;
2026 	u32 atomic_bs, phys_bs, io_opt = 0;
2027 	bool valid = true;
2028 
2029 	/*
2030 	 * The block layer can't support LBA sizes larger than the page size
2031 	 * or smaller than a sector size yet, so catch this early and don't
2032 	 * allow block I/O.
2033 	 */
2034 	if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) {
2035 		bs = (1 << 9);
2036 		valid = false;
2037 	}
2038 
2039 	atomic_bs = phys_bs = bs;
2040 	if (id->nabo == 0) {
2041 		/*
2042 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2043 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2044 		 * 0 then AWUPF must be used instead.
2045 		 */
2046 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2047 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2048 		else
2049 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2050 
2051 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2052 	}
2053 
2054 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2055 		/* NPWG = Namespace Preferred Write Granularity */
2056 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2057 		/* NOWS = Namespace Optimal Write Size */
2058 		if (id->nows)
2059 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2060 	}
2061 
2062 	/*
2063 	 * Linux filesystems assume writing a single physical block is
2064 	 * an atomic operation. Hence limit the physical block size to the
2065 	 * value of the Atomic Write Unit Power Fail parameter.
2066 	 */
2067 	lim->logical_block_size = bs;
2068 	lim->physical_block_size = min(phys_bs, atomic_bs);
2069 	lim->io_min = phys_bs;
2070 	lim->io_opt = io_opt;
2071 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
2072 		lim->max_write_zeroes_sectors = UINT_MAX;
2073 	else
2074 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2075 	return valid;
2076 }
2077 
2078 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2079 {
2080 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2081 }
2082 
2083 static inline bool nvme_first_scan(struct gendisk *disk)
2084 {
2085 	/* nvme_alloc_ns() scans the disk prior to adding it */
2086 	return !disk_live(disk);
2087 }
2088 
2089 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2090 		struct queue_limits *lim)
2091 {
2092 	struct nvme_ctrl *ctrl = ns->ctrl;
2093 	u32 iob;
2094 
2095 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2096 	    is_power_of_2(ctrl->max_hw_sectors))
2097 		iob = ctrl->max_hw_sectors;
2098 	else
2099 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2100 
2101 	if (!iob)
2102 		return;
2103 
2104 	if (!is_power_of_2(iob)) {
2105 		if (nvme_first_scan(ns->disk))
2106 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2107 				ns->disk->disk_name, iob);
2108 		return;
2109 	}
2110 
2111 	if (blk_queue_is_zoned(ns->disk->queue)) {
2112 		if (nvme_first_scan(ns->disk))
2113 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2114 				ns->disk->disk_name);
2115 		return;
2116 	}
2117 
2118 	lim->chunk_sectors = iob;
2119 }
2120 
2121 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2122 		struct nvme_ns_info *info)
2123 {
2124 	struct queue_limits lim;
2125 	int ret;
2126 
2127 	blk_mq_freeze_queue(ns->disk->queue);
2128 	lim = queue_limits_start_update(ns->disk->queue);
2129 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2130 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2131 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2132 	blk_mq_unfreeze_queue(ns->disk->queue);
2133 
2134 	/* Hide the block-interface for these devices */
2135 	if (!ret)
2136 		ret = -ENODEV;
2137 	return ret;
2138 }
2139 
2140 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2141 		struct nvme_ns_info *info)
2142 {
2143 	struct queue_limits lim;
2144 	struct nvme_id_ns_nvm *nvm = NULL;
2145 	struct nvme_zone_info zi = {};
2146 	struct nvme_id_ns *id;
2147 	sector_t capacity;
2148 	unsigned lbaf;
2149 	int ret;
2150 
2151 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2152 	if (ret)
2153 		return ret;
2154 
2155 	if (id->ncap == 0) {
2156 		/* namespace not allocated or attached */
2157 		info->is_removed = true;
2158 		ret = -ENXIO;
2159 		goto out;
2160 	}
2161 	lbaf = nvme_lbaf_index(id->flbas);
2162 
2163 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2164 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2165 		if (ret < 0)
2166 			goto out;
2167 	}
2168 
2169 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2170 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2171 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2172 		if (ret < 0)
2173 			goto out;
2174 	}
2175 
2176 	blk_mq_freeze_queue(ns->disk->queue);
2177 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2178 	ns->head->nuse = le64_to_cpu(id->nuse);
2179 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2180 
2181 	lim = queue_limits_start_update(ns->disk->queue);
2182 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2183 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2184 	nvme_set_chunk_sectors(ns, id, &lim);
2185 	if (!nvme_update_disk_info(ns, id, &lim))
2186 		capacity = 0;
2187 	nvme_config_discard(ns, &lim);
2188 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2189 	    ns->head->ids.csi == NVME_CSI_ZNS)
2190 		nvme_update_zone_info(ns, &lim, &zi);
2191 
2192 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2193 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2194 	else
2195 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2196 
2197 	if (info->is_rotational)
2198 		lim.features |= BLK_FEAT_ROTATIONAL;
2199 
2200 	/*
2201 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2202 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2203 	 * I/O to namespaces with metadata except when the namespace supports
2204 	 * PI, as it can strip/insert in that case.
2205 	 */
2206 	if (!nvme_init_integrity(ns->head, &lim, info))
2207 		capacity = 0;
2208 
2209 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2210 	if (ret) {
2211 		blk_mq_unfreeze_queue(ns->disk->queue);
2212 		goto out;
2213 	}
2214 
2215 	set_capacity_and_notify(ns->disk, capacity);
2216 
2217 	/*
2218 	 * Only set the DEAC bit if the device guarantees that reads from
2219 	 * deallocated data return zeroes.  While the DEAC bit does not
2220 	 * require that, it must be a no-op if reads from deallocated data
2221 	 * do not return zeroes.
2222 	 */
2223 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2224 		ns->head->features |= NVME_NS_DEAC;
2225 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2226 	set_bit(NVME_NS_READY, &ns->flags);
2227 	blk_mq_unfreeze_queue(ns->disk->queue);
2228 
2229 	if (blk_queue_is_zoned(ns->queue)) {
2230 		ret = blk_revalidate_disk_zones(ns->disk);
2231 		if (ret && !nvme_first_scan(ns->disk))
2232 			goto out;
2233 	}
2234 
2235 	ret = 0;
2236 out:
2237 	kfree(nvm);
2238 	kfree(id);
2239 	return ret;
2240 }
2241 
2242 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2243 {
2244 	bool unsupported = false;
2245 	int ret;
2246 
2247 	switch (info->ids.csi) {
2248 	case NVME_CSI_ZNS:
2249 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2250 			dev_info(ns->ctrl->device,
2251 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2252 				info->nsid);
2253 			ret = nvme_update_ns_info_generic(ns, info);
2254 			break;
2255 		}
2256 		ret = nvme_update_ns_info_block(ns, info);
2257 		break;
2258 	case NVME_CSI_NVM:
2259 		ret = nvme_update_ns_info_block(ns, info);
2260 		break;
2261 	default:
2262 		dev_info(ns->ctrl->device,
2263 			"block device for nsid %u not supported (csi %u)\n",
2264 			info->nsid, info->ids.csi);
2265 		ret = nvme_update_ns_info_generic(ns, info);
2266 		break;
2267 	}
2268 
2269 	/*
2270 	 * If probing fails due an unsupported feature, hide the block device,
2271 	 * but still allow other access.
2272 	 */
2273 	if (ret == -ENODEV) {
2274 		ns->disk->flags |= GENHD_FL_HIDDEN;
2275 		set_bit(NVME_NS_READY, &ns->flags);
2276 		unsupported = true;
2277 		ret = 0;
2278 	}
2279 
2280 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2281 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2282 		struct queue_limits lim;
2283 
2284 		blk_mq_freeze_queue(ns->head->disk->queue);
2285 		/*
2286 		 * queue_limits mixes values that are the hardware limitations
2287 		 * for bio splitting with what is the device configuration.
2288 		 *
2289 		 * For NVMe the device configuration can change after e.g. a
2290 		 * Format command, and we really want to pick up the new format
2291 		 * value here.  But we must still stack the queue limits to the
2292 		 * least common denominator for multipathing to split the bios
2293 		 * properly.
2294 		 *
2295 		 * To work around this, we explicitly set the device
2296 		 * configuration to those that we just queried, but only stack
2297 		 * the splitting limits in to make sure we still obey possibly
2298 		 * lower limitations of other controllers.
2299 		 */
2300 		lim = queue_limits_start_update(ns->head->disk->queue);
2301 		lim.logical_block_size = ns_lim->logical_block_size;
2302 		lim.physical_block_size = ns_lim->physical_block_size;
2303 		lim.io_min = ns_lim->io_min;
2304 		lim.io_opt = ns_lim->io_opt;
2305 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2306 					ns->head->disk->disk_name);
2307 		if (unsupported)
2308 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2309 		else
2310 			nvme_init_integrity(ns->head, &lim, info);
2311 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2312 
2313 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2314 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2315 		nvme_mpath_revalidate_paths(ns);
2316 
2317 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2318 	}
2319 
2320 	return ret;
2321 }
2322 
2323 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2324 		enum blk_unique_id type)
2325 {
2326 	struct nvme_ns_ids *ids = &ns->head->ids;
2327 
2328 	if (type != BLK_UID_EUI64)
2329 		return -EINVAL;
2330 
2331 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2332 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2333 		return sizeof(ids->nguid);
2334 	}
2335 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2336 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2337 		return sizeof(ids->eui64);
2338 	}
2339 
2340 	return -EINVAL;
2341 }
2342 
2343 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2344 		enum blk_unique_id type)
2345 {
2346 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2347 }
2348 
2349 #ifdef CONFIG_BLK_SED_OPAL
2350 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2351 		bool send)
2352 {
2353 	struct nvme_ctrl *ctrl = data;
2354 	struct nvme_command cmd = { };
2355 
2356 	if (send)
2357 		cmd.common.opcode = nvme_admin_security_send;
2358 	else
2359 		cmd.common.opcode = nvme_admin_security_recv;
2360 	cmd.common.nsid = 0;
2361 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2362 	cmd.common.cdw11 = cpu_to_le32(len);
2363 
2364 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2365 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2366 }
2367 
2368 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2369 {
2370 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2371 		if (!ctrl->opal_dev)
2372 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2373 		else if (was_suspended)
2374 			opal_unlock_from_suspend(ctrl->opal_dev);
2375 	} else {
2376 		free_opal_dev(ctrl->opal_dev);
2377 		ctrl->opal_dev = NULL;
2378 	}
2379 }
2380 #else
2381 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2382 {
2383 }
2384 #endif /* CONFIG_BLK_SED_OPAL */
2385 
2386 #ifdef CONFIG_BLK_DEV_ZONED
2387 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2388 		unsigned int nr_zones, report_zones_cb cb, void *data)
2389 {
2390 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2391 			data);
2392 }
2393 #else
2394 #define nvme_report_zones	NULL
2395 #endif /* CONFIG_BLK_DEV_ZONED */
2396 
2397 const struct block_device_operations nvme_bdev_ops = {
2398 	.owner		= THIS_MODULE,
2399 	.ioctl		= nvme_ioctl,
2400 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2401 	.open		= nvme_open,
2402 	.release	= nvme_release,
2403 	.getgeo		= nvme_getgeo,
2404 	.get_unique_id	= nvme_get_unique_id,
2405 	.report_zones	= nvme_report_zones,
2406 	.pr_ops		= &nvme_pr_ops,
2407 };
2408 
2409 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2410 		u32 timeout, const char *op)
2411 {
2412 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2413 	u32 csts;
2414 	int ret;
2415 
2416 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2417 		if (csts == ~0)
2418 			return -ENODEV;
2419 		if ((csts & mask) == val)
2420 			break;
2421 
2422 		usleep_range(1000, 2000);
2423 		if (fatal_signal_pending(current))
2424 			return -EINTR;
2425 		if (time_after(jiffies, timeout_jiffies)) {
2426 			dev_err(ctrl->device,
2427 				"Device not ready; aborting %s, CSTS=0x%x\n",
2428 				op, csts);
2429 			return -ENODEV;
2430 		}
2431 	}
2432 
2433 	return ret;
2434 }
2435 
2436 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2437 {
2438 	int ret;
2439 
2440 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2441 	if (shutdown)
2442 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2443 	else
2444 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2445 
2446 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2447 	if (ret)
2448 		return ret;
2449 
2450 	if (shutdown) {
2451 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2452 				       NVME_CSTS_SHST_CMPLT,
2453 				       ctrl->shutdown_timeout, "shutdown");
2454 	}
2455 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2456 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2457 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2458 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2459 }
2460 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2461 
2462 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2463 {
2464 	unsigned dev_page_min;
2465 	u32 timeout;
2466 	int ret;
2467 
2468 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2469 	if (ret) {
2470 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2471 		return ret;
2472 	}
2473 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2474 
2475 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2476 		dev_err(ctrl->device,
2477 			"Minimum device page size %u too large for host (%u)\n",
2478 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2479 		return -ENODEV;
2480 	}
2481 
2482 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2483 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2484 	else
2485 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2486 
2487 	/*
2488 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2489 	 * makes it possible for media related commands to return the error
2490 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2491 	 * restructured to handle retries, disable CC.CRIME.
2492 	 */
2493 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2494 
2495 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2496 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2497 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2498 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2499 	if (ret)
2500 		return ret;
2501 
2502 	/* CAP value may change after initial CC write */
2503 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2504 	if (ret)
2505 		return ret;
2506 
2507 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2508 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2509 		u32 crto, ready_timeout;
2510 
2511 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2512 		if (ret) {
2513 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2514 				ret);
2515 			return ret;
2516 		}
2517 
2518 		/*
2519 		 * CRTO should always be greater or equal to CAP.TO, but some
2520 		 * devices are known to get this wrong. Use the larger of the
2521 		 * two values.
2522 		 */
2523 		ready_timeout = NVME_CRTO_CRWMT(crto);
2524 
2525 		if (ready_timeout < timeout)
2526 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2527 				      crto, ctrl->cap);
2528 		else
2529 			timeout = ready_timeout;
2530 	}
2531 
2532 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2533 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2534 	if (ret)
2535 		return ret;
2536 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2537 			       (timeout + 1) / 2, "initialisation");
2538 }
2539 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2540 
2541 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2542 {
2543 	__le64 ts;
2544 	int ret;
2545 
2546 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2547 		return 0;
2548 
2549 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2550 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2551 			NULL);
2552 	if (ret)
2553 		dev_warn_once(ctrl->device,
2554 			"could not set timestamp (%d)\n", ret);
2555 	return ret;
2556 }
2557 
2558 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2559 {
2560 	struct nvme_feat_host_behavior *host;
2561 	u8 acre = 0, lbafee = 0;
2562 	int ret;
2563 
2564 	/* Don't bother enabling the feature if retry delay is not reported */
2565 	if (ctrl->crdt[0])
2566 		acre = NVME_ENABLE_ACRE;
2567 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2568 		lbafee = NVME_ENABLE_LBAFEE;
2569 
2570 	if (!acre && !lbafee)
2571 		return 0;
2572 
2573 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2574 	if (!host)
2575 		return 0;
2576 
2577 	host->acre = acre;
2578 	host->lbafee = lbafee;
2579 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2580 				host, sizeof(*host), NULL);
2581 	kfree(host);
2582 	return ret;
2583 }
2584 
2585 /*
2586  * The function checks whether the given total (exlat + enlat) latency of
2587  * a power state allows the latter to be used as an APST transition target.
2588  * It does so by comparing the latency to the primary and secondary latency
2589  * tolerances defined by module params. If there's a match, the corresponding
2590  * timeout value is returned and the matching tolerance index (1 or 2) is
2591  * reported.
2592  */
2593 static bool nvme_apst_get_transition_time(u64 total_latency,
2594 		u64 *transition_time, unsigned *last_index)
2595 {
2596 	if (total_latency <= apst_primary_latency_tol_us) {
2597 		if (*last_index == 1)
2598 			return false;
2599 		*last_index = 1;
2600 		*transition_time = apst_primary_timeout_ms;
2601 		return true;
2602 	}
2603 	if (apst_secondary_timeout_ms &&
2604 		total_latency <= apst_secondary_latency_tol_us) {
2605 		if (*last_index <= 2)
2606 			return false;
2607 		*last_index = 2;
2608 		*transition_time = apst_secondary_timeout_ms;
2609 		return true;
2610 	}
2611 	return false;
2612 }
2613 
2614 /*
2615  * APST (Autonomous Power State Transition) lets us program a table of power
2616  * state transitions that the controller will perform automatically.
2617  *
2618  * Depending on module params, one of the two supported techniques will be used:
2619  *
2620  * - If the parameters provide explicit timeouts and tolerances, they will be
2621  *   used to build a table with up to 2 non-operational states to transition to.
2622  *   The default parameter values were selected based on the values used by
2623  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2624  *   regeneration of the APST table in the event of switching between external
2625  *   and battery power, the timeouts and tolerances reflect a compromise
2626  *   between values used by Microsoft for AC and battery scenarios.
2627  * - If not, we'll configure the table with a simple heuristic: we are willing
2628  *   to spend at most 2% of the time transitioning between power states.
2629  *   Therefore, when running in any given state, we will enter the next
2630  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2631  *   microseconds, as long as that state's exit latency is under the requested
2632  *   maximum latency.
2633  *
2634  * We will not autonomously enter any non-operational state for which the total
2635  * latency exceeds ps_max_latency_us.
2636  *
2637  * Users can set ps_max_latency_us to zero to turn off APST.
2638  */
2639 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2640 {
2641 	struct nvme_feat_auto_pst *table;
2642 	unsigned apste = 0;
2643 	u64 max_lat_us = 0;
2644 	__le64 target = 0;
2645 	int max_ps = -1;
2646 	int state;
2647 	int ret;
2648 	unsigned last_lt_index = UINT_MAX;
2649 
2650 	/*
2651 	 * If APST isn't supported or if we haven't been initialized yet,
2652 	 * then don't do anything.
2653 	 */
2654 	if (!ctrl->apsta)
2655 		return 0;
2656 
2657 	if (ctrl->npss > 31) {
2658 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2659 		return 0;
2660 	}
2661 
2662 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2663 	if (!table)
2664 		return 0;
2665 
2666 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2667 		/* Turn off APST. */
2668 		dev_dbg(ctrl->device, "APST disabled\n");
2669 		goto done;
2670 	}
2671 
2672 	/*
2673 	 * Walk through all states from lowest- to highest-power.
2674 	 * According to the spec, lower-numbered states use more power.  NPSS,
2675 	 * despite the name, is the index of the lowest-power state, not the
2676 	 * number of states.
2677 	 */
2678 	for (state = (int)ctrl->npss; state >= 0; state--) {
2679 		u64 total_latency_us, exit_latency_us, transition_ms;
2680 
2681 		if (target)
2682 			table->entries[state] = target;
2683 
2684 		/*
2685 		 * Don't allow transitions to the deepest state if it's quirked
2686 		 * off.
2687 		 */
2688 		if (state == ctrl->npss &&
2689 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2690 			continue;
2691 
2692 		/*
2693 		 * Is this state a useful non-operational state for higher-power
2694 		 * states to autonomously transition to?
2695 		 */
2696 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2697 			continue;
2698 
2699 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2700 		if (exit_latency_us > ctrl->ps_max_latency_us)
2701 			continue;
2702 
2703 		total_latency_us = exit_latency_us +
2704 			le32_to_cpu(ctrl->psd[state].entry_lat);
2705 
2706 		/*
2707 		 * This state is good. It can be used as the APST idle target
2708 		 * for higher power states.
2709 		 */
2710 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2711 			if (!nvme_apst_get_transition_time(total_latency_us,
2712 					&transition_ms, &last_lt_index))
2713 				continue;
2714 		} else {
2715 			transition_ms = total_latency_us + 19;
2716 			do_div(transition_ms, 20);
2717 			if (transition_ms > (1 << 24) - 1)
2718 				transition_ms = (1 << 24) - 1;
2719 		}
2720 
2721 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2722 		if (max_ps == -1)
2723 			max_ps = state;
2724 		if (total_latency_us > max_lat_us)
2725 			max_lat_us = total_latency_us;
2726 	}
2727 
2728 	if (max_ps == -1)
2729 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2730 	else
2731 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2732 			max_ps, max_lat_us, (int)sizeof(*table), table);
2733 	apste = 1;
2734 
2735 done:
2736 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2737 				table, sizeof(*table), NULL);
2738 	if (ret)
2739 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2740 	kfree(table);
2741 	return ret;
2742 }
2743 
2744 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2745 {
2746 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2747 	u64 latency;
2748 
2749 	switch (val) {
2750 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2751 	case PM_QOS_LATENCY_ANY:
2752 		latency = U64_MAX;
2753 		break;
2754 
2755 	default:
2756 		latency = val;
2757 	}
2758 
2759 	if (ctrl->ps_max_latency_us != latency) {
2760 		ctrl->ps_max_latency_us = latency;
2761 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2762 			nvme_configure_apst(ctrl);
2763 	}
2764 }
2765 
2766 struct nvme_core_quirk_entry {
2767 	/*
2768 	 * NVMe model and firmware strings are padded with spaces.  For
2769 	 * simplicity, strings in the quirk table are padded with NULLs
2770 	 * instead.
2771 	 */
2772 	u16 vid;
2773 	const char *mn;
2774 	const char *fr;
2775 	unsigned long quirks;
2776 };
2777 
2778 static const struct nvme_core_quirk_entry core_quirks[] = {
2779 	{
2780 		/*
2781 		 * This Toshiba device seems to die using any APST states.  See:
2782 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2783 		 */
2784 		.vid = 0x1179,
2785 		.mn = "THNSF5256GPUK TOSHIBA",
2786 		.quirks = NVME_QUIRK_NO_APST,
2787 	},
2788 	{
2789 		/*
2790 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2791 		 * condition associated with actions related to suspend to idle
2792 		 * LiteON has resolved the problem in future firmware
2793 		 */
2794 		.vid = 0x14a4,
2795 		.fr = "22301111",
2796 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2797 	},
2798 	{
2799 		/*
2800 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2801 		 * aborts I/O during any load, but more easily reproducible
2802 		 * with discards (fstrim).
2803 		 *
2804 		 * The device is left in a state where it is also not possible
2805 		 * to use "nvme set-feature" to disable APST, but booting with
2806 		 * nvme_core.default_ps_max_latency=0 works.
2807 		 */
2808 		.vid = 0x1e0f,
2809 		.mn = "KCD6XVUL6T40",
2810 		.quirks = NVME_QUIRK_NO_APST,
2811 	},
2812 	{
2813 		/*
2814 		 * The external Samsung X5 SSD fails initialization without a
2815 		 * delay before checking if it is ready and has a whole set of
2816 		 * other problems.  To make this even more interesting, it
2817 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2818 		 * does not need or want these quirks.
2819 		 */
2820 		.vid = 0x144d,
2821 		.mn = "Samsung Portable SSD X5",
2822 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2823 			  NVME_QUIRK_NO_DEEPEST_PS |
2824 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2825 	}
2826 };
2827 
2828 /* match is null-terminated but idstr is space-padded. */
2829 static bool string_matches(const char *idstr, const char *match, size_t len)
2830 {
2831 	size_t matchlen;
2832 
2833 	if (!match)
2834 		return true;
2835 
2836 	matchlen = strlen(match);
2837 	WARN_ON_ONCE(matchlen > len);
2838 
2839 	if (memcmp(idstr, match, matchlen))
2840 		return false;
2841 
2842 	for (; matchlen < len; matchlen++)
2843 		if (idstr[matchlen] != ' ')
2844 			return false;
2845 
2846 	return true;
2847 }
2848 
2849 static bool quirk_matches(const struct nvme_id_ctrl *id,
2850 			  const struct nvme_core_quirk_entry *q)
2851 {
2852 	return q->vid == le16_to_cpu(id->vid) &&
2853 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2854 		string_matches(id->fr, q->fr, sizeof(id->fr));
2855 }
2856 
2857 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2858 		struct nvme_id_ctrl *id)
2859 {
2860 	size_t nqnlen;
2861 	int off;
2862 
2863 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2864 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2865 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2866 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2867 			return;
2868 		}
2869 
2870 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2871 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2872 	}
2873 
2874 	/*
2875 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2876 	 * Base Specification 2.0.  It is slightly different from the format
2877 	 * specified there due to historic reasons, and we can't change it now.
2878 	 */
2879 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2880 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2881 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2882 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2883 	off += sizeof(id->sn);
2884 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2885 	off += sizeof(id->mn);
2886 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2887 }
2888 
2889 static void nvme_release_subsystem(struct device *dev)
2890 {
2891 	struct nvme_subsystem *subsys =
2892 		container_of(dev, struct nvme_subsystem, dev);
2893 
2894 	if (subsys->instance >= 0)
2895 		ida_free(&nvme_instance_ida, subsys->instance);
2896 	kfree(subsys);
2897 }
2898 
2899 static void nvme_destroy_subsystem(struct kref *ref)
2900 {
2901 	struct nvme_subsystem *subsys =
2902 			container_of(ref, struct nvme_subsystem, ref);
2903 
2904 	mutex_lock(&nvme_subsystems_lock);
2905 	list_del(&subsys->entry);
2906 	mutex_unlock(&nvme_subsystems_lock);
2907 
2908 	ida_destroy(&subsys->ns_ida);
2909 	device_del(&subsys->dev);
2910 	put_device(&subsys->dev);
2911 }
2912 
2913 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2914 {
2915 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2916 }
2917 
2918 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2919 {
2920 	struct nvme_subsystem *subsys;
2921 
2922 	lockdep_assert_held(&nvme_subsystems_lock);
2923 
2924 	/*
2925 	 * Fail matches for discovery subsystems. This results
2926 	 * in each discovery controller bound to a unique subsystem.
2927 	 * This avoids issues with validating controller values
2928 	 * that can only be true when there is a single unique subsystem.
2929 	 * There may be multiple and completely independent entities
2930 	 * that provide discovery controllers.
2931 	 */
2932 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2933 		return NULL;
2934 
2935 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2936 		if (strcmp(subsys->subnqn, subsysnqn))
2937 			continue;
2938 		if (!kref_get_unless_zero(&subsys->ref))
2939 			continue;
2940 		return subsys;
2941 	}
2942 
2943 	return NULL;
2944 }
2945 
2946 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2947 {
2948 	return ctrl->opts && ctrl->opts->discovery_nqn;
2949 }
2950 
2951 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2952 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2953 {
2954 	struct nvme_ctrl *tmp;
2955 
2956 	lockdep_assert_held(&nvme_subsystems_lock);
2957 
2958 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2959 		if (nvme_state_terminal(tmp))
2960 			continue;
2961 
2962 		if (tmp->cntlid == ctrl->cntlid) {
2963 			dev_err(ctrl->device,
2964 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2965 				ctrl->cntlid, dev_name(tmp->device),
2966 				subsys->subnqn);
2967 			return false;
2968 		}
2969 
2970 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2971 		    nvme_discovery_ctrl(ctrl))
2972 			continue;
2973 
2974 		dev_err(ctrl->device,
2975 			"Subsystem does not support multiple controllers\n");
2976 		return false;
2977 	}
2978 
2979 	return true;
2980 }
2981 
2982 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2983 {
2984 	struct nvme_subsystem *subsys, *found;
2985 	int ret;
2986 
2987 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2988 	if (!subsys)
2989 		return -ENOMEM;
2990 
2991 	subsys->instance = -1;
2992 	mutex_init(&subsys->lock);
2993 	kref_init(&subsys->ref);
2994 	INIT_LIST_HEAD(&subsys->ctrls);
2995 	INIT_LIST_HEAD(&subsys->nsheads);
2996 	nvme_init_subnqn(subsys, ctrl, id);
2997 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2998 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2999 	subsys->vendor_id = le16_to_cpu(id->vid);
3000 	subsys->cmic = id->cmic;
3001 
3002 	/* Versions prior to 1.4 don't necessarily report a valid type */
3003 	if (id->cntrltype == NVME_CTRL_DISC ||
3004 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3005 		subsys->subtype = NVME_NQN_DISC;
3006 	else
3007 		subsys->subtype = NVME_NQN_NVME;
3008 
3009 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3010 		dev_err(ctrl->device,
3011 			"Subsystem %s is not a discovery controller",
3012 			subsys->subnqn);
3013 		kfree(subsys);
3014 		return -EINVAL;
3015 	}
3016 	subsys->awupf = le16_to_cpu(id->awupf);
3017 	nvme_mpath_default_iopolicy(subsys);
3018 
3019 	subsys->dev.class = &nvme_subsys_class;
3020 	subsys->dev.release = nvme_release_subsystem;
3021 	subsys->dev.groups = nvme_subsys_attrs_groups;
3022 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3023 	device_initialize(&subsys->dev);
3024 
3025 	mutex_lock(&nvme_subsystems_lock);
3026 	found = __nvme_find_get_subsystem(subsys->subnqn);
3027 	if (found) {
3028 		put_device(&subsys->dev);
3029 		subsys = found;
3030 
3031 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3032 			ret = -EINVAL;
3033 			goto out_put_subsystem;
3034 		}
3035 	} else {
3036 		ret = device_add(&subsys->dev);
3037 		if (ret) {
3038 			dev_err(ctrl->device,
3039 				"failed to register subsystem device.\n");
3040 			put_device(&subsys->dev);
3041 			goto out_unlock;
3042 		}
3043 		ida_init(&subsys->ns_ida);
3044 		list_add_tail(&subsys->entry, &nvme_subsystems);
3045 	}
3046 
3047 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3048 				dev_name(ctrl->device));
3049 	if (ret) {
3050 		dev_err(ctrl->device,
3051 			"failed to create sysfs link from subsystem.\n");
3052 		goto out_put_subsystem;
3053 	}
3054 
3055 	if (!found)
3056 		subsys->instance = ctrl->instance;
3057 	ctrl->subsys = subsys;
3058 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3059 	mutex_unlock(&nvme_subsystems_lock);
3060 	return 0;
3061 
3062 out_put_subsystem:
3063 	nvme_put_subsystem(subsys);
3064 out_unlock:
3065 	mutex_unlock(&nvme_subsystems_lock);
3066 	return ret;
3067 }
3068 
3069 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3070 		void *log, size_t size, u64 offset)
3071 {
3072 	struct nvme_command c = { };
3073 	u32 dwlen = nvme_bytes_to_numd(size);
3074 
3075 	c.get_log_page.opcode = nvme_admin_get_log_page;
3076 	c.get_log_page.nsid = cpu_to_le32(nsid);
3077 	c.get_log_page.lid = log_page;
3078 	c.get_log_page.lsp = lsp;
3079 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3080 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3081 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3082 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3083 	c.get_log_page.csi = csi;
3084 
3085 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3086 }
3087 
3088 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3089 				struct nvme_effects_log **log)
3090 {
3091 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3092 	int ret;
3093 
3094 	if (cel)
3095 		goto out;
3096 
3097 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3098 	if (!cel)
3099 		return -ENOMEM;
3100 
3101 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3102 			cel, sizeof(*cel), 0);
3103 	if (ret) {
3104 		kfree(cel);
3105 		return ret;
3106 	}
3107 
3108 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3109 out:
3110 	*log = cel;
3111 	return 0;
3112 }
3113 
3114 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3115 {
3116 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3117 
3118 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3119 		return UINT_MAX;
3120 	return val;
3121 }
3122 
3123 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3124 {
3125 	struct nvme_command c = { };
3126 	struct nvme_id_ctrl_nvm *id;
3127 	int ret;
3128 
3129 	/*
3130 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3131 	 * to the write-zeroes, we are cautious and limit the size to the
3132 	 * controllers max_hw_sectors value, which is based on the MDTS field
3133 	 * and possibly other limiting factors.
3134 	 */
3135 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3136 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3137 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3138 	else
3139 		ctrl->max_zeroes_sectors = 0;
3140 
3141 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3142 	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3143 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3144 		return 0;
3145 
3146 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3147 	if (!id)
3148 		return -ENOMEM;
3149 
3150 	c.identify.opcode = nvme_admin_identify;
3151 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3152 	c.identify.csi = NVME_CSI_NVM;
3153 
3154 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3155 	if (ret)
3156 		goto free_data;
3157 
3158 	ctrl->dmrl = id->dmrl;
3159 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3160 	if (id->wzsl)
3161 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3162 
3163 free_data:
3164 	if (ret > 0)
3165 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3166 	kfree(id);
3167 	return ret;
3168 }
3169 
3170 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3171 {
3172 	struct nvme_effects_log	*log = ctrl->effects;
3173 
3174 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3175 						NVME_CMD_EFFECTS_NCC |
3176 						NVME_CMD_EFFECTS_CSE_MASK);
3177 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3178 						NVME_CMD_EFFECTS_CSE_MASK);
3179 
3180 	/*
3181 	 * The spec says the result of a security receive command depends on
3182 	 * the previous security send command. As such, many vendors log this
3183 	 * command as one to submitted only when no other commands to the same
3184 	 * namespace are outstanding. The intention is to tell the host to
3185 	 * prevent mixing security send and receive.
3186 	 *
3187 	 * This driver can only enforce such exclusive access against IO
3188 	 * queues, though. We are not readily able to enforce such a rule for
3189 	 * two commands to the admin queue, which is the only queue that
3190 	 * matters for this command.
3191 	 *
3192 	 * Rather than blindly freezing the IO queues for this effect that
3193 	 * doesn't even apply to IO, mask it off.
3194 	 */
3195 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3196 
3197 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3198 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3199 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3200 }
3201 
3202 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3203 {
3204 	int ret = 0;
3205 
3206 	if (ctrl->effects)
3207 		return 0;
3208 
3209 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3210 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3211 		if (ret < 0)
3212 			return ret;
3213 	}
3214 
3215 	if (!ctrl->effects) {
3216 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3217 		if (!ctrl->effects)
3218 			return -ENOMEM;
3219 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3220 	}
3221 
3222 	nvme_init_known_nvm_effects(ctrl);
3223 	return 0;
3224 }
3225 
3226 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3227 {
3228 	/*
3229 	 * In fabrics we need to verify the cntlid matches the
3230 	 * admin connect
3231 	 */
3232 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3233 		dev_err(ctrl->device,
3234 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3235 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3236 		return -EINVAL;
3237 	}
3238 
3239 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3240 		dev_err(ctrl->device,
3241 			"keep-alive support is mandatory for fabrics\n");
3242 		return -EINVAL;
3243 	}
3244 
3245 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3246 		dev_err(ctrl->device,
3247 			"I/O queue command capsule supported size %d < 4\n",
3248 			ctrl->ioccsz);
3249 		return -EINVAL;
3250 	}
3251 
3252 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3253 		dev_err(ctrl->device,
3254 			"I/O queue response capsule supported size %d < 1\n",
3255 			ctrl->iorcsz);
3256 		return -EINVAL;
3257 	}
3258 
3259 	if (!ctrl->maxcmd) {
3260 		dev_err(ctrl->device, "Maximum outstanding commands is 0\n");
3261 		return -EINVAL;
3262 	}
3263 
3264 	return 0;
3265 }
3266 
3267 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3268 {
3269 	struct queue_limits lim;
3270 	struct nvme_id_ctrl *id;
3271 	u32 max_hw_sectors;
3272 	bool prev_apst_enabled;
3273 	int ret;
3274 
3275 	ret = nvme_identify_ctrl(ctrl, &id);
3276 	if (ret) {
3277 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3278 		return -EIO;
3279 	}
3280 
3281 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3282 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3283 
3284 	if (!ctrl->identified) {
3285 		unsigned int i;
3286 
3287 		/*
3288 		 * Check for quirks.  Quirk can depend on firmware version,
3289 		 * so, in principle, the set of quirks present can change
3290 		 * across a reset.  As a possible future enhancement, we
3291 		 * could re-scan for quirks every time we reinitialize
3292 		 * the device, but we'd have to make sure that the driver
3293 		 * behaves intelligently if the quirks change.
3294 		 */
3295 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3296 			if (quirk_matches(id, &core_quirks[i]))
3297 				ctrl->quirks |= core_quirks[i].quirks;
3298 		}
3299 
3300 		ret = nvme_init_subsystem(ctrl, id);
3301 		if (ret)
3302 			goto out_free;
3303 
3304 		ret = nvme_init_effects(ctrl, id);
3305 		if (ret)
3306 			goto out_free;
3307 	}
3308 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3309 	       sizeof(ctrl->subsys->firmware_rev));
3310 
3311 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3312 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3313 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3314 	}
3315 
3316 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3317 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3318 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3319 
3320 	ctrl->oacs = le16_to_cpu(id->oacs);
3321 	ctrl->oncs = le16_to_cpu(id->oncs);
3322 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3323 	ctrl->oaes = le32_to_cpu(id->oaes);
3324 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3325 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3326 
3327 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3328 	ctrl->vwc = id->vwc;
3329 	if (id->mdts)
3330 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3331 	else
3332 		max_hw_sectors = UINT_MAX;
3333 	ctrl->max_hw_sectors =
3334 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3335 
3336 	lim = queue_limits_start_update(ctrl->admin_q);
3337 	nvme_set_ctrl_limits(ctrl, &lim);
3338 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3339 	if (ret)
3340 		goto out_free;
3341 
3342 	ctrl->sgls = le32_to_cpu(id->sgls);
3343 	ctrl->kas = le16_to_cpu(id->kas);
3344 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3345 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3346 
3347 	ctrl->cntrltype = id->cntrltype;
3348 	ctrl->dctype = id->dctype;
3349 
3350 	if (id->rtd3e) {
3351 		/* us -> s */
3352 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3353 
3354 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3355 						 shutdown_timeout, 60);
3356 
3357 		if (ctrl->shutdown_timeout != shutdown_timeout)
3358 			dev_info(ctrl->device,
3359 				 "D3 entry latency set to %u seconds\n",
3360 				 ctrl->shutdown_timeout);
3361 	} else
3362 		ctrl->shutdown_timeout = shutdown_timeout;
3363 
3364 	ctrl->npss = id->npss;
3365 	ctrl->apsta = id->apsta;
3366 	prev_apst_enabled = ctrl->apst_enabled;
3367 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3368 		if (force_apst && id->apsta) {
3369 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3370 			ctrl->apst_enabled = true;
3371 		} else {
3372 			ctrl->apst_enabled = false;
3373 		}
3374 	} else {
3375 		ctrl->apst_enabled = id->apsta;
3376 	}
3377 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3378 
3379 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3380 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3381 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3382 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3383 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3384 
3385 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3386 		if (ret)
3387 			goto out_free;
3388 	} else {
3389 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3390 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3391 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3392 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3393 	}
3394 
3395 	ret = nvme_mpath_init_identify(ctrl, id);
3396 	if (ret < 0)
3397 		goto out_free;
3398 
3399 	if (ctrl->apst_enabled && !prev_apst_enabled)
3400 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3401 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3402 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3403 
3404 out_free:
3405 	kfree(id);
3406 	return ret;
3407 }
3408 
3409 /*
3410  * Initialize the cached copies of the Identify data and various controller
3411  * register in our nvme_ctrl structure.  This should be called as soon as
3412  * the admin queue is fully up and running.
3413  */
3414 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3415 {
3416 	int ret;
3417 
3418 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3419 	if (ret) {
3420 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3421 		return ret;
3422 	}
3423 
3424 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3425 
3426 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3427 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3428 
3429 	ret = nvme_init_identify(ctrl);
3430 	if (ret)
3431 		return ret;
3432 
3433 	ret = nvme_configure_apst(ctrl);
3434 	if (ret < 0)
3435 		return ret;
3436 
3437 	ret = nvme_configure_timestamp(ctrl);
3438 	if (ret < 0)
3439 		return ret;
3440 
3441 	ret = nvme_configure_host_options(ctrl);
3442 	if (ret < 0)
3443 		return ret;
3444 
3445 	nvme_configure_opal(ctrl, was_suspended);
3446 
3447 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3448 		/*
3449 		 * Do not return errors unless we are in a controller reset,
3450 		 * the controller works perfectly fine without hwmon.
3451 		 */
3452 		ret = nvme_hwmon_init(ctrl);
3453 		if (ret == -EINTR)
3454 			return ret;
3455 	}
3456 
3457 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3458 	ctrl->identified = true;
3459 
3460 	nvme_start_keep_alive(ctrl);
3461 
3462 	return 0;
3463 }
3464 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3465 
3466 static int nvme_dev_open(struct inode *inode, struct file *file)
3467 {
3468 	struct nvme_ctrl *ctrl =
3469 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3470 
3471 	switch (nvme_ctrl_state(ctrl)) {
3472 	case NVME_CTRL_LIVE:
3473 		break;
3474 	default:
3475 		return -EWOULDBLOCK;
3476 	}
3477 
3478 	nvme_get_ctrl(ctrl);
3479 	if (!try_module_get(ctrl->ops->module)) {
3480 		nvme_put_ctrl(ctrl);
3481 		return -EINVAL;
3482 	}
3483 
3484 	file->private_data = ctrl;
3485 	return 0;
3486 }
3487 
3488 static int nvme_dev_release(struct inode *inode, struct file *file)
3489 {
3490 	struct nvme_ctrl *ctrl =
3491 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3492 
3493 	module_put(ctrl->ops->module);
3494 	nvme_put_ctrl(ctrl);
3495 	return 0;
3496 }
3497 
3498 static const struct file_operations nvme_dev_fops = {
3499 	.owner		= THIS_MODULE,
3500 	.open		= nvme_dev_open,
3501 	.release	= nvme_dev_release,
3502 	.unlocked_ioctl	= nvme_dev_ioctl,
3503 	.compat_ioctl	= compat_ptr_ioctl,
3504 	.uring_cmd	= nvme_dev_uring_cmd,
3505 };
3506 
3507 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3508 		unsigned nsid)
3509 {
3510 	struct nvme_ns_head *h;
3511 
3512 	lockdep_assert_held(&ctrl->subsys->lock);
3513 
3514 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3515 		/*
3516 		 * Private namespaces can share NSIDs under some conditions.
3517 		 * In that case we can't use the same ns_head for namespaces
3518 		 * with the same NSID.
3519 		 */
3520 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3521 			continue;
3522 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3523 			return h;
3524 	}
3525 
3526 	return NULL;
3527 }
3528 
3529 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3530 		struct nvme_ns_ids *ids)
3531 {
3532 	bool has_uuid = !uuid_is_null(&ids->uuid);
3533 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3534 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3535 	struct nvme_ns_head *h;
3536 
3537 	lockdep_assert_held(&subsys->lock);
3538 
3539 	list_for_each_entry(h, &subsys->nsheads, entry) {
3540 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3541 			return -EINVAL;
3542 		if (has_nguid &&
3543 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3544 			return -EINVAL;
3545 		if (has_eui64 &&
3546 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3547 			return -EINVAL;
3548 	}
3549 
3550 	return 0;
3551 }
3552 
3553 static void nvme_cdev_rel(struct device *dev)
3554 {
3555 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3556 }
3557 
3558 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3559 {
3560 	cdev_device_del(cdev, cdev_device);
3561 	put_device(cdev_device);
3562 }
3563 
3564 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3565 		const struct file_operations *fops, struct module *owner)
3566 {
3567 	int minor, ret;
3568 
3569 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3570 	if (minor < 0)
3571 		return minor;
3572 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3573 	cdev_device->class = &nvme_ns_chr_class;
3574 	cdev_device->release = nvme_cdev_rel;
3575 	device_initialize(cdev_device);
3576 	cdev_init(cdev, fops);
3577 	cdev->owner = owner;
3578 	ret = cdev_device_add(cdev, cdev_device);
3579 	if (ret)
3580 		put_device(cdev_device);
3581 
3582 	return ret;
3583 }
3584 
3585 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3586 {
3587 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3588 }
3589 
3590 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3591 {
3592 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3593 	return 0;
3594 }
3595 
3596 static const struct file_operations nvme_ns_chr_fops = {
3597 	.owner		= THIS_MODULE,
3598 	.open		= nvme_ns_chr_open,
3599 	.release	= nvme_ns_chr_release,
3600 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3601 	.compat_ioctl	= compat_ptr_ioctl,
3602 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3603 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3604 };
3605 
3606 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3607 {
3608 	int ret;
3609 
3610 	ns->cdev_device.parent = ns->ctrl->device;
3611 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3612 			   ns->ctrl->instance, ns->head->instance);
3613 	if (ret)
3614 		return ret;
3615 
3616 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3617 			     ns->ctrl->ops->module);
3618 }
3619 
3620 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3621 		struct nvme_ns_info *info)
3622 {
3623 	struct nvme_ns_head *head;
3624 	size_t size = sizeof(*head);
3625 	int ret = -ENOMEM;
3626 
3627 #ifdef CONFIG_NVME_MULTIPATH
3628 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3629 #endif
3630 
3631 	head = kzalloc(size, GFP_KERNEL);
3632 	if (!head)
3633 		goto out;
3634 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3635 	if (ret < 0)
3636 		goto out_free_head;
3637 	head->instance = ret;
3638 	INIT_LIST_HEAD(&head->list);
3639 	ret = init_srcu_struct(&head->srcu);
3640 	if (ret)
3641 		goto out_ida_remove;
3642 	head->subsys = ctrl->subsys;
3643 	head->ns_id = info->nsid;
3644 	head->ids = info->ids;
3645 	head->shared = info->is_shared;
3646 	head->rotational = info->is_rotational;
3647 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3648 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3649 	kref_init(&head->ref);
3650 
3651 	if (head->ids.csi) {
3652 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3653 		if (ret)
3654 			goto out_cleanup_srcu;
3655 	} else
3656 		head->effects = ctrl->effects;
3657 
3658 	ret = nvme_mpath_alloc_disk(ctrl, head);
3659 	if (ret)
3660 		goto out_cleanup_srcu;
3661 
3662 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3663 
3664 	kref_get(&ctrl->subsys->ref);
3665 
3666 	return head;
3667 out_cleanup_srcu:
3668 	cleanup_srcu_struct(&head->srcu);
3669 out_ida_remove:
3670 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3671 out_free_head:
3672 	kfree(head);
3673 out:
3674 	if (ret > 0)
3675 		ret = blk_status_to_errno(nvme_error_status(ret));
3676 	return ERR_PTR(ret);
3677 }
3678 
3679 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3680 		struct nvme_ns_ids *ids)
3681 {
3682 	struct nvme_subsystem *s;
3683 	int ret = 0;
3684 
3685 	/*
3686 	 * Note that this check is racy as we try to avoid holding the global
3687 	 * lock over the whole ns_head creation.  But it is only intended as
3688 	 * a sanity check anyway.
3689 	 */
3690 	mutex_lock(&nvme_subsystems_lock);
3691 	list_for_each_entry(s, &nvme_subsystems, entry) {
3692 		if (s == this)
3693 			continue;
3694 		mutex_lock(&s->lock);
3695 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3696 		mutex_unlock(&s->lock);
3697 		if (ret)
3698 			break;
3699 	}
3700 	mutex_unlock(&nvme_subsystems_lock);
3701 
3702 	return ret;
3703 }
3704 
3705 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3706 {
3707 	struct nvme_ctrl *ctrl = ns->ctrl;
3708 	struct nvme_ns_head *head = NULL;
3709 	int ret;
3710 
3711 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3712 	if (ret) {
3713 		/*
3714 		 * We've found two different namespaces on two different
3715 		 * subsystems that report the same ID.  This is pretty nasty
3716 		 * for anything that actually requires unique device
3717 		 * identification.  In the kernel we need this for multipathing,
3718 		 * and in user space the /dev/disk/by-id/ links rely on it.
3719 		 *
3720 		 * If the device also claims to be multi-path capable back off
3721 		 * here now and refuse the probe the second device as this is a
3722 		 * recipe for data corruption.  If not this is probably a
3723 		 * cheap consumer device if on the PCIe bus, so let the user
3724 		 * proceed and use the shiny toy, but warn that with changing
3725 		 * probing order (which due to our async probing could just be
3726 		 * device taking longer to startup) the other device could show
3727 		 * up at any time.
3728 		 */
3729 		nvme_print_device_info(ctrl);
3730 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3731 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3732 		     info->is_shared)) {
3733 			dev_err(ctrl->device,
3734 				"ignoring nsid %d because of duplicate IDs\n",
3735 				info->nsid);
3736 			return ret;
3737 		}
3738 
3739 		dev_err(ctrl->device,
3740 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3741 		dev_err(ctrl->device,
3742 			"use of /dev/disk/by-id/ may cause data corruption\n");
3743 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3744 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3745 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3746 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3747 	}
3748 
3749 	mutex_lock(&ctrl->subsys->lock);
3750 	head = nvme_find_ns_head(ctrl, info->nsid);
3751 	if (!head) {
3752 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3753 		if (ret) {
3754 			dev_err(ctrl->device,
3755 				"duplicate IDs in subsystem for nsid %d\n",
3756 				info->nsid);
3757 			goto out_unlock;
3758 		}
3759 		head = nvme_alloc_ns_head(ctrl, info);
3760 		if (IS_ERR(head)) {
3761 			ret = PTR_ERR(head);
3762 			goto out_unlock;
3763 		}
3764 	} else {
3765 		ret = -EINVAL;
3766 		if (!info->is_shared || !head->shared) {
3767 			dev_err(ctrl->device,
3768 				"Duplicate unshared namespace %d\n",
3769 				info->nsid);
3770 			goto out_put_ns_head;
3771 		}
3772 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3773 			dev_err(ctrl->device,
3774 				"IDs don't match for shared namespace %d\n",
3775 					info->nsid);
3776 			goto out_put_ns_head;
3777 		}
3778 
3779 		if (!multipath) {
3780 			dev_warn(ctrl->device,
3781 				"Found shared namespace %d, but multipathing not supported.\n",
3782 				info->nsid);
3783 			dev_warn_once(ctrl->device,
3784 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3785 		}
3786 	}
3787 
3788 	list_add_tail_rcu(&ns->siblings, &head->list);
3789 	ns->head = head;
3790 	mutex_unlock(&ctrl->subsys->lock);
3791 	return 0;
3792 
3793 out_put_ns_head:
3794 	nvme_put_ns_head(head);
3795 out_unlock:
3796 	mutex_unlock(&ctrl->subsys->lock);
3797 	return ret;
3798 }
3799 
3800 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3801 {
3802 	struct nvme_ns *ns, *ret = NULL;
3803 	int srcu_idx;
3804 
3805 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3806 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3807 				 srcu_read_lock_held(&ctrl->srcu)) {
3808 		if (ns->head->ns_id == nsid) {
3809 			if (!nvme_get_ns(ns))
3810 				continue;
3811 			ret = ns;
3812 			break;
3813 		}
3814 		if (ns->head->ns_id > nsid)
3815 			break;
3816 	}
3817 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3818 	return ret;
3819 }
3820 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3821 
3822 /*
3823  * Add the namespace to the controller list while keeping the list ordered.
3824  */
3825 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3826 {
3827 	struct nvme_ns *tmp;
3828 
3829 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3830 		if (tmp->head->ns_id < ns->head->ns_id) {
3831 			list_add_rcu(&ns->list, &tmp->list);
3832 			return;
3833 		}
3834 	}
3835 	list_add(&ns->list, &ns->ctrl->namespaces);
3836 }
3837 
3838 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3839 {
3840 	struct queue_limits lim = { };
3841 	struct nvme_ns *ns;
3842 	struct gendisk *disk;
3843 	int node = ctrl->numa_node;
3844 
3845 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3846 	if (!ns)
3847 		return;
3848 
3849 	if (ctrl->opts && ctrl->opts->data_digest)
3850 		lim.features |= BLK_FEAT_STABLE_WRITES;
3851 	if (ctrl->ops->supports_pci_p2pdma &&
3852 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3853 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3854 
3855 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3856 	if (IS_ERR(disk))
3857 		goto out_free_ns;
3858 	disk->fops = &nvme_bdev_ops;
3859 	disk->private_data = ns;
3860 
3861 	ns->disk = disk;
3862 	ns->queue = disk->queue;
3863 	ns->ctrl = ctrl;
3864 	kref_init(&ns->kref);
3865 
3866 	if (nvme_init_ns_head(ns, info))
3867 		goto out_cleanup_disk;
3868 
3869 	/*
3870 	 * If multipathing is enabled, the device name for all disks and not
3871 	 * just those that represent shared namespaces needs to be based on the
3872 	 * subsystem instance.  Using the controller instance for private
3873 	 * namespaces could lead to naming collisions between shared and private
3874 	 * namespaces if they don't use a common numbering scheme.
3875 	 *
3876 	 * If multipathing is not enabled, disk names must use the controller
3877 	 * instance as shared namespaces will show up as multiple block
3878 	 * devices.
3879 	 */
3880 	if (nvme_ns_head_multipath(ns->head)) {
3881 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3882 			ctrl->instance, ns->head->instance);
3883 		disk->flags |= GENHD_FL_HIDDEN;
3884 	} else if (multipath) {
3885 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3886 			ns->head->instance);
3887 	} else {
3888 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3889 			ns->head->instance);
3890 	}
3891 
3892 	if (nvme_update_ns_info(ns, info))
3893 		goto out_unlink_ns;
3894 
3895 	mutex_lock(&ctrl->namespaces_lock);
3896 	/*
3897 	 * Ensure that no namespaces are added to the ctrl list after the queues
3898 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3899 	 */
3900 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3901 		mutex_unlock(&ctrl->namespaces_lock);
3902 		goto out_unlink_ns;
3903 	}
3904 	nvme_ns_add_to_ctrl_list(ns);
3905 	mutex_unlock(&ctrl->namespaces_lock);
3906 	synchronize_srcu(&ctrl->srcu);
3907 	nvme_get_ctrl(ctrl);
3908 
3909 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3910 		goto out_cleanup_ns_from_list;
3911 
3912 	if (!nvme_ns_head_multipath(ns->head))
3913 		nvme_add_ns_cdev(ns);
3914 
3915 	nvme_mpath_add_disk(ns, info->anagrpid);
3916 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3917 
3918 	/*
3919 	 * Set ns->disk->device->driver_data to ns so we can access
3920 	 * ns->head->passthru_err_log_enabled in
3921 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3922 	 */
3923 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3924 
3925 	return;
3926 
3927  out_cleanup_ns_from_list:
3928 	nvme_put_ctrl(ctrl);
3929 	mutex_lock(&ctrl->namespaces_lock);
3930 	list_del_rcu(&ns->list);
3931 	mutex_unlock(&ctrl->namespaces_lock);
3932 	synchronize_srcu(&ctrl->srcu);
3933  out_unlink_ns:
3934 	mutex_lock(&ctrl->subsys->lock);
3935 	list_del_rcu(&ns->siblings);
3936 	if (list_empty(&ns->head->list))
3937 		list_del_init(&ns->head->entry);
3938 	mutex_unlock(&ctrl->subsys->lock);
3939 	nvme_put_ns_head(ns->head);
3940  out_cleanup_disk:
3941 	put_disk(disk);
3942  out_free_ns:
3943 	kfree(ns);
3944 }
3945 
3946 static void nvme_ns_remove(struct nvme_ns *ns)
3947 {
3948 	bool last_path = false;
3949 
3950 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3951 		return;
3952 
3953 	clear_bit(NVME_NS_READY, &ns->flags);
3954 	set_capacity(ns->disk, 0);
3955 	nvme_fault_inject_fini(&ns->fault_inject);
3956 
3957 	/*
3958 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3959 	 * this ns going back into current_path.
3960 	 */
3961 	synchronize_srcu(&ns->head->srcu);
3962 
3963 	/* wait for concurrent submissions */
3964 	if (nvme_mpath_clear_current_path(ns))
3965 		synchronize_srcu(&ns->head->srcu);
3966 
3967 	mutex_lock(&ns->ctrl->subsys->lock);
3968 	list_del_rcu(&ns->siblings);
3969 	if (list_empty(&ns->head->list)) {
3970 		list_del_init(&ns->head->entry);
3971 		last_path = true;
3972 	}
3973 	mutex_unlock(&ns->ctrl->subsys->lock);
3974 
3975 	/* guarantee not available in head->list */
3976 	synchronize_srcu(&ns->head->srcu);
3977 
3978 	if (!nvme_ns_head_multipath(ns->head))
3979 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3980 	del_gendisk(ns->disk);
3981 
3982 	mutex_lock(&ns->ctrl->namespaces_lock);
3983 	list_del_rcu(&ns->list);
3984 	mutex_unlock(&ns->ctrl->namespaces_lock);
3985 	synchronize_srcu(&ns->ctrl->srcu);
3986 
3987 	if (last_path)
3988 		nvme_mpath_shutdown_disk(ns->head);
3989 	nvme_put_ns(ns);
3990 }
3991 
3992 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3993 {
3994 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3995 
3996 	if (ns) {
3997 		nvme_ns_remove(ns);
3998 		nvme_put_ns(ns);
3999 	}
4000 }
4001 
4002 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4003 {
4004 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4005 
4006 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4007 		dev_err(ns->ctrl->device,
4008 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4009 		goto out;
4010 	}
4011 
4012 	ret = nvme_update_ns_info(ns, info);
4013 out:
4014 	/*
4015 	 * Only remove the namespace if we got a fatal error back from the
4016 	 * device, otherwise ignore the error and just move on.
4017 	 *
4018 	 * TODO: we should probably schedule a delayed retry here.
4019 	 */
4020 	if (ret > 0 && (ret & NVME_STATUS_DNR))
4021 		nvme_ns_remove(ns);
4022 }
4023 
4024 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4025 {
4026 	struct nvme_ns_info info = { .nsid = nsid };
4027 	struct nvme_ns *ns;
4028 	int ret = 1;
4029 
4030 	if (nvme_identify_ns_descs(ctrl, &info))
4031 		return;
4032 
4033 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4034 		dev_warn(ctrl->device,
4035 			"command set not reported for nsid: %d\n", nsid);
4036 		return;
4037 	}
4038 
4039 	/*
4040 	 * If available try to use the Command Set Idependent Identify Namespace
4041 	 * data structure to find all the generic information that is needed to
4042 	 * set up a namespace.  If not fall back to the legacy version.
4043 	 */
4044 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4045 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4046 	    ctrl->vs >= NVME_VS(2, 0, 0))
4047 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4048 	if (ret > 0)
4049 		ret = nvme_ns_info_from_identify(ctrl, &info);
4050 
4051 	if (info.is_removed)
4052 		nvme_ns_remove_by_nsid(ctrl, nsid);
4053 
4054 	/*
4055 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4056 	 * becomes ready and restart the scan.
4057 	 */
4058 	if (ret || !info.is_ready)
4059 		return;
4060 
4061 	ns = nvme_find_get_ns(ctrl, nsid);
4062 	if (ns) {
4063 		nvme_validate_ns(ns, &info);
4064 		nvme_put_ns(ns);
4065 	} else {
4066 		nvme_alloc_ns(ctrl, &info);
4067 	}
4068 }
4069 
4070 /**
4071  * struct async_scan_info - keeps track of controller & NSIDs to scan
4072  * @ctrl:	Controller on which namespaces are being scanned
4073  * @next_nsid:	Index of next NSID to scan in ns_list
4074  * @ns_list:	Pointer to list of NSIDs to scan
4075  *
4076  * Note: There is a single async_scan_info structure shared by all instances
4077  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4078  * operations on next_nsid are critical to ensure each instance scans a unique
4079  * NSID.
4080  */
4081 struct async_scan_info {
4082 	struct nvme_ctrl *ctrl;
4083 	atomic_t next_nsid;
4084 	__le32 *ns_list;
4085 };
4086 
4087 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4088 {
4089 	struct async_scan_info *scan_info = data;
4090 	int idx;
4091 	u32 nsid;
4092 
4093 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4094 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4095 
4096 	nvme_scan_ns(scan_info->ctrl, nsid);
4097 }
4098 
4099 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4100 					unsigned nsid)
4101 {
4102 	struct nvme_ns *ns, *next;
4103 	LIST_HEAD(rm_list);
4104 
4105 	mutex_lock(&ctrl->namespaces_lock);
4106 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4107 		if (ns->head->ns_id > nsid) {
4108 			list_del_rcu(&ns->list);
4109 			synchronize_srcu(&ctrl->srcu);
4110 			list_add_tail_rcu(&ns->list, &rm_list);
4111 		}
4112 	}
4113 	mutex_unlock(&ctrl->namespaces_lock);
4114 
4115 	list_for_each_entry_safe(ns, next, &rm_list, list)
4116 		nvme_ns_remove(ns);
4117 }
4118 
4119 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4120 {
4121 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4122 	__le32 *ns_list;
4123 	u32 prev = 0;
4124 	int ret = 0, i;
4125 	ASYNC_DOMAIN(domain);
4126 	struct async_scan_info scan_info;
4127 
4128 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4129 	if (!ns_list)
4130 		return -ENOMEM;
4131 
4132 	scan_info.ctrl = ctrl;
4133 	scan_info.ns_list = ns_list;
4134 	for (;;) {
4135 		struct nvme_command cmd = {
4136 			.identify.opcode	= nvme_admin_identify,
4137 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4138 			.identify.nsid		= cpu_to_le32(prev),
4139 		};
4140 
4141 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4142 					    NVME_IDENTIFY_DATA_SIZE);
4143 		if (ret) {
4144 			dev_warn(ctrl->device,
4145 				"Identify NS List failed (status=0x%x)\n", ret);
4146 			goto free;
4147 		}
4148 
4149 		atomic_set(&scan_info.next_nsid, 0);
4150 		for (i = 0; i < nr_entries; i++) {
4151 			u32 nsid = le32_to_cpu(ns_list[i]);
4152 
4153 			if (!nsid)	/* end of the list? */
4154 				goto out;
4155 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4156 						&domain);
4157 			while (++prev < nsid)
4158 				nvme_ns_remove_by_nsid(ctrl, prev);
4159 		}
4160 		async_synchronize_full_domain(&domain);
4161 	}
4162  out:
4163 	nvme_remove_invalid_namespaces(ctrl, prev);
4164  free:
4165 	async_synchronize_full_domain(&domain);
4166 	kfree(ns_list);
4167 	return ret;
4168 }
4169 
4170 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4171 {
4172 	struct nvme_id_ctrl *id;
4173 	u32 nn, i;
4174 
4175 	if (nvme_identify_ctrl(ctrl, &id))
4176 		return;
4177 	nn = le32_to_cpu(id->nn);
4178 	kfree(id);
4179 
4180 	for (i = 1; i <= nn; i++)
4181 		nvme_scan_ns(ctrl, i);
4182 
4183 	nvme_remove_invalid_namespaces(ctrl, nn);
4184 }
4185 
4186 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4187 {
4188 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4189 	__le32 *log;
4190 	int error;
4191 
4192 	log = kzalloc(log_size, GFP_KERNEL);
4193 	if (!log)
4194 		return;
4195 
4196 	/*
4197 	 * We need to read the log to clear the AEN, but we don't want to rely
4198 	 * on it for the changed namespace information as userspace could have
4199 	 * raced with us in reading the log page, which could cause us to miss
4200 	 * updates.
4201 	 */
4202 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4203 			NVME_CSI_NVM, log, log_size, 0);
4204 	if (error)
4205 		dev_warn(ctrl->device,
4206 			"reading changed ns log failed: %d\n", error);
4207 
4208 	kfree(log);
4209 }
4210 
4211 static void nvme_scan_work(struct work_struct *work)
4212 {
4213 	struct nvme_ctrl *ctrl =
4214 		container_of(work, struct nvme_ctrl, scan_work);
4215 	int ret;
4216 
4217 	/* No tagset on a live ctrl means IO queues could not created */
4218 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4219 		return;
4220 
4221 	/*
4222 	 * Identify controller limits can change at controller reset due to
4223 	 * new firmware download, even though it is not common we cannot ignore
4224 	 * such scenario. Controller's non-mdts limits are reported in the unit
4225 	 * of logical blocks that is dependent on the format of attached
4226 	 * namespace. Hence re-read the limits at the time of ns allocation.
4227 	 */
4228 	ret = nvme_init_non_mdts_limits(ctrl);
4229 	if (ret < 0) {
4230 		dev_warn(ctrl->device,
4231 			"reading non-mdts-limits failed: %d\n", ret);
4232 		return;
4233 	}
4234 
4235 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4236 		dev_info(ctrl->device, "rescanning namespaces.\n");
4237 		nvme_clear_changed_ns_log(ctrl);
4238 	}
4239 
4240 	mutex_lock(&ctrl->scan_lock);
4241 	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4242 		nvme_scan_ns_sequential(ctrl);
4243 	} else {
4244 		/*
4245 		 * Fall back to sequential scan if DNR is set to handle broken
4246 		 * devices which should support Identify NS List (as per the VS
4247 		 * they report) but don't actually support it.
4248 		 */
4249 		ret = nvme_scan_ns_list(ctrl);
4250 		if (ret > 0 && ret & NVME_STATUS_DNR)
4251 			nvme_scan_ns_sequential(ctrl);
4252 	}
4253 	mutex_unlock(&ctrl->scan_lock);
4254 }
4255 
4256 /*
4257  * This function iterates the namespace list unlocked to allow recovery from
4258  * controller failure. It is up to the caller to ensure the namespace list is
4259  * not modified by scan work while this function is executing.
4260  */
4261 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4262 {
4263 	struct nvme_ns *ns, *next;
4264 	LIST_HEAD(ns_list);
4265 
4266 	/*
4267 	 * make sure to requeue I/O to all namespaces as these
4268 	 * might result from the scan itself and must complete
4269 	 * for the scan_work to make progress
4270 	 */
4271 	nvme_mpath_clear_ctrl_paths(ctrl);
4272 
4273 	/*
4274 	 * Unquiesce io queues so any pending IO won't hang, especially
4275 	 * those submitted from scan work
4276 	 */
4277 	nvme_unquiesce_io_queues(ctrl);
4278 
4279 	/* prevent racing with ns scanning */
4280 	flush_work(&ctrl->scan_work);
4281 
4282 	/*
4283 	 * The dead states indicates the controller was not gracefully
4284 	 * disconnected. In that case, we won't be able to flush any data while
4285 	 * removing the namespaces' disks; fail all the queues now to avoid
4286 	 * potentially having to clean up the failed sync later.
4287 	 */
4288 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4289 		nvme_mark_namespaces_dead(ctrl);
4290 
4291 	/* this is a no-op when called from the controller reset handler */
4292 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4293 
4294 	mutex_lock(&ctrl->namespaces_lock);
4295 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4296 	mutex_unlock(&ctrl->namespaces_lock);
4297 	synchronize_srcu(&ctrl->srcu);
4298 
4299 	list_for_each_entry_safe(ns, next, &ns_list, list)
4300 		nvme_ns_remove(ns);
4301 }
4302 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4303 
4304 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4305 {
4306 	const struct nvme_ctrl *ctrl =
4307 		container_of(dev, struct nvme_ctrl, ctrl_device);
4308 	struct nvmf_ctrl_options *opts = ctrl->opts;
4309 	int ret;
4310 
4311 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4312 	if (ret)
4313 		return ret;
4314 
4315 	if (opts) {
4316 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4317 		if (ret)
4318 			return ret;
4319 
4320 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4321 				opts->trsvcid ?: "none");
4322 		if (ret)
4323 			return ret;
4324 
4325 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4326 				opts->host_traddr ?: "none");
4327 		if (ret)
4328 			return ret;
4329 
4330 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4331 				opts->host_iface ?: "none");
4332 	}
4333 	return ret;
4334 }
4335 
4336 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4337 {
4338 	char *envp[2] = { envdata, NULL };
4339 
4340 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4341 }
4342 
4343 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4344 {
4345 	char *envp[2] = { NULL, NULL };
4346 	u32 aen_result = ctrl->aen_result;
4347 
4348 	ctrl->aen_result = 0;
4349 	if (!aen_result)
4350 		return;
4351 
4352 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4353 	if (!envp[0])
4354 		return;
4355 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4356 	kfree(envp[0]);
4357 }
4358 
4359 static void nvme_async_event_work(struct work_struct *work)
4360 {
4361 	struct nvme_ctrl *ctrl =
4362 		container_of(work, struct nvme_ctrl, async_event_work);
4363 
4364 	nvme_aen_uevent(ctrl);
4365 
4366 	/*
4367 	 * The transport drivers must guarantee AER submission here is safe by
4368 	 * flushing ctrl async_event_work after changing the controller state
4369 	 * from LIVE and before freeing the admin queue.
4370 	*/
4371 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4372 		ctrl->ops->submit_async_event(ctrl);
4373 }
4374 
4375 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4376 {
4377 
4378 	u32 csts;
4379 
4380 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4381 		return false;
4382 
4383 	if (csts == ~0)
4384 		return false;
4385 
4386 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4387 }
4388 
4389 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4390 {
4391 	struct nvme_fw_slot_info_log *log;
4392 	u8 next_fw_slot, cur_fw_slot;
4393 
4394 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4395 	if (!log)
4396 		return;
4397 
4398 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4399 			 log, sizeof(*log), 0)) {
4400 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4401 		goto out_free_log;
4402 	}
4403 
4404 	cur_fw_slot = log->afi & 0x7;
4405 	next_fw_slot = (log->afi & 0x70) >> 4;
4406 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4407 		dev_info(ctrl->device,
4408 			 "Firmware is activated after next Controller Level Reset\n");
4409 		goto out_free_log;
4410 	}
4411 
4412 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4413 		sizeof(ctrl->subsys->firmware_rev));
4414 
4415 out_free_log:
4416 	kfree(log);
4417 }
4418 
4419 static void nvme_fw_act_work(struct work_struct *work)
4420 {
4421 	struct nvme_ctrl *ctrl = container_of(work,
4422 				struct nvme_ctrl, fw_act_work);
4423 	unsigned long fw_act_timeout;
4424 
4425 	nvme_auth_stop(ctrl);
4426 
4427 	if (ctrl->mtfa)
4428 		fw_act_timeout = jiffies +
4429 				msecs_to_jiffies(ctrl->mtfa * 100);
4430 	else
4431 		fw_act_timeout = jiffies +
4432 				msecs_to_jiffies(admin_timeout * 1000);
4433 
4434 	nvme_quiesce_io_queues(ctrl);
4435 	while (nvme_ctrl_pp_status(ctrl)) {
4436 		if (time_after(jiffies, fw_act_timeout)) {
4437 			dev_warn(ctrl->device,
4438 				"Fw activation timeout, reset controller\n");
4439 			nvme_try_sched_reset(ctrl);
4440 			return;
4441 		}
4442 		msleep(100);
4443 	}
4444 
4445 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4446 		return;
4447 
4448 	nvme_unquiesce_io_queues(ctrl);
4449 	/* read FW slot information to clear the AER */
4450 	nvme_get_fw_slot_info(ctrl);
4451 
4452 	queue_work(nvme_wq, &ctrl->async_event_work);
4453 }
4454 
4455 static u32 nvme_aer_type(u32 result)
4456 {
4457 	return result & 0x7;
4458 }
4459 
4460 static u32 nvme_aer_subtype(u32 result)
4461 {
4462 	return (result & 0xff00) >> 8;
4463 }
4464 
4465 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4466 {
4467 	u32 aer_notice_type = nvme_aer_subtype(result);
4468 	bool requeue = true;
4469 
4470 	switch (aer_notice_type) {
4471 	case NVME_AER_NOTICE_NS_CHANGED:
4472 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4473 		nvme_queue_scan(ctrl);
4474 		break;
4475 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4476 		/*
4477 		 * We are (ab)using the RESETTING state to prevent subsequent
4478 		 * recovery actions from interfering with the controller's
4479 		 * firmware activation.
4480 		 */
4481 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4482 			requeue = false;
4483 			queue_work(nvme_wq, &ctrl->fw_act_work);
4484 		}
4485 		break;
4486 #ifdef CONFIG_NVME_MULTIPATH
4487 	case NVME_AER_NOTICE_ANA:
4488 		if (!ctrl->ana_log_buf)
4489 			break;
4490 		queue_work(nvme_wq, &ctrl->ana_work);
4491 		break;
4492 #endif
4493 	case NVME_AER_NOTICE_DISC_CHANGED:
4494 		ctrl->aen_result = result;
4495 		break;
4496 	default:
4497 		dev_warn(ctrl->device, "async event result %08x\n", result);
4498 	}
4499 	return requeue;
4500 }
4501 
4502 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4503 {
4504 	dev_warn(ctrl->device,
4505 		"resetting controller due to persistent internal error\n");
4506 	nvme_reset_ctrl(ctrl);
4507 }
4508 
4509 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4510 		volatile union nvme_result *res)
4511 {
4512 	u32 result = le32_to_cpu(res->u32);
4513 	u32 aer_type = nvme_aer_type(result);
4514 	u32 aer_subtype = nvme_aer_subtype(result);
4515 	bool requeue = true;
4516 
4517 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4518 		return;
4519 
4520 	trace_nvme_async_event(ctrl, result);
4521 	switch (aer_type) {
4522 	case NVME_AER_NOTICE:
4523 		requeue = nvme_handle_aen_notice(ctrl, result);
4524 		break;
4525 	case NVME_AER_ERROR:
4526 		/*
4527 		 * For a persistent internal error, don't run async_event_work
4528 		 * to submit a new AER. The controller reset will do it.
4529 		 */
4530 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4531 			nvme_handle_aer_persistent_error(ctrl);
4532 			return;
4533 		}
4534 		fallthrough;
4535 	case NVME_AER_SMART:
4536 	case NVME_AER_CSS:
4537 	case NVME_AER_VS:
4538 		ctrl->aen_result = result;
4539 		break;
4540 	default:
4541 		break;
4542 	}
4543 
4544 	if (requeue)
4545 		queue_work(nvme_wq, &ctrl->async_event_work);
4546 }
4547 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4548 
4549 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4550 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4551 {
4552 	struct queue_limits lim = {};
4553 	int ret;
4554 
4555 	memset(set, 0, sizeof(*set));
4556 	set->ops = ops;
4557 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4558 	if (ctrl->ops->flags & NVME_F_FABRICS)
4559 		/* Reserved for fabric connect and keep alive */
4560 		set->reserved_tags = 2;
4561 	set->numa_node = ctrl->numa_node;
4562 	set->flags = BLK_MQ_F_NO_SCHED;
4563 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4564 		set->flags |= BLK_MQ_F_BLOCKING;
4565 	set->cmd_size = cmd_size;
4566 	set->driver_data = ctrl;
4567 	set->nr_hw_queues = 1;
4568 	set->timeout = NVME_ADMIN_TIMEOUT;
4569 	ret = blk_mq_alloc_tag_set(set);
4570 	if (ret)
4571 		return ret;
4572 
4573 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4574 	if (IS_ERR(ctrl->admin_q)) {
4575 		ret = PTR_ERR(ctrl->admin_q);
4576 		goto out_free_tagset;
4577 	}
4578 
4579 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4580 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4581 		if (IS_ERR(ctrl->fabrics_q)) {
4582 			ret = PTR_ERR(ctrl->fabrics_q);
4583 			goto out_cleanup_admin_q;
4584 		}
4585 	}
4586 
4587 	ctrl->admin_tagset = set;
4588 	return 0;
4589 
4590 out_cleanup_admin_q:
4591 	blk_mq_destroy_queue(ctrl->admin_q);
4592 	blk_put_queue(ctrl->admin_q);
4593 out_free_tagset:
4594 	blk_mq_free_tag_set(set);
4595 	ctrl->admin_q = NULL;
4596 	ctrl->fabrics_q = NULL;
4597 	return ret;
4598 }
4599 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4600 
4601 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4602 {
4603 	blk_mq_destroy_queue(ctrl->admin_q);
4604 	blk_put_queue(ctrl->admin_q);
4605 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4606 		blk_mq_destroy_queue(ctrl->fabrics_q);
4607 		blk_put_queue(ctrl->fabrics_q);
4608 	}
4609 	blk_mq_free_tag_set(ctrl->admin_tagset);
4610 }
4611 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4612 
4613 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4614 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4615 		unsigned int cmd_size)
4616 {
4617 	int ret;
4618 
4619 	memset(set, 0, sizeof(*set));
4620 	set->ops = ops;
4621 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4622 	/*
4623 	 * Some Apple controllers requires tags to be unique across admin and
4624 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4625 	 */
4626 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4627 		set->reserved_tags = NVME_AQ_DEPTH;
4628 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4629 		/* Reserved for fabric connect */
4630 		set->reserved_tags = 1;
4631 	set->numa_node = ctrl->numa_node;
4632 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4633 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4634 		set->flags |= BLK_MQ_F_BLOCKING;
4635 	set->cmd_size = cmd_size;
4636 	set->driver_data = ctrl;
4637 	set->nr_hw_queues = ctrl->queue_count - 1;
4638 	set->timeout = NVME_IO_TIMEOUT;
4639 	set->nr_maps = nr_maps;
4640 	ret = blk_mq_alloc_tag_set(set);
4641 	if (ret)
4642 		return ret;
4643 
4644 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4645 		struct queue_limits lim = {
4646 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4647 		};
4648 
4649 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4650         	if (IS_ERR(ctrl->connect_q)) {
4651 			ret = PTR_ERR(ctrl->connect_q);
4652 			goto out_free_tag_set;
4653 		}
4654 	}
4655 
4656 	ctrl->tagset = set;
4657 	return 0;
4658 
4659 out_free_tag_set:
4660 	blk_mq_free_tag_set(set);
4661 	ctrl->connect_q = NULL;
4662 	return ret;
4663 }
4664 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4665 
4666 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4667 {
4668 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4669 		blk_mq_destroy_queue(ctrl->connect_q);
4670 		blk_put_queue(ctrl->connect_q);
4671 	}
4672 	blk_mq_free_tag_set(ctrl->tagset);
4673 }
4674 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4675 
4676 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4677 {
4678 	nvme_mpath_stop(ctrl);
4679 	nvme_auth_stop(ctrl);
4680 	nvme_stop_failfast_work(ctrl);
4681 	flush_work(&ctrl->async_event_work);
4682 	cancel_work_sync(&ctrl->fw_act_work);
4683 	if (ctrl->ops->stop_ctrl)
4684 		ctrl->ops->stop_ctrl(ctrl);
4685 }
4686 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4687 
4688 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4689 {
4690 	nvme_enable_aen(ctrl);
4691 
4692 	/*
4693 	 * persistent discovery controllers need to send indication to userspace
4694 	 * to re-read the discovery log page to learn about possible changes
4695 	 * that were missed. We identify persistent discovery controllers by
4696 	 * checking that they started once before, hence are reconnecting back.
4697 	 */
4698 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4699 	    nvme_discovery_ctrl(ctrl))
4700 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4701 
4702 	if (ctrl->queue_count > 1) {
4703 		nvme_queue_scan(ctrl);
4704 		nvme_unquiesce_io_queues(ctrl);
4705 		nvme_mpath_update(ctrl);
4706 	}
4707 
4708 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4709 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4710 }
4711 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4712 
4713 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4714 {
4715 	nvme_stop_keep_alive(ctrl);
4716 	nvme_hwmon_exit(ctrl);
4717 	nvme_fault_inject_fini(&ctrl->fault_inject);
4718 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4719 	cdev_device_del(&ctrl->cdev, ctrl->device);
4720 	nvme_put_ctrl(ctrl);
4721 }
4722 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4723 
4724 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4725 {
4726 	struct nvme_effects_log	*cel;
4727 	unsigned long i;
4728 
4729 	xa_for_each(&ctrl->cels, i, cel) {
4730 		xa_erase(&ctrl->cels, i);
4731 		kfree(cel);
4732 	}
4733 
4734 	xa_destroy(&ctrl->cels);
4735 }
4736 
4737 static void nvme_free_ctrl(struct device *dev)
4738 {
4739 	struct nvme_ctrl *ctrl =
4740 		container_of(dev, struct nvme_ctrl, ctrl_device);
4741 	struct nvme_subsystem *subsys = ctrl->subsys;
4742 
4743 	if (!subsys || ctrl->instance != subsys->instance)
4744 		ida_free(&nvme_instance_ida, ctrl->instance);
4745 	nvme_free_cels(ctrl);
4746 	nvme_mpath_uninit(ctrl);
4747 	cleanup_srcu_struct(&ctrl->srcu);
4748 	nvme_auth_stop(ctrl);
4749 	nvme_auth_free(ctrl);
4750 	__free_page(ctrl->discard_page);
4751 	free_opal_dev(ctrl->opal_dev);
4752 
4753 	if (subsys) {
4754 		mutex_lock(&nvme_subsystems_lock);
4755 		list_del(&ctrl->subsys_entry);
4756 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4757 		mutex_unlock(&nvme_subsystems_lock);
4758 	}
4759 
4760 	ctrl->ops->free_ctrl(ctrl);
4761 
4762 	if (subsys)
4763 		nvme_put_subsystem(subsys);
4764 }
4765 
4766 /*
4767  * Initialize a NVMe controller structures.  This needs to be called during
4768  * earliest initialization so that we have the initialized structured around
4769  * during probing.
4770  *
4771  * On success, the caller must use the nvme_put_ctrl() to release this when
4772  * needed, which also invokes the ops->free_ctrl() callback.
4773  */
4774 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4775 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4776 {
4777 	int ret;
4778 
4779 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4780 	ctrl->passthru_err_log_enabled = false;
4781 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4782 	spin_lock_init(&ctrl->lock);
4783 	mutex_init(&ctrl->namespaces_lock);
4784 
4785 	ret = init_srcu_struct(&ctrl->srcu);
4786 	if (ret)
4787 		return ret;
4788 
4789 	mutex_init(&ctrl->scan_lock);
4790 	INIT_LIST_HEAD(&ctrl->namespaces);
4791 	xa_init(&ctrl->cels);
4792 	ctrl->dev = dev;
4793 	ctrl->ops = ops;
4794 	ctrl->quirks = quirks;
4795 	ctrl->numa_node = NUMA_NO_NODE;
4796 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4797 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4798 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4799 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4800 	init_waitqueue_head(&ctrl->state_wq);
4801 
4802 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4803 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4804 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4805 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4806 	ctrl->ka_last_check_time = jiffies;
4807 
4808 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4809 			PAGE_SIZE);
4810 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4811 	if (!ctrl->discard_page) {
4812 		ret = -ENOMEM;
4813 		goto out;
4814 	}
4815 
4816 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4817 	if (ret < 0)
4818 		goto out;
4819 	ctrl->instance = ret;
4820 
4821 	ret = nvme_auth_init_ctrl(ctrl);
4822 	if (ret)
4823 		goto out_release_instance;
4824 
4825 	nvme_mpath_init_ctrl(ctrl);
4826 
4827 	device_initialize(&ctrl->ctrl_device);
4828 	ctrl->device = &ctrl->ctrl_device;
4829 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4830 			ctrl->instance);
4831 	ctrl->device->class = &nvme_class;
4832 	ctrl->device->parent = ctrl->dev;
4833 	if (ops->dev_attr_groups)
4834 		ctrl->device->groups = ops->dev_attr_groups;
4835 	else
4836 		ctrl->device->groups = nvme_dev_attr_groups;
4837 	ctrl->device->release = nvme_free_ctrl;
4838 	dev_set_drvdata(ctrl->device, ctrl);
4839 
4840 	return ret;
4841 
4842 out_release_instance:
4843 	ida_free(&nvme_instance_ida, ctrl->instance);
4844 out:
4845 	if (ctrl->discard_page)
4846 		__free_page(ctrl->discard_page);
4847 	cleanup_srcu_struct(&ctrl->srcu);
4848 	return ret;
4849 }
4850 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4851 
4852 /*
4853  * On success, returns with an elevated controller reference and caller must
4854  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4855  */
4856 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4857 {
4858 	int ret;
4859 
4860 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4861 	if (ret)
4862 		return ret;
4863 
4864 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4865 	ctrl->cdev.owner = ctrl->ops->module;
4866 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4867 	if (ret)
4868 		return ret;
4869 
4870 	/*
4871 	 * Initialize latency tolerance controls.  The sysfs files won't
4872 	 * be visible to userspace unless the device actually supports APST.
4873 	 */
4874 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4875 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4876 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4877 
4878 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4879 	nvme_get_ctrl(ctrl);
4880 
4881 	return 0;
4882 }
4883 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4884 
4885 /* let I/O to all namespaces fail in preparation for surprise removal */
4886 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4887 {
4888 	struct nvme_ns *ns;
4889 	int srcu_idx;
4890 
4891 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4892 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4893 				 srcu_read_lock_held(&ctrl->srcu))
4894 		blk_mark_disk_dead(ns->disk);
4895 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4896 }
4897 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4898 
4899 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4900 {
4901 	struct nvme_ns *ns;
4902 	int srcu_idx;
4903 
4904 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4905 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4906 				 srcu_read_lock_held(&ctrl->srcu))
4907 		blk_mq_unfreeze_queue_non_owner(ns->queue);
4908 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4909 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4910 }
4911 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4912 
4913 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4914 {
4915 	struct nvme_ns *ns;
4916 	int srcu_idx;
4917 
4918 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4919 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4920 				 srcu_read_lock_held(&ctrl->srcu)) {
4921 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4922 		if (timeout <= 0)
4923 			break;
4924 	}
4925 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4926 	return timeout;
4927 }
4928 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4929 
4930 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4931 {
4932 	struct nvme_ns *ns;
4933 	int srcu_idx;
4934 
4935 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4936 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4937 				 srcu_read_lock_held(&ctrl->srcu))
4938 		blk_mq_freeze_queue_wait(ns->queue);
4939 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4940 }
4941 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4942 
4943 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4944 {
4945 	struct nvme_ns *ns;
4946 	int srcu_idx;
4947 
4948 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4949 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4950 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4951 				 srcu_read_lock_held(&ctrl->srcu))
4952 		/*
4953 		 * Typical non_owner use case is from pci driver, in which
4954 		 * start_freeze is called from timeout work function, but
4955 		 * unfreeze is done in reset work context
4956 		 */
4957 		blk_freeze_queue_start_non_owner(ns->queue);
4958 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4959 }
4960 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4961 
4962 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4963 {
4964 	if (!ctrl->tagset)
4965 		return;
4966 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4967 		blk_mq_quiesce_tagset(ctrl->tagset);
4968 	else
4969 		blk_mq_wait_quiesce_done(ctrl->tagset);
4970 }
4971 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4972 
4973 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4974 {
4975 	if (!ctrl->tagset)
4976 		return;
4977 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4978 		blk_mq_unquiesce_tagset(ctrl->tagset);
4979 }
4980 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4981 
4982 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4983 {
4984 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4985 		blk_mq_quiesce_queue(ctrl->admin_q);
4986 	else
4987 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4988 }
4989 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4990 
4991 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4992 {
4993 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4994 		blk_mq_unquiesce_queue(ctrl->admin_q);
4995 }
4996 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4997 
4998 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4999 {
5000 	struct nvme_ns *ns;
5001 	int srcu_idx;
5002 
5003 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5004 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5005 				 srcu_read_lock_held(&ctrl->srcu))
5006 		blk_sync_queue(ns->queue);
5007 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5008 }
5009 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5010 
5011 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5012 {
5013 	nvme_sync_io_queues(ctrl);
5014 	if (ctrl->admin_q)
5015 		blk_sync_queue(ctrl->admin_q);
5016 }
5017 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5018 
5019 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5020 {
5021 	if (file->f_op != &nvme_dev_fops)
5022 		return NULL;
5023 	return file->private_data;
5024 }
5025 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5026 
5027 /*
5028  * Check we didn't inadvertently grow the command structure sizes:
5029  */
5030 static inline void _nvme_check_size(void)
5031 {
5032 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5033 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5034 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5035 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5036 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5037 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5038 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5039 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5040 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5041 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5042 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5043 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5044 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5045 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5046 			NVME_IDENTIFY_DATA_SIZE);
5047 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5048 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5049 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5050 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5051 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5052 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5053 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5054 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5055 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5056 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5057 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5058 }
5059 
5060 
5061 static int __init nvme_core_init(void)
5062 {
5063 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5064 	int result = -ENOMEM;
5065 
5066 	_nvme_check_size();
5067 
5068 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5069 	if (!nvme_wq)
5070 		goto out;
5071 
5072 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5073 	if (!nvme_reset_wq)
5074 		goto destroy_wq;
5075 
5076 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5077 	if (!nvme_delete_wq)
5078 		goto destroy_reset_wq;
5079 
5080 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5081 			NVME_MINORS, "nvme");
5082 	if (result < 0)
5083 		goto destroy_delete_wq;
5084 
5085 	result = class_register(&nvme_class);
5086 	if (result)
5087 		goto unregister_chrdev;
5088 
5089 	result = class_register(&nvme_subsys_class);
5090 	if (result)
5091 		goto destroy_class;
5092 
5093 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5094 				     "nvme-generic");
5095 	if (result < 0)
5096 		goto destroy_subsys_class;
5097 
5098 	result = class_register(&nvme_ns_chr_class);
5099 	if (result)
5100 		goto unregister_generic_ns;
5101 
5102 	result = nvme_init_auth();
5103 	if (result)
5104 		goto destroy_ns_chr;
5105 	return 0;
5106 
5107 destroy_ns_chr:
5108 	class_unregister(&nvme_ns_chr_class);
5109 unregister_generic_ns:
5110 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5111 destroy_subsys_class:
5112 	class_unregister(&nvme_subsys_class);
5113 destroy_class:
5114 	class_unregister(&nvme_class);
5115 unregister_chrdev:
5116 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5117 destroy_delete_wq:
5118 	destroy_workqueue(nvme_delete_wq);
5119 destroy_reset_wq:
5120 	destroy_workqueue(nvme_reset_wq);
5121 destroy_wq:
5122 	destroy_workqueue(nvme_wq);
5123 out:
5124 	return result;
5125 }
5126 
5127 static void __exit nvme_core_exit(void)
5128 {
5129 	nvme_exit_auth();
5130 	class_unregister(&nvme_ns_chr_class);
5131 	class_unregister(&nvme_subsys_class);
5132 	class_unregister(&nvme_class);
5133 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5134 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5135 	destroy_workqueue(nvme_delete_wq);
5136 	destroy_workqueue(nvme_reset_wq);
5137 	destroy_workqueue(nvme_wq);
5138 	ida_destroy(&nvme_ns_chr_minor_ida);
5139 	ida_destroy(&nvme_instance_ida);
5140 }
5141 
5142 MODULE_LICENSE("GPL");
5143 MODULE_VERSION("1.0");
5144 MODULE_DESCRIPTION("NVMe host core framework");
5145 module_init(nvme_core_init);
5146 module_exit(nvme_core_exit);
5147