1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include "nvme.h" 27 #include "fabrics.h" 28 #include <linux/nvme-auth.h> 29 30 #define CREATE_TRACE_POINTS 31 #include "trace.h" 32 33 #define NVME_MINORS (1U << MINORBITS) 34 35 struct nvme_ns_info { 36 struct nvme_ns_ids ids; 37 u32 nsid; 38 __le32 anagrpid; 39 bool is_shared; 40 bool is_readonly; 41 bool is_ready; 42 bool is_removed; 43 }; 44 45 unsigned int admin_timeout = 60; 46 module_param(admin_timeout, uint, 0644); 47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 48 EXPORT_SYMBOL_GPL(admin_timeout); 49 50 unsigned int nvme_io_timeout = 30; 51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 53 EXPORT_SYMBOL_GPL(nvme_io_timeout); 54 55 static unsigned char shutdown_timeout = 5; 56 module_param(shutdown_timeout, byte, 0644); 57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 58 59 static u8 nvme_max_retries = 5; 60 module_param_named(max_retries, nvme_max_retries, byte, 0644); 61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 62 63 static unsigned long default_ps_max_latency_us = 100000; 64 module_param(default_ps_max_latency_us, ulong, 0644); 65 MODULE_PARM_DESC(default_ps_max_latency_us, 66 "max power saving latency for new devices; use PM QOS to change per device"); 67 68 static bool force_apst; 69 module_param(force_apst, bool, 0644); 70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 71 72 static unsigned long apst_primary_timeout_ms = 100; 73 module_param(apst_primary_timeout_ms, ulong, 0644); 74 MODULE_PARM_DESC(apst_primary_timeout_ms, 75 "primary APST timeout in ms"); 76 77 static unsigned long apst_secondary_timeout_ms = 2000; 78 module_param(apst_secondary_timeout_ms, ulong, 0644); 79 MODULE_PARM_DESC(apst_secondary_timeout_ms, 80 "secondary APST timeout in ms"); 81 82 static unsigned long apst_primary_latency_tol_us = 15000; 83 module_param(apst_primary_latency_tol_us, ulong, 0644); 84 MODULE_PARM_DESC(apst_primary_latency_tol_us, 85 "primary APST latency tolerance in us"); 86 87 static unsigned long apst_secondary_latency_tol_us = 100000; 88 module_param(apst_secondary_latency_tol_us, ulong, 0644); 89 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 90 "secondary APST latency tolerance in us"); 91 92 /* 93 * nvme_wq - hosts nvme related works that are not reset or delete 94 * nvme_reset_wq - hosts nvme reset works 95 * nvme_delete_wq - hosts nvme delete works 96 * 97 * nvme_wq will host works such as scan, aen handling, fw activation, 98 * keep-alive, periodic reconnects etc. nvme_reset_wq 99 * runs reset works which also flush works hosted on nvme_wq for 100 * serialization purposes. nvme_delete_wq host controller deletion 101 * works which flush reset works for serialization. 102 */ 103 struct workqueue_struct *nvme_wq; 104 EXPORT_SYMBOL_GPL(nvme_wq); 105 106 struct workqueue_struct *nvme_reset_wq; 107 EXPORT_SYMBOL_GPL(nvme_reset_wq); 108 109 struct workqueue_struct *nvme_delete_wq; 110 EXPORT_SYMBOL_GPL(nvme_delete_wq); 111 112 static LIST_HEAD(nvme_subsystems); 113 static DEFINE_MUTEX(nvme_subsystems_lock); 114 115 static DEFINE_IDA(nvme_instance_ida); 116 static dev_t nvme_ctrl_base_chr_devt; 117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 118 static const struct class nvme_class = { 119 .name = "nvme", 120 .dev_uevent = nvme_class_uevent, 121 }; 122 123 static const struct class nvme_subsys_class = { 124 .name = "nvme-subsystem", 125 }; 126 127 static DEFINE_IDA(nvme_ns_chr_minor_ida); 128 static dev_t nvme_ns_chr_devt; 129 static const struct class nvme_ns_chr_class = { 130 .name = "nvme-generic", 131 }; 132 133 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 135 unsigned nsid); 136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 137 struct nvme_command *cmd); 138 139 void nvme_queue_scan(struct nvme_ctrl *ctrl) 140 { 141 /* 142 * Only new queue scan work when admin and IO queues are both alive 143 */ 144 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 145 queue_work(nvme_wq, &ctrl->scan_work); 146 } 147 148 /* 149 * Use this function to proceed with scheduling reset_work for a controller 150 * that had previously been set to the resetting state. This is intended for 151 * code paths that can't be interrupted by other reset attempts. A hot removal 152 * may prevent this from succeeding. 153 */ 154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 155 { 156 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 157 return -EBUSY; 158 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 159 return -EBUSY; 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 163 164 static void nvme_failfast_work(struct work_struct *work) 165 { 166 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 167 struct nvme_ctrl, failfast_work); 168 169 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 170 return; 171 172 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 173 dev_info(ctrl->device, "failfast expired\n"); 174 nvme_kick_requeue_lists(ctrl); 175 } 176 177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 178 { 179 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 180 return; 181 182 schedule_delayed_work(&ctrl->failfast_work, 183 ctrl->opts->fast_io_fail_tmo * HZ); 184 } 185 186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 187 { 188 if (!ctrl->opts) 189 return; 190 191 cancel_delayed_work_sync(&ctrl->failfast_work); 192 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 193 } 194 195 196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 197 { 198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 199 return -EBUSY; 200 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 201 return -EBUSY; 202 return 0; 203 } 204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 205 206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 207 { 208 int ret; 209 210 ret = nvme_reset_ctrl(ctrl); 211 if (!ret) { 212 flush_work(&ctrl->reset_work); 213 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 214 ret = -ENETRESET; 215 } 216 217 return ret; 218 } 219 220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 221 { 222 dev_info(ctrl->device, 223 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 224 225 flush_work(&ctrl->reset_work); 226 nvme_stop_ctrl(ctrl); 227 nvme_remove_namespaces(ctrl); 228 ctrl->ops->delete_ctrl(ctrl); 229 nvme_uninit_ctrl(ctrl); 230 } 231 232 static void nvme_delete_ctrl_work(struct work_struct *work) 233 { 234 struct nvme_ctrl *ctrl = 235 container_of(work, struct nvme_ctrl, delete_work); 236 237 nvme_do_delete_ctrl(ctrl); 238 } 239 240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 241 { 242 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 243 return -EBUSY; 244 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 245 return -EBUSY; 246 return 0; 247 } 248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 249 250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 251 { 252 /* 253 * Keep a reference until nvme_do_delete_ctrl() complete, 254 * since ->delete_ctrl can free the controller. 255 */ 256 nvme_get_ctrl(ctrl); 257 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 258 nvme_do_delete_ctrl(ctrl); 259 nvme_put_ctrl(ctrl); 260 } 261 262 static blk_status_t nvme_error_status(u16 status) 263 { 264 switch (status & 0x7ff) { 265 case NVME_SC_SUCCESS: 266 return BLK_STS_OK; 267 case NVME_SC_CAP_EXCEEDED: 268 return BLK_STS_NOSPC; 269 case NVME_SC_LBA_RANGE: 270 case NVME_SC_CMD_INTERRUPTED: 271 case NVME_SC_NS_NOT_READY: 272 return BLK_STS_TARGET; 273 case NVME_SC_BAD_ATTRIBUTES: 274 case NVME_SC_ONCS_NOT_SUPPORTED: 275 case NVME_SC_INVALID_OPCODE: 276 case NVME_SC_INVALID_FIELD: 277 case NVME_SC_INVALID_NS: 278 return BLK_STS_NOTSUPP; 279 case NVME_SC_WRITE_FAULT: 280 case NVME_SC_READ_ERROR: 281 case NVME_SC_UNWRITTEN_BLOCK: 282 case NVME_SC_ACCESS_DENIED: 283 case NVME_SC_READ_ONLY: 284 case NVME_SC_COMPARE_FAILED: 285 return BLK_STS_MEDIUM; 286 case NVME_SC_GUARD_CHECK: 287 case NVME_SC_APPTAG_CHECK: 288 case NVME_SC_REFTAG_CHECK: 289 case NVME_SC_INVALID_PI: 290 return BLK_STS_PROTECTION; 291 case NVME_SC_RESERVATION_CONFLICT: 292 return BLK_STS_RESV_CONFLICT; 293 case NVME_SC_HOST_PATH_ERROR: 294 return BLK_STS_TRANSPORT; 295 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 296 return BLK_STS_ZONE_ACTIVE_RESOURCE; 297 case NVME_SC_ZONE_TOO_MANY_OPEN: 298 return BLK_STS_ZONE_OPEN_RESOURCE; 299 default: 300 return BLK_STS_IOERR; 301 } 302 } 303 304 static void nvme_retry_req(struct request *req) 305 { 306 unsigned long delay = 0; 307 u16 crd; 308 309 /* The mask and shift result must be <= 3 */ 310 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 311 if (crd) 312 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 313 314 nvme_req(req)->retries++; 315 blk_mq_requeue_request(req, false); 316 blk_mq_delay_kick_requeue_list(req->q, delay); 317 } 318 319 static void nvme_log_error(struct request *req) 320 { 321 struct nvme_ns *ns = req->q->queuedata; 322 struct nvme_request *nr = nvme_req(req); 323 324 if (ns) { 325 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 326 ns->disk ? ns->disk->disk_name : "?", 327 nvme_get_opcode_str(nr->cmd->common.opcode), 328 nr->cmd->common.opcode, 329 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 330 blk_rq_bytes(req) >> ns->head->lba_shift, 331 nvme_get_error_status_str(nr->status), 332 nr->status >> 8 & 7, /* Status Code Type */ 333 nr->status & 0xff, /* Status Code */ 334 nr->status & NVME_SC_MORE ? "MORE " : "", 335 nr->status & NVME_SC_DNR ? "DNR " : ""); 336 return; 337 } 338 339 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 340 dev_name(nr->ctrl->device), 341 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 342 nr->cmd->common.opcode, 343 nvme_get_error_status_str(nr->status), 344 nr->status >> 8 & 7, /* Status Code Type */ 345 nr->status & 0xff, /* Status Code */ 346 nr->status & NVME_SC_MORE ? "MORE " : "", 347 nr->status & NVME_SC_DNR ? "DNR " : ""); 348 } 349 350 static void nvme_log_err_passthru(struct request *req) 351 { 352 struct nvme_ns *ns = req->q->queuedata; 353 struct nvme_request *nr = nvme_req(req); 354 355 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 356 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 357 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 358 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 359 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 360 nr->cmd->common.opcode, 361 nvme_get_error_status_str(nr->status), 362 nr->status >> 8 & 7, /* Status Code Type */ 363 nr->status & 0xff, /* Status Code */ 364 nr->status & NVME_SC_MORE ? "MORE " : "", 365 nr->status & NVME_SC_DNR ? "DNR " : "", 366 nr->cmd->common.cdw10, 367 nr->cmd->common.cdw11, 368 nr->cmd->common.cdw12, 369 nr->cmd->common.cdw13, 370 nr->cmd->common.cdw14, 371 nr->cmd->common.cdw14); 372 } 373 374 enum nvme_disposition { 375 COMPLETE, 376 RETRY, 377 FAILOVER, 378 AUTHENTICATE, 379 }; 380 381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 382 { 383 if (likely(nvme_req(req)->status == 0)) 384 return COMPLETE; 385 386 if (blk_noretry_request(req) || 387 (nvme_req(req)->status & NVME_SC_DNR) || 388 nvme_req(req)->retries >= nvme_max_retries) 389 return COMPLETE; 390 391 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) 392 return AUTHENTICATE; 393 394 if (req->cmd_flags & REQ_NVME_MPATH) { 395 if (nvme_is_path_error(nvme_req(req)->status) || 396 blk_queue_dying(req->q)) 397 return FAILOVER; 398 } else { 399 if (blk_queue_dying(req->q)) 400 return COMPLETE; 401 } 402 403 return RETRY; 404 } 405 406 static inline void nvme_end_req_zoned(struct request *req) 407 { 408 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 409 req_op(req) == REQ_OP_ZONE_APPEND) { 410 struct nvme_ns *ns = req->q->queuedata; 411 412 req->__sector = nvme_lba_to_sect(ns->head, 413 le64_to_cpu(nvme_req(req)->result.u64)); 414 } 415 } 416 417 static inline void __nvme_end_req(struct request *req) 418 { 419 nvme_end_req_zoned(req); 420 nvme_trace_bio_complete(req); 421 if (req->cmd_flags & REQ_NVME_MPATH) 422 nvme_mpath_end_request(req); 423 } 424 425 void nvme_end_req(struct request *req) 426 { 427 blk_status_t status = nvme_error_status(nvme_req(req)->status); 428 429 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 430 if (blk_rq_is_passthrough(req)) 431 nvme_log_err_passthru(req); 432 else 433 nvme_log_error(req); 434 } 435 __nvme_end_req(req); 436 blk_mq_end_request(req, status); 437 } 438 439 void nvme_complete_rq(struct request *req) 440 { 441 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 442 443 trace_nvme_complete_rq(req); 444 nvme_cleanup_cmd(req); 445 446 /* 447 * Completions of long-running commands should not be able to 448 * defer sending of periodic keep alives, since the controller 449 * may have completed processing such commands a long time ago 450 * (arbitrarily close to command submission time). 451 * req->deadline - req->timeout is the command submission time 452 * in jiffies. 453 */ 454 if (ctrl->kas && 455 req->deadline - req->timeout >= ctrl->ka_last_check_time) 456 ctrl->comp_seen = true; 457 458 switch (nvme_decide_disposition(req)) { 459 case COMPLETE: 460 nvme_end_req(req); 461 return; 462 case RETRY: 463 nvme_retry_req(req); 464 return; 465 case FAILOVER: 466 nvme_failover_req(req); 467 return; 468 case AUTHENTICATE: 469 #ifdef CONFIG_NVME_HOST_AUTH 470 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 471 nvme_retry_req(req); 472 #else 473 nvme_end_req(req); 474 #endif 475 return; 476 } 477 } 478 EXPORT_SYMBOL_GPL(nvme_complete_rq); 479 480 void nvme_complete_batch_req(struct request *req) 481 { 482 trace_nvme_complete_rq(req); 483 nvme_cleanup_cmd(req); 484 __nvme_end_req(req); 485 } 486 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 487 488 /* 489 * Called to unwind from ->queue_rq on a failed command submission so that the 490 * multipathing code gets called to potentially failover to another path. 491 * The caller needs to unwind all transport specific resource allocations and 492 * must return propagate the return value. 493 */ 494 blk_status_t nvme_host_path_error(struct request *req) 495 { 496 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 497 blk_mq_set_request_complete(req); 498 nvme_complete_rq(req); 499 return BLK_STS_OK; 500 } 501 EXPORT_SYMBOL_GPL(nvme_host_path_error); 502 503 bool nvme_cancel_request(struct request *req, void *data) 504 { 505 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 506 "Cancelling I/O %d", req->tag); 507 508 /* don't abort one completed or idle request */ 509 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 510 return true; 511 512 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 513 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 514 blk_mq_complete_request(req); 515 return true; 516 } 517 EXPORT_SYMBOL_GPL(nvme_cancel_request); 518 519 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 520 { 521 if (ctrl->tagset) { 522 blk_mq_tagset_busy_iter(ctrl->tagset, 523 nvme_cancel_request, ctrl); 524 blk_mq_tagset_wait_completed_request(ctrl->tagset); 525 } 526 } 527 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 528 529 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 530 { 531 if (ctrl->admin_tagset) { 532 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 533 nvme_cancel_request, ctrl); 534 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 535 } 536 } 537 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 538 539 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 540 enum nvme_ctrl_state new_state) 541 { 542 enum nvme_ctrl_state old_state; 543 unsigned long flags; 544 bool changed = false; 545 546 spin_lock_irqsave(&ctrl->lock, flags); 547 548 old_state = nvme_ctrl_state(ctrl); 549 switch (new_state) { 550 case NVME_CTRL_LIVE: 551 switch (old_state) { 552 case NVME_CTRL_NEW: 553 case NVME_CTRL_RESETTING: 554 case NVME_CTRL_CONNECTING: 555 changed = true; 556 fallthrough; 557 default: 558 break; 559 } 560 break; 561 case NVME_CTRL_RESETTING: 562 switch (old_state) { 563 case NVME_CTRL_NEW: 564 case NVME_CTRL_LIVE: 565 changed = true; 566 fallthrough; 567 default: 568 break; 569 } 570 break; 571 case NVME_CTRL_CONNECTING: 572 switch (old_state) { 573 case NVME_CTRL_NEW: 574 case NVME_CTRL_RESETTING: 575 changed = true; 576 fallthrough; 577 default: 578 break; 579 } 580 break; 581 case NVME_CTRL_DELETING: 582 switch (old_state) { 583 case NVME_CTRL_LIVE: 584 case NVME_CTRL_RESETTING: 585 case NVME_CTRL_CONNECTING: 586 changed = true; 587 fallthrough; 588 default: 589 break; 590 } 591 break; 592 case NVME_CTRL_DELETING_NOIO: 593 switch (old_state) { 594 case NVME_CTRL_DELETING: 595 case NVME_CTRL_DEAD: 596 changed = true; 597 fallthrough; 598 default: 599 break; 600 } 601 break; 602 case NVME_CTRL_DEAD: 603 switch (old_state) { 604 case NVME_CTRL_DELETING: 605 changed = true; 606 fallthrough; 607 default: 608 break; 609 } 610 break; 611 default: 612 break; 613 } 614 615 if (changed) { 616 WRITE_ONCE(ctrl->state, new_state); 617 wake_up_all(&ctrl->state_wq); 618 } 619 620 spin_unlock_irqrestore(&ctrl->lock, flags); 621 if (!changed) 622 return false; 623 624 if (new_state == NVME_CTRL_LIVE) { 625 if (old_state == NVME_CTRL_CONNECTING) 626 nvme_stop_failfast_work(ctrl); 627 nvme_kick_requeue_lists(ctrl); 628 } else if (new_state == NVME_CTRL_CONNECTING && 629 old_state == NVME_CTRL_RESETTING) { 630 nvme_start_failfast_work(ctrl); 631 } 632 return changed; 633 } 634 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 635 636 /* 637 * Waits for the controller state to be resetting, or returns false if it is 638 * not possible to ever transition to that state. 639 */ 640 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 641 { 642 wait_event(ctrl->state_wq, 643 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 644 nvme_state_terminal(ctrl)); 645 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 646 } 647 EXPORT_SYMBOL_GPL(nvme_wait_reset); 648 649 static void nvme_free_ns_head(struct kref *ref) 650 { 651 struct nvme_ns_head *head = 652 container_of(ref, struct nvme_ns_head, ref); 653 654 nvme_mpath_remove_disk(head); 655 ida_free(&head->subsys->ns_ida, head->instance); 656 cleanup_srcu_struct(&head->srcu); 657 nvme_put_subsystem(head->subsys); 658 kfree(head); 659 } 660 661 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 662 { 663 return kref_get_unless_zero(&head->ref); 664 } 665 666 void nvme_put_ns_head(struct nvme_ns_head *head) 667 { 668 kref_put(&head->ref, nvme_free_ns_head); 669 } 670 671 static void nvme_free_ns(struct kref *kref) 672 { 673 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 674 675 put_disk(ns->disk); 676 nvme_put_ns_head(ns->head); 677 nvme_put_ctrl(ns->ctrl); 678 kfree(ns); 679 } 680 681 bool nvme_get_ns(struct nvme_ns *ns) 682 { 683 return kref_get_unless_zero(&ns->kref); 684 } 685 686 void nvme_put_ns(struct nvme_ns *ns) 687 { 688 kref_put(&ns->kref, nvme_free_ns); 689 } 690 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 691 692 static inline void nvme_clear_nvme_request(struct request *req) 693 { 694 nvme_req(req)->status = 0; 695 nvme_req(req)->retries = 0; 696 nvme_req(req)->flags = 0; 697 req->rq_flags |= RQF_DONTPREP; 698 } 699 700 /* initialize a passthrough request */ 701 void nvme_init_request(struct request *req, struct nvme_command *cmd) 702 { 703 struct nvme_request *nr = nvme_req(req); 704 bool logging_enabled; 705 706 if (req->q->queuedata) { 707 struct nvme_ns *ns = req->q->disk->private_data; 708 709 logging_enabled = ns->head->passthru_err_log_enabled; 710 req->timeout = NVME_IO_TIMEOUT; 711 } else { /* no queuedata implies admin queue */ 712 logging_enabled = nr->ctrl->passthru_err_log_enabled; 713 req->timeout = NVME_ADMIN_TIMEOUT; 714 } 715 716 if (!logging_enabled) 717 req->rq_flags |= RQF_QUIET; 718 719 /* passthru commands should let the driver set the SGL flags */ 720 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 721 722 req->cmd_flags |= REQ_FAILFAST_DRIVER; 723 if (req->mq_hctx->type == HCTX_TYPE_POLL) 724 req->cmd_flags |= REQ_POLLED; 725 nvme_clear_nvme_request(req); 726 memcpy(nr->cmd, cmd, sizeof(*cmd)); 727 } 728 EXPORT_SYMBOL_GPL(nvme_init_request); 729 730 /* 731 * For something we're not in a state to send to the device the default action 732 * is to busy it and retry it after the controller state is recovered. However, 733 * if the controller is deleting or if anything is marked for failfast or 734 * nvme multipath it is immediately failed. 735 * 736 * Note: commands used to initialize the controller will be marked for failfast. 737 * Note: nvme cli/ioctl commands are marked for failfast. 738 */ 739 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 740 struct request *rq) 741 { 742 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 743 744 if (state != NVME_CTRL_DELETING_NOIO && 745 state != NVME_CTRL_DELETING && 746 state != NVME_CTRL_DEAD && 747 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 748 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 749 return BLK_STS_RESOURCE; 750 return nvme_host_path_error(rq); 751 } 752 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 753 754 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 755 bool queue_live, enum nvme_ctrl_state state) 756 { 757 struct nvme_request *req = nvme_req(rq); 758 759 /* 760 * currently we have a problem sending passthru commands 761 * on the admin_q if the controller is not LIVE because we can't 762 * make sure that they are going out after the admin connect, 763 * controller enable and/or other commands in the initialization 764 * sequence. until the controller will be LIVE, fail with 765 * BLK_STS_RESOURCE so that they will be rescheduled. 766 */ 767 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 768 return false; 769 770 if (ctrl->ops->flags & NVME_F_FABRICS) { 771 /* 772 * Only allow commands on a live queue, except for the connect 773 * command, which is require to set the queue live in the 774 * appropinquate states. 775 */ 776 switch (state) { 777 case NVME_CTRL_CONNECTING: 778 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 779 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 780 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 781 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 782 return true; 783 break; 784 default: 785 break; 786 case NVME_CTRL_DEAD: 787 return false; 788 } 789 } 790 791 return queue_live; 792 } 793 EXPORT_SYMBOL_GPL(__nvme_check_ready); 794 795 static inline void nvme_setup_flush(struct nvme_ns *ns, 796 struct nvme_command *cmnd) 797 { 798 memset(cmnd, 0, sizeof(*cmnd)); 799 cmnd->common.opcode = nvme_cmd_flush; 800 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 801 } 802 803 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 804 struct nvme_command *cmnd) 805 { 806 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 807 struct nvme_dsm_range *range; 808 struct bio *bio; 809 810 /* 811 * Some devices do not consider the DSM 'Number of Ranges' field when 812 * determining how much data to DMA. Always allocate memory for maximum 813 * number of segments to prevent device reading beyond end of buffer. 814 */ 815 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 816 817 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 818 if (!range) { 819 /* 820 * If we fail allocation our range, fallback to the controller 821 * discard page. If that's also busy, it's safe to return 822 * busy, as we know we can make progress once that's freed. 823 */ 824 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 825 return BLK_STS_RESOURCE; 826 827 range = page_address(ns->ctrl->discard_page); 828 } 829 830 if (queue_max_discard_segments(req->q) == 1) { 831 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 832 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 833 834 range[0].cattr = cpu_to_le32(0); 835 range[0].nlb = cpu_to_le32(nlb); 836 range[0].slba = cpu_to_le64(slba); 837 n = 1; 838 } else { 839 __rq_for_each_bio(bio, req) { 840 u64 slba = nvme_sect_to_lba(ns->head, 841 bio->bi_iter.bi_sector); 842 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 843 844 if (n < segments) { 845 range[n].cattr = cpu_to_le32(0); 846 range[n].nlb = cpu_to_le32(nlb); 847 range[n].slba = cpu_to_le64(slba); 848 } 849 n++; 850 } 851 } 852 853 if (WARN_ON_ONCE(n != segments)) { 854 if (virt_to_page(range) == ns->ctrl->discard_page) 855 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 856 else 857 kfree(range); 858 return BLK_STS_IOERR; 859 } 860 861 memset(cmnd, 0, sizeof(*cmnd)); 862 cmnd->dsm.opcode = nvme_cmd_dsm; 863 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 864 cmnd->dsm.nr = cpu_to_le32(segments - 1); 865 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 866 867 bvec_set_virt(&req->special_vec, range, alloc_size); 868 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 869 870 return BLK_STS_OK; 871 } 872 873 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 874 struct request *req) 875 { 876 u32 upper, lower; 877 u64 ref48; 878 879 /* both rw and write zeroes share the same reftag format */ 880 switch (ns->head->guard_type) { 881 case NVME_NVM_NS_16B_GUARD: 882 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 883 break; 884 case NVME_NVM_NS_64B_GUARD: 885 ref48 = ext_pi_ref_tag(req); 886 lower = lower_32_bits(ref48); 887 upper = upper_32_bits(ref48); 888 889 cmnd->rw.reftag = cpu_to_le32(lower); 890 cmnd->rw.cdw3 = cpu_to_le32(upper); 891 break; 892 default: 893 break; 894 } 895 } 896 897 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 898 struct request *req, struct nvme_command *cmnd) 899 { 900 memset(cmnd, 0, sizeof(*cmnd)); 901 902 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 903 return nvme_setup_discard(ns, req, cmnd); 904 905 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 906 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 907 cmnd->write_zeroes.slba = 908 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 909 cmnd->write_zeroes.length = 910 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 911 912 if (!(req->cmd_flags & REQ_NOUNMAP) && 913 (ns->head->features & NVME_NS_DEAC)) 914 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 915 916 if (nvme_ns_has_pi(ns->head)) { 917 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 918 919 switch (ns->head->pi_type) { 920 case NVME_NS_DPS_PI_TYPE1: 921 case NVME_NS_DPS_PI_TYPE2: 922 nvme_set_ref_tag(ns, cmnd, req); 923 break; 924 } 925 } 926 927 return BLK_STS_OK; 928 } 929 930 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 931 struct request *req, struct nvme_command *cmnd, 932 enum nvme_opcode op) 933 { 934 u16 control = 0; 935 u32 dsmgmt = 0; 936 937 if (req->cmd_flags & REQ_FUA) 938 control |= NVME_RW_FUA; 939 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 940 control |= NVME_RW_LR; 941 942 if (req->cmd_flags & REQ_RAHEAD) 943 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 944 945 cmnd->rw.opcode = op; 946 cmnd->rw.flags = 0; 947 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 948 cmnd->rw.cdw2 = 0; 949 cmnd->rw.cdw3 = 0; 950 cmnd->rw.metadata = 0; 951 cmnd->rw.slba = 952 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 953 cmnd->rw.length = 954 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 955 cmnd->rw.reftag = 0; 956 cmnd->rw.apptag = 0; 957 cmnd->rw.appmask = 0; 958 959 if (ns->head->ms) { 960 /* 961 * If formated with metadata, the block layer always provides a 962 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 963 * we enable the PRACT bit for protection information or set the 964 * namespace capacity to zero to prevent any I/O. 965 */ 966 if (!blk_integrity_rq(req)) { 967 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 968 return BLK_STS_NOTSUPP; 969 control |= NVME_RW_PRINFO_PRACT; 970 } 971 972 switch (ns->head->pi_type) { 973 case NVME_NS_DPS_PI_TYPE3: 974 control |= NVME_RW_PRINFO_PRCHK_GUARD; 975 break; 976 case NVME_NS_DPS_PI_TYPE1: 977 case NVME_NS_DPS_PI_TYPE2: 978 control |= NVME_RW_PRINFO_PRCHK_GUARD | 979 NVME_RW_PRINFO_PRCHK_REF; 980 if (op == nvme_cmd_zone_append) 981 control |= NVME_RW_APPEND_PIREMAP; 982 nvme_set_ref_tag(ns, cmnd, req); 983 break; 984 } 985 } 986 987 cmnd->rw.control = cpu_to_le16(control); 988 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 989 return 0; 990 } 991 992 void nvme_cleanup_cmd(struct request *req) 993 { 994 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 995 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 996 997 if (req->special_vec.bv_page == ctrl->discard_page) 998 clear_bit_unlock(0, &ctrl->discard_page_busy); 999 else 1000 kfree(bvec_virt(&req->special_vec)); 1001 } 1002 } 1003 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1004 1005 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1006 { 1007 struct nvme_command *cmd = nvme_req(req)->cmd; 1008 blk_status_t ret = BLK_STS_OK; 1009 1010 if (!(req->rq_flags & RQF_DONTPREP)) 1011 nvme_clear_nvme_request(req); 1012 1013 switch (req_op(req)) { 1014 case REQ_OP_DRV_IN: 1015 case REQ_OP_DRV_OUT: 1016 /* these are setup prior to execution in nvme_init_request() */ 1017 break; 1018 case REQ_OP_FLUSH: 1019 nvme_setup_flush(ns, cmd); 1020 break; 1021 case REQ_OP_ZONE_RESET_ALL: 1022 case REQ_OP_ZONE_RESET: 1023 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1024 break; 1025 case REQ_OP_ZONE_OPEN: 1026 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1027 break; 1028 case REQ_OP_ZONE_CLOSE: 1029 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1030 break; 1031 case REQ_OP_ZONE_FINISH: 1032 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1033 break; 1034 case REQ_OP_WRITE_ZEROES: 1035 ret = nvme_setup_write_zeroes(ns, req, cmd); 1036 break; 1037 case REQ_OP_DISCARD: 1038 ret = nvme_setup_discard(ns, req, cmd); 1039 break; 1040 case REQ_OP_READ: 1041 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1042 break; 1043 case REQ_OP_WRITE: 1044 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1045 break; 1046 case REQ_OP_ZONE_APPEND: 1047 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1048 break; 1049 default: 1050 WARN_ON_ONCE(1); 1051 return BLK_STS_IOERR; 1052 } 1053 1054 cmd->common.command_id = nvme_cid(req); 1055 trace_nvme_setup_cmd(req, cmd); 1056 return ret; 1057 } 1058 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1059 1060 /* 1061 * Return values: 1062 * 0: success 1063 * >0: nvme controller's cqe status response 1064 * <0: kernel error in lieu of controller response 1065 */ 1066 int nvme_execute_rq(struct request *rq, bool at_head) 1067 { 1068 blk_status_t status; 1069 1070 status = blk_execute_rq(rq, at_head); 1071 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1072 return -EINTR; 1073 if (nvme_req(rq)->status) 1074 return nvme_req(rq)->status; 1075 return blk_status_to_errno(status); 1076 } 1077 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1078 1079 /* 1080 * Returns 0 on success. If the result is negative, it's a Linux error code; 1081 * if the result is positive, it's an NVM Express status code 1082 */ 1083 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1084 union nvme_result *result, void *buffer, unsigned bufflen, 1085 int qid, nvme_submit_flags_t flags) 1086 { 1087 struct request *req; 1088 int ret; 1089 blk_mq_req_flags_t blk_flags = 0; 1090 1091 if (flags & NVME_SUBMIT_NOWAIT) 1092 blk_flags |= BLK_MQ_REQ_NOWAIT; 1093 if (flags & NVME_SUBMIT_RESERVED) 1094 blk_flags |= BLK_MQ_REQ_RESERVED; 1095 if (qid == NVME_QID_ANY) 1096 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1097 else 1098 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1099 qid - 1); 1100 1101 if (IS_ERR(req)) 1102 return PTR_ERR(req); 1103 nvme_init_request(req, cmd); 1104 if (flags & NVME_SUBMIT_RETRY) 1105 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1106 1107 if (buffer && bufflen) { 1108 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1109 if (ret) 1110 goto out; 1111 } 1112 1113 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1114 if (result && ret >= 0) 1115 *result = nvme_req(req)->result; 1116 out: 1117 blk_mq_free_request(req); 1118 return ret; 1119 } 1120 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1121 1122 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1123 void *buffer, unsigned bufflen) 1124 { 1125 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1126 NVME_QID_ANY, 0); 1127 } 1128 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1129 1130 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1131 { 1132 u32 effects = 0; 1133 1134 if (ns) { 1135 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1136 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1137 dev_warn_once(ctrl->device, 1138 "IO command:%02x has unusual effects:%08x\n", 1139 opcode, effects); 1140 1141 /* 1142 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1143 * which would deadlock when done on an I/O command. Note that 1144 * We already warn about an unusual effect above. 1145 */ 1146 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1147 } else { 1148 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1149 1150 /* Ignore execution restrictions if any relaxation bits are set */ 1151 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1152 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1153 } 1154 1155 return effects; 1156 } 1157 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1158 1159 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1160 { 1161 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1162 1163 /* 1164 * For simplicity, IO to all namespaces is quiesced even if the command 1165 * effects say only one namespace is affected. 1166 */ 1167 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1168 mutex_lock(&ctrl->scan_lock); 1169 mutex_lock(&ctrl->subsys->lock); 1170 nvme_mpath_start_freeze(ctrl->subsys); 1171 nvme_mpath_wait_freeze(ctrl->subsys); 1172 nvme_start_freeze(ctrl); 1173 nvme_wait_freeze(ctrl); 1174 } 1175 return effects; 1176 } 1177 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1178 1179 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1180 struct nvme_command *cmd, int status) 1181 { 1182 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1183 nvme_unfreeze(ctrl); 1184 nvme_mpath_unfreeze(ctrl->subsys); 1185 mutex_unlock(&ctrl->subsys->lock); 1186 mutex_unlock(&ctrl->scan_lock); 1187 } 1188 if (effects & NVME_CMD_EFFECTS_CCC) { 1189 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1190 &ctrl->flags)) { 1191 dev_info(ctrl->device, 1192 "controller capabilities changed, reset may be required to take effect.\n"); 1193 } 1194 } 1195 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1196 nvme_queue_scan(ctrl); 1197 flush_work(&ctrl->scan_work); 1198 } 1199 if (ns) 1200 return; 1201 1202 switch (cmd->common.opcode) { 1203 case nvme_admin_set_features: 1204 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1205 case NVME_FEAT_KATO: 1206 /* 1207 * Keep alive commands interval on the host should be 1208 * updated when KATO is modified by Set Features 1209 * commands. 1210 */ 1211 if (!status) 1212 nvme_update_keep_alive(ctrl, cmd); 1213 break; 1214 default: 1215 break; 1216 } 1217 break; 1218 default: 1219 break; 1220 } 1221 } 1222 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1223 1224 /* 1225 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1226 * 1227 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1228 * accounting for transport roundtrip times [..]. 1229 */ 1230 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1231 { 1232 unsigned long delay = ctrl->kato * HZ / 2; 1233 1234 /* 1235 * When using Traffic Based Keep Alive, we need to run 1236 * nvme_keep_alive_work at twice the normal frequency, as one 1237 * command completion can postpone sending a keep alive command 1238 * by up to twice the delay between runs. 1239 */ 1240 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1241 delay /= 2; 1242 return delay; 1243 } 1244 1245 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1246 { 1247 unsigned long now = jiffies; 1248 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1249 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1250 1251 if (time_after(now, ka_next_check_tm)) 1252 delay = 0; 1253 else 1254 delay = ka_next_check_tm - now; 1255 1256 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1257 } 1258 1259 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1260 blk_status_t status) 1261 { 1262 struct nvme_ctrl *ctrl = rq->end_io_data; 1263 unsigned long flags; 1264 bool startka = false; 1265 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1266 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1267 1268 /* 1269 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1270 * at the desired frequency. 1271 */ 1272 if (rtt <= delay) { 1273 delay -= rtt; 1274 } else { 1275 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1276 jiffies_to_msecs(rtt)); 1277 delay = 0; 1278 } 1279 1280 blk_mq_free_request(rq); 1281 1282 if (status) { 1283 dev_err(ctrl->device, 1284 "failed nvme_keep_alive_end_io error=%d\n", 1285 status); 1286 return RQ_END_IO_NONE; 1287 } 1288 1289 ctrl->ka_last_check_time = jiffies; 1290 ctrl->comp_seen = false; 1291 spin_lock_irqsave(&ctrl->lock, flags); 1292 if (ctrl->state == NVME_CTRL_LIVE || 1293 ctrl->state == NVME_CTRL_CONNECTING) 1294 startka = true; 1295 spin_unlock_irqrestore(&ctrl->lock, flags); 1296 if (startka) 1297 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1298 return RQ_END_IO_NONE; 1299 } 1300 1301 static void nvme_keep_alive_work(struct work_struct *work) 1302 { 1303 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1304 struct nvme_ctrl, ka_work); 1305 bool comp_seen = ctrl->comp_seen; 1306 struct request *rq; 1307 1308 ctrl->ka_last_check_time = jiffies; 1309 1310 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1311 dev_dbg(ctrl->device, 1312 "reschedule traffic based keep-alive timer\n"); 1313 ctrl->comp_seen = false; 1314 nvme_queue_keep_alive_work(ctrl); 1315 return; 1316 } 1317 1318 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1319 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1320 if (IS_ERR(rq)) { 1321 /* allocation failure, reset the controller */ 1322 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1323 nvme_reset_ctrl(ctrl); 1324 return; 1325 } 1326 nvme_init_request(rq, &ctrl->ka_cmd); 1327 1328 rq->timeout = ctrl->kato * HZ; 1329 rq->end_io = nvme_keep_alive_end_io; 1330 rq->end_io_data = ctrl; 1331 blk_execute_rq_nowait(rq, false); 1332 } 1333 1334 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1335 { 1336 if (unlikely(ctrl->kato == 0)) 1337 return; 1338 1339 nvme_queue_keep_alive_work(ctrl); 1340 } 1341 1342 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1343 { 1344 if (unlikely(ctrl->kato == 0)) 1345 return; 1346 1347 cancel_delayed_work_sync(&ctrl->ka_work); 1348 } 1349 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1350 1351 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1352 struct nvme_command *cmd) 1353 { 1354 unsigned int new_kato = 1355 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1356 1357 dev_info(ctrl->device, 1358 "keep alive interval updated from %u ms to %u ms\n", 1359 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1360 1361 nvme_stop_keep_alive(ctrl); 1362 ctrl->kato = new_kato; 1363 nvme_start_keep_alive(ctrl); 1364 } 1365 1366 /* 1367 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1368 * flag, thus sending any new CNS opcodes has a big chance of not working. 1369 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1370 * (but not for any later version). 1371 */ 1372 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1373 { 1374 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1375 return ctrl->vs < NVME_VS(1, 2, 0); 1376 return ctrl->vs < NVME_VS(1, 1, 0); 1377 } 1378 1379 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1380 { 1381 struct nvme_command c = { }; 1382 int error; 1383 1384 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1385 c.identify.opcode = nvme_admin_identify; 1386 c.identify.cns = NVME_ID_CNS_CTRL; 1387 1388 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1389 if (!*id) 1390 return -ENOMEM; 1391 1392 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1393 sizeof(struct nvme_id_ctrl)); 1394 if (error) { 1395 kfree(*id); 1396 *id = NULL; 1397 } 1398 return error; 1399 } 1400 1401 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1402 struct nvme_ns_id_desc *cur, bool *csi_seen) 1403 { 1404 const char *warn_str = "ctrl returned bogus length:"; 1405 void *data = cur; 1406 1407 switch (cur->nidt) { 1408 case NVME_NIDT_EUI64: 1409 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1410 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1411 warn_str, cur->nidl); 1412 return -1; 1413 } 1414 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1415 return NVME_NIDT_EUI64_LEN; 1416 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1417 return NVME_NIDT_EUI64_LEN; 1418 case NVME_NIDT_NGUID: 1419 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1420 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1421 warn_str, cur->nidl); 1422 return -1; 1423 } 1424 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1425 return NVME_NIDT_NGUID_LEN; 1426 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1427 return NVME_NIDT_NGUID_LEN; 1428 case NVME_NIDT_UUID: 1429 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1430 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1431 warn_str, cur->nidl); 1432 return -1; 1433 } 1434 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1435 return NVME_NIDT_UUID_LEN; 1436 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1437 return NVME_NIDT_UUID_LEN; 1438 case NVME_NIDT_CSI: 1439 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1440 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1441 warn_str, cur->nidl); 1442 return -1; 1443 } 1444 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1445 *csi_seen = true; 1446 return NVME_NIDT_CSI_LEN; 1447 default: 1448 /* Skip unknown types */ 1449 return cur->nidl; 1450 } 1451 } 1452 1453 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1454 struct nvme_ns_info *info) 1455 { 1456 struct nvme_command c = { }; 1457 bool csi_seen = false; 1458 int status, pos, len; 1459 void *data; 1460 1461 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1462 return 0; 1463 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1464 return 0; 1465 1466 c.identify.opcode = nvme_admin_identify; 1467 c.identify.nsid = cpu_to_le32(info->nsid); 1468 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1469 1470 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1471 if (!data) 1472 return -ENOMEM; 1473 1474 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1475 NVME_IDENTIFY_DATA_SIZE); 1476 if (status) { 1477 dev_warn(ctrl->device, 1478 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1479 info->nsid, status); 1480 goto free_data; 1481 } 1482 1483 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1484 struct nvme_ns_id_desc *cur = data + pos; 1485 1486 if (cur->nidl == 0) 1487 break; 1488 1489 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1490 if (len < 0) 1491 break; 1492 1493 len += sizeof(*cur); 1494 } 1495 1496 if (nvme_multi_css(ctrl) && !csi_seen) { 1497 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1498 info->nsid); 1499 status = -EINVAL; 1500 } 1501 1502 free_data: 1503 kfree(data); 1504 return status; 1505 } 1506 1507 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1508 struct nvme_id_ns **id) 1509 { 1510 struct nvme_command c = { }; 1511 int error; 1512 1513 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1514 c.identify.opcode = nvme_admin_identify; 1515 c.identify.nsid = cpu_to_le32(nsid); 1516 c.identify.cns = NVME_ID_CNS_NS; 1517 1518 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1519 if (!*id) 1520 return -ENOMEM; 1521 1522 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1523 if (error) { 1524 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1525 kfree(*id); 1526 *id = NULL; 1527 } 1528 return error; 1529 } 1530 1531 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1532 struct nvme_ns_info *info) 1533 { 1534 struct nvme_ns_ids *ids = &info->ids; 1535 struct nvme_id_ns *id; 1536 int ret; 1537 1538 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1539 if (ret) 1540 return ret; 1541 1542 if (id->ncap == 0) { 1543 /* namespace not allocated or attached */ 1544 info->is_removed = true; 1545 ret = -ENODEV; 1546 goto error; 1547 } 1548 1549 info->anagrpid = id->anagrpid; 1550 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1551 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1552 info->is_ready = true; 1553 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1554 dev_info(ctrl->device, 1555 "Ignoring bogus Namespace Identifiers\n"); 1556 } else { 1557 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1558 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1559 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1560 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1561 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1562 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1563 } 1564 1565 error: 1566 kfree(id); 1567 return ret; 1568 } 1569 1570 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1571 struct nvme_ns_info *info) 1572 { 1573 struct nvme_id_ns_cs_indep *id; 1574 struct nvme_command c = { 1575 .identify.opcode = nvme_admin_identify, 1576 .identify.nsid = cpu_to_le32(info->nsid), 1577 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1578 }; 1579 int ret; 1580 1581 id = kmalloc(sizeof(*id), GFP_KERNEL); 1582 if (!id) 1583 return -ENOMEM; 1584 1585 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1586 if (!ret) { 1587 info->anagrpid = id->anagrpid; 1588 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1589 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1590 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1591 } 1592 kfree(id); 1593 return ret; 1594 } 1595 1596 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1597 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1598 { 1599 union nvme_result res = { 0 }; 1600 struct nvme_command c = { }; 1601 int ret; 1602 1603 c.features.opcode = op; 1604 c.features.fid = cpu_to_le32(fid); 1605 c.features.dword11 = cpu_to_le32(dword11); 1606 1607 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1608 buffer, buflen, NVME_QID_ANY, 0); 1609 if (ret >= 0 && result) 1610 *result = le32_to_cpu(res.u32); 1611 return ret; 1612 } 1613 1614 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1615 unsigned int dword11, void *buffer, size_t buflen, 1616 u32 *result) 1617 { 1618 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1619 buflen, result); 1620 } 1621 EXPORT_SYMBOL_GPL(nvme_set_features); 1622 1623 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1624 unsigned int dword11, void *buffer, size_t buflen, 1625 u32 *result) 1626 { 1627 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1628 buflen, result); 1629 } 1630 EXPORT_SYMBOL_GPL(nvme_get_features); 1631 1632 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1633 { 1634 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1635 u32 result; 1636 int status, nr_io_queues; 1637 1638 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1639 &result); 1640 if (status < 0) 1641 return status; 1642 1643 /* 1644 * Degraded controllers might return an error when setting the queue 1645 * count. We still want to be able to bring them online and offer 1646 * access to the admin queue, as that might be only way to fix them up. 1647 */ 1648 if (status > 0) { 1649 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1650 *count = 0; 1651 } else { 1652 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1653 *count = min(*count, nr_io_queues); 1654 } 1655 1656 return 0; 1657 } 1658 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1659 1660 #define NVME_AEN_SUPPORTED \ 1661 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1662 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1663 1664 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1665 { 1666 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1667 int status; 1668 1669 if (!supported_aens) 1670 return; 1671 1672 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1673 NULL, 0, &result); 1674 if (status) 1675 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1676 supported_aens); 1677 1678 queue_work(nvme_wq, &ctrl->async_event_work); 1679 } 1680 1681 static int nvme_ns_open(struct nvme_ns *ns) 1682 { 1683 1684 /* should never be called due to GENHD_FL_HIDDEN */ 1685 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1686 goto fail; 1687 if (!nvme_get_ns(ns)) 1688 goto fail; 1689 if (!try_module_get(ns->ctrl->ops->module)) 1690 goto fail_put_ns; 1691 1692 return 0; 1693 1694 fail_put_ns: 1695 nvme_put_ns(ns); 1696 fail: 1697 return -ENXIO; 1698 } 1699 1700 static void nvme_ns_release(struct nvme_ns *ns) 1701 { 1702 1703 module_put(ns->ctrl->ops->module); 1704 nvme_put_ns(ns); 1705 } 1706 1707 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1708 { 1709 return nvme_ns_open(disk->private_data); 1710 } 1711 1712 static void nvme_release(struct gendisk *disk) 1713 { 1714 nvme_ns_release(disk->private_data); 1715 } 1716 1717 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1718 { 1719 /* some standard values */ 1720 geo->heads = 1 << 6; 1721 geo->sectors = 1 << 5; 1722 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1723 return 0; 1724 } 1725 1726 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head) 1727 { 1728 struct blk_integrity integrity = { }; 1729 1730 blk_integrity_unregister(disk); 1731 1732 if (!head->ms) 1733 return true; 1734 1735 /* 1736 * PI can always be supported as we can ask the controller to simply 1737 * insert/strip it, which is not possible for other kinds of metadata. 1738 */ 1739 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1740 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1741 return nvme_ns_has_pi(head); 1742 1743 switch (head->pi_type) { 1744 case NVME_NS_DPS_PI_TYPE3: 1745 switch (head->guard_type) { 1746 case NVME_NVM_NS_16B_GUARD: 1747 integrity.profile = &t10_pi_type3_crc; 1748 integrity.tag_size = sizeof(u16) + sizeof(u32); 1749 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1750 break; 1751 case NVME_NVM_NS_64B_GUARD: 1752 integrity.profile = &ext_pi_type3_crc64; 1753 integrity.tag_size = sizeof(u16) + 6; 1754 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1755 break; 1756 default: 1757 integrity.profile = NULL; 1758 break; 1759 } 1760 break; 1761 case NVME_NS_DPS_PI_TYPE1: 1762 case NVME_NS_DPS_PI_TYPE2: 1763 switch (head->guard_type) { 1764 case NVME_NVM_NS_16B_GUARD: 1765 integrity.profile = &t10_pi_type1_crc; 1766 integrity.tag_size = sizeof(u16); 1767 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1768 break; 1769 case NVME_NVM_NS_64B_GUARD: 1770 integrity.profile = &ext_pi_type1_crc64; 1771 integrity.tag_size = sizeof(u16); 1772 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1773 break; 1774 default: 1775 integrity.profile = NULL; 1776 break; 1777 } 1778 break; 1779 default: 1780 integrity.profile = NULL; 1781 break; 1782 } 1783 1784 integrity.tuple_size = head->ms; 1785 integrity.pi_offset = head->pi_offset; 1786 blk_integrity_register(disk, &integrity); 1787 return true; 1788 } 1789 1790 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1791 { 1792 struct nvme_ctrl *ctrl = ns->ctrl; 1793 1794 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1795 lim->max_hw_discard_sectors = 1796 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1797 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1798 lim->max_hw_discard_sectors = UINT_MAX; 1799 else 1800 lim->max_hw_discard_sectors = 0; 1801 1802 lim->discard_granularity = lim->logical_block_size; 1803 1804 if (ctrl->dmrl) 1805 lim->max_discard_segments = ctrl->dmrl; 1806 else 1807 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1808 } 1809 1810 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1811 { 1812 return uuid_equal(&a->uuid, &b->uuid) && 1813 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1814 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1815 a->csi == b->csi; 1816 } 1817 1818 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1819 struct nvme_id_ns_nvm **nvmp) 1820 { 1821 struct nvme_command c = { 1822 .identify.opcode = nvme_admin_identify, 1823 .identify.nsid = cpu_to_le32(nsid), 1824 .identify.cns = NVME_ID_CNS_CS_NS, 1825 .identify.csi = NVME_CSI_NVM, 1826 }; 1827 struct nvme_id_ns_nvm *nvm; 1828 int ret; 1829 1830 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1831 if (!nvm) 1832 return -ENOMEM; 1833 1834 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1835 if (ret) 1836 kfree(nvm); 1837 else 1838 *nvmp = nvm; 1839 return ret; 1840 } 1841 1842 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1843 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1844 { 1845 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1846 1847 /* no support for storage tag formats right now */ 1848 if (nvme_elbaf_sts(elbaf)) 1849 return; 1850 1851 head->guard_type = nvme_elbaf_guard_type(elbaf); 1852 switch (head->guard_type) { 1853 case NVME_NVM_NS_64B_GUARD: 1854 head->pi_size = sizeof(struct crc64_pi_tuple); 1855 break; 1856 case NVME_NVM_NS_16B_GUARD: 1857 head->pi_size = sizeof(struct t10_pi_tuple); 1858 break; 1859 default: 1860 break; 1861 } 1862 } 1863 1864 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1865 struct nvme_ns_head *head, struct nvme_id_ns *id, 1866 struct nvme_id_ns_nvm *nvm) 1867 { 1868 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1869 head->pi_type = 0; 1870 head->pi_size = 0; 1871 head->pi_offset = 0; 1872 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1873 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1874 return; 1875 1876 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1877 nvme_configure_pi_elbas(head, id, nvm); 1878 } else { 1879 head->pi_size = sizeof(struct t10_pi_tuple); 1880 head->guard_type = NVME_NVM_NS_16B_GUARD; 1881 } 1882 1883 if (head->pi_size && head->ms >= head->pi_size) 1884 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1885 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) 1886 head->pi_offset = head->ms - head->pi_size; 1887 1888 if (ctrl->ops->flags & NVME_F_FABRICS) { 1889 /* 1890 * The NVMe over Fabrics specification only supports metadata as 1891 * part of the extended data LBA. We rely on HCA/HBA support to 1892 * remap the separate metadata buffer from the block layer. 1893 */ 1894 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1895 return; 1896 1897 head->features |= NVME_NS_EXT_LBAS; 1898 1899 /* 1900 * The current fabrics transport drivers support namespace 1901 * metadata formats only if nvme_ns_has_pi() returns true. 1902 * Suppress support for all other formats so the namespace will 1903 * have a 0 capacity and not be usable through the block stack. 1904 * 1905 * Note, this check will need to be modified if any drivers 1906 * gain the ability to use other metadata formats. 1907 */ 1908 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1909 head->features |= NVME_NS_METADATA_SUPPORTED; 1910 } else { 1911 /* 1912 * For PCIe controllers, we can't easily remap the separate 1913 * metadata buffer from the block layer and thus require a 1914 * separate metadata buffer for block layer metadata/PI support. 1915 * We allow extended LBAs for the passthrough interface, though. 1916 */ 1917 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1918 head->features |= NVME_NS_EXT_LBAS; 1919 else 1920 head->features |= NVME_NS_METADATA_SUPPORTED; 1921 } 1922 } 1923 1924 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 1925 { 1926 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 1927 } 1928 1929 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 1930 struct queue_limits *lim) 1931 { 1932 lim->max_hw_sectors = ctrl->max_hw_sectors; 1933 lim->max_segments = min_t(u32, USHRT_MAX, 1934 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 1935 lim->max_integrity_segments = ctrl->max_integrity_segments; 1936 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 1937 lim->max_segment_size = UINT_MAX; 1938 lim->dma_alignment = 3; 1939 } 1940 1941 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 1942 struct queue_limits *lim) 1943 { 1944 struct nvme_ns_head *head = ns->head; 1945 u32 bs = 1U << head->lba_shift; 1946 u32 atomic_bs, phys_bs, io_opt = 0; 1947 bool valid = true; 1948 1949 /* 1950 * The block layer can't support LBA sizes larger than the page size 1951 * or smaller than a sector size yet, so catch this early and don't 1952 * allow block I/O. 1953 */ 1954 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { 1955 bs = (1 << 9); 1956 valid = false; 1957 } 1958 1959 atomic_bs = phys_bs = bs; 1960 if (id->nabo == 0) { 1961 /* 1962 * Bit 1 indicates whether NAWUPF is defined for this namespace 1963 * and whether it should be used instead of AWUPF. If NAWUPF == 1964 * 0 then AWUPF must be used instead. 1965 */ 1966 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1967 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1968 else 1969 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1970 } 1971 1972 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1973 /* NPWG = Namespace Preferred Write Granularity */ 1974 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1975 /* NOWS = Namespace Optimal Write Size */ 1976 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1977 } 1978 1979 /* 1980 * Linux filesystems assume writing a single physical block is 1981 * an atomic operation. Hence limit the physical block size to the 1982 * value of the Atomic Write Unit Power Fail parameter. 1983 */ 1984 lim->logical_block_size = bs; 1985 lim->physical_block_size = min(phys_bs, atomic_bs); 1986 lim->io_min = phys_bs; 1987 lim->io_opt = io_opt; 1988 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1989 lim->max_write_zeroes_sectors = UINT_MAX; 1990 else 1991 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 1992 return valid; 1993 } 1994 1995 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 1996 { 1997 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 1998 } 1999 2000 static inline bool nvme_first_scan(struct gendisk *disk) 2001 { 2002 /* nvme_alloc_ns() scans the disk prior to adding it */ 2003 return !disk_live(disk); 2004 } 2005 2006 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2007 struct queue_limits *lim) 2008 { 2009 struct nvme_ctrl *ctrl = ns->ctrl; 2010 u32 iob; 2011 2012 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2013 is_power_of_2(ctrl->max_hw_sectors)) 2014 iob = ctrl->max_hw_sectors; 2015 else 2016 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2017 2018 if (!iob) 2019 return; 2020 2021 if (!is_power_of_2(iob)) { 2022 if (nvme_first_scan(ns->disk)) 2023 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2024 ns->disk->disk_name, iob); 2025 return; 2026 } 2027 2028 if (blk_queue_is_zoned(ns->disk->queue)) { 2029 if (nvme_first_scan(ns->disk)) 2030 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2031 ns->disk->disk_name); 2032 return; 2033 } 2034 2035 lim->chunk_sectors = iob; 2036 } 2037 2038 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2039 struct nvme_ns_info *info) 2040 { 2041 struct queue_limits lim; 2042 int ret; 2043 2044 blk_mq_freeze_queue(ns->disk->queue); 2045 lim = queue_limits_start_update(ns->disk->queue); 2046 nvme_set_ctrl_limits(ns->ctrl, &lim); 2047 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2048 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2049 blk_mq_unfreeze_queue(ns->disk->queue); 2050 2051 /* Hide the block-interface for these devices */ 2052 if (!ret) 2053 ret = -ENODEV; 2054 return ret; 2055 } 2056 2057 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2058 struct nvme_ns_info *info) 2059 { 2060 bool vwc = ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT; 2061 struct queue_limits lim; 2062 struct nvme_id_ns_nvm *nvm = NULL; 2063 struct nvme_zone_info zi = {}; 2064 struct nvme_id_ns *id; 2065 sector_t capacity; 2066 unsigned lbaf; 2067 int ret; 2068 2069 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2070 if (ret) 2071 return ret; 2072 2073 if (id->ncap == 0) { 2074 /* namespace not allocated or attached */ 2075 info->is_removed = true; 2076 ret = -ENXIO; 2077 goto out; 2078 } 2079 lbaf = nvme_lbaf_index(id->flbas); 2080 2081 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2082 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2083 if (ret < 0) 2084 goto out; 2085 } 2086 2087 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2088 ns->head->ids.csi == NVME_CSI_ZNS) { 2089 ret = nvme_query_zone_info(ns, lbaf, &zi); 2090 if (ret < 0) 2091 goto out; 2092 } 2093 2094 blk_mq_freeze_queue(ns->disk->queue); 2095 ns->head->lba_shift = id->lbaf[lbaf].ds; 2096 ns->head->nuse = le64_to_cpu(id->nuse); 2097 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2098 2099 lim = queue_limits_start_update(ns->disk->queue); 2100 nvme_set_ctrl_limits(ns->ctrl, &lim); 2101 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm); 2102 nvme_set_chunk_sectors(ns, id, &lim); 2103 if (!nvme_update_disk_info(ns, id, &lim)) 2104 capacity = 0; 2105 nvme_config_discard(ns, &lim); 2106 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2107 ns->head->ids.csi == NVME_CSI_ZNS) 2108 nvme_update_zone_info(ns, &lim, &zi); 2109 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2110 if (ret) { 2111 blk_mq_unfreeze_queue(ns->disk->queue); 2112 goto out; 2113 } 2114 2115 /* 2116 * Register a metadata profile for PI, or the plain non-integrity NVMe 2117 * metadata masquerading as Type 0 if supported, otherwise reject block 2118 * I/O to namespaces with metadata except when the namespace supports 2119 * PI, as it can strip/insert in that case. 2120 */ 2121 if (!nvme_init_integrity(ns->disk, ns->head)) 2122 capacity = 0; 2123 2124 set_capacity_and_notify(ns->disk, capacity); 2125 2126 /* 2127 * Only set the DEAC bit if the device guarantees that reads from 2128 * deallocated data return zeroes. While the DEAC bit does not 2129 * require that, it must be a no-op if reads from deallocated data 2130 * do not return zeroes. 2131 */ 2132 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2133 ns->head->features |= NVME_NS_DEAC; 2134 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2135 blk_queue_write_cache(ns->disk->queue, vwc, vwc); 2136 set_bit(NVME_NS_READY, &ns->flags); 2137 blk_mq_unfreeze_queue(ns->disk->queue); 2138 2139 if (blk_queue_is_zoned(ns->queue)) { 2140 ret = blk_revalidate_disk_zones(ns->disk); 2141 if (ret && !nvme_first_scan(ns->disk)) 2142 goto out; 2143 } 2144 2145 ret = 0; 2146 out: 2147 kfree(nvm); 2148 kfree(id); 2149 return ret; 2150 } 2151 2152 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2153 { 2154 bool unsupported = false; 2155 int ret; 2156 2157 switch (info->ids.csi) { 2158 case NVME_CSI_ZNS: 2159 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2160 dev_info(ns->ctrl->device, 2161 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2162 info->nsid); 2163 ret = nvme_update_ns_info_generic(ns, info); 2164 break; 2165 } 2166 ret = nvme_update_ns_info_block(ns, info); 2167 break; 2168 case NVME_CSI_NVM: 2169 ret = nvme_update_ns_info_block(ns, info); 2170 break; 2171 default: 2172 dev_info(ns->ctrl->device, 2173 "block device for nsid %u not supported (csi %u)\n", 2174 info->nsid, info->ids.csi); 2175 ret = nvme_update_ns_info_generic(ns, info); 2176 break; 2177 } 2178 2179 /* 2180 * If probing fails due an unsupported feature, hide the block device, 2181 * but still allow other access. 2182 */ 2183 if (ret == -ENODEV) { 2184 ns->disk->flags |= GENHD_FL_HIDDEN; 2185 set_bit(NVME_NS_READY, &ns->flags); 2186 unsupported = true; 2187 ret = 0; 2188 } 2189 2190 if (!ret && nvme_ns_head_multipath(ns->head)) { 2191 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2192 struct queue_limits lim; 2193 2194 blk_mq_freeze_queue(ns->head->disk->queue); 2195 if (unsupported) 2196 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2197 else 2198 nvme_init_integrity(ns->head->disk, ns->head); 2199 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2200 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2201 nvme_mpath_revalidate_paths(ns); 2202 2203 /* 2204 * queue_limits mixes values that are the hardware limitations 2205 * for bio splitting with what is the device configuration. 2206 * 2207 * For NVMe the device configuration can change after e.g. a 2208 * Format command, and we really want to pick up the new format 2209 * value here. But we must still stack the queue limits to the 2210 * least common denominator for multipathing to split the bios 2211 * properly. 2212 * 2213 * To work around this, we explicitly set the device 2214 * configuration to those that we just queried, but only stack 2215 * the splitting limits in to make sure we still obey possibly 2216 * lower limitations of other controllers. 2217 */ 2218 lim = queue_limits_start_update(ns->head->disk->queue); 2219 lim.logical_block_size = ns_lim->logical_block_size; 2220 lim.physical_block_size = ns_lim->physical_block_size; 2221 lim.io_min = ns_lim->io_min; 2222 lim.io_opt = ns_lim->io_opt; 2223 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2224 ns->head->disk->disk_name); 2225 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2226 blk_mq_unfreeze_queue(ns->head->disk->queue); 2227 } 2228 2229 return ret; 2230 } 2231 2232 #ifdef CONFIG_BLK_SED_OPAL 2233 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2234 bool send) 2235 { 2236 struct nvme_ctrl *ctrl = data; 2237 struct nvme_command cmd = { }; 2238 2239 if (send) 2240 cmd.common.opcode = nvme_admin_security_send; 2241 else 2242 cmd.common.opcode = nvme_admin_security_recv; 2243 cmd.common.nsid = 0; 2244 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2245 cmd.common.cdw11 = cpu_to_le32(len); 2246 2247 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2248 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2249 } 2250 2251 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2252 { 2253 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2254 if (!ctrl->opal_dev) 2255 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2256 else if (was_suspended) 2257 opal_unlock_from_suspend(ctrl->opal_dev); 2258 } else { 2259 free_opal_dev(ctrl->opal_dev); 2260 ctrl->opal_dev = NULL; 2261 } 2262 } 2263 #else 2264 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2265 { 2266 } 2267 #endif /* CONFIG_BLK_SED_OPAL */ 2268 2269 #ifdef CONFIG_BLK_DEV_ZONED 2270 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2271 unsigned int nr_zones, report_zones_cb cb, void *data) 2272 { 2273 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2274 data); 2275 } 2276 #else 2277 #define nvme_report_zones NULL 2278 #endif /* CONFIG_BLK_DEV_ZONED */ 2279 2280 const struct block_device_operations nvme_bdev_ops = { 2281 .owner = THIS_MODULE, 2282 .ioctl = nvme_ioctl, 2283 .compat_ioctl = blkdev_compat_ptr_ioctl, 2284 .open = nvme_open, 2285 .release = nvme_release, 2286 .getgeo = nvme_getgeo, 2287 .report_zones = nvme_report_zones, 2288 .pr_ops = &nvme_pr_ops, 2289 }; 2290 2291 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2292 u32 timeout, const char *op) 2293 { 2294 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2295 u32 csts; 2296 int ret; 2297 2298 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2299 if (csts == ~0) 2300 return -ENODEV; 2301 if ((csts & mask) == val) 2302 break; 2303 2304 usleep_range(1000, 2000); 2305 if (fatal_signal_pending(current)) 2306 return -EINTR; 2307 if (time_after(jiffies, timeout_jiffies)) { 2308 dev_err(ctrl->device, 2309 "Device not ready; aborting %s, CSTS=0x%x\n", 2310 op, csts); 2311 return -ENODEV; 2312 } 2313 } 2314 2315 return ret; 2316 } 2317 2318 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2319 { 2320 int ret; 2321 2322 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2323 if (shutdown) 2324 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2325 else 2326 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2327 2328 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2329 if (ret) 2330 return ret; 2331 2332 if (shutdown) { 2333 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2334 NVME_CSTS_SHST_CMPLT, 2335 ctrl->shutdown_timeout, "shutdown"); 2336 } 2337 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2338 msleep(NVME_QUIRK_DELAY_AMOUNT); 2339 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2340 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2341 } 2342 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2343 2344 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2345 { 2346 unsigned dev_page_min; 2347 u32 timeout; 2348 int ret; 2349 2350 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2351 if (ret) { 2352 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2353 return ret; 2354 } 2355 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2356 2357 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2358 dev_err(ctrl->device, 2359 "Minimum device page size %u too large for host (%u)\n", 2360 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2361 return -ENODEV; 2362 } 2363 2364 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2365 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2366 else 2367 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2368 2369 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) 2370 ctrl->ctrl_config |= NVME_CC_CRIME; 2371 2372 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2373 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2374 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2375 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2376 if (ret) 2377 return ret; 2378 2379 /* Flush write to device (required if transport is PCI) */ 2380 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2381 if (ret) 2382 return ret; 2383 2384 /* CAP value may change after initial CC write */ 2385 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2386 if (ret) 2387 return ret; 2388 2389 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2390 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2391 u32 crto, ready_timeout; 2392 2393 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2394 if (ret) { 2395 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2396 ret); 2397 return ret; 2398 } 2399 2400 /* 2401 * CRTO should always be greater or equal to CAP.TO, but some 2402 * devices are known to get this wrong. Use the larger of the 2403 * two values. 2404 */ 2405 if (ctrl->ctrl_config & NVME_CC_CRIME) 2406 ready_timeout = NVME_CRTO_CRIMT(crto); 2407 else 2408 ready_timeout = NVME_CRTO_CRWMT(crto); 2409 2410 if (ready_timeout < timeout) 2411 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2412 crto, ctrl->cap); 2413 else 2414 timeout = ready_timeout; 2415 } 2416 2417 ctrl->ctrl_config |= NVME_CC_ENABLE; 2418 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2419 if (ret) 2420 return ret; 2421 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2422 (timeout + 1) / 2, "initialisation"); 2423 } 2424 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2425 2426 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2427 { 2428 __le64 ts; 2429 int ret; 2430 2431 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2432 return 0; 2433 2434 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2435 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2436 NULL); 2437 if (ret) 2438 dev_warn_once(ctrl->device, 2439 "could not set timestamp (%d)\n", ret); 2440 return ret; 2441 } 2442 2443 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2444 { 2445 struct nvme_feat_host_behavior *host; 2446 u8 acre = 0, lbafee = 0; 2447 int ret; 2448 2449 /* Don't bother enabling the feature if retry delay is not reported */ 2450 if (ctrl->crdt[0]) 2451 acre = NVME_ENABLE_ACRE; 2452 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2453 lbafee = NVME_ENABLE_LBAFEE; 2454 2455 if (!acre && !lbafee) 2456 return 0; 2457 2458 host = kzalloc(sizeof(*host), GFP_KERNEL); 2459 if (!host) 2460 return 0; 2461 2462 host->acre = acre; 2463 host->lbafee = lbafee; 2464 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2465 host, sizeof(*host), NULL); 2466 kfree(host); 2467 return ret; 2468 } 2469 2470 /* 2471 * The function checks whether the given total (exlat + enlat) latency of 2472 * a power state allows the latter to be used as an APST transition target. 2473 * It does so by comparing the latency to the primary and secondary latency 2474 * tolerances defined by module params. If there's a match, the corresponding 2475 * timeout value is returned and the matching tolerance index (1 or 2) is 2476 * reported. 2477 */ 2478 static bool nvme_apst_get_transition_time(u64 total_latency, 2479 u64 *transition_time, unsigned *last_index) 2480 { 2481 if (total_latency <= apst_primary_latency_tol_us) { 2482 if (*last_index == 1) 2483 return false; 2484 *last_index = 1; 2485 *transition_time = apst_primary_timeout_ms; 2486 return true; 2487 } 2488 if (apst_secondary_timeout_ms && 2489 total_latency <= apst_secondary_latency_tol_us) { 2490 if (*last_index <= 2) 2491 return false; 2492 *last_index = 2; 2493 *transition_time = apst_secondary_timeout_ms; 2494 return true; 2495 } 2496 return false; 2497 } 2498 2499 /* 2500 * APST (Autonomous Power State Transition) lets us program a table of power 2501 * state transitions that the controller will perform automatically. 2502 * 2503 * Depending on module params, one of the two supported techniques will be used: 2504 * 2505 * - If the parameters provide explicit timeouts and tolerances, they will be 2506 * used to build a table with up to 2 non-operational states to transition to. 2507 * The default parameter values were selected based on the values used by 2508 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2509 * regeneration of the APST table in the event of switching between external 2510 * and battery power, the timeouts and tolerances reflect a compromise 2511 * between values used by Microsoft for AC and battery scenarios. 2512 * - If not, we'll configure the table with a simple heuristic: we are willing 2513 * to spend at most 2% of the time transitioning between power states. 2514 * Therefore, when running in any given state, we will enter the next 2515 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2516 * microseconds, as long as that state's exit latency is under the requested 2517 * maximum latency. 2518 * 2519 * We will not autonomously enter any non-operational state for which the total 2520 * latency exceeds ps_max_latency_us. 2521 * 2522 * Users can set ps_max_latency_us to zero to turn off APST. 2523 */ 2524 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2525 { 2526 struct nvme_feat_auto_pst *table; 2527 unsigned apste = 0; 2528 u64 max_lat_us = 0; 2529 __le64 target = 0; 2530 int max_ps = -1; 2531 int state; 2532 int ret; 2533 unsigned last_lt_index = UINT_MAX; 2534 2535 /* 2536 * If APST isn't supported or if we haven't been initialized yet, 2537 * then don't do anything. 2538 */ 2539 if (!ctrl->apsta) 2540 return 0; 2541 2542 if (ctrl->npss > 31) { 2543 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2544 return 0; 2545 } 2546 2547 table = kzalloc(sizeof(*table), GFP_KERNEL); 2548 if (!table) 2549 return 0; 2550 2551 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2552 /* Turn off APST. */ 2553 dev_dbg(ctrl->device, "APST disabled\n"); 2554 goto done; 2555 } 2556 2557 /* 2558 * Walk through all states from lowest- to highest-power. 2559 * According to the spec, lower-numbered states use more power. NPSS, 2560 * despite the name, is the index of the lowest-power state, not the 2561 * number of states. 2562 */ 2563 for (state = (int)ctrl->npss; state >= 0; state--) { 2564 u64 total_latency_us, exit_latency_us, transition_ms; 2565 2566 if (target) 2567 table->entries[state] = target; 2568 2569 /* 2570 * Don't allow transitions to the deepest state if it's quirked 2571 * off. 2572 */ 2573 if (state == ctrl->npss && 2574 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2575 continue; 2576 2577 /* 2578 * Is this state a useful non-operational state for higher-power 2579 * states to autonomously transition to? 2580 */ 2581 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2582 continue; 2583 2584 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2585 if (exit_latency_us > ctrl->ps_max_latency_us) 2586 continue; 2587 2588 total_latency_us = exit_latency_us + 2589 le32_to_cpu(ctrl->psd[state].entry_lat); 2590 2591 /* 2592 * This state is good. It can be used as the APST idle target 2593 * for higher power states. 2594 */ 2595 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2596 if (!nvme_apst_get_transition_time(total_latency_us, 2597 &transition_ms, &last_lt_index)) 2598 continue; 2599 } else { 2600 transition_ms = total_latency_us + 19; 2601 do_div(transition_ms, 20); 2602 if (transition_ms > (1 << 24) - 1) 2603 transition_ms = (1 << 24) - 1; 2604 } 2605 2606 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2607 if (max_ps == -1) 2608 max_ps = state; 2609 if (total_latency_us > max_lat_us) 2610 max_lat_us = total_latency_us; 2611 } 2612 2613 if (max_ps == -1) 2614 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2615 else 2616 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2617 max_ps, max_lat_us, (int)sizeof(*table), table); 2618 apste = 1; 2619 2620 done: 2621 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2622 table, sizeof(*table), NULL); 2623 if (ret) 2624 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2625 kfree(table); 2626 return ret; 2627 } 2628 2629 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2630 { 2631 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2632 u64 latency; 2633 2634 switch (val) { 2635 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2636 case PM_QOS_LATENCY_ANY: 2637 latency = U64_MAX; 2638 break; 2639 2640 default: 2641 latency = val; 2642 } 2643 2644 if (ctrl->ps_max_latency_us != latency) { 2645 ctrl->ps_max_latency_us = latency; 2646 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2647 nvme_configure_apst(ctrl); 2648 } 2649 } 2650 2651 struct nvme_core_quirk_entry { 2652 /* 2653 * NVMe model and firmware strings are padded with spaces. For 2654 * simplicity, strings in the quirk table are padded with NULLs 2655 * instead. 2656 */ 2657 u16 vid; 2658 const char *mn; 2659 const char *fr; 2660 unsigned long quirks; 2661 }; 2662 2663 static const struct nvme_core_quirk_entry core_quirks[] = { 2664 { 2665 /* 2666 * This Toshiba device seems to die using any APST states. See: 2667 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2668 */ 2669 .vid = 0x1179, 2670 .mn = "THNSF5256GPUK TOSHIBA", 2671 .quirks = NVME_QUIRK_NO_APST, 2672 }, 2673 { 2674 /* 2675 * This LiteON CL1-3D*-Q11 firmware version has a race 2676 * condition associated with actions related to suspend to idle 2677 * LiteON has resolved the problem in future firmware 2678 */ 2679 .vid = 0x14a4, 2680 .fr = "22301111", 2681 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2682 }, 2683 { 2684 /* 2685 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2686 * aborts I/O during any load, but more easily reproducible 2687 * with discards (fstrim). 2688 * 2689 * The device is left in a state where it is also not possible 2690 * to use "nvme set-feature" to disable APST, but booting with 2691 * nvme_core.default_ps_max_latency=0 works. 2692 */ 2693 .vid = 0x1e0f, 2694 .mn = "KCD6XVUL6T40", 2695 .quirks = NVME_QUIRK_NO_APST, 2696 }, 2697 { 2698 /* 2699 * The external Samsung X5 SSD fails initialization without a 2700 * delay before checking if it is ready and has a whole set of 2701 * other problems. To make this even more interesting, it 2702 * shares the PCI ID with internal Samsung 970 Evo Plus that 2703 * does not need or want these quirks. 2704 */ 2705 .vid = 0x144d, 2706 .mn = "Samsung Portable SSD X5", 2707 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2708 NVME_QUIRK_NO_DEEPEST_PS | 2709 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2710 } 2711 }; 2712 2713 /* match is null-terminated but idstr is space-padded. */ 2714 static bool string_matches(const char *idstr, const char *match, size_t len) 2715 { 2716 size_t matchlen; 2717 2718 if (!match) 2719 return true; 2720 2721 matchlen = strlen(match); 2722 WARN_ON_ONCE(matchlen > len); 2723 2724 if (memcmp(idstr, match, matchlen)) 2725 return false; 2726 2727 for (; matchlen < len; matchlen++) 2728 if (idstr[matchlen] != ' ') 2729 return false; 2730 2731 return true; 2732 } 2733 2734 static bool quirk_matches(const struct nvme_id_ctrl *id, 2735 const struct nvme_core_quirk_entry *q) 2736 { 2737 return q->vid == le16_to_cpu(id->vid) && 2738 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2739 string_matches(id->fr, q->fr, sizeof(id->fr)); 2740 } 2741 2742 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2743 struct nvme_id_ctrl *id) 2744 { 2745 size_t nqnlen; 2746 int off; 2747 2748 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2749 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2750 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2751 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2752 return; 2753 } 2754 2755 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2756 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2757 } 2758 2759 /* 2760 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2761 * Base Specification 2.0. It is slightly different from the format 2762 * specified there due to historic reasons, and we can't change it now. 2763 */ 2764 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2765 "nqn.2014.08.org.nvmexpress:%04x%04x", 2766 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2767 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2768 off += sizeof(id->sn); 2769 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2770 off += sizeof(id->mn); 2771 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2772 } 2773 2774 static void nvme_release_subsystem(struct device *dev) 2775 { 2776 struct nvme_subsystem *subsys = 2777 container_of(dev, struct nvme_subsystem, dev); 2778 2779 if (subsys->instance >= 0) 2780 ida_free(&nvme_instance_ida, subsys->instance); 2781 kfree(subsys); 2782 } 2783 2784 static void nvme_destroy_subsystem(struct kref *ref) 2785 { 2786 struct nvme_subsystem *subsys = 2787 container_of(ref, struct nvme_subsystem, ref); 2788 2789 mutex_lock(&nvme_subsystems_lock); 2790 list_del(&subsys->entry); 2791 mutex_unlock(&nvme_subsystems_lock); 2792 2793 ida_destroy(&subsys->ns_ida); 2794 device_del(&subsys->dev); 2795 put_device(&subsys->dev); 2796 } 2797 2798 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2799 { 2800 kref_put(&subsys->ref, nvme_destroy_subsystem); 2801 } 2802 2803 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2804 { 2805 struct nvme_subsystem *subsys; 2806 2807 lockdep_assert_held(&nvme_subsystems_lock); 2808 2809 /* 2810 * Fail matches for discovery subsystems. This results 2811 * in each discovery controller bound to a unique subsystem. 2812 * This avoids issues with validating controller values 2813 * that can only be true when there is a single unique subsystem. 2814 * There may be multiple and completely independent entities 2815 * that provide discovery controllers. 2816 */ 2817 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2818 return NULL; 2819 2820 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2821 if (strcmp(subsys->subnqn, subsysnqn)) 2822 continue; 2823 if (!kref_get_unless_zero(&subsys->ref)) 2824 continue; 2825 return subsys; 2826 } 2827 2828 return NULL; 2829 } 2830 2831 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2832 { 2833 return ctrl->opts && ctrl->opts->discovery_nqn; 2834 } 2835 2836 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2837 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2838 { 2839 struct nvme_ctrl *tmp; 2840 2841 lockdep_assert_held(&nvme_subsystems_lock); 2842 2843 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2844 if (nvme_state_terminal(tmp)) 2845 continue; 2846 2847 if (tmp->cntlid == ctrl->cntlid) { 2848 dev_err(ctrl->device, 2849 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2850 ctrl->cntlid, dev_name(tmp->device), 2851 subsys->subnqn); 2852 return false; 2853 } 2854 2855 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2856 nvme_discovery_ctrl(ctrl)) 2857 continue; 2858 2859 dev_err(ctrl->device, 2860 "Subsystem does not support multiple controllers\n"); 2861 return false; 2862 } 2863 2864 return true; 2865 } 2866 2867 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2868 { 2869 struct nvme_subsystem *subsys, *found; 2870 int ret; 2871 2872 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2873 if (!subsys) 2874 return -ENOMEM; 2875 2876 subsys->instance = -1; 2877 mutex_init(&subsys->lock); 2878 kref_init(&subsys->ref); 2879 INIT_LIST_HEAD(&subsys->ctrls); 2880 INIT_LIST_HEAD(&subsys->nsheads); 2881 nvme_init_subnqn(subsys, ctrl, id); 2882 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2883 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2884 subsys->vendor_id = le16_to_cpu(id->vid); 2885 subsys->cmic = id->cmic; 2886 2887 /* Versions prior to 1.4 don't necessarily report a valid type */ 2888 if (id->cntrltype == NVME_CTRL_DISC || 2889 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2890 subsys->subtype = NVME_NQN_DISC; 2891 else 2892 subsys->subtype = NVME_NQN_NVME; 2893 2894 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2895 dev_err(ctrl->device, 2896 "Subsystem %s is not a discovery controller", 2897 subsys->subnqn); 2898 kfree(subsys); 2899 return -EINVAL; 2900 } 2901 subsys->awupf = le16_to_cpu(id->awupf); 2902 nvme_mpath_default_iopolicy(subsys); 2903 2904 subsys->dev.class = &nvme_subsys_class; 2905 subsys->dev.release = nvme_release_subsystem; 2906 subsys->dev.groups = nvme_subsys_attrs_groups; 2907 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2908 device_initialize(&subsys->dev); 2909 2910 mutex_lock(&nvme_subsystems_lock); 2911 found = __nvme_find_get_subsystem(subsys->subnqn); 2912 if (found) { 2913 put_device(&subsys->dev); 2914 subsys = found; 2915 2916 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2917 ret = -EINVAL; 2918 goto out_put_subsystem; 2919 } 2920 } else { 2921 ret = device_add(&subsys->dev); 2922 if (ret) { 2923 dev_err(ctrl->device, 2924 "failed to register subsystem device.\n"); 2925 put_device(&subsys->dev); 2926 goto out_unlock; 2927 } 2928 ida_init(&subsys->ns_ida); 2929 list_add_tail(&subsys->entry, &nvme_subsystems); 2930 } 2931 2932 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2933 dev_name(ctrl->device)); 2934 if (ret) { 2935 dev_err(ctrl->device, 2936 "failed to create sysfs link from subsystem.\n"); 2937 goto out_put_subsystem; 2938 } 2939 2940 if (!found) 2941 subsys->instance = ctrl->instance; 2942 ctrl->subsys = subsys; 2943 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2944 mutex_unlock(&nvme_subsystems_lock); 2945 return 0; 2946 2947 out_put_subsystem: 2948 nvme_put_subsystem(subsys); 2949 out_unlock: 2950 mutex_unlock(&nvme_subsystems_lock); 2951 return ret; 2952 } 2953 2954 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2955 void *log, size_t size, u64 offset) 2956 { 2957 struct nvme_command c = { }; 2958 u32 dwlen = nvme_bytes_to_numd(size); 2959 2960 c.get_log_page.opcode = nvme_admin_get_log_page; 2961 c.get_log_page.nsid = cpu_to_le32(nsid); 2962 c.get_log_page.lid = log_page; 2963 c.get_log_page.lsp = lsp; 2964 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2965 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2966 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2967 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2968 c.get_log_page.csi = csi; 2969 2970 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2971 } 2972 2973 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2974 struct nvme_effects_log **log) 2975 { 2976 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2977 int ret; 2978 2979 if (cel) 2980 goto out; 2981 2982 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2983 if (!cel) 2984 return -ENOMEM; 2985 2986 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2987 cel, sizeof(*cel), 0); 2988 if (ret) { 2989 kfree(cel); 2990 return ret; 2991 } 2992 2993 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2994 out: 2995 *log = cel; 2996 return 0; 2997 } 2998 2999 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3000 { 3001 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3002 3003 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3004 return UINT_MAX; 3005 return val; 3006 } 3007 3008 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3009 { 3010 struct nvme_command c = { }; 3011 struct nvme_id_ctrl_nvm *id; 3012 int ret; 3013 3014 /* 3015 * Even though NVMe spec explicitly states that MDTS is not applicable 3016 * to the write-zeroes, we are cautious and limit the size to the 3017 * controllers max_hw_sectors value, which is based on the MDTS field 3018 * and possibly other limiting factors. 3019 */ 3020 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3021 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3022 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3023 else 3024 ctrl->max_zeroes_sectors = 0; 3025 3026 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3027 nvme_ctrl_limited_cns(ctrl) || 3028 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3029 return 0; 3030 3031 id = kzalloc(sizeof(*id), GFP_KERNEL); 3032 if (!id) 3033 return -ENOMEM; 3034 3035 c.identify.opcode = nvme_admin_identify; 3036 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3037 c.identify.csi = NVME_CSI_NVM; 3038 3039 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3040 if (ret) 3041 goto free_data; 3042 3043 ctrl->dmrl = id->dmrl; 3044 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3045 if (id->wzsl) 3046 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3047 3048 free_data: 3049 if (ret > 0) 3050 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3051 kfree(id); 3052 return ret; 3053 } 3054 3055 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3056 { 3057 struct nvme_effects_log *log = ctrl->effects; 3058 3059 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3060 NVME_CMD_EFFECTS_NCC | 3061 NVME_CMD_EFFECTS_CSE_MASK); 3062 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3063 NVME_CMD_EFFECTS_CSE_MASK); 3064 3065 /* 3066 * The spec says the result of a security receive command depends on 3067 * the previous security send command. As such, many vendors log this 3068 * command as one to submitted only when no other commands to the same 3069 * namespace are outstanding. The intention is to tell the host to 3070 * prevent mixing security send and receive. 3071 * 3072 * This driver can only enforce such exclusive access against IO 3073 * queues, though. We are not readily able to enforce such a rule for 3074 * two commands to the admin queue, which is the only queue that 3075 * matters for this command. 3076 * 3077 * Rather than blindly freezing the IO queues for this effect that 3078 * doesn't even apply to IO, mask it off. 3079 */ 3080 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3081 3082 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3083 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3084 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3085 } 3086 3087 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3088 { 3089 int ret = 0; 3090 3091 if (ctrl->effects) 3092 return 0; 3093 3094 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3095 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3096 if (ret < 0) 3097 return ret; 3098 } 3099 3100 if (!ctrl->effects) { 3101 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3102 if (!ctrl->effects) 3103 return -ENOMEM; 3104 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3105 } 3106 3107 nvme_init_known_nvm_effects(ctrl); 3108 return 0; 3109 } 3110 3111 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3112 { 3113 /* 3114 * In fabrics we need to verify the cntlid matches the 3115 * admin connect 3116 */ 3117 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3118 dev_err(ctrl->device, 3119 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3120 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3121 return -EINVAL; 3122 } 3123 3124 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3125 dev_err(ctrl->device, 3126 "keep-alive support is mandatory for fabrics\n"); 3127 return -EINVAL; 3128 } 3129 3130 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3131 dev_err(ctrl->device, 3132 "I/O queue command capsule supported size %d < 4\n", 3133 ctrl->ioccsz); 3134 return -EINVAL; 3135 } 3136 3137 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3138 dev_err(ctrl->device, 3139 "I/O queue response capsule supported size %d < 1\n", 3140 ctrl->iorcsz); 3141 return -EINVAL; 3142 } 3143 3144 if (!ctrl->maxcmd) { 3145 dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); 3146 return -EINVAL; 3147 } 3148 3149 return 0; 3150 } 3151 3152 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3153 { 3154 struct queue_limits lim; 3155 struct nvme_id_ctrl *id; 3156 u32 max_hw_sectors; 3157 bool prev_apst_enabled; 3158 int ret; 3159 3160 ret = nvme_identify_ctrl(ctrl, &id); 3161 if (ret) { 3162 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3163 return -EIO; 3164 } 3165 3166 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3167 ctrl->cntlid = le16_to_cpu(id->cntlid); 3168 3169 if (!ctrl->identified) { 3170 unsigned int i; 3171 3172 /* 3173 * Check for quirks. Quirk can depend on firmware version, 3174 * so, in principle, the set of quirks present can change 3175 * across a reset. As a possible future enhancement, we 3176 * could re-scan for quirks every time we reinitialize 3177 * the device, but we'd have to make sure that the driver 3178 * behaves intelligently if the quirks change. 3179 */ 3180 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3181 if (quirk_matches(id, &core_quirks[i])) 3182 ctrl->quirks |= core_quirks[i].quirks; 3183 } 3184 3185 ret = nvme_init_subsystem(ctrl, id); 3186 if (ret) 3187 goto out_free; 3188 3189 ret = nvme_init_effects(ctrl, id); 3190 if (ret) 3191 goto out_free; 3192 } 3193 memcpy(ctrl->subsys->firmware_rev, id->fr, 3194 sizeof(ctrl->subsys->firmware_rev)); 3195 3196 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3197 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3198 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3199 } 3200 3201 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3202 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3203 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3204 3205 ctrl->oacs = le16_to_cpu(id->oacs); 3206 ctrl->oncs = le16_to_cpu(id->oncs); 3207 ctrl->mtfa = le16_to_cpu(id->mtfa); 3208 ctrl->oaes = le32_to_cpu(id->oaes); 3209 ctrl->wctemp = le16_to_cpu(id->wctemp); 3210 ctrl->cctemp = le16_to_cpu(id->cctemp); 3211 3212 atomic_set(&ctrl->abort_limit, id->acl + 1); 3213 ctrl->vwc = id->vwc; 3214 if (id->mdts) 3215 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3216 else 3217 max_hw_sectors = UINT_MAX; 3218 ctrl->max_hw_sectors = 3219 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3220 3221 lim = queue_limits_start_update(ctrl->admin_q); 3222 nvme_set_ctrl_limits(ctrl, &lim); 3223 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3224 if (ret) 3225 goto out_free; 3226 3227 ctrl->sgls = le32_to_cpu(id->sgls); 3228 ctrl->kas = le16_to_cpu(id->kas); 3229 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3230 ctrl->ctratt = le32_to_cpu(id->ctratt); 3231 3232 ctrl->cntrltype = id->cntrltype; 3233 ctrl->dctype = id->dctype; 3234 3235 if (id->rtd3e) { 3236 /* us -> s */ 3237 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3238 3239 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3240 shutdown_timeout, 60); 3241 3242 if (ctrl->shutdown_timeout != shutdown_timeout) 3243 dev_info(ctrl->device, 3244 "D3 entry latency set to %u seconds\n", 3245 ctrl->shutdown_timeout); 3246 } else 3247 ctrl->shutdown_timeout = shutdown_timeout; 3248 3249 ctrl->npss = id->npss; 3250 ctrl->apsta = id->apsta; 3251 prev_apst_enabled = ctrl->apst_enabled; 3252 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3253 if (force_apst && id->apsta) { 3254 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3255 ctrl->apst_enabled = true; 3256 } else { 3257 ctrl->apst_enabled = false; 3258 } 3259 } else { 3260 ctrl->apst_enabled = id->apsta; 3261 } 3262 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3263 3264 if (ctrl->ops->flags & NVME_F_FABRICS) { 3265 ctrl->icdoff = le16_to_cpu(id->icdoff); 3266 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3267 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3268 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3269 3270 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3271 if (ret) 3272 goto out_free; 3273 } else { 3274 ctrl->hmpre = le32_to_cpu(id->hmpre); 3275 ctrl->hmmin = le32_to_cpu(id->hmmin); 3276 ctrl->hmminds = le32_to_cpu(id->hmminds); 3277 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3278 } 3279 3280 ret = nvme_mpath_init_identify(ctrl, id); 3281 if (ret < 0) 3282 goto out_free; 3283 3284 if (ctrl->apst_enabled && !prev_apst_enabled) 3285 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3286 else if (!ctrl->apst_enabled && prev_apst_enabled) 3287 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3288 3289 out_free: 3290 kfree(id); 3291 return ret; 3292 } 3293 3294 /* 3295 * Initialize the cached copies of the Identify data and various controller 3296 * register in our nvme_ctrl structure. This should be called as soon as 3297 * the admin queue is fully up and running. 3298 */ 3299 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3300 { 3301 int ret; 3302 3303 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3304 if (ret) { 3305 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3306 return ret; 3307 } 3308 3309 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3310 3311 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3312 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3313 3314 ret = nvme_init_identify(ctrl); 3315 if (ret) 3316 return ret; 3317 3318 ret = nvme_configure_apst(ctrl); 3319 if (ret < 0) 3320 return ret; 3321 3322 ret = nvme_configure_timestamp(ctrl); 3323 if (ret < 0) 3324 return ret; 3325 3326 ret = nvme_configure_host_options(ctrl); 3327 if (ret < 0) 3328 return ret; 3329 3330 nvme_configure_opal(ctrl, was_suspended); 3331 3332 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3333 /* 3334 * Do not return errors unless we are in a controller reset, 3335 * the controller works perfectly fine without hwmon. 3336 */ 3337 ret = nvme_hwmon_init(ctrl); 3338 if (ret == -EINTR) 3339 return ret; 3340 } 3341 3342 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3343 ctrl->identified = true; 3344 3345 nvme_start_keep_alive(ctrl); 3346 3347 return 0; 3348 } 3349 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3350 3351 static int nvme_dev_open(struct inode *inode, struct file *file) 3352 { 3353 struct nvme_ctrl *ctrl = 3354 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3355 3356 switch (nvme_ctrl_state(ctrl)) { 3357 case NVME_CTRL_LIVE: 3358 break; 3359 default: 3360 return -EWOULDBLOCK; 3361 } 3362 3363 nvme_get_ctrl(ctrl); 3364 if (!try_module_get(ctrl->ops->module)) { 3365 nvme_put_ctrl(ctrl); 3366 return -EINVAL; 3367 } 3368 3369 file->private_data = ctrl; 3370 return 0; 3371 } 3372 3373 static int nvme_dev_release(struct inode *inode, struct file *file) 3374 { 3375 struct nvme_ctrl *ctrl = 3376 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3377 3378 module_put(ctrl->ops->module); 3379 nvme_put_ctrl(ctrl); 3380 return 0; 3381 } 3382 3383 static const struct file_operations nvme_dev_fops = { 3384 .owner = THIS_MODULE, 3385 .open = nvme_dev_open, 3386 .release = nvme_dev_release, 3387 .unlocked_ioctl = nvme_dev_ioctl, 3388 .compat_ioctl = compat_ptr_ioctl, 3389 .uring_cmd = nvme_dev_uring_cmd, 3390 }; 3391 3392 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3393 unsigned nsid) 3394 { 3395 struct nvme_ns_head *h; 3396 3397 lockdep_assert_held(&ctrl->subsys->lock); 3398 3399 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3400 /* 3401 * Private namespaces can share NSIDs under some conditions. 3402 * In that case we can't use the same ns_head for namespaces 3403 * with the same NSID. 3404 */ 3405 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3406 continue; 3407 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3408 return h; 3409 } 3410 3411 return NULL; 3412 } 3413 3414 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3415 struct nvme_ns_ids *ids) 3416 { 3417 bool has_uuid = !uuid_is_null(&ids->uuid); 3418 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3419 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3420 struct nvme_ns_head *h; 3421 3422 lockdep_assert_held(&subsys->lock); 3423 3424 list_for_each_entry(h, &subsys->nsheads, entry) { 3425 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3426 return -EINVAL; 3427 if (has_nguid && 3428 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3429 return -EINVAL; 3430 if (has_eui64 && 3431 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3432 return -EINVAL; 3433 } 3434 3435 return 0; 3436 } 3437 3438 static void nvme_cdev_rel(struct device *dev) 3439 { 3440 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3441 } 3442 3443 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3444 { 3445 cdev_device_del(cdev, cdev_device); 3446 put_device(cdev_device); 3447 } 3448 3449 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3450 const struct file_operations *fops, struct module *owner) 3451 { 3452 int minor, ret; 3453 3454 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3455 if (minor < 0) 3456 return minor; 3457 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3458 cdev_device->class = &nvme_ns_chr_class; 3459 cdev_device->release = nvme_cdev_rel; 3460 device_initialize(cdev_device); 3461 cdev_init(cdev, fops); 3462 cdev->owner = owner; 3463 ret = cdev_device_add(cdev, cdev_device); 3464 if (ret) 3465 put_device(cdev_device); 3466 3467 return ret; 3468 } 3469 3470 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3471 { 3472 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3473 } 3474 3475 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3476 { 3477 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3478 return 0; 3479 } 3480 3481 static const struct file_operations nvme_ns_chr_fops = { 3482 .owner = THIS_MODULE, 3483 .open = nvme_ns_chr_open, 3484 .release = nvme_ns_chr_release, 3485 .unlocked_ioctl = nvme_ns_chr_ioctl, 3486 .compat_ioctl = compat_ptr_ioctl, 3487 .uring_cmd = nvme_ns_chr_uring_cmd, 3488 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3489 }; 3490 3491 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3492 { 3493 int ret; 3494 3495 ns->cdev_device.parent = ns->ctrl->device; 3496 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3497 ns->ctrl->instance, ns->head->instance); 3498 if (ret) 3499 return ret; 3500 3501 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3502 ns->ctrl->ops->module); 3503 } 3504 3505 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3506 struct nvme_ns_info *info) 3507 { 3508 struct nvme_ns_head *head; 3509 size_t size = sizeof(*head); 3510 int ret = -ENOMEM; 3511 3512 #ifdef CONFIG_NVME_MULTIPATH 3513 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3514 #endif 3515 3516 head = kzalloc(size, GFP_KERNEL); 3517 if (!head) 3518 goto out; 3519 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3520 if (ret < 0) 3521 goto out_free_head; 3522 head->instance = ret; 3523 INIT_LIST_HEAD(&head->list); 3524 ret = init_srcu_struct(&head->srcu); 3525 if (ret) 3526 goto out_ida_remove; 3527 head->subsys = ctrl->subsys; 3528 head->ns_id = info->nsid; 3529 head->ids = info->ids; 3530 head->shared = info->is_shared; 3531 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3532 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3533 kref_init(&head->ref); 3534 3535 if (head->ids.csi) { 3536 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3537 if (ret) 3538 goto out_cleanup_srcu; 3539 } else 3540 head->effects = ctrl->effects; 3541 3542 ret = nvme_mpath_alloc_disk(ctrl, head); 3543 if (ret) 3544 goto out_cleanup_srcu; 3545 3546 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3547 3548 kref_get(&ctrl->subsys->ref); 3549 3550 return head; 3551 out_cleanup_srcu: 3552 cleanup_srcu_struct(&head->srcu); 3553 out_ida_remove: 3554 ida_free(&ctrl->subsys->ns_ida, head->instance); 3555 out_free_head: 3556 kfree(head); 3557 out: 3558 if (ret > 0) 3559 ret = blk_status_to_errno(nvme_error_status(ret)); 3560 return ERR_PTR(ret); 3561 } 3562 3563 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3564 struct nvme_ns_ids *ids) 3565 { 3566 struct nvme_subsystem *s; 3567 int ret = 0; 3568 3569 /* 3570 * Note that this check is racy as we try to avoid holding the global 3571 * lock over the whole ns_head creation. But it is only intended as 3572 * a sanity check anyway. 3573 */ 3574 mutex_lock(&nvme_subsystems_lock); 3575 list_for_each_entry(s, &nvme_subsystems, entry) { 3576 if (s == this) 3577 continue; 3578 mutex_lock(&s->lock); 3579 ret = nvme_subsys_check_duplicate_ids(s, ids); 3580 mutex_unlock(&s->lock); 3581 if (ret) 3582 break; 3583 } 3584 mutex_unlock(&nvme_subsystems_lock); 3585 3586 return ret; 3587 } 3588 3589 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3590 { 3591 struct nvme_ctrl *ctrl = ns->ctrl; 3592 struct nvme_ns_head *head = NULL; 3593 int ret; 3594 3595 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3596 if (ret) { 3597 /* 3598 * We've found two different namespaces on two different 3599 * subsystems that report the same ID. This is pretty nasty 3600 * for anything that actually requires unique device 3601 * identification. In the kernel we need this for multipathing, 3602 * and in user space the /dev/disk/by-id/ links rely on it. 3603 * 3604 * If the device also claims to be multi-path capable back off 3605 * here now and refuse the probe the second device as this is a 3606 * recipe for data corruption. If not this is probably a 3607 * cheap consumer device if on the PCIe bus, so let the user 3608 * proceed and use the shiny toy, but warn that with changing 3609 * probing order (which due to our async probing could just be 3610 * device taking longer to startup) the other device could show 3611 * up at any time. 3612 */ 3613 nvme_print_device_info(ctrl); 3614 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3615 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3616 info->is_shared)) { 3617 dev_err(ctrl->device, 3618 "ignoring nsid %d because of duplicate IDs\n", 3619 info->nsid); 3620 return ret; 3621 } 3622 3623 dev_err(ctrl->device, 3624 "clearing duplicate IDs for nsid %d\n", info->nsid); 3625 dev_err(ctrl->device, 3626 "use of /dev/disk/by-id/ may cause data corruption\n"); 3627 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3628 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3629 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3630 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3631 } 3632 3633 mutex_lock(&ctrl->subsys->lock); 3634 head = nvme_find_ns_head(ctrl, info->nsid); 3635 if (!head) { 3636 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3637 if (ret) { 3638 dev_err(ctrl->device, 3639 "duplicate IDs in subsystem for nsid %d\n", 3640 info->nsid); 3641 goto out_unlock; 3642 } 3643 head = nvme_alloc_ns_head(ctrl, info); 3644 if (IS_ERR(head)) { 3645 ret = PTR_ERR(head); 3646 goto out_unlock; 3647 } 3648 } else { 3649 ret = -EINVAL; 3650 if (!info->is_shared || !head->shared) { 3651 dev_err(ctrl->device, 3652 "Duplicate unshared namespace %d\n", 3653 info->nsid); 3654 goto out_put_ns_head; 3655 } 3656 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3657 dev_err(ctrl->device, 3658 "IDs don't match for shared namespace %d\n", 3659 info->nsid); 3660 goto out_put_ns_head; 3661 } 3662 3663 if (!multipath) { 3664 dev_warn(ctrl->device, 3665 "Found shared namespace %d, but multipathing not supported.\n", 3666 info->nsid); 3667 dev_warn_once(ctrl->device, 3668 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3669 } 3670 } 3671 3672 list_add_tail_rcu(&ns->siblings, &head->list); 3673 ns->head = head; 3674 mutex_unlock(&ctrl->subsys->lock); 3675 return 0; 3676 3677 out_put_ns_head: 3678 nvme_put_ns_head(head); 3679 out_unlock: 3680 mutex_unlock(&ctrl->subsys->lock); 3681 return ret; 3682 } 3683 3684 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3685 { 3686 struct nvme_ns *ns, *ret = NULL; 3687 int srcu_idx; 3688 3689 srcu_idx = srcu_read_lock(&ctrl->srcu); 3690 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 3691 if (ns->head->ns_id == nsid) { 3692 if (!nvme_get_ns(ns)) 3693 continue; 3694 ret = ns; 3695 break; 3696 } 3697 if (ns->head->ns_id > nsid) 3698 break; 3699 } 3700 srcu_read_unlock(&ctrl->srcu, srcu_idx); 3701 return ret; 3702 } 3703 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3704 3705 /* 3706 * Add the namespace to the controller list while keeping the list ordered. 3707 */ 3708 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3709 { 3710 struct nvme_ns *tmp; 3711 3712 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3713 if (tmp->head->ns_id < ns->head->ns_id) { 3714 list_add_rcu(&ns->list, &tmp->list); 3715 return; 3716 } 3717 } 3718 list_add(&ns->list, &ns->ctrl->namespaces); 3719 } 3720 3721 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3722 { 3723 struct nvme_ns *ns; 3724 struct gendisk *disk; 3725 int node = ctrl->numa_node; 3726 3727 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3728 if (!ns) 3729 return; 3730 3731 disk = blk_mq_alloc_disk(ctrl->tagset, NULL, ns); 3732 if (IS_ERR(disk)) 3733 goto out_free_ns; 3734 disk->fops = &nvme_bdev_ops; 3735 disk->private_data = ns; 3736 3737 ns->disk = disk; 3738 ns->queue = disk->queue; 3739 3740 if (ctrl->opts && ctrl->opts->data_digest) 3741 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3742 3743 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3744 if (ctrl->ops->supports_pci_p2pdma && 3745 ctrl->ops->supports_pci_p2pdma(ctrl)) 3746 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3747 3748 ns->ctrl = ctrl; 3749 kref_init(&ns->kref); 3750 3751 if (nvme_init_ns_head(ns, info)) 3752 goto out_cleanup_disk; 3753 3754 /* 3755 * If multipathing is enabled, the device name for all disks and not 3756 * just those that represent shared namespaces needs to be based on the 3757 * subsystem instance. Using the controller instance for private 3758 * namespaces could lead to naming collisions between shared and private 3759 * namespaces if they don't use a common numbering scheme. 3760 * 3761 * If multipathing is not enabled, disk names must use the controller 3762 * instance as shared namespaces will show up as multiple block 3763 * devices. 3764 */ 3765 if (nvme_ns_head_multipath(ns->head)) { 3766 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3767 ctrl->instance, ns->head->instance); 3768 disk->flags |= GENHD_FL_HIDDEN; 3769 } else if (multipath) { 3770 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3771 ns->head->instance); 3772 } else { 3773 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3774 ns->head->instance); 3775 } 3776 3777 if (nvme_update_ns_info(ns, info)) 3778 goto out_unlink_ns; 3779 3780 mutex_lock(&ctrl->namespaces_lock); 3781 /* 3782 * Ensure that no namespaces are added to the ctrl list after the queues 3783 * are frozen, thereby avoiding a deadlock between scan and reset. 3784 */ 3785 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3786 mutex_unlock(&ctrl->namespaces_lock); 3787 goto out_unlink_ns; 3788 } 3789 nvme_ns_add_to_ctrl_list(ns); 3790 mutex_unlock(&ctrl->namespaces_lock); 3791 synchronize_srcu(&ctrl->srcu); 3792 nvme_get_ctrl(ctrl); 3793 3794 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3795 goto out_cleanup_ns_from_list; 3796 3797 if (!nvme_ns_head_multipath(ns->head)) 3798 nvme_add_ns_cdev(ns); 3799 3800 nvme_mpath_add_disk(ns, info->anagrpid); 3801 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3802 3803 /* 3804 * Set ns->disk->device->driver_data to ns so we can access 3805 * ns->head->passthru_err_log_enabled in 3806 * nvme_io_passthru_err_log_enabled_[store | show](). 3807 */ 3808 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3809 3810 return; 3811 3812 out_cleanup_ns_from_list: 3813 nvme_put_ctrl(ctrl); 3814 mutex_lock(&ctrl->namespaces_lock); 3815 list_del_rcu(&ns->list); 3816 mutex_unlock(&ctrl->namespaces_lock); 3817 synchronize_srcu(&ctrl->srcu); 3818 out_unlink_ns: 3819 mutex_lock(&ctrl->subsys->lock); 3820 list_del_rcu(&ns->siblings); 3821 if (list_empty(&ns->head->list)) 3822 list_del_init(&ns->head->entry); 3823 mutex_unlock(&ctrl->subsys->lock); 3824 nvme_put_ns_head(ns->head); 3825 out_cleanup_disk: 3826 put_disk(disk); 3827 out_free_ns: 3828 kfree(ns); 3829 } 3830 3831 static void nvme_ns_remove(struct nvme_ns *ns) 3832 { 3833 bool last_path = false; 3834 3835 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3836 return; 3837 3838 clear_bit(NVME_NS_READY, &ns->flags); 3839 set_capacity(ns->disk, 0); 3840 nvme_fault_inject_fini(&ns->fault_inject); 3841 3842 /* 3843 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3844 * this ns going back into current_path. 3845 */ 3846 synchronize_srcu(&ns->head->srcu); 3847 3848 /* wait for concurrent submissions */ 3849 if (nvme_mpath_clear_current_path(ns)) 3850 synchronize_srcu(&ns->head->srcu); 3851 3852 mutex_lock(&ns->ctrl->subsys->lock); 3853 list_del_rcu(&ns->siblings); 3854 if (list_empty(&ns->head->list)) { 3855 list_del_init(&ns->head->entry); 3856 last_path = true; 3857 } 3858 mutex_unlock(&ns->ctrl->subsys->lock); 3859 3860 /* guarantee not available in head->list */ 3861 synchronize_srcu(&ns->head->srcu); 3862 3863 if (!nvme_ns_head_multipath(ns->head)) 3864 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3865 del_gendisk(ns->disk); 3866 3867 mutex_lock(&ns->ctrl->namespaces_lock); 3868 list_del_rcu(&ns->list); 3869 mutex_unlock(&ns->ctrl->namespaces_lock); 3870 synchronize_srcu(&ns->ctrl->srcu); 3871 3872 if (last_path) 3873 nvme_mpath_shutdown_disk(ns->head); 3874 nvme_put_ns(ns); 3875 } 3876 3877 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3878 { 3879 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3880 3881 if (ns) { 3882 nvme_ns_remove(ns); 3883 nvme_put_ns(ns); 3884 } 3885 } 3886 3887 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3888 { 3889 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3890 3891 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3892 dev_err(ns->ctrl->device, 3893 "identifiers changed for nsid %d\n", ns->head->ns_id); 3894 goto out; 3895 } 3896 3897 ret = nvme_update_ns_info(ns, info); 3898 out: 3899 /* 3900 * Only remove the namespace if we got a fatal error back from the 3901 * device, otherwise ignore the error and just move on. 3902 * 3903 * TODO: we should probably schedule a delayed retry here. 3904 */ 3905 if (ret > 0 && (ret & NVME_SC_DNR)) 3906 nvme_ns_remove(ns); 3907 } 3908 3909 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3910 { 3911 struct nvme_ns_info info = { .nsid = nsid }; 3912 struct nvme_ns *ns; 3913 int ret; 3914 3915 if (nvme_identify_ns_descs(ctrl, &info)) 3916 return; 3917 3918 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 3919 dev_warn(ctrl->device, 3920 "command set not reported for nsid: %d\n", nsid); 3921 return; 3922 } 3923 3924 /* 3925 * If available try to use the Command Set Idependent Identify Namespace 3926 * data structure to find all the generic information that is needed to 3927 * set up a namespace. If not fall back to the legacy version. 3928 */ 3929 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 3930 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 3931 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 3932 else 3933 ret = nvme_ns_info_from_identify(ctrl, &info); 3934 3935 if (info.is_removed) 3936 nvme_ns_remove_by_nsid(ctrl, nsid); 3937 3938 /* 3939 * Ignore the namespace if it is not ready. We will get an AEN once it 3940 * becomes ready and restart the scan. 3941 */ 3942 if (ret || !info.is_ready) 3943 return; 3944 3945 ns = nvme_find_get_ns(ctrl, nsid); 3946 if (ns) { 3947 nvme_validate_ns(ns, &info); 3948 nvme_put_ns(ns); 3949 } else { 3950 nvme_alloc_ns(ctrl, &info); 3951 } 3952 } 3953 3954 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3955 unsigned nsid) 3956 { 3957 struct nvme_ns *ns, *next; 3958 LIST_HEAD(rm_list); 3959 3960 mutex_lock(&ctrl->namespaces_lock); 3961 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3962 if (ns->head->ns_id > nsid) 3963 list_splice_init_rcu(&ns->list, &rm_list, 3964 synchronize_rcu); 3965 } 3966 mutex_unlock(&ctrl->namespaces_lock); 3967 synchronize_srcu(&ctrl->srcu); 3968 3969 list_for_each_entry_safe(ns, next, &rm_list, list) 3970 nvme_ns_remove(ns); 3971 } 3972 3973 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3974 { 3975 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3976 __le32 *ns_list; 3977 u32 prev = 0; 3978 int ret = 0, i; 3979 3980 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3981 if (!ns_list) 3982 return -ENOMEM; 3983 3984 for (;;) { 3985 struct nvme_command cmd = { 3986 .identify.opcode = nvme_admin_identify, 3987 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 3988 .identify.nsid = cpu_to_le32(prev), 3989 }; 3990 3991 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 3992 NVME_IDENTIFY_DATA_SIZE); 3993 if (ret) { 3994 dev_warn(ctrl->device, 3995 "Identify NS List failed (status=0x%x)\n", ret); 3996 goto free; 3997 } 3998 3999 for (i = 0; i < nr_entries; i++) { 4000 u32 nsid = le32_to_cpu(ns_list[i]); 4001 4002 if (!nsid) /* end of the list? */ 4003 goto out; 4004 nvme_scan_ns(ctrl, nsid); 4005 while (++prev < nsid) 4006 nvme_ns_remove_by_nsid(ctrl, prev); 4007 } 4008 } 4009 out: 4010 nvme_remove_invalid_namespaces(ctrl, prev); 4011 free: 4012 kfree(ns_list); 4013 return ret; 4014 } 4015 4016 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4017 { 4018 struct nvme_id_ctrl *id; 4019 u32 nn, i; 4020 4021 if (nvme_identify_ctrl(ctrl, &id)) 4022 return; 4023 nn = le32_to_cpu(id->nn); 4024 kfree(id); 4025 4026 for (i = 1; i <= nn; i++) 4027 nvme_scan_ns(ctrl, i); 4028 4029 nvme_remove_invalid_namespaces(ctrl, nn); 4030 } 4031 4032 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4033 { 4034 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4035 __le32 *log; 4036 int error; 4037 4038 log = kzalloc(log_size, GFP_KERNEL); 4039 if (!log) 4040 return; 4041 4042 /* 4043 * We need to read the log to clear the AEN, but we don't want to rely 4044 * on it for the changed namespace information as userspace could have 4045 * raced with us in reading the log page, which could cause us to miss 4046 * updates. 4047 */ 4048 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4049 NVME_CSI_NVM, log, log_size, 0); 4050 if (error) 4051 dev_warn(ctrl->device, 4052 "reading changed ns log failed: %d\n", error); 4053 4054 kfree(log); 4055 } 4056 4057 static void nvme_scan_work(struct work_struct *work) 4058 { 4059 struct nvme_ctrl *ctrl = 4060 container_of(work, struct nvme_ctrl, scan_work); 4061 int ret; 4062 4063 /* No tagset on a live ctrl means IO queues could not created */ 4064 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4065 return; 4066 4067 /* 4068 * Identify controller limits can change at controller reset due to 4069 * new firmware download, even though it is not common we cannot ignore 4070 * such scenario. Controller's non-mdts limits are reported in the unit 4071 * of logical blocks that is dependent on the format of attached 4072 * namespace. Hence re-read the limits at the time of ns allocation. 4073 */ 4074 ret = nvme_init_non_mdts_limits(ctrl); 4075 if (ret < 0) { 4076 dev_warn(ctrl->device, 4077 "reading non-mdts-limits failed: %d\n", ret); 4078 return; 4079 } 4080 4081 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4082 dev_info(ctrl->device, "rescanning namespaces.\n"); 4083 nvme_clear_changed_ns_log(ctrl); 4084 } 4085 4086 mutex_lock(&ctrl->scan_lock); 4087 if (nvme_ctrl_limited_cns(ctrl)) { 4088 nvme_scan_ns_sequential(ctrl); 4089 } else { 4090 /* 4091 * Fall back to sequential scan if DNR is set to handle broken 4092 * devices which should support Identify NS List (as per the VS 4093 * they report) but don't actually support it. 4094 */ 4095 ret = nvme_scan_ns_list(ctrl); 4096 if (ret > 0 && ret & NVME_SC_DNR) 4097 nvme_scan_ns_sequential(ctrl); 4098 } 4099 mutex_unlock(&ctrl->scan_lock); 4100 } 4101 4102 /* 4103 * This function iterates the namespace list unlocked to allow recovery from 4104 * controller failure. It is up to the caller to ensure the namespace list is 4105 * not modified by scan work while this function is executing. 4106 */ 4107 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4108 { 4109 struct nvme_ns *ns, *next; 4110 LIST_HEAD(ns_list); 4111 4112 /* 4113 * make sure to requeue I/O to all namespaces as these 4114 * might result from the scan itself and must complete 4115 * for the scan_work to make progress 4116 */ 4117 nvme_mpath_clear_ctrl_paths(ctrl); 4118 4119 /* 4120 * Unquiesce io queues so any pending IO won't hang, especially 4121 * those submitted from scan work 4122 */ 4123 nvme_unquiesce_io_queues(ctrl); 4124 4125 /* prevent racing with ns scanning */ 4126 flush_work(&ctrl->scan_work); 4127 4128 /* 4129 * The dead states indicates the controller was not gracefully 4130 * disconnected. In that case, we won't be able to flush any data while 4131 * removing the namespaces' disks; fail all the queues now to avoid 4132 * potentially having to clean up the failed sync later. 4133 */ 4134 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4135 nvme_mark_namespaces_dead(ctrl); 4136 4137 /* this is a no-op when called from the controller reset handler */ 4138 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4139 4140 mutex_lock(&ctrl->namespaces_lock); 4141 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4142 mutex_unlock(&ctrl->namespaces_lock); 4143 synchronize_srcu(&ctrl->srcu); 4144 4145 list_for_each_entry_safe(ns, next, &ns_list, list) 4146 nvme_ns_remove(ns); 4147 } 4148 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4149 4150 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4151 { 4152 const struct nvme_ctrl *ctrl = 4153 container_of(dev, struct nvme_ctrl, ctrl_device); 4154 struct nvmf_ctrl_options *opts = ctrl->opts; 4155 int ret; 4156 4157 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4158 if (ret) 4159 return ret; 4160 4161 if (opts) { 4162 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4163 if (ret) 4164 return ret; 4165 4166 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4167 opts->trsvcid ?: "none"); 4168 if (ret) 4169 return ret; 4170 4171 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4172 opts->host_traddr ?: "none"); 4173 if (ret) 4174 return ret; 4175 4176 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4177 opts->host_iface ?: "none"); 4178 } 4179 return ret; 4180 } 4181 4182 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4183 { 4184 char *envp[2] = { envdata, NULL }; 4185 4186 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4187 } 4188 4189 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4190 { 4191 char *envp[2] = { NULL, NULL }; 4192 u32 aen_result = ctrl->aen_result; 4193 4194 ctrl->aen_result = 0; 4195 if (!aen_result) 4196 return; 4197 4198 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4199 if (!envp[0]) 4200 return; 4201 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4202 kfree(envp[0]); 4203 } 4204 4205 static void nvme_async_event_work(struct work_struct *work) 4206 { 4207 struct nvme_ctrl *ctrl = 4208 container_of(work, struct nvme_ctrl, async_event_work); 4209 4210 nvme_aen_uevent(ctrl); 4211 4212 /* 4213 * The transport drivers must guarantee AER submission here is safe by 4214 * flushing ctrl async_event_work after changing the controller state 4215 * from LIVE and before freeing the admin queue. 4216 */ 4217 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4218 ctrl->ops->submit_async_event(ctrl); 4219 } 4220 4221 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4222 { 4223 4224 u32 csts; 4225 4226 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4227 return false; 4228 4229 if (csts == ~0) 4230 return false; 4231 4232 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4233 } 4234 4235 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4236 { 4237 struct nvme_fw_slot_info_log *log; 4238 u8 next_fw_slot, cur_fw_slot; 4239 4240 log = kmalloc(sizeof(*log), GFP_KERNEL); 4241 if (!log) 4242 return; 4243 4244 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4245 log, sizeof(*log), 0)) { 4246 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4247 goto out_free_log; 4248 } 4249 4250 cur_fw_slot = log->afi & 0x7; 4251 next_fw_slot = (log->afi & 0x70) >> 4; 4252 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4253 dev_info(ctrl->device, 4254 "Firmware is activated after next Controller Level Reset\n"); 4255 goto out_free_log; 4256 } 4257 4258 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4259 sizeof(ctrl->subsys->firmware_rev)); 4260 4261 out_free_log: 4262 kfree(log); 4263 } 4264 4265 static void nvme_fw_act_work(struct work_struct *work) 4266 { 4267 struct nvme_ctrl *ctrl = container_of(work, 4268 struct nvme_ctrl, fw_act_work); 4269 unsigned long fw_act_timeout; 4270 4271 nvme_auth_stop(ctrl); 4272 4273 if (ctrl->mtfa) 4274 fw_act_timeout = jiffies + 4275 msecs_to_jiffies(ctrl->mtfa * 100); 4276 else 4277 fw_act_timeout = jiffies + 4278 msecs_to_jiffies(admin_timeout * 1000); 4279 4280 nvme_quiesce_io_queues(ctrl); 4281 while (nvme_ctrl_pp_status(ctrl)) { 4282 if (time_after(jiffies, fw_act_timeout)) { 4283 dev_warn(ctrl->device, 4284 "Fw activation timeout, reset controller\n"); 4285 nvme_try_sched_reset(ctrl); 4286 return; 4287 } 4288 msleep(100); 4289 } 4290 4291 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4292 return; 4293 4294 nvme_unquiesce_io_queues(ctrl); 4295 /* read FW slot information to clear the AER */ 4296 nvme_get_fw_slot_info(ctrl); 4297 4298 queue_work(nvme_wq, &ctrl->async_event_work); 4299 } 4300 4301 static u32 nvme_aer_type(u32 result) 4302 { 4303 return result & 0x7; 4304 } 4305 4306 static u32 nvme_aer_subtype(u32 result) 4307 { 4308 return (result & 0xff00) >> 8; 4309 } 4310 4311 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4312 { 4313 u32 aer_notice_type = nvme_aer_subtype(result); 4314 bool requeue = true; 4315 4316 switch (aer_notice_type) { 4317 case NVME_AER_NOTICE_NS_CHANGED: 4318 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4319 nvme_queue_scan(ctrl); 4320 break; 4321 case NVME_AER_NOTICE_FW_ACT_STARTING: 4322 /* 4323 * We are (ab)using the RESETTING state to prevent subsequent 4324 * recovery actions from interfering with the controller's 4325 * firmware activation. 4326 */ 4327 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4328 requeue = false; 4329 queue_work(nvme_wq, &ctrl->fw_act_work); 4330 } 4331 break; 4332 #ifdef CONFIG_NVME_MULTIPATH 4333 case NVME_AER_NOTICE_ANA: 4334 if (!ctrl->ana_log_buf) 4335 break; 4336 queue_work(nvme_wq, &ctrl->ana_work); 4337 break; 4338 #endif 4339 case NVME_AER_NOTICE_DISC_CHANGED: 4340 ctrl->aen_result = result; 4341 break; 4342 default: 4343 dev_warn(ctrl->device, "async event result %08x\n", result); 4344 } 4345 return requeue; 4346 } 4347 4348 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4349 { 4350 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4351 nvme_reset_ctrl(ctrl); 4352 } 4353 4354 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4355 volatile union nvme_result *res) 4356 { 4357 u32 result = le32_to_cpu(res->u32); 4358 u32 aer_type = nvme_aer_type(result); 4359 u32 aer_subtype = nvme_aer_subtype(result); 4360 bool requeue = true; 4361 4362 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4363 return; 4364 4365 trace_nvme_async_event(ctrl, result); 4366 switch (aer_type) { 4367 case NVME_AER_NOTICE: 4368 requeue = nvme_handle_aen_notice(ctrl, result); 4369 break; 4370 case NVME_AER_ERROR: 4371 /* 4372 * For a persistent internal error, don't run async_event_work 4373 * to submit a new AER. The controller reset will do it. 4374 */ 4375 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4376 nvme_handle_aer_persistent_error(ctrl); 4377 return; 4378 } 4379 fallthrough; 4380 case NVME_AER_SMART: 4381 case NVME_AER_CSS: 4382 case NVME_AER_VS: 4383 ctrl->aen_result = result; 4384 break; 4385 default: 4386 break; 4387 } 4388 4389 if (requeue) 4390 queue_work(nvme_wq, &ctrl->async_event_work); 4391 } 4392 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4393 4394 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4395 const struct blk_mq_ops *ops, unsigned int cmd_size) 4396 { 4397 struct queue_limits lim = {}; 4398 int ret; 4399 4400 memset(set, 0, sizeof(*set)); 4401 set->ops = ops; 4402 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4403 if (ctrl->ops->flags & NVME_F_FABRICS) 4404 /* Reserved for fabric connect and keep alive */ 4405 set->reserved_tags = 2; 4406 set->numa_node = ctrl->numa_node; 4407 set->flags = BLK_MQ_F_NO_SCHED; 4408 if (ctrl->ops->flags & NVME_F_BLOCKING) 4409 set->flags |= BLK_MQ_F_BLOCKING; 4410 set->cmd_size = cmd_size; 4411 set->driver_data = ctrl; 4412 set->nr_hw_queues = 1; 4413 set->timeout = NVME_ADMIN_TIMEOUT; 4414 ret = blk_mq_alloc_tag_set(set); 4415 if (ret) 4416 return ret; 4417 4418 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4419 if (IS_ERR(ctrl->admin_q)) { 4420 ret = PTR_ERR(ctrl->admin_q); 4421 goto out_free_tagset; 4422 } 4423 4424 if (ctrl->ops->flags & NVME_F_FABRICS) { 4425 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4426 if (IS_ERR(ctrl->fabrics_q)) { 4427 ret = PTR_ERR(ctrl->fabrics_q); 4428 goto out_cleanup_admin_q; 4429 } 4430 } 4431 4432 ctrl->admin_tagset = set; 4433 return 0; 4434 4435 out_cleanup_admin_q: 4436 blk_mq_destroy_queue(ctrl->admin_q); 4437 blk_put_queue(ctrl->admin_q); 4438 out_free_tagset: 4439 blk_mq_free_tag_set(set); 4440 ctrl->admin_q = NULL; 4441 ctrl->fabrics_q = NULL; 4442 return ret; 4443 } 4444 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4445 4446 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4447 { 4448 blk_mq_destroy_queue(ctrl->admin_q); 4449 blk_put_queue(ctrl->admin_q); 4450 if (ctrl->ops->flags & NVME_F_FABRICS) { 4451 blk_mq_destroy_queue(ctrl->fabrics_q); 4452 blk_put_queue(ctrl->fabrics_q); 4453 } 4454 blk_mq_free_tag_set(ctrl->admin_tagset); 4455 } 4456 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4457 4458 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4459 const struct blk_mq_ops *ops, unsigned int nr_maps, 4460 unsigned int cmd_size) 4461 { 4462 int ret; 4463 4464 memset(set, 0, sizeof(*set)); 4465 set->ops = ops; 4466 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4467 /* 4468 * Some Apple controllers requires tags to be unique across admin and 4469 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4470 */ 4471 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4472 set->reserved_tags = NVME_AQ_DEPTH; 4473 else if (ctrl->ops->flags & NVME_F_FABRICS) 4474 /* Reserved for fabric connect */ 4475 set->reserved_tags = 1; 4476 set->numa_node = ctrl->numa_node; 4477 set->flags = BLK_MQ_F_SHOULD_MERGE; 4478 if (ctrl->ops->flags & NVME_F_BLOCKING) 4479 set->flags |= BLK_MQ_F_BLOCKING; 4480 set->cmd_size = cmd_size, 4481 set->driver_data = ctrl; 4482 set->nr_hw_queues = ctrl->queue_count - 1; 4483 set->timeout = NVME_IO_TIMEOUT; 4484 set->nr_maps = nr_maps; 4485 ret = blk_mq_alloc_tag_set(set); 4486 if (ret) 4487 return ret; 4488 4489 if (ctrl->ops->flags & NVME_F_FABRICS) { 4490 ctrl->connect_q = blk_mq_alloc_queue(set, NULL, NULL); 4491 if (IS_ERR(ctrl->connect_q)) { 4492 ret = PTR_ERR(ctrl->connect_q); 4493 goto out_free_tag_set; 4494 } 4495 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, 4496 ctrl->connect_q); 4497 } 4498 4499 ctrl->tagset = set; 4500 return 0; 4501 4502 out_free_tag_set: 4503 blk_mq_free_tag_set(set); 4504 ctrl->connect_q = NULL; 4505 return ret; 4506 } 4507 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4508 4509 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4510 { 4511 if (ctrl->ops->flags & NVME_F_FABRICS) { 4512 blk_mq_destroy_queue(ctrl->connect_q); 4513 blk_put_queue(ctrl->connect_q); 4514 } 4515 blk_mq_free_tag_set(ctrl->tagset); 4516 } 4517 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4518 4519 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4520 { 4521 nvme_mpath_stop(ctrl); 4522 nvme_auth_stop(ctrl); 4523 nvme_stop_keep_alive(ctrl); 4524 nvme_stop_failfast_work(ctrl); 4525 flush_work(&ctrl->async_event_work); 4526 cancel_work_sync(&ctrl->fw_act_work); 4527 if (ctrl->ops->stop_ctrl) 4528 ctrl->ops->stop_ctrl(ctrl); 4529 } 4530 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4531 4532 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4533 { 4534 nvme_enable_aen(ctrl); 4535 4536 /* 4537 * persistent discovery controllers need to send indication to userspace 4538 * to re-read the discovery log page to learn about possible changes 4539 * that were missed. We identify persistent discovery controllers by 4540 * checking that they started once before, hence are reconnecting back. 4541 */ 4542 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4543 nvme_discovery_ctrl(ctrl)) 4544 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4545 4546 if (ctrl->queue_count > 1) { 4547 nvme_queue_scan(ctrl); 4548 nvme_unquiesce_io_queues(ctrl); 4549 nvme_mpath_update(ctrl); 4550 } 4551 4552 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4553 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4554 } 4555 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4556 4557 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4558 { 4559 nvme_hwmon_exit(ctrl); 4560 nvme_fault_inject_fini(&ctrl->fault_inject); 4561 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4562 cdev_device_del(&ctrl->cdev, ctrl->device); 4563 nvme_put_ctrl(ctrl); 4564 } 4565 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4566 4567 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4568 { 4569 struct nvme_effects_log *cel; 4570 unsigned long i; 4571 4572 xa_for_each(&ctrl->cels, i, cel) { 4573 xa_erase(&ctrl->cels, i); 4574 kfree(cel); 4575 } 4576 4577 xa_destroy(&ctrl->cels); 4578 } 4579 4580 static void nvme_free_ctrl(struct device *dev) 4581 { 4582 struct nvme_ctrl *ctrl = 4583 container_of(dev, struct nvme_ctrl, ctrl_device); 4584 struct nvme_subsystem *subsys = ctrl->subsys; 4585 4586 if (!subsys || ctrl->instance != subsys->instance) 4587 ida_free(&nvme_instance_ida, ctrl->instance); 4588 key_put(ctrl->tls_key); 4589 nvme_free_cels(ctrl); 4590 nvme_mpath_uninit(ctrl); 4591 cleanup_srcu_struct(&ctrl->srcu); 4592 nvme_auth_stop(ctrl); 4593 nvme_auth_free(ctrl); 4594 __free_page(ctrl->discard_page); 4595 free_opal_dev(ctrl->opal_dev); 4596 4597 if (subsys) { 4598 mutex_lock(&nvme_subsystems_lock); 4599 list_del(&ctrl->subsys_entry); 4600 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4601 mutex_unlock(&nvme_subsystems_lock); 4602 } 4603 4604 ctrl->ops->free_ctrl(ctrl); 4605 4606 if (subsys) 4607 nvme_put_subsystem(subsys); 4608 } 4609 4610 /* 4611 * Initialize a NVMe controller structures. This needs to be called during 4612 * earliest initialization so that we have the initialized structured around 4613 * during probing. 4614 */ 4615 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4616 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4617 { 4618 int ret; 4619 4620 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4621 ctrl->passthru_err_log_enabled = false; 4622 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4623 spin_lock_init(&ctrl->lock); 4624 mutex_init(&ctrl->namespaces_lock); 4625 4626 ret = init_srcu_struct(&ctrl->srcu); 4627 if (ret) 4628 return ret; 4629 4630 mutex_init(&ctrl->scan_lock); 4631 INIT_LIST_HEAD(&ctrl->namespaces); 4632 xa_init(&ctrl->cels); 4633 ctrl->dev = dev; 4634 ctrl->ops = ops; 4635 ctrl->quirks = quirks; 4636 ctrl->numa_node = NUMA_NO_NODE; 4637 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4638 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4639 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4640 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4641 init_waitqueue_head(&ctrl->state_wq); 4642 4643 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4644 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4645 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4646 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4647 ctrl->ka_last_check_time = jiffies; 4648 4649 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4650 PAGE_SIZE); 4651 ctrl->discard_page = alloc_page(GFP_KERNEL); 4652 if (!ctrl->discard_page) { 4653 ret = -ENOMEM; 4654 goto out; 4655 } 4656 4657 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4658 if (ret < 0) 4659 goto out; 4660 ctrl->instance = ret; 4661 4662 device_initialize(&ctrl->ctrl_device); 4663 ctrl->device = &ctrl->ctrl_device; 4664 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4665 ctrl->instance); 4666 ctrl->device->class = &nvme_class; 4667 ctrl->device->parent = ctrl->dev; 4668 if (ops->dev_attr_groups) 4669 ctrl->device->groups = ops->dev_attr_groups; 4670 else 4671 ctrl->device->groups = nvme_dev_attr_groups; 4672 ctrl->device->release = nvme_free_ctrl; 4673 dev_set_drvdata(ctrl->device, ctrl); 4674 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4675 if (ret) 4676 goto out_release_instance; 4677 4678 nvme_get_ctrl(ctrl); 4679 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4680 ctrl->cdev.owner = ops->module; 4681 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4682 if (ret) 4683 goto out_free_name; 4684 4685 /* 4686 * Initialize latency tolerance controls. The sysfs files won't 4687 * be visible to userspace unless the device actually supports APST. 4688 */ 4689 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4690 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4691 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4692 4693 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4694 nvme_mpath_init_ctrl(ctrl); 4695 ret = nvme_auth_init_ctrl(ctrl); 4696 if (ret) 4697 goto out_free_cdev; 4698 4699 return 0; 4700 out_free_cdev: 4701 nvme_fault_inject_fini(&ctrl->fault_inject); 4702 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4703 cdev_device_del(&ctrl->cdev, ctrl->device); 4704 out_free_name: 4705 nvme_put_ctrl(ctrl); 4706 kfree_const(ctrl->device->kobj.name); 4707 out_release_instance: 4708 ida_free(&nvme_instance_ida, ctrl->instance); 4709 out: 4710 if (ctrl->discard_page) 4711 __free_page(ctrl->discard_page); 4712 cleanup_srcu_struct(&ctrl->srcu); 4713 return ret; 4714 } 4715 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4716 4717 /* let I/O to all namespaces fail in preparation for surprise removal */ 4718 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4719 { 4720 struct nvme_ns *ns; 4721 int srcu_idx; 4722 4723 srcu_idx = srcu_read_lock(&ctrl->srcu); 4724 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4725 blk_mark_disk_dead(ns->disk); 4726 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4727 } 4728 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4729 4730 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4731 { 4732 struct nvme_ns *ns; 4733 int srcu_idx; 4734 4735 srcu_idx = srcu_read_lock(&ctrl->srcu); 4736 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4737 blk_mq_unfreeze_queue(ns->queue); 4738 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4739 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4740 } 4741 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4742 4743 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4744 { 4745 struct nvme_ns *ns; 4746 int srcu_idx; 4747 4748 srcu_idx = srcu_read_lock(&ctrl->srcu); 4749 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { 4750 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4751 if (timeout <= 0) 4752 break; 4753 } 4754 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4755 return timeout; 4756 } 4757 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4758 4759 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4760 { 4761 struct nvme_ns *ns; 4762 int srcu_idx; 4763 4764 srcu_idx = srcu_read_lock(&ctrl->srcu); 4765 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4766 blk_mq_freeze_queue_wait(ns->queue); 4767 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4768 } 4769 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4770 4771 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4772 { 4773 struct nvme_ns *ns; 4774 int srcu_idx; 4775 4776 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4777 srcu_idx = srcu_read_lock(&ctrl->srcu); 4778 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4779 blk_freeze_queue_start(ns->queue); 4780 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4781 } 4782 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4783 4784 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4785 { 4786 if (!ctrl->tagset) 4787 return; 4788 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4789 blk_mq_quiesce_tagset(ctrl->tagset); 4790 else 4791 blk_mq_wait_quiesce_done(ctrl->tagset); 4792 } 4793 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4794 4795 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4796 { 4797 if (!ctrl->tagset) 4798 return; 4799 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4800 blk_mq_unquiesce_tagset(ctrl->tagset); 4801 } 4802 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4803 4804 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4805 { 4806 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4807 blk_mq_quiesce_queue(ctrl->admin_q); 4808 else 4809 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4810 } 4811 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4812 4813 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4814 { 4815 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4816 blk_mq_unquiesce_queue(ctrl->admin_q); 4817 } 4818 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4819 4820 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4821 { 4822 struct nvme_ns *ns; 4823 int srcu_idx; 4824 4825 srcu_idx = srcu_read_lock(&ctrl->srcu); 4826 list_for_each_entry_rcu(ns, &ctrl->namespaces, list) 4827 blk_sync_queue(ns->queue); 4828 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4829 } 4830 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4831 4832 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4833 { 4834 nvme_sync_io_queues(ctrl); 4835 if (ctrl->admin_q) 4836 blk_sync_queue(ctrl->admin_q); 4837 } 4838 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4839 4840 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4841 { 4842 if (file->f_op != &nvme_dev_fops) 4843 return NULL; 4844 return file->private_data; 4845 } 4846 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4847 4848 /* 4849 * Check we didn't inadvertently grow the command structure sizes: 4850 */ 4851 static inline void _nvme_check_size(void) 4852 { 4853 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4854 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4855 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4856 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4857 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4858 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4859 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4860 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4861 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4862 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4863 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4864 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4865 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4866 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4867 NVME_IDENTIFY_DATA_SIZE); 4868 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4869 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4870 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4871 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4872 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4873 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4874 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4875 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4876 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4877 } 4878 4879 4880 static int __init nvme_core_init(void) 4881 { 4882 int result = -ENOMEM; 4883 4884 _nvme_check_size(); 4885 4886 nvme_wq = alloc_workqueue("nvme-wq", 4887 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4888 if (!nvme_wq) 4889 goto out; 4890 4891 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4892 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4893 if (!nvme_reset_wq) 4894 goto destroy_wq; 4895 4896 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4897 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4898 if (!nvme_delete_wq) 4899 goto destroy_reset_wq; 4900 4901 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4902 NVME_MINORS, "nvme"); 4903 if (result < 0) 4904 goto destroy_delete_wq; 4905 4906 result = class_register(&nvme_class); 4907 if (result) 4908 goto unregister_chrdev; 4909 4910 result = class_register(&nvme_subsys_class); 4911 if (result) 4912 goto destroy_class; 4913 4914 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4915 "nvme-generic"); 4916 if (result < 0) 4917 goto destroy_subsys_class; 4918 4919 result = class_register(&nvme_ns_chr_class); 4920 if (result) 4921 goto unregister_generic_ns; 4922 4923 result = nvme_init_auth(); 4924 if (result) 4925 goto destroy_ns_chr; 4926 return 0; 4927 4928 destroy_ns_chr: 4929 class_unregister(&nvme_ns_chr_class); 4930 unregister_generic_ns: 4931 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4932 destroy_subsys_class: 4933 class_unregister(&nvme_subsys_class); 4934 destroy_class: 4935 class_unregister(&nvme_class); 4936 unregister_chrdev: 4937 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4938 destroy_delete_wq: 4939 destroy_workqueue(nvme_delete_wq); 4940 destroy_reset_wq: 4941 destroy_workqueue(nvme_reset_wq); 4942 destroy_wq: 4943 destroy_workqueue(nvme_wq); 4944 out: 4945 return result; 4946 } 4947 4948 static void __exit nvme_core_exit(void) 4949 { 4950 nvme_exit_auth(); 4951 class_unregister(&nvme_ns_chr_class); 4952 class_unregister(&nvme_subsys_class); 4953 class_unregister(&nvme_class); 4954 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4955 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4956 destroy_workqueue(nvme_delete_wq); 4957 destroy_workqueue(nvme_reset_wq); 4958 destroy_workqueue(nvme_wq); 4959 ida_destroy(&nvme_ns_chr_minor_ida); 4960 ida_destroy(&nvme_instance_ida); 4961 } 4962 4963 MODULE_LICENSE("GPL"); 4964 MODULE_VERSION("1.0"); 4965 MODULE_DESCRIPTION("NVMe host core framework"); 4966 module_init(nvme_core_init); 4967 module_exit(nvme_core_exit); 4968