xref: /linux/drivers/nvme/host/core.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31 
32 #include "nvme.h"
33 #include "fabrics.h"
34 
35 #define NVME_MINORS		(1U << MINORBITS)
36 
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41 
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46 
47 unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50 
51 unsigned int nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, uint, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 EXPORT_SYMBOL_GPL(nvme_max_retries);
55 
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58 
59 static LIST_HEAD(nvme_ctrl_list);
60 static DEFINE_SPINLOCK(dev_list_lock);
61 
62 static struct class *nvme_class;
63 
64 void nvme_cancel_request(struct request *req, void *data, bool reserved)
65 {
66 	int status;
67 
68 	if (!blk_mq_request_started(req))
69 		return;
70 
71 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
72 				"Cancelling I/O %d", req->tag);
73 
74 	status = NVME_SC_ABORT_REQ;
75 	if (blk_queue_dying(req->q))
76 		status |= NVME_SC_DNR;
77 	blk_mq_complete_request(req, status);
78 }
79 EXPORT_SYMBOL_GPL(nvme_cancel_request);
80 
81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
82 		enum nvme_ctrl_state new_state)
83 {
84 	enum nvme_ctrl_state old_state;
85 	bool changed = false;
86 
87 	spin_lock_irq(&ctrl->lock);
88 
89 	old_state = ctrl->state;
90 	switch (new_state) {
91 	case NVME_CTRL_LIVE:
92 		switch (old_state) {
93 		case NVME_CTRL_NEW:
94 		case NVME_CTRL_RESETTING:
95 		case NVME_CTRL_RECONNECTING:
96 			changed = true;
97 			/* FALLTHRU */
98 		default:
99 			break;
100 		}
101 		break;
102 	case NVME_CTRL_RESETTING:
103 		switch (old_state) {
104 		case NVME_CTRL_NEW:
105 		case NVME_CTRL_LIVE:
106 		case NVME_CTRL_RECONNECTING:
107 			changed = true;
108 			/* FALLTHRU */
109 		default:
110 			break;
111 		}
112 		break;
113 	case NVME_CTRL_RECONNECTING:
114 		switch (old_state) {
115 		case NVME_CTRL_LIVE:
116 			changed = true;
117 			/* FALLTHRU */
118 		default:
119 			break;
120 		}
121 		break;
122 	case NVME_CTRL_DELETING:
123 		switch (old_state) {
124 		case NVME_CTRL_LIVE:
125 		case NVME_CTRL_RESETTING:
126 		case NVME_CTRL_RECONNECTING:
127 			changed = true;
128 			/* FALLTHRU */
129 		default:
130 			break;
131 		}
132 		break;
133 	case NVME_CTRL_DEAD:
134 		switch (old_state) {
135 		case NVME_CTRL_DELETING:
136 			changed = true;
137 			/* FALLTHRU */
138 		default:
139 			break;
140 		}
141 		break;
142 	default:
143 		break;
144 	}
145 
146 	if (changed)
147 		ctrl->state = new_state;
148 
149 	spin_unlock_irq(&ctrl->lock);
150 
151 	return changed;
152 }
153 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
154 
155 static void nvme_free_ns(struct kref *kref)
156 {
157 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
158 
159 	if (ns->ndev)
160 		nvme_nvm_unregister(ns);
161 
162 	if (ns->disk) {
163 		spin_lock(&dev_list_lock);
164 		ns->disk->private_data = NULL;
165 		spin_unlock(&dev_list_lock);
166 	}
167 
168 	put_disk(ns->disk);
169 	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
170 	nvme_put_ctrl(ns->ctrl);
171 	kfree(ns);
172 }
173 
174 static void nvme_put_ns(struct nvme_ns *ns)
175 {
176 	kref_put(&ns->kref, nvme_free_ns);
177 }
178 
179 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
180 {
181 	struct nvme_ns *ns;
182 
183 	spin_lock(&dev_list_lock);
184 	ns = disk->private_data;
185 	if (ns) {
186 		if (!kref_get_unless_zero(&ns->kref))
187 			goto fail;
188 		if (!try_module_get(ns->ctrl->ops->module))
189 			goto fail_put_ns;
190 	}
191 	spin_unlock(&dev_list_lock);
192 
193 	return ns;
194 
195 fail_put_ns:
196 	kref_put(&ns->kref, nvme_free_ns);
197 fail:
198 	spin_unlock(&dev_list_lock);
199 	return NULL;
200 }
201 
202 void nvme_requeue_req(struct request *req)
203 {
204 	blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q));
205 }
206 EXPORT_SYMBOL_GPL(nvme_requeue_req);
207 
208 struct request *nvme_alloc_request(struct request_queue *q,
209 		struct nvme_command *cmd, unsigned int flags, int qid)
210 {
211 	struct request *req;
212 
213 	if (qid == NVME_QID_ANY) {
214 		req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
215 	} else {
216 		req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
217 				qid ? qid - 1 : 0);
218 	}
219 	if (IS_ERR(req))
220 		return req;
221 
222 	req->cmd_type = REQ_TYPE_DRV_PRIV;
223 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
224 	nvme_req(req)->cmd = cmd;
225 
226 	return req;
227 }
228 EXPORT_SYMBOL_GPL(nvme_alloc_request);
229 
230 static inline void nvme_setup_flush(struct nvme_ns *ns,
231 		struct nvme_command *cmnd)
232 {
233 	memset(cmnd, 0, sizeof(*cmnd));
234 	cmnd->common.opcode = nvme_cmd_flush;
235 	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
236 }
237 
238 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
239 		struct nvme_command *cmnd)
240 {
241 	struct nvme_dsm_range *range;
242 	unsigned int nr_bytes = blk_rq_bytes(req);
243 
244 	range = kmalloc(sizeof(*range), GFP_ATOMIC);
245 	if (!range)
246 		return BLK_MQ_RQ_QUEUE_BUSY;
247 
248 	range->cattr = cpu_to_le32(0);
249 	range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
250 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
251 
252 	memset(cmnd, 0, sizeof(*cmnd));
253 	cmnd->dsm.opcode = nvme_cmd_dsm;
254 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
255 	cmnd->dsm.nr = 0;
256 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
257 
258 	req->special_vec.bv_page = virt_to_page(range);
259 	req->special_vec.bv_offset = offset_in_page(range);
260 	req->special_vec.bv_len = sizeof(*range);
261 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
262 
263 	return BLK_MQ_RQ_QUEUE_OK;
264 }
265 
266 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
267 		struct nvme_command *cmnd)
268 {
269 	u16 control = 0;
270 	u32 dsmgmt = 0;
271 
272 	if (req->cmd_flags & REQ_FUA)
273 		control |= NVME_RW_FUA;
274 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
275 		control |= NVME_RW_LR;
276 
277 	if (req->cmd_flags & REQ_RAHEAD)
278 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
279 
280 	memset(cmnd, 0, sizeof(*cmnd));
281 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
282 	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
283 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
284 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
285 
286 	if (ns->ms) {
287 		switch (ns->pi_type) {
288 		case NVME_NS_DPS_PI_TYPE3:
289 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
290 			break;
291 		case NVME_NS_DPS_PI_TYPE1:
292 		case NVME_NS_DPS_PI_TYPE2:
293 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
294 					NVME_RW_PRINFO_PRCHK_REF;
295 			cmnd->rw.reftag = cpu_to_le32(
296 					nvme_block_nr(ns, blk_rq_pos(req)));
297 			break;
298 		}
299 		if (!blk_integrity_rq(req))
300 			control |= NVME_RW_PRINFO_PRACT;
301 	}
302 
303 	cmnd->rw.control = cpu_to_le16(control);
304 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
305 }
306 
307 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
308 		struct nvme_command *cmd)
309 {
310 	int ret = BLK_MQ_RQ_QUEUE_OK;
311 
312 	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
313 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
314 	else if (req_op(req) == REQ_OP_FLUSH)
315 		nvme_setup_flush(ns, cmd);
316 	else if (req_op(req) == REQ_OP_DISCARD)
317 		ret = nvme_setup_discard(ns, req, cmd);
318 	else
319 		nvme_setup_rw(ns, req, cmd);
320 
321 	cmd->common.command_id = req->tag;
322 
323 	return ret;
324 }
325 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
326 
327 /*
328  * Returns 0 on success.  If the result is negative, it's a Linux error code;
329  * if the result is positive, it's an NVM Express status code
330  */
331 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
332 		union nvme_result *result, void *buffer, unsigned bufflen,
333 		unsigned timeout, int qid, int at_head, int flags)
334 {
335 	struct request *req;
336 	int ret;
337 
338 	req = nvme_alloc_request(q, cmd, flags, qid);
339 	if (IS_ERR(req))
340 		return PTR_ERR(req);
341 
342 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
343 
344 	if (buffer && bufflen) {
345 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
346 		if (ret)
347 			goto out;
348 	}
349 
350 	blk_execute_rq(req->q, NULL, req, at_head);
351 	if (result)
352 		*result = nvme_req(req)->result;
353 	ret = req->errors;
354  out:
355 	blk_mq_free_request(req);
356 	return ret;
357 }
358 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
359 
360 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
361 		void *buffer, unsigned bufflen)
362 {
363 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
364 			NVME_QID_ANY, 0, 0);
365 }
366 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
367 
368 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
369 		void __user *ubuffer, unsigned bufflen,
370 		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
371 		u32 *result, unsigned timeout)
372 {
373 	bool write = nvme_is_write(cmd);
374 	struct nvme_ns *ns = q->queuedata;
375 	struct gendisk *disk = ns ? ns->disk : NULL;
376 	struct request *req;
377 	struct bio *bio = NULL;
378 	void *meta = NULL;
379 	int ret;
380 
381 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
382 	if (IS_ERR(req))
383 		return PTR_ERR(req);
384 
385 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
386 
387 	if (ubuffer && bufflen) {
388 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
389 				GFP_KERNEL);
390 		if (ret)
391 			goto out;
392 		bio = req->bio;
393 
394 		if (!disk)
395 			goto submit;
396 		bio->bi_bdev = bdget_disk(disk, 0);
397 		if (!bio->bi_bdev) {
398 			ret = -ENODEV;
399 			goto out_unmap;
400 		}
401 
402 		if (meta_buffer && meta_len) {
403 			struct bio_integrity_payload *bip;
404 
405 			meta = kmalloc(meta_len, GFP_KERNEL);
406 			if (!meta) {
407 				ret = -ENOMEM;
408 				goto out_unmap;
409 			}
410 
411 			if (write) {
412 				if (copy_from_user(meta, meta_buffer,
413 						meta_len)) {
414 					ret = -EFAULT;
415 					goto out_free_meta;
416 				}
417 			}
418 
419 			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
420 			if (IS_ERR(bip)) {
421 				ret = PTR_ERR(bip);
422 				goto out_free_meta;
423 			}
424 
425 			bip->bip_iter.bi_size = meta_len;
426 			bip->bip_iter.bi_sector = meta_seed;
427 
428 			ret = bio_integrity_add_page(bio, virt_to_page(meta),
429 					meta_len, offset_in_page(meta));
430 			if (ret != meta_len) {
431 				ret = -ENOMEM;
432 				goto out_free_meta;
433 			}
434 		}
435 	}
436  submit:
437 	blk_execute_rq(req->q, disk, req, 0);
438 	ret = req->errors;
439 	if (result)
440 		*result = le32_to_cpu(nvme_req(req)->result.u32);
441 	if (meta && !ret && !write) {
442 		if (copy_to_user(meta_buffer, meta, meta_len))
443 			ret = -EFAULT;
444 	}
445  out_free_meta:
446 	kfree(meta);
447  out_unmap:
448 	if (bio) {
449 		if (disk && bio->bi_bdev)
450 			bdput(bio->bi_bdev);
451 		blk_rq_unmap_user(bio);
452 	}
453  out:
454 	blk_mq_free_request(req);
455 	return ret;
456 }
457 
458 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
459 		void __user *ubuffer, unsigned bufflen, u32 *result,
460 		unsigned timeout)
461 {
462 	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
463 			result, timeout);
464 }
465 
466 static void nvme_keep_alive_end_io(struct request *rq, int error)
467 {
468 	struct nvme_ctrl *ctrl = rq->end_io_data;
469 
470 	blk_mq_free_request(rq);
471 
472 	if (error) {
473 		dev_err(ctrl->device,
474 			"failed nvme_keep_alive_end_io error=%d\n", error);
475 		return;
476 	}
477 
478 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
479 }
480 
481 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
482 {
483 	struct nvme_command c;
484 	struct request *rq;
485 
486 	memset(&c, 0, sizeof(c));
487 	c.common.opcode = nvme_admin_keep_alive;
488 
489 	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
490 			NVME_QID_ANY);
491 	if (IS_ERR(rq))
492 		return PTR_ERR(rq);
493 
494 	rq->timeout = ctrl->kato * HZ;
495 	rq->end_io_data = ctrl;
496 
497 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
498 
499 	return 0;
500 }
501 
502 static void nvme_keep_alive_work(struct work_struct *work)
503 {
504 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
505 			struct nvme_ctrl, ka_work);
506 
507 	if (nvme_keep_alive(ctrl)) {
508 		/* allocation failure, reset the controller */
509 		dev_err(ctrl->device, "keep-alive failed\n");
510 		ctrl->ops->reset_ctrl(ctrl);
511 		return;
512 	}
513 }
514 
515 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
516 {
517 	if (unlikely(ctrl->kato == 0))
518 		return;
519 
520 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
521 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
522 }
523 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
524 
525 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
526 {
527 	if (unlikely(ctrl->kato == 0))
528 		return;
529 
530 	cancel_delayed_work_sync(&ctrl->ka_work);
531 }
532 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
533 
534 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
535 {
536 	struct nvme_command c = { };
537 	int error;
538 
539 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
540 	c.identify.opcode = nvme_admin_identify;
541 	c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);
542 
543 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
544 	if (!*id)
545 		return -ENOMEM;
546 
547 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
548 			sizeof(struct nvme_id_ctrl));
549 	if (error)
550 		kfree(*id);
551 	return error;
552 }
553 
554 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
555 {
556 	struct nvme_command c = { };
557 
558 	c.identify.opcode = nvme_admin_identify;
559 	c.identify.cns = cpu_to_le32(NVME_ID_CNS_NS_ACTIVE_LIST);
560 	c.identify.nsid = cpu_to_le32(nsid);
561 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
562 }
563 
564 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
565 		struct nvme_id_ns **id)
566 {
567 	struct nvme_command c = { };
568 	int error;
569 
570 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
571 	c.identify.opcode = nvme_admin_identify,
572 	c.identify.nsid = cpu_to_le32(nsid),
573 
574 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
575 	if (!*id)
576 		return -ENOMEM;
577 
578 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
579 			sizeof(struct nvme_id_ns));
580 	if (error)
581 		kfree(*id);
582 	return error;
583 }
584 
585 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
586 		      void *buffer, size_t buflen, u32 *result)
587 {
588 	struct nvme_command c;
589 	union nvme_result res;
590 	int ret;
591 
592 	memset(&c, 0, sizeof(c));
593 	c.features.opcode = nvme_admin_get_features;
594 	c.features.nsid = cpu_to_le32(nsid);
595 	c.features.fid = cpu_to_le32(fid);
596 
597 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0,
598 			NVME_QID_ANY, 0, 0);
599 	if (ret >= 0 && result)
600 		*result = le32_to_cpu(res.u32);
601 	return ret;
602 }
603 
604 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
605 		      void *buffer, size_t buflen, u32 *result)
606 {
607 	struct nvme_command c;
608 	union nvme_result res;
609 	int ret;
610 
611 	memset(&c, 0, sizeof(c));
612 	c.features.opcode = nvme_admin_set_features;
613 	c.features.fid = cpu_to_le32(fid);
614 	c.features.dword11 = cpu_to_le32(dword11);
615 
616 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
617 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
618 	if (ret >= 0 && result)
619 		*result = le32_to_cpu(res.u32);
620 	return ret;
621 }
622 
623 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
624 {
625 	struct nvme_command c = { };
626 	int error;
627 
628 	c.common.opcode = nvme_admin_get_log_page,
629 	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
630 	c.common.cdw10[0] = cpu_to_le32(
631 			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
632 			 NVME_LOG_SMART),
633 
634 	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
635 	if (!*log)
636 		return -ENOMEM;
637 
638 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
639 			sizeof(struct nvme_smart_log));
640 	if (error)
641 		kfree(*log);
642 	return error;
643 }
644 
645 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
646 {
647 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
648 	u32 result;
649 	int status, nr_io_queues;
650 
651 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
652 			&result);
653 	if (status < 0)
654 		return status;
655 
656 	/*
657 	 * Degraded controllers might return an error when setting the queue
658 	 * count.  We still want to be able to bring them online and offer
659 	 * access to the admin queue, as that might be only way to fix them up.
660 	 */
661 	if (status > 0) {
662 		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
663 		*count = 0;
664 	} else {
665 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
666 		*count = min(*count, nr_io_queues);
667 	}
668 
669 	return 0;
670 }
671 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
672 
673 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
674 {
675 	struct nvme_user_io io;
676 	struct nvme_command c;
677 	unsigned length, meta_len;
678 	void __user *metadata;
679 
680 	if (copy_from_user(&io, uio, sizeof(io)))
681 		return -EFAULT;
682 	if (io.flags)
683 		return -EINVAL;
684 
685 	switch (io.opcode) {
686 	case nvme_cmd_write:
687 	case nvme_cmd_read:
688 	case nvme_cmd_compare:
689 		break;
690 	default:
691 		return -EINVAL;
692 	}
693 
694 	length = (io.nblocks + 1) << ns->lba_shift;
695 	meta_len = (io.nblocks + 1) * ns->ms;
696 	metadata = (void __user *)(uintptr_t)io.metadata;
697 
698 	if (ns->ext) {
699 		length += meta_len;
700 		meta_len = 0;
701 	} else if (meta_len) {
702 		if ((io.metadata & 3) || !io.metadata)
703 			return -EINVAL;
704 	}
705 
706 	memset(&c, 0, sizeof(c));
707 	c.rw.opcode = io.opcode;
708 	c.rw.flags = io.flags;
709 	c.rw.nsid = cpu_to_le32(ns->ns_id);
710 	c.rw.slba = cpu_to_le64(io.slba);
711 	c.rw.length = cpu_to_le16(io.nblocks);
712 	c.rw.control = cpu_to_le16(io.control);
713 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
714 	c.rw.reftag = cpu_to_le32(io.reftag);
715 	c.rw.apptag = cpu_to_le16(io.apptag);
716 	c.rw.appmask = cpu_to_le16(io.appmask);
717 
718 	return __nvme_submit_user_cmd(ns->queue, &c,
719 			(void __user *)(uintptr_t)io.addr, length,
720 			metadata, meta_len, io.slba, NULL, 0);
721 }
722 
723 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
724 			struct nvme_passthru_cmd __user *ucmd)
725 {
726 	struct nvme_passthru_cmd cmd;
727 	struct nvme_command c;
728 	unsigned timeout = 0;
729 	int status;
730 
731 	if (!capable(CAP_SYS_ADMIN))
732 		return -EACCES;
733 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
734 		return -EFAULT;
735 	if (cmd.flags)
736 		return -EINVAL;
737 
738 	memset(&c, 0, sizeof(c));
739 	c.common.opcode = cmd.opcode;
740 	c.common.flags = cmd.flags;
741 	c.common.nsid = cpu_to_le32(cmd.nsid);
742 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
743 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
744 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
745 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
746 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
747 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
748 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
749 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
750 
751 	if (cmd.timeout_ms)
752 		timeout = msecs_to_jiffies(cmd.timeout_ms);
753 
754 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
755 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
756 			&cmd.result, timeout);
757 	if (status >= 0) {
758 		if (put_user(cmd.result, &ucmd->result))
759 			return -EFAULT;
760 	}
761 
762 	return status;
763 }
764 
765 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
766 		unsigned int cmd, unsigned long arg)
767 {
768 	struct nvme_ns *ns = bdev->bd_disk->private_data;
769 
770 	switch (cmd) {
771 	case NVME_IOCTL_ID:
772 		force_successful_syscall_return();
773 		return ns->ns_id;
774 	case NVME_IOCTL_ADMIN_CMD:
775 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
776 	case NVME_IOCTL_IO_CMD:
777 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
778 	case NVME_IOCTL_SUBMIT_IO:
779 		return nvme_submit_io(ns, (void __user *)arg);
780 #ifdef CONFIG_BLK_DEV_NVME_SCSI
781 	case SG_GET_VERSION_NUM:
782 		return nvme_sg_get_version_num((void __user *)arg);
783 	case SG_IO:
784 		return nvme_sg_io(ns, (void __user *)arg);
785 #endif
786 	default:
787 		return -ENOTTY;
788 	}
789 }
790 
791 #ifdef CONFIG_COMPAT
792 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
793 			unsigned int cmd, unsigned long arg)
794 {
795 	switch (cmd) {
796 	case SG_IO:
797 		return -ENOIOCTLCMD;
798 	}
799 	return nvme_ioctl(bdev, mode, cmd, arg);
800 }
801 #else
802 #define nvme_compat_ioctl	NULL
803 #endif
804 
805 static int nvme_open(struct block_device *bdev, fmode_t mode)
806 {
807 	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
808 }
809 
810 static void nvme_release(struct gendisk *disk, fmode_t mode)
811 {
812 	struct nvme_ns *ns = disk->private_data;
813 
814 	module_put(ns->ctrl->ops->module);
815 	nvme_put_ns(ns);
816 }
817 
818 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
819 {
820 	/* some standard values */
821 	geo->heads = 1 << 6;
822 	geo->sectors = 1 << 5;
823 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
824 	return 0;
825 }
826 
827 #ifdef CONFIG_BLK_DEV_INTEGRITY
828 static void nvme_init_integrity(struct nvme_ns *ns)
829 {
830 	struct blk_integrity integrity;
831 
832 	memset(&integrity, 0, sizeof(integrity));
833 	switch (ns->pi_type) {
834 	case NVME_NS_DPS_PI_TYPE3:
835 		integrity.profile = &t10_pi_type3_crc;
836 		integrity.tag_size = sizeof(u16) + sizeof(u32);
837 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
838 		break;
839 	case NVME_NS_DPS_PI_TYPE1:
840 	case NVME_NS_DPS_PI_TYPE2:
841 		integrity.profile = &t10_pi_type1_crc;
842 		integrity.tag_size = sizeof(u16);
843 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
844 		break;
845 	default:
846 		integrity.profile = NULL;
847 		break;
848 	}
849 	integrity.tuple_size = ns->ms;
850 	blk_integrity_register(ns->disk, &integrity);
851 	blk_queue_max_integrity_segments(ns->queue, 1);
852 }
853 #else
854 static void nvme_init_integrity(struct nvme_ns *ns)
855 {
856 }
857 #endif /* CONFIG_BLK_DEV_INTEGRITY */
858 
859 static void nvme_config_discard(struct nvme_ns *ns)
860 {
861 	struct nvme_ctrl *ctrl = ns->ctrl;
862 	u32 logical_block_size = queue_logical_block_size(ns->queue);
863 
864 	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
865 		ns->queue->limits.discard_zeroes_data = 1;
866 	else
867 		ns->queue->limits.discard_zeroes_data = 0;
868 
869 	ns->queue->limits.discard_alignment = logical_block_size;
870 	ns->queue->limits.discard_granularity = logical_block_size;
871 	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
872 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
873 }
874 
875 static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
876 {
877 	if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
878 		dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
879 		return -ENODEV;
880 	}
881 
882 	if ((*id)->ncap == 0) {
883 		kfree(*id);
884 		return -ENODEV;
885 	}
886 
887 	if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
888 		memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
889 	if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
890 		memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
891 
892 	return 0;
893 }
894 
895 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
896 {
897 	struct nvme_ns *ns = disk->private_data;
898 	u8 lbaf, pi_type;
899 	u16 old_ms;
900 	unsigned short bs;
901 
902 	old_ms = ns->ms;
903 	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
904 	ns->lba_shift = id->lbaf[lbaf].ds;
905 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
906 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
907 
908 	/*
909 	 * If identify namespace failed, use default 512 byte block size so
910 	 * block layer can use before failing read/write for 0 capacity.
911 	 */
912 	if (ns->lba_shift == 0)
913 		ns->lba_shift = 9;
914 	bs = 1 << ns->lba_shift;
915 	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
916 	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
917 					id->dps & NVME_NS_DPS_PI_MASK : 0;
918 
919 	blk_mq_freeze_queue(disk->queue);
920 	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
921 				ns->ms != old_ms ||
922 				bs != queue_logical_block_size(disk->queue) ||
923 				(ns->ms && ns->ext)))
924 		blk_integrity_unregister(disk);
925 
926 	ns->pi_type = pi_type;
927 	blk_queue_logical_block_size(ns->queue, bs);
928 
929 	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
930 		nvme_init_integrity(ns);
931 	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
932 		set_capacity(disk, 0);
933 	else
934 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
935 
936 	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
937 		nvme_config_discard(ns);
938 	blk_mq_unfreeze_queue(disk->queue);
939 }
940 
941 static int nvme_revalidate_disk(struct gendisk *disk)
942 {
943 	struct nvme_ns *ns = disk->private_data;
944 	struct nvme_id_ns *id = NULL;
945 	int ret;
946 
947 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
948 		set_capacity(disk, 0);
949 		return -ENODEV;
950 	}
951 
952 	ret = nvme_revalidate_ns(ns, &id);
953 	if (ret)
954 		return ret;
955 
956 	__nvme_revalidate_disk(disk, id);
957 	kfree(id);
958 
959 	return 0;
960 }
961 
962 static char nvme_pr_type(enum pr_type type)
963 {
964 	switch (type) {
965 	case PR_WRITE_EXCLUSIVE:
966 		return 1;
967 	case PR_EXCLUSIVE_ACCESS:
968 		return 2;
969 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
970 		return 3;
971 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
972 		return 4;
973 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
974 		return 5;
975 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
976 		return 6;
977 	default:
978 		return 0;
979 	}
980 };
981 
982 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
983 				u64 key, u64 sa_key, u8 op)
984 {
985 	struct nvme_ns *ns = bdev->bd_disk->private_data;
986 	struct nvme_command c;
987 	u8 data[16] = { 0, };
988 
989 	put_unaligned_le64(key, &data[0]);
990 	put_unaligned_le64(sa_key, &data[8]);
991 
992 	memset(&c, 0, sizeof(c));
993 	c.common.opcode = op;
994 	c.common.nsid = cpu_to_le32(ns->ns_id);
995 	c.common.cdw10[0] = cpu_to_le32(cdw10);
996 
997 	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
998 }
999 
1000 static int nvme_pr_register(struct block_device *bdev, u64 old,
1001 		u64 new, unsigned flags)
1002 {
1003 	u32 cdw10;
1004 
1005 	if (flags & ~PR_FL_IGNORE_KEY)
1006 		return -EOPNOTSUPP;
1007 
1008 	cdw10 = old ? 2 : 0;
1009 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1010 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1011 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1012 }
1013 
1014 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1015 		enum pr_type type, unsigned flags)
1016 {
1017 	u32 cdw10;
1018 
1019 	if (flags & ~PR_FL_IGNORE_KEY)
1020 		return -EOPNOTSUPP;
1021 
1022 	cdw10 = nvme_pr_type(type) << 8;
1023 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1024 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1025 }
1026 
1027 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1028 		enum pr_type type, bool abort)
1029 {
1030 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1031 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1032 }
1033 
1034 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1035 {
1036 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1037 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1038 }
1039 
1040 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1041 {
1042 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1043 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1044 }
1045 
1046 static const struct pr_ops nvme_pr_ops = {
1047 	.pr_register	= nvme_pr_register,
1048 	.pr_reserve	= nvme_pr_reserve,
1049 	.pr_release	= nvme_pr_release,
1050 	.pr_preempt	= nvme_pr_preempt,
1051 	.pr_clear	= nvme_pr_clear,
1052 };
1053 
1054 static const struct block_device_operations nvme_fops = {
1055 	.owner		= THIS_MODULE,
1056 	.ioctl		= nvme_ioctl,
1057 	.compat_ioctl	= nvme_compat_ioctl,
1058 	.open		= nvme_open,
1059 	.release	= nvme_release,
1060 	.getgeo		= nvme_getgeo,
1061 	.revalidate_disk= nvme_revalidate_disk,
1062 	.pr_ops		= &nvme_pr_ops,
1063 };
1064 
1065 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1066 {
1067 	unsigned long timeout =
1068 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1069 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1070 	int ret;
1071 
1072 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1073 		if (csts == ~0)
1074 			return -ENODEV;
1075 		if ((csts & NVME_CSTS_RDY) == bit)
1076 			break;
1077 
1078 		msleep(100);
1079 		if (fatal_signal_pending(current))
1080 			return -EINTR;
1081 		if (time_after(jiffies, timeout)) {
1082 			dev_err(ctrl->device,
1083 				"Device not ready; aborting %s\n", enabled ?
1084 						"initialisation" : "reset");
1085 			return -ENODEV;
1086 		}
1087 	}
1088 
1089 	return ret;
1090 }
1091 
1092 /*
1093  * If the device has been passed off to us in an enabled state, just clear
1094  * the enabled bit.  The spec says we should set the 'shutdown notification
1095  * bits', but doing so may cause the device to complete commands to the
1096  * admin queue ... and we don't know what memory that might be pointing at!
1097  */
1098 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1099 {
1100 	int ret;
1101 
1102 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1103 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1104 
1105 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1106 	if (ret)
1107 		return ret;
1108 
1109 	/* Checking for ctrl->tagset is a trick to avoid sleeping on module
1110 	 * load, since we only need the quirk on reset_controller. Notice
1111 	 * that the HGST device needs this delay only in firmware activation
1112 	 * procedure; unfortunately we have no (easy) way to verify this.
1113 	 */
1114 	if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset)
1115 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1116 
1117 	return nvme_wait_ready(ctrl, cap, false);
1118 }
1119 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1120 
1121 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1122 {
1123 	/*
1124 	 * Default to a 4K page size, with the intention to update this
1125 	 * path in the future to accomodate architectures with differing
1126 	 * kernel and IO page sizes.
1127 	 */
1128 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1129 	int ret;
1130 
1131 	if (page_shift < dev_page_min) {
1132 		dev_err(ctrl->device,
1133 			"Minimum device page size %u too large for host (%u)\n",
1134 			1 << dev_page_min, 1 << page_shift);
1135 		return -ENODEV;
1136 	}
1137 
1138 	ctrl->page_size = 1 << page_shift;
1139 
1140 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1141 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1142 	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1143 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1144 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1145 
1146 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1147 	if (ret)
1148 		return ret;
1149 	return nvme_wait_ready(ctrl, cap, true);
1150 }
1151 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1152 
1153 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1154 {
1155 	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1156 	u32 csts;
1157 	int ret;
1158 
1159 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1160 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1161 
1162 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1163 	if (ret)
1164 		return ret;
1165 
1166 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1167 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1168 			break;
1169 
1170 		msleep(100);
1171 		if (fatal_signal_pending(current))
1172 			return -EINTR;
1173 		if (time_after(jiffies, timeout)) {
1174 			dev_err(ctrl->device,
1175 				"Device shutdown incomplete; abort shutdown\n");
1176 			return -ENODEV;
1177 		}
1178 	}
1179 
1180 	return ret;
1181 }
1182 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1183 
1184 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1185 		struct request_queue *q)
1186 {
1187 	bool vwc = false;
1188 
1189 	if (ctrl->max_hw_sectors) {
1190 		u32 max_segments =
1191 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1192 
1193 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1194 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1195 	}
1196 	if (ctrl->stripe_size)
1197 		blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1198 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1199 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1200 		vwc = true;
1201 	blk_queue_write_cache(q, vwc, vwc);
1202 }
1203 
1204 /*
1205  * Initialize the cached copies of the Identify data and various controller
1206  * register in our nvme_ctrl structure.  This should be called as soon as
1207  * the admin queue is fully up and running.
1208  */
1209 int nvme_init_identify(struct nvme_ctrl *ctrl)
1210 {
1211 	struct nvme_id_ctrl *id;
1212 	u64 cap;
1213 	int ret, page_shift;
1214 	u32 max_hw_sectors;
1215 
1216 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1217 	if (ret) {
1218 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1219 		return ret;
1220 	}
1221 
1222 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1223 	if (ret) {
1224 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1225 		return ret;
1226 	}
1227 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
1228 
1229 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1230 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
1231 
1232 	ret = nvme_identify_ctrl(ctrl, &id);
1233 	if (ret) {
1234 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1235 		return -EIO;
1236 	}
1237 
1238 	ctrl->vid = le16_to_cpu(id->vid);
1239 	ctrl->oncs = le16_to_cpup(&id->oncs);
1240 	atomic_set(&ctrl->abort_limit, id->acl + 1);
1241 	ctrl->vwc = id->vwc;
1242 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1243 	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1244 	memcpy(ctrl->model, id->mn, sizeof(id->mn));
1245 	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1246 	if (id->mdts)
1247 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1248 	else
1249 		max_hw_sectors = UINT_MAX;
1250 	ctrl->max_hw_sectors =
1251 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1252 
1253 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1254 		unsigned int max_hw_sectors;
1255 
1256 		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1257 		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1258 		if (ctrl->max_hw_sectors) {
1259 			ctrl->max_hw_sectors = min(max_hw_sectors,
1260 							ctrl->max_hw_sectors);
1261 		} else {
1262 			ctrl->max_hw_sectors = max_hw_sectors;
1263 		}
1264 	}
1265 
1266 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1267 	ctrl->sgls = le32_to_cpu(id->sgls);
1268 	ctrl->kas = le16_to_cpu(id->kas);
1269 
1270 	if (ctrl->ops->is_fabrics) {
1271 		ctrl->icdoff = le16_to_cpu(id->icdoff);
1272 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1273 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1274 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1275 
1276 		/*
1277 		 * In fabrics we need to verify the cntlid matches the
1278 		 * admin connect
1279 		 */
1280 		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1281 			ret = -EINVAL;
1282 
1283 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1284 			dev_err(ctrl->dev,
1285 				"keep-alive support is mandatory for fabrics\n");
1286 			ret = -EINVAL;
1287 		}
1288 	} else {
1289 		ctrl->cntlid = le16_to_cpu(id->cntlid);
1290 	}
1291 
1292 	kfree(id);
1293 	return ret;
1294 }
1295 EXPORT_SYMBOL_GPL(nvme_init_identify);
1296 
1297 static int nvme_dev_open(struct inode *inode, struct file *file)
1298 {
1299 	struct nvme_ctrl *ctrl;
1300 	int instance = iminor(inode);
1301 	int ret = -ENODEV;
1302 
1303 	spin_lock(&dev_list_lock);
1304 	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1305 		if (ctrl->instance != instance)
1306 			continue;
1307 
1308 		if (!ctrl->admin_q) {
1309 			ret = -EWOULDBLOCK;
1310 			break;
1311 		}
1312 		if (!kref_get_unless_zero(&ctrl->kref))
1313 			break;
1314 		file->private_data = ctrl;
1315 		ret = 0;
1316 		break;
1317 	}
1318 	spin_unlock(&dev_list_lock);
1319 
1320 	return ret;
1321 }
1322 
1323 static int nvme_dev_release(struct inode *inode, struct file *file)
1324 {
1325 	nvme_put_ctrl(file->private_data);
1326 	return 0;
1327 }
1328 
1329 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1330 {
1331 	struct nvme_ns *ns;
1332 	int ret;
1333 
1334 	mutex_lock(&ctrl->namespaces_mutex);
1335 	if (list_empty(&ctrl->namespaces)) {
1336 		ret = -ENOTTY;
1337 		goto out_unlock;
1338 	}
1339 
1340 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1341 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1342 		dev_warn(ctrl->device,
1343 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1344 		ret = -EINVAL;
1345 		goto out_unlock;
1346 	}
1347 
1348 	dev_warn(ctrl->device,
1349 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1350 	kref_get(&ns->kref);
1351 	mutex_unlock(&ctrl->namespaces_mutex);
1352 
1353 	ret = nvme_user_cmd(ctrl, ns, argp);
1354 	nvme_put_ns(ns);
1355 	return ret;
1356 
1357 out_unlock:
1358 	mutex_unlock(&ctrl->namespaces_mutex);
1359 	return ret;
1360 }
1361 
1362 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1363 		unsigned long arg)
1364 {
1365 	struct nvme_ctrl *ctrl = file->private_data;
1366 	void __user *argp = (void __user *)arg;
1367 
1368 	switch (cmd) {
1369 	case NVME_IOCTL_ADMIN_CMD:
1370 		return nvme_user_cmd(ctrl, NULL, argp);
1371 	case NVME_IOCTL_IO_CMD:
1372 		return nvme_dev_user_cmd(ctrl, argp);
1373 	case NVME_IOCTL_RESET:
1374 		dev_warn(ctrl->device, "resetting controller\n");
1375 		return ctrl->ops->reset_ctrl(ctrl);
1376 	case NVME_IOCTL_SUBSYS_RESET:
1377 		return nvme_reset_subsystem(ctrl);
1378 	case NVME_IOCTL_RESCAN:
1379 		nvme_queue_scan(ctrl);
1380 		return 0;
1381 	default:
1382 		return -ENOTTY;
1383 	}
1384 }
1385 
1386 static const struct file_operations nvme_dev_fops = {
1387 	.owner		= THIS_MODULE,
1388 	.open		= nvme_dev_open,
1389 	.release	= nvme_dev_release,
1390 	.unlocked_ioctl	= nvme_dev_ioctl,
1391 	.compat_ioctl	= nvme_dev_ioctl,
1392 };
1393 
1394 static ssize_t nvme_sysfs_reset(struct device *dev,
1395 				struct device_attribute *attr, const char *buf,
1396 				size_t count)
1397 {
1398 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1399 	int ret;
1400 
1401 	ret = ctrl->ops->reset_ctrl(ctrl);
1402 	if (ret < 0)
1403 		return ret;
1404 	return count;
1405 }
1406 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1407 
1408 static ssize_t nvme_sysfs_rescan(struct device *dev,
1409 				struct device_attribute *attr, const char *buf,
1410 				size_t count)
1411 {
1412 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1413 
1414 	nvme_queue_scan(ctrl);
1415 	return count;
1416 }
1417 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1418 
1419 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1420 								char *buf)
1421 {
1422 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1423 	struct nvme_ctrl *ctrl = ns->ctrl;
1424 	int serial_len = sizeof(ctrl->serial);
1425 	int model_len = sizeof(ctrl->model);
1426 
1427 	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1428 		return sprintf(buf, "eui.%16phN\n", ns->uuid);
1429 
1430 	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1431 		return sprintf(buf, "eui.%8phN\n", ns->eui);
1432 
1433 	while (ctrl->serial[serial_len - 1] == ' ')
1434 		serial_len--;
1435 	while (ctrl->model[model_len - 1] == ' ')
1436 		model_len--;
1437 
1438 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1439 		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1440 }
1441 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1442 
1443 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1444 								char *buf)
1445 {
1446 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1447 	return sprintf(buf, "%pU\n", ns->uuid);
1448 }
1449 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1450 
1451 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1452 								char *buf)
1453 {
1454 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1455 	return sprintf(buf, "%8phd\n", ns->eui);
1456 }
1457 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1458 
1459 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1460 								char *buf)
1461 {
1462 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1463 	return sprintf(buf, "%d\n", ns->ns_id);
1464 }
1465 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1466 
1467 static struct attribute *nvme_ns_attrs[] = {
1468 	&dev_attr_wwid.attr,
1469 	&dev_attr_uuid.attr,
1470 	&dev_attr_eui.attr,
1471 	&dev_attr_nsid.attr,
1472 	NULL,
1473 };
1474 
1475 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1476 		struct attribute *a, int n)
1477 {
1478 	struct device *dev = container_of(kobj, struct device, kobj);
1479 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
1480 
1481 	if (a == &dev_attr_uuid.attr) {
1482 		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1483 			return 0;
1484 	}
1485 	if (a == &dev_attr_eui.attr) {
1486 		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1487 			return 0;
1488 	}
1489 	return a->mode;
1490 }
1491 
1492 static const struct attribute_group nvme_ns_attr_group = {
1493 	.attrs		= nvme_ns_attrs,
1494 	.is_visible	= nvme_ns_attrs_are_visible,
1495 };
1496 
1497 #define nvme_show_str_function(field)						\
1498 static ssize_t  field##_show(struct device *dev,				\
1499 			    struct device_attribute *attr, char *buf)		\
1500 {										\
1501         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1502         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
1503 }										\
1504 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1505 
1506 #define nvme_show_int_function(field)						\
1507 static ssize_t  field##_show(struct device *dev,				\
1508 			    struct device_attribute *attr, char *buf)		\
1509 {										\
1510         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1511         return sprintf(buf, "%d\n", ctrl->field);	\
1512 }										\
1513 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1514 
1515 nvme_show_str_function(model);
1516 nvme_show_str_function(serial);
1517 nvme_show_str_function(firmware_rev);
1518 nvme_show_int_function(cntlid);
1519 
1520 static ssize_t nvme_sysfs_delete(struct device *dev,
1521 				struct device_attribute *attr, const char *buf,
1522 				size_t count)
1523 {
1524 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1525 
1526 	if (device_remove_file_self(dev, attr))
1527 		ctrl->ops->delete_ctrl(ctrl);
1528 	return count;
1529 }
1530 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1531 
1532 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1533 					 struct device_attribute *attr,
1534 					 char *buf)
1535 {
1536 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1537 
1538 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1539 }
1540 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1541 
1542 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1543 					 struct device_attribute *attr,
1544 					 char *buf)
1545 {
1546 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1547 
1548 	return snprintf(buf, PAGE_SIZE, "%s\n",
1549 			ctrl->ops->get_subsysnqn(ctrl));
1550 }
1551 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1552 
1553 static ssize_t nvme_sysfs_show_address(struct device *dev,
1554 					 struct device_attribute *attr,
1555 					 char *buf)
1556 {
1557 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1558 
1559 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1560 }
1561 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1562 
1563 static struct attribute *nvme_dev_attrs[] = {
1564 	&dev_attr_reset_controller.attr,
1565 	&dev_attr_rescan_controller.attr,
1566 	&dev_attr_model.attr,
1567 	&dev_attr_serial.attr,
1568 	&dev_attr_firmware_rev.attr,
1569 	&dev_attr_cntlid.attr,
1570 	&dev_attr_delete_controller.attr,
1571 	&dev_attr_transport.attr,
1572 	&dev_attr_subsysnqn.attr,
1573 	&dev_attr_address.attr,
1574 	NULL
1575 };
1576 
1577 #define CHECK_ATTR(ctrl, a, name)		\
1578 	if ((a) == &dev_attr_##name.attr &&	\
1579 	    !(ctrl)->ops->get_##name)		\
1580 		return 0
1581 
1582 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1583 		struct attribute *a, int n)
1584 {
1585 	struct device *dev = container_of(kobj, struct device, kobj);
1586 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1587 
1588 	if (a == &dev_attr_delete_controller.attr) {
1589 		if (!ctrl->ops->delete_ctrl)
1590 			return 0;
1591 	}
1592 
1593 	CHECK_ATTR(ctrl, a, subsysnqn);
1594 	CHECK_ATTR(ctrl, a, address);
1595 
1596 	return a->mode;
1597 }
1598 
1599 static struct attribute_group nvme_dev_attrs_group = {
1600 	.attrs		= nvme_dev_attrs,
1601 	.is_visible	= nvme_dev_attrs_are_visible,
1602 };
1603 
1604 static const struct attribute_group *nvme_dev_attr_groups[] = {
1605 	&nvme_dev_attrs_group,
1606 	NULL,
1607 };
1608 
1609 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1610 {
1611 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1612 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1613 
1614 	return nsa->ns_id - nsb->ns_id;
1615 }
1616 
1617 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1618 {
1619 	struct nvme_ns *ns, *ret = NULL;
1620 
1621 	mutex_lock(&ctrl->namespaces_mutex);
1622 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1623 		if (ns->ns_id == nsid) {
1624 			kref_get(&ns->kref);
1625 			ret = ns;
1626 			break;
1627 		}
1628 		if (ns->ns_id > nsid)
1629 			break;
1630 	}
1631 	mutex_unlock(&ctrl->namespaces_mutex);
1632 	return ret;
1633 }
1634 
1635 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1636 {
1637 	struct nvme_ns *ns;
1638 	struct gendisk *disk;
1639 	struct nvme_id_ns *id;
1640 	char disk_name[DISK_NAME_LEN];
1641 	int node = dev_to_node(ctrl->dev);
1642 
1643 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1644 	if (!ns)
1645 		return;
1646 
1647 	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1648 	if (ns->instance < 0)
1649 		goto out_free_ns;
1650 
1651 	ns->queue = blk_mq_init_queue(ctrl->tagset);
1652 	if (IS_ERR(ns->queue))
1653 		goto out_release_instance;
1654 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1655 	ns->queue->queuedata = ns;
1656 	ns->ctrl = ctrl;
1657 
1658 	kref_init(&ns->kref);
1659 	ns->ns_id = nsid;
1660 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1661 
1662 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1663 	nvme_set_queue_limits(ctrl, ns->queue);
1664 
1665 	sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1666 
1667 	if (nvme_revalidate_ns(ns, &id))
1668 		goto out_free_queue;
1669 
1670 	if (nvme_nvm_ns_supported(ns, id) &&
1671 				nvme_nvm_register(ns, disk_name, node)) {
1672 		dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__);
1673 		goto out_free_id;
1674 	}
1675 
1676 	disk = alloc_disk_node(0, node);
1677 	if (!disk)
1678 		goto out_free_id;
1679 
1680 	disk->fops = &nvme_fops;
1681 	disk->private_data = ns;
1682 	disk->queue = ns->queue;
1683 	disk->flags = GENHD_FL_EXT_DEVT;
1684 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
1685 	ns->disk = disk;
1686 
1687 	__nvme_revalidate_disk(disk, id);
1688 
1689 	mutex_lock(&ctrl->namespaces_mutex);
1690 	list_add_tail(&ns->list, &ctrl->namespaces);
1691 	mutex_unlock(&ctrl->namespaces_mutex);
1692 
1693 	kref_get(&ctrl->kref);
1694 
1695 	kfree(id);
1696 
1697 	device_add_disk(ctrl->device, ns->disk);
1698 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1699 					&nvme_ns_attr_group))
1700 		pr_warn("%s: failed to create sysfs group for identification\n",
1701 			ns->disk->disk_name);
1702 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
1703 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
1704 			ns->disk->disk_name);
1705 	return;
1706  out_free_id:
1707 	kfree(id);
1708  out_free_queue:
1709 	blk_cleanup_queue(ns->queue);
1710  out_release_instance:
1711 	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1712  out_free_ns:
1713 	kfree(ns);
1714 }
1715 
1716 static void nvme_ns_remove(struct nvme_ns *ns)
1717 {
1718 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1719 		return;
1720 
1721 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
1722 		if (blk_get_integrity(ns->disk))
1723 			blk_integrity_unregister(ns->disk);
1724 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1725 					&nvme_ns_attr_group);
1726 		if (ns->ndev)
1727 			nvme_nvm_unregister_sysfs(ns);
1728 		del_gendisk(ns->disk);
1729 		blk_mq_abort_requeue_list(ns->queue);
1730 		blk_cleanup_queue(ns->queue);
1731 	}
1732 
1733 	mutex_lock(&ns->ctrl->namespaces_mutex);
1734 	list_del_init(&ns->list);
1735 	mutex_unlock(&ns->ctrl->namespaces_mutex);
1736 
1737 	nvme_put_ns(ns);
1738 }
1739 
1740 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1741 {
1742 	struct nvme_ns *ns;
1743 
1744 	ns = nvme_find_get_ns(ctrl, nsid);
1745 	if (ns) {
1746 		if (ns->disk && revalidate_disk(ns->disk))
1747 			nvme_ns_remove(ns);
1748 		nvme_put_ns(ns);
1749 	} else
1750 		nvme_alloc_ns(ctrl, nsid);
1751 }
1752 
1753 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1754 					unsigned nsid)
1755 {
1756 	struct nvme_ns *ns, *next;
1757 
1758 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1759 		if (ns->ns_id > nsid)
1760 			nvme_ns_remove(ns);
1761 	}
1762 }
1763 
1764 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1765 {
1766 	struct nvme_ns *ns;
1767 	__le32 *ns_list;
1768 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1769 	int ret = 0;
1770 
1771 	ns_list = kzalloc(0x1000, GFP_KERNEL);
1772 	if (!ns_list)
1773 		return -ENOMEM;
1774 
1775 	for (i = 0; i < num_lists; i++) {
1776 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1777 		if (ret)
1778 			goto free;
1779 
1780 		for (j = 0; j < min(nn, 1024U); j++) {
1781 			nsid = le32_to_cpu(ns_list[j]);
1782 			if (!nsid)
1783 				goto out;
1784 
1785 			nvme_validate_ns(ctrl, nsid);
1786 
1787 			while (++prev < nsid) {
1788 				ns = nvme_find_get_ns(ctrl, prev);
1789 				if (ns) {
1790 					nvme_ns_remove(ns);
1791 					nvme_put_ns(ns);
1792 				}
1793 			}
1794 		}
1795 		nn -= j;
1796 	}
1797  out:
1798 	nvme_remove_invalid_namespaces(ctrl, prev);
1799  free:
1800 	kfree(ns_list);
1801 	return ret;
1802 }
1803 
1804 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1805 {
1806 	unsigned i;
1807 
1808 	for (i = 1; i <= nn; i++)
1809 		nvme_validate_ns(ctrl, i);
1810 
1811 	nvme_remove_invalid_namespaces(ctrl, nn);
1812 }
1813 
1814 static void nvme_scan_work(struct work_struct *work)
1815 {
1816 	struct nvme_ctrl *ctrl =
1817 		container_of(work, struct nvme_ctrl, scan_work);
1818 	struct nvme_id_ctrl *id;
1819 	unsigned nn;
1820 
1821 	if (ctrl->state != NVME_CTRL_LIVE)
1822 		return;
1823 
1824 	if (nvme_identify_ctrl(ctrl, &id))
1825 		return;
1826 
1827 	nn = le32_to_cpu(id->nn);
1828 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1829 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1830 		if (!nvme_scan_ns_list(ctrl, nn))
1831 			goto done;
1832 	}
1833 	nvme_scan_ns_sequential(ctrl, nn);
1834  done:
1835 	mutex_lock(&ctrl->namespaces_mutex);
1836 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1837 	mutex_unlock(&ctrl->namespaces_mutex);
1838 	kfree(id);
1839 }
1840 
1841 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1842 {
1843 	/*
1844 	 * Do not queue new scan work when a controller is reset during
1845 	 * removal.
1846 	 */
1847 	if (ctrl->state == NVME_CTRL_LIVE)
1848 		schedule_work(&ctrl->scan_work);
1849 }
1850 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1851 
1852 /*
1853  * This function iterates the namespace list unlocked to allow recovery from
1854  * controller failure. It is up to the caller to ensure the namespace list is
1855  * not modified by scan work while this function is executing.
1856  */
1857 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1858 {
1859 	struct nvme_ns *ns, *next;
1860 
1861 	/*
1862 	 * The dead states indicates the controller was not gracefully
1863 	 * disconnected. In that case, we won't be able to flush any data while
1864 	 * removing the namespaces' disks; fail all the queues now to avoid
1865 	 * potentially having to clean up the failed sync later.
1866 	 */
1867 	if (ctrl->state == NVME_CTRL_DEAD)
1868 		nvme_kill_queues(ctrl);
1869 
1870 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1871 		nvme_ns_remove(ns);
1872 }
1873 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1874 
1875 static void nvme_async_event_work(struct work_struct *work)
1876 {
1877 	struct nvme_ctrl *ctrl =
1878 		container_of(work, struct nvme_ctrl, async_event_work);
1879 
1880 	spin_lock_irq(&ctrl->lock);
1881 	while (ctrl->event_limit > 0) {
1882 		int aer_idx = --ctrl->event_limit;
1883 
1884 		spin_unlock_irq(&ctrl->lock);
1885 		ctrl->ops->submit_async_event(ctrl, aer_idx);
1886 		spin_lock_irq(&ctrl->lock);
1887 	}
1888 	spin_unlock_irq(&ctrl->lock);
1889 }
1890 
1891 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
1892 		union nvme_result *res)
1893 {
1894 	u32 result = le32_to_cpu(res->u32);
1895 	bool done = true;
1896 
1897 	switch (le16_to_cpu(status) >> 1) {
1898 	case NVME_SC_SUCCESS:
1899 		done = false;
1900 		/*FALLTHRU*/
1901 	case NVME_SC_ABORT_REQ:
1902 		++ctrl->event_limit;
1903 		schedule_work(&ctrl->async_event_work);
1904 		break;
1905 	default:
1906 		break;
1907 	}
1908 
1909 	if (done)
1910 		return;
1911 
1912 	switch (result & 0xff07) {
1913 	case NVME_AER_NOTICE_NS_CHANGED:
1914 		dev_info(ctrl->device, "rescanning\n");
1915 		nvme_queue_scan(ctrl);
1916 		break;
1917 	default:
1918 		dev_warn(ctrl->device, "async event result %08x\n", result);
1919 	}
1920 }
1921 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1922 
1923 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1924 {
1925 	ctrl->event_limit = NVME_NR_AERS;
1926 	schedule_work(&ctrl->async_event_work);
1927 }
1928 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1929 
1930 static DEFINE_IDA(nvme_instance_ida);
1931 
1932 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1933 {
1934 	int instance, error;
1935 
1936 	do {
1937 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1938 			return -ENODEV;
1939 
1940 		spin_lock(&dev_list_lock);
1941 		error = ida_get_new(&nvme_instance_ida, &instance);
1942 		spin_unlock(&dev_list_lock);
1943 	} while (error == -EAGAIN);
1944 
1945 	if (error)
1946 		return -ENODEV;
1947 
1948 	ctrl->instance = instance;
1949 	return 0;
1950 }
1951 
1952 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1953 {
1954 	spin_lock(&dev_list_lock);
1955 	ida_remove(&nvme_instance_ida, ctrl->instance);
1956 	spin_unlock(&dev_list_lock);
1957 }
1958 
1959 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1960 {
1961 	flush_work(&ctrl->async_event_work);
1962 	flush_work(&ctrl->scan_work);
1963 	nvme_remove_namespaces(ctrl);
1964 
1965 	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1966 
1967 	spin_lock(&dev_list_lock);
1968 	list_del(&ctrl->node);
1969 	spin_unlock(&dev_list_lock);
1970 }
1971 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1972 
1973 static void nvme_free_ctrl(struct kref *kref)
1974 {
1975 	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1976 
1977 	put_device(ctrl->device);
1978 	nvme_release_instance(ctrl);
1979 	ida_destroy(&ctrl->ns_ida);
1980 
1981 	ctrl->ops->free_ctrl(ctrl);
1982 }
1983 
1984 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1985 {
1986 	kref_put(&ctrl->kref, nvme_free_ctrl);
1987 }
1988 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1989 
1990 /*
1991  * Initialize a NVMe controller structures.  This needs to be called during
1992  * earliest initialization so that we have the initialized structured around
1993  * during probing.
1994  */
1995 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1996 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
1997 {
1998 	int ret;
1999 
2000 	ctrl->state = NVME_CTRL_NEW;
2001 	spin_lock_init(&ctrl->lock);
2002 	INIT_LIST_HEAD(&ctrl->namespaces);
2003 	mutex_init(&ctrl->namespaces_mutex);
2004 	kref_init(&ctrl->kref);
2005 	ctrl->dev = dev;
2006 	ctrl->ops = ops;
2007 	ctrl->quirks = quirks;
2008 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2009 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2010 
2011 	ret = nvme_set_instance(ctrl);
2012 	if (ret)
2013 		goto out;
2014 
2015 	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2016 				MKDEV(nvme_char_major, ctrl->instance),
2017 				ctrl, nvme_dev_attr_groups,
2018 				"nvme%d", ctrl->instance);
2019 	if (IS_ERR(ctrl->device)) {
2020 		ret = PTR_ERR(ctrl->device);
2021 		goto out_release_instance;
2022 	}
2023 	get_device(ctrl->device);
2024 	ida_init(&ctrl->ns_ida);
2025 
2026 	spin_lock(&dev_list_lock);
2027 	list_add_tail(&ctrl->node, &nvme_ctrl_list);
2028 	spin_unlock(&dev_list_lock);
2029 
2030 	return 0;
2031 out_release_instance:
2032 	nvme_release_instance(ctrl);
2033 out:
2034 	return ret;
2035 }
2036 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2037 
2038 /**
2039  * nvme_kill_queues(): Ends all namespace queues
2040  * @ctrl: the dead controller that needs to end
2041  *
2042  * Call this function when the driver determines it is unable to get the
2043  * controller in a state capable of servicing IO.
2044  */
2045 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2046 {
2047 	struct nvme_ns *ns;
2048 
2049 	mutex_lock(&ctrl->namespaces_mutex);
2050 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2051 		/*
2052 		 * Revalidating a dead namespace sets capacity to 0. This will
2053 		 * end buffered writers dirtying pages that can't be synced.
2054 		 */
2055 		if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2056 			revalidate_disk(ns->disk);
2057 
2058 		blk_set_queue_dying(ns->queue);
2059 		blk_mq_abort_requeue_list(ns->queue);
2060 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2061 	}
2062 	mutex_unlock(&ctrl->namespaces_mutex);
2063 }
2064 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2065 
2066 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2067 {
2068 	struct nvme_ns *ns;
2069 
2070 	mutex_lock(&ctrl->namespaces_mutex);
2071 	list_for_each_entry(ns, &ctrl->namespaces, list)
2072 		blk_mq_quiesce_queue(ns->queue);
2073 	mutex_unlock(&ctrl->namespaces_mutex);
2074 }
2075 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2076 
2077 void nvme_start_queues(struct nvme_ctrl *ctrl)
2078 {
2079 	struct nvme_ns *ns;
2080 
2081 	mutex_lock(&ctrl->namespaces_mutex);
2082 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2083 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2084 		blk_mq_kick_requeue_list(ns->queue);
2085 	}
2086 	mutex_unlock(&ctrl->namespaces_mutex);
2087 }
2088 EXPORT_SYMBOL_GPL(nvme_start_queues);
2089 
2090 int __init nvme_core_init(void)
2091 {
2092 	int result;
2093 
2094 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2095 							&nvme_dev_fops);
2096 	if (result < 0)
2097 		return result;
2098 	else if (result > 0)
2099 		nvme_char_major = result;
2100 
2101 	nvme_class = class_create(THIS_MODULE, "nvme");
2102 	if (IS_ERR(nvme_class)) {
2103 		result = PTR_ERR(nvme_class);
2104 		goto unregister_chrdev;
2105 	}
2106 
2107 	return 0;
2108 
2109  unregister_chrdev:
2110 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2111 	return result;
2112 }
2113 
2114 void nvme_core_exit(void)
2115 {
2116 	class_destroy(nvme_class);
2117 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2118 }
2119 
2120 MODULE_LICENSE("GPL");
2121 MODULE_VERSION("1.0");
2122 module_init(nvme_core_init);
2123 module_exit(nvme_core_exit);
2124