1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 #include <linux/nvme-auth.h> 28 29 #define CREATE_TRACE_POINTS 30 #include "trace.h" 31 32 #define NVME_MINORS (1U << MINORBITS) 33 34 struct nvme_ns_info { 35 struct nvme_ns_ids ids; 36 u32 nsid; 37 __le32 anagrpid; 38 bool is_shared; 39 bool is_readonly; 40 bool is_ready; 41 bool is_removed; 42 }; 43 44 unsigned int admin_timeout = 60; 45 module_param(admin_timeout, uint, 0644); 46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 47 EXPORT_SYMBOL_GPL(admin_timeout); 48 49 unsigned int nvme_io_timeout = 30; 50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 52 EXPORT_SYMBOL_GPL(nvme_io_timeout); 53 54 static unsigned char shutdown_timeout = 5; 55 module_param(shutdown_timeout, byte, 0644); 56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 57 58 static u8 nvme_max_retries = 5; 59 module_param_named(max_retries, nvme_max_retries, byte, 0644); 60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 61 62 static unsigned long default_ps_max_latency_us = 100000; 63 module_param(default_ps_max_latency_us, ulong, 0644); 64 MODULE_PARM_DESC(default_ps_max_latency_us, 65 "max power saving latency for new devices; use PM QOS to change per device"); 66 67 static bool force_apst; 68 module_param(force_apst, bool, 0644); 69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 70 71 static unsigned long apst_primary_timeout_ms = 100; 72 module_param(apst_primary_timeout_ms, ulong, 0644); 73 MODULE_PARM_DESC(apst_primary_timeout_ms, 74 "primary APST timeout in ms"); 75 76 static unsigned long apst_secondary_timeout_ms = 2000; 77 module_param(apst_secondary_timeout_ms, ulong, 0644); 78 MODULE_PARM_DESC(apst_secondary_timeout_ms, 79 "secondary APST timeout in ms"); 80 81 static unsigned long apst_primary_latency_tol_us = 15000; 82 module_param(apst_primary_latency_tol_us, ulong, 0644); 83 MODULE_PARM_DESC(apst_primary_latency_tol_us, 84 "primary APST latency tolerance in us"); 85 86 static unsigned long apst_secondary_latency_tol_us = 100000; 87 module_param(apst_secondary_latency_tol_us, ulong, 0644); 88 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 89 "secondary APST latency tolerance in us"); 90 91 /* 92 * nvme_wq - hosts nvme related works that are not reset or delete 93 * nvme_reset_wq - hosts nvme reset works 94 * nvme_delete_wq - hosts nvme delete works 95 * 96 * nvme_wq will host works such as scan, aen handling, fw activation, 97 * keep-alive, periodic reconnects etc. nvme_reset_wq 98 * runs reset works which also flush works hosted on nvme_wq for 99 * serialization purposes. nvme_delete_wq host controller deletion 100 * works which flush reset works for serialization. 101 */ 102 struct workqueue_struct *nvme_wq; 103 EXPORT_SYMBOL_GPL(nvme_wq); 104 105 struct workqueue_struct *nvme_reset_wq; 106 EXPORT_SYMBOL_GPL(nvme_reset_wq); 107 108 struct workqueue_struct *nvme_delete_wq; 109 EXPORT_SYMBOL_GPL(nvme_delete_wq); 110 111 static LIST_HEAD(nvme_subsystems); 112 static DEFINE_MUTEX(nvme_subsystems_lock); 113 114 static DEFINE_IDA(nvme_instance_ida); 115 static dev_t nvme_ctrl_base_chr_devt; 116 static struct class *nvme_class; 117 static struct class *nvme_subsys_class; 118 119 static DEFINE_IDA(nvme_ns_chr_minor_ida); 120 static dev_t nvme_ns_chr_devt; 121 static struct class *nvme_ns_chr_class; 122 123 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 125 unsigned nsid); 126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 127 struct nvme_command *cmd); 128 129 void nvme_queue_scan(struct nvme_ctrl *ctrl) 130 { 131 /* 132 * Only new queue scan work when admin and IO queues are both alive 133 */ 134 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 135 queue_work(nvme_wq, &ctrl->scan_work); 136 } 137 138 /* 139 * Use this function to proceed with scheduling reset_work for a controller 140 * that had previously been set to the resetting state. This is intended for 141 * code paths that can't be interrupted by other reset attempts. A hot removal 142 * may prevent this from succeeding. 143 */ 144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 145 { 146 if (ctrl->state != NVME_CTRL_RESETTING) 147 return -EBUSY; 148 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 149 return -EBUSY; 150 return 0; 151 } 152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 153 154 static void nvme_failfast_work(struct work_struct *work) 155 { 156 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 157 struct nvme_ctrl, failfast_work); 158 159 if (ctrl->state != NVME_CTRL_CONNECTING) 160 return; 161 162 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 163 dev_info(ctrl->device, "failfast expired\n"); 164 nvme_kick_requeue_lists(ctrl); 165 } 166 167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 168 { 169 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 170 return; 171 172 schedule_delayed_work(&ctrl->failfast_work, 173 ctrl->opts->fast_io_fail_tmo * HZ); 174 } 175 176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 177 { 178 if (!ctrl->opts) 179 return; 180 181 cancel_delayed_work_sync(&ctrl->failfast_work); 182 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 183 } 184 185 186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 187 { 188 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 189 return -EBUSY; 190 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 191 return -EBUSY; 192 return 0; 193 } 194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 195 196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 197 { 198 int ret; 199 200 ret = nvme_reset_ctrl(ctrl); 201 if (!ret) { 202 flush_work(&ctrl->reset_work); 203 if (ctrl->state != NVME_CTRL_LIVE) 204 ret = -ENETRESET; 205 } 206 207 return ret; 208 } 209 210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 211 { 212 dev_info(ctrl->device, 213 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 214 215 flush_work(&ctrl->reset_work); 216 nvme_stop_ctrl(ctrl); 217 nvme_remove_namespaces(ctrl); 218 ctrl->ops->delete_ctrl(ctrl); 219 nvme_uninit_ctrl(ctrl); 220 } 221 222 static void nvme_delete_ctrl_work(struct work_struct *work) 223 { 224 struct nvme_ctrl *ctrl = 225 container_of(work, struct nvme_ctrl, delete_work); 226 227 nvme_do_delete_ctrl(ctrl); 228 } 229 230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 231 { 232 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 233 return -EBUSY; 234 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 235 return -EBUSY; 236 return 0; 237 } 238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 239 240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 241 { 242 /* 243 * Keep a reference until nvme_do_delete_ctrl() complete, 244 * since ->delete_ctrl can free the controller. 245 */ 246 nvme_get_ctrl(ctrl); 247 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 248 nvme_do_delete_ctrl(ctrl); 249 nvme_put_ctrl(ctrl); 250 } 251 252 static blk_status_t nvme_error_status(u16 status) 253 { 254 switch (status & 0x7ff) { 255 case NVME_SC_SUCCESS: 256 return BLK_STS_OK; 257 case NVME_SC_CAP_EXCEEDED: 258 return BLK_STS_NOSPC; 259 case NVME_SC_LBA_RANGE: 260 case NVME_SC_CMD_INTERRUPTED: 261 case NVME_SC_NS_NOT_READY: 262 return BLK_STS_TARGET; 263 case NVME_SC_BAD_ATTRIBUTES: 264 case NVME_SC_ONCS_NOT_SUPPORTED: 265 case NVME_SC_INVALID_OPCODE: 266 case NVME_SC_INVALID_FIELD: 267 case NVME_SC_INVALID_NS: 268 return BLK_STS_NOTSUPP; 269 case NVME_SC_WRITE_FAULT: 270 case NVME_SC_READ_ERROR: 271 case NVME_SC_UNWRITTEN_BLOCK: 272 case NVME_SC_ACCESS_DENIED: 273 case NVME_SC_READ_ONLY: 274 case NVME_SC_COMPARE_FAILED: 275 return BLK_STS_MEDIUM; 276 case NVME_SC_GUARD_CHECK: 277 case NVME_SC_APPTAG_CHECK: 278 case NVME_SC_REFTAG_CHECK: 279 case NVME_SC_INVALID_PI: 280 return BLK_STS_PROTECTION; 281 case NVME_SC_RESERVATION_CONFLICT: 282 return BLK_STS_RESV_CONFLICT; 283 case NVME_SC_HOST_PATH_ERROR: 284 return BLK_STS_TRANSPORT; 285 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 286 return BLK_STS_ZONE_ACTIVE_RESOURCE; 287 case NVME_SC_ZONE_TOO_MANY_OPEN: 288 return BLK_STS_ZONE_OPEN_RESOURCE; 289 default: 290 return BLK_STS_IOERR; 291 } 292 } 293 294 static void nvme_retry_req(struct request *req) 295 { 296 unsigned long delay = 0; 297 u16 crd; 298 299 /* The mask and shift result must be <= 3 */ 300 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 301 if (crd) 302 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 303 304 nvme_req(req)->retries++; 305 blk_mq_requeue_request(req, false); 306 blk_mq_delay_kick_requeue_list(req->q, delay); 307 } 308 309 static void nvme_log_error(struct request *req) 310 { 311 struct nvme_ns *ns = req->q->queuedata; 312 struct nvme_request *nr = nvme_req(req); 313 314 if (ns) { 315 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 316 ns->disk ? ns->disk->disk_name : "?", 317 nvme_get_opcode_str(nr->cmd->common.opcode), 318 nr->cmd->common.opcode, 319 (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)), 320 (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift, 321 nvme_get_error_status_str(nr->status), 322 nr->status >> 8 & 7, /* Status Code Type */ 323 nr->status & 0xff, /* Status Code */ 324 nr->status & NVME_SC_MORE ? "MORE " : "", 325 nr->status & NVME_SC_DNR ? "DNR " : ""); 326 return; 327 } 328 329 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 330 dev_name(nr->ctrl->device), 331 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 332 nr->cmd->common.opcode, 333 nvme_get_error_status_str(nr->status), 334 nr->status >> 8 & 7, /* Status Code Type */ 335 nr->status & 0xff, /* Status Code */ 336 nr->status & NVME_SC_MORE ? "MORE " : "", 337 nr->status & NVME_SC_DNR ? "DNR " : ""); 338 } 339 340 enum nvme_disposition { 341 COMPLETE, 342 RETRY, 343 FAILOVER, 344 AUTHENTICATE, 345 }; 346 347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 348 { 349 if (likely(nvme_req(req)->status == 0)) 350 return COMPLETE; 351 352 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) 353 return AUTHENTICATE; 354 355 if (blk_noretry_request(req) || 356 (nvme_req(req)->status & NVME_SC_DNR) || 357 nvme_req(req)->retries >= nvme_max_retries) 358 return COMPLETE; 359 360 if (req->cmd_flags & REQ_NVME_MPATH) { 361 if (nvme_is_path_error(nvme_req(req)->status) || 362 blk_queue_dying(req->q)) 363 return FAILOVER; 364 } else { 365 if (blk_queue_dying(req->q)) 366 return COMPLETE; 367 } 368 369 return RETRY; 370 } 371 372 static inline void nvme_end_req_zoned(struct request *req) 373 { 374 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 375 req_op(req) == REQ_OP_ZONE_APPEND) 376 req->__sector = nvme_lba_to_sect(req->q->queuedata, 377 le64_to_cpu(nvme_req(req)->result.u64)); 378 } 379 380 static inline void nvme_end_req(struct request *req) 381 { 382 blk_status_t status = nvme_error_status(nvme_req(req)->status); 383 384 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) 385 nvme_log_error(req); 386 nvme_end_req_zoned(req); 387 nvme_trace_bio_complete(req); 388 if (req->cmd_flags & REQ_NVME_MPATH) 389 nvme_mpath_end_request(req); 390 blk_mq_end_request(req, status); 391 } 392 393 void nvme_complete_rq(struct request *req) 394 { 395 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 396 397 trace_nvme_complete_rq(req); 398 nvme_cleanup_cmd(req); 399 400 /* 401 * Completions of long-running commands should not be able to 402 * defer sending of periodic keep alives, since the controller 403 * may have completed processing such commands a long time ago 404 * (arbitrarily close to command submission time). 405 * req->deadline - req->timeout is the command submission time 406 * in jiffies. 407 */ 408 if (ctrl->kas && 409 req->deadline - req->timeout >= ctrl->ka_last_check_time) 410 ctrl->comp_seen = true; 411 412 switch (nvme_decide_disposition(req)) { 413 case COMPLETE: 414 nvme_end_req(req); 415 return; 416 case RETRY: 417 nvme_retry_req(req); 418 return; 419 case FAILOVER: 420 nvme_failover_req(req); 421 return; 422 case AUTHENTICATE: 423 #ifdef CONFIG_NVME_HOST_AUTH 424 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 425 nvme_retry_req(req); 426 #else 427 nvme_end_req(req); 428 #endif 429 return; 430 } 431 } 432 EXPORT_SYMBOL_GPL(nvme_complete_rq); 433 434 void nvme_complete_batch_req(struct request *req) 435 { 436 trace_nvme_complete_rq(req); 437 nvme_cleanup_cmd(req); 438 nvme_end_req_zoned(req); 439 } 440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 441 442 /* 443 * Called to unwind from ->queue_rq on a failed command submission so that the 444 * multipathing code gets called to potentially failover to another path. 445 * The caller needs to unwind all transport specific resource allocations and 446 * must return propagate the return value. 447 */ 448 blk_status_t nvme_host_path_error(struct request *req) 449 { 450 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 451 blk_mq_set_request_complete(req); 452 nvme_complete_rq(req); 453 return BLK_STS_OK; 454 } 455 EXPORT_SYMBOL_GPL(nvme_host_path_error); 456 457 bool nvme_cancel_request(struct request *req, void *data) 458 { 459 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 460 "Cancelling I/O %d", req->tag); 461 462 /* don't abort one completed or idle request */ 463 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 464 return true; 465 466 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 467 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 468 blk_mq_complete_request(req); 469 return true; 470 } 471 EXPORT_SYMBOL_GPL(nvme_cancel_request); 472 473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 474 { 475 if (ctrl->tagset) { 476 blk_mq_tagset_busy_iter(ctrl->tagset, 477 nvme_cancel_request, ctrl); 478 blk_mq_tagset_wait_completed_request(ctrl->tagset); 479 } 480 } 481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 482 483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 484 { 485 nvme_stop_keep_alive(ctrl); 486 if (ctrl->admin_tagset) { 487 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 488 nvme_cancel_request, ctrl); 489 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 490 } 491 } 492 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 493 494 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 495 enum nvme_ctrl_state new_state) 496 { 497 enum nvme_ctrl_state old_state; 498 unsigned long flags; 499 bool changed = false; 500 501 spin_lock_irqsave(&ctrl->lock, flags); 502 503 old_state = ctrl->state; 504 switch (new_state) { 505 case NVME_CTRL_LIVE: 506 switch (old_state) { 507 case NVME_CTRL_NEW: 508 case NVME_CTRL_RESETTING: 509 case NVME_CTRL_CONNECTING: 510 changed = true; 511 fallthrough; 512 default: 513 break; 514 } 515 break; 516 case NVME_CTRL_RESETTING: 517 switch (old_state) { 518 case NVME_CTRL_NEW: 519 case NVME_CTRL_LIVE: 520 changed = true; 521 fallthrough; 522 default: 523 break; 524 } 525 break; 526 case NVME_CTRL_CONNECTING: 527 switch (old_state) { 528 case NVME_CTRL_NEW: 529 case NVME_CTRL_RESETTING: 530 changed = true; 531 fallthrough; 532 default: 533 break; 534 } 535 break; 536 case NVME_CTRL_DELETING: 537 switch (old_state) { 538 case NVME_CTRL_LIVE: 539 case NVME_CTRL_RESETTING: 540 case NVME_CTRL_CONNECTING: 541 changed = true; 542 fallthrough; 543 default: 544 break; 545 } 546 break; 547 case NVME_CTRL_DELETING_NOIO: 548 switch (old_state) { 549 case NVME_CTRL_DELETING: 550 case NVME_CTRL_DEAD: 551 changed = true; 552 fallthrough; 553 default: 554 break; 555 } 556 break; 557 case NVME_CTRL_DEAD: 558 switch (old_state) { 559 case NVME_CTRL_DELETING: 560 changed = true; 561 fallthrough; 562 default: 563 break; 564 } 565 break; 566 default: 567 break; 568 } 569 570 if (changed) { 571 ctrl->state = new_state; 572 wake_up_all(&ctrl->state_wq); 573 } 574 575 spin_unlock_irqrestore(&ctrl->lock, flags); 576 if (!changed) 577 return false; 578 579 if (ctrl->state == NVME_CTRL_LIVE) { 580 if (old_state == NVME_CTRL_CONNECTING) 581 nvme_stop_failfast_work(ctrl); 582 nvme_kick_requeue_lists(ctrl); 583 } else if (ctrl->state == NVME_CTRL_CONNECTING && 584 old_state == NVME_CTRL_RESETTING) { 585 nvme_start_failfast_work(ctrl); 586 } 587 return changed; 588 } 589 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 590 591 /* 592 * Returns true for sink states that can't ever transition back to live. 593 */ 594 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 595 { 596 switch (ctrl->state) { 597 case NVME_CTRL_NEW: 598 case NVME_CTRL_LIVE: 599 case NVME_CTRL_RESETTING: 600 case NVME_CTRL_CONNECTING: 601 return false; 602 case NVME_CTRL_DELETING: 603 case NVME_CTRL_DELETING_NOIO: 604 case NVME_CTRL_DEAD: 605 return true; 606 default: 607 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 608 return true; 609 } 610 } 611 612 /* 613 * Waits for the controller state to be resetting, or returns false if it is 614 * not possible to ever transition to that state. 615 */ 616 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 617 { 618 wait_event(ctrl->state_wq, 619 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 620 nvme_state_terminal(ctrl)); 621 return ctrl->state == NVME_CTRL_RESETTING; 622 } 623 EXPORT_SYMBOL_GPL(nvme_wait_reset); 624 625 static void nvme_free_ns_head(struct kref *ref) 626 { 627 struct nvme_ns_head *head = 628 container_of(ref, struct nvme_ns_head, ref); 629 630 nvme_mpath_remove_disk(head); 631 ida_free(&head->subsys->ns_ida, head->instance); 632 cleanup_srcu_struct(&head->srcu); 633 nvme_put_subsystem(head->subsys); 634 kfree(head); 635 } 636 637 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 638 { 639 return kref_get_unless_zero(&head->ref); 640 } 641 642 void nvme_put_ns_head(struct nvme_ns_head *head) 643 { 644 kref_put(&head->ref, nvme_free_ns_head); 645 } 646 647 static void nvme_free_ns(struct kref *kref) 648 { 649 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 650 651 put_disk(ns->disk); 652 nvme_put_ns_head(ns->head); 653 nvme_put_ctrl(ns->ctrl); 654 kfree(ns); 655 } 656 657 static inline bool nvme_get_ns(struct nvme_ns *ns) 658 { 659 return kref_get_unless_zero(&ns->kref); 660 } 661 662 void nvme_put_ns(struct nvme_ns *ns) 663 { 664 kref_put(&ns->kref, nvme_free_ns); 665 } 666 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 667 668 static inline void nvme_clear_nvme_request(struct request *req) 669 { 670 nvme_req(req)->status = 0; 671 nvme_req(req)->retries = 0; 672 nvme_req(req)->flags = 0; 673 req->rq_flags |= RQF_DONTPREP; 674 } 675 676 /* initialize a passthrough request */ 677 void nvme_init_request(struct request *req, struct nvme_command *cmd) 678 { 679 if (req->q->queuedata) 680 req->timeout = NVME_IO_TIMEOUT; 681 else /* no queuedata implies admin queue */ 682 req->timeout = NVME_ADMIN_TIMEOUT; 683 684 /* passthru commands should let the driver set the SGL flags */ 685 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 686 687 req->cmd_flags |= REQ_FAILFAST_DRIVER; 688 if (req->mq_hctx->type == HCTX_TYPE_POLL) 689 req->cmd_flags |= REQ_POLLED; 690 nvme_clear_nvme_request(req); 691 req->rq_flags |= RQF_QUIET; 692 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 693 } 694 EXPORT_SYMBOL_GPL(nvme_init_request); 695 696 /* 697 * For something we're not in a state to send to the device the default action 698 * is to busy it and retry it after the controller state is recovered. However, 699 * if the controller is deleting or if anything is marked for failfast or 700 * nvme multipath it is immediately failed. 701 * 702 * Note: commands used to initialize the controller will be marked for failfast. 703 * Note: nvme cli/ioctl commands are marked for failfast. 704 */ 705 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 706 struct request *rq) 707 { 708 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 709 ctrl->state != NVME_CTRL_DELETING && 710 ctrl->state != NVME_CTRL_DEAD && 711 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 712 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 713 return BLK_STS_RESOURCE; 714 return nvme_host_path_error(rq); 715 } 716 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 717 718 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 719 bool queue_live) 720 { 721 struct nvme_request *req = nvme_req(rq); 722 723 /* 724 * currently we have a problem sending passthru commands 725 * on the admin_q if the controller is not LIVE because we can't 726 * make sure that they are going out after the admin connect, 727 * controller enable and/or other commands in the initialization 728 * sequence. until the controller will be LIVE, fail with 729 * BLK_STS_RESOURCE so that they will be rescheduled. 730 */ 731 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 732 return false; 733 734 if (ctrl->ops->flags & NVME_F_FABRICS) { 735 /* 736 * Only allow commands on a live queue, except for the connect 737 * command, which is require to set the queue live in the 738 * appropinquate states. 739 */ 740 switch (ctrl->state) { 741 case NVME_CTRL_CONNECTING: 742 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 743 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 744 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 745 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 746 return true; 747 break; 748 default: 749 break; 750 case NVME_CTRL_DEAD: 751 return false; 752 } 753 } 754 755 return queue_live; 756 } 757 EXPORT_SYMBOL_GPL(__nvme_check_ready); 758 759 static inline void nvme_setup_flush(struct nvme_ns *ns, 760 struct nvme_command *cmnd) 761 { 762 memset(cmnd, 0, sizeof(*cmnd)); 763 cmnd->common.opcode = nvme_cmd_flush; 764 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 765 } 766 767 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 768 struct nvme_command *cmnd) 769 { 770 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 771 struct nvme_dsm_range *range; 772 struct bio *bio; 773 774 /* 775 * Some devices do not consider the DSM 'Number of Ranges' field when 776 * determining how much data to DMA. Always allocate memory for maximum 777 * number of segments to prevent device reading beyond end of buffer. 778 */ 779 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 780 781 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 782 if (!range) { 783 /* 784 * If we fail allocation our range, fallback to the controller 785 * discard page. If that's also busy, it's safe to return 786 * busy, as we know we can make progress once that's freed. 787 */ 788 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 789 return BLK_STS_RESOURCE; 790 791 range = page_address(ns->ctrl->discard_page); 792 } 793 794 if (queue_max_discard_segments(req->q) == 1) { 795 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req)); 796 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9); 797 798 range[0].cattr = cpu_to_le32(0); 799 range[0].nlb = cpu_to_le32(nlb); 800 range[0].slba = cpu_to_le64(slba); 801 n = 1; 802 } else { 803 __rq_for_each_bio(bio, req) { 804 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 805 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 806 807 if (n < segments) { 808 range[n].cattr = cpu_to_le32(0); 809 range[n].nlb = cpu_to_le32(nlb); 810 range[n].slba = cpu_to_le64(slba); 811 } 812 n++; 813 } 814 } 815 816 if (WARN_ON_ONCE(n != segments)) { 817 if (virt_to_page(range) == ns->ctrl->discard_page) 818 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 819 else 820 kfree(range); 821 return BLK_STS_IOERR; 822 } 823 824 memset(cmnd, 0, sizeof(*cmnd)); 825 cmnd->dsm.opcode = nvme_cmd_dsm; 826 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 827 cmnd->dsm.nr = cpu_to_le32(segments - 1); 828 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 829 830 bvec_set_virt(&req->special_vec, range, alloc_size); 831 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 832 833 return BLK_STS_OK; 834 } 835 836 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 837 struct request *req) 838 { 839 u32 upper, lower; 840 u64 ref48; 841 842 /* both rw and write zeroes share the same reftag format */ 843 switch (ns->guard_type) { 844 case NVME_NVM_NS_16B_GUARD: 845 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 846 break; 847 case NVME_NVM_NS_64B_GUARD: 848 ref48 = ext_pi_ref_tag(req); 849 lower = lower_32_bits(ref48); 850 upper = upper_32_bits(ref48); 851 852 cmnd->rw.reftag = cpu_to_le32(lower); 853 cmnd->rw.cdw3 = cpu_to_le32(upper); 854 break; 855 default: 856 break; 857 } 858 } 859 860 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 861 struct request *req, struct nvme_command *cmnd) 862 { 863 memset(cmnd, 0, sizeof(*cmnd)); 864 865 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 866 return nvme_setup_discard(ns, req, cmnd); 867 868 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 869 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 870 cmnd->write_zeroes.slba = 871 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 872 cmnd->write_zeroes.length = 873 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 874 875 if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC)) 876 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 877 878 if (nvme_ns_has_pi(ns)) { 879 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 880 881 switch (ns->pi_type) { 882 case NVME_NS_DPS_PI_TYPE1: 883 case NVME_NS_DPS_PI_TYPE2: 884 nvme_set_ref_tag(ns, cmnd, req); 885 break; 886 } 887 } 888 889 return BLK_STS_OK; 890 } 891 892 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 893 struct request *req, struct nvme_command *cmnd, 894 enum nvme_opcode op) 895 { 896 u16 control = 0; 897 u32 dsmgmt = 0; 898 899 if (req->cmd_flags & REQ_FUA) 900 control |= NVME_RW_FUA; 901 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 902 control |= NVME_RW_LR; 903 904 if (req->cmd_flags & REQ_RAHEAD) 905 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 906 907 cmnd->rw.opcode = op; 908 cmnd->rw.flags = 0; 909 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 910 cmnd->rw.cdw2 = 0; 911 cmnd->rw.cdw3 = 0; 912 cmnd->rw.metadata = 0; 913 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 914 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 915 cmnd->rw.reftag = 0; 916 cmnd->rw.apptag = 0; 917 cmnd->rw.appmask = 0; 918 919 if (ns->ms) { 920 /* 921 * If formated with metadata, the block layer always provides a 922 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 923 * we enable the PRACT bit for protection information or set the 924 * namespace capacity to zero to prevent any I/O. 925 */ 926 if (!blk_integrity_rq(req)) { 927 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 928 return BLK_STS_NOTSUPP; 929 control |= NVME_RW_PRINFO_PRACT; 930 } 931 932 switch (ns->pi_type) { 933 case NVME_NS_DPS_PI_TYPE3: 934 control |= NVME_RW_PRINFO_PRCHK_GUARD; 935 break; 936 case NVME_NS_DPS_PI_TYPE1: 937 case NVME_NS_DPS_PI_TYPE2: 938 control |= NVME_RW_PRINFO_PRCHK_GUARD | 939 NVME_RW_PRINFO_PRCHK_REF; 940 if (op == nvme_cmd_zone_append) 941 control |= NVME_RW_APPEND_PIREMAP; 942 nvme_set_ref_tag(ns, cmnd, req); 943 break; 944 } 945 } 946 947 cmnd->rw.control = cpu_to_le16(control); 948 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 949 return 0; 950 } 951 952 void nvme_cleanup_cmd(struct request *req) 953 { 954 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 955 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 956 957 if (req->special_vec.bv_page == ctrl->discard_page) 958 clear_bit_unlock(0, &ctrl->discard_page_busy); 959 else 960 kfree(bvec_virt(&req->special_vec)); 961 } 962 } 963 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 964 965 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 966 { 967 struct nvme_command *cmd = nvme_req(req)->cmd; 968 blk_status_t ret = BLK_STS_OK; 969 970 if (!(req->rq_flags & RQF_DONTPREP)) 971 nvme_clear_nvme_request(req); 972 973 switch (req_op(req)) { 974 case REQ_OP_DRV_IN: 975 case REQ_OP_DRV_OUT: 976 /* these are setup prior to execution in nvme_init_request() */ 977 break; 978 case REQ_OP_FLUSH: 979 nvme_setup_flush(ns, cmd); 980 break; 981 case REQ_OP_ZONE_RESET_ALL: 982 case REQ_OP_ZONE_RESET: 983 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 984 break; 985 case REQ_OP_ZONE_OPEN: 986 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 987 break; 988 case REQ_OP_ZONE_CLOSE: 989 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 990 break; 991 case REQ_OP_ZONE_FINISH: 992 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 993 break; 994 case REQ_OP_WRITE_ZEROES: 995 ret = nvme_setup_write_zeroes(ns, req, cmd); 996 break; 997 case REQ_OP_DISCARD: 998 ret = nvme_setup_discard(ns, req, cmd); 999 break; 1000 case REQ_OP_READ: 1001 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1002 break; 1003 case REQ_OP_WRITE: 1004 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1005 break; 1006 case REQ_OP_ZONE_APPEND: 1007 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1008 break; 1009 default: 1010 WARN_ON_ONCE(1); 1011 return BLK_STS_IOERR; 1012 } 1013 1014 cmd->common.command_id = nvme_cid(req); 1015 trace_nvme_setup_cmd(req, cmd); 1016 return ret; 1017 } 1018 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1019 1020 /* 1021 * Return values: 1022 * 0: success 1023 * >0: nvme controller's cqe status response 1024 * <0: kernel error in lieu of controller response 1025 */ 1026 int nvme_execute_rq(struct request *rq, bool at_head) 1027 { 1028 blk_status_t status; 1029 1030 status = blk_execute_rq(rq, at_head); 1031 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1032 return -EINTR; 1033 if (nvme_req(rq)->status) 1034 return nvme_req(rq)->status; 1035 return blk_status_to_errno(status); 1036 } 1037 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1038 1039 /* 1040 * Returns 0 on success. If the result is negative, it's a Linux error code; 1041 * if the result is positive, it's an NVM Express status code 1042 */ 1043 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1044 union nvme_result *result, void *buffer, unsigned bufflen, 1045 int qid, int at_head, blk_mq_req_flags_t flags) 1046 { 1047 struct request *req; 1048 int ret; 1049 1050 if (qid == NVME_QID_ANY) 1051 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 1052 else 1053 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 1054 qid - 1); 1055 1056 if (IS_ERR(req)) 1057 return PTR_ERR(req); 1058 nvme_init_request(req, cmd); 1059 1060 if (buffer && bufflen) { 1061 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1062 if (ret) 1063 goto out; 1064 } 1065 1066 ret = nvme_execute_rq(req, at_head); 1067 if (result && ret >= 0) 1068 *result = nvme_req(req)->result; 1069 out: 1070 blk_mq_free_request(req); 1071 return ret; 1072 } 1073 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1074 1075 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1076 void *buffer, unsigned bufflen) 1077 { 1078 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1079 NVME_QID_ANY, 0, 0); 1080 } 1081 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1082 1083 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1084 { 1085 u32 effects = 0; 1086 1087 if (ns) { 1088 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1089 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1090 dev_warn_once(ctrl->device, 1091 "IO command:%02x has unusual effects:%08x\n", 1092 opcode, effects); 1093 1094 /* 1095 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1096 * which would deadlock when done on an I/O command. Note that 1097 * We already warn about an unusual effect above. 1098 */ 1099 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1100 } else { 1101 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1102 } 1103 1104 return effects; 1105 } 1106 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1107 1108 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1109 { 1110 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1111 1112 /* 1113 * For simplicity, IO to all namespaces is quiesced even if the command 1114 * effects say only one namespace is affected. 1115 */ 1116 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1117 mutex_lock(&ctrl->scan_lock); 1118 mutex_lock(&ctrl->subsys->lock); 1119 nvme_mpath_start_freeze(ctrl->subsys); 1120 nvme_mpath_wait_freeze(ctrl->subsys); 1121 nvme_start_freeze(ctrl); 1122 nvme_wait_freeze(ctrl); 1123 } 1124 return effects; 1125 } 1126 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1127 1128 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1129 struct nvme_command *cmd, int status) 1130 { 1131 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1132 nvme_unfreeze(ctrl); 1133 nvme_mpath_unfreeze(ctrl->subsys); 1134 mutex_unlock(&ctrl->subsys->lock); 1135 mutex_unlock(&ctrl->scan_lock); 1136 } 1137 if (effects & NVME_CMD_EFFECTS_CCC) { 1138 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1139 &ctrl->flags)) { 1140 dev_info(ctrl->device, 1141 "controller capabilities changed, reset may be required to take effect.\n"); 1142 } 1143 } 1144 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1145 nvme_queue_scan(ctrl); 1146 flush_work(&ctrl->scan_work); 1147 } 1148 if (ns) 1149 return; 1150 1151 switch (cmd->common.opcode) { 1152 case nvme_admin_set_features: 1153 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1154 case NVME_FEAT_KATO: 1155 /* 1156 * Keep alive commands interval on the host should be 1157 * updated when KATO is modified by Set Features 1158 * commands. 1159 */ 1160 if (!status) 1161 nvme_update_keep_alive(ctrl, cmd); 1162 break; 1163 default: 1164 break; 1165 } 1166 break; 1167 default: 1168 break; 1169 } 1170 } 1171 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1172 1173 /* 1174 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1175 * 1176 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1177 * accounting for transport roundtrip times [..]. 1178 */ 1179 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1180 { 1181 unsigned long delay = ctrl->kato * HZ / 2; 1182 1183 /* 1184 * When using Traffic Based Keep Alive, we need to run 1185 * nvme_keep_alive_work at twice the normal frequency, as one 1186 * command completion can postpone sending a keep alive command 1187 * by up to twice the delay between runs. 1188 */ 1189 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1190 delay /= 2; 1191 return delay; 1192 } 1193 1194 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1195 { 1196 queue_delayed_work(nvme_wq, &ctrl->ka_work, 1197 nvme_keep_alive_work_period(ctrl)); 1198 } 1199 1200 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1201 blk_status_t status) 1202 { 1203 struct nvme_ctrl *ctrl = rq->end_io_data; 1204 unsigned long flags; 1205 bool startka = false; 1206 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1207 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1208 1209 /* 1210 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1211 * at the desired frequency. 1212 */ 1213 if (rtt <= delay) { 1214 delay -= rtt; 1215 } else { 1216 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1217 jiffies_to_msecs(rtt)); 1218 delay = 0; 1219 } 1220 1221 blk_mq_free_request(rq); 1222 1223 if (status) { 1224 dev_err(ctrl->device, 1225 "failed nvme_keep_alive_end_io error=%d\n", 1226 status); 1227 return RQ_END_IO_NONE; 1228 } 1229 1230 ctrl->ka_last_check_time = jiffies; 1231 ctrl->comp_seen = false; 1232 spin_lock_irqsave(&ctrl->lock, flags); 1233 if (ctrl->state == NVME_CTRL_LIVE || 1234 ctrl->state == NVME_CTRL_CONNECTING) 1235 startka = true; 1236 spin_unlock_irqrestore(&ctrl->lock, flags); 1237 if (startka) 1238 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1239 return RQ_END_IO_NONE; 1240 } 1241 1242 static void nvme_keep_alive_work(struct work_struct *work) 1243 { 1244 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1245 struct nvme_ctrl, ka_work); 1246 bool comp_seen = ctrl->comp_seen; 1247 struct request *rq; 1248 1249 ctrl->ka_last_check_time = jiffies; 1250 1251 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1252 dev_dbg(ctrl->device, 1253 "reschedule traffic based keep-alive timer\n"); 1254 ctrl->comp_seen = false; 1255 nvme_queue_keep_alive_work(ctrl); 1256 return; 1257 } 1258 1259 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1260 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1261 if (IS_ERR(rq)) { 1262 /* allocation failure, reset the controller */ 1263 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1264 nvme_reset_ctrl(ctrl); 1265 return; 1266 } 1267 nvme_init_request(rq, &ctrl->ka_cmd); 1268 1269 rq->timeout = ctrl->kato * HZ; 1270 rq->end_io = nvme_keep_alive_end_io; 1271 rq->end_io_data = ctrl; 1272 blk_execute_rq_nowait(rq, false); 1273 } 1274 1275 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1276 { 1277 if (unlikely(ctrl->kato == 0)) 1278 return; 1279 1280 nvme_queue_keep_alive_work(ctrl); 1281 } 1282 1283 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1284 { 1285 if (unlikely(ctrl->kato == 0)) 1286 return; 1287 1288 cancel_delayed_work_sync(&ctrl->ka_work); 1289 } 1290 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1291 1292 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1293 struct nvme_command *cmd) 1294 { 1295 unsigned int new_kato = 1296 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1297 1298 dev_info(ctrl->device, 1299 "keep alive interval updated from %u ms to %u ms\n", 1300 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1301 1302 nvme_stop_keep_alive(ctrl); 1303 ctrl->kato = new_kato; 1304 nvme_start_keep_alive(ctrl); 1305 } 1306 1307 /* 1308 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1309 * flag, thus sending any new CNS opcodes has a big chance of not working. 1310 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1311 * (but not for any later version). 1312 */ 1313 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1314 { 1315 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1316 return ctrl->vs < NVME_VS(1, 2, 0); 1317 return ctrl->vs < NVME_VS(1, 1, 0); 1318 } 1319 1320 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1321 { 1322 struct nvme_command c = { }; 1323 int error; 1324 1325 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1326 c.identify.opcode = nvme_admin_identify; 1327 c.identify.cns = NVME_ID_CNS_CTRL; 1328 1329 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1330 if (!*id) 1331 return -ENOMEM; 1332 1333 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1334 sizeof(struct nvme_id_ctrl)); 1335 if (error) 1336 kfree(*id); 1337 return error; 1338 } 1339 1340 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1341 struct nvme_ns_id_desc *cur, bool *csi_seen) 1342 { 1343 const char *warn_str = "ctrl returned bogus length:"; 1344 void *data = cur; 1345 1346 switch (cur->nidt) { 1347 case NVME_NIDT_EUI64: 1348 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1349 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1350 warn_str, cur->nidl); 1351 return -1; 1352 } 1353 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1354 return NVME_NIDT_EUI64_LEN; 1355 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1356 return NVME_NIDT_EUI64_LEN; 1357 case NVME_NIDT_NGUID: 1358 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1359 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1360 warn_str, cur->nidl); 1361 return -1; 1362 } 1363 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1364 return NVME_NIDT_NGUID_LEN; 1365 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1366 return NVME_NIDT_NGUID_LEN; 1367 case NVME_NIDT_UUID: 1368 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1369 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1370 warn_str, cur->nidl); 1371 return -1; 1372 } 1373 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1374 return NVME_NIDT_UUID_LEN; 1375 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1376 return NVME_NIDT_UUID_LEN; 1377 case NVME_NIDT_CSI: 1378 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1379 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1380 warn_str, cur->nidl); 1381 return -1; 1382 } 1383 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1384 *csi_seen = true; 1385 return NVME_NIDT_CSI_LEN; 1386 default: 1387 /* Skip unknown types */ 1388 return cur->nidl; 1389 } 1390 } 1391 1392 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1393 struct nvme_ns_info *info) 1394 { 1395 struct nvme_command c = { }; 1396 bool csi_seen = false; 1397 int status, pos, len; 1398 void *data; 1399 1400 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1401 return 0; 1402 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1403 return 0; 1404 1405 c.identify.opcode = nvme_admin_identify; 1406 c.identify.nsid = cpu_to_le32(info->nsid); 1407 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1408 1409 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1410 if (!data) 1411 return -ENOMEM; 1412 1413 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1414 NVME_IDENTIFY_DATA_SIZE); 1415 if (status) { 1416 dev_warn(ctrl->device, 1417 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1418 info->nsid, status); 1419 goto free_data; 1420 } 1421 1422 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1423 struct nvme_ns_id_desc *cur = data + pos; 1424 1425 if (cur->nidl == 0) 1426 break; 1427 1428 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1429 if (len < 0) 1430 break; 1431 1432 len += sizeof(*cur); 1433 } 1434 1435 if (nvme_multi_css(ctrl) && !csi_seen) { 1436 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1437 info->nsid); 1438 status = -EINVAL; 1439 } 1440 1441 free_data: 1442 kfree(data); 1443 return status; 1444 } 1445 1446 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1447 struct nvme_id_ns **id) 1448 { 1449 struct nvme_command c = { }; 1450 int error; 1451 1452 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1453 c.identify.opcode = nvme_admin_identify; 1454 c.identify.nsid = cpu_to_le32(nsid); 1455 c.identify.cns = NVME_ID_CNS_NS; 1456 1457 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1458 if (!*id) 1459 return -ENOMEM; 1460 1461 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1462 if (error) { 1463 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1464 kfree(*id); 1465 } 1466 return error; 1467 } 1468 1469 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1470 struct nvme_ns_info *info) 1471 { 1472 struct nvme_ns_ids *ids = &info->ids; 1473 struct nvme_id_ns *id; 1474 int ret; 1475 1476 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1477 if (ret) 1478 return ret; 1479 1480 if (id->ncap == 0) { 1481 /* namespace not allocated or attached */ 1482 info->is_removed = true; 1483 return -ENODEV; 1484 } 1485 1486 info->anagrpid = id->anagrpid; 1487 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1488 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1489 info->is_ready = true; 1490 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1491 dev_info(ctrl->device, 1492 "Ignoring bogus Namespace Identifiers\n"); 1493 } else { 1494 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1495 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1496 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1497 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1498 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1499 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1500 } 1501 kfree(id); 1502 return 0; 1503 } 1504 1505 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1506 struct nvme_ns_info *info) 1507 { 1508 struct nvme_id_ns_cs_indep *id; 1509 struct nvme_command c = { 1510 .identify.opcode = nvme_admin_identify, 1511 .identify.nsid = cpu_to_le32(info->nsid), 1512 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1513 }; 1514 int ret; 1515 1516 id = kmalloc(sizeof(*id), GFP_KERNEL); 1517 if (!id) 1518 return -ENOMEM; 1519 1520 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1521 if (!ret) { 1522 info->anagrpid = id->anagrpid; 1523 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1524 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1525 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1526 } 1527 kfree(id); 1528 return ret; 1529 } 1530 1531 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1532 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1533 { 1534 union nvme_result res = { 0 }; 1535 struct nvme_command c = { }; 1536 int ret; 1537 1538 c.features.opcode = op; 1539 c.features.fid = cpu_to_le32(fid); 1540 c.features.dword11 = cpu_to_le32(dword11); 1541 1542 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1543 buffer, buflen, NVME_QID_ANY, 0, 0); 1544 if (ret >= 0 && result) 1545 *result = le32_to_cpu(res.u32); 1546 return ret; 1547 } 1548 1549 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1550 unsigned int dword11, void *buffer, size_t buflen, 1551 u32 *result) 1552 { 1553 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1554 buflen, result); 1555 } 1556 EXPORT_SYMBOL_GPL(nvme_set_features); 1557 1558 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1559 unsigned int dword11, void *buffer, size_t buflen, 1560 u32 *result) 1561 { 1562 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1563 buflen, result); 1564 } 1565 EXPORT_SYMBOL_GPL(nvme_get_features); 1566 1567 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1568 { 1569 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1570 u32 result; 1571 int status, nr_io_queues; 1572 1573 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1574 &result); 1575 if (status < 0) 1576 return status; 1577 1578 /* 1579 * Degraded controllers might return an error when setting the queue 1580 * count. We still want to be able to bring them online and offer 1581 * access to the admin queue, as that might be only way to fix them up. 1582 */ 1583 if (status > 0) { 1584 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1585 *count = 0; 1586 } else { 1587 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1588 *count = min(*count, nr_io_queues); 1589 } 1590 1591 return 0; 1592 } 1593 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1594 1595 #define NVME_AEN_SUPPORTED \ 1596 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1597 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1598 1599 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1600 { 1601 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1602 int status; 1603 1604 if (!supported_aens) 1605 return; 1606 1607 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1608 NULL, 0, &result); 1609 if (status) 1610 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1611 supported_aens); 1612 1613 queue_work(nvme_wq, &ctrl->async_event_work); 1614 } 1615 1616 static int nvme_ns_open(struct nvme_ns *ns) 1617 { 1618 1619 /* should never be called due to GENHD_FL_HIDDEN */ 1620 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1621 goto fail; 1622 if (!nvme_get_ns(ns)) 1623 goto fail; 1624 if (!try_module_get(ns->ctrl->ops->module)) 1625 goto fail_put_ns; 1626 1627 return 0; 1628 1629 fail_put_ns: 1630 nvme_put_ns(ns); 1631 fail: 1632 return -ENXIO; 1633 } 1634 1635 static void nvme_ns_release(struct nvme_ns *ns) 1636 { 1637 1638 module_put(ns->ctrl->ops->module); 1639 nvme_put_ns(ns); 1640 } 1641 1642 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1643 { 1644 return nvme_ns_open(disk->private_data); 1645 } 1646 1647 static void nvme_release(struct gendisk *disk) 1648 { 1649 nvme_ns_release(disk->private_data); 1650 } 1651 1652 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1653 { 1654 /* some standard values */ 1655 geo->heads = 1 << 6; 1656 geo->sectors = 1 << 5; 1657 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1658 return 0; 1659 } 1660 1661 #ifdef CONFIG_BLK_DEV_INTEGRITY 1662 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1663 u32 max_integrity_segments) 1664 { 1665 struct blk_integrity integrity = { }; 1666 1667 switch (ns->pi_type) { 1668 case NVME_NS_DPS_PI_TYPE3: 1669 switch (ns->guard_type) { 1670 case NVME_NVM_NS_16B_GUARD: 1671 integrity.profile = &t10_pi_type3_crc; 1672 integrity.tag_size = sizeof(u16) + sizeof(u32); 1673 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1674 break; 1675 case NVME_NVM_NS_64B_GUARD: 1676 integrity.profile = &ext_pi_type3_crc64; 1677 integrity.tag_size = sizeof(u16) + 6; 1678 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1679 break; 1680 default: 1681 integrity.profile = NULL; 1682 break; 1683 } 1684 break; 1685 case NVME_NS_DPS_PI_TYPE1: 1686 case NVME_NS_DPS_PI_TYPE2: 1687 switch (ns->guard_type) { 1688 case NVME_NVM_NS_16B_GUARD: 1689 integrity.profile = &t10_pi_type1_crc; 1690 integrity.tag_size = sizeof(u16); 1691 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1692 break; 1693 case NVME_NVM_NS_64B_GUARD: 1694 integrity.profile = &ext_pi_type1_crc64; 1695 integrity.tag_size = sizeof(u16); 1696 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1697 break; 1698 default: 1699 integrity.profile = NULL; 1700 break; 1701 } 1702 break; 1703 default: 1704 integrity.profile = NULL; 1705 break; 1706 } 1707 1708 integrity.tuple_size = ns->ms; 1709 blk_integrity_register(disk, &integrity); 1710 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1711 } 1712 #else 1713 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns, 1714 u32 max_integrity_segments) 1715 { 1716 } 1717 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1718 1719 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1720 { 1721 struct nvme_ctrl *ctrl = ns->ctrl; 1722 struct request_queue *queue = disk->queue; 1723 u32 size = queue_logical_block_size(queue); 1724 1725 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX)) 1726 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl); 1727 1728 if (ctrl->max_discard_sectors == 0) { 1729 blk_queue_max_discard_sectors(queue, 0); 1730 return; 1731 } 1732 1733 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1734 NVME_DSM_MAX_RANGES); 1735 1736 queue->limits.discard_granularity = size; 1737 1738 /* If discard is already enabled, don't reset queue limits */ 1739 if (queue->limits.max_discard_sectors) 1740 return; 1741 1742 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1743 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1744 1745 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1746 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1747 } 1748 1749 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1750 { 1751 return uuid_equal(&a->uuid, &b->uuid) && 1752 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1753 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1754 a->csi == b->csi; 1755 } 1756 1757 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id) 1758 { 1759 bool first = id->dps & NVME_NS_DPS_PI_FIRST; 1760 unsigned lbaf = nvme_lbaf_index(id->flbas); 1761 struct nvme_ctrl *ctrl = ns->ctrl; 1762 struct nvme_command c = { }; 1763 struct nvme_id_ns_nvm *nvm; 1764 int ret = 0; 1765 u32 elbaf; 1766 1767 ns->pi_size = 0; 1768 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms); 1769 if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1770 ns->pi_size = sizeof(struct t10_pi_tuple); 1771 ns->guard_type = NVME_NVM_NS_16B_GUARD; 1772 goto set_pi; 1773 } 1774 1775 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1776 if (!nvm) 1777 return -ENOMEM; 1778 1779 c.identify.opcode = nvme_admin_identify; 1780 c.identify.nsid = cpu_to_le32(ns->head->ns_id); 1781 c.identify.cns = NVME_ID_CNS_CS_NS; 1782 c.identify.csi = NVME_CSI_NVM; 1783 1784 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1785 if (ret) 1786 goto free_data; 1787 1788 elbaf = le32_to_cpu(nvm->elbaf[lbaf]); 1789 1790 /* no support for storage tag formats right now */ 1791 if (nvme_elbaf_sts(elbaf)) 1792 goto free_data; 1793 1794 ns->guard_type = nvme_elbaf_guard_type(elbaf); 1795 switch (ns->guard_type) { 1796 case NVME_NVM_NS_64B_GUARD: 1797 ns->pi_size = sizeof(struct crc64_pi_tuple); 1798 break; 1799 case NVME_NVM_NS_16B_GUARD: 1800 ns->pi_size = sizeof(struct t10_pi_tuple); 1801 break; 1802 default: 1803 break; 1804 } 1805 1806 free_data: 1807 kfree(nvm); 1808 set_pi: 1809 if (ns->pi_size && (first || ns->ms == ns->pi_size)) 1810 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1811 else 1812 ns->pi_type = 0; 1813 1814 return ret; 1815 } 1816 1817 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1818 { 1819 struct nvme_ctrl *ctrl = ns->ctrl; 1820 1821 if (nvme_init_ms(ns, id)) 1822 return; 1823 1824 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1825 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1826 return; 1827 1828 if (ctrl->ops->flags & NVME_F_FABRICS) { 1829 /* 1830 * The NVMe over Fabrics specification only supports metadata as 1831 * part of the extended data LBA. We rely on HCA/HBA support to 1832 * remap the separate metadata buffer from the block layer. 1833 */ 1834 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1835 return; 1836 1837 ns->features |= NVME_NS_EXT_LBAS; 1838 1839 /* 1840 * The current fabrics transport drivers support namespace 1841 * metadata formats only if nvme_ns_has_pi() returns true. 1842 * Suppress support for all other formats so the namespace will 1843 * have a 0 capacity and not be usable through the block stack. 1844 * 1845 * Note, this check will need to be modified if any drivers 1846 * gain the ability to use other metadata formats. 1847 */ 1848 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1849 ns->features |= NVME_NS_METADATA_SUPPORTED; 1850 } else { 1851 /* 1852 * For PCIe controllers, we can't easily remap the separate 1853 * metadata buffer from the block layer and thus require a 1854 * separate metadata buffer for block layer metadata/PI support. 1855 * We allow extended LBAs for the passthrough interface, though. 1856 */ 1857 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1858 ns->features |= NVME_NS_EXT_LBAS; 1859 else 1860 ns->features |= NVME_NS_METADATA_SUPPORTED; 1861 } 1862 } 1863 1864 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1865 struct request_queue *q) 1866 { 1867 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1868 1869 if (ctrl->max_hw_sectors) { 1870 u32 max_segments = 1871 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1872 1873 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1874 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1875 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1876 } 1877 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1878 blk_queue_dma_alignment(q, 3); 1879 blk_queue_write_cache(q, vwc, vwc); 1880 } 1881 1882 static void nvme_update_disk_info(struct gendisk *disk, 1883 struct nvme_ns *ns, struct nvme_id_ns *id) 1884 { 1885 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1886 u32 bs = 1U << ns->lba_shift; 1887 u32 atomic_bs, phys_bs, io_opt = 0; 1888 1889 /* 1890 * The block layer can't support LBA sizes larger than the page size 1891 * yet, so catch this early and don't allow block I/O. 1892 */ 1893 if (ns->lba_shift > PAGE_SHIFT) { 1894 capacity = 0; 1895 bs = (1 << 9); 1896 } 1897 1898 blk_integrity_unregister(disk); 1899 1900 atomic_bs = phys_bs = bs; 1901 if (id->nabo == 0) { 1902 /* 1903 * Bit 1 indicates whether NAWUPF is defined for this namespace 1904 * and whether it should be used instead of AWUPF. If NAWUPF == 1905 * 0 then AWUPF must be used instead. 1906 */ 1907 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1908 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1909 else 1910 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1911 } 1912 1913 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1914 /* NPWG = Namespace Preferred Write Granularity */ 1915 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1916 /* NOWS = Namespace Optimal Write Size */ 1917 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1918 } 1919 1920 blk_queue_logical_block_size(disk->queue, bs); 1921 /* 1922 * Linux filesystems assume writing a single physical block is 1923 * an atomic operation. Hence limit the physical block size to the 1924 * value of the Atomic Write Unit Power Fail parameter. 1925 */ 1926 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1927 blk_queue_io_min(disk->queue, phys_bs); 1928 blk_queue_io_opt(disk->queue, io_opt); 1929 1930 /* 1931 * Register a metadata profile for PI, or the plain non-integrity NVMe 1932 * metadata masquerading as Type 0 if supported, otherwise reject block 1933 * I/O to namespaces with metadata except when the namespace supports 1934 * PI, as it can strip/insert in that case. 1935 */ 1936 if (ns->ms) { 1937 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1938 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1939 nvme_init_integrity(disk, ns, 1940 ns->ctrl->max_integrity_segments); 1941 else if (!nvme_ns_has_pi(ns)) 1942 capacity = 0; 1943 } 1944 1945 set_capacity_and_notify(disk, capacity); 1946 1947 nvme_config_discard(disk, ns); 1948 blk_queue_max_write_zeroes_sectors(disk->queue, 1949 ns->ctrl->max_zeroes_sectors); 1950 } 1951 1952 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 1953 { 1954 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 1955 } 1956 1957 static inline bool nvme_first_scan(struct gendisk *disk) 1958 { 1959 /* nvme_alloc_ns() scans the disk prior to adding it */ 1960 return !disk_live(disk); 1961 } 1962 1963 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1964 { 1965 struct nvme_ctrl *ctrl = ns->ctrl; 1966 u32 iob; 1967 1968 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1969 is_power_of_2(ctrl->max_hw_sectors)) 1970 iob = ctrl->max_hw_sectors; 1971 else 1972 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1973 1974 if (!iob) 1975 return; 1976 1977 if (!is_power_of_2(iob)) { 1978 if (nvme_first_scan(ns->disk)) 1979 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1980 ns->disk->disk_name, iob); 1981 return; 1982 } 1983 1984 if (blk_queue_is_zoned(ns->disk->queue)) { 1985 if (nvme_first_scan(ns->disk)) 1986 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1987 ns->disk->disk_name); 1988 return; 1989 } 1990 1991 blk_queue_chunk_sectors(ns->queue, iob); 1992 } 1993 1994 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 1995 struct nvme_ns_info *info) 1996 { 1997 blk_mq_freeze_queue(ns->disk->queue); 1998 nvme_set_queue_limits(ns->ctrl, ns->queue); 1999 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2000 blk_mq_unfreeze_queue(ns->disk->queue); 2001 2002 if (nvme_ns_head_multipath(ns->head)) { 2003 blk_mq_freeze_queue(ns->head->disk->queue); 2004 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2005 nvme_mpath_revalidate_paths(ns); 2006 blk_stack_limits(&ns->head->disk->queue->limits, 2007 &ns->queue->limits, 0); 2008 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2009 blk_mq_unfreeze_queue(ns->head->disk->queue); 2010 } 2011 2012 /* Hide the block-interface for these devices */ 2013 ns->disk->flags |= GENHD_FL_HIDDEN; 2014 set_bit(NVME_NS_READY, &ns->flags); 2015 2016 return 0; 2017 } 2018 2019 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2020 struct nvme_ns_info *info) 2021 { 2022 struct nvme_id_ns *id; 2023 unsigned lbaf; 2024 int ret; 2025 2026 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2027 if (ret) 2028 return ret; 2029 2030 blk_mq_freeze_queue(ns->disk->queue); 2031 lbaf = nvme_lbaf_index(id->flbas); 2032 ns->lba_shift = id->lbaf[lbaf].ds; 2033 nvme_set_queue_limits(ns->ctrl, ns->queue); 2034 2035 nvme_configure_metadata(ns, id); 2036 nvme_set_chunk_sectors(ns, id); 2037 nvme_update_disk_info(ns->disk, ns, id); 2038 2039 if (ns->head->ids.csi == NVME_CSI_ZNS) { 2040 ret = nvme_update_zone_info(ns, lbaf); 2041 if (ret) { 2042 blk_mq_unfreeze_queue(ns->disk->queue); 2043 goto out; 2044 } 2045 } 2046 2047 /* 2048 * Only set the DEAC bit if the device guarantees that reads from 2049 * deallocated data return zeroes. While the DEAC bit does not 2050 * require that, it must be a no-op if reads from deallocated data 2051 * do not return zeroes. 2052 */ 2053 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2054 ns->features |= NVME_NS_DEAC; 2055 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2056 set_bit(NVME_NS_READY, &ns->flags); 2057 blk_mq_unfreeze_queue(ns->disk->queue); 2058 2059 if (blk_queue_is_zoned(ns->queue)) { 2060 ret = nvme_revalidate_zones(ns); 2061 if (ret && !nvme_first_scan(ns->disk)) 2062 goto out; 2063 } 2064 2065 if (nvme_ns_head_multipath(ns->head)) { 2066 blk_mq_freeze_queue(ns->head->disk->queue); 2067 nvme_update_disk_info(ns->head->disk, ns, id); 2068 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2069 nvme_mpath_revalidate_paths(ns); 2070 blk_stack_limits(&ns->head->disk->queue->limits, 2071 &ns->queue->limits, 0); 2072 disk_update_readahead(ns->head->disk); 2073 blk_mq_unfreeze_queue(ns->head->disk->queue); 2074 } 2075 2076 ret = 0; 2077 out: 2078 /* 2079 * If probing fails due an unsupported feature, hide the block device, 2080 * but still allow other access. 2081 */ 2082 if (ret == -ENODEV) { 2083 ns->disk->flags |= GENHD_FL_HIDDEN; 2084 set_bit(NVME_NS_READY, &ns->flags); 2085 ret = 0; 2086 } 2087 kfree(id); 2088 return ret; 2089 } 2090 2091 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2092 { 2093 switch (info->ids.csi) { 2094 case NVME_CSI_ZNS: 2095 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2096 dev_info(ns->ctrl->device, 2097 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2098 info->nsid); 2099 return nvme_update_ns_info_generic(ns, info); 2100 } 2101 return nvme_update_ns_info_block(ns, info); 2102 case NVME_CSI_NVM: 2103 return nvme_update_ns_info_block(ns, info); 2104 default: 2105 dev_info(ns->ctrl->device, 2106 "block device for nsid %u not supported (csi %u)\n", 2107 info->nsid, info->ids.csi); 2108 return nvme_update_ns_info_generic(ns, info); 2109 } 2110 } 2111 2112 #ifdef CONFIG_BLK_SED_OPAL 2113 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2114 bool send) 2115 { 2116 struct nvme_ctrl *ctrl = data; 2117 struct nvme_command cmd = { }; 2118 2119 if (send) 2120 cmd.common.opcode = nvme_admin_security_send; 2121 else 2122 cmd.common.opcode = nvme_admin_security_recv; 2123 cmd.common.nsid = 0; 2124 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2125 cmd.common.cdw11 = cpu_to_le32(len); 2126 2127 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2128 NVME_QID_ANY, 1, 0); 2129 } 2130 2131 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2132 { 2133 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2134 if (!ctrl->opal_dev) 2135 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2136 else if (was_suspended) 2137 opal_unlock_from_suspend(ctrl->opal_dev); 2138 } else { 2139 free_opal_dev(ctrl->opal_dev); 2140 ctrl->opal_dev = NULL; 2141 } 2142 } 2143 #else 2144 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2145 { 2146 } 2147 #endif /* CONFIG_BLK_SED_OPAL */ 2148 2149 #ifdef CONFIG_BLK_DEV_ZONED 2150 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2151 unsigned int nr_zones, report_zones_cb cb, void *data) 2152 { 2153 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2154 data); 2155 } 2156 #else 2157 #define nvme_report_zones NULL 2158 #endif /* CONFIG_BLK_DEV_ZONED */ 2159 2160 const struct block_device_operations nvme_bdev_ops = { 2161 .owner = THIS_MODULE, 2162 .ioctl = nvme_ioctl, 2163 .compat_ioctl = blkdev_compat_ptr_ioctl, 2164 .open = nvme_open, 2165 .release = nvme_release, 2166 .getgeo = nvme_getgeo, 2167 .report_zones = nvme_report_zones, 2168 .pr_ops = &nvme_pr_ops, 2169 }; 2170 2171 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2172 u32 timeout, const char *op) 2173 { 2174 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2175 u32 csts; 2176 int ret; 2177 2178 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2179 if (csts == ~0) 2180 return -ENODEV; 2181 if ((csts & mask) == val) 2182 break; 2183 2184 usleep_range(1000, 2000); 2185 if (fatal_signal_pending(current)) 2186 return -EINTR; 2187 if (time_after(jiffies, timeout_jiffies)) { 2188 dev_err(ctrl->device, 2189 "Device not ready; aborting %s, CSTS=0x%x\n", 2190 op, csts); 2191 return -ENODEV; 2192 } 2193 } 2194 2195 return ret; 2196 } 2197 2198 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2199 { 2200 int ret; 2201 2202 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2203 if (shutdown) 2204 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2205 else 2206 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2207 2208 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2209 if (ret) 2210 return ret; 2211 2212 if (shutdown) { 2213 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2214 NVME_CSTS_SHST_CMPLT, 2215 ctrl->shutdown_timeout, "shutdown"); 2216 } 2217 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2218 msleep(NVME_QUIRK_DELAY_AMOUNT); 2219 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2220 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2221 } 2222 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2223 2224 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2225 { 2226 unsigned dev_page_min; 2227 u32 timeout; 2228 int ret; 2229 2230 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2231 if (ret) { 2232 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2233 return ret; 2234 } 2235 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2236 2237 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2238 dev_err(ctrl->device, 2239 "Minimum device page size %u too large for host (%u)\n", 2240 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2241 return -ENODEV; 2242 } 2243 2244 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2245 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2246 else 2247 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2248 2249 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) 2250 ctrl->ctrl_config |= NVME_CC_CRIME; 2251 2252 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2253 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2254 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2255 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2256 if (ret) 2257 return ret; 2258 2259 /* Flush write to device (required if transport is PCI) */ 2260 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2261 if (ret) 2262 return ret; 2263 2264 /* CAP value may change after initial CC write */ 2265 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2266 if (ret) 2267 return ret; 2268 2269 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2270 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2271 u32 crto, ready_timeout; 2272 2273 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2274 if (ret) { 2275 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2276 ret); 2277 return ret; 2278 } 2279 2280 /* 2281 * CRTO should always be greater or equal to CAP.TO, but some 2282 * devices are known to get this wrong. Use the larger of the 2283 * two values. 2284 */ 2285 if (ctrl->ctrl_config & NVME_CC_CRIME) 2286 ready_timeout = NVME_CRTO_CRIMT(crto); 2287 else 2288 ready_timeout = NVME_CRTO_CRWMT(crto); 2289 2290 if (ready_timeout < timeout) 2291 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2292 crto, ctrl->cap); 2293 else 2294 timeout = ready_timeout; 2295 } 2296 2297 ctrl->ctrl_config |= NVME_CC_ENABLE; 2298 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2299 if (ret) 2300 return ret; 2301 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2302 (timeout + 1) / 2, "initialisation"); 2303 } 2304 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2305 2306 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2307 { 2308 __le64 ts; 2309 int ret; 2310 2311 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2312 return 0; 2313 2314 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2315 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2316 NULL); 2317 if (ret) 2318 dev_warn_once(ctrl->device, 2319 "could not set timestamp (%d)\n", ret); 2320 return ret; 2321 } 2322 2323 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2324 { 2325 struct nvme_feat_host_behavior *host; 2326 u8 acre = 0, lbafee = 0; 2327 int ret; 2328 2329 /* Don't bother enabling the feature if retry delay is not reported */ 2330 if (ctrl->crdt[0]) 2331 acre = NVME_ENABLE_ACRE; 2332 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2333 lbafee = NVME_ENABLE_LBAFEE; 2334 2335 if (!acre && !lbafee) 2336 return 0; 2337 2338 host = kzalloc(sizeof(*host), GFP_KERNEL); 2339 if (!host) 2340 return 0; 2341 2342 host->acre = acre; 2343 host->lbafee = lbafee; 2344 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2345 host, sizeof(*host), NULL); 2346 kfree(host); 2347 return ret; 2348 } 2349 2350 /* 2351 * The function checks whether the given total (exlat + enlat) latency of 2352 * a power state allows the latter to be used as an APST transition target. 2353 * It does so by comparing the latency to the primary and secondary latency 2354 * tolerances defined by module params. If there's a match, the corresponding 2355 * timeout value is returned and the matching tolerance index (1 or 2) is 2356 * reported. 2357 */ 2358 static bool nvme_apst_get_transition_time(u64 total_latency, 2359 u64 *transition_time, unsigned *last_index) 2360 { 2361 if (total_latency <= apst_primary_latency_tol_us) { 2362 if (*last_index == 1) 2363 return false; 2364 *last_index = 1; 2365 *transition_time = apst_primary_timeout_ms; 2366 return true; 2367 } 2368 if (apst_secondary_timeout_ms && 2369 total_latency <= apst_secondary_latency_tol_us) { 2370 if (*last_index <= 2) 2371 return false; 2372 *last_index = 2; 2373 *transition_time = apst_secondary_timeout_ms; 2374 return true; 2375 } 2376 return false; 2377 } 2378 2379 /* 2380 * APST (Autonomous Power State Transition) lets us program a table of power 2381 * state transitions that the controller will perform automatically. 2382 * 2383 * Depending on module params, one of the two supported techniques will be used: 2384 * 2385 * - If the parameters provide explicit timeouts and tolerances, they will be 2386 * used to build a table with up to 2 non-operational states to transition to. 2387 * The default parameter values were selected based on the values used by 2388 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2389 * regeneration of the APST table in the event of switching between external 2390 * and battery power, the timeouts and tolerances reflect a compromise 2391 * between values used by Microsoft for AC and battery scenarios. 2392 * - If not, we'll configure the table with a simple heuristic: we are willing 2393 * to spend at most 2% of the time transitioning between power states. 2394 * Therefore, when running in any given state, we will enter the next 2395 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2396 * microseconds, as long as that state's exit latency is under the requested 2397 * maximum latency. 2398 * 2399 * We will not autonomously enter any non-operational state for which the total 2400 * latency exceeds ps_max_latency_us. 2401 * 2402 * Users can set ps_max_latency_us to zero to turn off APST. 2403 */ 2404 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2405 { 2406 struct nvme_feat_auto_pst *table; 2407 unsigned apste = 0; 2408 u64 max_lat_us = 0; 2409 __le64 target = 0; 2410 int max_ps = -1; 2411 int state; 2412 int ret; 2413 unsigned last_lt_index = UINT_MAX; 2414 2415 /* 2416 * If APST isn't supported or if we haven't been initialized yet, 2417 * then don't do anything. 2418 */ 2419 if (!ctrl->apsta) 2420 return 0; 2421 2422 if (ctrl->npss > 31) { 2423 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2424 return 0; 2425 } 2426 2427 table = kzalloc(sizeof(*table), GFP_KERNEL); 2428 if (!table) 2429 return 0; 2430 2431 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2432 /* Turn off APST. */ 2433 dev_dbg(ctrl->device, "APST disabled\n"); 2434 goto done; 2435 } 2436 2437 /* 2438 * Walk through all states from lowest- to highest-power. 2439 * According to the spec, lower-numbered states use more power. NPSS, 2440 * despite the name, is the index of the lowest-power state, not the 2441 * number of states. 2442 */ 2443 for (state = (int)ctrl->npss; state >= 0; state--) { 2444 u64 total_latency_us, exit_latency_us, transition_ms; 2445 2446 if (target) 2447 table->entries[state] = target; 2448 2449 /* 2450 * Don't allow transitions to the deepest state if it's quirked 2451 * off. 2452 */ 2453 if (state == ctrl->npss && 2454 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2455 continue; 2456 2457 /* 2458 * Is this state a useful non-operational state for higher-power 2459 * states to autonomously transition to? 2460 */ 2461 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2462 continue; 2463 2464 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2465 if (exit_latency_us > ctrl->ps_max_latency_us) 2466 continue; 2467 2468 total_latency_us = exit_latency_us + 2469 le32_to_cpu(ctrl->psd[state].entry_lat); 2470 2471 /* 2472 * This state is good. It can be used as the APST idle target 2473 * for higher power states. 2474 */ 2475 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2476 if (!nvme_apst_get_transition_time(total_latency_us, 2477 &transition_ms, &last_lt_index)) 2478 continue; 2479 } else { 2480 transition_ms = total_latency_us + 19; 2481 do_div(transition_ms, 20); 2482 if (transition_ms > (1 << 24) - 1) 2483 transition_ms = (1 << 24) - 1; 2484 } 2485 2486 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2487 if (max_ps == -1) 2488 max_ps = state; 2489 if (total_latency_us > max_lat_us) 2490 max_lat_us = total_latency_us; 2491 } 2492 2493 if (max_ps == -1) 2494 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2495 else 2496 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2497 max_ps, max_lat_us, (int)sizeof(*table), table); 2498 apste = 1; 2499 2500 done: 2501 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2502 table, sizeof(*table), NULL); 2503 if (ret) 2504 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2505 kfree(table); 2506 return ret; 2507 } 2508 2509 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2510 { 2511 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2512 u64 latency; 2513 2514 switch (val) { 2515 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2516 case PM_QOS_LATENCY_ANY: 2517 latency = U64_MAX; 2518 break; 2519 2520 default: 2521 latency = val; 2522 } 2523 2524 if (ctrl->ps_max_latency_us != latency) { 2525 ctrl->ps_max_latency_us = latency; 2526 if (ctrl->state == NVME_CTRL_LIVE) 2527 nvme_configure_apst(ctrl); 2528 } 2529 } 2530 2531 struct nvme_core_quirk_entry { 2532 /* 2533 * NVMe model and firmware strings are padded with spaces. For 2534 * simplicity, strings in the quirk table are padded with NULLs 2535 * instead. 2536 */ 2537 u16 vid; 2538 const char *mn; 2539 const char *fr; 2540 unsigned long quirks; 2541 }; 2542 2543 static const struct nvme_core_quirk_entry core_quirks[] = { 2544 { 2545 /* 2546 * This Toshiba device seems to die using any APST states. See: 2547 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2548 */ 2549 .vid = 0x1179, 2550 .mn = "THNSF5256GPUK TOSHIBA", 2551 .quirks = NVME_QUIRK_NO_APST, 2552 }, 2553 { 2554 /* 2555 * This LiteON CL1-3D*-Q11 firmware version has a race 2556 * condition associated with actions related to suspend to idle 2557 * LiteON has resolved the problem in future firmware 2558 */ 2559 .vid = 0x14a4, 2560 .fr = "22301111", 2561 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2562 }, 2563 { 2564 /* 2565 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2566 * aborts I/O during any load, but more easily reproducible 2567 * with discards (fstrim). 2568 * 2569 * The device is left in a state where it is also not possible 2570 * to use "nvme set-feature" to disable APST, but booting with 2571 * nvme_core.default_ps_max_latency=0 works. 2572 */ 2573 .vid = 0x1e0f, 2574 .mn = "KCD6XVUL6T40", 2575 .quirks = NVME_QUIRK_NO_APST, 2576 }, 2577 { 2578 /* 2579 * The external Samsung X5 SSD fails initialization without a 2580 * delay before checking if it is ready and has a whole set of 2581 * other problems. To make this even more interesting, it 2582 * shares the PCI ID with internal Samsung 970 Evo Plus that 2583 * does not need or want these quirks. 2584 */ 2585 .vid = 0x144d, 2586 .mn = "Samsung Portable SSD X5", 2587 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2588 NVME_QUIRK_NO_DEEPEST_PS | 2589 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2590 } 2591 }; 2592 2593 /* match is null-terminated but idstr is space-padded. */ 2594 static bool string_matches(const char *idstr, const char *match, size_t len) 2595 { 2596 size_t matchlen; 2597 2598 if (!match) 2599 return true; 2600 2601 matchlen = strlen(match); 2602 WARN_ON_ONCE(matchlen > len); 2603 2604 if (memcmp(idstr, match, matchlen)) 2605 return false; 2606 2607 for (; matchlen < len; matchlen++) 2608 if (idstr[matchlen] != ' ') 2609 return false; 2610 2611 return true; 2612 } 2613 2614 static bool quirk_matches(const struct nvme_id_ctrl *id, 2615 const struct nvme_core_quirk_entry *q) 2616 { 2617 return q->vid == le16_to_cpu(id->vid) && 2618 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2619 string_matches(id->fr, q->fr, sizeof(id->fr)); 2620 } 2621 2622 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2623 struct nvme_id_ctrl *id) 2624 { 2625 size_t nqnlen; 2626 int off; 2627 2628 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2629 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2630 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2631 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2632 return; 2633 } 2634 2635 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2636 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2637 } 2638 2639 /* 2640 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2641 * Base Specification 2.0. It is slightly different from the format 2642 * specified there due to historic reasons, and we can't change it now. 2643 */ 2644 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2645 "nqn.2014.08.org.nvmexpress:%04x%04x", 2646 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2647 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2648 off += sizeof(id->sn); 2649 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2650 off += sizeof(id->mn); 2651 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2652 } 2653 2654 static void nvme_release_subsystem(struct device *dev) 2655 { 2656 struct nvme_subsystem *subsys = 2657 container_of(dev, struct nvme_subsystem, dev); 2658 2659 if (subsys->instance >= 0) 2660 ida_free(&nvme_instance_ida, subsys->instance); 2661 kfree(subsys); 2662 } 2663 2664 static void nvme_destroy_subsystem(struct kref *ref) 2665 { 2666 struct nvme_subsystem *subsys = 2667 container_of(ref, struct nvme_subsystem, ref); 2668 2669 mutex_lock(&nvme_subsystems_lock); 2670 list_del(&subsys->entry); 2671 mutex_unlock(&nvme_subsystems_lock); 2672 2673 ida_destroy(&subsys->ns_ida); 2674 device_del(&subsys->dev); 2675 put_device(&subsys->dev); 2676 } 2677 2678 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2679 { 2680 kref_put(&subsys->ref, nvme_destroy_subsystem); 2681 } 2682 2683 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2684 { 2685 struct nvme_subsystem *subsys; 2686 2687 lockdep_assert_held(&nvme_subsystems_lock); 2688 2689 /* 2690 * Fail matches for discovery subsystems. This results 2691 * in each discovery controller bound to a unique subsystem. 2692 * This avoids issues with validating controller values 2693 * that can only be true when there is a single unique subsystem. 2694 * There may be multiple and completely independent entities 2695 * that provide discovery controllers. 2696 */ 2697 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2698 return NULL; 2699 2700 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2701 if (strcmp(subsys->subnqn, subsysnqn)) 2702 continue; 2703 if (!kref_get_unless_zero(&subsys->ref)) 2704 continue; 2705 return subsys; 2706 } 2707 2708 return NULL; 2709 } 2710 2711 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2712 { 2713 return ctrl->opts && ctrl->opts->discovery_nqn; 2714 } 2715 2716 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2717 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2718 { 2719 struct nvme_ctrl *tmp; 2720 2721 lockdep_assert_held(&nvme_subsystems_lock); 2722 2723 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2724 if (nvme_state_terminal(tmp)) 2725 continue; 2726 2727 if (tmp->cntlid == ctrl->cntlid) { 2728 dev_err(ctrl->device, 2729 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2730 ctrl->cntlid, dev_name(tmp->device), 2731 subsys->subnqn); 2732 return false; 2733 } 2734 2735 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2736 nvme_discovery_ctrl(ctrl)) 2737 continue; 2738 2739 dev_err(ctrl->device, 2740 "Subsystem does not support multiple controllers\n"); 2741 return false; 2742 } 2743 2744 return true; 2745 } 2746 2747 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2748 { 2749 struct nvme_subsystem *subsys, *found; 2750 int ret; 2751 2752 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2753 if (!subsys) 2754 return -ENOMEM; 2755 2756 subsys->instance = -1; 2757 mutex_init(&subsys->lock); 2758 kref_init(&subsys->ref); 2759 INIT_LIST_HEAD(&subsys->ctrls); 2760 INIT_LIST_HEAD(&subsys->nsheads); 2761 nvme_init_subnqn(subsys, ctrl, id); 2762 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2763 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2764 subsys->vendor_id = le16_to_cpu(id->vid); 2765 subsys->cmic = id->cmic; 2766 2767 /* Versions prior to 1.4 don't necessarily report a valid type */ 2768 if (id->cntrltype == NVME_CTRL_DISC || 2769 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2770 subsys->subtype = NVME_NQN_DISC; 2771 else 2772 subsys->subtype = NVME_NQN_NVME; 2773 2774 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2775 dev_err(ctrl->device, 2776 "Subsystem %s is not a discovery controller", 2777 subsys->subnqn); 2778 kfree(subsys); 2779 return -EINVAL; 2780 } 2781 subsys->awupf = le16_to_cpu(id->awupf); 2782 nvme_mpath_default_iopolicy(subsys); 2783 2784 subsys->dev.class = nvme_subsys_class; 2785 subsys->dev.release = nvme_release_subsystem; 2786 subsys->dev.groups = nvme_subsys_attrs_groups; 2787 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2788 device_initialize(&subsys->dev); 2789 2790 mutex_lock(&nvme_subsystems_lock); 2791 found = __nvme_find_get_subsystem(subsys->subnqn); 2792 if (found) { 2793 put_device(&subsys->dev); 2794 subsys = found; 2795 2796 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2797 ret = -EINVAL; 2798 goto out_put_subsystem; 2799 } 2800 } else { 2801 ret = device_add(&subsys->dev); 2802 if (ret) { 2803 dev_err(ctrl->device, 2804 "failed to register subsystem device.\n"); 2805 put_device(&subsys->dev); 2806 goto out_unlock; 2807 } 2808 ida_init(&subsys->ns_ida); 2809 list_add_tail(&subsys->entry, &nvme_subsystems); 2810 } 2811 2812 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2813 dev_name(ctrl->device)); 2814 if (ret) { 2815 dev_err(ctrl->device, 2816 "failed to create sysfs link from subsystem.\n"); 2817 goto out_put_subsystem; 2818 } 2819 2820 if (!found) 2821 subsys->instance = ctrl->instance; 2822 ctrl->subsys = subsys; 2823 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2824 mutex_unlock(&nvme_subsystems_lock); 2825 return 0; 2826 2827 out_put_subsystem: 2828 nvme_put_subsystem(subsys); 2829 out_unlock: 2830 mutex_unlock(&nvme_subsystems_lock); 2831 return ret; 2832 } 2833 2834 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2835 void *log, size_t size, u64 offset) 2836 { 2837 struct nvme_command c = { }; 2838 u32 dwlen = nvme_bytes_to_numd(size); 2839 2840 c.get_log_page.opcode = nvme_admin_get_log_page; 2841 c.get_log_page.nsid = cpu_to_le32(nsid); 2842 c.get_log_page.lid = log_page; 2843 c.get_log_page.lsp = lsp; 2844 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2845 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2846 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2847 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2848 c.get_log_page.csi = csi; 2849 2850 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2851 } 2852 2853 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2854 struct nvme_effects_log **log) 2855 { 2856 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2857 int ret; 2858 2859 if (cel) 2860 goto out; 2861 2862 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2863 if (!cel) 2864 return -ENOMEM; 2865 2866 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2867 cel, sizeof(*cel), 0); 2868 if (ret) { 2869 kfree(cel); 2870 return ret; 2871 } 2872 2873 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2874 out: 2875 *log = cel; 2876 return 0; 2877 } 2878 2879 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2880 { 2881 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2882 2883 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2884 return UINT_MAX; 2885 return val; 2886 } 2887 2888 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2889 { 2890 struct nvme_command c = { }; 2891 struct nvme_id_ctrl_nvm *id; 2892 int ret; 2893 2894 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2895 ctrl->max_discard_sectors = UINT_MAX; 2896 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2897 } else { 2898 ctrl->max_discard_sectors = 0; 2899 ctrl->max_discard_segments = 0; 2900 } 2901 2902 /* 2903 * Even though NVMe spec explicitly states that MDTS is not applicable 2904 * to the write-zeroes, we are cautious and limit the size to the 2905 * controllers max_hw_sectors value, which is based on the MDTS field 2906 * and possibly other limiting factors. 2907 */ 2908 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2909 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2910 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2911 else 2912 ctrl->max_zeroes_sectors = 0; 2913 2914 if (ctrl->subsys->subtype != NVME_NQN_NVME || 2915 nvme_ctrl_limited_cns(ctrl) || 2916 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 2917 return 0; 2918 2919 id = kzalloc(sizeof(*id), GFP_KERNEL); 2920 if (!id) 2921 return -ENOMEM; 2922 2923 c.identify.opcode = nvme_admin_identify; 2924 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2925 c.identify.csi = NVME_CSI_NVM; 2926 2927 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2928 if (ret) 2929 goto free_data; 2930 2931 if (id->dmrl) 2932 ctrl->max_discard_segments = id->dmrl; 2933 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 2934 if (id->wzsl) 2935 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2936 2937 free_data: 2938 if (ret > 0) 2939 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 2940 kfree(id); 2941 return ret; 2942 } 2943 2944 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 2945 { 2946 struct nvme_effects_log *log = ctrl->effects; 2947 2948 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 2949 NVME_CMD_EFFECTS_NCC | 2950 NVME_CMD_EFFECTS_CSE_MASK); 2951 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 2952 NVME_CMD_EFFECTS_CSE_MASK); 2953 2954 /* 2955 * The spec says the result of a security receive command depends on 2956 * the previous security send command. As such, many vendors log this 2957 * command as one to submitted only when no other commands to the same 2958 * namespace are outstanding. The intention is to tell the host to 2959 * prevent mixing security send and receive. 2960 * 2961 * This driver can only enforce such exclusive access against IO 2962 * queues, though. We are not readily able to enforce such a rule for 2963 * two commands to the admin queue, which is the only queue that 2964 * matters for this command. 2965 * 2966 * Rather than blindly freezing the IO queues for this effect that 2967 * doesn't even apply to IO, mask it off. 2968 */ 2969 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 2970 2971 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 2972 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 2973 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 2974 } 2975 2976 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2977 { 2978 int ret = 0; 2979 2980 if (ctrl->effects) 2981 return 0; 2982 2983 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2984 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2985 if (ret < 0) 2986 return ret; 2987 } 2988 2989 if (!ctrl->effects) { 2990 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 2991 if (!ctrl->effects) 2992 return -ENOMEM; 2993 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 2994 } 2995 2996 nvme_init_known_nvm_effects(ctrl); 2997 return 0; 2998 } 2999 3000 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3001 { 3002 struct nvme_id_ctrl *id; 3003 u32 max_hw_sectors; 3004 bool prev_apst_enabled; 3005 int ret; 3006 3007 ret = nvme_identify_ctrl(ctrl, &id); 3008 if (ret) { 3009 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3010 return -EIO; 3011 } 3012 3013 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3014 ctrl->cntlid = le16_to_cpu(id->cntlid); 3015 3016 if (!ctrl->identified) { 3017 unsigned int i; 3018 3019 /* 3020 * Check for quirks. Quirk can depend on firmware version, 3021 * so, in principle, the set of quirks present can change 3022 * across a reset. As a possible future enhancement, we 3023 * could re-scan for quirks every time we reinitialize 3024 * the device, but we'd have to make sure that the driver 3025 * behaves intelligently if the quirks change. 3026 */ 3027 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3028 if (quirk_matches(id, &core_quirks[i])) 3029 ctrl->quirks |= core_quirks[i].quirks; 3030 } 3031 3032 ret = nvme_init_subsystem(ctrl, id); 3033 if (ret) 3034 goto out_free; 3035 3036 ret = nvme_init_effects(ctrl, id); 3037 if (ret) 3038 goto out_free; 3039 } 3040 memcpy(ctrl->subsys->firmware_rev, id->fr, 3041 sizeof(ctrl->subsys->firmware_rev)); 3042 3043 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3044 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3045 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3046 } 3047 3048 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3049 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3050 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3051 3052 ctrl->oacs = le16_to_cpu(id->oacs); 3053 ctrl->oncs = le16_to_cpu(id->oncs); 3054 ctrl->mtfa = le16_to_cpu(id->mtfa); 3055 ctrl->oaes = le32_to_cpu(id->oaes); 3056 ctrl->wctemp = le16_to_cpu(id->wctemp); 3057 ctrl->cctemp = le16_to_cpu(id->cctemp); 3058 3059 atomic_set(&ctrl->abort_limit, id->acl + 1); 3060 ctrl->vwc = id->vwc; 3061 if (id->mdts) 3062 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3063 else 3064 max_hw_sectors = UINT_MAX; 3065 ctrl->max_hw_sectors = 3066 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3067 3068 nvme_set_queue_limits(ctrl, ctrl->admin_q); 3069 ctrl->sgls = le32_to_cpu(id->sgls); 3070 ctrl->kas = le16_to_cpu(id->kas); 3071 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3072 ctrl->ctratt = le32_to_cpu(id->ctratt); 3073 3074 ctrl->cntrltype = id->cntrltype; 3075 ctrl->dctype = id->dctype; 3076 3077 if (id->rtd3e) { 3078 /* us -> s */ 3079 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3080 3081 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3082 shutdown_timeout, 60); 3083 3084 if (ctrl->shutdown_timeout != shutdown_timeout) 3085 dev_info(ctrl->device, 3086 "Shutdown timeout set to %u seconds\n", 3087 ctrl->shutdown_timeout); 3088 } else 3089 ctrl->shutdown_timeout = shutdown_timeout; 3090 3091 ctrl->npss = id->npss; 3092 ctrl->apsta = id->apsta; 3093 prev_apst_enabled = ctrl->apst_enabled; 3094 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3095 if (force_apst && id->apsta) { 3096 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3097 ctrl->apst_enabled = true; 3098 } else { 3099 ctrl->apst_enabled = false; 3100 } 3101 } else { 3102 ctrl->apst_enabled = id->apsta; 3103 } 3104 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3105 3106 if (ctrl->ops->flags & NVME_F_FABRICS) { 3107 ctrl->icdoff = le16_to_cpu(id->icdoff); 3108 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3109 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3110 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3111 3112 /* 3113 * In fabrics we need to verify the cntlid matches the 3114 * admin connect 3115 */ 3116 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3117 dev_err(ctrl->device, 3118 "Mismatching cntlid: Connect %u vs Identify " 3119 "%u, rejecting\n", 3120 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3121 ret = -EINVAL; 3122 goto out_free; 3123 } 3124 3125 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3126 dev_err(ctrl->device, 3127 "keep-alive support is mandatory for fabrics\n"); 3128 ret = -EINVAL; 3129 goto out_free; 3130 } 3131 } else { 3132 ctrl->hmpre = le32_to_cpu(id->hmpre); 3133 ctrl->hmmin = le32_to_cpu(id->hmmin); 3134 ctrl->hmminds = le32_to_cpu(id->hmminds); 3135 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3136 } 3137 3138 ret = nvme_mpath_init_identify(ctrl, id); 3139 if (ret < 0) 3140 goto out_free; 3141 3142 if (ctrl->apst_enabled && !prev_apst_enabled) 3143 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3144 else if (!ctrl->apst_enabled && prev_apst_enabled) 3145 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3146 3147 out_free: 3148 kfree(id); 3149 return ret; 3150 } 3151 3152 /* 3153 * Initialize the cached copies of the Identify data and various controller 3154 * register in our nvme_ctrl structure. This should be called as soon as 3155 * the admin queue is fully up and running. 3156 */ 3157 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3158 { 3159 int ret; 3160 3161 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3162 if (ret) { 3163 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3164 return ret; 3165 } 3166 3167 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3168 3169 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3170 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3171 3172 ret = nvme_init_identify(ctrl); 3173 if (ret) 3174 return ret; 3175 3176 ret = nvme_configure_apst(ctrl); 3177 if (ret < 0) 3178 return ret; 3179 3180 ret = nvme_configure_timestamp(ctrl); 3181 if (ret < 0) 3182 return ret; 3183 3184 ret = nvme_configure_host_options(ctrl); 3185 if (ret < 0) 3186 return ret; 3187 3188 nvme_configure_opal(ctrl, was_suspended); 3189 3190 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3191 /* 3192 * Do not return errors unless we are in a controller reset, 3193 * the controller works perfectly fine without hwmon. 3194 */ 3195 ret = nvme_hwmon_init(ctrl); 3196 if (ret == -EINTR) 3197 return ret; 3198 } 3199 3200 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3201 ctrl->identified = true; 3202 3203 nvme_start_keep_alive(ctrl); 3204 3205 return 0; 3206 } 3207 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3208 3209 static int nvme_dev_open(struct inode *inode, struct file *file) 3210 { 3211 struct nvme_ctrl *ctrl = 3212 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3213 3214 switch (ctrl->state) { 3215 case NVME_CTRL_LIVE: 3216 break; 3217 default: 3218 return -EWOULDBLOCK; 3219 } 3220 3221 nvme_get_ctrl(ctrl); 3222 if (!try_module_get(ctrl->ops->module)) { 3223 nvme_put_ctrl(ctrl); 3224 return -EINVAL; 3225 } 3226 3227 file->private_data = ctrl; 3228 return 0; 3229 } 3230 3231 static int nvme_dev_release(struct inode *inode, struct file *file) 3232 { 3233 struct nvme_ctrl *ctrl = 3234 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3235 3236 module_put(ctrl->ops->module); 3237 nvme_put_ctrl(ctrl); 3238 return 0; 3239 } 3240 3241 static const struct file_operations nvme_dev_fops = { 3242 .owner = THIS_MODULE, 3243 .open = nvme_dev_open, 3244 .release = nvme_dev_release, 3245 .unlocked_ioctl = nvme_dev_ioctl, 3246 .compat_ioctl = compat_ptr_ioctl, 3247 .uring_cmd = nvme_dev_uring_cmd, 3248 }; 3249 3250 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3251 unsigned nsid) 3252 { 3253 struct nvme_ns_head *h; 3254 3255 lockdep_assert_held(&ctrl->subsys->lock); 3256 3257 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3258 /* 3259 * Private namespaces can share NSIDs under some conditions. 3260 * In that case we can't use the same ns_head for namespaces 3261 * with the same NSID. 3262 */ 3263 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3264 continue; 3265 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3266 return h; 3267 } 3268 3269 return NULL; 3270 } 3271 3272 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3273 struct nvme_ns_ids *ids) 3274 { 3275 bool has_uuid = !uuid_is_null(&ids->uuid); 3276 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3277 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3278 struct nvme_ns_head *h; 3279 3280 lockdep_assert_held(&subsys->lock); 3281 3282 list_for_each_entry(h, &subsys->nsheads, entry) { 3283 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3284 return -EINVAL; 3285 if (has_nguid && 3286 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3287 return -EINVAL; 3288 if (has_eui64 && 3289 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3290 return -EINVAL; 3291 } 3292 3293 return 0; 3294 } 3295 3296 static void nvme_cdev_rel(struct device *dev) 3297 { 3298 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3299 } 3300 3301 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3302 { 3303 cdev_device_del(cdev, cdev_device); 3304 put_device(cdev_device); 3305 } 3306 3307 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3308 const struct file_operations *fops, struct module *owner) 3309 { 3310 int minor, ret; 3311 3312 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3313 if (minor < 0) 3314 return minor; 3315 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3316 cdev_device->class = nvme_ns_chr_class; 3317 cdev_device->release = nvme_cdev_rel; 3318 device_initialize(cdev_device); 3319 cdev_init(cdev, fops); 3320 cdev->owner = owner; 3321 ret = cdev_device_add(cdev, cdev_device); 3322 if (ret) 3323 put_device(cdev_device); 3324 3325 return ret; 3326 } 3327 3328 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3329 { 3330 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3331 } 3332 3333 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3334 { 3335 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3336 return 0; 3337 } 3338 3339 static const struct file_operations nvme_ns_chr_fops = { 3340 .owner = THIS_MODULE, 3341 .open = nvme_ns_chr_open, 3342 .release = nvme_ns_chr_release, 3343 .unlocked_ioctl = nvme_ns_chr_ioctl, 3344 .compat_ioctl = compat_ptr_ioctl, 3345 .uring_cmd = nvme_ns_chr_uring_cmd, 3346 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3347 }; 3348 3349 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3350 { 3351 int ret; 3352 3353 ns->cdev_device.parent = ns->ctrl->device; 3354 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3355 ns->ctrl->instance, ns->head->instance); 3356 if (ret) 3357 return ret; 3358 3359 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3360 ns->ctrl->ops->module); 3361 } 3362 3363 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3364 struct nvme_ns_info *info) 3365 { 3366 struct nvme_ns_head *head; 3367 size_t size = sizeof(*head); 3368 int ret = -ENOMEM; 3369 3370 #ifdef CONFIG_NVME_MULTIPATH 3371 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3372 #endif 3373 3374 head = kzalloc(size, GFP_KERNEL); 3375 if (!head) 3376 goto out; 3377 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3378 if (ret < 0) 3379 goto out_free_head; 3380 head->instance = ret; 3381 INIT_LIST_HEAD(&head->list); 3382 ret = init_srcu_struct(&head->srcu); 3383 if (ret) 3384 goto out_ida_remove; 3385 head->subsys = ctrl->subsys; 3386 head->ns_id = info->nsid; 3387 head->ids = info->ids; 3388 head->shared = info->is_shared; 3389 kref_init(&head->ref); 3390 3391 if (head->ids.csi) { 3392 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3393 if (ret) 3394 goto out_cleanup_srcu; 3395 } else 3396 head->effects = ctrl->effects; 3397 3398 ret = nvme_mpath_alloc_disk(ctrl, head); 3399 if (ret) 3400 goto out_cleanup_srcu; 3401 3402 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3403 3404 kref_get(&ctrl->subsys->ref); 3405 3406 return head; 3407 out_cleanup_srcu: 3408 cleanup_srcu_struct(&head->srcu); 3409 out_ida_remove: 3410 ida_free(&ctrl->subsys->ns_ida, head->instance); 3411 out_free_head: 3412 kfree(head); 3413 out: 3414 if (ret > 0) 3415 ret = blk_status_to_errno(nvme_error_status(ret)); 3416 return ERR_PTR(ret); 3417 } 3418 3419 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3420 struct nvme_ns_ids *ids) 3421 { 3422 struct nvme_subsystem *s; 3423 int ret = 0; 3424 3425 /* 3426 * Note that this check is racy as we try to avoid holding the global 3427 * lock over the whole ns_head creation. But it is only intended as 3428 * a sanity check anyway. 3429 */ 3430 mutex_lock(&nvme_subsystems_lock); 3431 list_for_each_entry(s, &nvme_subsystems, entry) { 3432 if (s == this) 3433 continue; 3434 mutex_lock(&s->lock); 3435 ret = nvme_subsys_check_duplicate_ids(s, ids); 3436 mutex_unlock(&s->lock); 3437 if (ret) 3438 break; 3439 } 3440 mutex_unlock(&nvme_subsystems_lock); 3441 3442 return ret; 3443 } 3444 3445 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3446 { 3447 struct nvme_ctrl *ctrl = ns->ctrl; 3448 struct nvme_ns_head *head = NULL; 3449 int ret; 3450 3451 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3452 if (ret) { 3453 /* 3454 * We've found two different namespaces on two different 3455 * subsystems that report the same ID. This is pretty nasty 3456 * for anything that actually requires unique device 3457 * identification. In the kernel we need this for multipathing, 3458 * and in user space the /dev/disk/by-id/ links rely on it. 3459 * 3460 * If the device also claims to be multi-path capable back off 3461 * here now and refuse the probe the second device as this is a 3462 * recipe for data corruption. If not this is probably a 3463 * cheap consumer device if on the PCIe bus, so let the user 3464 * proceed and use the shiny toy, but warn that with changing 3465 * probing order (which due to our async probing could just be 3466 * device taking longer to startup) the other device could show 3467 * up at any time. 3468 */ 3469 nvme_print_device_info(ctrl); 3470 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3471 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3472 info->is_shared)) { 3473 dev_err(ctrl->device, 3474 "ignoring nsid %d because of duplicate IDs\n", 3475 info->nsid); 3476 return ret; 3477 } 3478 3479 dev_err(ctrl->device, 3480 "clearing duplicate IDs for nsid %d\n", info->nsid); 3481 dev_err(ctrl->device, 3482 "use of /dev/disk/by-id/ may cause data corruption\n"); 3483 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3484 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3485 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3486 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3487 } 3488 3489 mutex_lock(&ctrl->subsys->lock); 3490 head = nvme_find_ns_head(ctrl, info->nsid); 3491 if (!head) { 3492 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3493 if (ret) { 3494 dev_err(ctrl->device, 3495 "duplicate IDs in subsystem for nsid %d\n", 3496 info->nsid); 3497 goto out_unlock; 3498 } 3499 head = nvme_alloc_ns_head(ctrl, info); 3500 if (IS_ERR(head)) { 3501 ret = PTR_ERR(head); 3502 goto out_unlock; 3503 } 3504 } else { 3505 ret = -EINVAL; 3506 if (!info->is_shared || !head->shared) { 3507 dev_err(ctrl->device, 3508 "Duplicate unshared namespace %d\n", 3509 info->nsid); 3510 goto out_put_ns_head; 3511 } 3512 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3513 dev_err(ctrl->device, 3514 "IDs don't match for shared namespace %d\n", 3515 info->nsid); 3516 goto out_put_ns_head; 3517 } 3518 3519 if (!multipath) { 3520 dev_warn(ctrl->device, 3521 "Found shared namespace %d, but multipathing not supported.\n", 3522 info->nsid); 3523 dev_warn_once(ctrl->device, 3524 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); 3525 } 3526 } 3527 3528 list_add_tail_rcu(&ns->siblings, &head->list); 3529 ns->head = head; 3530 mutex_unlock(&ctrl->subsys->lock); 3531 return 0; 3532 3533 out_put_ns_head: 3534 nvme_put_ns_head(head); 3535 out_unlock: 3536 mutex_unlock(&ctrl->subsys->lock); 3537 return ret; 3538 } 3539 3540 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3541 { 3542 struct nvme_ns *ns, *ret = NULL; 3543 3544 down_read(&ctrl->namespaces_rwsem); 3545 list_for_each_entry(ns, &ctrl->namespaces, list) { 3546 if (ns->head->ns_id == nsid) { 3547 if (!nvme_get_ns(ns)) 3548 continue; 3549 ret = ns; 3550 break; 3551 } 3552 if (ns->head->ns_id > nsid) 3553 break; 3554 } 3555 up_read(&ctrl->namespaces_rwsem); 3556 return ret; 3557 } 3558 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3559 3560 /* 3561 * Add the namespace to the controller list while keeping the list ordered. 3562 */ 3563 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3564 { 3565 struct nvme_ns *tmp; 3566 3567 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3568 if (tmp->head->ns_id < ns->head->ns_id) { 3569 list_add(&ns->list, &tmp->list); 3570 return; 3571 } 3572 } 3573 list_add(&ns->list, &ns->ctrl->namespaces); 3574 } 3575 3576 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3577 { 3578 struct nvme_ns *ns; 3579 struct gendisk *disk; 3580 int node = ctrl->numa_node; 3581 3582 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3583 if (!ns) 3584 return; 3585 3586 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3587 if (IS_ERR(disk)) 3588 goto out_free_ns; 3589 disk->fops = &nvme_bdev_ops; 3590 disk->private_data = ns; 3591 3592 ns->disk = disk; 3593 ns->queue = disk->queue; 3594 3595 if (ctrl->opts && ctrl->opts->data_digest) 3596 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3597 3598 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3599 if (ctrl->ops->supports_pci_p2pdma && 3600 ctrl->ops->supports_pci_p2pdma(ctrl)) 3601 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3602 3603 ns->ctrl = ctrl; 3604 kref_init(&ns->kref); 3605 3606 if (nvme_init_ns_head(ns, info)) 3607 goto out_cleanup_disk; 3608 3609 /* 3610 * If multipathing is enabled, the device name for all disks and not 3611 * just those that represent shared namespaces needs to be based on the 3612 * subsystem instance. Using the controller instance for private 3613 * namespaces could lead to naming collisions between shared and private 3614 * namespaces if they don't use a common numbering scheme. 3615 * 3616 * If multipathing is not enabled, disk names must use the controller 3617 * instance as shared namespaces will show up as multiple block 3618 * devices. 3619 */ 3620 if (nvme_ns_head_multipath(ns->head)) { 3621 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3622 ctrl->instance, ns->head->instance); 3623 disk->flags |= GENHD_FL_HIDDEN; 3624 } else if (multipath) { 3625 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3626 ns->head->instance); 3627 } else { 3628 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3629 ns->head->instance); 3630 } 3631 3632 if (nvme_update_ns_info(ns, info)) 3633 goto out_unlink_ns; 3634 3635 down_write(&ctrl->namespaces_rwsem); 3636 nvme_ns_add_to_ctrl_list(ns); 3637 up_write(&ctrl->namespaces_rwsem); 3638 nvme_get_ctrl(ctrl); 3639 3640 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 3641 goto out_cleanup_ns_from_list; 3642 3643 if (!nvme_ns_head_multipath(ns->head)) 3644 nvme_add_ns_cdev(ns); 3645 3646 nvme_mpath_add_disk(ns, info->anagrpid); 3647 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3648 3649 return; 3650 3651 out_cleanup_ns_from_list: 3652 nvme_put_ctrl(ctrl); 3653 down_write(&ctrl->namespaces_rwsem); 3654 list_del_init(&ns->list); 3655 up_write(&ctrl->namespaces_rwsem); 3656 out_unlink_ns: 3657 mutex_lock(&ctrl->subsys->lock); 3658 list_del_rcu(&ns->siblings); 3659 if (list_empty(&ns->head->list)) 3660 list_del_init(&ns->head->entry); 3661 mutex_unlock(&ctrl->subsys->lock); 3662 nvme_put_ns_head(ns->head); 3663 out_cleanup_disk: 3664 put_disk(disk); 3665 out_free_ns: 3666 kfree(ns); 3667 } 3668 3669 static void nvme_ns_remove(struct nvme_ns *ns) 3670 { 3671 bool last_path = false; 3672 3673 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3674 return; 3675 3676 clear_bit(NVME_NS_READY, &ns->flags); 3677 set_capacity(ns->disk, 0); 3678 nvme_fault_inject_fini(&ns->fault_inject); 3679 3680 /* 3681 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3682 * this ns going back into current_path. 3683 */ 3684 synchronize_srcu(&ns->head->srcu); 3685 3686 /* wait for concurrent submissions */ 3687 if (nvme_mpath_clear_current_path(ns)) 3688 synchronize_srcu(&ns->head->srcu); 3689 3690 mutex_lock(&ns->ctrl->subsys->lock); 3691 list_del_rcu(&ns->siblings); 3692 if (list_empty(&ns->head->list)) { 3693 list_del_init(&ns->head->entry); 3694 last_path = true; 3695 } 3696 mutex_unlock(&ns->ctrl->subsys->lock); 3697 3698 /* guarantee not available in head->list */ 3699 synchronize_srcu(&ns->head->srcu); 3700 3701 if (!nvme_ns_head_multipath(ns->head)) 3702 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3703 del_gendisk(ns->disk); 3704 3705 down_write(&ns->ctrl->namespaces_rwsem); 3706 list_del_init(&ns->list); 3707 up_write(&ns->ctrl->namespaces_rwsem); 3708 3709 if (last_path) 3710 nvme_mpath_shutdown_disk(ns->head); 3711 nvme_put_ns(ns); 3712 } 3713 3714 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3715 { 3716 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3717 3718 if (ns) { 3719 nvme_ns_remove(ns); 3720 nvme_put_ns(ns); 3721 } 3722 } 3723 3724 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3725 { 3726 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3727 3728 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3729 dev_err(ns->ctrl->device, 3730 "identifiers changed for nsid %d\n", ns->head->ns_id); 3731 goto out; 3732 } 3733 3734 ret = nvme_update_ns_info(ns, info); 3735 out: 3736 /* 3737 * Only remove the namespace if we got a fatal error back from the 3738 * device, otherwise ignore the error and just move on. 3739 * 3740 * TODO: we should probably schedule a delayed retry here. 3741 */ 3742 if (ret > 0 && (ret & NVME_SC_DNR)) 3743 nvme_ns_remove(ns); 3744 } 3745 3746 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3747 { 3748 struct nvme_ns_info info = { .nsid = nsid }; 3749 struct nvme_ns *ns; 3750 int ret; 3751 3752 if (nvme_identify_ns_descs(ctrl, &info)) 3753 return; 3754 3755 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 3756 dev_warn(ctrl->device, 3757 "command set not reported for nsid: %d\n", nsid); 3758 return; 3759 } 3760 3761 /* 3762 * If available try to use the Command Set Idependent Identify Namespace 3763 * data structure to find all the generic information that is needed to 3764 * set up a namespace. If not fall back to the legacy version. 3765 */ 3766 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 3767 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 3768 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 3769 else 3770 ret = nvme_ns_info_from_identify(ctrl, &info); 3771 3772 if (info.is_removed) 3773 nvme_ns_remove_by_nsid(ctrl, nsid); 3774 3775 /* 3776 * Ignore the namespace if it is not ready. We will get an AEN once it 3777 * becomes ready and restart the scan. 3778 */ 3779 if (ret || !info.is_ready) 3780 return; 3781 3782 ns = nvme_find_get_ns(ctrl, nsid); 3783 if (ns) { 3784 nvme_validate_ns(ns, &info); 3785 nvme_put_ns(ns); 3786 } else { 3787 nvme_alloc_ns(ctrl, &info); 3788 } 3789 } 3790 3791 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3792 unsigned nsid) 3793 { 3794 struct nvme_ns *ns, *next; 3795 LIST_HEAD(rm_list); 3796 3797 down_write(&ctrl->namespaces_rwsem); 3798 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3799 if (ns->head->ns_id > nsid) 3800 list_move_tail(&ns->list, &rm_list); 3801 } 3802 up_write(&ctrl->namespaces_rwsem); 3803 3804 list_for_each_entry_safe(ns, next, &rm_list, list) 3805 nvme_ns_remove(ns); 3806 3807 } 3808 3809 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3810 { 3811 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3812 __le32 *ns_list; 3813 u32 prev = 0; 3814 int ret = 0, i; 3815 3816 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3817 if (!ns_list) 3818 return -ENOMEM; 3819 3820 for (;;) { 3821 struct nvme_command cmd = { 3822 .identify.opcode = nvme_admin_identify, 3823 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 3824 .identify.nsid = cpu_to_le32(prev), 3825 }; 3826 3827 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 3828 NVME_IDENTIFY_DATA_SIZE); 3829 if (ret) { 3830 dev_warn(ctrl->device, 3831 "Identify NS List failed (status=0x%x)\n", ret); 3832 goto free; 3833 } 3834 3835 for (i = 0; i < nr_entries; i++) { 3836 u32 nsid = le32_to_cpu(ns_list[i]); 3837 3838 if (!nsid) /* end of the list? */ 3839 goto out; 3840 nvme_scan_ns(ctrl, nsid); 3841 while (++prev < nsid) 3842 nvme_ns_remove_by_nsid(ctrl, prev); 3843 } 3844 } 3845 out: 3846 nvme_remove_invalid_namespaces(ctrl, prev); 3847 free: 3848 kfree(ns_list); 3849 return ret; 3850 } 3851 3852 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 3853 { 3854 struct nvme_id_ctrl *id; 3855 u32 nn, i; 3856 3857 if (nvme_identify_ctrl(ctrl, &id)) 3858 return; 3859 nn = le32_to_cpu(id->nn); 3860 kfree(id); 3861 3862 for (i = 1; i <= nn; i++) 3863 nvme_scan_ns(ctrl, i); 3864 3865 nvme_remove_invalid_namespaces(ctrl, nn); 3866 } 3867 3868 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 3869 { 3870 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 3871 __le32 *log; 3872 int error; 3873 3874 log = kzalloc(log_size, GFP_KERNEL); 3875 if (!log) 3876 return; 3877 3878 /* 3879 * We need to read the log to clear the AEN, but we don't want to rely 3880 * on it for the changed namespace information as userspace could have 3881 * raced with us in reading the log page, which could cause us to miss 3882 * updates. 3883 */ 3884 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 3885 NVME_CSI_NVM, log, log_size, 0); 3886 if (error) 3887 dev_warn(ctrl->device, 3888 "reading changed ns log failed: %d\n", error); 3889 3890 kfree(log); 3891 } 3892 3893 static void nvme_scan_work(struct work_struct *work) 3894 { 3895 struct nvme_ctrl *ctrl = 3896 container_of(work, struct nvme_ctrl, scan_work); 3897 int ret; 3898 3899 /* No tagset on a live ctrl means IO queues could not created */ 3900 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 3901 return; 3902 3903 /* 3904 * Identify controller limits can change at controller reset due to 3905 * new firmware download, even though it is not common we cannot ignore 3906 * such scenario. Controller's non-mdts limits are reported in the unit 3907 * of logical blocks that is dependent on the format of attached 3908 * namespace. Hence re-read the limits at the time of ns allocation. 3909 */ 3910 ret = nvme_init_non_mdts_limits(ctrl); 3911 if (ret < 0) { 3912 dev_warn(ctrl->device, 3913 "reading non-mdts-limits failed: %d\n", ret); 3914 return; 3915 } 3916 3917 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 3918 dev_info(ctrl->device, "rescanning namespaces.\n"); 3919 nvme_clear_changed_ns_log(ctrl); 3920 } 3921 3922 mutex_lock(&ctrl->scan_lock); 3923 if (nvme_ctrl_limited_cns(ctrl)) { 3924 nvme_scan_ns_sequential(ctrl); 3925 } else { 3926 /* 3927 * Fall back to sequential scan if DNR is set to handle broken 3928 * devices which should support Identify NS List (as per the VS 3929 * they report) but don't actually support it. 3930 */ 3931 ret = nvme_scan_ns_list(ctrl); 3932 if (ret > 0 && ret & NVME_SC_DNR) 3933 nvme_scan_ns_sequential(ctrl); 3934 } 3935 mutex_unlock(&ctrl->scan_lock); 3936 } 3937 3938 /* 3939 * This function iterates the namespace list unlocked to allow recovery from 3940 * controller failure. It is up to the caller to ensure the namespace list is 3941 * not modified by scan work while this function is executing. 3942 */ 3943 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 3944 { 3945 struct nvme_ns *ns, *next; 3946 LIST_HEAD(ns_list); 3947 3948 /* 3949 * make sure to requeue I/O to all namespaces as these 3950 * might result from the scan itself and must complete 3951 * for the scan_work to make progress 3952 */ 3953 nvme_mpath_clear_ctrl_paths(ctrl); 3954 3955 /* 3956 * Unquiesce io queues so any pending IO won't hang, especially 3957 * those submitted from scan work 3958 */ 3959 nvme_unquiesce_io_queues(ctrl); 3960 3961 /* prevent racing with ns scanning */ 3962 flush_work(&ctrl->scan_work); 3963 3964 /* 3965 * The dead states indicates the controller was not gracefully 3966 * disconnected. In that case, we won't be able to flush any data while 3967 * removing the namespaces' disks; fail all the queues now to avoid 3968 * potentially having to clean up the failed sync later. 3969 */ 3970 if (ctrl->state == NVME_CTRL_DEAD) 3971 nvme_mark_namespaces_dead(ctrl); 3972 3973 /* this is a no-op when called from the controller reset handler */ 3974 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 3975 3976 down_write(&ctrl->namespaces_rwsem); 3977 list_splice_init(&ctrl->namespaces, &ns_list); 3978 up_write(&ctrl->namespaces_rwsem); 3979 3980 list_for_each_entry_safe(ns, next, &ns_list, list) 3981 nvme_ns_remove(ns); 3982 } 3983 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 3984 3985 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 3986 { 3987 const struct nvme_ctrl *ctrl = 3988 container_of(dev, struct nvme_ctrl, ctrl_device); 3989 struct nvmf_ctrl_options *opts = ctrl->opts; 3990 int ret; 3991 3992 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 3993 if (ret) 3994 return ret; 3995 3996 if (opts) { 3997 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 3998 if (ret) 3999 return ret; 4000 4001 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4002 opts->trsvcid ?: "none"); 4003 if (ret) 4004 return ret; 4005 4006 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4007 opts->host_traddr ?: "none"); 4008 if (ret) 4009 return ret; 4010 4011 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4012 opts->host_iface ?: "none"); 4013 } 4014 return ret; 4015 } 4016 4017 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4018 { 4019 char *envp[2] = { envdata, NULL }; 4020 4021 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4022 } 4023 4024 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4025 { 4026 char *envp[2] = { NULL, NULL }; 4027 u32 aen_result = ctrl->aen_result; 4028 4029 ctrl->aen_result = 0; 4030 if (!aen_result) 4031 return; 4032 4033 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4034 if (!envp[0]) 4035 return; 4036 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4037 kfree(envp[0]); 4038 } 4039 4040 static void nvme_async_event_work(struct work_struct *work) 4041 { 4042 struct nvme_ctrl *ctrl = 4043 container_of(work, struct nvme_ctrl, async_event_work); 4044 4045 nvme_aen_uevent(ctrl); 4046 4047 /* 4048 * The transport drivers must guarantee AER submission here is safe by 4049 * flushing ctrl async_event_work after changing the controller state 4050 * from LIVE and before freeing the admin queue. 4051 */ 4052 if (ctrl->state == NVME_CTRL_LIVE) 4053 ctrl->ops->submit_async_event(ctrl); 4054 } 4055 4056 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4057 { 4058 4059 u32 csts; 4060 4061 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4062 return false; 4063 4064 if (csts == ~0) 4065 return false; 4066 4067 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4068 } 4069 4070 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4071 { 4072 struct nvme_fw_slot_info_log *log; 4073 4074 log = kmalloc(sizeof(*log), GFP_KERNEL); 4075 if (!log) 4076 return; 4077 4078 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4079 log, sizeof(*log), 0)) { 4080 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4081 goto out_free_log; 4082 } 4083 4084 if (log->afi & 0x70 || !(log->afi & 0x7)) { 4085 dev_info(ctrl->device, 4086 "Firmware is activated after next Controller Level Reset\n"); 4087 goto out_free_log; 4088 } 4089 4090 memcpy(ctrl->subsys->firmware_rev, &log->frs[(log->afi & 0x7) - 1], 4091 sizeof(ctrl->subsys->firmware_rev)); 4092 4093 out_free_log: 4094 kfree(log); 4095 } 4096 4097 static void nvme_fw_act_work(struct work_struct *work) 4098 { 4099 struct nvme_ctrl *ctrl = container_of(work, 4100 struct nvme_ctrl, fw_act_work); 4101 unsigned long fw_act_timeout; 4102 4103 if (ctrl->mtfa) 4104 fw_act_timeout = jiffies + 4105 msecs_to_jiffies(ctrl->mtfa * 100); 4106 else 4107 fw_act_timeout = jiffies + 4108 msecs_to_jiffies(admin_timeout * 1000); 4109 4110 nvme_quiesce_io_queues(ctrl); 4111 while (nvme_ctrl_pp_status(ctrl)) { 4112 if (time_after(jiffies, fw_act_timeout)) { 4113 dev_warn(ctrl->device, 4114 "Fw activation timeout, reset controller\n"); 4115 nvme_try_sched_reset(ctrl); 4116 return; 4117 } 4118 msleep(100); 4119 } 4120 4121 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4122 return; 4123 4124 nvme_unquiesce_io_queues(ctrl); 4125 /* read FW slot information to clear the AER */ 4126 nvme_get_fw_slot_info(ctrl); 4127 4128 queue_work(nvme_wq, &ctrl->async_event_work); 4129 } 4130 4131 static u32 nvme_aer_type(u32 result) 4132 { 4133 return result & 0x7; 4134 } 4135 4136 static u32 nvme_aer_subtype(u32 result) 4137 { 4138 return (result & 0xff00) >> 8; 4139 } 4140 4141 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4142 { 4143 u32 aer_notice_type = nvme_aer_subtype(result); 4144 bool requeue = true; 4145 4146 switch (aer_notice_type) { 4147 case NVME_AER_NOTICE_NS_CHANGED: 4148 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4149 nvme_queue_scan(ctrl); 4150 break; 4151 case NVME_AER_NOTICE_FW_ACT_STARTING: 4152 /* 4153 * We are (ab)using the RESETTING state to prevent subsequent 4154 * recovery actions from interfering with the controller's 4155 * firmware activation. 4156 */ 4157 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4158 nvme_auth_stop(ctrl); 4159 requeue = false; 4160 queue_work(nvme_wq, &ctrl->fw_act_work); 4161 } 4162 break; 4163 #ifdef CONFIG_NVME_MULTIPATH 4164 case NVME_AER_NOTICE_ANA: 4165 if (!ctrl->ana_log_buf) 4166 break; 4167 queue_work(nvme_wq, &ctrl->ana_work); 4168 break; 4169 #endif 4170 case NVME_AER_NOTICE_DISC_CHANGED: 4171 ctrl->aen_result = result; 4172 break; 4173 default: 4174 dev_warn(ctrl->device, "async event result %08x\n", result); 4175 } 4176 return requeue; 4177 } 4178 4179 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4180 { 4181 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4182 nvme_reset_ctrl(ctrl); 4183 } 4184 4185 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4186 volatile union nvme_result *res) 4187 { 4188 u32 result = le32_to_cpu(res->u32); 4189 u32 aer_type = nvme_aer_type(result); 4190 u32 aer_subtype = nvme_aer_subtype(result); 4191 bool requeue = true; 4192 4193 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4194 return; 4195 4196 trace_nvme_async_event(ctrl, result); 4197 switch (aer_type) { 4198 case NVME_AER_NOTICE: 4199 requeue = nvme_handle_aen_notice(ctrl, result); 4200 break; 4201 case NVME_AER_ERROR: 4202 /* 4203 * For a persistent internal error, don't run async_event_work 4204 * to submit a new AER. The controller reset will do it. 4205 */ 4206 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4207 nvme_handle_aer_persistent_error(ctrl); 4208 return; 4209 } 4210 fallthrough; 4211 case NVME_AER_SMART: 4212 case NVME_AER_CSS: 4213 case NVME_AER_VS: 4214 ctrl->aen_result = result; 4215 break; 4216 default: 4217 break; 4218 } 4219 4220 if (requeue) 4221 queue_work(nvme_wq, &ctrl->async_event_work); 4222 } 4223 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4224 4225 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4226 const struct blk_mq_ops *ops, unsigned int cmd_size) 4227 { 4228 int ret; 4229 4230 memset(set, 0, sizeof(*set)); 4231 set->ops = ops; 4232 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4233 if (ctrl->ops->flags & NVME_F_FABRICS) 4234 set->reserved_tags = NVMF_RESERVED_TAGS; 4235 set->numa_node = ctrl->numa_node; 4236 set->flags = BLK_MQ_F_NO_SCHED; 4237 if (ctrl->ops->flags & NVME_F_BLOCKING) 4238 set->flags |= BLK_MQ_F_BLOCKING; 4239 set->cmd_size = cmd_size; 4240 set->driver_data = ctrl; 4241 set->nr_hw_queues = 1; 4242 set->timeout = NVME_ADMIN_TIMEOUT; 4243 ret = blk_mq_alloc_tag_set(set); 4244 if (ret) 4245 return ret; 4246 4247 ctrl->admin_q = blk_mq_init_queue(set); 4248 if (IS_ERR(ctrl->admin_q)) { 4249 ret = PTR_ERR(ctrl->admin_q); 4250 goto out_free_tagset; 4251 } 4252 4253 if (ctrl->ops->flags & NVME_F_FABRICS) { 4254 ctrl->fabrics_q = blk_mq_init_queue(set); 4255 if (IS_ERR(ctrl->fabrics_q)) { 4256 ret = PTR_ERR(ctrl->fabrics_q); 4257 goto out_cleanup_admin_q; 4258 } 4259 } 4260 4261 ctrl->admin_tagset = set; 4262 return 0; 4263 4264 out_cleanup_admin_q: 4265 blk_mq_destroy_queue(ctrl->admin_q); 4266 blk_put_queue(ctrl->admin_q); 4267 out_free_tagset: 4268 blk_mq_free_tag_set(set); 4269 ctrl->admin_q = NULL; 4270 ctrl->fabrics_q = NULL; 4271 return ret; 4272 } 4273 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4274 4275 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4276 { 4277 blk_mq_destroy_queue(ctrl->admin_q); 4278 blk_put_queue(ctrl->admin_q); 4279 if (ctrl->ops->flags & NVME_F_FABRICS) { 4280 blk_mq_destroy_queue(ctrl->fabrics_q); 4281 blk_put_queue(ctrl->fabrics_q); 4282 } 4283 blk_mq_free_tag_set(ctrl->admin_tagset); 4284 } 4285 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4286 4287 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4288 const struct blk_mq_ops *ops, unsigned int nr_maps, 4289 unsigned int cmd_size) 4290 { 4291 int ret; 4292 4293 memset(set, 0, sizeof(*set)); 4294 set->ops = ops; 4295 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4296 /* 4297 * Some Apple controllers requires tags to be unique across admin and 4298 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4299 */ 4300 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4301 set->reserved_tags = NVME_AQ_DEPTH; 4302 else if (ctrl->ops->flags & NVME_F_FABRICS) 4303 set->reserved_tags = NVMF_RESERVED_TAGS; 4304 set->numa_node = ctrl->numa_node; 4305 set->flags = BLK_MQ_F_SHOULD_MERGE; 4306 if (ctrl->ops->flags & NVME_F_BLOCKING) 4307 set->flags |= BLK_MQ_F_BLOCKING; 4308 set->cmd_size = cmd_size, 4309 set->driver_data = ctrl; 4310 set->nr_hw_queues = ctrl->queue_count - 1; 4311 set->timeout = NVME_IO_TIMEOUT; 4312 set->nr_maps = nr_maps; 4313 ret = blk_mq_alloc_tag_set(set); 4314 if (ret) 4315 return ret; 4316 4317 if (ctrl->ops->flags & NVME_F_FABRICS) { 4318 ctrl->connect_q = blk_mq_init_queue(set); 4319 if (IS_ERR(ctrl->connect_q)) { 4320 ret = PTR_ERR(ctrl->connect_q); 4321 goto out_free_tag_set; 4322 } 4323 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, 4324 ctrl->connect_q); 4325 } 4326 4327 ctrl->tagset = set; 4328 return 0; 4329 4330 out_free_tag_set: 4331 blk_mq_free_tag_set(set); 4332 ctrl->connect_q = NULL; 4333 return ret; 4334 } 4335 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4336 4337 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4338 { 4339 if (ctrl->ops->flags & NVME_F_FABRICS) { 4340 blk_mq_destroy_queue(ctrl->connect_q); 4341 blk_put_queue(ctrl->connect_q); 4342 } 4343 blk_mq_free_tag_set(ctrl->tagset); 4344 } 4345 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4346 4347 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4348 { 4349 nvme_mpath_stop(ctrl); 4350 nvme_auth_stop(ctrl); 4351 nvme_stop_failfast_work(ctrl); 4352 flush_work(&ctrl->async_event_work); 4353 cancel_work_sync(&ctrl->fw_act_work); 4354 if (ctrl->ops->stop_ctrl) 4355 ctrl->ops->stop_ctrl(ctrl); 4356 } 4357 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4358 4359 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4360 { 4361 nvme_enable_aen(ctrl); 4362 4363 /* 4364 * persistent discovery controllers need to send indication to userspace 4365 * to re-read the discovery log page to learn about possible changes 4366 * that were missed. We identify persistent discovery controllers by 4367 * checking that they started once before, hence are reconnecting back. 4368 */ 4369 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4370 nvme_discovery_ctrl(ctrl)) 4371 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4372 4373 if (ctrl->queue_count > 1) { 4374 nvme_queue_scan(ctrl); 4375 nvme_unquiesce_io_queues(ctrl); 4376 nvme_mpath_update(ctrl); 4377 } 4378 4379 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4380 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4381 } 4382 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4383 4384 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4385 { 4386 nvme_hwmon_exit(ctrl); 4387 nvme_fault_inject_fini(&ctrl->fault_inject); 4388 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4389 cdev_device_del(&ctrl->cdev, ctrl->device); 4390 nvme_put_ctrl(ctrl); 4391 } 4392 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4393 4394 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4395 { 4396 struct nvme_effects_log *cel; 4397 unsigned long i; 4398 4399 xa_for_each(&ctrl->cels, i, cel) { 4400 xa_erase(&ctrl->cels, i); 4401 kfree(cel); 4402 } 4403 4404 xa_destroy(&ctrl->cels); 4405 } 4406 4407 static void nvme_free_ctrl(struct device *dev) 4408 { 4409 struct nvme_ctrl *ctrl = 4410 container_of(dev, struct nvme_ctrl, ctrl_device); 4411 struct nvme_subsystem *subsys = ctrl->subsys; 4412 4413 if (!subsys || ctrl->instance != subsys->instance) 4414 ida_free(&nvme_instance_ida, ctrl->instance); 4415 key_put(ctrl->tls_key); 4416 nvme_free_cels(ctrl); 4417 nvme_mpath_uninit(ctrl); 4418 nvme_auth_stop(ctrl); 4419 nvme_auth_free(ctrl); 4420 __free_page(ctrl->discard_page); 4421 free_opal_dev(ctrl->opal_dev); 4422 4423 if (subsys) { 4424 mutex_lock(&nvme_subsystems_lock); 4425 list_del(&ctrl->subsys_entry); 4426 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4427 mutex_unlock(&nvme_subsystems_lock); 4428 } 4429 4430 ctrl->ops->free_ctrl(ctrl); 4431 4432 if (subsys) 4433 nvme_put_subsystem(subsys); 4434 } 4435 4436 /* 4437 * Initialize a NVMe controller structures. This needs to be called during 4438 * earliest initialization so that we have the initialized structured around 4439 * during probing. 4440 */ 4441 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4442 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4443 { 4444 int ret; 4445 4446 ctrl->state = NVME_CTRL_NEW; 4447 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4448 spin_lock_init(&ctrl->lock); 4449 mutex_init(&ctrl->scan_lock); 4450 INIT_LIST_HEAD(&ctrl->namespaces); 4451 xa_init(&ctrl->cels); 4452 init_rwsem(&ctrl->namespaces_rwsem); 4453 ctrl->dev = dev; 4454 ctrl->ops = ops; 4455 ctrl->quirks = quirks; 4456 ctrl->numa_node = NUMA_NO_NODE; 4457 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4458 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4459 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4460 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4461 init_waitqueue_head(&ctrl->state_wq); 4462 4463 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4464 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4465 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4466 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4467 4468 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4469 PAGE_SIZE); 4470 ctrl->discard_page = alloc_page(GFP_KERNEL); 4471 if (!ctrl->discard_page) { 4472 ret = -ENOMEM; 4473 goto out; 4474 } 4475 4476 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4477 if (ret < 0) 4478 goto out; 4479 ctrl->instance = ret; 4480 4481 device_initialize(&ctrl->ctrl_device); 4482 ctrl->device = &ctrl->ctrl_device; 4483 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4484 ctrl->instance); 4485 ctrl->device->class = nvme_class; 4486 ctrl->device->parent = ctrl->dev; 4487 if (ops->dev_attr_groups) 4488 ctrl->device->groups = ops->dev_attr_groups; 4489 else 4490 ctrl->device->groups = nvme_dev_attr_groups; 4491 ctrl->device->release = nvme_free_ctrl; 4492 dev_set_drvdata(ctrl->device, ctrl); 4493 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4494 if (ret) 4495 goto out_release_instance; 4496 4497 nvme_get_ctrl(ctrl); 4498 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4499 ctrl->cdev.owner = ops->module; 4500 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4501 if (ret) 4502 goto out_free_name; 4503 4504 /* 4505 * Initialize latency tolerance controls. The sysfs files won't 4506 * be visible to userspace unless the device actually supports APST. 4507 */ 4508 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4509 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4510 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4511 4512 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4513 nvme_mpath_init_ctrl(ctrl); 4514 ret = nvme_auth_init_ctrl(ctrl); 4515 if (ret) 4516 goto out_free_cdev; 4517 4518 return 0; 4519 out_free_cdev: 4520 nvme_fault_inject_fini(&ctrl->fault_inject); 4521 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4522 cdev_device_del(&ctrl->cdev, ctrl->device); 4523 out_free_name: 4524 nvme_put_ctrl(ctrl); 4525 kfree_const(ctrl->device->kobj.name); 4526 out_release_instance: 4527 ida_free(&nvme_instance_ida, ctrl->instance); 4528 out: 4529 if (ctrl->discard_page) 4530 __free_page(ctrl->discard_page); 4531 return ret; 4532 } 4533 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4534 4535 /* let I/O to all namespaces fail in preparation for surprise removal */ 4536 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4537 { 4538 struct nvme_ns *ns; 4539 4540 down_read(&ctrl->namespaces_rwsem); 4541 list_for_each_entry(ns, &ctrl->namespaces, list) 4542 blk_mark_disk_dead(ns->disk); 4543 up_read(&ctrl->namespaces_rwsem); 4544 } 4545 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4546 4547 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4548 { 4549 struct nvme_ns *ns; 4550 4551 down_read(&ctrl->namespaces_rwsem); 4552 list_for_each_entry(ns, &ctrl->namespaces, list) 4553 blk_mq_unfreeze_queue(ns->queue); 4554 up_read(&ctrl->namespaces_rwsem); 4555 } 4556 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4557 4558 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4559 { 4560 struct nvme_ns *ns; 4561 4562 down_read(&ctrl->namespaces_rwsem); 4563 list_for_each_entry(ns, &ctrl->namespaces, list) { 4564 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4565 if (timeout <= 0) 4566 break; 4567 } 4568 up_read(&ctrl->namespaces_rwsem); 4569 return timeout; 4570 } 4571 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4572 4573 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4574 { 4575 struct nvme_ns *ns; 4576 4577 down_read(&ctrl->namespaces_rwsem); 4578 list_for_each_entry(ns, &ctrl->namespaces, list) 4579 blk_mq_freeze_queue_wait(ns->queue); 4580 up_read(&ctrl->namespaces_rwsem); 4581 } 4582 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4583 4584 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4585 { 4586 struct nvme_ns *ns; 4587 4588 down_read(&ctrl->namespaces_rwsem); 4589 list_for_each_entry(ns, &ctrl->namespaces, list) 4590 blk_freeze_queue_start(ns->queue); 4591 up_read(&ctrl->namespaces_rwsem); 4592 } 4593 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4594 4595 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4596 { 4597 if (!ctrl->tagset) 4598 return; 4599 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4600 blk_mq_quiesce_tagset(ctrl->tagset); 4601 else 4602 blk_mq_wait_quiesce_done(ctrl->tagset); 4603 } 4604 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4605 4606 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4607 { 4608 if (!ctrl->tagset) 4609 return; 4610 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4611 blk_mq_unquiesce_tagset(ctrl->tagset); 4612 } 4613 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4614 4615 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4616 { 4617 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4618 blk_mq_quiesce_queue(ctrl->admin_q); 4619 else 4620 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4621 } 4622 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4623 4624 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4625 { 4626 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4627 blk_mq_unquiesce_queue(ctrl->admin_q); 4628 } 4629 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4630 4631 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4632 { 4633 struct nvme_ns *ns; 4634 4635 down_read(&ctrl->namespaces_rwsem); 4636 list_for_each_entry(ns, &ctrl->namespaces, list) 4637 blk_sync_queue(ns->queue); 4638 up_read(&ctrl->namespaces_rwsem); 4639 } 4640 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4641 4642 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4643 { 4644 nvme_sync_io_queues(ctrl); 4645 if (ctrl->admin_q) 4646 blk_sync_queue(ctrl->admin_q); 4647 } 4648 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4649 4650 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4651 { 4652 if (file->f_op != &nvme_dev_fops) 4653 return NULL; 4654 return file->private_data; 4655 } 4656 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4657 4658 /* 4659 * Check we didn't inadvertently grow the command structure sizes: 4660 */ 4661 static inline void _nvme_check_size(void) 4662 { 4663 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4664 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4665 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4666 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4667 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4668 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4669 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4670 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4671 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4672 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4673 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4674 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4675 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4676 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4677 NVME_IDENTIFY_DATA_SIZE); 4678 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4679 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4680 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4681 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4682 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4683 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4684 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4685 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4686 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4687 } 4688 4689 4690 static int __init nvme_core_init(void) 4691 { 4692 int result = -ENOMEM; 4693 4694 _nvme_check_size(); 4695 4696 nvme_wq = alloc_workqueue("nvme-wq", 4697 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4698 if (!nvme_wq) 4699 goto out; 4700 4701 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4702 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4703 if (!nvme_reset_wq) 4704 goto destroy_wq; 4705 4706 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4707 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4708 if (!nvme_delete_wq) 4709 goto destroy_reset_wq; 4710 4711 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4712 NVME_MINORS, "nvme"); 4713 if (result < 0) 4714 goto destroy_delete_wq; 4715 4716 nvme_class = class_create("nvme"); 4717 if (IS_ERR(nvme_class)) { 4718 result = PTR_ERR(nvme_class); 4719 goto unregister_chrdev; 4720 } 4721 nvme_class->dev_uevent = nvme_class_uevent; 4722 4723 nvme_subsys_class = class_create("nvme-subsystem"); 4724 if (IS_ERR(nvme_subsys_class)) { 4725 result = PTR_ERR(nvme_subsys_class); 4726 goto destroy_class; 4727 } 4728 4729 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4730 "nvme-generic"); 4731 if (result < 0) 4732 goto destroy_subsys_class; 4733 4734 nvme_ns_chr_class = class_create("nvme-generic"); 4735 if (IS_ERR(nvme_ns_chr_class)) { 4736 result = PTR_ERR(nvme_ns_chr_class); 4737 goto unregister_generic_ns; 4738 } 4739 result = nvme_init_auth(); 4740 if (result) 4741 goto destroy_ns_chr; 4742 return 0; 4743 4744 destroy_ns_chr: 4745 class_destroy(nvme_ns_chr_class); 4746 unregister_generic_ns: 4747 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4748 destroy_subsys_class: 4749 class_destroy(nvme_subsys_class); 4750 destroy_class: 4751 class_destroy(nvme_class); 4752 unregister_chrdev: 4753 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4754 destroy_delete_wq: 4755 destroy_workqueue(nvme_delete_wq); 4756 destroy_reset_wq: 4757 destroy_workqueue(nvme_reset_wq); 4758 destroy_wq: 4759 destroy_workqueue(nvme_wq); 4760 out: 4761 return result; 4762 } 4763 4764 static void __exit nvme_core_exit(void) 4765 { 4766 nvme_exit_auth(); 4767 class_destroy(nvme_ns_chr_class); 4768 class_destroy(nvme_subsys_class); 4769 class_destroy(nvme_class); 4770 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4771 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4772 destroy_workqueue(nvme_delete_wq); 4773 destroy_workqueue(nvme_reset_wq); 4774 destroy_workqueue(nvme_wq); 4775 ida_destroy(&nvme_ns_chr_minor_ida); 4776 ida_destroy(&nvme_instance_ida); 4777 } 4778 4779 MODULE_LICENSE("GPL"); 4780 MODULE_VERSION("1.0"); 4781 module_init(nvme_core_init); 4782 module_exit(nvme_core_exit); 4783