1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/async.h> 8 #include <linux/blkdev.h> 9 #include <linux/blk-mq.h> 10 #include <linux/blk-integrity.h> 11 #include <linux/compat.h> 12 #include <linux/delay.h> 13 #include <linux/errno.h> 14 #include <linux/hdreg.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/pr.h> 21 #include <linux/ptrace.h> 22 #include <linux/nvme_ioctl.h> 23 #include <linux/pm_qos.h> 24 #include <linux/ratelimit.h> 25 #include <linux/unaligned.h> 26 27 #include "nvme.h" 28 #include "fabrics.h" 29 #include <linux/nvme-auth.h> 30 31 #define CREATE_TRACE_POINTS 32 #include "trace.h" 33 34 #define NVME_MINORS (1U << MINORBITS) 35 36 struct nvme_ns_info { 37 struct nvme_ns_ids ids; 38 u32 nsid; 39 __le32 anagrpid; 40 u8 pi_offset; 41 u16 endgid; 42 u64 runs; 43 bool is_shared; 44 bool is_readonly; 45 bool is_ready; 46 bool is_removed; 47 bool is_rotational; 48 bool no_vwc; 49 }; 50 51 unsigned int admin_timeout = 60; 52 module_param(admin_timeout, uint, 0644); 53 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 54 EXPORT_SYMBOL_GPL(admin_timeout); 55 56 unsigned int nvme_io_timeout = 30; 57 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 59 EXPORT_SYMBOL_GPL(nvme_io_timeout); 60 61 static unsigned char shutdown_timeout = 5; 62 module_param(shutdown_timeout, byte, 0644); 63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 64 65 static u8 nvme_max_retries = 5; 66 module_param_named(max_retries, nvme_max_retries, byte, 0644); 67 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 68 69 static unsigned long default_ps_max_latency_us = 100000; 70 module_param(default_ps_max_latency_us, ulong, 0644); 71 MODULE_PARM_DESC(default_ps_max_latency_us, 72 "max power saving latency for new devices; use PM QOS to change per device"); 73 74 static bool force_apst; 75 module_param(force_apst, bool, 0644); 76 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 77 78 static unsigned long apst_primary_timeout_ms = 100; 79 module_param(apst_primary_timeout_ms, ulong, 0644); 80 MODULE_PARM_DESC(apst_primary_timeout_ms, 81 "primary APST timeout in ms"); 82 83 static unsigned long apst_secondary_timeout_ms = 2000; 84 module_param(apst_secondary_timeout_ms, ulong, 0644); 85 MODULE_PARM_DESC(apst_secondary_timeout_ms, 86 "secondary APST timeout in ms"); 87 88 static unsigned long apst_primary_latency_tol_us = 15000; 89 module_param(apst_primary_latency_tol_us, ulong, 0644); 90 MODULE_PARM_DESC(apst_primary_latency_tol_us, 91 "primary APST latency tolerance in us"); 92 93 static unsigned long apst_secondary_latency_tol_us = 100000; 94 module_param(apst_secondary_latency_tol_us, ulong, 0644); 95 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 96 "secondary APST latency tolerance in us"); 97 98 /* 99 * Older kernels didn't enable protection information if it was at an offset. 100 * Newer kernels do, so it breaks reads on the upgrade if such formats were 101 * used in prior kernels since the metadata written did not contain a valid 102 * checksum. 103 */ 104 static bool disable_pi_offsets = false; 105 module_param(disable_pi_offsets, bool, 0444); 106 MODULE_PARM_DESC(disable_pi_offsets, 107 "disable protection information if it has an offset"); 108 109 /* 110 * nvme_wq - hosts nvme related works that are not reset or delete 111 * nvme_reset_wq - hosts nvme reset works 112 * nvme_delete_wq - hosts nvme delete works 113 * 114 * nvme_wq will host works such as scan, aen handling, fw activation, 115 * keep-alive, periodic reconnects etc. nvme_reset_wq 116 * runs reset works which also flush works hosted on nvme_wq for 117 * serialization purposes. nvme_delete_wq host controller deletion 118 * works which flush reset works for serialization. 119 */ 120 struct workqueue_struct *nvme_wq; 121 EXPORT_SYMBOL_GPL(nvme_wq); 122 123 struct workqueue_struct *nvme_reset_wq; 124 EXPORT_SYMBOL_GPL(nvme_reset_wq); 125 126 struct workqueue_struct *nvme_delete_wq; 127 EXPORT_SYMBOL_GPL(nvme_delete_wq); 128 129 static LIST_HEAD(nvme_subsystems); 130 DEFINE_MUTEX(nvme_subsystems_lock); 131 132 static DEFINE_IDA(nvme_instance_ida); 133 static dev_t nvme_ctrl_base_chr_devt; 134 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 135 static const struct class nvme_class = { 136 .name = "nvme", 137 .dev_uevent = nvme_class_uevent, 138 }; 139 140 static const struct class nvme_subsys_class = { 141 .name = "nvme-subsystem", 142 }; 143 144 static DEFINE_IDA(nvme_ns_chr_minor_ida); 145 static dev_t nvme_ns_chr_devt; 146 static const struct class nvme_ns_chr_class = { 147 .name = "nvme-generic", 148 }; 149 150 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 151 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 152 unsigned nsid); 153 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 154 struct nvme_command *cmd); 155 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, 156 u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi); 157 158 void nvme_queue_scan(struct nvme_ctrl *ctrl) 159 { 160 /* 161 * Only new queue scan work when admin and IO queues are both alive 162 */ 163 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 164 queue_work(nvme_wq, &ctrl->scan_work); 165 } 166 167 /* 168 * Use this function to proceed with scheduling reset_work for a controller 169 * that had previously been set to the resetting state. This is intended for 170 * code paths that can't be interrupted by other reset attempts. A hot removal 171 * may prevent this from succeeding. 172 */ 173 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 174 { 175 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 176 return -EBUSY; 177 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 178 return -EBUSY; 179 return 0; 180 } 181 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 182 183 static void nvme_failfast_work(struct work_struct *work) 184 { 185 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 186 struct nvme_ctrl, failfast_work); 187 188 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 189 return; 190 191 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 192 dev_info(ctrl->device, "failfast expired\n"); 193 nvme_kick_requeue_lists(ctrl); 194 } 195 196 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 197 { 198 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 199 return; 200 201 schedule_delayed_work(&ctrl->failfast_work, 202 ctrl->opts->fast_io_fail_tmo * HZ); 203 } 204 205 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 206 { 207 if (!ctrl->opts) 208 return; 209 210 cancel_delayed_work_sync(&ctrl->failfast_work); 211 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 212 } 213 214 215 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 216 { 217 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 218 return -EBUSY; 219 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 220 return -EBUSY; 221 return 0; 222 } 223 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 224 225 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 226 { 227 int ret; 228 229 ret = nvme_reset_ctrl(ctrl); 230 if (!ret) { 231 flush_work(&ctrl->reset_work); 232 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 233 ret = -ENETRESET; 234 } 235 236 return ret; 237 } 238 239 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 240 { 241 dev_info(ctrl->device, 242 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 243 244 flush_work(&ctrl->reset_work); 245 nvme_stop_ctrl(ctrl); 246 nvme_remove_namespaces(ctrl); 247 ctrl->ops->delete_ctrl(ctrl); 248 nvme_uninit_ctrl(ctrl); 249 } 250 251 static void nvme_delete_ctrl_work(struct work_struct *work) 252 { 253 struct nvme_ctrl *ctrl = 254 container_of(work, struct nvme_ctrl, delete_work); 255 256 nvme_do_delete_ctrl(ctrl); 257 } 258 259 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 260 { 261 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 262 return -EBUSY; 263 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 264 return -EBUSY; 265 return 0; 266 } 267 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 268 269 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 270 { 271 /* 272 * Keep a reference until nvme_do_delete_ctrl() complete, 273 * since ->delete_ctrl can free the controller. 274 */ 275 nvme_get_ctrl(ctrl); 276 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 277 nvme_do_delete_ctrl(ctrl); 278 nvme_put_ctrl(ctrl); 279 } 280 281 static blk_status_t nvme_error_status(u16 status) 282 { 283 switch (status & NVME_SCT_SC_MASK) { 284 case NVME_SC_SUCCESS: 285 return BLK_STS_OK; 286 case NVME_SC_CAP_EXCEEDED: 287 return BLK_STS_NOSPC; 288 case NVME_SC_LBA_RANGE: 289 case NVME_SC_CMD_INTERRUPTED: 290 case NVME_SC_NS_NOT_READY: 291 return BLK_STS_TARGET; 292 case NVME_SC_BAD_ATTRIBUTES: 293 case NVME_SC_INVALID_OPCODE: 294 case NVME_SC_INVALID_FIELD: 295 case NVME_SC_INVALID_NS: 296 return BLK_STS_NOTSUPP; 297 case NVME_SC_WRITE_FAULT: 298 case NVME_SC_READ_ERROR: 299 case NVME_SC_UNWRITTEN_BLOCK: 300 case NVME_SC_ACCESS_DENIED: 301 case NVME_SC_READ_ONLY: 302 case NVME_SC_COMPARE_FAILED: 303 return BLK_STS_MEDIUM; 304 case NVME_SC_GUARD_CHECK: 305 case NVME_SC_APPTAG_CHECK: 306 case NVME_SC_REFTAG_CHECK: 307 case NVME_SC_INVALID_PI: 308 return BLK_STS_PROTECTION; 309 case NVME_SC_RESERVATION_CONFLICT: 310 return BLK_STS_RESV_CONFLICT; 311 case NVME_SC_HOST_PATH_ERROR: 312 return BLK_STS_TRANSPORT; 313 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 314 return BLK_STS_ZONE_ACTIVE_RESOURCE; 315 case NVME_SC_ZONE_TOO_MANY_OPEN: 316 return BLK_STS_ZONE_OPEN_RESOURCE; 317 default: 318 return BLK_STS_IOERR; 319 } 320 } 321 322 static void nvme_retry_req(struct request *req) 323 { 324 unsigned long delay = 0; 325 u16 crd; 326 327 /* The mask and shift result must be <= 3 */ 328 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; 329 if (crd) 330 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 331 332 nvme_req(req)->retries++; 333 blk_mq_requeue_request(req, false); 334 blk_mq_delay_kick_requeue_list(req->q, delay); 335 } 336 337 static void nvme_log_error(struct request *req) 338 { 339 struct nvme_ns *ns = req->q->queuedata; 340 struct nvme_request *nr = nvme_req(req); 341 342 if (ns) { 343 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 344 ns->disk ? ns->disk->disk_name : "?", 345 nvme_get_opcode_str(nr->cmd->common.opcode), 346 nr->cmd->common.opcode, 347 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 348 blk_rq_bytes(req) >> ns->head->lba_shift, 349 nvme_get_error_status_str(nr->status), 350 NVME_SCT(nr->status), /* Status Code Type */ 351 nr->status & NVME_SC_MASK, /* Status Code */ 352 nr->status & NVME_STATUS_MORE ? "MORE " : "", 353 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 354 return; 355 } 356 357 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 358 dev_name(nr->ctrl->device), 359 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 360 nr->cmd->common.opcode, 361 nvme_get_error_status_str(nr->status), 362 NVME_SCT(nr->status), /* Status Code Type */ 363 nr->status & NVME_SC_MASK, /* Status Code */ 364 nr->status & NVME_STATUS_MORE ? "MORE " : "", 365 nr->status & NVME_STATUS_DNR ? "DNR " : ""); 366 } 367 368 static void nvme_log_err_passthru(struct request *req) 369 { 370 struct nvme_ns *ns = req->q->queuedata; 371 struct nvme_request *nr = nvme_req(req); 372 373 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 374 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 375 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 376 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 377 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 378 nr->cmd->common.opcode, 379 nvme_get_error_status_str(nr->status), 380 NVME_SCT(nr->status), /* Status Code Type */ 381 nr->status & NVME_SC_MASK, /* Status Code */ 382 nr->status & NVME_STATUS_MORE ? "MORE " : "", 383 nr->status & NVME_STATUS_DNR ? "DNR " : "", 384 le32_to_cpu(nr->cmd->common.cdw10), 385 le32_to_cpu(nr->cmd->common.cdw11), 386 le32_to_cpu(nr->cmd->common.cdw12), 387 le32_to_cpu(nr->cmd->common.cdw13), 388 le32_to_cpu(nr->cmd->common.cdw14), 389 le32_to_cpu(nr->cmd->common.cdw15)); 390 } 391 392 enum nvme_disposition { 393 COMPLETE, 394 RETRY, 395 FAILOVER, 396 AUTHENTICATE, 397 }; 398 399 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 400 { 401 if (likely(nvme_req(req)->status == 0)) 402 return COMPLETE; 403 404 if (blk_noretry_request(req) || 405 (nvme_req(req)->status & NVME_STATUS_DNR) || 406 nvme_req(req)->retries >= nvme_max_retries) 407 return COMPLETE; 408 409 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) 410 return AUTHENTICATE; 411 412 if (req->cmd_flags & REQ_NVME_MPATH) { 413 if (nvme_is_path_error(nvme_req(req)->status) || 414 blk_queue_dying(req->q)) 415 return FAILOVER; 416 } else { 417 if (blk_queue_dying(req->q)) 418 return COMPLETE; 419 } 420 421 return RETRY; 422 } 423 424 static inline void nvme_end_req_zoned(struct request *req) 425 { 426 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 427 req_op(req) == REQ_OP_ZONE_APPEND) { 428 struct nvme_ns *ns = req->q->queuedata; 429 430 req->__sector = nvme_lba_to_sect(ns->head, 431 le64_to_cpu(nvme_req(req)->result.u64)); 432 } 433 } 434 435 static inline void __nvme_end_req(struct request *req) 436 { 437 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 438 if (blk_rq_is_passthrough(req)) 439 nvme_log_err_passthru(req); 440 else 441 nvme_log_error(req); 442 } 443 nvme_end_req_zoned(req); 444 nvme_trace_bio_complete(req); 445 if (req->cmd_flags & REQ_NVME_MPATH) 446 nvme_mpath_end_request(req); 447 } 448 449 void nvme_end_req(struct request *req) 450 { 451 blk_status_t status = nvme_error_status(nvme_req(req)->status); 452 453 __nvme_end_req(req); 454 blk_mq_end_request(req, status); 455 } 456 457 void nvme_complete_rq(struct request *req) 458 { 459 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 460 461 trace_nvme_complete_rq(req); 462 nvme_cleanup_cmd(req); 463 464 /* 465 * Completions of long-running commands should not be able to 466 * defer sending of periodic keep alives, since the controller 467 * may have completed processing such commands a long time ago 468 * (arbitrarily close to command submission time). 469 * req->deadline - req->timeout is the command submission time 470 * in jiffies. 471 */ 472 if (ctrl->kas && 473 req->deadline - req->timeout >= ctrl->ka_last_check_time) 474 ctrl->comp_seen = true; 475 476 switch (nvme_decide_disposition(req)) { 477 case COMPLETE: 478 nvme_end_req(req); 479 return; 480 case RETRY: 481 nvme_retry_req(req); 482 return; 483 case FAILOVER: 484 nvme_failover_req(req); 485 return; 486 case AUTHENTICATE: 487 #ifdef CONFIG_NVME_HOST_AUTH 488 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 489 nvme_retry_req(req); 490 #else 491 nvme_end_req(req); 492 #endif 493 return; 494 } 495 } 496 EXPORT_SYMBOL_GPL(nvme_complete_rq); 497 498 void nvme_complete_batch_req(struct request *req) 499 { 500 trace_nvme_complete_rq(req); 501 nvme_cleanup_cmd(req); 502 __nvme_end_req(req); 503 } 504 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 505 506 /* 507 * Called to unwind from ->queue_rq on a failed command submission so that the 508 * multipathing code gets called to potentially failover to another path. 509 * The caller needs to unwind all transport specific resource allocations and 510 * must return propagate the return value. 511 */ 512 blk_status_t nvme_host_path_error(struct request *req) 513 { 514 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 515 blk_mq_set_request_complete(req); 516 nvme_complete_rq(req); 517 return BLK_STS_OK; 518 } 519 EXPORT_SYMBOL_GPL(nvme_host_path_error); 520 521 bool nvme_cancel_request(struct request *req, void *data) 522 { 523 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 524 "Cancelling I/O %d", req->tag); 525 526 /* don't abort one completed or idle request */ 527 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 528 return true; 529 530 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 531 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 532 blk_mq_complete_request(req); 533 return true; 534 } 535 EXPORT_SYMBOL_GPL(nvme_cancel_request); 536 537 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 538 { 539 if (ctrl->tagset) { 540 blk_mq_tagset_busy_iter(ctrl->tagset, 541 nvme_cancel_request, ctrl); 542 blk_mq_tagset_wait_completed_request(ctrl->tagset); 543 } 544 } 545 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 546 547 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 548 { 549 if (ctrl->admin_tagset) { 550 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 551 nvme_cancel_request, ctrl); 552 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 553 } 554 } 555 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 556 557 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 558 enum nvme_ctrl_state new_state) 559 { 560 enum nvme_ctrl_state old_state; 561 unsigned long flags; 562 bool changed = false; 563 564 spin_lock_irqsave(&ctrl->lock, flags); 565 566 old_state = nvme_ctrl_state(ctrl); 567 switch (new_state) { 568 case NVME_CTRL_LIVE: 569 switch (old_state) { 570 case NVME_CTRL_CONNECTING: 571 changed = true; 572 fallthrough; 573 default: 574 break; 575 } 576 break; 577 case NVME_CTRL_RESETTING: 578 switch (old_state) { 579 case NVME_CTRL_NEW: 580 case NVME_CTRL_LIVE: 581 changed = true; 582 fallthrough; 583 default: 584 break; 585 } 586 break; 587 case NVME_CTRL_CONNECTING: 588 switch (old_state) { 589 case NVME_CTRL_NEW: 590 case NVME_CTRL_RESETTING: 591 changed = true; 592 fallthrough; 593 default: 594 break; 595 } 596 break; 597 case NVME_CTRL_DELETING: 598 switch (old_state) { 599 case NVME_CTRL_LIVE: 600 case NVME_CTRL_RESETTING: 601 case NVME_CTRL_CONNECTING: 602 changed = true; 603 fallthrough; 604 default: 605 break; 606 } 607 break; 608 case NVME_CTRL_DELETING_NOIO: 609 switch (old_state) { 610 case NVME_CTRL_DELETING: 611 case NVME_CTRL_DEAD: 612 changed = true; 613 fallthrough; 614 default: 615 break; 616 } 617 break; 618 case NVME_CTRL_DEAD: 619 switch (old_state) { 620 case NVME_CTRL_DELETING: 621 changed = true; 622 fallthrough; 623 default: 624 break; 625 } 626 break; 627 default: 628 break; 629 } 630 631 if (changed) { 632 WRITE_ONCE(ctrl->state, new_state); 633 wake_up_all(&ctrl->state_wq); 634 } 635 636 spin_unlock_irqrestore(&ctrl->lock, flags); 637 if (!changed) 638 return false; 639 640 if (new_state == NVME_CTRL_LIVE) { 641 if (old_state == NVME_CTRL_CONNECTING) 642 nvme_stop_failfast_work(ctrl); 643 nvme_kick_requeue_lists(ctrl); 644 } else if (new_state == NVME_CTRL_CONNECTING && 645 old_state == NVME_CTRL_RESETTING) { 646 nvme_start_failfast_work(ctrl); 647 } 648 return changed; 649 } 650 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 651 652 /* 653 * Waits for the controller state to be resetting, or returns false if it is 654 * not possible to ever transition to that state. 655 */ 656 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 657 { 658 wait_event(ctrl->state_wq, 659 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 660 nvme_state_terminal(ctrl)); 661 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 662 } 663 EXPORT_SYMBOL_GPL(nvme_wait_reset); 664 665 static void nvme_free_ns_head(struct kref *ref) 666 { 667 struct nvme_ns_head *head = 668 container_of(ref, struct nvme_ns_head, ref); 669 670 nvme_mpath_put_disk(head); 671 ida_free(&head->subsys->ns_ida, head->instance); 672 cleanup_srcu_struct(&head->srcu); 673 nvme_put_subsystem(head->subsys); 674 kfree(head->plids); 675 kfree(head); 676 } 677 678 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 679 { 680 return kref_get_unless_zero(&head->ref); 681 } 682 683 void nvme_put_ns_head(struct nvme_ns_head *head) 684 { 685 kref_put(&head->ref, nvme_free_ns_head); 686 } 687 688 static void nvme_free_ns(struct kref *kref) 689 { 690 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 691 692 put_disk(ns->disk); 693 nvme_put_ns_head(ns->head); 694 nvme_put_ctrl(ns->ctrl); 695 kfree(ns); 696 } 697 698 bool nvme_get_ns(struct nvme_ns *ns) 699 { 700 return kref_get_unless_zero(&ns->kref); 701 } 702 703 void nvme_put_ns(struct nvme_ns *ns) 704 { 705 kref_put(&ns->kref, nvme_free_ns); 706 } 707 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU"); 708 709 static inline void nvme_clear_nvme_request(struct request *req) 710 { 711 nvme_req(req)->status = 0; 712 nvme_req(req)->retries = 0; 713 nvme_req(req)->flags = 0; 714 req->rq_flags |= RQF_DONTPREP; 715 } 716 717 /* initialize a passthrough request */ 718 void nvme_init_request(struct request *req, struct nvme_command *cmd) 719 { 720 struct nvme_request *nr = nvme_req(req); 721 bool logging_enabled; 722 723 if (req->q->queuedata) { 724 struct nvme_ns *ns = req->q->disk->private_data; 725 726 logging_enabled = ns->head->passthru_err_log_enabled; 727 req->timeout = NVME_IO_TIMEOUT; 728 } else { /* no queuedata implies admin queue */ 729 logging_enabled = nr->ctrl->passthru_err_log_enabled; 730 req->timeout = NVME_ADMIN_TIMEOUT; 731 } 732 733 if (!logging_enabled) 734 req->rq_flags |= RQF_QUIET; 735 736 /* passthru commands should let the driver set the SGL flags */ 737 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 738 739 req->cmd_flags |= REQ_FAILFAST_DRIVER; 740 if (req->mq_hctx->type == HCTX_TYPE_POLL) 741 req->cmd_flags |= REQ_POLLED; 742 nvme_clear_nvme_request(req); 743 memcpy(nr->cmd, cmd, sizeof(*cmd)); 744 } 745 EXPORT_SYMBOL_GPL(nvme_init_request); 746 747 /* 748 * For something we're not in a state to send to the device the default action 749 * is to busy it and retry it after the controller state is recovered. However, 750 * if the controller is deleting or if anything is marked for failfast or 751 * nvme multipath it is immediately failed. 752 * 753 * Note: commands used to initialize the controller will be marked for failfast. 754 * Note: nvme cli/ioctl commands are marked for failfast. 755 */ 756 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 757 struct request *rq) 758 { 759 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 760 761 if (state != NVME_CTRL_DELETING_NOIO && 762 state != NVME_CTRL_DELETING && 763 state != NVME_CTRL_DEAD && 764 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 765 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 766 return BLK_STS_RESOURCE; 767 768 if (!(rq->rq_flags & RQF_DONTPREP)) 769 nvme_clear_nvme_request(rq); 770 771 return nvme_host_path_error(rq); 772 } 773 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 774 775 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 776 bool queue_live, enum nvme_ctrl_state state) 777 { 778 struct nvme_request *req = nvme_req(rq); 779 780 /* 781 * currently we have a problem sending passthru commands 782 * on the admin_q if the controller is not LIVE because we can't 783 * make sure that they are going out after the admin connect, 784 * controller enable and/or other commands in the initialization 785 * sequence. until the controller will be LIVE, fail with 786 * BLK_STS_RESOURCE so that they will be rescheduled. 787 */ 788 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 789 return false; 790 791 if (ctrl->ops->flags & NVME_F_FABRICS) { 792 /* 793 * Only allow commands on a live queue, except for the connect 794 * command, which is require to set the queue live in the 795 * appropinquate states. 796 */ 797 switch (state) { 798 case NVME_CTRL_CONNECTING: 799 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 800 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 801 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 802 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 803 return true; 804 break; 805 default: 806 break; 807 case NVME_CTRL_DEAD: 808 return false; 809 } 810 } 811 812 return queue_live; 813 } 814 EXPORT_SYMBOL_GPL(__nvme_check_ready); 815 816 static inline void nvme_setup_flush(struct nvme_ns *ns, 817 struct nvme_command *cmnd) 818 { 819 memset(cmnd, 0, sizeof(*cmnd)); 820 cmnd->common.opcode = nvme_cmd_flush; 821 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 822 } 823 824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 825 struct nvme_command *cmnd) 826 { 827 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 828 struct nvme_dsm_range *range; 829 struct bio *bio; 830 831 /* 832 * Some devices do not consider the DSM 'Number of Ranges' field when 833 * determining how much data to DMA. Always allocate memory for maximum 834 * number of segments to prevent device reading beyond end of buffer. 835 */ 836 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 837 838 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 839 if (!range) { 840 /* 841 * If we fail allocation our range, fallback to the controller 842 * discard page. If that's also busy, it's safe to return 843 * busy, as we know we can make progress once that's freed. 844 */ 845 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 846 return BLK_STS_RESOURCE; 847 848 range = page_address(ns->ctrl->discard_page); 849 } 850 851 if (queue_max_discard_segments(req->q) == 1) { 852 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 853 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 854 855 range[0].cattr = cpu_to_le32(0); 856 range[0].nlb = cpu_to_le32(nlb); 857 range[0].slba = cpu_to_le64(slba); 858 n = 1; 859 } else { 860 __rq_for_each_bio(bio, req) { 861 u64 slba = nvme_sect_to_lba(ns->head, 862 bio->bi_iter.bi_sector); 863 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 864 865 if (n < segments) { 866 range[n].cattr = cpu_to_le32(0); 867 range[n].nlb = cpu_to_le32(nlb); 868 range[n].slba = cpu_to_le64(slba); 869 } 870 n++; 871 } 872 } 873 874 if (WARN_ON_ONCE(n != segments)) { 875 if (virt_to_page(range) == ns->ctrl->discard_page) 876 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 877 else 878 kfree(range); 879 return BLK_STS_IOERR; 880 } 881 882 memset(cmnd, 0, sizeof(*cmnd)); 883 cmnd->dsm.opcode = nvme_cmd_dsm; 884 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 885 cmnd->dsm.nr = cpu_to_le32(segments - 1); 886 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 887 888 bvec_set_virt(&req->special_vec, range, alloc_size); 889 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 890 891 return BLK_STS_OK; 892 } 893 894 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd) 895 { 896 cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag); 897 cmnd->rw.lbatm = cpu_to_le16(0xffff); 898 } 899 900 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 901 struct request *req) 902 { 903 u32 upper, lower; 904 u64 ref48; 905 906 /* both rw and write zeroes share the same reftag format */ 907 switch (ns->head->guard_type) { 908 case NVME_NVM_NS_16B_GUARD: 909 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 910 break; 911 case NVME_NVM_NS_64B_GUARD: 912 ref48 = ext_pi_ref_tag(req); 913 lower = lower_32_bits(ref48); 914 upper = upper_32_bits(ref48); 915 916 cmnd->rw.reftag = cpu_to_le32(lower); 917 cmnd->rw.cdw3 = cpu_to_le32(upper); 918 break; 919 default: 920 break; 921 } 922 } 923 924 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 925 struct request *req, struct nvme_command *cmnd) 926 { 927 memset(cmnd, 0, sizeof(*cmnd)); 928 929 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 930 return nvme_setup_discard(ns, req, cmnd); 931 932 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 933 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 934 cmnd->write_zeroes.slba = 935 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 936 cmnd->write_zeroes.length = 937 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 938 939 if (!(req->cmd_flags & REQ_NOUNMAP) && 940 (ns->head->features & NVME_NS_DEAC)) 941 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 942 943 if (nvme_ns_has_pi(ns->head)) { 944 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 945 946 switch (ns->head->pi_type) { 947 case NVME_NS_DPS_PI_TYPE1: 948 case NVME_NS_DPS_PI_TYPE2: 949 nvme_set_ref_tag(ns, cmnd, req); 950 break; 951 } 952 } 953 954 return BLK_STS_OK; 955 } 956 957 /* 958 * NVMe does not support a dedicated command to issue an atomic write. A write 959 * which does adhere to the device atomic limits will silently be executed 960 * non-atomically. The request issuer should ensure that the write is within 961 * the queue atomic writes limits, but just validate this in case it is not. 962 */ 963 static bool nvme_valid_atomic_write(struct request *req) 964 { 965 struct request_queue *q = req->q; 966 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); 967 968 if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q)) 969 return false; 970 971 if (boundary_bytes) { 972 u64 mask = boundary_bytes - 1, imask = ~mask; 973 u64 start = blk_rq_pos(req) << SECTOR_SHIFT; 974 u64 end = start + blk_rq_bytes(req) - 1; 975 976 /* If greater then must be crossing a boundary */ 977 if (blk_rq_bytes(req) > boundary_bytes) 978 return false; 979 980 if ((start & imask) != (end & imask)) 981 return false; 982 } 983 984 return true; 985 } 986 987 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 988 struct request *req, struct nvme_command *cmnd, 989 enum nvme_opcode op) 990 { 991 u16 control = 0; 992 u32 dsmgmt = 0; 993 994 if (req->cmd_flags & REQ_FUA) 995 control |= NVME_RW_FUA; 996 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 997 control |= NVME_RW_LR; 998 999 if (req->cmd_flags & REQ_RAHEAD) 1000 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 1001 1002 if (op == nvme_cmd_write && ns->head->nr_plids) { 1003 u16 write_stream = req->bio->bi_write_stream; 1004 1005 if (WARN_ON_ONCE(write_stream > ns->head->nr_plids)) 1006 return BLK_STS_INVAL; 1007 1008 if (write_stream) { 1009 dsmgmt |= ns->head->plids[write_stream - 1] << 16; 1010 control |= NVME_RW_DTYPE_DPLCMT; 1011 } 1012 } 1013 1014 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) 1015 return BLK_STS_INVAL; 1016 1017 cmnd->rw.opcode = op; 1018 cmnd->rw.flags = 0; 1019 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 1020 cmnd->rw.cdw2 = 0; 1021 cmnd->rw.cdw3 = 0; 1022 cmnd->rw.metadata = 0; 1023 cmnd->rw.slba = 1024 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 1025 cmnd->rw.length = 1026 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 1027 cmnd->rw.reftag = 0; 1028 cmnd->rw.lbat = 0; 1029 cmnd->rw.lbatm = 0; 1030 1031 if (ns->head->ms) { 1032 /* 1033 * If formatted with metadata, the block layer always provides a 1034 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 1035 * we enable the PRACT bit for protection information or set the 1036 * namespace capacity to zero to prevent any I/O. 1037 */ 1038 if (!blk_integrity_rq(req)) { 1039 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 1040 return BLK_STS_NOTSUPP; 1041 control |= NVME_RW_PRINFO_PRACT; 1042 } 1043 1044 if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD)) 1045 control |= NVME_RW_PRINFO_PRCHK_GUARD; 1046 if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) { 1047 control |= NVME_RW_PRINFO_PRCHK_REF; 1048 if (op == nvme_cmd_zone_append) 1049 control |= NVME_RW_APPEND_PIREMAP; 1050 nvme_set_ref_tag(ns, cmnd, req); 1051 } 1052 if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) { 1053 control |= NVME_RW_PRINFO_PRCHK_APP; 1054 nvme_set_app_tag(req, cmnd); 1055 } 1056 } 1057 1058 cmnd->rw.control = cpu_to_le16(control); 1059 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 1060 return 0; 1061 } 1062 1063 void nvme_cleanup_cmd(struct request *req) 1064 { 1065 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 1066 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 1067 1068 if (req->special_vec.bv_page == ctrl->discard_page) 1069 clear_bit_unlock(0, &ctrl->discard_page_busy); 1070 else 1071 kfree(bvec_virt(&req->special_vec)); 1072 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; 1073 } 1074 } 1075 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 1076 1077 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1078 { 1079 struct nvme_command *cmd = nvme_req(req)->cmd; 1080 blk_status_t ret = BLK_STS_OK; 1081 1082 if (!(req->rq_flags & RQF_DONTPREP)) 1083 nvme_clear_nvme_request(req); 1084 1085 switch (req_op(req)) { 1086 case REQ_OP_DRV_IN: 1087 case REQ_OP_DRV_OUT: 1088 /* these are setup prior to execution in nvme_init_request() */ 1089 break; 1090 case REQ_OP_FLUSH: 1091 nvme_setup_flush(ns, cmd); 1092 break; 1093 case REQ_OP_ZONE_RESET_ALL: 1094 case REQ_OP_ZONE_RESET: 1095 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1096 break; 1097 case REQ_OP_ZONE_OPEN: 1098 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1099 break; 1100 case REQ_OP_ZONE_CLOSE: 1101 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1102 break; 1103 case REQ_OP_ZONE_FINISH: 1104 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1105 break; 1106 case REQ_OP_WRITE_ZEROES: 1107 ret = nvme_setup_write_zeroes(ns, req, cmd); 1108 break; 1109 case REQ_OP_DISCARD: 1110 ret = nvme_setup_discard(ns, req, cmd); 1111 break; 1112 case REQ_OP_READ: 1113 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1114 break; 1115 case REQ_OP_WRITE: 1116 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1117 break; 1118 case REQ_OP_ZONE_APPEND: 1119 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1120 break; 1121 default: 1122 WARN_ON_ONCE(1); 1123 return BLK_STS_IOERR; 1124 } 1125 1126 cmd->common.command_id = nvme_cid(req); 1127 trace_nvme_setup_cmd(req, cmd); 1128 return ret; 1129 } 1130 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1131 1132 /* 1133 * Return values: 1134 * 0: success 1135 * >0: nvme controller's cqe status response 1136 * <0: kernel error in lieu of controller response 1137 */ 1138 int nvme_execute_rq(struct request *rq, bool at_head) 1139 { 1140 blk_status_t status; 1141 1142 status = blk_execute_rq(rq, at_head); 1143 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1144 return -EINTR; 1145 if (nvme_req(rq)->status) 1146 return nvme_req(rq)->status; 1147 return blk_status_to_errno(status); 1148 } 1149 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU"); 1150 1151 /* 1152 * Returns 0 on success. If the result is negative, it's a Linux error code; 1153 * if the result is positive, it's an NVM Express status code 1154 */ 1155 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1156 union nvme_result *result, void *buffer, unsigned bufflen, 1157 int qid, nvme_submit_flags_t flags) 1158 { 1159 struct request *req; 1160 int ret; 1161 blk_mq_req_flags_t blk_flags = 0; 1162 1163 if (flags & NVME_SUBMIT_NOWAIT) 1164 blk_flags |= BLK_MQ_REQ_NOWAIT; 1165 if (flags & NVME_SUBMIT_RESERVED) 1166 blk_flags |= BLK_MQ_REQ_RESERVED; 1167 if (qid == NVME_QID_ANY) 1168 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1169 else 1170 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1171 qid - 1); 1172 1173 if (IS_ERR(req)) 1174 return PTR_ERR(req); 1175 nvme_init_request(req, cmd); 1176 if (flags & NVME_SUBMIT_RETRY) 1177 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1178 1179 if (buffer && bufflen) { 1180 ret = blk_rq_map_kern(req, buffer, bufflen, GFP_KERNEL); 1181 if (ret) 1182 goto out; 1183 } 1184 1185 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1186 if (result && ret >= 0) 1187 *result = nvme_req(req)->result; 1188 out: 1189 blk_mq_free_request(req); 1190 return ret; 1191 } 1192 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1193 1194 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1195 void *buffer, unsigned bufflen) 1196 { 1197 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1198 NVME_QID_ANY, 0); 1199 } 1200 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1201 1202 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1203 { 1204 u32 effects = 0; 1205 1206 if (ns) { 1207 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1208 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1209 dev_warn_once(ctrl->device, 1210 "IO command:%02x has unusual effects:%08x\n", 1211 opcode, effects); 1212 1213 /* 1214 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1215 * which would deadlock when done on an I/O command. Note that 1216 * We already warn about an unusual effect above. 1217 */ 1218 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1219 } else { 1220 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1221 1222 /* Ignore execution restrictions if any relaxation bits are set */ 1223 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1224 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1225 } 1226 1227 return effects; 1228 } 1229 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU"); 1230 1231 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1232 { 1233 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1234 1235 /* 1236 * For simplicity, IO to all namespaces is quiesced even if the command 1237 * effects say only one namespace is affected. 1238 */ 1239 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1240 mutex_lock(&ctrl->scan_lock); 1241 mutex_lock(&ctrl->subsys->lock); 1242 nvme_mpath_start_freeze(ctrl->subsys); 1243 nvme_mpath_wait_freeze(ctrl->subsys); 1244 nvme_start_freeze(ctrl); 1245 nvme_wait_freeze(ctrl); 1246 } 1247 return effects; 1248 } 1249 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU"); 1250 1251 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1252 struct nvme_command *cmd, int status) 1253 { 1254 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1255 nvme_unfreeze(ctrl); 1256 nvme_mpath_unfreeze(ctrl->subsys); 1257 mutex_unlock(&ctrl->subsys->lock); 1258 mutex_unlock(&ctrl->scan_lock); 1259 } 1260 if (effects & NVME_CMD_EFFECTS_CCC) { 1261 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1262 &ctrl->flags)) { 1263 dev_info(ctrl->device, 1264 "controller capabilities changed, reset may be required to take effect.\n"); 1265 } 1266 } 1267 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1268 nvme_queue_scan(ctrl); 1269 flush_work(&ctrl->scan_work); 1270 } 1271 if (ns) 1272 return; 1273 1274 switch (cmd->common.opcode) { 1275 case nvme_admin_set_features: 1276 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1277 case NVME_FEAT_KATO: 1278 /* 1279 * Keep alive commands interval on the host should be 1280 * updated when KATO is modified by Set Features 1281 * commands. 1282 */ 1283 if (!status) 1284 nvme_update_keep_alive(ctrl, cmd); 1285 break; 1286 default: 1287 break; 1288 } 1289 break; 1290 default: 1291 break; 1292 } 1293 } 1294 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU"); 1295 1296 /* 1297 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1298 * 1299 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1300 * accounting for transport roundtrip times [..]. 1301 */ 1302 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1303 { 1304 unsigned long delay = ctrl->kato * HZ / 2; 1305 1306 /* 1307 * When using Traffic Based Keep Alive, we need to run 1308 * nvme_keep_alive_work at twice the normal frequency, as one 1309 * command completion can postpone sending a keep alive command 1310 * by up to twice the delay between runs. 1311 */ 1312 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1313 delay /= 2; 1314 return delay; 1315 } 1316 1317 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1318 { 1319 unsigned long now = jiffies; 1320 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1321 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1322 1323 if (time_after(now, ka_next_check_tm)) 1324 delay = 0; 1325 else 1326 delay = ka_next_check_tm - now; 1327 1328 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1329 } 1330 1331 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1332 blk_status_t status) 1333 { 1334 struct nvme_ctrl *ctrl = rq->end_io_data; 1335 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1336 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1337 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 1338 1339 /* 1340 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1341 * at the desired frequency. 1342 */ 1343 if (rtt <= delay) { 1344 delay -= rtt; 1345 } else { 1346 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1347 jiffies_to_msecs(rtt)); 1348 delay = 0; 1349 } 1350 1351 blk_mq_free_request(rq); 1352 1353 if (status) { 1354 dev_err(ctrl->device, 1355 "failed nvme_keep_alive_end_io error=%d\n", 1356 status); 1357 return RQ_END_IO_NONE; 1358 } 1359 1360 ctrl->ka_last_check_time = jiffies; 1361 ctrl->comp_seen = false; 1362 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING) 1363 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1364 return RQ_END_IO_NONE; 1365 } 1366 1367 static void nvme_keep_alive_work(struct work_struct *work) 1368 { 1369 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1370 struct nvme_ctrl, ka_work); 1371 bool comp_seen = ctrl->comp_seen; 1372 struct request *rq; 1373 1374 ctrl->ka_last_check_time = jiffies; 1375 1376 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1377 dev_dbg(ctrl->device, 1378 "reschedule traffic based keep-alive timer\n"); 1379 ctrl->comp_seen = false; 1380 nvme_queue_keep_alive_work(ctrl); 1381 return; 1382 } 1383 1384 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1385 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1386 if (IS_ERR(rq)) { 1387 /* allocation failure, reset the controller */ 1388 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1389 nvme_reset_ctrl(ctrl); 1390 return; 1391 } 1392 nvme_init_request(rq, &ctrl->ka_cmd); 1393 1394 rq->timeout = ctrl->kato * HZ; 1395 rq->end_io = nvme_keep_alive_end_io; 1396 rq->end_io_data = ctrl; 1397 blk_execute_rq_nowait(rq, false); 1398 } 1399 1400 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1401 { 1402 if (unlikely(ctrl->kato == 0)) 1403 return; 1404 1405 nvme_queue_keep_alive_work(ctrl); 1406 } 1407 1408 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1409 { 1410 if (unlikely(ctrl->kato == 0)) 1411 return; 1412 1413 cancel_delayed_work_sync(&ctrl->ka_work); 1414 } 1415 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1416 1417 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1418 struct nvme_command *cmd) 1419 { 1420 unsigned int new_kato = 1421 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1422 1423 dev_info(ctrl->device, 1424 "keep alive interval updated from %u ms to %u ms\n", 1425 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1426 1427 nvme_stop_keep_alive(ctrl); 1428 ctrl->kato = new_kato; 1429 nvme_start_keep_alive(ctrl); 1430 } 1431 1432 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns) 1433 { 1434 /* 1435 * The CNS field occupies a full byte starting with NVMe 1.2 1436 */ 1437 if (ctrl->vs >= NVME_VS(1, 2, 0)) 1438 return true; 1439 1440 /* 1441 * NVMe 1.1 expanded the CNS value to two bits, which means values 1442 * larger than that could get truncated and treated as an incorrect 1443 * value. 1444 * 1445 * Qemu implemented 1.0 behavior for controllers claiming 1.1 1446 * compliance, so they need to be quirked here. 1447 */ 1448 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1449 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) 1450 return cns <= 3; 1451 1452 /* 1453 * NVMe 1.0 used a single bit for the CNS value. 1454 */ 1455 return cns <= 1; 1456 } 1457 1458 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1459 { 1460 struct nvme_command c = { }; 1461 int error; 1462 1463 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1464 c.identify.opcode = nvme_admin_identify; 1465 c.identify.cns = NVME_ID_CNS_CTRL; 1466 1467 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1468 if (!*id) 1469 return -ENOMEM; 1470 1471 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1472 sizeof(struct nvme_id_ctrl)); 1473 if (error) { 1474 kfree(*id); 1475 *id = NULL; 1476 } 1477 return error; 1478 } 1479 1480 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1481 struct nvme_ns_id_desc *cur, bool *csi_seen) 1482 { 1483 const char *warn_str = "ctrl returned bogus length:"; 1484 void *data = cur; 1485 1486 switch (cur->nidt) { 1487 case NVME_NIDT_EUI64: 1488 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1489 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1490 warn_str, cur->nidl); 1491 return -1; 1492 } 1493 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1494 return NVME_NIDT_EUI64_LEN; 1495 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1496 return NVME_NIDT_EUI64_LEN; 1497 case NVME_NIDT_NGUID: 1498 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1499 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1500 warn_str, cur->nidl); 1501 return -1; 1502 } 1503 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1504 return NVME_NIDT_NGUID_LEN; 1505 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1506 return NVME_NIDT_NGUID_LEN; 1507 case NVME_NIDT_UUID: 1508 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1509 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1510 warn_str, cur->nidl); 1511 return -1; 1512 } 1513 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1514 return NVME_NIDT_UUID_LEN; 1515 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1516 return NVME_NIDT_UUID_LEN; 1517 case NVME_NIDT_CSI: 1518 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1519 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1520 warn_str, cur->nidl); 1521 return -1; 1522 } 1523 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1524 *csi_seen = true; 1525 return NVME_NIDT_CSI_LEN; 1526 default: 1527 /* Skip unknown types */ 1528 return cur->nidl; 1529 } 1530 } 1531 1532 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1533 struct nvme_ns_info *info) 1534 { 1535 struct nvme_command c = { }; 1536 bool csi_seen = false; 1537 int status, pos, len; 1538 void *data; 1539 1540 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1541 return 0; 1542 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1543 return 0; 1544 1545 c.identify.opcode = nvme_admin_identify; 1546 c.identify.nsid = cpu_to_le32(info->nsid); 1547 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1548 1549 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1550 if (!data) 1551 return -ENOMEM; 1552 1553 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1554 NVME_IDENTIFY_DATA_SIZE); 1555 if (status) { 1556 dev_warn(ctrl->device, 1557 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1558 info->nsid, status); 1559 goto free_data; 1560 } 1561 1562 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1563 struct nvme_ns_id_desc *cur = data + pos; 1564 1565 if (cur->nidl == 0) 1566 break; 1567 1568 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1569 if (len < 0) 1570 break; 1571 1572 len += sizeof(*cur); 1573 } 1574 1575 if (nvme_multi_css(ctrl) && !csi_seen) { 1576 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1577 info->nsid); 1578 status = -EINVAL; 1579 } 1580 1581 free_data: 1582 kfree(data); 1583 return status; 1584 } 1585 1586 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1587 struct nvme_id_ns **id) 1588 { 1589 struct nvme_command c = { }; 1590 int error; 1591 1592 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1593 c.identify.opcode = nvme_admin_identify; 1594 c.identify.nsid = cpu_to_le32(nsid); 1595 c.identify.cns = NVME_ID_CNS_NS; 1596 1597 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1598 if (!*id) 1599 return -ENOMEM; 1600 1601 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1602 if (error) { 1603 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1604 kfree(*id); 1605 *id = NULL; 1606 } 1607 return error; 1608 } 1609 1610 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1611 struct nvme_ns_info *info) 1612 { 1613 struct nvme_ns_ids *ids = &info->ids; 1614 struct nvme_id_ns *id; 1615 int ret; 1616 1617 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1618 if (ret) 1619 return ret; 1620 1621 if (id->ncap == 0) { 1622 /* namespace not allocated or attached */ 1623 info->is_removed = true; 1624 ret = -ENODEV; 1625 goto error; 1626 } 1627 1628 info->anagrpid = id->anagrpid; 1629 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1630 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1631 info->is_ready = true; 1632 info->endgid = le16_to_cpu(id->endgid); 1633 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1634 dev_info(ctrl->device, 1635 "Ignoring bogus Namespace Identifiers\n"); 1636 } else { 1637 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1638 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1639 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1640 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1641 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1642 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1643 } 1644 1645 error: 1646 kfree(id); 1647 return ret; 1648 } 1649 1650 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1651 struct nvme_ns_info *info) 1652 { 1653 struct nvme_id_ns_cs_indep *id; 1654 struct nvme_command c = { 1655 .identify.opcode = nvme_admin_identify, 1656 .identify.nsid = cpu_to_le32(info->nsid), 1657 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1658 }; 1659 int ret; 1660 1661 id = kmalloc(sizeof(*id), GFP_KERNEL); 1662 if (!id) 1663 return -ENOMEM; 1664 1665 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1666 if (!ret) { 1667 info->anagrpid = id->anagrpid; 1668 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1669 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1670 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1671 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL; 1672 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT; 1673 info->endgid = le16_to_cpu(id->endgid); 1674 } 1675 kfree(id); 1676 return ret; 1677 } 1678 1679 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1680 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1681 { 1682 union nvme_result res = { 0 }; 1683 struct nvme_command c = { }; 1684 int ret; 1685 1686 c.features.opcode = op; 1687 c.features.fid = cpu_to_le32(fid); 1688 c.features.dword11 = cpu_to_le32(dword11); 1689 1690 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1691 buffer, buflen, NVME_QID_ANY, 0); 1692 if (ret >= 0 && result) 1693 *result = le32_to_cpu(res.u32); 1694 return ret; 1695 } 1696 1697 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1698 unsigned int dword11, void *buffer, size_t buflen, 1699 void *result) 1700 { 1701 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1702 buflen, result); 1703 } 1704 EXPORT_SYMBOL_GPL(nvme_set_features); 1705 1706 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1707 unsigned int dword11, void *buffer, size_t buflen, 1708 void *result) 1709 { 1710 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1711 buflen, result); 1712 } 1713 EXPORT_SYMBOL_GPL(nvme_get_features); 1714 1715 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1716 { 1717 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1718 u32 result; 1719 int status, nr_io_queues; 1720 1721 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1722 &result); 1723 1724 /* 1725 * It's either a kernel error or the host observed a connection 1726 * lost. In either case it's not possible communicate with the 1727 * controller and thus enter the error code path. 1728 */ 1729 if (status < 0 || status == NVME_SC_HOST_PATH_ERROR) 1730 return status; 1731 1732 /* 1733 * Degraded controllers might return an error when setting the queue 1734 * count. We still want to be able to bring them online and offer 1735 * access to the admin queue, as that might be only way to fix them up. 1736 */ 1737 if (status > 0) { 1738 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1739 *count = 0; 1740 } else { 1741 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1742 *count = min(*count, nr_io_queues); 1743 } 1744 1745 return 0; 1746 } 1747 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1748 1749 #define NVME_AEN_SUPPORTED \ 1750 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1751 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1752 1753 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1754 { 1755 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1756 int status; 1757 1758 if (!supported_aens) 1759 return; 1760 1761 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1762 NULL, 0, &result); 1763 if (status) 1764 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1765 supported_aens); 1766 1767 queue_work(nvme_wq, &ctrl->async_event_work); 1768 } 1769 1770 static int nvme_ns_open(struct nvme_ns *ns) 1771 { 1772 1773 /* should never be called due to GENHD_FL_HIDDEN */ 1774 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1775 goto fail; 1776 if (!nvme_get_ns(ns)) 1777 goto fail; 1778 if (!try_module_get(ns->ctrl->ops->module)) 1779 goto fail_put_ns; 1780 1781 return 0; 1782 1783 fail_put_ns: 1784 nvme_put_ns(ns); 1785 fail: 1786 return -ENXIO; 1787 } 1788 1789 static void nvme_ns_release(struct nvme_ns *ns) 1790 { 1791 1792 module_put(ns->ctrl->ops->module); 1793 nvme_put_ns(ns); 1794 } 1795 1796 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1797 { 1798 return nvme_ns_open(disk->private_data); 1799 } 1800 1801 static void nvme_release(struct gendisk *disk) 1802 { 1803 nvme_ns_release(disk->private_data); 1804 } 1805 1806 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1807 { 1808 /* some standard values */ 1809 geo->heads = 1 << 6; 1810 geo->sectors = 1 << 5; 1811 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1812 return 0; 1813 } 1814 1815 static bool nvme_init_integrity(struct nvme_ns_head *head, 1816 struct queue_limits *lim, struct nvme_ns_info *info) 1817 { 1818 struct blk_integrity *bi = &lim->integrity; 1819 1820 memset(bi, 0, sizeof(*bi)); 1821 1822 if (!head->ms) 1823 return true; 1824 1825 /* 1826 * PI can always be supported as we can ask the controller to simply 1827 * insert/strip it, which is not possible for other kinds of metadata. 1828 */ 1829 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1830 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1831 return nvme_ns_has_pi(head); 1832 1833 switch (head->pi_type) { 1834 case NVME_NS_DPS_PI_TYPE3: 1835 switch (head->guard_type) { 1836 case NVME_NVM_NS_16B_GUARD: 1837 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1838 bi->tag_size = sizeof(u16) + sizeof(u32); 1839 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1840 break; 1841 case NVME_NVM_NS_64B_GUARD: 1842 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1843 bi->tag_size = sizeof(u16) + 6; 1844 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1845 break; 1846 default: 1847 break; 1848 } 1849 break; 1850 case NVME_NS_DPS_PI_TYPE1: 1851 case NVME_NS_DPS_PI_TYPE2: 1852 switch (head->guard_type) { 1853 case NVME_NVM_NS_16B_GUARD: 1854 bi->csum_type = BLK_INTEGRITY_CSUM_CRC; 1855 bi->tag_size = sizeof(u16); 1856 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1857 BLK_INTEGRITY_REF_TAG; 1858 break; 1859 case NVME_NVM_NS_64B_GUARD: 1860 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; 1861 bi->tag_size = sizeof(u16); 1862 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | 1863 BLK_INTEGRITY_REF_TAG; 1864 break; 1865 default: 1866 break; 1867 } 1868 break; 1869 default: 1870 break; 1871 } 1872 1873 bi->metadata_size = head->ms; 1874 if (bi->csum_type) { 1875 bi->pi_tuple_size = head->pi_size; 1876 bi->pi_offset = info->pi_offset; 1877 } 1878 return true; 1879 } 1880 1881 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1882 { 1883 struct nvme_ctrl *ctrl = ns->ctrl; 1884 1885 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1886 lim->max_hw_discard_sectors = 1887 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1888 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1889 lim->max_hw_discard_sectors = UINT_MAX; 1890 else 1891 lim->max_hw_discard_sectors = 0; 1892 1893 lim->discard_granularity = lim->logical_block_size; 1894 1895 if (ctrl->dmrl) 1896 lim->max_discard_segments = ctrl->dmrl; 1897 else 1898 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1899 } 1900 1901 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1902 { 1903 return uuid_equal(&a->uuid, &b->uuid) && 1904 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1905 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1906 a->csi == b->csi; 1907 } 1908 1909 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1910 struct nvme_id_ns_nvm **nvmp) 1911 { 1912 struct nvme_command c = { 1913 .identify.opcode = nvme_admin_identify, 1914 .identify.nsid = cpu_to_le32(nsid), 1915 .identify.cns = NVME_ID_CNS_CS_NS, 1916 .identify.csi = NVME_CSI_NVM, 1917 }; 1918 struct nvme_id_ns_nvm *nvm; 1919 int ret; 1920 1921 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1922 if (!nvm) 1923 return -ENOMEM; 1924 1925 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1926 if (ret) 1927 kfree(nvm); 1928 else 1929 *nvmp = nvm; 1930 return ret; 1931 } 1932 1933 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1934 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1935 { 1936 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1937 u8 guard_type; 1938 1939 /* no support for storage tag formats right now */ 1940 if (nvme_elbaf_sts(elbaf)) 1941 return; 1942 1943 guard_type = nvme_elbaf_guard_type(elbaf); 1944 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && 1945 guard_type == NVME_NVM_NS_QTYPE_GUARD) 1946 guard_type = nvme_elbaf_qualified_guard_type(elbaf); 1947 1948 head->guard_type = guard_type; 1949 switch (head->guard_type) { 1950 case NVME_NVM_NS_64B_GUARD: 1951 head->pi_size = sizeof(struct crc64_pi_tuple); 1952 break; 1953 case NVME_NVM_NS_16B_GUARD: 1954 head->pi_size = sizeof(struct t10_pi_tuple); 1955 break; 1956 default: 1957 break; 1958 } 1959 } 1960 1961 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1962 struct nvme_ns_head *head, struct nvme_id_ns *id, 1963 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) 1964 { 1965 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1966 head->pi_type = 0; 1967 head->pi_size = 0; 1968 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1969 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1970 return; 1971 1972 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1973 nvme_configure_pi_elbas(head, id, nvm); 1974 } else { 1975 head->pi_size = sizeof(struct t10_pi_tuple); 1976 head->guard_type = NVME_NVM_NS_16B_GUARD; 1977 } 1978 1979 if (head->pi_size && head->ms >= head->pi_size) 1980 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1981 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) { 1982 if (disable_pi_offsets) 1983 head->pi_type = 0; 1984 else 1985 info->pi_offset = head->ms - head->pi_size; 1986 } 1987 1988 if (ctrl->ops->flags & NVME_F_FABRICS) { 1989 /* 1990 * The NVMe over Fabrics specification only supports metadata as 1991 * part of the extended data LBA. We rely on HCA/HBA support to 1992 * remap the separate metadata buffer from the block layer. 1993 */ 1994 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1995 return; 1996 1997 head->features |= NVME_NS_EXT_LBAS; 1998 1999 /* 2000 * The current fabrics transport drivers support namespace 2001 * metadata formats only if nvme_ns_has_pi() returns true. 2002 * Suppress support for all other formats so the namespace will 2003 * have a 0 capacity and not be usable through the block stack. 2004 * 2005 * Note, this check will need to be modified if any drivers 2006 * gain the ability to use other metadata formats. 2007 */ 2008 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 2009 head->features |= NVME_NS_METADATA_SUPPORTED; 2010 } else { 2011 /* 2012 * For PCIe controllers, we can't easily remap the separate 2013 * metadata buffer from the block layer and thus require a 2014 * separate metadata buffer for block layer metadata/PI support. 2015 * We allow extended LBAs for the passthrough interface, though. 2016 */ 2017 if (id->flbas & NVME_NS_FLBAS_META_EXT) 2018 head->features |= NVME_NS_EXT_LBAS; 2019 else 2020 head->features |= NVME_NS_METADATA_SUPPORTED; 2021 } 2022 } 2023 2024 2025 static u32 nvme_configure_atomic_write(struct nvme_ns *ns, 2026 struct nvme_id_ns *id, struct queue_limits *lim, u32 bs) 2027 { 2028 u32 atomic_bs, boundary = 0; 2029 2030 /* 2031 * We do not support an offset for the atomic boundaries. 2032 */ 2033 if (id->nabo) 2034 return bs; 2035 2036 if ((id->nsfeat & NVME_NS_FEAT_ATOMICS) && id->nawupf) { 2037 /* 2038 * Use the per-namespace atomic write unit when available. 2039 */ 2040 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 2041 if (id->nabspf) 2042 boundary = (le16_to_cpu(id->nabspf) + 1) * bs; 2043 } else { 2044 /* 2045 * Use the controller wide atomic write unit. This sucks 2046 * because the limit is defined in terms of logical blocks while 2047 * namespaces can have different formats, and because there is 2048 * no clear language in the specification prohibiting different 2049 * values for different controllers in the subsystem. 2050 */ 2051 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 2052 } 2053 2054 lim->atomic_write_hw_max = atomic_bs; 2055 lim->atomic_write_hw_boundary = boundary; 2056 lim->atomic_write_hw_unit_min = bs; 2057 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); 2058 lim->features |= BLK_FEAT_ATOMIC_WRITES; 2059 return atomic_bs; 2060 } 2061 2062 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 2063 { 2064 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 2065 } 2066 2067 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 2068 struct queue_limits *lim) 2069 { 2070 lim->max_hw_sectors = ctrl->max_hw_sectors; 2071 lim->max_segments = min_t(u32, USHRT_MAX, 2072 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 2073 lim->max_integrity_segments = ctrl->max_integrity_segments; 2074 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 2075 lim->max_segment_size = UINT_MAX; 2076 lim->dma_alignment = 3; 2077 } 2078 2079 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 2080 struct queue_limits *lim) 2081 { 2082 struct nvme_ns_head *head = ns->head; 2083 u32 bs = 1U << head->lba_shift; 2084 u32 atomic_bs, phys_bs, io_opt = 0; 2085 bool valid = true; 2086 2087 /* 2088 * The block layer can't support LBA sizes larger than the page size 2089 * or smaller than a sector size yet, so catch this early and don't 2090 * allow block I/O. 2091 */ 2092 if (blk_validate_block_size(bs)) { 2093 bs = (1 << 9); 2094 valid = false; 2095 } 2096 2097 phys_bs = bs; 2098 atomic_bs = nvme_configure_atomic_write(ns, id, lim, bs); 2099 2100 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 2101 /* NPWG = Namespace Preferred Write Granularity */ 2102 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 2103 /* NOWS = Namespace Optimal Write Size */ 2104 if (id->nows) 2105 io_opt = bs * (1 + le16_to_cpu(id->nows)); 2106 } 2107 2108 /* 2109 * Linux filesystems assume writing a single physical block is 2110 * an atomic operation. Hence limit the physical block size to the 2111 * value of the Atomic Write Unit Power Fail parameter. 2112 */ 2113 lim->logical_block_size = bs; 2114 lim->physical_block_size = min(phys_bs, atomic_bs); 2115 lim->io_min = phys_bs; 2116 lim->io_opt = io_opt; 2117 if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) && 2118 (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)) 2119 lim->max_write_zeroes_sectors = UINT_MAX; 2120 else 2121 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 2122 return valid; 2123 } 2124 2125 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 2126 { 2127 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 2128 } 2129 2130 static inline bool nvme_first_scan(struct gendisk *disk) 2131 { 2132 /* nvme_alloc_ns() scans the disk prior to adding it */ 2133 return !disk_live(disk); 2134 } 2135 2136 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2137 struct queue_limits *lim) 2138 { 2139 struct nvme_ctrl *ctrl = ns->ctrl; 2140 u32 iob; 2141 2142 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2143 is_power_of_2(ctrl->max_hw_sectors)) 2144 iob = ctrl->max_hw_sectors; 2145 else 2146 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2147 2148 if (!iob) 2149 return; 2150 2151 if (!is_power_of_2(iob)) { 2152 if (nvme_first_scan(ns->disk)) 2153 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2154 ns->disk->disk_name, iob); 2155 return; 2156 } 2157 2158 if (blk_queue_is_zoned(ns->disk->queue)) { 2159 if (nvme_first_scan(ns->disk)) 2160 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2161 ns->disk->disk_name); 2162 return; 2163 } 2164 2165 lim->chunk_sectors = iob; 2166 } 2167 2168 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2169 struct nvme_ns_info *info) 2170 { 2171 struct queue_limits lim; 2172 unsigned int memflags; 2173 int ret; 2174 2175 lim = queue_limits_start_update(ns->disk->queue); 2176 nvme_set_ctrl_limits(ns->ctrl, &lim); 2177 2178 memflags = blk_mq_freeze_queue(ns->disk->queue); 2179 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2180 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2181 blk_mq_unfreeze_queue(ns->disk->queue, memflags); 2182 2183 /* Hide the block-interface for these devices */ 2184 if (!ret) 2185 ret = -ENODEV; 2186 return ret; 2187 } 2188 2189 static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl, 2190 struct nvme_ns_info *info, u8 fdp_idx) 2191 { 2192 struct nvme_fdp_config_log hdr, *h; 2193 struct nvme_fdp_config_desc *desc; 2194 size_t size = sizeof(hdr); 2195 void *log, *end; 2196 int i, n, ret; 2197 2198 ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0, 2199 NVME_CSI_NVM, &hdr, size, 0, info->endgid); 2200 if (ret) { 2201 dev_warn(ctrl->device, 2202 "FDP configs log header status:0x%x endgid:%d\n", ret, 2203 info->endgid); 2204 return ret; 2205 } 2206 2207 size = le32_to_cpu(hdr.sze); 2208 if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) { 2209 dev_warn(ctrl->device, "FDP config size too large:%zu\n", 2210 size); 2211 return 0; 2212 } 2213 2214 h = kvmalloc(size, GFP_KERNEL); 2215 if (!h) 2216 return -ENOMEM; 2217 2218 ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0, 2219 NVME_CSI_NVM, h, size, 0, info->endgid); 2220 if (ret) { 2221 dev_warn(ctrl->device, 2222 "FDP configs log status:0x%x endgid:%d\n", ret, 2223 info->endgid); 2224 goto out; 2225 } 2226 2227 n = le16_to_cpu(h->numfdpc) + 1; 2228 if (fdp_idx > n) { 2229 dev_warn(ctrl->device, "FDP index:%d out of range:%d\n", 2230 fdp_idx, n); 2231 /* Proceed without registering FDP streams */ 2232 ret = 0; 2233 goto out; 2234 } 2235 2236 log = h + 1; 2237 desc = log; 2238 end = log + size - sizeof(*h); 2239 for (i = 0; i < fdp_idx; i++) { 2240 log += le16_to_cpu(desc->dsze); 2241 desc = log; 2242 if (log >= end) { 2243 dev_warn(ctrl->device, 2244 "FDP invalid config descriptor list\n"); 2245 ret = 0; 2246 goto out; 2247 } 2248 } 2249 2250 if (le32_to_cpu(desc->nrg) > 1) { 2251 dev_warn(ctrl->device, "FDP NRG > 1 not supported\n"); 2252 ret = 0; 2253 goto out; 2254 } 2255 2256 info->runs = le64_to_cpu(desc->runs); 2257 out: 2258 kvfree(h); 2259 return ret; 2260 } 2261 2262 static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2263 { 2264 struct nvme_ns_head *head = ns->head; 2265 struct nvme_ctrl *ctrl = ns->ctrl; 2266 struct nvme_fdp_ruh_status *ruhs; 2267 struct nvme_fdp_config fdp; 2268 struct nvme_command c = {}; 2269 size_t size; 2270 int i, ret; 2271 2272 /* 2273 * The FDP configuration is static for the lifetime of the namespace, 2274 * so return immediately if we've already registered this namespace's 2275 * streams. 2276 */ 2277 if (head->nr_plids) 2278 return 0; 2279 2280 ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0, 2281 &fdp); 2282 if (ret) { 2283 dev_warn(ctrl->device, "FDP get feature status:0x%x\n", ret); 2284 return ret; 2285 } 2286 2287 if (!(fdp.flags & FDPCFG_FDPE)) 2288 return 0; 2289 2290 ret = nvme_query_fdp_granularity(ctrl, info, fdp.fdpcidx); 2291 if (!info->runs) 2292 return ret; 2293 2294 size = struct_size(ruhs, ruhsd, S8_MAX - 1); 2295 ruhs = kzalloc(size, GFP_KERNEL); 2296 if (!ruhs) 2297 return -ENOMEM; 2298 2299 c.imr.opcode = nvme_cmd_io_mgmt_recv; 2300 c.imr.nsid = cpu_to_le32(head->ns_id); 2301 c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS; 2302 c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size)); 2303 ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size); 2304 if (ret) { 2305 dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n", ret); 2306 goto free; 2307 } 2308 2309 head->nr_plids = le16_to_cpu(ruhs->nruhsd); 2310 if (!head->nr_plids) 2311 goto free; 2312 2313 head->plids = kcalloc(head->nr_plids, sizeof(*head->plids), 2314 GFP_KERNEL); 2315 if (!head->plids) { 2316 dev_warn(ctrl->device, 2317 "failed to allocate %u FDP placement IDs\n", 2318 head->nr_plids); 2319 head->nr_plids = 0; 2320 ret = -ENOMEM; 2321 goto free; 2322 } 2323 2324 for (i = 0; i < head->nr_plids; i++) 2325 head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid); 2326 free: 2327 kfree(ruhs); 2328 return ret; 2329 } 2330 2331 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2332 struct nvme_ns_info *info) 2333 { 2334 struct queue_limits lim; 2335 struct nvme_id_ns_nvm *nvm = NULL; 2336 struct nvme_zone_info zi = {}; 2337 struct nvme_id_ns *id; 2338 unsigned int memflags; 2339 sector_t capacity; 2340 unsigned lbaf; 2341 int ret; 2342 2343 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2344 if (ret) 2345 return ret; 2346 2347 if (id->ncap == 0) { 2348 /* namespace not allocated or attached */ 2349 info->is_removed = true; 2350 ret = -ENXIO; 2351 goto out; 2352 } 2353 lbaf = nvme_lbaf_index(id->flbas); 2354 2355 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2356 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2357 if (ret < 0) 2358 goto out; 2359 } 2360 2361 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2362 ns->head->ids.csi == NVME_CSI_ZNS) { 2363 ret = nvme_query_zone_info(ns, lbaf, &zi); 2364 if (ret < 0) 2365 goto out; 2366 } 2367 2368 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) { 2369 ret = nvme_query_fdp_info(ns, info); 2370 if (ret < 0) 2371 goto out; 2372 } 2373 2374 lim = queue_limits_start_update(ns->disk->queue); 2375 2376 memflags = blk_mq_freeze_queue(ns->disk->queue); 2377 ns->head->lba_shift = id->lbaf[lbaf].ds; 2378 ns->head->nuse = le64_to_cpu(id->nuse); 2379 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2380 nvme_set_ctrl_limits(ns->ctrl, &lim); 2381 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info); 2382 nvme_set_chunk_sectors(ns, id, &lim); 2383 if (!nvme_update_disk_info(ns, id, &lim)) 2384 capacity = 0; 2385 2386 nvme_config_discard(ns, &lim); 2387 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2388 ns->head->ids.csi == NVME_CSI_ZNS) 2389 nvme_update_zone_info(ns, &lim, &zi); 2390 2391 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc) 2392 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; 2393 else 2394 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2395 2396 if (info->is_rotational) 2397 lim.features |= BLK_FEAT_ROTATIONAL; 2398 2399 /* 2400 * Register a metadata profile for PI, or the plain non-integrity NVMe 2401 * metadata masquerading as Type 0 if supported, otherwise reject block 2402 * I/O to namespaces with metadata except when the namespace supports 2403 * PI, as it can strip/insert in that case. 2404 */ 2405 if (!nvme_init_integrity(ns->head, &lim, info)) 2406 capacity = 0; 2407 2408 lim.max_write_streams = ns->head->nr_plids; 2409 if (lim.max_write_streams) 2410 lim.write_stream_granularity = min(info->runs, U32_MAX); 2411 else 2412 lim.write_stream_granularity = 0; 2413 2414 /* 2415 * Only set the DEAC bit if the device guarantees that reads from 2416 * deallocated data return zeroes. While the DEAC bit does not 2417 * require that, it must be a no-op if reads from deallocated data 2418 * do not return zeroes. 2419 */ 2420 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) { 2421 ns->head->features |= NVME_NS_DEAC; 2422 lim.max_hw_wzeroes_unmap_sectors = lim.max_write_zeroes_sectors; 2423 } 2424 2425 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2426 if (ret) { 2427 blk_mq_unfreeze_queue(ns->disk->queue, memflags); 2428 goto out; 2429 } 2430 2431 set_capacity_and_notify(ns->disk, capacity); 2432 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2433 set_bit(NVME_NS_READY, &ns->flags); 2434 blk_mq_unfreeze_queue(ns->disk->queue, memflags); 2435 2436 if (blk_queue_is_zoned(ns->queue)) { 2437 ret = blk_revalidate_disk_zones(ns->disk); 2438 if (ret && !nvme_first_scan(ns->disk)) 2439 goto out; 2440 } 2441 2442 ret = 0; 2443 out: 2444 kfree(nvm); 2445 kfree(id); 2446 return ret; 2447 } 2448 2449 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2450 { 2451 bool unsupported = false; 2452 int ret; 2453 2454 switch (info->ids.csi) { 2455 case NVME_CSI_ZNS: 2456 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2457 dev_info(ns->ctrl->device, 2458 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2459 info->nsid); 2460 ret = nvme_update_ns_info_generic(ns, info); 2461 break; 2462 } 2463 ret = nvme_update_ns_info_block(ns, info); 2464 break; 2465 case NVME_CSI_NVM: 2466 ret = nvme_update_ns_info_block(ns, info); 2467 break; 2468 default: 2469 dev_info(ns->ctrl->device, 2470 "block device for nsid %u not supported (csi %u)\n", 2471 info->nsid, info->ids.csi); 2472 ret = nvme_update_ns_info_generic(ns, info); 2473 break; 2474 } 2475 2476 /* 2477 * If probing fails due an unsupported feature, hide the block device, 2478 * but still allow other access. 2479 */ 2480 if (ret == -ENODEV) { 2481 ns->disk->flags |= GENHD_FL_HIDDEN; 2482 set_bit(NVME_NS_READY, &ns->flags); 2483 unsupported = true; 2484 ret = 0; 2485 } 2486 2487 if (!ret && nvme_ns_head_multipath(ns->head)) { 2488 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2489 struct queue_limits lim; 2490 unsigned int memflags; 2491 2492 lim = queue_limits_start_update(ns->head->disk->queue); 2493 memflags = blk_mq_freeze_queue(ns->head->disk->queue); 2494 /* 2495 * queue_limits mixes values that are the hardware limitations 2496 * for bio splitting with what is the device configuration. 2497 * 2498 * For NVMe the device configuration can change after e.g. a 2499 * Format command, and we really want to pick up the new format 2500 * value here. But we must still stack the queue limits to the 2501 * least common denominator for multipathing to split the bios 2502 * properly. 2503 * 2504 * To work around this, we explicitly set the device 2505 * configuration to those that we just queried, but only stack 2506 * the splitting limits in to make sure we still obey possibly 2507 * lower limitations of other controllers. 2508 */ 2509 lim.logical_block_size = ns_lim->logical_block_size; 2510 lim.physical_block_size = ns_lim->physical_block_size; 2511 lim.io_min = ns_lim->io_min; 2512 lim.io_opt = ns_lim->io_opt; 2513 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2514 ns->head->disk->disk_name); 2515 if (unsupported) 2516 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2517 else 2518 nvme_init_integrity(ns->head, &lim, info); 2519 lim.max_write_streams = ns_lim->max_write_streams; 2520 lim.write_stream_granularity = ns_lim->write_stream_granularity; 2521 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2522 2523 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2524 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2525 nvme_mpath_revalidate_paths(ns); 2526 2527 blk_mq_unfreeze_queue(ns->head->disk->queue, memflags); 2528 } 2529 2530 return ret; 2531 } 2532 2533 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], 2534 enum blk_unique_id type) 2535 { 2536 struct nvme_ns_ids *ids = &ns->head->ids; 2537 2538 if (type != BLK_UID_EUI64) 2539 return -EINVAL; 2540 2541 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) { 2542 memcpy(id, &ids->nguid, sizeof(ids->nguid)); 2543 return sizeof(ids->nguid); 2544 } 2545 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) { 2546 memcpy(id, &ids->eui64, sizeof(ids->eui64)); 2547 return sizeof(ids->eui64); 2548 } 2549 2550 return -EINVAL; 2551 } 2552 2553 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], 2554 enum blk_unique_id type) 2555 { 2556 return nvme_ns_get_unique_id(disk->private_data, id, type); 2557 } 2558 2559 #ifdef CONFIG_BLK_SED_OPAL 2560 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2561 bool send) 2562 { 2563 struct nvme_ctrl *ctrl = data; 2564 struct nvme_command cmd = { }; 2565 2566 if (send) 2567 cmd.common.opcode = nvme_admin_security_send; 2568 else 2569 cmd.common.opcode = nvme_admin_security_recv; 2570 cmd.common.nsid = 0; 2571 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2572 cmd.common.cdw11 = cpu_to_le32(len); 2573 2574 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2575 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2576 } 2577 2578 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2579 { 2580 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2581 if (!ctrl->opal_dev) 2582 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2583 else if (was_suspended) 2584 opal_unlock_from_suspend(ctrl->opal_dev); 2585 } else { 2586 free_opal_dev(ctrl->opal_dev); 2587 ctrl->opal_dev = NULL; 2588 } 2589 } 2590 #else 2591 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2592 { 2593 } 2594 #endif /* CONFIG_BLK_SED_OPAL */ 2595 2596 #ifdef CONFIG_BLK_DEV_ZONED 2597 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2598 unsigned int nr_zones, report_zones_cb cb, void *data) 2599 { 2600 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2601 data); 2602 } 2603 #else 2604 #define nvme_report_zones NULL 2605 #endif /* CONFIG_BLK_DEV_ZONED */ 2606 2607 const struct block_device_operations nvme_bdev_ops = { 2608 .owner = THIS_MODULE, 2609 .ioctl = nvme_ioctl, 2610 .compat_ioctl = blkdev_compat_ptr_ioctl, 2611 .open = nvme_open, 2612 .release = nvme_release, 2613 .getgeo = nvme_getgeo, 2614 .get_unique_id = nvme_get_unique_id, 2615 .report_zones = nvme_report_zones, 2616 .pr_ops = &nvme_pr_ops, 2617 }; 2618 2619 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2620 u32 timeout, const char *op) 2621 { 2622 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2623 u32 csts; 2624 int ret; 2625 2626 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2627 if (csts == ~0) 2628 return -ENODEV; 2629 if ((csts & mask) == val) 2630 break; 2631 2632 usleep_range(1000, 2000); 2633 if (fatal_signal_pending(current)) 2634 return -EINTR; 2635 if (time_after(jiffies, timeout_jiffies)) { 2636 dev_err(ctrl->device, 2637 "Device not ready; aborting %s, CSTS=0x%x\n", 2638 op, csts); 2639 return -ENODEV; 2640 } 2641 } 2642 2643 return ret; 2644 } 2645 2646 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2647 { 2648 int ret; 2649 2650 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2651 if (shutdown) 2652 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2653 else 2654 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2655 2656 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2657 if (ret) 2658 return ret; 2659 2660 if (shutdown) { 2661 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2662 NVME_CSTS_SHST_CMPLT, 2663 ctrl->shutdown_timeout, "shutdown"); 2664 } 2665 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2666 msleep(NVME_QUIRK_DELAY_AMOUNT); 2667 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2668 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2669 } 2670 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2671 2672 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2673 { 2674 unsigned dev_page_min; 2675 u32 timeout; 2676 int ret; 2677 2678 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2679 if (ret) { 2680 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2681 return ret; 2682 } 2683 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2684 2685 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2686 dev_err(ctrl->device, 2687 "Minimum device page size %u too large for host (%u)\n", 2688 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2689 return -ENODEV; 2690 } 2691 2692 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2693 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2694 else 2695 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2696 2697 /* 2698 * Setting CRIME results in CSTS.RDY before the media is ready. This 2699 * makes it possible for media related commands to return the error 2700 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is 2701 * restructured to handle retries, disable CC.CRIME. 2702 */ 2703 ctrl->ctrl_config &= ~NVME_CC_CRIME; 2704 2705 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2706 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2707 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2708 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2709 if (ret) 2710 return ret; 2711 2712 /* CAP value may change after initial CC write */ 2713 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2714 if (ret) 2715 return ret; 2716 2717 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2718 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2719 u32 crto, ready_timeout; 2720 2721 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2722 if (ret) { 2723 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2724 ret); 2725 return ret; 2726 } 2727 2728 /* 2729 * CRTO should always be greater or equal to CAP.TO, but some 2730 * devices are known to get this wrong. Use the larger of the 2731 * two values. 2732 */ 2733 ready_timeout = NVME_CRTO_CRWMT(crto); 2734 2735 if (ready_timeout < timeout) 2736 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2737 crto, ctrl->cap); 2738 else 2739 timeout = ready_timeout; 2740 } 2741 2742 ctrl->ctrl_config |= NVME_CC_ENABLE; 2743 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2744 if (ret) 2745 return ret; 2746 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2747 (timeout + 1) / 2, "initialisation"); 2748 } 2749 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2750 2751 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2752 { 2753 __le64 ts; 2754 int ret; 2755 2756 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2757 return 0; 2758 2759 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2760 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2761 NULL); 2762 if (ret) 2763 dev_warn_once(ctrl->device, 2764 "could not set timestamp (%d)\n", ret); 2765 return ret; 2766 } 2767 2768 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2769 { 2770 struct nvme_feat_host_behavior *host; 2771 u8 acre = 0, lbafee = 0; 2772 int ret; 2773 2774 /* Don't bother enabling the feature if retry delay is not reported */ 2775 if (ctrl->crdt[0]) 2776 acre = NVME_ENABLE_ACRE; 2777 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2778 lbafee = NVME_ENABLE_LBAFEE; 2779 2780 if (!acre && !lbafee) 2781 return 0; 2782 2783 host = kzalloc(sizeof(*host), GFP_KERNEL); 2784 if (!host) 2785 return 0; 2786 2787 host->acre = acre; 2788 host->lbafee = lbafee; 2789 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2790 host, sizeof(*host), NULL); 2791 kfree(host); 2792 return ret; 2793 } 2794 2795 /* 2796 * The function checks whether the given total (exlat + enlat) latency of 2797 * a power state allows the latter to be used as an APST transition target. 2798 * It does so by comparing the latency to the primary and secondary latency 2799 * tolerances defined by module params. If there's a match, the corresponding 2800 * timeout value is returned and the matching tolerance index (1 or 2) is 2801 * reported. 2802 */ 2803 static bool nvme_apst_get_transition_time(u64 total_latency, 2804 u64 *transition_time, unsigned *last_index) 2805 { 2806 if (total_latency <= apst_primary_latency_tol_us) { 2807 if (*last_index == 1) 2808 return false; 2809 *last_index = 1; 2810 *transition_time = apst_primary_timeout_ms; 2811 return true; 2812 } 2813 if (apst_secondary_timeout_ms && 2814 total_latency <= apst_secondary_latency_tol_us) { 2815 if (*last_index <= 2) 2816 return false; 2817 *last_index = 2; 2818 *transition_time = apst_secondary_timeout_ms; 2819 return true; 2820 } 2821 return false; 2822 } 2823 2824 /* 2825 * APST (Autonomous Power State Transition) lets us program a table of power 2826 * state transitions that the controller will perform automatically. 2827 * 2828 * Depending on module params, one of the two supported techniques will be used: 2829 * 2830 * - If the parameters provide explicit timeouts and tolerances, they will be 2831 * used to build a table with up to 2 non-operational states to transition to. 2832 * The default parameter values were selected based on the values used by 2833 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2834 * regeneration of the APST table in the event of switching between external 2835 * and battery power, the timeouts and tolerances reflect a compromise 2836 * between values used by Microsoft for AC and battery scenarios. 2837 * - If not, we'll configure the table with a simple heuristic: we are willing 2838 * to spend at most 2% of the time transitioning between power states. 2839 * Therefore, when running in any given state, we will enter the next 2840 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2841 * microseconds, as long as that state's exit latency is under the requested 2842 * maximum latency. 2843 * 2844 * We will not autonomously enter any non-operational state for which the total 2845 * latency exceeds ps_max_latency_us. 2846 * 2847 * Users can set ps_max_latency_us to zero to turn off APST. 2848 */ 2849 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2850 { 2851 struct nvme_feat_auto_pst *table; 2852 unsigned apste = 0; 2853 u64 max_lat_us = 0; 2854 __le64 target = 0; 2855 int max_ps = -1; 2856 int state; 2857 int ret; 2858 unsigned last_lt_index = UINT_MAX; 2859 2860 /* 2861 * If APST isn't supported or if we haven't been initialized yet, 2862 * then don't do anything. 2863 */ 2864 if (!ctrl->apsta) 2865 return 0; 2866 2867 if (ctrl->npss > 31) { 2868 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2869 return 0; 2870 } 2871 2872 table = kzalloc(sizeof(*table), GFP_KERNEL); 2873 if (!table) 2874 return 0; 2875 2876 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2877 /* Turn off APST. */ 2878 dev_dbg(ctrl->device, "APST disabled\n"); 2879 goto done; 2880 } 2881 2882 /* 2883 * Walk through all states from lowest- to highest-power. 2884 * According to the spec, lower-numbered states use more power. NPSS, 2885 * despite the name, is the index of the lowest-power state, not the 2886 * number of states. 2887 */ 2888 for (state = (int)ctrl->npss; state >= 0; state--) { 2889 u64 total_latency_us, exit_latency_us, transition_ms; 2890 2891 if (target) 2892 table->entries[state] = target; 2893 2894 /* 2895 * Don't allow transitions to the deepest state if it's quirked 2896 * off. 2897 */ 2898 if (state == ctrl->npss && 2899 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2900 continue; 2901 2902 /* 2903 * Is this state a useful non-operational state for higher-power 2904 * states to autonomously transition to? 2905 */ 2906 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2907 continue; 2908 2909 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2910 if (exit_latency_us > ctrl->ps_max_latency_us) 2911 continue; 2912 2913 total_latency_us = exit_latency_us + 2914 le32_to_cpu(ctrl->psd[state].entry_lat); 2915 2916 /* 2917 * This state is good. It can be used as the APST idle target 2918 * for higher power states. 2919 */ 2920 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2921 if (!nvme_apst_get_transition_time(total_latency_us, 2922 &transition_ms, &last_lt_index)) 2923 continue; 2924 } else { 2925 transition_ms = total_latency_us + 19; 2926 do_div(transition_ms, 20); 2927 if (transition_ms > (1 << 24) - 1) 2928 transition_ms = (1 << 24) - 1; 2929 } 2930 2931 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2932 if (max_ps == -1) 2933 max_ps = state; 2934 if (total_latency_us > max_lat_us) 2935 max_lat_us = total_latency_us; 2936 } 2937 2938 if (max_ps == -1) 2939 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2940 else 2941 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2942 max_ps, max_lat_us, (int)sizeof(*table), table); 2943 apste = 1; 2944 2945 done: 2946 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2947 table, sizeof(*table), NULL); 2948 if (ret) 2949 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2950 kfree(table); 2951 return ret; 2952 } 2953 2954 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2955 { 2956 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2957 u64 latency; 2958 2959 switch (val) { 2960 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2961 case PM_QOS_LATENCY_ANY: 2962 latency = U64_MAX; 2963 break; 2964 2965 default: 2966 latency = val; 2967 } 2968 2969 if (ctrl->ps_max_latency_us != latency) { 2970 ctrl->ps_max_latency_us = latency; 2971 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2972 nvme_configure_apst(ctrl); 2973 } 2974 } 2975 2976 struct nvme_core_quirk_entry { 2977 /* 2978 * NVMe model and firmware strings are padded with spaces. For 2979 * simplicity, strings in the quirk table are padded with NULLs 2980 * instead. 2981 */ 2982 u16 vid; 2983 const char *mn; 2984 const char *fr; 2985 unsigned long quirks; 2986 }; 2987 2988 static const struct nvme_core_quirk_entry core_quirks[] = { 2989 { 2990 /* 2991 * This Toshiba device seems to die using any APST states. See: 2992 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2993 */ 2994 .vid = 0x1179, 2995 .mn = "THNSF5256GPUK TOSHIBA", 2996 .quirks = NVME_QUIRK_NO_APST, 2997 }, 2998 { 2999 /* 3000 * This LiteON CL1-3D*-Q11 firmware version has a race 3001 * condition associated with actions related to suspend to idle 3002 * LiteON has resolved the problem in future firmware 3003 */ 3004 .vid = 0x14a4, 3005 .fr = "22301111", 3006 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 3007 }, 3008 { 3009 /* 3010 * This Kioxia CD6-V Series / HPE PE8030 device times out and 3011 * aborts I/O during any load, but more easily reproducible 3012 * with discards (fstrim). 3013 * 3014 * The device is left in a state where it is also not possible 3015 * to use "nvme set-feature" to disable APST, but booting with 3016 * nvme_core.default_ps_max_latency=0 works. 3017 */ 3018 .vid = 0x1e0f, 3019 .mn = "KCD6XVUL6T40", 3020 .quirks = NVME_QUIRK_NO_APST, 3021 }, 3022 { 3023 /* 3024 * The external Samsung X5 SSD fails initialization without a 3025 * delay before checking if it is ready and has a whole set of 3026 * other problems. To make this even more interesting, it 3027 * shares the PCI ID with internal Samsung 970 Evo Plus that 3028 * does not need or want these quirks. 3029 */ 3030 .vid = 0x144d, 3031 .mn = "Samsung Portable SSD X5", 3032 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 3033 NVME_QUIRK_NO_DEEPEST_PS | 3034 NVME_QUIRK_IGNORE_DEV_SUBNQN, 3035 } 3036 }; 3037 3038 /* match is null-terminated but idstr is space-padded. */ 3039 static bool string_matches(const char *idstr, const char *match, size_t len) 3040 { 3041 size_t matchlen; 3042 3043 if (!match) 3044 return true; 3045 3046 matchlen = strlen(match); 3047 WARN_ON_ONCE(matchlen > len); 3048 3049 if (memcmp(idstr, match, matchlen)) 3050 return false; 3051 3052 for (; matchlen < len; matchlen++) 3053 if (idstr[matchlen] != ' ') 3054 return false; 3055 3056 return true; 3057 } 3058 3059 static bool quirk_matches(const struct nvme_id_ctrl *id, 3060 const struct nvme_core_quirk_entry *q) 3061 { 3062 return q->vid == le16_to_cpu(id->vid) && 3063 string_matches(id->mn, q->mn, sizeof(id->mn)) && 3064 string_matches(id->fr, q->fr, sizeof(id->fr)); 3065 } 3066 3067 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 3068 struct nvme_id_ctrl *id) 3069 { 3070 size_t nqnlen; 3071 int off; 3072 3073 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 3074 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 3075 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 3076 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 3077 return; 3078 } 3079 3080 if (ctrl->vs >= NVME_VS(1, 2, 1)) 3081 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 3082 } 3083 3084 /* 3085 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 3086 * Base Specification 2.0. It is slightly different from the format 3087 * specified there due to historic reasons, and we can't change it now. 3088 */ 3089 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 3090 "nqn.2014.08.org.nvmexpress:%04x%04x", 3091 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 3092 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 3093 off += sizeof(id->sn); 3094 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 3095 off += sizeof(id->mn); 3096 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 3097 } 3098 3099 static void nvme_release_subsystem(struct device *dev) 3100 { 3101 struct nvme_subsystem *subsys = 3102 container_of(dev, struct nvme_subsystem, dev); 3103 3104 if (subsys->instance >= 0) 3105 ida_free(&nvme_instance_ida, subsys->instance); 3106 kfree(subsys); 3107 } 3108 3109 static void nvme_destroy_subsystem(struct kref *ref) 3110 { 3111 struct nvme_subsystem *subsys = 3112 container_of(ref, struct nvme_subsystem, ref); 3113 3114 mutex_lock(&nvme_subsystems_lock); 3115 list_del(&subsys->entry); 3116 mutex_unlock(&nvme_subsystems_lock); 3117 3118 ida_destroy(&subsys->ns_ida); 3119 device_del(&subsys->dev); 3120 put_device(&subsys->dev); 3121 } 3122 3123 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 3124 { 3125 kref_put(&subsys->ref, nvme_destroy_subsystem); 3126 } 3127 3128 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 3129 { 3130 struct nvme_subsystem *subsys; 3131 3132 lockdep_assert_held(&nvme_subsystems_lock); 3133 3134 /* 3135 * Fail matches for discovery subsystems. This results 3136 * in each discovery controller bound to a unique subsystem. 3137 * This avoids issues with validating controller values 3138 * that can only be true when there is a single unique subsystem. 3139 * There may be multiple and completely independent entities 3140 * that provide discovery controllers. 3141 */ 3142 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 3143 return NULL; 3144 3145 list_for_each_entry(subsys, &nvme_subsystems, entry) { 3146 if (strcmp(subsys->subnqn, subsysnqn)) 3147 continue; 3148 if (!kref_get_unless_zero(&subsys->ref)) 3149 continue; 3150 return subsys; 3151 } 3152 3153 return NULL; 3154 } 3155 3156 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 3157 { 3158 return ctrl->opts && ctrl->opts->discovery_nqn; 3159 } 3160 3161 static inline bool nvme_admin_ctrl(struct nvme_ctrl *ctrl) 3162 { 3163 return ctrl->cntrltype == NVME_CTRL_ADMIN; 3164 } 3165 3166 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 3167 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3168 { 3169 struct nvme_ctrl *tmp; 3170 3171 lockdep_assert_held(&nvme_subsystems_lock); 3172 3173 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 3174 if (nvme_state_terminal(tmp)) 3175 continue; 3176 3177 if (tmp->cntlid == ctrl->cntlid) { 3178 dev_err(ctrl->device, 3179 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 3180 ctrl->cntlid, dev_name(tmp->device), 3181 subsys->subnqn); 3182 return false; 3183 } 3184 3185 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 3186 nvme_discovery_ctrl(ctrl)) 3187 continue; 3188 3189 dev_err(ctrl->device, 3190 "Subsystem does not support multiple controllers\n"); 3191 return false; 3192 } 3193 3194 return true; 3195 } 3196 3197 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3198 { 3199 struct nvme_subsystem *subsys, *found; 3200 int ret; 3201 3202 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 3203 if (!subsys) 3204 return -ENOMEM; 3205 3206 subsys->instance = -1; 3207 mutex_init(&subsys->lock); 3208 kref_init(&subsys->ref); 3209 INIT_LIST_HEAD(&subsys->ctrls); 3210 INIT_LIST_HEAD(&subsys->nsheads); 3211 nvme_init_subnqn(subsys, ctrl, id); 3212 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 3213 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 3214 subsys->vendor_id = le16_to_cpu(id->vid); 3215 subsys->cmic = id->cmic; 3216 subsys->awupf = le16_to_cpu(id->awupf); 3217 3218 /* Versions prior to 1.4 don't necessarily report a valid type */ 3219 if (id->cntrltype == NVME_CTRL_DISC || 3220 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 3221 subsys->subtype = NVME_NQN_DISC; 3222 else 3223 subsys->subtype = NVME_NQN_NVME; 3224 3225 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 3226 dev_err(ctrl->device, 3227 "Subsystem %s is not a discovery controller", 3228 subsys->subnqn); 3229 kfree(subsys); 3230 return -EINVAL; 3231 } 3232 nvme_mpath_default_iopolicy(subsys); 3233 3234 subsys->dev.class = &nvme_subsys_class; 3235 subsys->dev.release = nvme_release_subsystem; 3236 subsys->dev.groups = nvme_subsys_attrs_groups; 3237 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 3238 device_initialize(&subsys->dev); 3239 3240 mutex_lock(&nvme_subsystems_lock); 3241 found = __nvme_find_get_subsystem(subsys->subnqn); 3242 if (found) { 3243 put_device(&subsys->dev); 3244 subsys = found; 3245 3246 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 3247 ret = -EINVAL; 3248 goto out_put_subsystem; 3249 } 3250 } else { 3251 ret = device_add(&subsys->dev); 3252 if (ret) { 3253 dev_err(ctrl->device, 3254 "failed to register subsystem device.\n"); 3255 put_device(&subsys->dev); 3256 goto out_unlock; 3257 } 3258 ida_init(&subsys->ns_ida); 3259 list_add_tail(&subsys->entry, &nvme_subsystems); 3260 } 3261 3262 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 3263 dev_name(ctrl->device)); 3264 if (ret) { 3265 dev_err(ctrl->device, 3266 "failed to create sysfs link from subsystem.\n"); 3267 goto out_put_subsystem; 3268 } 3269 3270 if (!found) 3271 subsys->instance = ctrl->instance; 3272 ctrl->subsys = subsys; 3273 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 3274 mutex_unlock(&nvme_subsystems_lock); 3275 return 0; 3276 3277 out_put_subsystem: 3278 nvme_put_subsystem(subsys); 3279 out_unlock: 3280 mutex_unlock(&nvme_subsystems_lock); 3281 return ret; 3282 } 3283 3284 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, 3285 u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi) 3286 { 3287 struct nvme_command c = { }; 3288 u32 dwlen = nvme_bytes_to_numd(size); 3289 3290 c.get_log_page.opcode = nvme_admin_get_log_page; 3291 c.get_log_page.nsid = cpu_to_le32(nsid); 3292 c.get_log_page.lid = log_page; 3293 c.get_log_page.lsp = lsp; 3294 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 3295 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 3296 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 3297 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 3298 c.get_log_page.csi = csi; 3299 c.get_log_page.lsi = cpu_to_le16(lsi); 3300 3301 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 3302 } 3303 3304 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 3305 void *log, size_t size, u64 offset) 3306 { 3307 return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size, 3308 offset, 0); 3309 } 3310 3311 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 3312 struct nvme_effects_log **log) 3313 { 3314 struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi); 3315 int ret; 3316 3317 if (cel) 3318 goto out; 3319 3320 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 3321 if (!cel) 3322 return -ENOMEM; 3323 3324 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 3325 cel, sizeof(*cel), 0); 3326 if (ret) { 3327 kfree(cel); 3328 return ret; 3329 } 3330 3331 old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 3332 if (xa_is_err(old)) { 3333 kfree(cel); 3334 return xa_err(old); 3335 } 3336 out: 3337 *log = cel; 3338 return 0; 3339 } 3340 3341 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 3342 { 3343 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 3344 3345 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 3346 return UINT_MAX; 3347 return val; 3348 } 3349 3350 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3351 { 3352 struct nvme_command c = { }; 3353 struct nvme_id_ctrl_nvm *id; 3354 int ret; 3355 3356 /* 3357 * Even though NVMe spec explicitly states that MDTS is not applicable 3358 * to the write-zeroes, we are cautious and limit the size to the 3359 * controllers max_hw_sectors value, which is based on the MDTS field 3360 * and possibly other limiting factors. 3361 */ 3362 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3363 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3364 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3365 else 3366 ctrl->max_zeroes_sectors = 0; 3367 3368 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3369 !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) || 3370 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3371 return 0; 3372 3373 id = kzalloc(sizeof(*id), GFP_KERNEL); 3374 if (!id) 3375 return -ENOMEM; 3376 3377 c.identify.opcode = nvme_admin_identify; 3378 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3379 c.identify.csi = NVME_CSI_NVM; 3380 3381 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3382 if (ret) 3383 goto free_data; 3384 3385 ctrl->dmrl = id->dmrl; 3386 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3387 if (id->wzsl) 3388 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3389 3390 free_data: 3391 if (ret > 0) 3392 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3393 kfree(id); 3394 return ret; 3395 } 3396 3397 static int nvme_init_effects_log(struct nvme_ctrl *ctrl, 3398 u8 csi, struct nvme_effects_log **log) 3399 { 3400 struct nvme_effects_log *effects, *old; 3401 3402 effects = kzalloc(sizeof(*effects), GFP_KERNEL); 3403 if (!effects) 3404 return -ENOMEM; 3405 3406 old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL); 3407 if (xa_is_err(old)) { 3408 kfree(effects); 3409 return xa_err(old); 3410 } 3411 3412 *log = effects; 3413 return 0; 3414 } 3415 3416 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3417 { 3418 struct nvme_effects_log *log = ctrl->effects; 3419 3420 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3421 NVME_CMD_EFFECTS_NCC | 3422 NVME_CMD_EFFECTS_CSE_MASK); 3423 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3424 NVME_CMD_EFFECTS_CSE_MASK); 3425 3426 /* 3427 * The spec says the result of a security receive command depends on 3428 * the previous security send command. As such, many vendors log this 3429 * command as one to submitted only when no other commands to the same 3430 * namespace are outstanding. The intention is to tell the host to 3431 * prevent mixing security send and receive. 3432 * 3433 * This driver can only enforce such exclusive access against IO 3434 * queues, though. We are not readily able to enforce such a rule for 3435 * two commands to the admin queue, which is the only queue that 3436 * matters for this command. 3437 * 3438 * Rather than blindly freezing the IO queues for this effect that 3439 * doesn't even apply to IO, mask it off. 3440 */ 3441 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3442 3443 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3444 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3445 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3446 } 3447 3448 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3449 { 3450 int ret = 0; 3451 3452 if (ctrl->effects) 3453 return 0; 3454 3455 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3456 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3457 if (ret < 0) 3458 return ret; 3459 } 3460 3461 if (!ctrl->effects) { 3462 ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3463 if (ret < 0) 3464 return ret; 3465 } 3466 3467 nvme_init_known_nvm_effects(ctrl); 3468 return 0; 3469 } 3470 3471 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3472 { 3473 /* 3474 * In fabrics we need to verify the cntlid matches the 3475 * admin connect 3476 */ 3477 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3478 dev_err(ctrl->device, 3479 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3480 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3481 return -EINVAL; 3482 } 3483 3484 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3485 dev_err(ctrl->device, 3486 "keep-alive support is mandatory for fabrics\n"); 3487 return -EINVAL; 3488 } 3489 3490 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3491 dev_err(ctrl->device, 3492 "I/O queue command capsule supported size %d < 4\n", 3493 ctrl->ioccsz); 3494 return -EINVAL; 3495 } 3496 3497 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3498 dev_err(ctrl->device, 3499 "I/O queue response capsule supported size %d < 1\n", 3500 ctrl->iorcsz); 3501 return -EINVAL; 3502 } 3503 3504 if (!ctrl->maxcmd) { 3505 dev_warn(ctrl->device, 3506 "Firmware bug: maximum outstanding commands is 0\n"); 3507 ctrl->maxcmd = ctrl->sqsize + 1; 3508 } 3509 3510 return 0; 3511 } 3512 3513 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3514 { 3515 struct queue_limits lim; 3516 struct nvme_id_ctrl *id; 3517 u32 max_hw_sectors; 3518 bool prev_apst_enabled; 3519 int ret; 3520 3521 ret = nvme_identify_ctrl(ctrl, &id); 3522 if (ret) { 3523 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3524 return -EIO; 3525 } 3526 3527 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3528 ctrl->cntlid = le16_to_cpu(id->cntlid); 3529 3530 if (!ctrl->identified) { 3531 unsigned int i; 3532 3533 /* 3534 * Check for quirks. Quirk can depend on firmware version, 3535 * so, in principle, the set of quirks present can change 3536 * across a reset. As a possible future enhancement, we 3537 * could re-scan for quirks every time we reinitialize 3538 * the device, but we'd have to make sure that the driver 3539 * behaves intelligently if the quirks change. 3540 */ 3541 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3542 if (quirk_matches(id, &core_quirks[i])) 3543 ctrl->quirks |= core_quirks[i].quirks; 3544 } 3545 3546 ret = nvme_init_subsystem(ctrl, id); 3547 if (ret) 3548 goto out_free; 3549 3550 ret = nvme_init_effects(ctrl, id); 3551 if (ret) 3552 goto out_free; 3553 } 3554 memcpy(ctrl->subsys->firmware_rev, id->fr, 3555 sizeof(ctrl->subsys->firmware_rev)); 3556 3557 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3558 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3559 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3560 } 3561 3562 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3563 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3564 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3565 3566 ctrl->oacs = le16_to_cpu(id->oacs); 3567 ctrl->oncs = le16_to_cpu(id->oncs); 3568 ctrl->mtfa = le16_to_cpu(id->mtfa); 3569 ctrl->oaes = le32_to_cpu(id->oaes); 3570 ctrl->wctemp = le16_to_cpu(id->wctemp); 3571 ctrl->cctemp = le16_to_cpu(id->cctemp); 3572 3573 atomic_set(&ctrl->abort_limit, id->acl + 1); 3574 ctrl->vwc = id->vwc; 3575 if (id->mdts) 3576 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3577 else 3578 max_hw_sectors = UINT_MAX; 3579 ctrl->max_hw_sectors = 3580 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3581 3582 lim = queue_limits_start_update(ctrl->admin_q); 3583 nvme_set_ctrl_limits(ctrl, &lim); 3584 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3585 if (ret) 3586 goto out_free; 3587 3588 ctrl->sgls = le32_to_cpu(id->sgls); 3589 ctrl->kas = le16_to_cpu(id->kas); 3590 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3591 ctrl->ctratt = le32_to_cpu(id->ctratt); 3592 3593 ctrl->cntrltype = id->cntrltype; 3594 ctrl->dctype = id->dctype; 3595 3596 if (id->rtd3e) { 3597 /* us -> s */ 3598 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3599 3600 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3601 shutdown_timeout, 60); 3602 3603 if (ctrl->shutdown_timeout != shutdown_timeout) 3604 dev_info(ctrl->device, 3605 "D3 entry latency set to %u seconds\n", 3606 ctrl->shutdown_timeout); 3607 } else 3608 ctrl->shutdown_timeout = shutdown_timeout; 3609 3610 ctrl->npss = id->npss; 3611 ctrl->apsta = id->apsta; 3612 prev_apst_enabled = ctrl->apst_enabled; 3613 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3614 if (force_apst && id->apsta) { 3615 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3616 ctrl->apst_enabled = true; 3617 } else { 3618 ctrl->apst_enabled = false; 3619 } 3620 } else { 3621 ctrl->apst_enabled = id->apsta; 3622 } 3623 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3624 3625 if (ctrl->ops->flags & NVME_F_FABRICS) { 3626 ctrl->icdoff = le16_to_cpu(id->icdoff); 3627 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3628 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3629 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3630 3631 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3632 if (ret) 3633 goto out_free; 3634 } else { 3635 ctrl->hmpre = le32_to_cpu(id->hmpre); 3636 ctrl->hmmin = le32_to_cpu(id->hmmin); 3637 ctrl->hmminds = le32_to_cpu(id->hmminds); 3638 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3639 } 3640 3641 ret = nvme_mpath_init_identify(ctrl, id); 3642 if (ret < 0) 3643 goto out_free; 3644 3645 if (ctrl->apst_enabled && !prev_apst_enabled) 3646 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3647 else if (!ctrl->apst_enabled && prev_apst_enabled) 3648 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3649 out_free: 3650 kfree(id); 3651 return ret; 3652 } 3653 3654 /* 3655 * Initialize the cached copies of the Identify data and various controller 3656 * register in our nvme_ctrl structure. This should be called as soon as 3657 * the admin queue is fully up and running. 3658 */ 3659 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3660 { 3661 int ret; 3662 3663 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3664 if (ret) { 3665 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3666 return ret; 3667 } 3668 3669 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3670 3671 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3672 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3673 3674 ret = nvme_init_identify(ctrl); 3675 if (ret) 3676 return ret; 3677 3678 if (nvme_admin_ctrl(ctrl)) { 3679 /* 3680 * An admin controller has one admin queue, but no I/O queues. 3681 * Override queue_count so it only creates an admin queue. 3682 */ 3683 dev_dbg(ctrl->device, 3684 "Subsystem %s is an administrative controller", 3685 ctrl->subsys->subnqn); 3686 ctrl->queue_count = 1; 3687 } 3688 3689 ret = nvme_configure_apst(ctrl); 3690 if (ret < 0) 3691 return ret; 3692 3693 ret = nvme_configure_timestamp(ctrl); 3694 if (ret < 0) 3695 return ret; 3696 3697 ret = nvme_configure_host_options(ctrl); 3698 if (ret < 0) 3699 return ret; 3700 3701 nvme_configure_opal(ctrl, was_suspended); 3702 3703 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3704 /* 3705 * Do not return errors unless we are in a controller reset, 3706 * the controller works perfectly fine without hwmon. 3707 */ 3708 ret = nvme_hwmon_init(ctrl); 3709 if (ret == -EINTR) 3710 return ret; 3711 } 3712 3713 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3714 ctrl->identified = true; 3715 3716 nvme_start_keep_alive(ctrl); 3717 3718 return 0; 3719 } 3720 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3721 3722 static int nvme_dev_open(struct inode *inode, struct file *file) 3723 { 3724 struct nvme_ctrl *ctrl = 3725 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3726 3727 switch (nvme_ctrl_state(ctrl)) { 3728 case NVME_CTRL_LIVE: 3729 break; 3730 default: 3731 return -EWOULDBLOCK; 3732 } 3733 3734 nvme_get_ctrl(ctrl); 3735 if (!try_module_get(ctrl->ops->module)) { 3736 nvme_put_ctrl(ctrl); 3737 return -EINVAL; 3738 } 3739 3740 file->private_data = ctrl; 3741 return 0; 3742 } 3743 3744 static int nvme_dev_release(struct inode *inode, struct file *file) 3745 { 3746 struct nvme_ctrl *ctrl = 3747 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3748 3749 module_put(ctrl->ops->module); 3750 nvme_put_ctrl(ctrl); 3751 return 0; 3752 } 3753 3754 static const struct file_operations nvme_dev_fops = { 3755 .owner = THIS_MODULE, 3756 .open = nvme_dev_open, 3757 .release = nvme_dev_release, 3758 .unlocked_ioctl = nvme_dev_ioctl, 3759 .compat_ioctl = compat_ptr_ioctl, 3760 .uring_cmd = nvme_dev_uring_cmd, 3761 }; 3762 3763 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3764 unsigned nsid) 3765 { 3766 struct nvme_ns_head *h; 3767 3768 lockdep_assert_held(&ctrl->subsys->lock); 3769 3770 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3771 /* 3772 * Private namespaces can share NSIDs under some conditions. 3773 * In that case we can't use the same ns_head for namespaces 3774 * with the same NSID. 3775 */ 3776 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3777 continue; 3778 if (nvme_tryget_ns_head(h)) 3779 return h; 3780 } 3781 3782 return NULL; 3783 } 3784 3785 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3786 struct nvme_ns_ids *ids) 3787 { 3788 bool has_uuid = !uuid_is_null(&ids->uuid); 3789 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3790 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3791 struct nvme_ns_head *h; 3792 3793 lockdep_assert_held(&subsys->lock); 3794 3795 list_for_each_entry(h, &subsys->nsheads, entry) { 3796 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3797 return -EINVAL; 3798 if (has_nguid && 3799 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3800 return -EINVAL; 3801 if (has_eui64 && 3802 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3803 return -EINVAL; 3804 } 3805 3806 return 0; 3807 } 3808 3809 static void nvme_cdev_rel(struct device *dev) 3810 { 3811 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3812 } 3813 3814 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3815 { 3816 cdev_device_del(cdev, cdev_device); 3817 put_device(cdev_device); 3818 } 3819 3820 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3821 const struct file_operations *fops, struct module *owner) 3822 { 3823 int minor, ret; 3824 3825 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3826 if (minor < 0) 3827 return minor; 3828 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3829 cdev_device->class = &nvme_ns_chr_class; 3830 cdev_device->release = nvme_cdev_rel; 3831 device_initialize(cdev_device); 3832 cdev_init(cdev, fops); 3833 cdev->owner = owner; 3834 ret = cdev_device_add(cdev, cdev_device); 3835 if (ret) 3836 put_device(cdev_device); 3837 3838 return ret; 3839 } 3840 3841 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3842 { 3843 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3844 } 3845 3846 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3847 { 3848 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3849 return 0; 3850 } 3851 3852 static const struct file_operations nvme_ns_chr_fops = { 3853 .owner = THIS_MODULE, 3854 .open = nvme_ns_chr_open, 3855 .release = nvme_ns_chr_release, 3856 .unlocked_ioctl = nvme_ns_chr_ioctl, 3857 .compat_ioctl = compat_ptr_ioctl, 3858 .uring_cmd = nvme_ns_chr_uring_cmd, 3859 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3860 }; 3861 3862 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3863 { 3864 int ret; 3865 3866 ns->cdev_device.parent = ns->ctrl->device; 3867 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3868 ns->ctrl->instance, ns->head->instance); 3869 if (ret) 3870 return ret; 3871 3872 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3873 ns->ctrl->ops->module); 3874 } 3875 3876 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3877 struct nvme_ns_info *info) 3878 { 3879 struct nvme_ns_head *head; 3880 size_t size = sizeof(*head); 3881 int ret = -ENOMEM; 3882 3883 #ifdef CONFIG_NVME_MULTIPATH 3884 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3885 #endif 3886 3887 head = kzalloc(size, GFP_KERNEL); 3888 if (!head) 3889 goto out; 3890 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3891 if (ret < 0) 3892 goto out_free_head; 3893 head->instance = ret; 3894 INIT_LIST_HEAD(&head->list); 3895 ret = init_srcu_struct(&head->srcu); 3896 if (ret) 3897 goto out_ida_remove; 3898 head->subsys = ctrl->subsys; 3899 head->ns_id = info->nsid; 3900 head->ids = info->ids; 3901 head->shared = info->is_shared; 3902 head->rotational = info->is_rotational; 3903 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3904 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3905 kref_init(&head->ref); 3906 3907 if (head->ids.csi) { 3908 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3909 if (ret) 3910 goto out_cleanup_srcu; 3911 } else 3912 head->effects = ctrl->effects; 3913 3914 ret = nvme_mpath_alloc_disk(ctrl, head); 3915 if (ret) 3916 goto out_cleanup_srcu; 3917 3918 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3919 3920 kref_get(&ctrl->subsys->ref); 3921 3922 return head; 3923 out_cleanup_srcu: 3924 cleanup_srcu_struct(&head->srcu); 3925 out_ida_remove: 3926 ida_free(&ctrl->subsys->ns_ida, head->instance); 3927 out_free_head: 3928 kfree(head); 3929 out: 3930 if (ret > 0) 3931 ret = blk_status_to_errno(nvme_error_status(ret)); 3932 return ERR_PTR(ret); 3933 } 3934 3935 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3936 struct nvme_ns_ids *ids) 3937 { 3938 struct nvme_subsystem *s; 3939 int ret = 0; 3940 3941 /* 3942 * Note that this check is racy as we try to avoid holding the global 3943 * lock over the whole ns_head creation. But it is only intended as 3944 * a sanity check anyway. 3945 */ 3946 mutex_lock(&nvme_subsystems_lock); 3947 list_for_each_entry(s, &nvme_subsystems, entry) { 3948 if (s == this) 3949 continue; 3950 mutex_lock(&s->lock); 3951 ret = nvme_subsys_check_duplicate_ids(s, ids); 3952 mutex_unlock(&s->lock); 3953 if (ret) 3954 break; 3955 } 3956 mutex_unlock(&nvme_subsystems_lock); 3957 3958 return ret; 3959 } 3960 3961 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3962 { 3963 struct nvme_ctrl *ctrl = ns->ctrl; 3964 struct nvme_ns_head *head = NULL; 3965 int ret; 3966 3967 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3968 if (ret) { 3969 /* 3970 * We've found two different namespaces on two different 3971 * subsystems that report the same ID. This is pretty nasty 3972 * for anything that actually requires unique device 3973 * identification. In the kernel we need this for multipathing, 3974 * and in user space the /dev/disk/by-id/ links rely on it. 3975 * 3976 * If the device also claims to be multi-path capable back off 3977 * here now and refuse the probe the second device as this is a 3978 * recipe for data corruption. If not this is probably a 3979 * cheap consumer device if on the PCIe bus, so let the user 3980 * proceed and use the shiny toy, but warn that with changing 3981 * probing order (which due to our async probing could just be 3982 * device taking longer to startup) the other device could show 3983 * up at any time. 3984 */ 3985 nvme_print_device_info(ctrl); 3986 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3987 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3988 info->is_shared)) { 3989 dev_err(ctrl->device, 3990 "ignoring nsid %d because of duplicate IDs\n", 3991 info->nsid); 3992 return ret; 3993 } 3994 3995 dev_err(ctrl->device, 3996 "clearing duplicate IDs for nsid %d\n", info->nsid); 3997 dev_err(ctrl->device, 3998 "use of /dev/disk/by-id/ may cause data corruption\n"); 3999 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 4000 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 4001 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 4002 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 4003 } 4004 4005 mutex_lock(&ctrl->subsys->lock); 4006 head = nvme_find_ns_head(ctrl, info->nsid); 4007 if (!head) { 4008 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 4009 if (ret) { 4010 dev_err(ctrl->device, 4011 "duplicate IDs in subsystem for nsid %d\n", 4012 info->nsid); 4013 goto out_unlock; 4014 } 4015 head = nvme_alloc_ns_head(ctrl, info); 4016 if (IS_ERR(head)) { 4017 ret = PTR_ERR(head); 4018 goto out_unlock; 4019 } 4020 } else { 4021 ret = -EINVAL; 4022 if ((!info->is_shared || !head->shared) && 4023 !list_empty(&head->list)) { 4024 dev_err(ctrl->device, 4025 "Duplicate unshared namespace %d\n", 4026 info->nsid); 4027 goto out_put_ns_head; 4028 } 4029 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 4030 dev_err(ctrl->device, 4031 "IDs don't match for shared namespace %d\n", 4032 info->nsid); 4033 goto out_put_ns_head; 4034 } 4035 4036 if (!multipath) { 4037 dev_warn(ctrl->device, 4038 "Found shared namespace %d, but multipathing not supported.\n", 4039 info->nsid); 4040 dev_warn_once(ctrl->device, 4041 "Shared namespace support requires core_nvme.multipath=Y.\n"); 4042 } 4043 } 4044 4045 list_add_tail_rcu(&ns->siblings, &head->list); 4046 ns->head = head; 4047 mutex_unlock(&ctrl->subsys->lock); 4048 4049 #ifdef CONFIG_NVME_MULTIPATH 4050 cancel_delayed_work(&head->remove_work); 4051 #endif 4052 return 0; 4053 4054 out_put_ns_head: 4055 nvme_put_ns_head(head); 4056 out_unlock: 4057 mutex_unlock(&ctrl->subsys->lock); 4058 return ret; 4059 } 4060 4061 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4062 { 4063 struct nvme_ns *ns, *ret = NULL; 4064 int srcu_idx; 4065 4066 srcu_idx = srcu_read_lock(&ctrl->srcu); 4067 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 4068 srcu_read_lock_held(&ctrl->srcu)) { 4069 if (ns->head->ns_id == nsid) { 4070 if (!nvme_get_ns(ns)) 4071 continue; 4072 ret = ns; 4073 break; 4074 } 4075 if (ns->head->ns_id > nsid) 4076 break; 4077 } 4078 srcu_read_unlock(&ctrl->srcu, srcu_idx); 4079 return ret; 4080 } 4081 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU"); 4082 4083 /* 4084 * Add the namespace to the controller list while keeping the list ordered. 4085 */ 4086 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 4087 { 4088 struct nvme_ns *tmp; 4089 4090 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 4091 if (tmp->head->ns_id < ns->head->ns_id) { 4092 list_add_rcu(&ns->list, &tmp->list); 4093 return; 4094 } 4095 } 4096 list_add_rcu(&ns->list, &ns->ctrl->namespaces); 4097 } 4098 4099 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 4100 { 4101 struct queue_limits lim = { }; 4102 struct nvme_ns *ns; 4103 struct gendisk *disk; 4104 int node = ctrl->numa_node; 4105 bool last_path = false; 4106 4107 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 4108 if (!ns) 4109 return; 4110 4111 if (ctrl->opts && ctrl->opts->data_digest) 4112 lim.features |= BLK_FEAT_STABLE_WRITES; 4113 if (ctrl->ops->supports_pci_p2pdma && 4114 ctrl->ops->supports_pci_p2pdma(ctrl)) 4115 lim.features |= BLK_FEAT_PCI_P2PDMA; 4116 4117 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); 4118 if (IS_ERR(disk)) 4119 goto out_free_ns; 4120 disk->fops = &nvme_bdev_ops; 4121 disk->private_data = ns; 4122 4123 ns->disk = disk; 4124 ns->queue = disk->queue; 4125 ns->ctrl = ctrl; 4126 kref_init(&ns->kref); 4127 4128 if (nvme_init_ns_head(ns, info)) 4129 goto out_cleanup_disk; 4130 4131 /* 4132 * If multipathing is enabled, the device name for all disks and not 4133 * just those that represent shared namespaces needs to be based on the 4134 * subsystem instance. Using the controller instance for private 4135 * namespaces could lead to naming collisions between shared and private 4136 * namespaces if they don't use a common numbering scheme. 4137 * 4138 * If multipathing is not enabled, disk names must use the controller 4139 * instance as shared namespaces will show up as multiple block 4140 * devices. 4141 */ 4142 if (nvme_ns_head_multipath(ns->head)) { 4143 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 4144 ctrl->instance, ns->head->instance); 4145 disk->flags |= GENHD_FL_HIDDEN; 4146 } else if (multipath) { 4147 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 4148 ns->head->instance); 4149 } else { 4150 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 4151 ns->head->instance); 4152 } 4153 4154 if (nvme_update_ns_info(ns, info)) 4155 goto out_unlink_ns; 4156 4157 mutex_lock(&ctrl->namespaces_lock); 4158 /* 4159 * Ensure that no namespaces are added to the ctrl list after the queues 4160 * are frozen, thereby avoiding a deadlock between scan and reset. 4161 */ 4162 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 4163 mutex_unlock(&ctrl->namespaces_lock); 4164 goto out_unlink_ns; 4165 } 4166 nvme_ns_add_to_ctrl_list(ns); 4167 mutex_unlock(&ctrl->namespaces_lock); 4168 synchronize_srcu(&ctrl->srcu); 4169 nvme_get_ctrl(ctrl); 4170 4171 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 4172 goto out_cleanup_ns_from_list; 4173 4174 if (!nvme_ns_head_multipath(ns->head)) 4175 nvme_add_ns_cdev(ns); 4176 4177 nvme_mpath_add_disk(ns, info->anagrpid); 4178 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 4179 4180 /* 4181 * Set ns->disk->device->driver_data to ns so we can access 4182 * ns->head->passthru_err_log_enabled in 4183 * nvme_io_passthru_err_log_enabled_[store | show](). 4184 */ 4185 dev_set_drvdata(disk_to_dev(ns->disk), ns); 4186 4187 return; 4188 4189 out_cleanup_ns_from_list: 4190 nvme_put_ctrl(ctrl); 4191 mutex_lock(&ctrl->namespaces_lock); 4192 list_del_rcu(&ns->list); 4193 mutex_unlock(&ctrl->namespaces_lock); 4194 synchronize_srcu(&ctrl->srcu); 4195 out_unlink_ns: 4196 mutex_lock(&ctrl->subsys->lock); 4197 list_del_rcu(&ns->siblings); 4198 if (list_empty(&ns->head->list)) { 4199 list_del_init(&ns->head->entry); 4200 /* 4201 * If multipath is not configured, we still create a namespace 4202 * head (nshead), but head->disk is not initialized in that 4203 * case. As a result, only a single reference to nshead is held 4204 * (via kref_init()) when it is created. Therefore, ensure that 4205 * we do not release the reference to nshead twice if head->disk 4206 * is not present. 4207 */ 4208 if (ns->head->disk) 4209 last_path = true; 4210 } 4211 mutex_unlock(&ctrl->subsys->lock); 4212 if (last_path) 4213 nvme_put_ns_head(ns->head); 4214 nvme_put_ns_head(ns->head); 4215 out_cleanup_disk: 4216 put_disk(disk); 4217 out_free_ns: 4218 kfree(ns); 4219 } 4220 4221 static void nvme_ns_remove(struct nvme_ns *ns) 4222 { 4223 bool last_path = false; 4224 4225 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 4226 return; 4227 4228 clear_bit(NVME_NS_READY, &ns->flags); 4229 set_capacity(ns->disk, 0); 4230 nvme_fault_inject_fini(&ns->fault_inject); 4231 4232 /* 4233 * Ensure that !NVME_NS_READY is seen by other threads to prevent 4234 * this ns going back into current_path. 4235 */ 4236 synchronize_srcu(&ns->head->srcu); 4237 4238 /* wait for concurrent submissions */ 4239 if (nvme_mpath_clear_current_path(ns)) 4240 synchronize_srcu(&ns->head->srcu); 4241 4242 mutex_lock(&ns->ctrl->subsys->lock); 4243 list_del_rcu(&ns->siblings); 4244 if (list_empty(&ns->head->list)) { 4245 if (!nvme_mpath_queue_if_no_path(ns->head)) 4246 list_del_init(&ns->head->entry); 4247 last_path = true; 4248 } 4249 mutex_unlock(&ns->ctrl->subsys->lock); 4250 4251 /* guarantee not available in head->list */ 4252 synchronize_srcu(&ns->head->srcu); 4253 4254 if (!nvme_ns_head_multipath(ns->head)) 4255 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 4256 4257 nvme_mpath_remove_sysfs_link(ns); 4258 4259 del_gendisk(ns->disk); 4260 4261 mutex_lock(&ns->ctrl->namespaces_lock); 4262 list_del_rcu(&ns->list); 4263 mutex_unlock(&ns->ctrl->namespaces_lock); 4264 synchronize_srcu(&ns->ctrl->srcu); 4265 4266 if (last_path) 4267 nvme_mpath_remove_disk(ns->head); 4268 nvme_put_ns(ns); 4269 } 4270 4271 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 4272 { 4273 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 4274 4275 if (ns) { 4276 nvme_ns_remove(ns); 4277 nvme_put_ns(ns); 4278 } 4279 } 4280 4281 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 4282 { 4283 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; 4284 4285 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 4286 dev_err(ns->ctrl->device, 4287 "identifiers changed for nsid %d\n", ns->head->ns_id); 4288 goto out; 4289 } 4290 4291 ret = nvme_update_ns_info(ns, info); 4292 out: 4293 /* 4294 * Only remove the namespace if we got a fatal error back from the 4295 * device, otherwise ignore the error and just move on. 4296 * 4297 * TODO: we should probably schedule a delayed retry here. 4298 */ 4299 if (ret > 0 && (ret & NVME_STATUS_DNR)) 4300 nvme_ns_remove(ns); 4301 } 4302 4303 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 4304 { 4305 struct nvme_ns_info info = { .nsid = nsid }; 4306 struct nvme_ns *ns; 4307 int ret = 1; 4308 4309 if (nvme_identify_ns_descs(ctrl, &info)) 4310 return; 4311 4312 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 4313 dev_warn(ctrl->device, 4314 "command set not reported for nsid: %d\n", nsid); 4315 return; 4316 } 4317 4318 /* 4319 * If available try to use the Command Set Independent Identify Namespace 4320 * data structure to find all the generic information that is needed to 4321 * set up a namespace. If not fall back to the legacy version. 4322 */ 4323 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 4324 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) || 4325 ctrl->vs >= NVME_VS(2, 0, 0)) 4326 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 4327 if (ret > 0) 4328 ret = nvme_ns_info_from_identify(ctrl, &info); 4329 4330 if (info.is_removed) 4331 nvme_ns_remove_by_nsid(ctrl, nsid); 4332 4333 /* 4334 * Ignore the namespace if it is not ready. We will get an AEN once it 4335 * becomes ready and restart the scan. 4336 */ 4337 if (ret || !info.is_ready) 4338 return; 4339 4340 ns = nvme_find_get_ns(ctrl, nsid); 4341 if (ns) { 4342 nvme_validate_ns(ns, &info); 4343 nvme_put_ns(ns); 4344 } else { 4345 nvme_alloc_ns(ctrl, &info); 4346 } 4347 } 4348 4349 /** 4350 * struct async_scan_info - keeps track of controller & NSIDs to scan 4351 * @ctrl: Controller on which namespaces are being scanned 4352 * @next_nsid: Index of next NSID to scan in ns_list 4353 * @ns_list: Pointer to list of NSIDs to scan 4354 * 4355 * Note: There is a single async_scan_info structure shared by all instances 4356 * of nvme_scan_ns_async() scanning a given controller, so the atomic 4357 * operations on next_nsid are critical to ensure each instance scans a unique 4358 * NSID. 4359 */ 4360 struct async_scan_info { 4361 struct nvme_ctrl *ctrl; 4362 atomic_t next_nsid; 4363 __le32 *ns_list; 4364 }; 4365 4366 static void nvme_scan_ns_async(void *data, async_cookie_t cookie) 4367 { 4368 struct async_scan_info *scan_info = data; 4369 int idx; 4370 u32 nsid; 4371 4372 idx = (u32)atomic_fetch_inc(&scan_info->next_nsid); 4373 nsid = le32_to_cpu(scan_info->ns_list[idx]); 4374 4375 nvme_scan_ns(scan_info->ctrl, nsid); 4376 } 4377 4378 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4379 unsigned nsid) 4380 { 4381 struct nvme_ns *ns, *next; 4382 LIST_HEAD(rm_list); 4383 4384 mutex_lock(&ctrl->namespaces_lock); 4385 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4386 if (ns->head->ns_id > nsid) { 4387 list_del_rcu(&ns->list); 4388 synchronize_srcu(&ctrl->srcu); 4389 list_add_tail_rcu(&ns->list, &rm_list); 4390 } 4391 } 4392 mutex_unlock(&ctrl->namespaces_lock); 4393 4394 list_for_each_entry_safe(ns, next, &rm_list, list) 4395 nvme_ns_remove(ns); 4396 } 4397 4398 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4399 { 4400 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4401 __le32 *ns_list; 4402 u32 prev = 0; 4403 int ret = 0, i; 4404 ASYNC_DOMAIN(domain); 4405 struct async_scan_info scan_info; 4406 4407 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4408 if (!ns_list) 4409 return -ENOMEM; 4410 4411 scan_info.ctrl = ctrl; 4412 scan_info.ns_list = ns_list; 4413 for (;;) { 4414 struct nvme_command cmd = { 4415 .identify.opcode = nvme_admin_identify, 4416 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4417 .identify.nsid = cpu_to_le32(prev), 4418 }; 4419 4420 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4421 NVME_IDENTIFY_DATA_SIZE); 4422 if (ret) { 4423 dev_warn(ctrl->device, 4424 "Identify NS List failed (status=0x%x)\n", ret); 4425 goto free; 4426 } 4427 4428 atomic_set(&scan_info.next_nsid, 0); 4429 for (i = 0; i < nr_entries; i++) { 4430 u32 nsid = le32_to_cpu(ns_list[i]); 4431 4432 if (!nsid) /* end of the list? */ 4433 goto out; 4434 async_schedule_domain(nvme_scan_ns_async, &scan_info, 4435 &domain); 4436 while (++prev < nsid) 4437 nvme_ns_remove_by_nsid(ctrl, prev); 4438 } 4439 async_synchronize_full_domain(&domain); 4440 } 4441 out: 4442 nvme_remove_invalid_namespaces(ctrl, prev); 4443 free: 4444 async_synchronize_full_domain(&domain); 4445 kfree(ns_list); 4446 return ret; 4447 } 4448 4449 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4450 { 4451 struct nvme_id_ctrl *id; 4452 u32 nn, i; 4453 4454 if (nvme_identify_ctrl(ctrl, &id)) 4455 return; 4456 nn = le32_to_cpu(id->nn); 4457 kfree(id); 4458 4459 for (i = 1; i <= nn; i++) 4460 nvme_scan_ns(ctrl, i); 4461 4462 nvme_remove_invalid_namespaces(ctrl, nn); 4463 } 4464 4465 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4466 { 4467 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4468 __le32 *log; 4469 int error; 4470 4471 log = kzalloc(log_size, GFP_KERNEL); 4472 if (!log) 4473 return; 4474 4475 /* 4476 * We need to read the log to clear the AEN, but we don't want to rely 4477 * on it for the changed namespace information as userspace could have 4478 * raced with us in reading the log page, which could cause us to miss 4479 * updates. 4480 */ 4481 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4482 NVME_CSI_NVM, log, log_size, 0); 4483 if (error) 4484 dev_warn(ctrl->device, 4485 "reading changed ns log failed: %d\n", error); 4486 4487 kfree(log); 4488 } 4489 4490 static void nvme_scan_work(struct work_struct *work) 4491 { 4492 struct nvme_ctrl *ctrl = 4493 container_of(work, struct nvme_ctrl, scan_work); 4494 int ret; 4495 4496 /* No tagset on a live ctrl means IO queues could not created */ 4497 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4498 return; 4499 4500 /* 4501 * Identify controller limits can change at controller reset due to 4502 * new firmware download, even though it is not common we cannot ignore 4503 * such scenario. Controller's non-mdts limits are reported in the unit 4504 * of logical blocks that is dependent on the format of attached 4505 * namespace. Hence re-read the limits at the time of ns allocation. 4506 */ 4507 ret = nvme_init_non_mdts_limits(ctrl); 4508 if (ret < 0) { 4509 dev_warn(ctrl->device, 4510 "reading non-mdts-limits failed: %d\n", ret); 4511 return; 4512 } 4513 4514 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4515 dev_info(ctrl->device, "rescanning namespaces.\n"); 4516 nvme_clear_changed_ns_log(ctrl); 4517 } 4518 4519 mutex_lock(&ctrl->scan_lock); 4520 if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) { 4521 nvme_scan_ns_sequential(ctrl); 4522 } else { 4523 /* 4524 * Fall back to sequential scan if DNR is set to handle broken 4525 * devices which should support Identify NS List (as per the VS 4526 * they report) but don't actually support it. 4527 */ 4528 ret = nvme_scan_ns_list(ctrl); 4529 if (ret > 0 && ret & NVME_STATUS_DNR) 4530 nvme_scan_ns_sequential(ctrl); 4531 } 4532 mutex_unlock(&ctrl->scan_lock); 4533 4534 /* Requeue if we have missed AENs */ 4535 if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) 4536 nvme_queue_scan(ctrl); 4537 #ifdef CONFIG_NVME_MULTIPATH 4538 else if (ctrl->ana_log_buf) 4539 /* Re-read the ANA log page to not miss updates */ 4540 queue_work(nvme_wq, &ctrl->ana_work); 4541 #endif 4542 } 4543 4544 /* 4545 * This function iterates the namespace list unlocked to allow recovery from 4546 * controller failure. It is up to the caller to ensure the namespace list is 4547 * not modified by scan work while this function is executing. 4548 */ 4549 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4550 { 4551 struct nvme_ns *ns, *next; 4552 LIST_HEAD(ns_list); 4553 4554 /* 4555 * make sure to requeue I/O to all namespaces as these 4556 * might result from the scan itself and must complete 4557 * for the scan_work to make progress 4558 */ 4559 nvme_mpath_clear_ctrl_paths(ctrl); 4560 4561 /* 4562 * Unquiesce io queues so any pending IO won't hang, especially 4563 * those submitted from scan work 4564 */ 4565 nvme_unquiesce_io_queues(ctrl); 4566 4567 /* prevent racing with ns scanning */ 4568 flush_work(&ctrl->scan_work); 4569 4570 /* 4571 * The dead states indicates the controller was not gracefully 4572 * disconnected. In that case, we won't be able to flush any data while 4573 * removing the namespaces' disks; fail all the queues now to avoid 4574 * potentially having to clean up the failed sync later. 4575 */ 4576 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4577 nvme_mark_namespaces_dead(ctrl); 4578 4579 /* this is a no-op when called from the controller reset handler */ 4580 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4581 4582 mutex_lock(&ctrl->namespaces_lock); 4583 list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu); 4584 mutex_unlock(&ctrl->namespaces_lock); 4585 synchronize_srcu(&ctrl->srcu); 4586 4587 list_for_each_entry_safe(ns, next, &ns_list, list) 4588 nvme_ns_remove(ns); 4589 } 4590 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4591 4592 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4593 { 4594 const struct nvme_ctrl *ctrl = 4595 container_of(dev, struct nvme_ctrl, ctrl_device); 4596 struct nvmf_ctrl_options *opts = ctrl->opts; 4597 int ret; 4598 4599 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4600 if (ret) 4601 return ret; 4602 4603 if (opts) { 4604 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4605 if (ret) 4606 return ret; 4607 4608 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4609 opts->trsvcid ?: "none"); 4610 if (ret) 4611 return ret; 4612 4613 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4614 opts->host_traddr ?: "none"); 4615 if (ret) 4616 return ret; 4617 4618 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4619 opts->host_iface ?: "none"); 4620 } 4621 return ret; 4622 } 4623 4624 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4625 { 4626 char *envp[2] = { envdata, NULL }; 4627 4628 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4629 } 4630 4631 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4632 { 4633 char *envp[2] = { NULL, NULL }; 4634 u32 aen_result = ctrl->aen_result; 4635 4636 ctrl->aen_result = 0; 4637 if (!aen_result) 4638 return; 4639 4640 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4641 if (!envp[0]) 4642 return; 4643 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4644 kfree(envp[0]); 4645 } 4646 4647 static void nvme_async_event_work(struct work_struct *work) 4648 { 4649 struct nvme_ctrl *ctrl = 4650 container_of(work, struct nvme_ctrl, async_event_work); 4651 4652 nvme_aen_uevent(ctrl); 4653 4654 /* 4655 * The transport drivers must guarantee AER submission here is safe by 4656 * flushing ctrl async_event_work after changing the controller state 4657 * from LIVE and before freeing the admin queue. 4658 */ 4659 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4660 ctrl->ops->submit_async_event(ctrl); 4661 } 4662 4663 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4664 { 4665 4666 u32 csts; 4667 4668 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4669 return false; 4670 4671 if (csts == ~0) 4672 return false; 4673 4674 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4675 } 4676 4677 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4678 { 4679 struct nvme_fw_slot_info_log *log; 4680 u8 next_fw_slot, cur_fw_slot; 4681 4682 log = kmalloc(sizeof(*log), GFP_KERNEL); 4683 if (!log) 4684 return; 4685 4686 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4687 log, sizeof(*log), 0)) { 4688 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4689 goto out_free_log; 4690 } 4691 4692 cur_fw_slot = log->afi & 0x7; 4693 next_fw_slot = (log->afi & 0x70) >> 4; 4694 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4695 dev_info(ctrl->device, 4696 "Firmware is activated after next Controller Level Reset\n"); 4697 goto out_free_log; 4698 } 4699 4700 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4701 sizeof(ctrl->subsys->firmware_rev)); 4702 4703 out_free_log: 4704 kfree(log); 4705 } 4706 4707 static void nvme_fw_act_work(struct work_struct *work) 4708 { 4709 struct nvme_ctrl *ctrl = container_of(work, 4710 struct nvme_ctrl, fw_act_work); 4711 unsigned long fw_act_timeout; 4712 4713 nvme_auth_stop(ctrl); 4714 4715 if (ctrl->mtfa) 4716 fw_act_timeout = jiffies + msecs_to_jiffies(ctrl->mtfa * 100); 4717 else 4718 fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout); 4719 4720 nvme_quiesce_io_queues(ctrl); 4721 while (nvme_ctrl_pp_status(ctrl)) { 4722 if (time_after(jiffies, fw_act_timeout)) { 4723 dev_warn(ctrl->device, 4724 "Fw activation timeout, reset controller\n"); 4725 nvme_try_sched_reset(ctrl); 4726 return; 4727 } 4728 msleep(100); 4729 } 4730 4731 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) || 4732 !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4733 return; 4734 4735 nvme_unquiesce_io_queues(ctrl); 4736 /* read FW slot information to clear the AER */ 4737 nvme_get_fw_slot_info(ctrl); 4738 4739 queue_work(nvme_wq, &ctrl->async_event_work); 4740 } 4741 4742 static u32 nvme_aer_type(u32 result) 4743 { 4744 return result & 0x7; 4745 } 4746 4747 static u32 nvme_aer_subtype(u32 result) 4748 { 4749 return (result & 0xff00) >> 8; 4750 } 4751 4752 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4753 { 4754 u32 aer_notice_type = nvme_aer_subtype(result); 4755 bool requeue = true; 4756 4757 switch (aer_notice_type) { 4758 case NVME_AER_NOTICE_NS_CHANGED: 4759 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4760 nvme_queue_scan(ctrl); 4761 break; 4762 case NVME_AER_NOTICE_FW_ACT_STARTING: 4763 /* 4764 * We are (ab)using the RESETTING state to prevent subsequent 4765 * recovery actions from interfering with the controller's 4766 * firmware activation. 4767 */ 4768 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4769 requeue = false; 4770 queue_work(nvme_wq, &ctrl->fw_act_work); 4771 } 4772 break; 4773 #ifdef CONFIG_NVME_MULTIPATH 4774 case NVME_AER_NOTICE_ANA: 4775 if (!ctrl->ana_log_buf) 4776 break; 4777 queue_work(nvme_wq, &ctrl->ana_work); 4778 break; 4779 #endif 4780 case NVME_AER_NOTICE_DISC_CHANGED: 4781 ctrl->aen_result = result; 4782 break; 4783 default: 4784 dev_warn(ctrl->device, "async event result %08x\n", result); 4785 } 4786 return requeue; 4787 } 4788 4789 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4790 { 4791 dev_warn(ctrl->device, 4792 "resetting controller due to persistent internal error\n"); 4793 nvme_reset_ctrl(ctrl); 4794 } 4795 4796 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4797 volatile union nvme_result *res) 4798 { 4799 u32 result = le32_to_cpu(res->u32); 4800 u32 aer_type = nvme_aer_type(result); 4801 u32 aer_subtype = nvme_aer_subtype(result); 4802 bool requeue = true; 4803 4804 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4805 return; 4806 4807 trace_nvme_async_event(ctrl, result); 4808 switch (aer_type) { 4809 case NVME_AER_NOTICE: 4810 requeue = nvme_handle_aen_notice(ctrl, result); 4811 break; 4812 case NVME_AER_ERROR: 4813 /* 4814 * For a persistent internal error, don't run async_event_work 4815 * to submit a new AER. The controller reset will do it. 4816 */ 4817 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4818 nvme_handle_aer_persistent_error(ctrl); 4819 return; 4820 } 4821 fallthrough; 4822 case NVME_AER_SMART: 4823 case NVME_AER_CSS: 4824 case NVME_AER_VS: 4825 ctrl->aen_result = result; 4826 break; 4827 default: 4828 break; 4829 } 4830 4831 if (requeue) 4832 queue_work(nvme_wq, &ctrl->async_event_work); 4833 } 4834 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4835 4836 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4837 const struct blk_mq_ops *ops, unsigned int cmd_size) 4838 { 4839 struct queue_limits lim = {}; 4840 int ret; 4841 4842 memset(set, 0, sizeof(*set)); 4843 set->ops = ops; 4844 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4845 if (ctrl->ops->flags & NVME_F_FABRICS) 4846 /* Reserved for fabric connect and keep alive */ 4847 set->reserved_tags = 2; 4848 set->numa_node = ctrl->numa_node; 4849 if (ctrl->ops->flags & NVME_F_BLOCKING) 4850 set->flags |= BLK_MQ_F_BLOCKING; 4851 set->cmd_size = cmd_size; 4852 set->driver_data = ctrl; 4853 set->nr_hw_queues = 1; 4854 set->timeout = NVME_ADMIN_TIMEOUT; 4855 ret = blk_mq_alloc_tag_set(set); 4856 if (ret) 4857 return ret; 4858 4859 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4860 if (IS_ERR(ctrl->admin_q)) { 4861 ret = PTR_ERR(ctrl->admin_q); 4862 goto out_free_tagset; 4863 } 4864 4865 if (ctrl->ops->flags & NVME_F_FABRICS) { 4866 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4867 if (IS_ERR(ctrl->fabrics_q)) { 4868 ret = PTR_ERR(ctrl->fabrics_q); 4869 goto out_cleanup_admin_q; 4870 } 4871 } 4872 4873 ctrl->admin_tagset = set; 4874 return 0; 4875 4876 out_cleanup_admin_q: 4877 blk_mq_destroy_queue(ctrl->admin_q); 4878 blk_put_queue(ctrl->admin_q); 4879 out_free_tagset: 4880 blk_mq_free_tag_set(set); 4881 ctrl->admin_q = NULL; 4882 ctrl->fabrics_q = NULL; 4883 return ret; 4884 } 4885 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4886 4887 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4888 { 4889 /* 4890 * As we're about to destroy the queue and free tagset 4891 * we can not have keep-alive work running. 4892 */ 4893 nvme_stop_keep_alive(ctrl); 4894 blk_mq_destroy_queue(ctrl->admin_q); 4895 blk_put_queue(ctrl->admin_q); 4896 if (ctrl->ops->flags & NVME_F_FABRICS) { 4897 blk_mq_destroy_queue(ctrl->fabrics_q); 4898 blk_put_queue(ctrl->fabrics_q); 4899 } 4900 blk_mq_free_tag_set(ctrl->admin_tagset); 4901 } 4902 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4903 4904 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4905 const struct blk_mq_ops *ops, unsigned int nr_maps, 4906 unsigned int cmd_size) 4907 { 4908 int ret; 4909 4910 memset(set, 0, sizeof(*set)); 4911 set->ops = ops; 4912 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4913 /* 4914 * Some Apple controllers requires tags to be unique across admin and 4915 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4916 */ 4917 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4918 set->reserved_tags = NVME_AQ_DEPTH; 4919 else if (ctrl->ops->flags & NVME_F_FABRICS) 4920 /* Reserved for fabric connect */ 4921 set->reserved_tags = 1; 4922 set->numa_node = ctrl->numa_node; 4923 if (ctrl->ops->flags & NVME_F_BLOCKING) 4924 set->flags |= BLK_MQ_F_BLOCKING; 4925 set->cmd_size = cmd_size; 4926 set->driver_data = ctrl; 4927 set->nr_hw_queues = ctrl->queue_count - 1; 4928 set->timeout = NVME_IO_TIMEOUT; 4929 set->nr_maps = nr_maps; 4930 ret = blk_mq_alloc_tag_set(set); 4931 if (ret) 4932 return ret; 4933 4934 if (ctrl->ops->flags & NVME_F_FABRICS) { 4935 struct queue_limits lim = { 4936 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, 4937 }; 4938 4939 ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL); 4940 if (IS_ERR(ctrl->connect_q)) { 4941 ret = PTR_ERR(ctrl->connect_q); 4942 goto out_free_tag_set; 4943 } 4944 } 4945 4946 ctrl->tagset = set; 4947 return 0; 4948 4949 out_free_tag_set: 4950 blk_mq_free_tag_set(set); 4951 ctrl->connect_q = NULL; 4952 return ret; 4953 } 4954 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4955 4956 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4957 { 4958 if (ctrl->ops->flags & NVME_F_FABRICS) { 4959 blk_mq_destroy_queue(ctrl->connect_q); 4960 blk_put_queue(ctrl->connect_q); 4961 } 4962 blk_mq_free_tag_set(ctrl->tagset); 4963 } 4964 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4965 4966 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4967 { 4968 nvme_mpath_stop(ctrl); 4969 nvme_auth_stop(ctrl); 4970 nvme_stop_failfast_work(ctrl); 4971 flush_work(&ctrl->async_event_work); 4972 cancel_work_sync(&ctrl->fw_act_work); 4973 if (ctrl->ops->stop_ctrl) 4974 ctrl->ops->stop_ctrl(ctrl); 4975 } 4976 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4977 4978 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4979 { 4980 nvme_enable_aen(ctrl); 4981 4982 /* 4983 * persistent discovery controllers need to send indication to userspace 4984 * to re-read the discovery log page to learn about possible changes 4985 * that were missed. We identify persistent discovery controllers by 4986 * checking that they started once before, hence are reconnecting back. 4987 */ 4988 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4989 nvme_discovery_ctrl(ctrl)) 4990 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4991 4992 if (ctrl->queue_count > 1) { 4993 nvme_queue_scan(ctrl); 4994 nvme_unquiesce_io_queues(ctrl); 4995 nvme_mpath_update(ctrl); 4996 } 4997 4998 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4999 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 5000 } 5001 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 5002 5003 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 5004 { 5005 nvme_stop_keep_alive(ctrl); 5006 nvme_hwmon_exit(ctrl); 5007 nvme_fault_inject_fini(&ctrl->fault_inject); 5008 dev_pm_qos_hide_latency_tolerance(ctrl->device); 5009 cdev_device_del(&ctrl->cdev, ctrl->device); 5010 nvme_put_ctrl(ctrl); 5011 } 5012 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 5013 5014 static void nvme_free_cels(struct nvme_ctrl *ctrl) 5015 { 5016 struct nvme_effects_log *cel; 5017 unsigned long i; 5018 5019 xa_for_each(&ctrl->cels, i, cel) { 5020 xa_erase(&ctrl->cels, i); 5021 kfree(cel); 5022 } 5023 5024 xa_destroy(&ctrl->cels); 5025 } 5026 5027 static void nvme_free_ctrl(struct device *dev) 5028 { 5029 struct nvme_ctrl *ctrl = 5030 container_of(dev, struct nvme_ctrl, ctrl_device); 5031 struct nvme_subsystem *subsys = ctrl->subsys; 5032 5033 if (!subsys || ctrl->instance != subsys->instance) 5034 ida_free(&nvme_instance_ida, ctrl->instance); 5035 nvme_free_cels(ctrl); 5036 nvme_mpath_uninit(ctrl); 5037 cleanup_srcu_struct(&ctrl->srcu); 5038 nvme_auth_stop(ctrl); 5039 nvme_auth_free(ctrl); 5040 __free_page(ctrl->discard_page); 5041 free_opal_dev(ctrl->opal_dev); 5042 5043 if (subsys) { 5044 mutex_lock(&nvme_subsystems_lock); 5045 list_del(&ctrl->subsys_entry); 5046 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 5047 mutex_unlock(&nvme_subsystems_lock); 5048 } 5049 5050 ctrl->ops->free_ctrl(ctrl); 5051 5052 if (subsys) 5053 nvme_put_subsystem(subsys); 5054 } 5055 5056 /* 5057 * Initialize a NVMe controller structures. This needs to be called during 5058 * earliest initialization so that we have the initialized structured around 5059 * during probing. 5060 * 5061 * On success, the caller must use the nvme_put_ctrl() to release this when 5062 * needed, which also invokes the ops->free_ctrl() callback. 5063 */ 5064 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 5065 const struct nvme_ctrl_ops *ops, unsigned long quirks) 5066 { 5067 int ret; 5068 5069 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 5070 ctrl->passthru_err_log_enabled = false; 5071 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 5072 spin_lock_init(&ctrl->lock); 5073 mutex_init(&ctrl->namespaces_lock); 5074 5075 ret = init_srcu_struct(&ctrl->srcu); 5076 if (ret) 5077 return ret; 5078 5079 mutex_init(&ctrl->scan_lock); 5080 INIT_LIST_HEAD(&ctrl->namespaces); 5081 xa_init(&ctrl->cels); 5082 ctrl->dev = dev; 5083 ctrl->ops = ops; 5084 ctrl->quirks = quirks; 5085 ctrl->numa_node = NUMA_NO_NODE; 5086 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 5087 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 5088 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 5089 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 5090 init_waitqueue_head(&ctrl->state_wq); 5091 5092 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 5093 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 5094 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 5095 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 5096 ctrl->ka_last_check_time = jiffies; 5097 5098 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 5099 PAGE_SIZE); 5100 ctrl->discard_page = alloc_page(GFP_KERNEL); 5101 if (!ctrl->discard_page) { 5102 ret = -ENOMEM; 5103 goto out; 5104 } 5105 5106 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 5107 if (ret < 0) 5108 goto out; 5109 ctrl->instance = ret; 5110 5111 ret = nvme_auth_init_ctrl(ctrl); 5112 if (ret) 5113 goto out_release_instance; 5114 5115 nvme_mpath_init_ctrl(ctrl); 5116 5117 device_initialize(&ctrl->ctrl_device); 5118 ctrl->device = &ctrl->ctrl_device; 5119 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 5120 ctrl->instance); 5121 ctrl->device->class = &nvme_class; 5122 ctrl->device->parent = ctrl->dev; 5123 if (ops->dev_attr_groups) 5124 ctrl->device->groups = ops->dev_attr_groups; 5125 else 5126 ctrl->device->groups = nvme_dev_attr_groups; 5127 ctrl->device->release = nvme_free_ctrl; 5128 dev_set_drvdata(ctrl->device, ctrl); 5129 5130 return ret; 5131 5132 out_release_instance: 5133 ida_free(&nvme_instance_ida, ctrl->instance); 5134 out: 5135 if (ctrl->discard_page) 5136 __free_page(ctrl->discard_page); 5137 cleanup_srcu_struct(&ctrl->srcu); 5138 return ret; 5139 } 5140 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 5141 5142 /* 5143 * On success, returns with an elevated controller reference and caller must 5144 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. 5145 */ 5146 int nvme_add_ctrl(struct nvme_ctrl *ctrl) 5147 { 5148 int ret; 5149 5150 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 5151 if (ret) 5152 return ret; 5153 5154 cdev_init(&ctrl->cdev, &nvme_dev_fops); 5155 ctrl->cdev.owner = ctrl->ops->module; 5156 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 5157 if (ret) 5158 return ret; 5159 5160 /* 5161 * Initialize latency tolerance controls. The sysfs files won't 5162 * be visible to userspace unless the device actually supports APST. 5163 */ 5164 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 5165 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 5166 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 5167 5168 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 5169 nvme_get_ctrl(ctrl); 5170 5171 return 0; 5172 } 5173 EXPORT_SYMBOL_GPL(nvme_add_ctrl); 5174 5175 /* let I/O to all namespaces fail in preparation for surprise removal */ 5176 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 5177 { 5178 struct nvme_ns *ns; 5179 int srcu_idx; 5180 5181 srcu_idx = srcu_read_lock(&ctrl->srcu); 5182 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 5183 srcu_read_lock_held(&ctrl->srcu)) 5184 blk_mark_disk_dead(ns->disk); 5185 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5186 } 5187 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 5188 5189 void nvme_unfreeze(struct nvme_ctrl *ctrl) 5190 { 5191 struct nvme_ns *ns; 5192 int srcu_idx; 5193 5194 srcu_idx = srcu_read_lock(&ctrl->srcu); 5195 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 5196 srcu_read_lock_held(&ctrl->srcu)) 5197 blk_mq_unfreeze_queue_non_owner(ns->queue); 5198 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5199 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 5200 } 5201 EXPORT_SYMBOL_GPL(nvme_unfreeze); 5202 5203 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 5204 { 5205 struct nvme_ns *ns; 5206 int srcu_idx; 5207 5208 srcu_idx = srcu_read_lock(&ctrl->srcu); 5209 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 5210 srcu_read_lock_held(&ctrl->srcu)) { 5211 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 5212 if (timeout <= 0) 5213 break; 5214 } 5215 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5216 return timeout; 5217 } 5218 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 5219 5220 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 5221 { 5222 struct nvme_ns *ns; 5223 int srcu_idx; 5224 5225 srcu_idx = srcu_read_lock(&ctrl->srcu); 5226 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 5227 srcu_read_lock_held(&ctrl->srcu)) 5228 blk_mq_freeze_queue_wait(ns->queue); 5229 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5230 } 5231 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 5232 5233 void nvme_start_freeze(struct nvme_ctrl *ctrl) 5234 { 5235 struct nvme_ns *ns; 5236 int srcu_idx; 5237 5238 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 5239 srcu_idx = srcu_read_lock(&ctrl->srcu); 5240 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 5241 srcu_read_lock_held(&ctrl->srcu)) 5242 /* 5243 * Typical non_owner use case is from pci driver, in which 5244 * start_freeze is called from timeout work function, but 5245 * unfreeze is done in reset work context 5246 */ 5247 blk_freeze_queue_start_non_owner(ns->queue); 5248 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5249 } 5250 EXPORT_SYMBOL_GPL(nvme_start_freeze); 5251 5252 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 5253 { 5254 if (!ctrl->tagset) 5255 return; 5256 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5257 blk_mq_quiesce_tagset(ctrl->tagset); 5258 else 5259 blk_mq_wait_quiesce_done(ctrl->tagset); 5260 } 5261 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 5262 5263 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 5264 { 5265 if (!ctrl->tagset) 5266 return; 5267 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 5268 blk_mq_unquiesce_tagset(ctrl->tagset); 5269 } 5270 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 5271 5272 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 5273 { 5274 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5275 blk_mq_quiesce_queue(ctrl->admin_q); 5276 else 5277 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 5278 } 5279 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 5280 5281 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 5282 { 5283 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 5284 blk_mq_unquiesce_queue(ctrl->admin_q); 5285 } 5286 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 5287 5288 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 5289 { 5290 struct nvme_ns *ns; 5291 int srcu_idx; 5292 5293 srcu_idx = srcu_read_lock(&ctrl->srcu); 5294 list_for_each_entry_srcu(ns, &ctrl->namespaces, list, 5295 srcu_read_lock_held(&ctrl->srcu)) 5296 blk_sync_queue(ns->queue); 5297 srcu_read_unlock(&ctrl->srcu, srcu_idx); 5298 } 5299 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 5300 5301 void nvme_sync_queues(struct nvme_ctrl *ctrl) 5302 { 5303 nvme_sync_io_queues(ctrl); 5304 if (ctrl->admin_q) 5305 blk_sync_queue(ctrl->admin_q); 5306 } 5307 EXPORT_SYMBOL_GPL(nvme_sync_queues); 5308 5309 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 5310 { 5311 if (file->f_op != &nvme_dev_fops) 5312 return NULL; 5313 return file->private_data; 5314 } 5315 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU"); 5316 5317 /* 5318 * Check we didn't inadvertently grow the command structure sizes: 5319 */ 5320 static inline void _nvme_check_size(void) 5321 { 5322 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 5323 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 5324 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 5325 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 5326 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 5327 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 5328 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 5329 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 5330 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 5331 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 5332 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 5333 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 5334 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 5335 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 5336 NVME_IDENTIFY_DATA_SIZE); 5337 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 5338 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 5339 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 5340 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 5341 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 5342 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 5343 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512); 5344 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512); 5345 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 5346 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 5347 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 5348 } 5349 5350 5351 static int __init nvme_core_init(void) 5352 { 5353 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS; 5354 int result = -ENOMEM; 5355 5356 _nvme_check_size(); 5357 5358 nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0); 5359 if (!nvme_wq) 5360 goto out; 5361 5362 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0); 5363 if (!nvme_reset_wq) 5364 goto destroy_wq; 5365 5366 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0); 5367 if (!nvme_delete_wq) 5368 goto destroy_reset_wq; 5369 5370 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 5371 NVME_MINORS, "nvme"); 5372 if (result < 0) 5373 goto destroy_delete_wq; 5374 5375 result = class_register(&nvme_class); 5376 if (result) 5377 goto unregister_chrdev; 5378 5379 result = class_register(&nvme_subsys_class); 5380 if (result) 5381 goto destroy_class; 5382 5383 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 5384 "nvme-generic"); 5385 if (result < 0) 5386 goto destroy_subsys_class; 5387 5388 result = class_register(&nvme_ns_chr_class); 5389 if (result) 5390 goto unregister_generic_ns; 5391 5392 result = nvme_init_auth(); 5393 if (result) 5394 goto destroy_ns_chr; 5395 return 0; 5396 5397 destroy_ns_chr: 5398 class_unregister(&nvme_ns_chr_class); 5399 unregister_generic_ns: 5400 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5401 destroy_subsys_class: 5402 class_unregister(&nvme_subsys_class); 5403 destroy_class: 5404 class_unregister(&nvme_class); 5405 unregister_chrdev: 5406 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5407 destroy_delete_wq: 5408 destroy_workqueue(nvme_delete_wq); 5409 destroy_reset_wq: 5410 destroy_workqueue(nvme_reset_wq); 5411 destroy_wq: 5412 destroy_workqueue(nvme_wq); 5413 out: 5414 return result; 5415 } 5416 5417 static void __exit nvme_core_exit(void) 5418 { 5419 nvme_exit_auth(); 5420 class_unregister(&nvme_ns_chr_class); 5421 class_unregister(&nvme_subsys_class); 5422 class_unregister(&nvme_class); 5423 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 5424 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 5425 destroy_workqueue(nvme_delete_wq); 5426 destroy_workqueue(nvme_reset_wq); 5427 destroy_workqueue(nvme_wq); 5428 ida_destroy(&nvme_ns_chr_minor_ida); 5429 ida_destroy(&nvme_instance_ida); 5430 } 5431 5432 MODULE_LICENSE("GPL"); 5433 MODULE_VERSION("1.0"); 5434 MODULE_DESCRIPTION("NVMe host core framework"); 5435 module_init(nvme_core_init); 5436 module_exit(nvme_core_exit); 5437