1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <asm/unaligned.h> 24 25 #include "nvme.h" 26 #include "fabrics.h" 27 28 #define CREATE_TRACE_POINTS 29 #include "trace.h" 30 31 #define NVME_MINORS (1U << MINORBITS) 32 33 unsigned int admin_timeout = 60; 34 module_param(admin_timeout, uint, 0644); 35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 36 EXPORT_SYMBOL_GPL(admin_timeout); 37 38 unsigned int nvme_io_timeout = 30; 39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 41 EXPORT_SYMBOL_GPL(nvme_io_timeout); 42 43 static unsigned char shutdown_timeout = 5; 44 module_param(shutdown_timeout, byte, 0644); 45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 46 47 static u8 nvme_max_retries = 5; 48 module_param_named(max_retries, nvme_max_retries, byte, 0644); 49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 50 51 static unsigned long default_ps_max_latency_us = 100000; 52 module_param(default_ps_max_latency_us, ulong, 0644); 53 MODULE_PARM_DESC(default_ps_max_latency_us, 54 "max power saving latency for new devices; use PM QOS to change per device"); 55 56 static bool force_apst; 57 module_param(force_apst, bool, 0644); 58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 59 60 static unsigned long apst_primary_timeout_ms = 100; 61 module_param(apst_primary_timeout_ms, ulong, 0644); 62 MODULE_PARM_DESC(apst_primary_timeout_ms, 63 "primary APST timeout in ms"); 64 65 static unsigned long apst_secondary_timeout_ms = 2000; 66 module_param(apst_secondary_timeout_ms, ulong, 0644); 67 MODULE_PARM_DESC(apst_secondary_timeout_ms, 68 "secondary APST timeout in ms"); 69 70 static unsigned long apst_primary_latency_tol_us = 15000; 71 module_param(apst_primary_latency_tol_us, ulong, 0644); 72 MODULE_PARM_DESC(apst_primary_latency_tol_us, 73 "primary APST latency tolerance in us"); 74 75 static unsigned long apst_secondary_latency_tol_us = 100000; 76 module_param(apst_secondary_latency_tol_us, ulong, 0644); 77 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 78 "secondary APST latency tolerance in us"); 79 80 static bool streams; 81 module_param(streams, bool, 0644); 82 MODULE_PARM_DESC(streams, "turn on support for Streams write directives"); 83 84 /* 85 * nvme_wq - hosts nvme related works that are not reset or delete 86 * nvme_reset_wq - hosts nvme reset works 87 * nvme_delete_wq - hosts nvme delete works 88 * 89 * nvme_wq will host works such as scan, aen handling, fw activation, 90 * keep-alive, periodic reconnects etc. nvme_reset_wq 91 * runs reset works which also flush works hosted on nvme_wq for 92 * serialization purposes. nvme_delete_wq host controller deletion 93 * works which flush reset works for serialization. 94 */ 95 struct workqueue_struct *nvme_wq; 96 EXPORT_SYMBOL_GPL(nvme_wq); 97 98 struct workqueue_struct *nvme_reset_wq; 99 EXPORT_SYMBOL_GPL(nvme_reset_wq); 100 101 struct workqueue_struct *nvme_delete_wq; 102 EXPORT_SYMBOL_GPL(nvme_delete_wq); 103 104 static LIST_HEAD(nvme_subsystems); 105 static DEFINE_MUTEX(nvme_subsystems_lock); 106 107 static DEFINE_IDA(nvme_instance_ida); 108 static dev_t nvme_ctrl_base_chr_devt; 109 static struct class *nvme_class; 110 static struct class *nvme_subsys_class; 111 112 static DEFINE_IDA(nvme_ns_chr_minor_ida); 113 static dev_t nvme_ns_chr_devt; 114 static struct class *nvme_ns_chr_class; 115 116 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 117 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 118 unsigned nsid); 119 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 120 struct nvme_command *cmd); 121 122 void nvme_queue_scan(struct nvme_ctrl *ctrl) 123 { 124 /* 125 * Only new queue scan work when admin and IO queues are both alive 126 */ 127 if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset) 128 queue_work(nvme_wq, &ctrl->scan_work); 129 } 130 131 /* 132 * Use this function to proceed with scheduling reset_work for a controller 133 * that had previously been set to the resetting state. This is intended for 134 * code paths that can't be interrupted by other reset attempts. A hot removal 135 * may prevent this from succeeding. 136 */ 137 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 138 { 139 if (ctrl->state != NVME_CTRL_RESETTING) 140 return -EBUSY; 141 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 142 return -EBUSY; 143 return 0; 144 } 145 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 146 147 static void nvme_failfast_work(struct work_struct *work) 148 { 149 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 150 struct nvme_ctrl, failfast_work); 151 152 if (ctrl->state != NVME_CTRL_CONNECTING) 153 return; 154 155 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 156 dev_info(ctrl->device, "failfast expired\n"); 157 nvme_kick_requeue_lists(ctrl); 158 } 159 160 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 161 { 162 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 163 return; 164 165 schedule_delayed_work(&ctrl->failfast_work, 166 ctrl->opts->fast_io_fail_tmo * HZ); 167 } 168 169 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 170 { 171 if (!ctrl->opts) 172 return; 173 174 cancel_delayed_work_sync(&ctrl->failfast_work); 175 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 176 } 177 178 179 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 180 { 181 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 182 return -EBUSY; 183 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 184 return -EBUSY; 185 return 0; 186 } 187 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 188 189 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 190 { 191 int ret; 192 193 ret = nvme_reset_ctrl(ctrl); 194 if (!ret) { 195 flush_work(&ctrl->reset_work); 196 if (ctrl->state != NVME_CTRL_LIVE) 197 ret = -ENETRESET; 198 } 199 200 return ret; 201 } 202 203 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 204 { 205 dev_info(ctrl->device, 206 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 207 208 flush_work(&ctrl->reset_work); 209 nvme_stop_ctrl(ctrl); 210 nvme_remove_namespaces(ctrl); 211 ctrl->ops->delete_ctrl(ctrl); 212 nvme_uninit_ctrl(ctrl); 213 } 214 215 static void nvme_delete_ctrl_work(struct work_struct *work) 216 { 217 struct nvme_ctrl *ctrl = 218 container_of(work, struct nvme_ctrl, delete_work); 219 220 nvme_do_delete_ctrl(ctrl); 221 } 222 223 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 224 { 225 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 226 return -EBUSY; 227 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 228 return -EBUSY; 229 return 0; 230 } 231 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 232 233 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 234 { 235 /* 236 * Keep a reference until nvme_do_delete_ctrl() complete, 237 * since ->delete_ctrl can free the controller. 238 */ 239 nvme_get_ctrl(ctrl); 240 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 241 nvme_do_delete_ctrl(ctrl); 242 nvme_put_ctrl(ctrl); 243 } 244 245 static blk_status_t nvme_error_status(u16 status) 246 { 247 switch (status & 0x7ff) { 248 case NVME_SC_SUCCESS: 249 return BLK_STS_OK; 250 case NVME_SC_CAP_EXCEEDED: 251 return BLK_STS_NOSPC; 252 case NVME_SC_LBA_RANGE: 253 case NVME_SC_CMD_INTERRUPTED: 254 case NVME_SC_NS_NOT_READY: 255 return BLK_STS_TARGET; 256 case NVME_SC_BAD_ATTRIBUTES: 257 case NVME_SC_ONCS_NOT_SUPPORTED: 258 case NVME_SC_INVALID_OPCODE: 259 case NVME_SC_INVALID_FIELD: 260 case NVME_SC_INVALID_NS: 261 return BLK_STS_NOTSUPP; 262 case NVME_SC_WRITE_FAULT: 263 case NVME_SC_READ_ERROR: 264 case NVME_SC_UNWRITTEN_BLOCK: 265 case NVME_SC_ACCESS_DENIED: 266 case NVME_SC_READ_ONLY: 267 case NVME_SC_COMPARE_FAILED: 268 return BLK_STS_MEDIUM; 269 case NVME_SC_GUARD_CHECK: 270 case NVME_SC_APPTAG_CHECK: 271 case NVME_SC_REFTAG_CHECK: 272 case NVME_SC_INVALID_PI: 273 return BLK_STS_PROTECTION; 274 case NVME_SC_RESERVATION_CONFLICT: 275 return BLK_STS_NEXUS; 276 case NVME_SC_HOST_PATH_ERROR: 277 return BLK_STS_TRANSPORT; 278 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 279 return BLK_STS_ZONE_ACTIVE_RESOURCE; 280 case NVME_SC_ZONE_TOO_MANY_OPEN: 281 return BLK_STS_ZONE_OPEN_RESOURCE; 282 default: 283 return BLK_STS_IOERR; 284 } 285 } 286 287 static void nvme_retry_req(struct request *req) 288 { 289 unsigned long delay = 0; 290 u16 crd; 291 292 /* The mask and shift result must be <= 3 */ 293 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 294 if (crd) 295 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 296 297 nvme_req(req)->retries++; 298 blk_mq_requeue_request(req, false); 299 blk_mq_delay_kick_requeue_list(req->q, delay); 300 } 301 302 enum nvme_disposition { 303 COMPLETE, 304 RETRY, 305 FAILOVER, 306 }; 307 308 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 309 { 310 if (likely(nvme_req(req)->status == 0)) 311 return COMPLETE; 312 313 if (blk_noretry_request(req) || 314 (nvme_req(req)->status & NVME_SC_DNR) || 315 nvme_req(req)->retries >= nvme_max_retries) 316 return COMPLETE; 317 318 if (req->cmd_flags & REQ_NVME_MPATH) { 319 if (nvme_is_path_error(nvme_req(req)->status) || 320 blk_queue_dying(req->q)) 321 return FAILOVER; 322 } else { 323 if (blk_queue_dying(req->q)) 324 return COMPLETE; 325 } 326 327 return RETRY; 328 } 329 330 static inline void nvme_end_req_zoned(struct request *req) 331 { 332 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 333 req_op(req) == REQ_OP_ZONE_APPEND) 334 req->__sector = nvme_lba_to_sect(req->q->queuedata, 335 le64_to_cpu(nvme_req(req)->result.u64)); 336 } 337 338 static inline void nvme_end_req(struct request *req) 339 { 340 blk_status_t status = nvme_error_status(nvme_req(req)->status); 341 342 nvme_end_req_zoned(req); 343 nvme_trace_bio_complete(req); 344 blk_mq_end_request(req, status); 345 } 346 347 void nvme_complete_rq(struct request *req) 348 { 349 trace_nvme_complete_rq(req); 350 nvme_cleanup_cmd(req); 351 352 if (nvme_req(req)->ctrl->kas) 353 nvme_req(req)->ctrl->comp_seen = true; 354 355 switch (nvme_decide_disposition(req)) { 356 case COMPLETE: 357 nvme_end_req(req); 358 return; 359 case RETRY: 360 nvme_retry_req(req); 361 return; 362 case FAILOVER: 363 nvme_failover_req(req); 364 return; 365 } 366 } 367 EXPORT_SYMBOL_GPL(nvme_complete_rq); 368 369 void nvme_complete_batch_req(struct request *req) 370 { 371 nvme_cleanup_cmd(req); 372 nvme_end_req_zoned(req); 373 } 374 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 375 376 /* 377 * Called to unwind from ->queue_rq on a failed command submission so that the 378 * multipathing code gets called to potentially failover to another path. 379 * The caller needs to unwind all transport specific resource allocations and 380 * must return propagate the return value. 381 */ 382 blk_status_t nvme_host_path_error(struct request *req) 383 { 384 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 385 blk_mq_set_request_complete(req); 386 nvme_complete_rq(req); 387 return BLK_STS_OK; 388 } 389 EXPORT_SYMBOL_GPL(nvme_host_path_error); 390 391 bool nvme_cancel_request(struct request *req, void *data, bool reserved) 392 { 393 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 394 "Cancelling I/O %d", req->tag); 395 396 /* don't abort one completed request */ 397 if (blk_mq_request_completed(req)) 398 return true; 399 400 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 401 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 402 blk_mq_complete_request(req); 403 return true; 404 } 405 EXPORT_SYMBOL_GPL(nvme_cancel_request); 406 407 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 408 { 409 if (ctrl->tagset) { 410 blk_mq_tagset_busy_iter(ctrl->tagset, 411 nvme_cancel_request, ctrl); 412 blk_mq_tagset_wait_completed_request(ctrl->tagset); 413 } 414 } 415 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 416 417 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 418 { 419 if (ctrl->admin_tagset) { 420 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 421 nvme_cancel_request, ctrl); 422 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 423 } 424 } 425 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 426 427 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 428 enum nvme_ctrl_state new_state) 429 { 430 enum nvme_ctrl_state old_state; 431 unsigned long flags; 432 bool changed = false; 433 434 spin_lock_irqsave(&ctrl->lock, flags); 435 436 old_state = ctrl->state; 437 switch (new_state) { 438 case NVME_CTRL_LIVE: 439 switch (old_state) { 440 case NVME_CTRL_NEW: 441 case NVME_CTRL_RESETTING: 442 case NVME_CTRL_CONNECTING: 443 changed = true; 444 fallthrough; 445 default: 446 break; 447 } 448 break; 449 case NVME_CTRL_RESETTING: 450 switch (old_state) { 451 case NVME_CTRL_NEW: 452 case NVME_CTRL_LIVE: 453 changed = true; 454 fallthrough; 455 default: 456 break; 457 } 458 break; 459 case NVME_CTRL_CONNECTING: 460 switch (old_state) { 461 case NVME_CTRL_NEW: 462 case NVME_CTRL_RESETTING: 463 changed = true; 464 fallthrough; 465 default: 466 break; 467 } 468 break; 469 case NVME_CTRL_DELETING: 470 switch (old_state) { 471 case NVME_CTRL_LIVE: 472 case NVME_CTRL_RESETTING: 473 case NVME_CTRL_CONNECTING: 474 changed = true; 475 fallthrough; 476 default: 477 break; 478 } 479 break; 480 case NVME_CTRL_DELETING_NOIO: 481 switch (old_state) { 482 case NVME_CTRL_DELETING: 483 case NVME_CTRL_DEAD: 484 changed = true; 485 fallthrough; 486 default: 487 break; 488 } 489 break; 490 case NVME_CTRL_DEAD: 491 switch (old_state) { 492 case NVME_CTRL_DELETING: 493 changed = true; 494 fallthrough; 495 default: 496 break; 497 } 498 break; 499 default: 500 break; 501 } 502 503 if (changed) { 504 ctrl->state = new_state; 505 wake_up_all(&ctrl->state_wq); 506 } 507 508 spin_unlock_irqrestore(&ctrl->lock, flags); 509 if (!changed) 510 return false; 511 512 if (ctrl->state == NVME_CTRL_LIVE) { 513 if (old_state == NVME_CTRL_CONNECTING) 514 nvme_stop_failfast_work(ctrl); 515 nvme_kick_requeue_lists(ctrl); 516 } else if (ctrl->state == NVME_CTRL_CONNECTING && 517 old_state == NVME_CTRL_RESETTING) { 518 nvme_start_failfast_work(ctrl); 519 } 520 return changed; 521 } 522 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 523 524 /* 525 * Returns true for sink states that can't ever transition back to live. 526 */ 527 static bool nvme_state_terminal(struct nvme_ctrl *ctrl) 528 { 529 switch (ctrl->state) { 530 case NVME_CTRL_NEW: 531 case NVME_CTRL_LIVE: 532 case NVME_CTRL_RESETTING: 533 case NVME_CTRL_CONNECTING: 534 return false; 535 case NVME_CTRL_DELETING: 536 case NVME_CTRL_DELETING_NOIO: 537 case NVME_CTRL_DEAD: 538 return true; 539 default: 540 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); 541 return true; 542 } 543 } 544 545 /* 546 * Waits for the controller state to be resetting, or returns false if it is 547 * not possible to ever transition to that state. 548 */ 549 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 550 { 551 wait_event(ctrl->state_wq, 552 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 553 nvme_state_terminal(ctrl)); 554 return ctrl->state == NVME_CTRL_RESETTING; 555 } 556 EXPORT_SYMBOL_GPL(nvme_wait_reset); 557 558 static void nvme_free_ns_head(struct kref *ref) 559 { 560 struct nvme_ns_head *head = 561 container_of(ref, struct nvme_ns_head, ref); 562 563 nvme_mpath_remove_disk(head); 564 ida_simple_remove(&head->subsys->ns_ida, head->instance); 565 cleanup_srcu_struct(&head->srcu); 566 nvme_put_subsystem(head->subsys); 567 kfree(head); 568 } 569 570 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 571 { 572 return kref_get_unless_zero(&head->ref); 573 } 574 575 void nvme_put_ns_head(struct nvme_ns_head *head) 576 { 577 kref_put(&head->ref, nvme_free_ns_head); 578 } 579 580 static void nvme_free_ns(struct kref *kref) 581 { 582 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 583 584 put_disk(ns->disk); 585 nvme_put_ns_head(ns->head); 586 nvme_put_ctrl(ns->ctrl); 587 kfree(ns); 588 } 589 590 static inline bool nvme_get_ns(struct nvme_ns *ns) 591 { 592 return kref_get_unless_zero(&ns->kref); 593 } 594 595 void nvme_put_ns(struct nvme_ns *ns) 596 { 597 kref_put(&ns->kref, nvme_free_ns); 598 } 599 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 600 601 static inline void nvme_clear_nvme_request(struct request *req) 602 { 603 nvme_req(req)->status = 0; 604 nvme_req(req)->retries = 0; 605 nvme_req(req)->flags = 0; 606 req->rq_flags |= RQF_DONTPREP; 607 } 608 609 static inline unsigned int nvme_req_op(struct nvme_command *cmd) 610 { 611 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; 612 } 613 614 static inline void nvme_init_request(struct request *req, 615 struct nvme_command *cmd) 616 { 617 if (req->q->queuedata) 618 req->timeout = NVME_IO_TIMEOUT; 619 else /* no queuedata implies admin queue */ 620 req->timeout = NVME_ADMIN_TIMEOUT; 621 622 /* passthru commands should let the driver set the SGL flags */ 623 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 624 625 req->cmd_flags |= REQ_FAILFAST_DRIVER; 626 if (req->mq_hctx->type == HCTX_TYPE_POLL) 627 req->cmd_flags |= REQ_POLLED; 628 nvme_clear_nvme_request(req); 629 memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd)); 630 } 631 632 struct request *nvme_alloc_request(struct request_queue *q, 633 struct nvme_command *cmd, blk_mq_req_flags_t flags) 634 { 635 struct request *req; 636 637 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags); 638 if (!IS_ERR(req)) 639 nvme_init_request(req, cmd); 640 return req; 641 } 642 EXPORT_SYMBOL_GPL(nvme_alloc_request); 643 644 static struct request *nvme_alloc_request_qid(struct request_queue *q, 645 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid) 646 { 647 struct request *req; 648 649 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags, 650 qid ? qid - 1 : 0); 651 if (!IS_ERR(req)) 652 nvme_init_request(req, cmd); 653 return req; 654 } 655 656 /* 657 * For something we're not in a state to send to the device the default action 658 * is to busy it and retry it after the controller state is recovered. However, 659 * if the controller is deleting or if anything is marked for failfast or 660 * nvme multipath it is immediately failed. 661 * 662 * Note: commands used to initialize the controller will be marked for failfast. 663 * Note: nvme cli/ioctl commands are marked for failfast. 664 */ 665 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 666 struct request *rq) 667 { 668 if (ctrl->state != NVME_CTRL_DELETING_NOIO && 669 ctrl->state != NVME_CTRL_DELETING && 670 ctrl->state != NVME_CTRL_DEAD && 671 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 672 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 673 return BLK_STS_RESOURCE; 674 return nvme_host_path_error(rq); 675 } 676 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 677 678 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 679 bool queue_live) 680 { 681 struct nvme_request *req = nvme_req(rq); 682 683 /* 684 * currently we have a problem sending passthru commands 685 * on the admin_q if the controller is not LIVE because we can't 686 * make sure that they are going out after the admin connect, 687 * controller enable and/or other commands in the initialization 688 * sequence. until the controller will be LIVE, fail with 689 * BLK_STS_RESOURCE so that they will be rescheduled. 690 */ 691 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 692 return false; 693 694 if (ctrl->ops->flags & NVME_F_FABRICS) { 695 /* 696 * Only allow commands on a live queue, except for the connect 697 * command, which is require to set the queue live in the 698 * appropinquate states. 699 */ 700 switch (ctrl->state) { 701 case NVME_CTRL_CONNECTING: 702 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 703 req->cmd->fabrics.fctype == nvme_fabrics_type_connect) 704 return true; 705 break; 706 default: 707 break; 708 case NVME_CTRL_DEAD: 709 return false; 710 } 711 } 712 713 return queue_live; 714 } 715 EXPORT_SYMBOL_GPL(__nvme_check_ready); 716 717 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable) 718 { 719 struct nvme_command c = { }; 720 721 c.directive.opcode = nvme_admin_directive_send; 722 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL); 723 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE; 724 c.directive.dtype = NVME_DIR_IDENTIFY; 725 c.directive.tdtype = NVME_DIR_STREAMS; 726 c.directive.endir = enable ? NVME_DIR_ENDIR : 0; 727 728 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0); 729 } 730 731 static int nvme_disable_streams(struct nvme_ctrl *ctrl) 732 { 733 return nvme_toggle_streams(ctrl, false); 734 } 735 736 static int nvme_enable_streams(struct nvme_ctrl *ctrl) 737 { 738 return nvme_toggle_streams(ctrl, true); 739 } 740 741 static int nvme_get_stream_params(struct nvme_ctrl *ctrl, 742 struct streams_directive_params *s, u32 nsid) 743 { 744 struct nvme_command c = { }; 745 746 memset(s, 0, sizeof(*s)); 747 748 c.directive.opcode = nvme_admin_directive_recv; 749 c.directive.nsid = cpu_to_le32(nsid); 750 c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s))); 751 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM; 752 c.directive.dtype = NVME_DIR_STREAMS; 753 754 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s)); 755 } 756 757 static int nvme_configure_directives(struct nvme_ctrl *ctrl) 758 { 759 struct streams_directive_params s; 760 int ret; 761 762 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES)) 763 return 0; 764 if (!streams) 765 return 0; 766 767 ret = nvme_enable_streams(ctrl); 768 if (ret) 769 return ret; 770 771 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL); 772 if (ret) 773 goto out_disable_stream; 774 775 ctrl->nssa = le16_to_cpu(s.nssa); 776 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) { 777 dev_info(ctrl->device, "too few streams (%u) available\n", 778 ctrl->nssa); 779 goto out_disable_stream; 780 } 781 782 ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1); 783 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams); 784 return 0; 785 786 out_disable_stream: 787 nvme_disable_streams(ctrl); 788 return ret; 789 } 790 791 /* 792 * Check if 'req' has a write hint associated with it. If it does, assign 793 * a valid namespace stream to the write. 794 */ 795 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl, 796 struct request *req, u16 *control, 797 u32 *dsmgmt) 798 { 799 enum rw_hint streamid = req->write_hint; 800 801 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE) 802 streamid = 0; 803 else { 804 streamid--; 805 if (WARN_ON_ONCE(streamid > ctrl->nr_streams)) 806 return; 807 808 *control |= NVME_RW_DTYPE_STREAMS; 809 *dsmgmt |= streamid << 16; 810 } 811 812 if (streamid < ARRAY_SIZE(req->q->write_hints)) 813 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9; 814 } 815 816 static inline void nvme_setup_flush(struct nvme_ns *ns, 817 struct nvme_command *cmnd) 818 { 819 memset(cmnd, 0, sizeof(*cmnd)); 820 cmnd->common.opcode = nvme_cmd_flush; 821 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 822 } 823 824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 825 struct nvme_command *cmnd) 826 { 827 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 828 struct nvme_dsm_range *range; 829 struct bio *bio; 830 831 /* 832 * Some devices do not consider the DSM 'Number of Ranges' field when 833 * determining how much data to DMA. Always allocate memory for maximum 834 * number of segments to prevent device reading beyond end of buffer. 835 */ 836 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 837 838 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 839 if (!range) { 840 /* 841 * If we fail allocation our range, fallback to the controller 842 * discard page. If that's also busy, it's safe to return 843 * busy, as we know we can make progress once that's freed. 844 */ 845 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 846 return BLK_STS_RESOURCE; 847 848 range = page_address(ns->ctrl->discard_page); 849 } 850 851 __rq_for_each_bio(bio, req) { 852 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector); 853 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; 854 855 if (n < segments) { 856 range[n].cattr = cpu_to_le32(0); 857 range[n].nlb = cpu_to_le32(nlb); 858 range[n].slba = cpu_to_le64(slba); 859 } 860 n++; 861 } 862 863 if (WARN_ON_ONCE(n != segments)) { 864 if (virt_to_page(range) == ns->ctrl->discard_page) 865 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 866 else 867 kfree(range); 868 return BLK_STS_IOERR; 869 } 870 871 memset(cmnd, 0, sizeof(*cmnd)); 872 cmnd->dsm.opcode = nvme_cmd_dsm; 873 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 874 cmnd->dsm.nr = cpu_to_le32(segments - 1); 875 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 876 877 req->special_vec.bv_page = virt_to_page(range); 878 req->special_vec.bv_offset = offset_in_page(range); 879 req->special_vec.bv_len = alloc_size; 880 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 881 882 return BLK_STS_OK; 883 } 884 885 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 886 struct request *req, struct nvme_command *cmnd) 887 { 888 memset(cmnd, 0, sizeof(*cmnd)); 889 890 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 891 return nvme_setup_discard(ns, req, cmnd); 892 893 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 894 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 895 cmnd->write_zeroes.slba = 896 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 897 cmnd->write_zeroes.length = 898 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 899 900 if (nvme_ns_has_pi(ns)) { 901 cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT); 902 903 switch (ns->pi_type) { 904 case NVME_NS_DPS_PI_TYPE1: 905 case NVME_NS_DPS_PI_TYPE2: 906 cmnd->write_zeroes.reftag = 907 cpu_to_le32(t10_pi_ref_tag(req)); 908 break; 909 } 910 } 911 912 return BLK_STS_OK; 913 } 914 915 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 916 struct request *req, struct nvme_command *cmnd, 917 enum nvme_opcode op) 918 { 919 struct nvme_ctrl *ctrl = ns->ctrl; 920 u16 control = 0; 921 u32 dsmgmt = 0; 922 923 if (req->cmd_flags & REQ_FUA) 924 control |= NVME_RW_FUA; 925 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 926 control |= NVME_RW_LR; 927 928 if (req->cmd_flags & REQ_RAHEAD) 929 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 930 931 cmnd->rw.opcode = op; 932 cmnd->rw.flags = 0; 933 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 934 cmnd->rw.rsvd2 = 0; 935 cmnd->rw.metadata = 0; 936 cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req))); 937 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); 938 cmnd->rw.reftag = 0; 939 cmnd->rw.apptag = 0; 940 cmnd->rw.appmask = 0; 941 942 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams) 943 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt); 944 945 if (ns->ms) { 946 /* 947 * If formated with metadata, the block layer always provides a 948 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 949 * we enable the PRACT bit for protection information or set the 950 * namespace capacity to zero to prevent any I/O. 951 */ 952 if (!blk_integrity_rq(req)) { 953 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns))) 954 return BLK_STS_NOTSUPP; 955 control |= NVME_RW_PRINFO_PRACT; 956 } 957 958 switch (ns->pi_type) { 959 case NVME_NS_DPS_PI_TYPE3: 960 control |= NVME_RW_PRINFO_PRCHK_GUARD; 961 break; 962 case NVME_NS_DPS_PI_TYPE1: 963 case NVME_NS_DPS_PI_TYPE2: 964 control |= NVME_RW_PRINFO_PRCHK_GUARD | 965 NVME_RW_PRINFO_PRCHK_REF; 966 if (op == nvme_cmd_zone_append) 967 control |= NVME_RW_APPEND_PIREMAP; 968 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 969 break; 970 } 971 } 972 973 cmnd->rw.control = cpu_to_le16(control); 974 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 975 return 0; 976 } 977 978 void nvme_cleanup_cmd(struct request *req) 979 { 980 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 981 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 982 983 if (req->special_vec.bv_page == ctrl->discard_page) 984 clear_bit_unlock(0, &ctrl->discard_page_busy); 985 else 986 kfree(bvec_virt(&req->special_vec)); 987 } 988 } 989 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 990 991 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 992 { 993 struct nvme_command *cmd = nvme_req(req)->cmd; 994 blk_status_t ret = BLK_STS_OK; 995 996 if (!(req->rq_flags & RQF_DONTPREP)) 997 nvme_clear_nvme_request(req); 998 999 switch (req_op(req)) { 1000 case REQ_OP_DRV_IN: 1001 case REQ_OP_DRV_OUT: 1002 /* these are setup prior to execution in nvme_init_request() */ 1003 break; 1004 case REQ_OP_FLUSH: 1005 nvme_setup_flush(ns, cmd); 1006 break; 1007 case REQ_OP_ZONE_RESET_ALL: 1008 case REQ_OP_ZONE_RESET: 1009 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1010 break; 1011 case REQ_OP_ZONE_OPEN: 1012 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1013 break; 1014 case REQ_OP_ZONE_CLOSE: 1015 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1016 break; 1017 case REQ_OP_ZONE_FINISH: 1018 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1019 break; 1020 case REQ_OP_WRITE_ZEROES: 1021 ret = nvme_setup_write_zeroes(ns, req, cmd); 1022 break; 1023 case REQ_OP_DISCARD: 1024 ret = nvme_setup_discard(ns, req, cmd); 1025 break; 1026 case REQ_OP_READ: 1027 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1028 break; 1029 case REQ_OP_WRITE: 1030 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1031 break; 1032 case REQ_OP_ZONE_APPEND: 1033 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1034 break; 1035 default: 1036 WARN_ON_ONCE(1); 1037 return BLK_STS_IOERR; 1038 } 1039 1040 cmd->common.command_id = nvme_cid(req); 1041 trace_nvme_setup_cmd(req, cmd); 1042 return ret; 1043 } 1044 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1045 1046 /* 1047 * Return values: 1048 * 0: success 1049 * >0: nvme controller's cqe status response 1050 * <0: kernel error in lieu of controller response 1051 */ 1052 static int nvme_execute_rq(struct gendisk *disk, struct request *rq, 1053 bool at_head) 1054 { 1055 blk_status_t status; 1056 1057 status = blk_execute_rq(rq, at_head); 1058 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1059 return -EINTR; 1060 if (nvme_req(rq)->status) 1061 return nvme_req(rq)->status; 1062 return blk_status_to_errno(status); 1063 } 1064 1065 /* 1066 * Returns 0 on success. If the result is negative, it's a Linux error code; 1067 * if the result is positive, it's an NVM Express status code 1068 */ 1069 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1070 union nvme_result *result, void *buffer, unsigned bufflen, 1071 unsigned timeout, int qid, int at_head, 1072 blk_mq_req_flags_t flags) 1073 { 1074 struct request *req; 1075 int ret; 1076 1077 if (qid == NVME_QID_ANY) 1078 req = nvme_alloc_request(q, cmd, flags); 1079 else 1080 req = nvme_alloc_request_qid(q, cmd, flags, qid); 1081 if (IS_ERR(req)) 1082 return PTR_ERR(req); 1083 1084 if (timeout) 1085 req->timeout = timeout; 1086 1087 if (buffer && bufflen) { 1088 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1089 if (ret) 1090 goto out; 1091 } 1092 1093 ret = nvme_execute_rq(NULL, req, at_head); 1094 if (result && ret >= 0) 1095 *result = nvme_req(req)->result; 1096 out: 1097 blk_mq_free_request(req); 1098 return ret; 1099 } 1100 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1101 1102 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1103 void *buffer, unsigned bufflen) 1104 { 1105 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, 1106 NVME_QID_ANY, 0, 0); 1107 } 1108 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1109 1110 static u32 nvme_known_admin_effects(u8 opcode) 1111 { 1112 switch (opcode) { 1113 case nvme_admin_format_nvm: 1114 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC | 1115 NVME_CMD_EFFECTS_CSE_MASK; 1116 case nvme_admin_sanitize_nvm: 1117 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK; 1118 default: 1119 break; 1120 } 1121 return 0; 1122 } 1123 1124 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1125 { 1126 u32 effects = 0; 1127 1128 if (ns) { 1129 if (ns->head->effects) 1130 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1131 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1132 dev_warn_once(ctrl->device, 1133 "IO command:%02x has unhandled effects:%08x\n", 1134 opcode, effects); 1135 return 0; 1136 } 1137 1138 if (ctrl->effects) 1139 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1140 effects |= nvme_known_admin_effects(opcode); 1141 1142 return effects; 1143 } 1144 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1145 1146 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1147 u8 opcode) 1148 { 1149 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1150 1151 /* 1152 * For simplicity, IO to all namespaces is quiesced even if the command 1153 * effects say only one namespace is affected. 1154 */ 1155 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1156 mutex_lock(&ctrl->scan_lock); 1157 mutex_lock(&ctrl->subsys->lock); 1158 nvme_mpath_start_freeze(ctrl->subsys); 1159 nvme_mpath_wait_freeze(ctrl->subsys); 1160 nvme_start_freeze(ctrl); 1161 nvme_wait_freeze(ctrl); 1162 } 1163 return effects; 1164 } 1165 1166 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects, 1167 struct nvme_command *cmd, int status) 1168 { 1169 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1170 nvme_unfreeze(ctrl); 1171 nvme_mpath_unfreeze(ctrl->subsys); 1172 mutex_unlock(&ctrl->subsys->lock); 1173 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL); 1174 mutex_unlock(&ctrl->scan_lock); 1175 } 1176 if (effects & NVME_CMD_EFFECTS_CCC) 1177 nvme_init_ctrl_finish(ctrl); 1178 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1179 nvme_queue_scan(ctrl); 1180 flush_work(&ctrl->scan_work); 1181 } 1182 1183 switch (cmd->common.opcode) { 1184 case nvme_admin_set_features: 1185 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1186 case NVME_FEAT_KATO: 1187 /* 1188 * Keep alive commands interval on the host should be 1189 * updated when KATO is modified by Set Features 1190 * commands. 1191 */ 1192 if (!status) 1193 nvme_update_keep_alive(ctrl, cmd); 1194 break; 1195 default: 1196 break; 1197 } 1198 break; 1199 default: 1200 break; 1201 } 1202 } 1203 1204 int nvme_execute_passthru_rq(struct request *rq) 1205 { 1206 struct nvme_command *cmd = nvme_req(rq)->cmd; 1207 struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl; 1208 struct nvme_ns *ns = rq->q->queuedata; 1209 struct gendisk *disk = ns ? ns->disk : NULL; 1210 u32 effects; 1211 int ret; 1212 1213 effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode); 1214 ret = nvme_execute_rq(disk, rq, false); 1215 if (effects) /* nothing to be done for zero cmd effects */ 1216 nvme_passthru_end(ctrl, effects, cmd, ret); 1217 1218 return ret; 1219 } 1220 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU); 1221 1222 /* 1223 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1224 * 1225 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1226 * accounting for transport roundtrip times [..]. 1227 */ 1228 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1229 { 1230 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2); 1231 } 1232 1233 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) 1234 { 1235 struct nvme_ctrl *ctrl = rq->end_io_data; 1236 unsigned long flags; 1237 bool startka = false; 1238 1239 blk_mq_free_request(rq); 1240 1241 if (status) { 1242 dev_err(ctrl->device, 1243 "failed nvme_keep_alive_end_io error=%d\n", 1244 status); 1245 return; 1246 } 1247 1248 ctrl->comp_seen = false; 1249 spin_lock_irqsave(&ctrl->lock, flags); 1250 if (ctrl->state == NVME_CTRL_LIVE || 1251 ctrl->state == NVME_CTRL_CONNECTING) 1252 startka = true; 1253 spin_unlock_irqrestore(&ctrl->lock, flags); 1254 if (startka) 1255 nvme_queue_keep_alive_work(ctrl); 1256 } 1257 1258 static void nvme_keep_alive_work(struct work_struct *work) 1259 { 1260 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1261 struct nvme_ctrl, ka_work); 1262 bool comp_seen = ctrl->comp_seen; 1263 struct request *rq; 1264 1265 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1266 dev_dbg(ctrl->device, 1267 "reschedule traffic based keep-alive timer\n"); 1268 ctrl->comp_seen = false; 1269 nvme_queue_keep_alive_work(ctrl); 1270 return; 1271 } 1272 1273 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, 1274 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1275 if (IS_ERR(rq)) { 1276 /* allocation failure, reset the controller */ 1277 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1278 nvme_reset_ctrl(ctrl); 1279 return; 1280 } 1281 1282 rq->timeout = ctrl->kato * HZ; 1283 rq->end_io_data = ctrl; 1284 blk_execute_rq_nowait(rq, false, nvme_keep_alive_end_io); 1285 } 1286 1287 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1288 { 1289 if (unlikely(ctrl->kato == 0)) 1290 return; 1291 1292 nvme_queue_keep_alive_work(ctrl); 1293 } 1294 1295 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1296 { 1297 if (unlikely(ctrl->kato == 0)) 1298 return; 1299 1300 cancel_delayed_work_sync(&ctrl->ka_work); 1301 } 1302 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1303 1304 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1305 struct nvme_command *cmd) 1306 { 1307 unsigned int new_kato = 1308 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1309 1310 dev_info(ctrl->device, 1311 "keep alive interval updated from %u ms to %u ms\n", 1312 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1313 1314 nvme_stop_keep_alive(ctrl); 1315 ctrl->kato = new_kato; 1316 nvme_start_keep_alive(ctrl); 1317 } 1318 1319 /* 1320 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1321 * flag, thus sending any new CNS opcodes has a big chance of not working. 1322 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1323 * (but not for any later version). 1324 */ 1325 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1326 { 1327 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1328 return ctrl->vs < NVME_VS(1, 2, 0); 1329 return ctrl->vs < NVME_VS(1, 1, 0); 1330 } 1331 1332 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1333 { 1334 struct nvme_command c = { }; 1335 int error; 1336 1337 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1338 c.identify.opcode = nvme_admin_identify; 1339 c.identify.cns = NVME_ID_CNS_CTRL; 1340 1341 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1342 if (!*id) 1343 return -ENOMEM; 1344 1345 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1346 sizeof(struct nvme_id_ctrl)); 1347 if (error) 1348 kfree(*id); 1349 return error; 1350 } 1351 1352 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1353 struct nvme_ns_id_desc *cur, bool *csi_seen) 1354 { 1355 const char *warn_str = "ctrl returned bogus length:"; 1356 void *data = cur; 1357 1358 switch (cur->nidt) { 1359 case NVME_NIDT_EUI64: 1360 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1361 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1362 warn_str, cur->nidl); 1363 return -1; 1364 } 1365 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1366 return NVME_NIDT_EUI64_LEN; 1367 case NVME_NIDT_NGUID: 1368 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1369 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1370 warn_str, cur->nidl); 1371 return -1; 1372 } 1373 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1374 return NVME_NIDT_NGUID_LEN; 1375 case NVME_NIDT_UUID: 1376 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1377 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1378 warn_str, cur->nidl); 1379 return -1; 1380 } 1381 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1382 return NVME_NIDT_UUID_LEN; 1383 case NVME_NIDT_CSI: 1384 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1385 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1386 warn_str, cur->nidl); 1387 return -1; 1388 } 1389 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1390 *csi_seen = true; 1391 return NVME_NIDT_CSI_LEN; 1392 default: 1393 /* Skip unknown types */ 1394 return cur->nidl; 1395 } 1396 } 1397 1398 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid, 1399 struct nvme_ns_ids *ids) 1400 { 1401 struct nvme_command c = { }; 1402 bool csi_seen = false; 1403 int status, pos, len; 1404 void *data; 1405 1406 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1407 return 0; 1408 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1409 return 0; 1410 1411 c.identify.opcode = nvme_admin_identify; 1412 c.identify.nsid = cpu_to_le32(nsid); 1413 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1414 1415 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1416 if (!data) 1417 return -ENOMEM; 1418 1419 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1420 NVME_IDENTIFY_DATA_SIZE); 1421 if (status) { 1422 dev_warn(ctrl->device, 1423 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1424 nsid, status); 1425 goto free_data; 1426 } 1427 1428 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1429 struct nvme_ns_id_desc *cur = data + pos; 1430 1431 if (cur->nidl == 0) 1432 break; 1433 1434 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen); 1435 if (len < 0) 1436 break; 1437 1438 len += sizeof(*cur); 1439 } 1440 1441 if (nvme_multi_css(ctrl) && !csi_seen) { 1442 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1443 nsid); 1444 status = -EINVAL; 1445 } 1446 1447 free_data: 1448 kfree(data); 1449 return status; 1450 } 1451 1452 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1453 struct nvme_ns_ids *ids, struct nvme_id_ns **id) 1454 { 1455 struct nvme_command c = { }; 1456 int error; 1457 1458 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1459 c.identify.opcode = nvme_admin_identify; 1460 c.identify.nsid = cpu_to_le32(nsid); 1461 c.identify.cns = NVME_ID_CNS_NS; 1462 1463 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1464 if (!*id) 1465 return -ENOMEM; 1466 1467 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1468 if (error) { 1469 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1470 goto out_free_id; 1471 } 1472 1473 error = NVME_SC_INVALID_NS | NVME_SC_DNR; 1474 if ((*id)->ncap == 0) /* namespace not allocated or attached */ 1475 goto out_free_id; 1476 1477 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1478 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1479 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64)); 1480 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1481 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1482 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid)); 1483 1484 return 0; 1485 1486 out_free_id: 1487 kfree(*id); 1488 return error; 1489 } 1490 1491 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1492 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1493 { 1494 union nvme_result res = { 0 }; 1495 struct nvme_command c = { }; 1496 int ret; 1497 1498 c.features.opcode = op; 1499 c.features.fid = cpu_to_le32(fid); 1500 c.features.dword11 = cpu_to_le32(dword11); 1501 1502 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1503 buffer, buflen, 0, NVME_QID_ANY, 0, 0); 1504 if (ret >= 0 && result) 1505 *result = le32_to_cpu(res.u32); 1506 return ret; 1507 } 1508 1509 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1510 unsigned int dword11, void *buffer, size_t buflen, 1511 u32 *result) 1512 { 1513 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1514 buflen, result); 1515 } 1516 EXPORT_SYMBOL_GPL(nvme_set_features); 1517 1518 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1519 unsigned int dword11, void *buffer, size_t buflen, 1520 u32 *result) 1521 { 1522 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1523 buflen, result); 1524 } 1525 EXPORT_SYMBOL_GPL(nvme_get_features); 1526 1527 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1528 { 1529 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1530 u32 result; 1531 int status, nr_io_queues; 1532 1533 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1534 &result); 1535 if (status < 0) 1536 return status; 1537 1538 /* 1539 * Degraded controllers might return an error when setting the queue 1540 * count. We still want to be able to bring them online and offer 1541 * access to the admin queue, as that might be only way to fix them up. 1542 */ 1543 if (status > 0) { 1544 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1545 *count = 0; 1546 } else { 1547 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1548 *count = min(*count, nr_io_queues); 1549 } 1550 1551 return 0; 1552 } 1553 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1554 1555 #define NVME_AEN_SUPPORTED \ 1556 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1557 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1558 1559 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1560 { 1561 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1562 int status; 1563 1564 if (!supported_aens) 1565 return; 1566 1567 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1568 NULL, 0, &result); 1569 if (status) 1570 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1571 supported_aens); 1572 1573 queue_work(nvme_wq, &ctrl->async_event_work); 1574 } 1575 1576 static int nvme_ns_open(struct nvme_ns *ns) 1577 { 1578 1579 /* should never be called due to GENHD_FL_HIDDEN */ 1580 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1581 goto fail; 1582 if (!nvme_get_ns(ns)) 1583 goto fail; 1584 if (!try_module_get(ns->ctrl->ops->module)) 1585 goto fail_put_ns; 1586 1587 return 0; 1588 1589 fail_put_ns: 1590 nvme_put_ns(ns); 1591 fail: 1592 return -ENXIO; 1593 } 1594 1595 static void nvme_ns_release(struct nvme_ns *ns) 1596 { 1597 1598 module_put(ns->ctrl->ops->module); 1599 nvme_put_ns(ns); 1600 } 1601 1602 static int nvme_open(struct block_device *bdev, fmode_t mode) 1603 { 1604 return nvme_ns_open(bdev->bd_disk->private_data); 1605 } 1606 1607 static void nvme_release(struct gendisk *disk, fmode_t mode) 1608 { 1609 nvme_ns_release(disk->private_data); 1610 } 1611 1612 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1613 { 1614 /* some standard values */ 1615 geo->heads = 1 << 6; 1616 geo->sectors = 1 << 5; 1617 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1618 return 0; 1619 } 1620 1621 #ifdef CONFIG_BLK_DEV_INTEGRITY 1622 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1623 u32 max_integrity_segments) 1624 { 1625 struct blk_integrity integrity = { }; 1626 1627 switch (pi_type) { 1628 case NVME_NS_DPS_PI_TYPE3: 1629 integrity.profile = &t10_pi_type3_crc; 1630 integrity.tag_size = sizeof(u16) + sizeof(u32); 1631 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1632 break; 1633 case NVME_NS_DPS_PI_TYPE1: 1634 case NVME_NS_DPS_PI_TYPE2: 1635 integrity.profile = &t10_pi_type1_crc; 1636 integrity.tag_size = sizeof(u16); 1637 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1638 break; 1639 default: 1640 integrity.profile = NULL; 1641 break; 1642 } 1643 integrity.tuple_size = ms; 1644 blk_integrity_register(disk, &integrity); 1645 blk_queue_max_integrity_segments(disk->queue, max_integrity_segments); 1646 } 1647 #else 1648 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type, 1649 u32 max_integrity_segments) 1650 { 1651 } 1652 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1653 1654 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns) 1655 { 1656 struct nvme_ctrl *ctrl = ns->ctrl; 1657 struct request_queue *queue = disk->queue; 1658 u32 size = queue_logical_block_size(queue); 1659 1660 if (ctrl->max_discard_sectors == 0) { 1661 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue); 1662 return; 1663 } 1664 1665 if (ctrl->nr_streams && ns->sws && ns->sgs) 1666 size *= ns->sws * ns->sgs; 1667 1668 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < 1669 NVME_DSM_MAX_RANGES); 1670 1671 queue->limits.discard_alignment = 0; 1672 queue->limits.discard_granularity = size; 1673 1674 /* If discard is already enabled, don't reset queue limits */ 1675 if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue)) 1676 return; 1677 1678 blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors); 1679 blk_queue_max_discard_segments(queue, ctrl->max_discard_segments); 1680 1681 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1682 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX); 1683 } 1684 1685 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids) 1686 { 1687 return !uuid_is_null(&ids->uuid) || 1688 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) || 1689 memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 1690 } 1691 1692 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1693 { 1694 return uuid_equal(&a->uuid, &b->uuid) && 1695 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1696 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1697 a->csi == b->csi; 1698 } 1699 1700 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns, 1701 u32 *phys_bs, u32 *io_opt) 1702 { 1703 struct streams_directive_params s; 1704 int ret; 1705 1706 if (!ctrl->nr_streams) 1707 return 0; 1708 1709 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id); 1710 if (ret) 1711 return ret; 1712 1713 ns->sws = le32_to_cpu(s.sws); 1714 ns->sgs = le16_to_cpu(s.sgs); 1715 1716 if (ns->sws) { 1717 *phys_bs = ns->sws * (1 << ns->lba_shift); 1718 if (ns->sgs) 1719 *io_opt = *phys_bs * ns->sgs; 1720 } 1721 1722 return 0; 1723 } 1724 1725 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id) 1726 { 1727 struct nvme_ctrl *ctrl = ns->ctrl; 1728 1729 /* 1730 * The PI implementation requires the metadata size to be equal to the 1731 * t10 pi tuple size. 1732 */ 1733 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); 1734 if (ns->ms == sizeof(struct t10_pi_tuple)) 1735 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1736 else 1737 ns->pi_type = 0; 1738 1739 ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1740 if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1741 return 0; 1742 if (ctrl->ops->flags & NVME_F_FABRICS) { 1743 /* 1744 * The NVMe over Fabrics specification only supports metadata as 1745 * part of the extended data LBA. We rely on HCA/HBA support to 1746 * remap the separate metadata buffer from the block layer. 1747 */ 1748 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1749 return -EINVAL; 1750 1751 ns->features |= NVME_NS_EXT_LBAS; 1752 1753 /* 1754 * The current fabrics transport drivers support namespace 1755 * metadata formats only if nvme_ns_has_pi() returns true. 1756 * Suppress support for all other formats so the namespace will 1757 * have a 0 capacity and not be usable through the block stack. 1758 * 1759 * Note, this check will need to be modified if any drivers 1760 * gain the ability to use other metadata formats. 1761 */ 1762 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns)) 1763 ns->features |= NVME_NS_METADATA_SUPPORTED; 1764 } else { 1765 /* 1766 * For PCIe controllers, we can't easily remap the separate 1767 * metadata buffer from the block layer and thus require a 1768 * separate metadata buffer for block layer metadata/PI support. 1769 * We allow extended LBAs for the passthrough interface, though. 1770 */ 1771 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1772 ns->features |= NVME_NS_EXT_LBAS; 1773 else 1774 ns->features |= NVME_NS_METADATA_SUPPORTED; 1775 } 1776 1777 return 0; 1778 } 1779 1780 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, 1781 struct request_queue *q) 1782 { 1783 bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT; 1784 1785 if (ctrl->max_hw_sectors) { 1786 u32 max_segments = 1787 (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1; 1788 1789 max_segments = min_not_zero(max_segments, ctrl->max_segments); 1790 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); 1791 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); 1792 } 1793 blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1); 1794 blk_queue_dma_alignment(q, 7); 1795 blk_queue_write_cache(q, vwc, vwc); 1796 } 1797 1798 static void nvme_update_disk_info(struct gendisk *disk, 1799 struct nvme_ns *ns, struct nvme_id_ns *id) 1800 { 1801 sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze)); 1802 unsigned short bs = 1 << ns->lba_shift; 1803 u32 atomic_bs, phys_bs, io_opt = 0; 1804 1805 /* 1806 * The block layer can't support LBA sizes larger than the page size 1807 * yet, so catch this early and don't allow block I/O. 1808 */ 1809 if (ns->lba_shift > PAGE_SHIFT) { 1810 capacity = 0; 1811 bs = (1 << 9); 1812 } 1813 1814 blk_integrity_unregister(disk); 1815 1816 atomic_bs = phys_bs = bs; 1817 nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt); 1818 if (id->nabo == 0) { 1819 /* 1820 * Bit 1 indicates whether NAWUPF is defined for this namespace 1821 * and whether it should be used instead of AWUPF. If NAWUPF == 1822 * 0 then AWUPF must be used instead. 1823 */ 1824 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1825 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1826 else 1827 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1828 } 1829 1830 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1831 /* NPWG = Namespace Preferred Write Granularity */ 1832 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1833 /* NOWS = Namespace Optimal Write Size */ 1834 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1835 } 1836 1837 blk_queue_logical_block_size(disk->queue, bs); 1838 /* 1839 * Linux filesystems assume writing a single physical block is 1840 * an atomic operation. Hence limit the physical block size to the 1841 * value of the Atomic Write Unit Power Fail parameter. 1842 */ 1843 blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs)); 1844 blk_queue_io_min(disk->queue, phys_bs); 1845 blk_queue_io_opt(disk->queue, io_opt); 1846 1847 /* 1848 * Register a metadata profile for PI, or the plain non-integrity NVMe 1849 * metadata masquerading as Type 0 if supported, otherwise reject block 1850 * I/O to namespaces with metadata except when the namespace supports 1851 * PI, as it can strip/insert in that case. 1852 */ 1853 if (ns->ms) { 1854 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && 1855 (ns->features & NVME_NS_METADATA_SUPPORTED)) 1856 nvme_init_integrity(disk, ns->ms, ns->pi_type, 1857 ns->ctrl->max_integrity_segments); 1858 else if (!nvme_ns_has_pi(ns)) 1859 capacity = 0; 1860 } 1861 1862 set_capacity_and_notify(disk, capacity); 1863 1864 nvme_config_discard(disk, ns); 1865 blk_queue_max_write_zeroes_sectors(disk->queue, 1866 ns->ctrl->max_zeroes_sectors); 1867 1868 set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) || 1869 test_bit(NVME_NS_FORCE_RO, &ns->flags)); 1870 } 1871 1872 static inline bool nvme_first_scan(struct gendisk *disk) 1873 { 1874 /* nvme_alloc_ns() scans the disk prior to adding it */ 1875 return !disk_live(disk); 1876 } 1877 1878 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id) 1879 { 1880 struct nvme_ctrl *ctrl = ns->ctrl; 1881 u32 iob; 1882 1883 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 1884 is_power_of_2(ctrl->max_hw_sectors)) 1885 iob = ctrl->max_hw_sectors; 1886 else 1887 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob)); 1888 1889 if (!iob) 1890 return; 1891 1892 if (!is_power_of_2(iob)) { 1893 if (nvme_first_scan(ns->disk)) 1894 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 1895 ns->disk->disk_name, iob); 1896 return; 1897 } 1898 1899 if (blk_queue_is_zoned(ns->disk->queue)) { 1900 if (nvme_first_scan(ns->disk)) 1901 pr_warn("%s: ignoring zoned namespace IO boundary\n", 1902 ns->disk->disk_name); 1903 return; 1904 } 1905 1906 blk_queue_chunk_sectors(ns->queue, iob); 1907 } 1908 1909 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id) 1910 { 1911 unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK; 1912 int ret; 1913 1914 blk_mq_freeze_queue(ns->disk->queue); 1915 ns->lba_shift = id->lbaf[lbaf].ds; 1916 nvme_set_queue_limits(ns->ctrl, ns->queue); 1917 1918 ret = nvme_configure_metadata(ns, id); 1919 if (ret) 1920 goto out_unfreeze; 1921 nvme_set_chunk_sectors(ns, id); 1922 nvme_update_disk_info(ns->disk, ns, id); 1923 1924 if (ns->head->ids.csi == NVME_CSI_ZNS) { 1925 ret = nvme_update_zone_info(ns, lbaf); 1926 if (ret) 1927 goto out_unfreeze; 1928 } 1929 1930 set_bit(NVME_NS_READY, &ns->flags); 1931 blk_mq_unfreeze_queue(ns->disk->queue); 1932 1933 if (blk_queue_is_zoned(ns->queue)) { 1934 ret = nvme_revalidate_zones(ns); 1935 if (ret && !nvme_first_scan(ns->disk)) 1936 goto out; 1937 } 1938 1939 if (nvme_ns_head_multipath(ns->head)) { 1940 blk_mq_freeze_queue(ns->head->disk->queue); 1941 nvme_update_disk_info(ns->head->disk, ns, id); 1942 nvme_mpath_revalidate_paths(ns); 1943 blk_stack_limits(&ns->head->disk->queue->limits, 1944 &ns->queue->limits, 0); 1945 disk_update_readahead(ns->head->disk); 1946 blk_mq_unfreeze_queue(ns->head->disk->queue); 1947 } 1948 return 0; 1949 1950 out_unfreeze: 1951 blk_mq_unfreeze_queue(ns->disk->queue); 1952 out: 1953 /* 1954 * If probing fails due an unsupported feature, hide the block device, 1955 * but still allow other access. 1956 */ 1957 if (ret == -ENODEV) { 1958 ns->disk->flags |= GENHD_FL_HIDDEN; 1959 ret = 0; 1960 } 1961 return ret; 1962 } 1963 1964 static char nvme_pr_type(enum pr_type type) 1965 { 1966 switch (type) { 1967 case PR_WRITE_EXCLUSIVE: 1968 return 1; 1969 case PR_EXCLUSIVE_ACCESS: 1970 return 2; 1971 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1972 return 3; 1973 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1974 return 4; 1975 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1976 return 5; 1977 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1978 return 6; 1979 default: 1980 return 0; 1981 } 1982 }; 1983 1984 static int nvme_send_ns_head_pr_command(struct block_device *bdev, 1985 struct nvme_command *c, u8 data[16]) 1986 { 1987 struct nvme_ns_head *head = bdev->bd_disk->private_data; 1988 int srcu_idx = srcu_read_lock(&head->srcu); 1989 struct nvme_ns *ns = nvme_find_path(head); 1990 int ret = -EWOULDBLOCK; 1991 1992 if (ns) { 1993 c->common.nsid = cpu_to_le32(ns->head->ns_id); 1994 ret = nvme_submit_sync_cmd(ns->queue, c, data, 16); 1995 } 1996 srcu_read_unlock(&head->srcu, srcu_idx); 1997 return ret; 1998 } 1999 2000 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c, 2001 u8 data[16]) 2002 { 2003 c->common.nsid = cpu_to_le32(ns->head->ns_id); 2004 return nvme_submit_sync_cmd(ns->queue, c, data, 16); 2005 } 2006 2007 static int nvme_pr_command(struct block_device *bdev, u32 cdw10, 2008 u64 key, u64 sa_key, u8 op) 2009 { 2010 struct nvme_command c = { }; 2011 u8 data[16] = { 0, }; 2012 2013 put_unaligned_le64(key, &data[0]); 2014 put_unaligned_le64(sa_key, &data[8]); 2015 2016 c.common.opcode = op; 2017 c.common.cdw10 = cpu_to_le32(cdw10); 2018 2019 if (IS_ENABLED(CONFIG_NVME_MULTIPATH) && 2020 bdev->bd_disk->fops == &nvme_ns_head_ops) 2021 return nvme_send_ns_head_pr_command(bdev, &c, data); 2022 return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data); 2023 } 2024 2025 static int nvme_pr_register(struct block_device *bdev, u64 old, 2026 u64 new, unsigned flags) 2027 { 2028 u32 cdw10; 2029 2030 if (flags & ~PR_FL_IGNORE_KEY) 2031 return -EOPNOTSUPP; 2032 2033 cdw10 = old ? 2 : 0; 2034 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; 2035 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ 2036 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); 2037 } 2038 2039 static int nvme_pr_reserve(struct block_device *bdev, u64 key, 2040 enum pr_type type, unsigned flags) 2041 { 2042 u32 cdw10; 2043 2044 if (flags & ~PR_FL_IGNORE_KEY) 2045 return -EOPNOTSUPP; 2046 2047 cdw10 = nvme_pr_type(type) << 8; 2048 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); 2049 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); 2050 } 2051 2052 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, 2053 enum pr_type type, bool abort) 2054 { 2055 u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1); 2056 2057 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); 2058 } 2059 2060 static int nvme_pr_clear(struct block_device *bdev, u64 key) 2061 { 2062 u32 cdw10 = 1 | (key ? 1 << 3 : 0); 2063 2064 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); 2065 } 2066 2067 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 2068 { 2069 u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0); 2070 2071 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); 2072 } 2073 2074 const struct pr_ops nvme_pr_ops = { 2075 .pr_register = nvme_pr_register, 2076 .pr_reserve = nvme_pr_reserve, 2077 .pr_release = nvme_pr_release, 2078 .pr_preempt = nvme_pr_preempt, 2079 .pr_clear = nvme_pr_clear, 2080 }; 2081 2082 #ifdef CONFIG_BLK_SED_OPAL 2083 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2084 bool send) 2085 { 2086 struct nvme_ctrl *ctrl = data; 2087 struct nvme_command cmd = { }; 2088 2089 if (send) 2090 cmd.common.opcode = nvme_admin_security_send; 2091 else 2092 cmd.common.opcode = nvme_admin_security_recv; 2093 cmd.common.nsid = 0; 2094 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2095 cmd.common.cdw11 = cpu_to_le32(len); 2096 2097 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0, 2098 NVME_QID_ANY, 1, 0); 2099 } 2100 EXPORT_SYMBOL_GPL(nvme_sec_submit); 2101 #endif /* CONFIG_BLK_SED_OPAL */ 2102 2103 #ifdef CONFIG_BLK_DEV_ZONED 2104 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2105 unsigned int nr_zones, report_zones_cb cb, void *data) 2106 { 2107 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2108 data); 2109 } 2110 #else 2111 #define nvme_report_zones NULL 2112 #endif /* CONFIG_BLK_DEV_ZONED */ 2113 2114 static const struct block_device_operations nvme_bdev_ops = { 2115 .owner = THIS_MODULE, 2116 .ioctl = nvme_ioctl, 2117 .open = nvme_open, 2118 .release = nvme_release, 2119 .getgeo = nvme_getgeo, 2120 .report_zones = nvme_report_zones, 2121 .pr_ops = &nvme_pr_ops, 2122 }; 2123 2124 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) 2125 { 2126 unsigned long timeout = 2127 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; 2128 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; 2129 int ret; 2130 2131 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2132 if (csts == ~0) 2133 return -ENODEV; 2134 if ((csts & NVME_CSTS_RDY) == bit) 2135 break; 2136 2137 usleep_range(1000, 2000); 2138 if (fatal_signal_pending(current)) 2139 return -EINTR; 2140 if (time_after(jiffies, timeout)) { 2141 dev_err(ctrl->device, 2142 "Device not ready; aborting %s, CSTS=0x%x\n", 2143 enabled ? "initialisation" : "reset", csts); 2144 return -ENODEV; 2145 } 2146 } 2147 2148 return ret; 2149 } 2150 2151 /* 2152 * If the device has been passed off to us in an enabled state, just clear 2153 * the enabled bit. The spec says we should set the 'shutdown notification 2154 * bits', but doing so may cause the device to complete commands to the 2155 * admin queue ... and we don't know what memory that might be pointing at! 2156 */ 2157 int nvme_disable_ctrl(struct nvme_ctrl *ctrl) 2158 { 2159 int ret; 2160 2161 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2162 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2163 2164 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2165 if (ret) 2166 return ret; 2167 2168 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2169 msleep(NVME_QUIRK_DELAY_AMOUNT); 2170 2171 return nvme_wait_ready(ctrl, ctrl->cap, false); 2172 } 2173 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2174 2175 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2176 { 2177 unsigned dev_page_min; 2178 int ret; 2179 2180 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2181 if (ret) { 2182 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2183 return ret; 2184 } 2185 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2186 2187 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2188 dev_err(ctrl->device, 2189 "Minimum device page size %u too large for host (%u)\n", 2190 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2191 return -ENODEV; 2192 } 2193 2194 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2195 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2196 else 2197 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2198 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2199 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2200 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2201 ctrl->ctrl_config |= NVME_CC_ENABLE; 2202 2203 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2204 if (ret) 2205 return ret; 2206 return nvme_wait_ready(ctrl, ctrl->cap, true); 2207 } 2208 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2209 2210 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) 2211 { 2212 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ); 2213 u32 csts; 2214 int ret; 2215 2216 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2217 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2218 2219 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2220 if (ret) 2221 return ret; 2222 2223 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2224 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) 2225 break; 2226 2227 msleep(100); 2228 if (fatal_signal_pending(current)) 2229 return -EINTR; 2230 if (time_after(jiffies, timeout)) { 2231 dev_err(ctrl->device, 2232 "Device shutdown incomplete; abort shutdown\n"); 2233 return -ENODEV; 2234 } 2235 } 2236 2237 return ret; 2238 } 2239 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); 2240 2241 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2242 { 2243 __le64 ts; 2244 int ret; 2245 2246 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2247 return 0; 2248 2249 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2250 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2251 NULL); 2252 if (ret) 2253 dev_warn_once(ctrl->device, 2254 "could not set timestamp (%d)\n", ret); 2255 return ret; 2256 } 2257 2258 static int nvme_configure_acre(struct nvme_ctrl *ctrl) 2259 { 2260 struct nvme_feat_host_behavior *host; 2261 int ret; 2262 2263 /* Don't bother enabling the feature if retry delay is not reported */ 2264 if (!ctrl->crdt[0]) 2265 return 0; 2266 2267 host = kzalloc(sizeof(*host), GFP_KERNEL); 2268 if (!host) 2269 return 0; 2270 2271 host->acre = NVME_ENABLE_ACRE; 2272 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2273 host, sizeof(*host), NULL); 2274 kfree(host); 2275 return ret; 2276 } 2277 2278 /* 2279 * The function checks whether the given total (exlat + enlat) latency of 2280 * a power state allows the latter to be used as an APST transition target. 2281 * It does so by comparing the latency to the primary and secondary latency 2282 * tolerances defined by module params. If there's a match, the corresponding 2283 * timeout value is returned and the matching tolerance index (1 or 2) is 2284 * reported. 2285 */ 2286 static bool nvme_apst_get_transition_time(u64 total_latency, 2287 u64 *transition_time, unsigned *last_index) 2288 { 2289 if (total_latency <= apst_primary_latency_tol_us) { 2290 if (*last_index == 1) 2291 return false; 2292 *last_index = 1; 2293 *transition_time = apst_primary_timeout_ms; 2294 return true; 2295 } 2296 if (apst_secondary_timeout_ms && 2297 total_latency <= apst_secondary_latency_tol_us) { 2298 if (*last_index <= 2) 2299 return false; 2300 *last_index = 2; 2301 *transition_time = apst_secondary_timeout_ms; 2302 return true; 2303 } 2304 return false; 2305 } 2306 2307 /* 2308 * APST (Autonomous Power State Transition) lets us program a table of power 2309 * state transitions that the controller will perform automatically. 2310 * 2311 * Depending on module params, one of the two supported techniques will be used: 2312 * 2313 * - If the parameters provide explicit timeouts and tolerances, they will be 2314 * used to build a table with up to 2 non-operational states to transition to. 2315 * The default parameter values were selected based on the values used by 2316 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2317 * regeneration of the APST table in the event of switching between external 2318 * and battery power, the timeouts and tolerances reflect a compromise 2319 * between values used by Microsoft for AC and battery scenarios. 2320 * - If not, we'll configure the table with a simple heuristic: we are willing 2321 * to spend at most 2% of the time transitioning between power states. 2322 * Therefore, when running in any given state, we will enter the next 2323 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2324 * microseconds, as long as that state's exit latency is under the requested 2325 * maximum latency. 2326 * 2327 * We will not autonomously enter any non-operational state for which the total 2328 * latency exceeds ps_max_latency_us. 2329 * 2330 * Users can set ps_max_latency_us to zero to turn off APST. 2331 */ 2332 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2333 { 2334 struct nvme_feat_auto_pst *table; 2335 unsigned apste = 0; 2336 u64 max_lat_us = 0; 2337 __le64 target = 0; 2338 int max_ps = -1; 2339 int state; 2340 int ret; 2341 unsigned last_lt_index = UINT_MAX; 2342 2343 /* 2344 * If APST isn't supported or if we haven't been initialized yet, 2345 * then don't do anything. 2346 */ 2347 if (!ctrl->apsta) 2348 return 0; 2349 2350 if (ctrl->npss > 31) { 2351 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2352 return 0; 2353 } 2354 2355 table = kzalloc(sizeof(*table), GFP_KERNEL); 2356 if (!table) 2357 return 0; 2358 2359 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2360 /* Turn off APST. */ 2361 dev_dbg(ctrl->device, "APST disabled\n"); 2362 goto done; 2363 } 2364 2365 /* 2366 * Walk through all states from lowest- to highest-power. 2367 * According to the spec, lower-numbered states use more power. NPSS, 2368 * despite the name, is the index of the lowest-power state, not the 2369 * number of states. 2370 */ 2371 for (state = (int)ctrl->npss; state >= 0; state--) { 2372 u64 total_latency_us, exit_latency_us, transition_ms; 2373 2374 if (target) 2375 table->entries[state] = target; 2376 2377 /* 2378 * Don't allow transitions to the deepest state if it's quirked 2379 * off. 2380 */ 2381 if (state == ctrl->npss && 2382 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2383 continue; 2384 2385 /* 2386 * Is this state a useful non-operational state for higher-power 2387 * states to autonomously transition to? 2388 */ 2389 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2390 continue; 2391 2392 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2393 if (exit_latency_us > ctrl->ps_max_latency_us) 2394 continue; 2395 2396 total_latency_us = exit_latency_us + 2397 le32_to_cpu(ctrl->psd[state].entry_lat); 2398 2399 /* 2400 * This state is good. It can be used as the APST idle target 2401 * for higher power states. 2402 */ 2403 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2404 if (!nvme_apst_get_transition_time(total_latency_us, 2405 &transition_ms, &last_lt_index)) 2406 continue; 2407 } else { 2408 transition_ms = total_latency_us + 19; 2409 do_div(transition_ms, 20); 2410 if (transition_ms > (1 << 24) - 1) 2411 transition_ms = (1 << 24) - 1; 2412 } 2413 2414 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2415 if (max_ps == -1) 2416 max_ps = state; 2417 if (total_latency_us > max_lat_us) 2418 max_lat_us = total_latency_us; 2419 } 2420 2421 if (max_ps == -1) 2422 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2423 else 2424 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2425 max_ps, max_lat_us, (int)sizeof(*table), table); 2426 apste = 1; 2427 2428 done: 2429 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2430 table, sizeof(*table), NULL); 2431 if (ret) 2432 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2433 kfree(table); 2434 return ret; 2435 } 2436 2437 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2438 { 2439 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2440 u64 latency; 2441 2442 switch (val) { 2443 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2444 case PM_QOS_LATENCY_ANY: 2445 latency = U64_MAX; 2446 break; 2447 2448 default: 2449 latency = val; 2450 } 2451 2452 if (ctrl->ps_max_latency_us != latency) { 2453 ctrl->ps_max_latency_us = latency; 2454 if (ctrl->state == NVME_CTRL_LIVE) 2455 nvme_configure_apst(ctrl); 2456 } 2457 } 2458 2459 struct nvme_core_quirk_entry { 2460 /* 2461 * NVMe model and firmware strings are padded with spaces. For 2462 * simplicity, strings in the quirk table are padded with NULLs 2463 * instead. 2464 */ 2465 u16 vid; 2466 const char *mn; 2467 const char *fr; 2468 unsigned long quirks; 2469 }; 2470 2471 static const struct nvme_core_quirk_entry core_quirks[] = { 2472 { 2473 /* 2474 * This Toshiba device seems to die using any APST states. See: 2475 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2476 */ 2477 .vid = 0x1179, 2478 .mn = "THNSF5256GPUK TOSHIBA", 2479 .quirks = NVME_QUIRK_NO_APST, 2480 }, 2481 { 2482 /* 2483 * This LiteON CL1-3D*-Q11 firmware version has a race 2484 * condition associated with actions related to suspend to idle 2485 * LiteON has resolved the problem in future firmware 2486 */ 2487 .vid = 0x14a4, 2488 .fr = "22301111", 2489 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2490 }, 2491 { 2492 /* 2493 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2494 * aborts I/O during any load, but more easily reproducible 2495 * with discards (fstrim). 2496 * 2497 * The device is left in a state where it is also not possible 2498 * to use "nvme set-feature" to disable APST, but booting with 2499 * nvme_core.default_ps_max_latency=0 works. 2500 */ 2501 .vid = 0x1e0f, 2502 .mn = "KCD6XVUL6T40", 2503 .quirks = NVME_QUIRK_NO_APST, 2504 } 2505 }; 2506 2507 /* match is null-terminated but idstr is space-padded. */ 2508 static bool string_matches(const char *idstr, const char *match, size_t len) 2509 { 2510 size_t matchlen; 2511 2512 if (!match) 2513 return true; 2514 2515 matchlen = strlen(match); 2516 WARN_ON_ONCE(matchlen > len); 2517 2518 if (memcmp(idstr, match, matchlen)) 2519 return false; 2520 2521 for (; matchlen < len; matchlen++) 2522 if (idstr[matchlen] != ' ') 2523 return false; 2524 2525 return true; 2526 } 2527 2528 static bool quirk_matches(const struct nvme_id_ctrl *id, 2529 const struct nvme_core_quirk_entry *q) 2530 { 2531 return q->vid == le16_to_cpu(id->vid) && 2532 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2533 string_matches(id->fr, q->fr, sizeof(id->fr)); 2534 } 2535 2536 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2537 struct nvme_id_ctrl *id) 2538 { 2539 size_t nqnlen; 2540 int off; 2541 2542 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2543 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2544 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2545 strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2546 return; 2547 } 2548 2549 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2550 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2551 } 2552 2553 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */ 2554 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2555 "nqn.2014.08.org.nvmexpress:%04x%04x", 2556 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2557 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2558 off += sizeof(id->sn); 2559 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2560 off += sizeof(id->mn); 2561 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2562 } 2563 2564 static void nvme_release_subsystem(struct device *dev) 2565 { 2566 struct nvme_subsystem *subsys = 2567 container_of(dev, struct nvme_subsystem, dev); 2568 2569 if (subsys->instance >= 0) 2570 ida_simple_remove(&nvme_instance_ida, subsys->instance); 2571 kfree(subsys); 2572 } 2573 2574 static void nvme_destroy_subsystem(struct kref *ref) 2575 { 2576 struct nvme_subsystem *subsys = 2577 container_of(ref, struct nvme_subsystem, ref); 2578 2579 mutex_lock(&nvme_subsystems_lock); 2580 list_del(&subsys->entry); 2581 mutex_unlock(&nvme_subsystems_lock); 2582 2583 ida_destroy(&subsys->ns_ida); 2584 device_del(&subsys->dev); 2585 put_device(&subsys->dev); 2586 } 2587 2588 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2589 { 2590 kref_put(&subsys->ref, nvme_destroy_subsystem); 2591 } 2592 2593 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2594 { 2595 struct nvme_subsystem *subsys; 2596 2597 lockdep_assert_held(&nvme_subsystems_lock); 2598 2599 /* 2600 * Fail matches for discovery subsystems. This results 2601 * in each discovery controller bound to a unique subsystem. 2602 * This avoids issues with validating controller values 2603 * that can only be true when there is a single unique subsystem. 2604 * There may be multiple and completely independent entities 2605 * that provide discovery controllers. 2606 */ 2607 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2608 return NULL; 2609 2610 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2611 if (strcmp(subsys->subnqn, subsysnqn)) 2612 continue; 2613 if (!kref_get_unless_zero(&subsys->ref)) 2614 continue; 2615 return subsys; 2616 } 2617 2618 return NULL; 2619 } 2620 2621 #define SUBSYS_ATTR_RO(_name, _mode, _show) \ 2622 struct device_attribute subsys_attr_##_name = \ 2623 __ATTR(_name, _mode, _show, NULL) 2624 2625 static ssize_t nvme_subsys_show_nqn(struct device *dev, 2626 struct device_attribute *attr, 2627 char *buf) 2628 { 2629 struct nvme_subsystem *subsys = 2630 container_of(dev, struct nvme_subsystem, dev); 2631 2632 return sysfs_emit(buf, "%s\n", subsys->subnqn); 2633 } 2634 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn); 2635 2636 static ssize_t nvme_subsys_show_type(struct device *dev, 2637 struct device_attribute *attr, 2638 char *buf) 2639 { 2640 struct nvme_subsystem *subsys = 2641 container_of(dev, struct nvme_subsystem, dev); 2642 2643 switch (subsys->subtype) { 2644 case NVME_NQN_DISC: 2645 return sysfs_emit(buf, "discovery\n"); 2646 case NVME_NQN_NVME: 2647 return sysfs_emit(buf, "nvm\n"); 2648 default: 2649 return sysfs_emit(buf, "reserved\n"); 2650 } 2651 } 2652 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type); 2653 2654 #define nvme_subsys_show_str_function(field) \ 2655 static ssize_t subsys_##field##_show(struct device *dev, \ 2656 struct device_attribute *attr, char *buf) \ 2657 { \ 2658 struct nvme_subsystem *subsys = \ 2659 container_of(dev, struct nvme_subsystem, dev); \ 2660 return sysfs_emit(buf, "%.*s\n", \ 2661 (int)sizeof(subsys->field), subsys->field); \ 2662 } \ 2663 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show); 2664 2665 nvme_subsys_show_str_function(model); 2666 nvme_subsys_show_str_function(serial); 2667 nvme_subsys_show_str_function(firmware_rev); 2668 2669 static struct attribute *nvme_subsys_attrs[] = { 2670 &subsys_attr_model.attr, 2671 &subsys_attr_serial.attr, 2672 &subsys_attr_firmware_rev.attr, 2673 &subsys_attr_subsysnqn.attr, 2674 &subsys_attr_subsystype.attr, 2675 #ifdef CONFIG_NVME_MULTIPATH 2676 &subsys_attr_iopolicy.attr, 2677 #endif 2678 NULL, 2679 }; 2680 2681 static const struct attribute_group nvme_subsys_attrs_group = { 2682 .attrs = nvme_subsys_attrs, 2683 }; 2684 2685 static const struct attribute_group *nvme_subsys_attrs_groups[] = { 2686 &nvme_subsys_attrs_group, 2687 NULL, 2688 }; 2689 2690 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2691 { 2692 return ctrl->opts && ctrl->opts->discovery_nqn; 2693 } 2694 2695 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2696 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2697 { 2698 struct nvme_ctrl *tmp; 2699 2700 lockdep_assert_held(&nvme_subsystems_lock); 2701 2702 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2703 if (nvme_state_terminal(tmp)) 2704 continue; 2705 2706 if (tmp->cntlid == ctrl->cntlid) { 2707 dev_err(ctrl->device, 2708 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2709 ctrl->cntlid, dev_name(tmp->device), 2710 subsys->subnqn); 2711 return false; 2712 } 2713 2714 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2715 nvme_discovery_ctrl(ctrl)) 2716 continue; 2717 2718 dev_err(ctrl->device, 2719 "Subsystem does not support multiple controllers\n"); 2720 return false; 2721 } 2722 2723 return true; 2724 } 2725 2726 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2727 { 2728 struct nvme_subsystem *subsys, *found; 2729 int ret; 2730 2731 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2732 if (!subsys) 2733 return -ENOMEM; 2734 2735 subsys->instance = -1; 2736 mutex_init(&subsys->lock); 2737 kref_init(&subsys->ref); 2738 INIT_LIST_HEAD(&subsys->ctrls); 2739 INIT_LIST_HEAD(&subsys->nsheads); 2740 nvme_init_subnqn(subsys, ctrl, id); 2741 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2742 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2743 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev)); 2744 subsys->vendor_id = le16_to_cpu(id->vid); 2745 subsys->cmic = id->cmic; 2746 2747 /* Versions prior to 1.4 don't necessarily report a valid type */ 2748 if (id->cntrltype == NVME_CTRL_DISC || 2749 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2750 subsys->subtype = NVME_NQN_DISC; 2751 else 2752 subsys->subtype = NVME_NQN_NVME; 2753 2754 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2755 dev_err(ctrl->device, 2756 "Subsystem %s is not a discovery controller", 2757 subsys->subnqn); 2758 kfree(subsys); 2759 return -EINVAL; 2760 } 2761 subsys->awupf = le16_to_cpu(id->awupf); 2762 nvme_mpath_default_iopolicy(subsys); 2763 2764 subsys->dev.class = nvme_subsys_class; 2765 subsys->dev.release = nvme_release_subsystem; 2766 subsys->dev.groups = nvme_subsys_attrs_groups; 2767 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2768 device_initialize(&subsys->dev); 2769 2770 mutex_lock(&nvme_subsystems_lock); 2771 found = __nvme_find_get_subsystem(subsys->subnqn); 2772 if (found) { 2773 put_device(&subsys->dev); 2774 subsys = found; 2775 2776 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2777 ret = -EINVAL; 2778 goto out_put_subsystem; 2779 } 2780 } else { 2781 ret = device_add(&subsys->dev); 2782 if (ret) { 2783 dev_err(ctrl->device, 2784 "failed to register subsystem device.\n"); 2785 put_device(&subsys->dev); 2786 goto out_unlock; 2787 } 2788 ida_init(&subsys->ns_ida); 2789 list_add_tail(&subsys->entry, &nvme_subsystems); 2790 } 2791 2792 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2793 dev_name(ctrl->device)); 2794 if (ret) { 2795 dev_err(ctrl->device, 2796 "failed to create sysfs link from subsystem.\n"); 2797 goto out_put_subsystem; 2798 } 2799 2800 if (!found) 2801 subsys->instance = ctrl->instance; 2802 ctrl->subsys = subsys; 2803 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2804 mutex_unlock(&nvme_subsystems_lock); 2805 return 0; 2806 2807 out_put_subsystem: 2808 nvme_put_subsystem(subsys); 2809 out_unlock: 2810 mutex_unlock(&nvme_subsystems_lock); 2811 return ret; 2812 } 2813 2814 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2815 void *log, size_t size, u64 offset) 2816 { 2817 struct nvme_command c = { }; 2818 u32 dwlen = nvme_bytes_to_numd(size); 2819 2820 c.get_log_page.opcode = nvme_admin_get_log_page; 2821 c.get_log_page.nsid = cpu_to_le32(nsid); 2822 c.get_log_page.lid = log_page; 2823 c.get_log_page.lsp = lsp; 2824 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2825 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2826 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2827 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2828 c.get_log_page.csi = csi; 2829 2830 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2831 } 2832 2833 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2834 struct nvme_effects_log **log) 2835 { 2836 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2837 int ret; 2838 2839 if (cel) 2840 goto out; 2841 2842 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2843 if (!cel) 2844 return -ENOMEM; 2845 2846 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2847 cel, sizeof(*cel), 0); 2848 if (ret) { 2849 kfree(cel); 2850 return ret; 2851 } 2852 2853 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2854 out: 2855 *log = cel; 2856 return 0; 2857 } 2858 2859 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2860 { 2861 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2862 2863 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2864 return UINT_MAX; 2865 return val; 2866 } 2867 2868 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 2869 { 2870 struct nvme_command c = { }; 2871 struct nvme_id_ctrl_nvm *id; 2872 int ret; 2873 2874 if (ctrl->oncs & NVME_CTRL_ONCS_DSM) { 2875 ctrl->max_discard_sectors = UINT_MAX; 2876 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES; 2877 } else { 2878 ctrl->max_discard_sectors = 0; 2879 ctrl->max_discard_segments = 0; 2880 } 2881 2882 /* 2883 * Even though NVMe spec explicitly states that MDTS is not applicable 2884 * to the write-zeroes, we are cautious and limit the size to the 2885 * controllers max_hw_sectors value, which is based on the MDTS field 2886 * and possibly other limiting factors. 2887 */ 2888 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 2889 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 2890 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 2891 else 2892 ctrl->max_zeroes_sectors = 0; 2893 2894 if (nvme_ctrl_limited_cns(ctrl)) 2895 return 0; 2896 2897 id = kzalloc(sizeof(*id), GFP_KERNEL); 2898 if (!id) 2899 return 0; 2900 2901 c.identify.opcode = nvme_admin_identify; 2902 c.identify.cns = NVME_ID_CNS_CS_CTRL; 2903 c.identify.csi = NVME_CSI_NVM; 2904 2905 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 2906 if (ret) 2907 goto free_data; 2908 2909 if (id->dmrl) 2910 ctrl->max_discard_segments = id->dmrl; 2911 if (id->dmrsl) 2912 ctrl->max_discard_sectors = le32_to_cpu(id->dmrsl); 2913 if (id->wzsl) 2914 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 2915 2916 free_data: 2917 kfree(id); 2918 return ret; 2919 } 2920 2921 static int nvme_init_identify(struct nvme_ctrl *ctrl) 2922 { 2923 struct nvme_id_ctrl *id; 2924 u32 max_hw_sectors; 2925 bool prev_apst_enabled; 2926 int ret; 2927 2928 ret = nvme_identify_ctrl(ctrl, &id); 2929 if (ret) { 2930 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 2931 return -EIO; 2932 } 2933 2934 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 2935 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 2936 if (ret < 0) 2937 goto out_free; 2938 } 2939 2940 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 2941 ctrl->cntlid = le16_to_cpu(id->cntlid); 2942 2943 if (!ctrl->identified) { 2944 unsigned int i; 2945 2946 ret = nvme_init_subsystem(ctrl, id); 2947 if (ret) 2948 goto out_free; 2949 2950 /* 2951 * Check for quirks. Quirk can depend on firmware version, 2952 * so, in principle, the set of quirks present can change 2953 * across a reset. As a possible future enhancement, we 2954 * could re-scan for quirks every time we reinitialize 2955 * the device, but we'd have to make sure that the driver 2956 * behaves intelligently if the quirks change. 2957 */ 2958 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 2959 if (quirk_matches(id, &core_quirks[i])) 2960 ctrl->quirks |= core_quirks[i].quirks; 2961 } 2962 } 2963 2964 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 2965 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 2966 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 2967 } 2968 2969 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 2970 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 2971 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 2972 2973 ctrl->oacs = le16_to_cpu(id->oacs); 2974 ctrl->oncs = le16_to_cpu(id->oncs); 2975 ctrl->mtfa = le16_to_cpu(id->mtfa); 2976 ctrl->oaes = le32_to_cpu(id->oaes); 2977 ctrl->wctemp = le16_to_cpu(id->wctemp); 2978 ctrl->cctemp = le16_to_cpu(id->cctemp); 2979 2980 atomic_set(&ctrl->abort_limit, id->acl + 1); 2981 ctrl->vwc = id->vwc; 2982 if (id->mdts) 2983 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 2984 else 2985 max_hw_sectors = UINT_MAX; 2986 ctrl->max_hw_sectors = 2987 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 2988 2989 nvme_set_queue_limits(ctrl, ctrl->admin_q); 2990 ctrl->sgls = le32_to_cpu(id->sgls); 2991 ctrl->kas = le16_to_cpu(id->kas); 2992 ctrl->max_namespaces = le32_to_cpu(id->mnan); 2993 ctrl->ctratt = le32_to_cpu(id->ctratt); 2994 2995 if (id->rtd3e) { 2996 /* us -> s */ 2997 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 2998 2999 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3000 shutdown_timeout, 60); 3001 3002 if (ctrl->shutdown_timeout != shutdown_timeout) 3003 dev_info(ctrl->device, 3004 "Shutdown timeout set to %u seconds\n", 3005 ctrl->shutdown_timeout); 3006 } else 3007 ctrl->shutdown_timeout = shutdown_timeout; 3008 3009 ctrl->npss = id->npss; 3010 ctrl->apsta = id->apsta; 3011 prev_apst_enabled = ctrl->apst_enabled; 3012 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3013 if (force_apst && id->apsta) { 3014 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3015 ctrl->apst_enabled = true; 3016 } else { 3017 ctrl->apst_enabled = false; 3018 } 3019 } else { 3020 ctrl->apst_enabled = id->apsta; 3021 } 3022 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3023 3024 if (ctrl->ops->flags & NVME_F_FABRICS) { 3025 ctrl->icdoff = le16_to_cpu(id->icdoff); 3026 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3027 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3028 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3029 3030 /* 3031 * In fabrics we need to verify the cntlid matches the 3032 * admin connect 3033 */ 3034 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3035 dev_err(ctrl->device, 3036 "Mismatching cntlid: Connect %u vs Identify " 3037 "%u, rejecting\n", 3038 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3039 ret = -EINVAL; 3040 goto out_free; 3041 } 3042 3043 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3044 dev_err(ctrl->device, 3045 "keep-alive support is mandatory for fabrics\n"); 3046 ret = -EINVAL; 3047 goto out_free; 3048 } 3049 } else { 3050 ctrl->hmpre = le32_to_cpu(id->hmpre); 3051 ctrl->hmmin = le32_to_cpu(id->hmmin); 3052 ctrl->hmminds = le32_to_cpu(id->hmminds); 3053 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3054 } 3055 3056 ret = nvme_mpath_init_identify(ctrl, id); 3057 if (ret < 0) 3058 goto out_free; 3059 3060 if (ctrl->apst_enabled && !prev_apst_enabled) 3061 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3062 else if (!ctrl->apst_enabled && prev_apst_enabled) 3063 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3064 3065 out_free: 3066 kfree(id); 3067 return ret; 3068 } 3069 3070 /* 3071 * Initialize the cached copies of the Identify data and various controller 3072 * register in our nvme_ctrl structure. This should be called as soon as 3073 * the admin queue is fully up and running. 3074 */ 3075 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl) 3076 { 3077 int ret; 3078 3079 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3080 if (ret) { 3081 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3082 return ret; 3083 } 3084 3085 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3086 3087 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3088 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3089 3090 ret = nvme_init_identify(ctrl); 3091 if (ret) 3092 return ret; 3093 3094 ret = nvme_init_non_mdts_limits(ctrl); 3095 if (ret < 0) 3096 return ret; 3097 3098 ret = nvme_configure_apst(ctrl); 3099 if (ret < 0) 3100 return ret; 3101 3102 ret = nvme_configure_timestamp(ctrl); 3103 if (ret < 0) 3104 return ret; 3105 3106 ret = nvme_configure_directives(ctrl); 3107 if (ret < 0) 3108 return ret; 3109 3110 ret = nvme_configure_acre(ctrl); 3111 if (ret < 0) 3112 return ret; 3113 3114 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3115 ret = nvme_hwmon_init(ctrl); 3116 if (ret < 0) 3117 return ret; 3118 } 3119 3120 ctrl->identified = true; 3121 3122 return 0; 3123 } 3124 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3125 3126 static int nvme_dev_open(struct inode *inode, struct file *file) 3127 { 3128 struct nvme_ctrl *ctrl = 3129 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3130 3131 switch (ctrl->state) { 3132 case NVME_CTRL_LIVE: 3133 break; 3134 default: 3135 return -EWOULDBLOCK; 3136 } 3137 3138 nvme_get_ctrl(ctrl); 3139 if (!try_module_get(ctrl->ops->module)) { 3140 nvme_put_ctrl(ctrl); 3141 return -EINVAL; 3142 } 3143 3144 file->private_data = ctrl; 3145 return 0; 3146 } 3147 3148 static int nvme_dev_release(struct inode *inode, struct file *file) 3149 { 3150 struct nvme_ctrl *ctrl = 3151 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3152 3153 module_put(ctrl->ops->module); 3154 nvme_put_ctrl(ctrl); 3155 return 0; 3156 } 3157 3158 static const struct file_operations nvme_dev_fops = { 3159 .owner = THIS_MODULE, 3160 .open = nvme_dev_open, 3161 .release = nvme_dev_release, 3162 .unlocked_ioctl = nvme_dev_ioctl, 3163 .compat_ioctl = compat_ptr_ioctl, 3164 }; 3165 3166 static ssize_t nvme_sysfs_reset(struct device *dev, 3167 struct device_attribute *attr, const char *buf, 3168 size_t count) 3169 { 3170 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3171 int ret; 3172 3173 ret = nvme_reset_ctrl_sync(ctrl); 3174 if (ret < 0) 3175 return ret; 3176 return count; 3177 } 3178 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); 3179 3180 static ssize_t nvme_sysfs_rescan(struct device *dev, 3181 struct device_attribute *attr, const char *buf, 3182 size_t count) 3183 { 3184 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3185 3186 nvme_queue_scan(ctrl); 3187 return count; 3188 } 3189 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); 3190 3191 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev) 3192 { 3193 struct gendisk *disk = dev_to_disk(dev); 3194 3195 if (disk->fops == &nvme_bdev_ops) 3196 return nvme_get_ns_from_dev(dev)->head; 3197 else 3198 return disk->private_data; 3199 } 3200 3201 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, 3202 char *buf) 3203 { 3204 struct nvme_ns_head *head = dev_to_ns_head(dev); 3205 struct nvme_ns_ids *ids = &head->ids; 3206 struct nvme_subsystem *subsys = head->subsys; 3207 int serial_len = sizeof(subsys->serial); 3208 int model_len = sizeof(subsys->model); 3209 3210 if (!uuid_is_null(&ids->uuid)) 3211 return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid); 3212 3213 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3214 return sysfs_emit(buf, "eui.%16phN\n", ids->nguid); 3215 3216 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3217 return sysfs_emit(buf, "eui.%8phN\n", ids->eui64); 3218 3219 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' || 3220 subsys->serial[serial_len - 1] == '\0')) 3221 serial_len--; 3222 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' || 3223 subsys->model[model_len - 1] == '\0')) 3224 model_len--; 3225 3226 return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id, 3227 serial_len, subsys->serial, model_len, subsys->model, 3228 head->ns_id); 3229 } 3230 static DEVICE_ATTR_RO(wwid); 3231 3232 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr, 3233 char *buf) 3234 { 3235 return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid); 3236 } 3237 static DEVICE_ATTR_RO(nguid); 3238 3239 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, 3240 char *buf) 3241 { 3242 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3243 3244 /* For backward compatibility expose the NGUID to userspace if 3245 * we have no UUID set 3246 */ 3247 if (uuid_is_null(&ids->uuid)) { 3248 printk_ratelimited(KERN_WARNING 3249 "No UUID available providing old NGUID\n"); 3250 return sysfs_emit(buf, "%pU\n", ids->nguid); 3251 } 3252 return sysfs_emit(buf, "%pU\n", &ids->uuid); 3253 } 3254 static DEVICE_ATTR_RO(uuid); 3255 3256 static ssize_t eui_show(struct device *dev, struct device_attribute *attr, 3257 char *buf) 3258 { 3259 return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64); 3260 } 3261 static DEVICE_ATTR_RO(eui); 3262 3263 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, 3264 char *buf) 3265 { 3266 return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id); 3267 } 3268 static DEVICE_ATTR_RO(nsid); 3269 3270 static struct attribute *nvme_ns_id_attrs[] = { 3271 &dev_attr_wwid.attr, 3272 &dev_attr_uuid.attr, 3273 &dev_attr_nguid.attr, 3274 &dev_attr_eui.attr, 3275 &dev_attr_nsid.attr, 3276 #ifdef CONFIG_NVME_MULTIPATH 3277 &dev_attr_ana_grpid.attr, 3278 &dev_attr_ana_state.attr, 3279 #endif 3280 NULL, 3281 }; 3282 3283 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj, 3284 struct attribute *a, int n) 3285 { 3286 struct device *dev = container_of(kobj, struct device, kobj); 3287 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids; 3288 3289 if (a == &dev_attr_uuid.attr) { 3290 if (uuid_is_null(&ids->uuid) && 3291 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3292 return 0; 3293 } 3294 if (a == &dev_attr_nguid.attr) { 3295 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 3296 return 0; 3297 } 3298 if (a == &dev_attr_eui.attr) { 3299 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 3300 return 0; 3301 } 3302 #ifdef CONFIG_NVME_MULTIPATH 3303 if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) { 3304 if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */ 3305 return 0; 3306 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl)) 3307 return 0; 3308 } 3309 #endif 3310 return a->mode; 3311 } 3312 3313 static const struct attribute_group nvme_ns_id_attr_group = { 3314 .attrs = nvme_ns_id_attrs, 3315 .is_visible = nvme_ns_id_attrs_are_visible, 3316 }; 3317 3318 const struct attribute_group *nvme_ns_id_attr_groups[] = { 3319 &nvme_ns_id_attr_group, 3320 NULL, 3321 }; 3322 3323 #define nvme_show_str_function(field) \ 3324 static ssize_t field##_show(struct device *dev, \ 3325 struct device_attribute *attr, char *buf) \ 3326 { \ 3327 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3328 return sysfs_emit(buf, "%.*s\n", \ 3329 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \ 3330 } \ 3331 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3332 3333 nvme_show_str_function(model); 3334 nvme_show_str_function(serial); 3335 nvme_show_str_function(firmware_rev); 3336 3337 #define nvme_show_int_function(field) \ 3338 static ssize_t field##_show(struct device *dev, \ 3339 struct device_attribute *attr, char *buf) \ 3340 { \ 3341 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ 3342 return sysfs_emit(buf, "%d\n", ctrl->field); \ 3343 } \ 3344 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); 3345 3346 nvme_show_int_function(cntlid); 3347 nvme_show_int_function(numa_node); 3348 nvme_show_int_function(queue_count); 3349 nvme_show_int_function(sqsize); 3350 nvme_show_int_function(kato); 3351 3352 static ssize_t nvme_sysfs_delete(struct device *dev, 3353 struct device_attribute *attr, const char *buf, 3354 size_t count) 3355 { 3356 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3357 3358 if (device_remove_file_self(dev, attr)) 3359 nvme_delete_ctrl_sync(ctrl); 3360 return count; 3361 } 3362 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); 3363 3364 static ssize_t nvme_sysfs_show_transport(struct device *dev, 3365 struct device_attribute *attr, 3366 char *buf) 3367 { 3368 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3369 3370 return sysfs_emit(buf, "%s\n", ctrl->ops->name); 3371 } 3372 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); 3373 3374 static ssize_t nvme_sysfs_show_state(struct device *dev, 3375 struct device_attribute *attr, 3376 char *buf) 3377 { 3378 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3379 static const char *const state_name[] = { 3380 [NVME_CTRL_NEW] = "new", 3381 [NVME_CTRL_LIVE] = "live", 3382 [NVME_CTRL_RESETTING] = "resetting", 3383 [NVME_CTRL_CONNECTING] = "connecting", 3384 [NVME_CTRL_DELETING] = "deleting", 3385 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)", 3386 [NVME_CTRL_DEAD] = "dead", 3387 }; 3388 3389 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && 3390 state_name[ctrl->state]) 3391 return sysfs_emit(buf, "%s\n", state_name[ctrl->state]); 3392 3393 return sysfs_emit(buf, "unknown state\n"); 3394 } 3395 3396 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); 3397 3398 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, 3399 struct device_attribute *attr, 3400 char *buf) 3401 { 3402 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3403 3404 return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn); 3405 } 3406 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); 3407 3408 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev, 3409 struct device_attribute *attr, 3410 char *buf) 3411 { 3412 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3413 3414 return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn); 3415 } 3416 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL); 3417 3418 static ssize_t nvme_sysfs_show_hostid(struct device *dev, 3419 struct device_attribute *attr, 3420 char *buf) 3421 { 3422 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3423 3424 return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id); 3425 } 3426 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL); 3427 3428 static ssize_t nvme_sysfs_show_address(struct device *dev, 3429 struct device_attribute *attr, 3430 char *buf) 3431 { 3432 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3433 3434 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); 3435 } 3436 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); 3437 3438 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev, 3439 struct device_attribute *attr, char *buf) 3440 { 3441 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3442 struct nvmf_ctrl_options *opts = ctrl->opts; 3443 3444 if (ctrl->opts->max_reconnects == -1) 3445 return sysfs_emit(buf, "off\n"); 3446 return sysfs_emit(buf, "%d\n", 3447 opts->max_reconnects * opts->reconnect_delay); 3448 } 3449 3450 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev, 3451 struct device_attribute *attr, const char *buf, size_t count) 3452 { 3453 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3454 struct nvmf_ctrl_options *opts = ctrl->opts; 3455 int ctrl_loss_tmo, err; 3456 3457 err = kstrtoint(buf, 10, &ctrl_loss_tmo); 3458 if (err) 3459 return -EINVAL; 3460 3461 if (ctrl_loss_tmo < 0) 3462 opts->max_reconnects = -1; 3463 else 3464 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo, 3465 opts->reconnect_delay); 3466 return count; 3467 } 3468 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR, 3469 nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store); 3470 3471 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev, 3472 struct device_attribute *attr, char *buf) 3473 { 3474 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3475 3476 if (ctrl->opts->reconnect_delay == -1) 3477 return sysfs_emit(buf, "off\n"); 3478 return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay); 3479 } 3480 3481 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev, 3482 struct device_attribute *attr, const char *buf, size_t count) 3483 { 3484 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3485 unsigned int v; 3486 int err; 3487 3488 err = kstrtou32(buf, 10, &v); 3489 if (err) 3490 return err; 3491 3492 ctrl->opts->reconnect_delay = v; 3493 return count; 3494 } 3495 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR, 3496 nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store); 3497 3498 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev, 3499 struct device_attribute *attr, char *buf) 3500 { 3501 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3502 3503 if (ctrl->opts->fast_io_fail_tmo == -1) 3504 return sysfs_emit(buf, "off\n"); 3505 return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo); 3506 } 3507 3508 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev, 3509 struct device_attribute *attr, const char *buf, size_t count) 3510 { 3511 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3512 struct nvmf_ctrl_options *opts = ctrl->opts; 3513 int fast_io_fail_tmo, err; 3514 3515 err = kstrtoint(buf, 10, &fast_io_fail_tmo); 3516 if (err) 3517 return -EINVAL; 3518 3519 if (fast_io_fail_tmo < 0) 3520 opts->fast_io_fail_tmo = -1; 3521 else 3522 opts->fast_io_fail_tmo = fast_io_fail_tmo; 3523 return count; 3524 } 3525 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR, 3526 nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store); 3527 3528 static struct attribute *nvme_dev_attrs[] = { 3529 &dev_attr_reset_controller.attr, 3530 &dev_attr_rescan_controller.attr, 3531 &dev_attr_model.attr, 3532 &dev_attr_serial.attr, 3533 &dev_attr_firmware_rev.attr, 3534 &dev_attr_cntlid.attr, 3535 &dev_attr_delete_controller.attr, 3536 &dev_attr_transport.attr, 3537 &dev_attr_subsysnqn.attr, 3538 &dev_attr_address.attr, 3539 &dev_attr_state.attr, 3540 &dev_attr_numa_node.attr, 3541 &dev_attr_queue_count.attr, 3542 &dev_attr_sqsize.attr, 3543 &dev_attr_hostnqn.attr, 3544 &dev_attr_hostid.attr, 3545 &dev_attr_ctrl_loss_tmo.attr, 3546 &dev_attr_reconnect_delay.attr, 3547 &dev_attr_fast_io_fail_tmo.attr, 3548 &dev_attr_kato.attr, 3549 NULL 3550 }; 3551 3552 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, 3553 struct attribute *a, int n) 3554 { 3555 struct device *dev = container_of(kobj, struct device, kobj); 3556 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 3557 3558 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl) 3559 return 0; 3560 if (a == &dev_attr_address.attr && !ctrl->ops->get_address) 3561 return 0; 3562 if (a == &dev_attr_hostnqn.attr && !ctrl->opts) 3563 return 0; 3564 if (a == &dev_attr_hostid.attr && !ctrl->opts) 3565 return 0; 3566 if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts) 3567 return 0; 3568 if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts) 3569 return 0; 3570 if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts) 3571 return 0; 3572 3573 return a->mode; 3574 } 3575 3576 static const struct attribute_group nvme_dev_attrs_group = { 3577 .attrs = nvme_dev_attrs, 3578 .is_visible = nvme_dev_attrs_are_visible, 3579 }; 3580 3581 static const struct attribute_group *nvme_dev_attr_groups[] = { 3582 &nvme_dev_attrs_group, 3583 NULL, 3584 }; 3585 3586 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys, 3587 unsigned nsid) 3588 { 3589 struct nvme_ns_head *h; 3590 3591 lockdep_assert_held(&subsys->lock); 3592 3593 list_for_each_entry(h, &subsys->nsheads, entry) { 3594 if (h->ns_id != nsid) 3595 continue; 3596 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3597 return h; 3598 } 3599 3600 return NULL; 3601 } 3602 3603 static int __nvme_check_ids(struct nvme_subsystem *subsys, 3604 struct nvme_ns_head *new) 3605 { 3606 struct nvme_ns_head *h; 3607 3608 lockdep_assert_held(&subsys->lock); 3609 3610 list_for_each_entry(h, &subsys->nsheads, entry) { 3611 if (nvme_ns_ids_valid(&new->ids) && 3612 nvme_ns_ids_equal(&new->ids, &h->ids)) 3613 return -EINVAL; 3614 } 3615 3616 return 0; 3617 } 3618 3619 static void nvme_cdev_rel(struct device *dev) 3620 { 3621 ida_simple_remove(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3622 } 3623 3624 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3625 { 3626 cdev_device_del(cdev, cdev_device); 3627 put_device(cdev_device); 3628 } 3629 3630 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3631 const struct file_operations *fops, struct module *owner) 3632 { 3633 int minor, ret; 3634 3635 minor = ida_simple_get(&nvme_ns_chr_minor_ida, 0, 0, GFP_KERNEL); 3636 if (minor < 0) 3637 return minor; 3638 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3639 cdev_device->class = nvme_ns_chr_class; 3640 cdev_device->release = nvme_cdev_rel; 3641 device_initialize(cdev_device); 3642 cdev_init(cdev, fops); 3643 cdev->owner = owner; 3644 ret = cdev_device_add(cdev, cdev_device); 3645 if (ret) 3646 put_device(cdev_device); 3647 3648 return ret; 3649 } 3650 3651 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3652 { 3653 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3654 } 3655 3656 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3657 { 3658 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3659 return 0; 3660 } 3661 3662 static const struct file_operations nvme_ns_chr_fops = { 3663 .owner = THIS_MODULE, 3664 .open = nvme_ns_chr_open, 3665 .release = nvme_ns_chr_release, 3666 .unlocked_ioctl = nvme_ns_chr_ioctl, 3667 .compat_ioctl = compat_ptr_ioctl, 3668 }; 3669 3670 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3671 { 3672 int ret; 3673 3674 ns->cdev_device.parent = ns->ctrl->device; 3675 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3676 ns->ctrl->instance, ns->head->instance); 3677 if (ret) 3678 return ret; 3679 3680 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3681 ns->ctrl->ops->module); 3682 } 3683 3684 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3685 unsigned nsid, struct nvme_ns_ids *ids) 3686 { 3687 struct nvme_ns_head *head; 3688 size_t size = sizeof(*head); 3689 int ret = -ENOMEM; 3690 3691 #ifdef CONFIG_NVME_MULTIPATH 3692 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3693 #endif 3694 3695 head = kzalloc(size, GFP_KERNEL); 3696 if (!head) 3697 goto out; 3698 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL); 3699 if (ret < 0) 3700 goto out_free_head; 3701 head->instance = ret; 3702 INIT_LIST_HEAD(&head->list); 3703 ret = init_srcu_struct(&head->srcu); 3704 if (ret) 3705 goto out_ida_remove; 3706 head->subsys = ctrl->subsys; 3707 head->ns_id = nsid; 3708 head->ids = *ids; 3709 kref_init(&head->ref); 3710 3711 ret = __nvme_check_ids(ctrl->subsys, head); 3712 if (ret) { 3713 dev_err(ctrl->device, 3714 "duplicate IDs for nsid %d\n", nsid); 3715 goto out_cleanup_srcu; 3716 } 3717 3718 if (head->ids.csi) { 3719 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3720 if (ret) 3721 goto out_cleanup_srcu; 3722 } else 3723 head->effects = ctrl->effects; 3724 3725 ret = nvme_mpath_alloc_disk(ctrl, head); 3726 if (ret) 3727 goto out_cleanup_srcu; 3728 3729 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3730 3731 kref_get(&ctrl->subsys->ref); 3732 3733 return head; 3734 out_cleanup_srcu: 3735 cleanup_srcu_struct(&head->srcu); 3736 out_ida_remove: 3737 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance); 3738 out_free_head: 3739 kfree(head); 3740 out: 3741 if (ret > 0) 3742 ret = blk_status_to_errno(nvme_error_status(ret)); 3743 return ERR_PTR(ret); 3744 } 3745 3746 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid, 3747 struct nvme_ns_ids *ids, bool is_shared) 3748 { 3749 struct nvme_ctrl *ctrl = ns->ctrl; 3750 struct nvme_ns_head *head = NULL; 3751 int ret = 0; 3752 3753 mutex_lock(&ctrl->subsys->lock); 3754 head = nvme_find_ns_head(ctrl->subsys, nsid); 3755 if (!head) { 3756 head = nvme_alloc_ns_head(ctrl, nsid, ids); 3757 if (IS_ERR(head)) { 3758 ret = PTR_ERR(head); 3759 goto out_unlock; 3760 } 3761 head->shared = is_shared; 3762 } else { 3763 ret = -EINVAL; 3764 if (!is_shared || !head->shared) { 3765 dev_err(ctrl->device, 3766 "Duplicate unshared namespace %d\n", nsid); 3767 goto out_put_ns_head; 3768 } 3769 if (!nvme_ns_ids_equal(&head->ids, ids)) { 3770 dev_err(ctrl->device, 3771 "IDs don't match for shared namespace %d\n", 3772 nsid); 3773 goto out_put_ns_head; 3774 } 3775 } 3776 3777 list_add_tail_rcu(&ns->siblings, &head->list); 3778 ns->head = head; 3779 mutex_unlock(&ctrl->subsys->lock); 3780 return 0; 3781 3782 out_put_ns_head: 3783 nvme_put_ns_head(head); 3784 out_unlock: 3785 mutex_unlock(&ctrl->subsys->lock); 3786 return ret; 3787 } 3788 3789 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3790 { 3791 struct nvme_ns *ns, *ret = NULL; 3792 3793 down_read(&ctrl->namespaces_rwsem); 3794 list_for_each_entry(ns, &ctrl->namespaces, list) { 3795 if (ns->head->ns_id == nsid) { 3796 if (!nvme_get_ns(ns)) 3797 continue; 3798 ret = ns; 3799 break; 3800 } 3801 if (ns->head->ns_id > nsid) 3802 break; 3803 } 3804 up_read(&ctrl->namespaces_rwsem); 3805 return ret; 3806 } 3807 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3808 3809 /* 3810 * Add the namespace to the controller list while keeping the list ordered. 3811 */ 3812 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3813 { 3814 struct nvme_ns *tmp; 3815 3816 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3817 if (tmp->head->ns_id < ns->head->ns_id) { 3818 list_add(&ns->list, &tmp->list); 3819 return; 3820 } 3821 } 3822 list_add(&ns->list, &ns->ctrl->namespaces); 3823 } 3824 3825 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid, 3826 struct nvme_ns_ids *ids) 3827 { 3828 struct nvme_ns *ns; 3829 struct gendisk *disk; 3830 struct nvme_id_ns *id; 3831 int node = ctrl->numa_node; 3832 3833 if (nvme_identify_ns(ctrl, nsid, ids, &id)) 3834 return; 3835 3836 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3837 if (!ns) 3838 goto out_free_id; 3839 3840 disk = blk_mq_alloc_disk(ctrl->tagset, ns); 3841 if (IS_ERR(disk)) 3842 goto out_free_ns; 3843 disk->fops = &nvme_bdev_ops; 3844 disk->private_data = ns; 3845 3846 ns->disk = disk; 3847 ns->queue = disk->queue; 3848 3849 if (ctrl->opts && ctrl->opts->data_digest) 3850 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3851 3852 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3853 if (ctrl->ops->flags & NVME_F_PCI_P2PDMA) 3854 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3855 3856 ns->ctrl = ctrl; 3857 kref_init(&ns->kref); 3858 3859 if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED)) 3860 goto out_cleanup_disk; 3861 3862 /* 3863 * Without the multipath code enabled, multiple controller per 3864 * subsystems are visible as devices and thus we cannot use the 3865 * subsystem instance. 3866 */ 3867 if (!nvme_mpath_set_disk_name(ns, disk->disk_name, &disk->flags)) 3868 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3869 ns->head->instance); 3870 3871 if (nvme_update_ns_info(ns, id)) 3872 goto out_unlink_ns; 3873 3874 down_write(&ctrl->namespaces_rwsem); 3875 nvme_ns_add_to_ctrl_list(ns); 3876 up_write(&ctrl->namespaces_rwsem); 3877 nvme_get_ctrl(ctrl); 3878 3879 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups)) 3880 goto out_cleanup_ns_from_list; 3881 3882 if (!nvme_ns_head_multipath(ns->head)) 3883 nvme_add_ns_cdev(ns); 3884 3885 nvme_mpath_add_disk(ns, id); 3886 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3887 kfree(id); 3888 3889 return; 3890 3891 out_cleanup_ns_from_list: 3892 nvme_put_ctrl(ctrl); 3893 down_write(&ctrl->namespaces_rwsem); 3894 list_del_init(&ns->list); 3895 up_write(&ctrl->namespaces_rwsem); 3896 out_unlink_ns: 3897 mutex_lock(&ctrl->subsys->lock); 3898 list_del_rcu(&ns->siblings); 3899 if (list_empty(&ns->head->list)) 3900 list_del_init(&ns->head->entry); 3901 mutex_unlock(&ctrl->subsys->lock); 3902 nvme_put_ns_head(ns->head); 3903 out_cleanup_disk: 3904 blk_cleanup_disk(disk); 3905 out_free_ns: 3906 kfree(ns); 3907 out_free_id: 3908 kfree(id); 3909 } 3910 3911 static void nvme_ns_remove(struct nvme_ns *ns) 3912 { 3913 bool last_path = false; 3914 3915 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3916 return; 3917 3918 clear_bit(NVME_NS_READY, &ns->flags); 3919 set_capacity(ns->disk, 0); 3920 nvme_fault_inject_fini(&ns->fault_inject); 3921 3922 mutex_lock(&ns->ctrl->subsys->lock); 3923 list_del_rcu(&ns->siblings); 3924 if (list_empty(&ns->head->list)) { 3925 list_del_init(&ns->head->entry); 3926 last_path = true; 3927 } 3928 mutex_unlock(&ns->ctrl->subsys->lock); 3929 3930 /* guarantee not available in head->list */ 3931 synchronize_rcu(); 3932 3933 /* wait for concurrent submissions */ 3934 if (nvme_mpath_clear_current_path(ns)) 3935 synchronize_srcu(&ns->head->srcu); 3936 3937 if (!nvme_ns_head_multipath(ns->head)) 3938 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3939 del_gendisk(ns->disk); 3940 blk_cleanup_queue(ns->queue); 3941 3942 down_write(&ns->ctrl->namespaces_rwsem); 3943 list_del_init(&ns->list); 3944 up_write(&ns->ctrl->namespaces_rwsem); 3945 3946 if (last_path) 3947 nvme_mpath_shutdown_disk(ns->head); 3948 nvme_put_ns(ns); 3949 } 3950 3951 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3952 { 3953 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3954 3955 if (ns) { 3956 nvme_ns_remove(ns); 3957 nvme_put_ns(ns); 3958 } 3959 } 3960 3961 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids) 3962 { 3963 struct nvme_id_ns *id; 3964 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3965 3966 if (test_bit(NVME_NS_DEAD, &ns->flags)) 3967 goto out; 3968 3969 ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id); 3970 if (ret) 3971 goto out; 3972 3973 ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3974 if (!nvme_ns_ids_equal(&ns->head->ids, ids)) { 3975 dev_err(ns->ctrl->device, 3976 "identifiers changed for nsid %d\n", ns->head->ns_id); 3977 goto out_free_id; 3978 } 3979 3980 ret = nvme_update_ns_info(ns, id); 3981 3982 out_free_id: 3983 kfree(id); 3984 out: 3985 /* 3986 * Only remove the namespace if we got a fatal error back from the 3987 * device, otherwise ignore the error and just move on. 3988 * 3989 * TODO: we should probably schedule a delayed retry here. 3990 */ 3991 if (ret > 0 && (ret & NVME_SC_DNR)) 3992 nvme_ns_remove(ns); 3993 } 3994 3995 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3996 { 3997 struct nvme_ns_ids ids = { }; 3998 struct nvme_ns *ns; 3999 4000 if (nvme_identify_ns_descs(ctrl, nsid, &ids)) 4001 return; 4002 4003 ns = nvme_find_get_ns(ctrl, nsid); 4004 if (ns) { 4005 nvme_validate_ns(ns, &ids); 4006 nvme_put_ns(ns); 4007 return; 4008 } 4009 4010 switch (ids.csi) { 4011 case NVME_CSI_NVM: 4012 nvme_alloc_ns(ctrl, nsid, &ids); 4013 break; 4014 case NVME_CSI_ZNS: 4015 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 4016 dev_warn(ctrl->device, 4017 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 4018 nsid); 4019 break; 4020 } 4021 if (!nvme_multi_css(ctrl)) { 4022 dev_warn(ctrl->device, 4023 "command set not reported for nsid: %d\n", 4024 nsid); 4025 break; 4026 } 4027 nvme_alloc_ns(ctrl, nsid, &ids); 4028 break; 4029 default: 4030 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n", 4031 ids.csi, nsid); 4032 break; 4033 } 4034 } 4035 4036 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 4037 unsigned nsid) 4038 { 4039 struct nvme_ns *ns, *next; 4040 LIST_HEAD(rm_list); 4041 4042 down_write(&ctrl->namespaces_rwsem); 4043 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 4044 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags)) 4045 list_move_tail(&ns->list, &rm_list); 4046 } 4047 up_write(&ctrl->namespaces_rwsem); 4048 4049 list_for_each_entry_safe(ns, next, &rm_list, list) 4050 nvme_ns_remove(ns); 4051 4052 } 4053 4054 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 4055 { 4056 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 4057 __le32 *ns_list; 4058 u32 prev = 0; 4059 int ret = 0, i; 4060 4061 if (nvme_ctrl_limited_cns(ctrl)) 4062 return -EOPNOTSUPP; 4063 4064 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 4065 if (!ns_list) 4066 return -ENOMEM; 4067 4068 for (;;) { 4069 struct nvme_command cmd = { 4070 .identify.opcode = nvme_admin_identify, 4071 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 4072 .identify.nsid = cpu_to_le32(prev), 4073 }; 4074 4075 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 4076 NVME_IDENTIFY_DATA_SIZE); 4077 if (ret) { 4078 dev_warn(ctrl->device, 4079 "Identify NS List failed (status=0x%x)\n", ret); 4080 goto free; 4081 } 4082 4083 for (i = 0; i < nr_entries; i++) { 4084 u32 nsid = le32_to_cpu(ns_list[i]); 4085 4086 if (!nsid) /* end of the list? */ 4087 goto out; 4088 nvme_validate_or_alloc_ns(ctrl, nsid); 4089 while (++prev < nsid) 4090 nvme_ns_remove_by_nsid(ctrl, prev); 4091 } 4092 } 4093 out: 4094 nvme_remove_invalid_namespaces(ctrl, prev); 4095 free: 4096 kfree(ns_list); 4097 return ret; 4098 } 4099 4100 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4101 { 4102 struct nvme_id_ctrl *id; 4103 u32 nn, i; 4104 4105 if (nvme_identify_ctrl(ctrl, &id)) 4106 return; 4107 nn = le32_to_cpu(id->nn); 4108 kfree(id); 4109 4110 for (i = 1; i <= nn; i++) 4111 nvme_validate_or_alloc_ns(ctrl, i); 4112 4113 nvme_remove_invalid_namespaces(ctrl, nn); 4114 } 4115 4116 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4117 { 4118 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4119 __le32 *log; 4120 int error; 4121 4122 log = kzalloc(log_size, GFP_KERNEL); 4123 if (!log) 4124 return; 4125 4126 /* 4127 * We need to read the log to clear the AEN, but we don't want to rely 4128 * on it for the changed namespace information as userspace could have 4129 * raced with us in reading the log page, which could cause us to miss 4130 * updates. 4131 */ 4132 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4133 NVME_CSI_NVM, log, log_size, 0); 4134 if (error) 4135 dev_warn(ctrl->device, 4136 "reading changed ns log failed: %d\n", error); 4137 4138 kfree(log); 4139 } 4140 4141 static void nvme_scan_work(struct work_struct *work) 4142 { 4143 struct nvme_ctrl *ctrl = 4144 container_of(work, struct nvme_ctrl, scan_work); 4145 4146 /* No tagset on a live ctrl means IO queues could not created */ 4147 if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset) 4148 return; 4149 4150 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4151 dev_info(ctrl->device, "rescanning namespaces.\n"); 4152 nvme_clear_changed_ns_log(ctrl); 4153 } 4154 4155 mutex_lock(&ctrl->scan_lock); 4156 if (nvme_scan_ns_list(ctrl) != 0) 4157 nvme_scan_ns_sequential(ctrl); 4158 mutex_unlock(&ctrl->scan_lock); 4159 } 4160 4161 /* 4162 * This function iterates the namespace list unlocked to allow recovery from 4163 * controller failure. It is up to the caller to ensure the namespace list is 4164 * not modified by scan work while this function is executing. 4165 */ 4166 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4167 { 4168 struct nvme_ns *ns, *next; 4169 LIST_HEAD(ns_list); 4170 4171 /* 4172 * make sure to requeue I/O to all namespaces as these 4173 * might result from the scan itself and must complete 4174 * for the scan_work to make progress 4175 */ 4176 nvme_mpath_clear_ctrl_paths(ctrl); 4177 4178 /* prevent racing with ns scanning */ 4179 flush_work(&ctrl->scan_work); 4180 4181 /* 4182 * The dead states indicates the controller was not gracefully 4183 * disconnected. In that case, we won't be able to flush any data while 4184 * removing the namespaces' disks; fail all the queues now to avoid 4185 * potentially having to clean up the failed sync later. 4186 */ 4187 if (ctrl->state == NVME_CTRL_DEAD) 4188 nvme_kill_queues(ctrl); 4189 4190 /* this is a no-op when called from the controller reset handler */ 4191 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4192 4193 down_write(&ctrl->namespaces_rwsem); 4194 list_splice_init(&ctrl->namespaces, &ns_list); 4195 up_write(&ctrl->namespaces_rwsem); 4196 4197 list_for_each_entry_safe(ns, next, &ns_list, list) 4198 nvme_ns_remove(ns); 4199 } 4200 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4201 4202 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env) 4203 { 4204 struct nvme_ctrl *ctrl = 4205 container_of(dev, struct nvme_ctrl, ctrl_device); 4206 struct nvmf_ctrl_options *opts = ctrl->opts; 4207 int ret; 4208 4209 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4210 if (ret) 4211 return ret; 4212 4213 if (opts) { 4214 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4215 if (ret) 4216 return ret; 4217 4218 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4219 opts->trsvcid ?: "none"); 4220 if (ret) 4221 return ret; 4222 4223 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4224 opts->host_traddr ?: "none"); 4225 if (ret) 4226 return ret; 4227 4228 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4229 opts->host_iface ?: "none"); 4230 } 4231 return ret; 4232 } 4233 4234 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4235 { 4236 char *envp[2] = { NULL, NULL }; 4237 u32 aen_result = ctrl->aen_result; 4238 4239 ctrl->aen_result = 0; 4240 if (!aen_result) 4241 return; 4242 4243 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4244 if (!envp[0]) 4245 return; 4246 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4247 kfree(envp[0]); 4248 } 4249 4250 static void nvme_async_event_work(struct work_struct *work) 4251 { 4252 struct nvme_ctrl *ctrl = 4253 container_of(work, struct nvme_ctrl, async_event_work); 4254 4255 nvme_aen_uevent(ctrl); 4256 ctrl->ops->submit_async_event(ctrl); 4257 } 4258 4259 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4260 { 4261 4262 u32 csts; 4263 4264 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4265 return false; 4266 4267 if (csts == ~0) 4268 return false; 4269 4270 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4271 } 4272 4273 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4274 { 4275 struct nvme_fw_slot_info_log *log; 4276 4277 log = kmalloc(sizeof(*log), GFP_KERNEL); 4278 if (!log) 4279 return; 4280 4281 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4282 log, sizeof(*log), 0)) 4283 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4284 kfree(log); 4285 } 4286 4287 static void nvme_fw_act_work(struct work_struct *work) 4288 { 4289 struct nvme_ctrl *ctrl = container_of(work, 4290 struct nvme_ctrl, fw_act_work); 4291 unsigned long fw_act_timeout; 4292 4293 if (ctrl->mtfa) 4294 fw_act_timeout = jiffies + 4295 msecs_to_jiffies(ctrl->mtfa * 100); 4296 else 4297 fw_act_timeout = jiffies + 4298 msecs_to_jiffies(admin_timeout * 1000); 4299 4300 nvme_stop_queues(ctrl); 4301 while (nvme_ctrl_pp_status(ctrl)) { 4302 if (time_after(jiffies, fw_act_timeout)) { 4303 dev_warn(ctrl->device, 4304 "Fw activation timeout, reset controller\n"); 4305 nvme_try_sched_reset(ctrl); 4306 return; 4307 } 4308 msleep(100); 4309 } 4310 4311 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4312 return; 4313 4314 nvme_start_queues(ctrl); 4315 /* read FW slot information to clear the AER */ 4316 nvme_get_fw_slot_info(ctrl); 4317 } 4318 4319 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4320 { 4321 u32 aer_notice_type = (result & 0xff00) >> 8; 4322 4323 trace_nvme_async_event(ctrl, aer_notice_type); 4324 4325 switch (aer_notice_type) { 4326 case NVME_AER_NOTICE_NS_CHANGED: 4327 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4328 nvme_queue_scan(ctrl); 4329 break; 4330 case NVME_AER_NOTICE_FW_ACT_STARTING: 4331 /* 4332 * We are (ab)using the RESETTING state to prevent subsequent 4333 * recovery actions from interfering with the controller's 4334 * firmware activation. 4335 */ 4336 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 4337 queue_work(nvme_wq, &ctrl->fw_act_work); 4338 break; 4339 #ifdef CONFIG_NVME_MULTIPATH 4340 case NVME_AER_NOTICE_ANA: 4341 if (!ctrl->ana_log_buf) 4342 break; 4343 queue_work(nvme_wq, &ctrl->ana_work); 4344 break; 4345 #endif 4346 case NVME_AER_NOTICE_DISC_CHANGED: 4347 ctrl->aen_result = result; 4348 break; 4349 default: 4350 dev_warn(ctrl->device, "async event result %08x\n", result); 4351 } 4352 } 4353 4354 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4355 volatile union nvme_result *res) 4356 { 4357 u32 result = le32_to_cpu(res->u32); 4358 u32 aer_type = result & 0x07; 4359 4360 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4361 return; 4362 4363 switch (aer_type) { 4364 case NVME_AER_NOTICE: 4365 nvme_handle_aen_notice(ctrl, result); 4366 break; 4367 case NVME_AER_ERROR: 4368 case NVME_AER_SMART: 4369 case NVME_AER_CSS: 4370 case NVME_AER_VS: 4371 trace_nvme_async_event(ctrl, aer_type); 4372 ctrl->aen_result = result; 4373 break; 4374 default: 4375 break; 4376 } 4377 queue_work(nvme_wq, &ctrl->async_event_work); 4378 } 4379 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4380 4381 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4382 { 4383 nvme_mpath_stop(ctrl); 4384 nvme_stop_keep_alive(ctrl); 4385 nvme_stop_failfast_work(ctrl); 4386 flush_work(&ctrl->async_event_work); 4387 cancel_work_sync(&ctrl->fw_act_work); 4388 } 4389 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4390 4391 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4392 { 4393 nvme_start_keep_alive(ctrl); 4394 4395 nvme_enable_aen(ctrl); 4396 4397 if (ctrl->queue_count > 1) { 4398 nvme_queue_scan(ctrl); 4399 nvme_start_queues(ctrl); 4400 } 4401 } 4402 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4403 4404 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4405 { 4406 nvme_hwmon_exit(ctrl); 4407 nvme_fault_inject_fini(&ctrl->fault_inject); 4408 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4409 cdev_device_del(&ctrl->cdev, ctrl->device); 4410 nvme_put_ctrl(ctrl); 4411 } 4412 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4413 4414 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4415 { 4416 struct nvme_effects_log *cel; 4417 unsigned long i; 4418 4419 xa_for_each(&ctrl->cels, i, cel) { 4420 xa_erase(&ctrl->cels, i); 4421 kfree(cel); 4422 } 4423 4424 xa_destroy(&ctrl->cels); 4425 } 4426 4427 static void nvme_free_ctrl(struct device *dev) 4428 { 4429 struct nvme_ctrl *ctrl = 4430 container_of(dev, struct nvme_ctrl, ctrl_device); 4431 struct nvme_subsystem *subsys = ctrl->subsys; 4432 4433 if (!subsys || ctrl->instance != subsys->instance) 4434 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4435 4436 nvme_free_cels(ctrl); 4437 nvme_mpath_uninit(ctrl); 4438 __free_page(ctrl->discard_page); 4439 4440 if (subsys) { 4441 mutex_lock(&nvme_subsystems_lock); 4442 list_del(&ctrl->subsys_entry); 4443 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4444 mutex_unlock(&nvme_subsystems_lock); 4445 } 4446 4447 ctrl->ops->free_ctrl(ctrl); 4448 4449 if (subsys) 4450 nvme_put_subsystem(subsys); 4451 } 4452 4453 /* 4454 * Initialize a NVMe controller structures. This needs to be called during 4455 * earliest initialization so that we have the initialized structured around 4456 * during probing. 4457 */ 4458 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4459 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4460 { 4461 int ret; 4462 4463 ctrl->state = NVME_CTRL_NEW; 4464 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4465 spin_lock_init(&ctrl->lock); 4466 mutex_init(&ctrl->scan_lock); 4467 INIT_LIST_HEAD(&ctrl->namespaces); 4468 xa_init(&ctrl->cels); 4469 init_rwsem(&ctrl->namespaces_rwsem); 4470 ctrl->dev = dev; 4471 ctrl->ops = ops; 4472 ctrl->quirks = quirks; 4473 ctrl->numa_node = NUMA_NO_NODE; 4474 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4475 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4476 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4477 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4478 init_waitqueue_head(&ctrl->state_wq); 4479 4480 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4481 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4482 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4483 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4484 4485 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4486 PAGE_SIZE); 4487 ctrl->discard_page = alloc_page(GFP_KERNEL); 4488 if (!ctrl->discard_page) { 4489 ret = -ENOMEM; 4490 goto out; 4491 } 4492 4493 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL); 4494 if (ret < 0) 4495 goto out; 4496 ctrl->instance = ret; 4497 4498 device_initialize(&ctrl->ctrl_device); 4499 ctrl->device = &ctrl->ctrl_device; 4500 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4501 ctrl->instance); 4502 ctrl->device->class = nvme_class; 4503 ctrl->device->parent = ctrl->dev; 4504 ctrl->device->groups = nvme_dev_attr_groups; 4505 ctrl->device->release = nvme_free_ctrl; 4506 dev_set_drvdata(ctrl->device, ctrl); 4507 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4508 if (ret) 4509 goto out_release_instance; 4510 4511 nvme_get_ctrl(ctrl); 4512 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4513 ctrl->cdev.owner = ops->module; 4514 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4515 if (ret) 4516 goto out_free_name; 4517 4518 /* 4519 * Initialize latency tolerance controls. The sysfs files won't 4520 * be visible to userspace unless the device actually supports APST. 4521 */ 4522 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4523 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4524 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4525 4526 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4527 nvme_mpath_init_ctrl(ctrl); 4528 4529 return 0; 4530 out_free_name: 4531 nvme_put_ctrl(ctrl); 4532 kfree_const(ctrl->device->kobj.name); 4533 out_release_instance: 4534 ida_simple_remove(&nvme_instance_ida, ctrl->instance); 4535 out: 4536 if (ctrl->discard_page) 4537 __free_page(ctrl->discard_page); 4538 return ret; 4539 } 4540 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4541 4542 static void nvme_start_ns_queue(struct nvme_ns *ns) 4543 { 4544 if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags)) 4545 blk_mq_unquiesce_queue(ns->queue); 4546 } 4547 4548 static void nvme_stop_ns_queue(struct nvme_ns *ns) 4549 { 4550 if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags)) 4551 blk_mq_quiesce_queue(ns->queue); 4552 else 4553 blk_mq_wait_quiesce_done(ns->queue); 4554 } 4555 4556 /* 4557 * Prepare a queue for teardown. 4558 * 4559 * This must forcibly unquiesce queues to avoid blocking dispatch, and only set 4560 * the capacity to 0 after that to avoid blocking dispatchers that may be 4561 * holding bd_butex. This will end buffered writers dirtying pages that can't 4562 * be synced. 4563 */ 4564 static void nvme_set_queue_dying(struct nvme_ns *ns) 4565 { 4566 if (test_and_set_bit(NVME_NS_DEAD, &ns->flags)) 4567 return; 4568 4569 blk_set_queue_dying(ns->queue); 4570 nvme_start_ns_queue(ns); 4571 4572 set_capacity_and_notify(ns->disk, 0); 4573 } 4574 4575 /** 4576 * nvme_kill_queues(): Ends all namespace queues 4577 * @ctrl: the dead controller that needs to end 4578 * 4579 * Call this function when the driver determines it is unable to get the 4580 * controller in a state capable of servicing IO. 4581 */ 4582 void nvme_kill_queues(struct nvme_ctrl *ctrl) 4583 { 4584 struct nvme_ns *ns; 4585 4586 down_read(&ctrl->namespaces_rwsem); 4587 4588 /* Forcibly unquiesce queues to avoid blocking dispatch */ 4589 if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q)) 4590 nvme_start_admin_queue(ctrl); 4591 4592 list_for_each_entry(ns, &ctrl->namespaces, list) 4593 nvme_set_queue_dying(ns); 4594 4595 up_read(&ctrl->namespaces_rwsem); 4596 } 4597 EXPORT_SYMBOL_GPL(nvme_kill_queues); 4598 4599 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4600 { 4601 struct nvme_ns *ns; 4602 4603 down_read(&ctrl->namespaces_rwsem); 4604 list_for_each_entry(ns, &ctrl->namespaces, list) 4605 blk_mq_unfreeze_queue(ns->queue); 4606 up_read(&ctrl->namespaces_rwsem); 4607 } 4608 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4609 4610 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4611 { 4612 struct nvme_ns *ns; 4613 4614 down_read(&ctrl->namespaces_rwsem); 4615 list_for_each_entry(ns, &ctrl->namespaces, list) { 4616 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4617 if (timeout <= 0) 4618 break; 4619 } 4620 up_read(&ctrl->namespaces_rwsem); 4621 return timeout; 4622 } 4623 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4624 4625 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4626 { 4627 struct nvme_ns *ns; 4628 4629 down_read(&ctrl->namespaces_rwsem); 4630 list_for_each_entry(ns, &ctrl->namespaces, list) 4631 blk_mq_freeze_queue_wait(ns->queue); 4632 up_read(&ctrl->namespaces_rwsem); 4633 } 4634 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4635 4636 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4637 { 4638 struct nvme_ns *ns; 4639 4640 down_read(&ctrl->namespaces_rwsem); 4641 list_for_each_entry(ns, &ctrl->namespaces, list) 4642 blk_freeze_queue_start(ns->queue); 4643 up_read(&ctrl->namespaces_rwsem); 4644 } 4645 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4646 4647 void nvme_stop_queues(struct nvme_ctrl *ctrl) 4648 { 4649 struct nvme_ns *ns; 4650 4651 down_read(&ctrl->namespaces_rwsem); 4652 list_for_each_entry(ns, &ctrl->namespaces, list) 4653 nvme_stop_ns_queue(ns); 4654 up_read(&ctrl->namespaces_rwsem); 4655 } 4656 EXPORT_SYMBOL_GPL(nvme_stop_queues); 4657 4658 void nvme_start_queues(struct nvme_ctrl *ctrl) 4659 { 4660 struct nvme_ns *ns; 4661 4662 down_read(&ctrl->namespaces_rwsem); 4663 list_for_each_entry(ns, &ctrl->namespaces, list) 4664 nvme_start_ns_queue(ns); 4665 up_read(&ctrl->namespaces_rwsem); 4666 } 4667 EXPORT_SYMBOL_GPL(nvme_start_queues); 4668 4669 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl) 4670 { 4671 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4672 blk_mq_quiesce_queue(ctrl->admin_q); 4673 else 4674 blk_mq_wait_quiesce_done(ctrl->admin_q); 4675 } 4676 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue); 4677 4678 void nvme_start_admin_queue(struct nvme_ctrl *ctrl) 4679 { 4680 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4681 blk_mq_unquiesce_queue(ctrl->admin_q); 4682 } 4683 EXPORT_SYMBOL_GPL(nvme_start_admin_queue); 4684 4685 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4686 { 4687 struct nvme_ns *ns; 4688 4689 down_read(&ctrl->namespaces_rwsem); 4690 list_for_each_entry(ns, &ctrl->namespaces, list) 4691 blk_sync_queue(ns->queue); 4692 up_read(&ctrl->namespaces_rwsem); 4693 } 4694 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4695 4696 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4697 { 4698 nvme_sync_io_queues(ctrl); 4699 if (ctrl->admin_q) 4700 blk_sync_queue(ctrl->admin_q); 4701 } 4702 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4703 4704 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4705 { 4706 if (file->f_op != &nvme_dev_fops) 4707 return NULL; 4708 return file->private_data; 4709 } 4710 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4711 4712 /* 4713 * Check we didn't inadvertently grow the command structure sizes: 4714 */ 4715 static inline void _nvme_check_size(void) 4716 { 4717 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4718 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4719 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4720 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4721 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4722 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4723 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4724 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4725 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4726 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4727 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4728 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4729 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4730 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4731 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4732 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4733 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4734 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4735 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4736 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4737 } 4738 4739 4740 static int __init nvme_core_init(void) 4741 { 4742 int result = -ENOMEM; 4743 4744 _nvme_check_size(); 4745 4746 nvme_wq = alloc_workqueue("nvme-wq", 4747 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4748 if (!nvme_wq) 4749 goto out; 4750 4751 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4752 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4753 if (!nvme_reset_wq) 4754 goto destroy_wq; 4755 4756 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4757 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4758 if (!nvme_delete_wq) 4759 goto destroy_reset_wq; 4760 4761 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4762 NVME_MINORS, "nvme"); 4763 if (result < 0) 4764 goto destroy_delete_wq; 4765 4766 nvme_class = class_create(THIS_MODULE, "nvme"); 4767 if (IS_ERR(nvme_class)) { 4768 result = PTR_ERR(nvme_class); 4769 goto unregister_chrdev; 4770 } 4771 nvme_class->dev_uevent = nvme_class_uevent; 4772 4773 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem"); 4774 if (IS_ERR(nvme_subsys_class)) { 4775 result = PTR_ERR(nvme_subsys_class); 4776 goto destroy_class; 4777 } 4778 4779 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4780 "nvme-generic"); 4781 if (result < 0) 4782 goto destroy_subsys_class; 4783 4784 nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic"); 4785 if (IS_ERR(nvme_ns_chr_class)) { 4786 result = PTR_ERR(nvme_ns_chr_class); 4787 goto unregister_generic_ns; 4788 } 4789 4790 return 0; 4791 4792 unregister_generic_ns: 4793 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4794 destroy_subsys_class: 4795 class_destroy(nvme_subsys_class); 4796 destroy_class: 4797 class_destroy(nvme_class); 4798 unregister_chrdev: 4799 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4800 destroy_delete_wq: 4801 destroy_workqueue(nvme_delete_wq); 4802 destroy_reset_wq: 4803 destroy_workqueue(nvme_reset_wq); 4804 destroy_wq: 4805 destroy_workqueue(nvme_wq); 4806 out: 4807 return result; 4808 } 4809 4810 static void __exit nvme_core_exit(void) 4811 { 4812 class_destroy(nvme_ns_chr_class); 4813 class_destroy(nvme_subsys_class); 4814 class_destroy(nvme_class); 4815 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4816 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4817 destroy_workqueue(nvme_delete_wq); 4818 destroy_workqueue(nvme_reset_wq); 4819 destroy_workqueue(nvme_wq); 4820 ida_destroy(&nvme_ns_chr_minor_ida); 4821 ida_destroy(&nvme_instance_ida); 4822 } 4823 4824 MODULE_LICENSE("GPL"); 4825 MODULE_VERSION("1.0"); 4826 module_init(nvme_core_init); 4827 module_exit(nvme_core_exit); 4828