xref: /linux/drivers/nvme/host/core.c (revision 1cbfb828e05171ca2dd77b5988d068e6872480fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	bool is_shared;
42 	bool is_readonly;
43 	bool is_ready;
44 	bool is_removed;
45 	bool is_rotational;
46 	bool no_vwc;
47 };
48 
49 unsigned int admin_timeout = 60;
50 module_param(admin_timeout, uint, 0644);
51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
52 EXPORT_SYMBOL_GPL(admin_timeout);
53 
54 unsigned int nvme_io_timeout = 30;
55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
57 EXPORT_SYMBOL_GPL(nvme_io_timeout);
58 
59 static unsigned char shutdown_timeout = 5;
60 module_param(shutdown_timeout, byte, 0644);
61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
62 
63 static u8 nvme_max_retries = 5;
64 module_param_named(max_retries, nvme_max_retries, byte, 0644);
65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
66 
67 static unsigned long default_ps_max_latency_us = 100000;
68 module_param(default_ps_max_latency_us, ulong, 0644);
69 MODULE_PARM_DESC(default_ps_max_latency_us,
70 		 "max power saving latency for new devices; use PM QOS to change per device");
71 
72 static bool force_apst;
73 module_param(force_apst, bool, 0644);
74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
75 
76 static unsigned long apst_primary_timeout_ms = 100;
77 module_param(apst_primary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_primary_timeout_ms,
79 	"primary APST timeout in ms");
80 
81 static unsigned long apst_secondary_timeout_ms = 2000;
82 module_param(apst_secondary_timeout_ms, ulong, 0644);
83 MODULE_PARM_DESC(apst_secondary_timeout_ms,
84 	"secondary APST timeout in ms");
85 
86 static unsigned long apst_primary_latency_tol_us = 15000;
87 module_param(apst_primary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_primary_latency_tol_us,
89 	"primary APST latency tolerance in us");
90 
91 static unsigned long apst_secondary_latency_tol_us = 100000;
92 module_param(apst_secondary_latency_tol_us, ulong, 0644);
93 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
94 	"secondary APST latency tolerance in us");
95 
96 /*
97  * Older kernels didn't enable protection information if it was at an offset.
98  * Newer kernels do, so it breaks reads on the upgrade if such formats were
99  * used in prior kernels since the metadata written did not contain a valid
100  * checksum.
101  */
102 static bool disable_pi_offsets = false;
103 module_param(disable_pi_offsets, bool, 0444);
104 MODULE_PARM_DESC(disable_pi_offsets,
105 	"disable protection information if it has an offset");
106 
107 /*
108  * nvme_wq - hosts nvme related works that are not reset or delete
109  * nvme_reset_wq - hosts nvme reset works
110  * nvme_delete_wq - hosts nvme delete works
111  *
112  * nvme_wq will host works such as scan, aen handling, fw activation,
113  * keep-alive, periodic reconnects etc. nvme_reset_wq
114  * runs reset works which also flush works hosted on nvme_wq for
115  * serialization purposes. nvme_delete_wq host controller deletion
116  * works which flush reset works for serialization.
117  */
118 struct workqueue_struct *nvme_wq;
119 EXPORT_SYMBOL_GPL(nvme_wq);
120 
121 struct workqueue_struct *nvme_reset_wq;
122 EXPORT_SYMBOL_GPL(nvme_reset_wq);
123 
124 struct workqueue_struct *nvme_delete_wq;
125 EXPORT_SYMBOL_GPL(nvme_delete_wq);
126 
127 static LIST_HEAD(nvme_subsystems);
128 DEFINE_MUTEX(nvme_subsystems_lock);
129 
130 static DEFINE_IDA(nvme_instance_ida);
131 static dev_t nvme_ctrl_base_chr_devt;
132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
133 static const struct class nvme_class = {
134 	.name = "nvme",
135 	.dev_uevent = nvme_class_uevent,
136 };
137 
138 static const struct class nvme_subsys_class = {
139 	.name = "nvme-subsystem",
140 };
141 
142 static DEFINE_IDA(nvme_ns_chr_minor_ida);
143 static dev_t nvme_ns_chr_devt;
144 static const struct class nvme_ns_chr_class = {
145 	.name = "nvme-generic",
146 };
147 
148 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
150 					   unsigned nsid);
151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
152 				   struct nvme_command *cmd);
153 
154 void nvme_queue_scan(struct nvme_ctrl *ctrl)
155 {
156 	/*
157 	 * Only new queue scan work when admin and IO queues are both alive
158 	 */
159 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
160 		queue_work(nvme_wq, &ctrl->scan_work);
161 }
162 
163 /*
164  * Use this function to proceed with scheduling reset_work for a controller
165  * that had previously been set to the resetting state. This is intended for
166  * code paths that can't be interrupted by other reset attempts. A hot removal
167  * may prevent this from succeeding.
168  */
169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
170 {
171 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
172 		return -EBUSY;
173 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
174 		return -EBUSY;
175 	return 0;
176 }
177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
178 
179 static void nvme_failfast_work(struct work_struct *work)
180 {
181 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
182 			struct nvme_ctrl, failfast_work);
183 
184 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
185 		return;
186 
187 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
188 	dev_info(ctrl->device, "failfast expired\n");
189 	nvme_kick_requeue_lists(ctrl);
190 }
191 
192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
193 {
194 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
195 		return;
196 
197 	schedule_delayed_work(&ctrl->failfast_work,
198 			      ctrl->opts->fast_io_fail_tmo * HZ);
199 }
200 
201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
202 {
203 	if (!ctrl->opts)
204 		return;
205 
206 	cancel_delayed_work_sync(&ctrl->failfast_work);
207 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
208 }
209 
210 
211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
212 {
213 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
214 		return -EBUSY;
215 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
216 		return -EBUSY;
217 	return 0;
218 }
219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
220 
221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
222 {
223 	int ret;
224 
225 	ret = nvme_reset_ctrl(ctrl);
226 	if (!ret) {
227 		flush_work(&ctrl->reset_work);
228 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
229 			ret = -ENETRESET;
230 	}
231 
232 	return ret;
233 }
234 
235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
236 {
237 	dev_info(ctrl->device,
238 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
239 
240 	flush_work(&ctrl->reset_work);
241 	nvme_stop_ctrl(ctrl);
242 	nvme_remove_namespaces(ctrl);
243 	ctrl->ops->delete_ctrl(ctrl);
244 	nvme_uninit_ctrl(ctrl);
245 }
246 
247 static void nvme_delete_ctrl_work(struct work_struct *work)
248 {
249 	struct nvme_ctrl *ctrl =
250 		container_of(work, struct nvme_ctrl, delete_work);
251 
252 	nvme_do_delete_ctrl(ctrl);
253 }
254 
255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
256 {
257 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		return -EBUSY;
259 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
260 		return -EBUSY;
261 	return 0;
262 }
263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
264 
265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
266 {
267 	/*
268 	 * Keep a reference until nvme_do_delete_ctrl() complete,
269 	 * since ->delete_ctrl can free the controller.
270 	 */
271 	nvme_get_ctrl(ctrl);
272 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
273 		nvme_do_delete_ctrl(ctrl);
274 	nvme_put_ctrl(ctrl);
275 }
276 
277 static blk_status_t nvme_error_status(u16 status)
278 {
279 	switch (status & NVME_SCT_SC_MASK) {
280 	case NVME_SC_SUCCESS:
281 		return BLK_STS_OK;
282 	case NVME_SC_CAP_EXCEEDED:
283 		return BLK_STS_NOSPC;
284 	case NVME_SC_LBA_RANGE:
285 	case NVME_SC_CMD_INTERRUPTED:
286 	case NVME_SC_NS_NOT_READY:
287 		return BLK_STS_TARGET;
288 	case NVME_SC_BAD_ATTRIBUTES:
289 	case NVME_SC_ONCS_NOT_SUPPORTED:
290 	case NVME_SC_INVALID_OPCODE:
291 	case NVME_SC_INVALID_FIELD:
292 	case NVME_SC_INVALID_NS:
293 		return BLK_STS_NOTSUPP;
294 	case NVME_SC_WRITE_FAULT:
295 	case NVME_SC_READ_ERROR:
296 	case NVME_SC_UNWRITTEN_BLOCK:
297 	case NVME_SC_ACCESS_DENIED:
298 	case NVME_SC_READ_ONLY:
299 	case NVME_SC_COMPARE_FAILED:
300 		return BLK_STS_MEDIUM;
301 	case NVME_SC_GUARD_CHECK:
302 	case NVME_SC_APPTAG_CHECK:
303 	case NVME_SC_REFTAG_CHECK:
304 	case NVME_SC_INVALID_PI:
305 		return BLK_STS_PROTECTION;
306 	case NVME_SC_RESERVATION_CONFLICT:
307 		return BLK_STS_RESV_CONFLICT;
308 	case NVME_SC_HOST_PATH_ERROR:
309 		return BLK_STS_TRANSPORT;
310 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
311 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
312 	case NVME_SC_ZONE_TOO_MANY_OPEN:
313 		return BLK_STS_ZONE_OPEN_RESOURCE;
314 	default:
315 		return BLK_STS_IOERR;
316 	}
317 }
318 
319 static void nvme_retry_req(struct request *req)
320 {
321 	unsigned long delay = 0;
322 	u16 crd;
323 
324 	/* The mask and shift result must be <= 3 */
325 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
326 	if (crd)
327 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
328 
329 	nvme_req(req)->retries++;
330 	blk_mq_requeue_request(req, false);
331 	blk_mq_delay_kick_requeue_list(req->q, delay);
332 }
333 
334 static void nvme_log_error(struct request *req)
335 {
336 	struct nvme_ns *ns = req->q->queuedata;
337 	struct nvme_request *nr = nvme_req(req);
338 
339 	if (ns) {
340 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
341 		       ns->disk ? ns->disk->disk_name : "?",
342 		       nvme_get_opcode_str(nr->cmd->common.opcode),
343 		       nr->cmd->common.opcode,
344 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
345 		       blk_rq_bytes(req) >> ns->head->lba_shift,
346 		       nvme_get_error_status_str(nr->status),
347 		       NVME_SCT(nr->status),		/* Status Code Type */
348 		       nr->status & NVME_SC_MASK,	/* Status Code */
349 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
350 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
351 		return;
352 	}
353 
354 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
355 			   dev_name(nr->ctrl->device),
356 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
357 			   nr->cmd->common.opcode,
358 			   nvme_get_error_status_str(nr->status),
359 			   NVME_SCT(nr->status),	/* Status Code Type */
360 			   nr->status & NVME_SC_MASK,	/* Status Code */
361 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
362 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
363 }
364 
365 static void nvme_log_err_passthru(struct request *req)
366 {
367 	struct nvme_ns *ns = req->q->queuedata;
368 	struct nvme_request *nr = nvme_req(req);
369 
370 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
371 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
372 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
373 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
374 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
375 		nr->cmd->common.opcode,
376 		nvme_get_error_status_str(nr->status),
377 		NVME_SCT(nr->status),		/* Status Code Type */
378 		nr->status & NVME_SC_MASK,	/* Status Code */
379 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
380 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
381 		nr->cmd->common.cdw10,
382 		nr->cmd->common.cdw11,
383 		nr->cmd->common.cdw12,
384 		nr->cmd->common.cdw13,
385 		nr->cmd->common.cdw14,
386 		nr->cmd->common.cdw14);
387 }
388 
389 enum nvme_disposition {
390 	COMPLETE,
391 	RETRY,
392 	FAILOVER,
393 	AUTHENTICATE,
394 };
395 
396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
397 {
398 	if (likely(nvme_req(req)->status == 0))
399 		return COMPLETE;
400 
401 	if (blk_noretry_request(req) ||
402 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
403 	    nvme_req(req)->retries >= nvme_max_retries)
404 		return COMPLETE;
405 
406 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
407 		return AUTHENTICATE;
408 
409 	if (req->cmd_flags & REQ_NVME_MPATH) {
410 		if (nvme_is_path_error(nvme_req(req)->status) ||
411 		    blk_queue_dying(req->q))
412 			return FAILOVER;
413 	} else {
414 		if (blk_queue_dying(req->q))
415 			return COMPLETE;
416 	}
417 
418 	return RETRY;
419 }
420 
421 static inline void nvme_end_req_zoned(struct request *req)
422 {
423 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
424 	    req_op(req) == REQ_OP_ZONE_APPEND) {
425 		struct nvme_ns *ns = req->q->queuedata;
426 
427 		req->__sector = nvme_lba_to_sect(ns->head,
428 			le64_to_cpu(nvme_req(req)->result.u64));
429 	}
430 }
431 
432 static inline void __nvme_end_req(struct request *req)
433 {
434 	nvme_end_req_zoned(req);
435 	nvme_trace_bio_complete(req);
436 	if (req->cmd_flags & REQ_NVME_MPATH)
437 		nvme_mpath_end_request(req);
438 }
439 
440 void nvme_end_req(struct request *req)
441 {
442 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
443 
444 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
445 		if (blk_rq_is_passthrough(req))
446 			nvme_log_err_passthru(req);
447 		else
448 			nvme_log_error(req);
449 	}
450 	__nvme_end_req(req);
451 	blk_mq_end_request(req, status);
452 }
453 
454 void nvme_complete_rq(struct request *req)
455 {
456 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
457 
458 	trace_nvme_complete_rq(req);
459 	nvme_cleanup_cmd(req);
460 
461 	/*
462 	 * Completions of long-running commands should not be able to
463 	 * defer sending of periodic keep alives, since the controller
464 	 * may have completed processing such commands a long time ago
465 	 * (arbitrarily close to command submission time).
466 	 * req->deadline - req->timeout is the command submission time
467 	 * in jiffies.
468 	 */
469 	if (ctrl->kas &&
470 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
471 		ctrl->comp_seen = true;
472 
473 	switch (nvme_decide_disposition(req)) {
474 	case COMPLETE:
475 		nvme_end_req(req);
476 		return;
477 	case RETRY:
478 		nvme_retry_req(req);
479 		return;
480 	case FAILOVER:
481 		nvme_failover_req(req);
482 		return;
483 	case AUTHENTICATE:
484 #ifdef CONFIG_NVME_HOST_AUTH
485 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
486 		nvme_retry_req(req);
487 #else
488 		nvme_end_req(req);
489 #endif
490 		return;
491 	}
492 }
493 EXPORT_SYMBOL_GPL(nvme_complete_rq);
494 
495 void nvme_complete_batch_req(struct request *req)
496 {
497 	trace_nvme_complete_rq(req);
498 	nvme_cleanup_cmd(req);
499 	__nvme_end_req(req);
500 }
501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
502 
503 /*
504  * Called to unwind from ->queue_rq on a failed command submission so that the
505  * multipathing code gets called to potentially failover to another path.
506  * The caller needs to unwind all transport specific resource allocations and
507  * must return propagate the return value.
508  */
509 blk_status_t nvme_host_path_error(struct request *req)
510 {
511 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
512 	blk_mq_set_request_complete(req);
513 	nvme_complete_rq(req);
514 	return BLK_STS_OK;
515 }
516 EXPORT_SYMBOL_GPL(nvme_host_path_error);
517 
518 bool nvme_cancel_request(struct request *req, void *data)
519 {
520 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
521 				"Cancelling I/O %d", req->tag);
522 
523 	/* don't abort one completed or idle request */
524 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
525 		return true;
526 
527 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
528 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
529 	blk_mq_complete_request(req);
530 	return true;
531 }
532 EXPORT_SYMBOL_GPL(nvme_cancel_request);
533 
534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
535 {
536 	if (ctrl->tagset) {
537 		blk_mq_tagset_busy_iter(ctrl->tagset,
538 				nvme_cancel_request, ctrl);
539 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
540 	}
541 }
542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
543 
544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
545 {
546 	if (ctrl->admin_tagset) {
547 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
548 				nvme_cancel_request, ctrl);
549 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
550 	}
551 }
552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
553 
554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
555 		enum nvme_ctrl_state new_state)
556 {
557 	enum nvme_ctrl_state old_state;
558 	unsigned long flags;
559 	bool changed = false;
560 
561 	spin_lock_irqsave(&ctrl->lock, flags);
562 
563 	old_state = nvme_ctrl_state(ctrl);
564 	switch (new_state) {
565 	case NVME_CTRL_LIVE:
566 		switch (old_state) {
567 		case NVME_CTRL_NEW:
568 		case NVME_CTRL_RESETTING:
569 		case NVME_CTRL_CONNECTING:
570 			changed = true;
571 			fallthrough;
572 		default:
573 			break;
574 		}
575 		break;
576 	case NVME_CTRL_RESETTING:
577 		switch (old_state) {
578 		case NVME_CTRL_NEW:
579 		case NVME_CTRL_LIVE:
580 			changed = true;
581 			fallthrough;
582 		default:
583 			break;
584 		}
585 		break;
586 	case NVME_CTRL_CONNECTING:
587 		switch (old_state) {
588 		case NVME_CTRL_NEW:
589 		case NVME_CTRL_RESETTING:
590 			changed = true;
591 			fallthrough;
592 		default:
593 			break;
594 		}
595 		break;
596 	case NVME_CTRL_DELETING:
597 		switch (old_state) {
598 		case NVME_CTRL_LIVE:
599 		case NVME_CTRL_RESETTING:
600 		case NVME_CTRL_CONNECTING:
601 			changed = true;
602 			fallthrough;
603 		default:
604 			break;
605 		}
606 		break;
607 	case NVME_CTRL_DELETING_NOIO:
608 		switch (old_state) {
609 		case NVME_CTRL_DELETING:
610 		case NVME_CTRL_DEAD:
611 			changed = true;
612 			fallthrough;
613 		default:
614 			break;
615 		}
616 		break;
617 	case NVME_CTRL_DEAD:
618 		switch (old_state) {
619 		case NVME_CTRL_DELETING:
620 			changed = true;
621 			fallthrough;
622 		default:
623 			break;
624 		}
625 		break;
626 	default:
627 		break;
628 	}
629 
630 	if (changed) {
631 		WRITE_ONCE(ctrl->state, new_state);
632 		wake_up_all(&ctrl->state_wq);
633 	}
634 
635 	spin_unlock_irqrestore(&ctrl->lock, flags);
636 	if (!changed)
637 		return false;
638 
639 	if (new_state == NVME_CTRL_LIVE) {
640 		if (old_state == NVME_CTRL_CONNECTING)
641 			nvme_stop_failfast_work(ctrl);
642 		nvme_kick_requeue_lists(ctrl);
643 	} else if (new_state == NVME_CTRL_CONNECTING &&
644 		old_state == NVME_CTRL_RESETTING) {
645 		nvme_start_failfast_work(ctrl);
646 	}
647 	return changed;
648 }
649 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
650 
651 /*
652  * Waits for the controller state to be resetting, or returns false if it is
653  * not possible to ever transition to that state.
654  */
655 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
656 {
657 	wait_event(ctrl->state_wq,
658 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
659 		   nvme_state_terminal(ctrl));
660 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
661 }
662 EXPORT_SYMBOL_GPL(nvme_wait_reset);
663 
664 static void nvme_free_ns_head(struct kref *ref)
665 {
666 	struct nvme_ns_head *head =
667 		container_of(ref, struct nvme_ns_head, ref);
668 
669 	nvme_mpath_remove_disk(head);
670 	ida_free(&head->subsys->ns_ida, head->instance);
671 	cleanup_srcu_struct(&head->srcu);
672 	nvme_put_subsystem(head->subsys);
673 	kfree(head);
674 }
675 
676 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
677 {
678 	return kref_get_unless_zero(&head->ref);
679 }
680 
681 void nvme_put_ns_head(struct nvme_ns_head *head)
682 {
683 	kref_put(&head->ref, nvme_free_ns_head);
684 }
685 
686 static void nvme_free_ns(struct kref *kref)
687 {
688 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
689 
690 	put_disk(ns->disk);
691 	nvme_put_ns_head(ns->head);
692 	nvme_put_ctrl(ns->ctrl);
693 	kfree(ns);
694 }
695 
696 bool nvme_get_ns(struct nvme_ns *ns)
697 {
698 	return kref_get_unless_zero(&ns->kref);
699 }
700 
701 void nvme_put_ns(struct nvme_ns *ns)
702 {
703 	kref_put(&ns->kref, nvme_free_ns);
704 }
705 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
706 
707 static inline void nvme_clear_nvme_request(struct request *req)
708 {
709 	nvme_req(req)->status = 0;
710 	nvme_req(req)->retries = 0;
711 	nvme_req(req)->flags = 0;
712 	req->rq_flags |= RQF_DONTPREP;
713 }
714 
715 /* initialize a passthrough request */
716 void nvme_init_request(struct request *req, struct nvme_command *cmd)
717 {
718 	struct nvme_request *nr = nvme_req(req);
719 	bool logging_enabled;
720 
721 	if (req->q->queuedata) {
722 		struct nvme_ns *ns = req->q->disk->private_data;
723 
724 		logging_enabled = ns->head->passthru_err_log_enabled;
725 		req->timeout = NVME_IO_TIMEOUT;
726 	} else { /* no queuedata implies admin queue */
727 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
728 		req->timeout = NVME_ADMIN_TIMEOUT;
729 	}
730 
731 	if (!logging_enabled)
732 		req->rq_flags |= RQF_QUIET;
733 
734 	/* passthru commands should let the driver set the SGL flags */
735 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
736 
737 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
738 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
739 		req->cmd_flags |= REQ_POLLED;
740 	nvme_clear_nvme_request(req);
741 	memcpy(nr->cmd, cmd, sizeof(*cmd));
742 }
743 EXPORT_SYMBOL_GPL(nvme_init_request);
744 
745 /*
746  * For something we're not in a state to send to the device the default action
747  * is to busy it and retry it after the controller state is recovered.  However,
748  * if the controller is deleting or if anything is marked for failfast or
749  * nvme multipath it is immediately failed.
750  *
751  * Note: commands used to initialize the controller will be marked for failfast.
752  * Note: nvme cli/ioctl commands are marked for failfast.
753  */
754 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
755 		struct request *rq)
756 {
757 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
758 
759 	if (state != NVME_CTRL_DELETING_NOIO &&
760 	    state != NVME_CTRL_DELETING &&
761 	    state != NVME_CTRL_DEAD &&
762 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
763 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
764 		return BLK_STS_RESOURCE;
765 	return nvme_host_path_error(rq);
766 }
767 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
768 
769 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
770 		bool queue_live, enum nvme_ctrl_state state)
771 {
772 	struct nvme_request *req = nvme_req(rq);
773 
774 	/*
775 	 * currently we have a problem sending passthru commands
776 	 * on the admin_q if the controller is not LIVE because we can't
777 	 * make sure that they are going out after the admin connect,
778 	 * controller enable and/or other commands in the initialization
779 	 * sequence. until the controller will be LIVE, fail with
780 	 * BLK_STS_RESOURCE so that they will be rescheduled.
781 	 */
782 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
783 		return false;
784 
785 	if (ctrl->ops->flags & NVME_F_FABRICS) {
786 		/*
787 		 * Only allow commands on a live queue, except for the connect
788 		 * command, which is require to set the queue live in the
789 		 * appropinquate states.
790 		 */
791 		switch (state) {
792 		case NVME_CTRL_CONNECTING:
793 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
794 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
795 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
796 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
797 				return true;
798 			break;
799 		default:
800 			break;
801 		case NVME_CTRL_DEAD:
802 			return false;
803 		}
804 	}
805 
806 	return queue_live;
807 }
808 EXPORT_SYMBOL_GPL(__nvme_check_ready);
809 
810 static inline void nvme_setup_flush(struct nvme_ns *ns,
811 		struct nvme_command *cmnd)
812 {
813 	memset(cmnd, 0, sizeof(*cmnd));
814 	cmnd->common.opcode = nvme_cmd_flush;
815 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
816 }
817 
818 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
819 		struct nvme_command *cmnd)
820 {
821 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
822 	struct nvme_dsm_range *range;
823 	struct bio *bio;
824 
825 	/*
826 	 * Some devices do not consider the DSM 'Number of Ranges' field when
827 	 * determining how much data to DMA. Always allocate memory for maximum
828 	 * number of segments to prevent device reading beyond end of buffer.
829 	 */
830 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
831 
832 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
833 	if (!range) {
834 		/*
835 		 * If we fail allocation our range, fallback to the controller
836 		 * discard page. If that's also busy, it's safe to return
837 		 * busy, as we know we can make progress once that's freed.
838 		 */
839 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
840 			return BLK_STS_RESOURCE;
841 
842 		range = page_address(ns->ctrl->discard_page);
843 	}
844 
845 	if (queue_max_discard_segments(req->q) == 1) {
846 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
847 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
848 
849 		range[0].cattr = cpu_to_le32(0);
850 		range[0].nlb = cpu_to_le32(nlb);
851 		range[0].slba = cpu_to_le64(slba);
852 		n = 1;
853 	} else {
854 		__rq_for_each_bio(bio, req) {
855 			u64 slba = nvme_sect_to_lba(ns->head,
856 						    bio->bi_iter.bi_sector);
857 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
858 
859 			if (n < segments) {
860 				range[n].cattr = cpu_to_le32(0);
861 				range[n].nlb = cpu_to_le32(nlb);
862 				range[n].slba = cpu_to_le64(slba);
863 			}
864 			n++;
865 		}
866 	}
867 
868 	if (WARN_ON_ONCE(n != segments)) {
869 		if (virt_to_page(range) == ns->ctrl->discard_page)
870 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
871 		else
872 			kfree(range);
873 		return BLK_STS_IOERR;
874 	}
875 
876 	memset(cmnd, 0, sizeof(*cmnd));
877 	cmnd->dsm.opcode = nvme_cmd_dsm;
878 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
879 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
880 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
881 
882 	bvec_set_virt(&req->special_vec, range, alloc_size);
883 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
884 
885 	return BLK_STS_OK;
886 }
887 
888 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
889 			      struct request *req)
890 {
891 	u32 upper, lower;
892 	u64 ref48;
893 
894 	/* both rw and write zeroes share the same reftag format */
895 	switch (ns->head->guard_type) {
896 	case NVME_NVM_NS_16B_GUARD:
897 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
898 		break;
899 	case NVME_NVM_NS_64B_GUARD:
900 		ref48 = ext_pi_ref_tag(req);
901 		lower = lower_32_bits(ref48);
902 		upper = upper_32_bits(ref48);
903 
904 		cmnd->rw.reftag = cpu_to_le32(lower);
905 		cmnd->rw.cdw3 = cpu_to_le32(upper);
906 		break;
907 	default:
908 		break;
909 	}
910 }
911 
912 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
913 		struct request *req, struct nvme_command *cmnd)
914 {
915 	memset(cmnd, 0, sizeof(*cmnd));
916 
917 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
918 		return nvme_setup_discard(ns, req, cmnd);
919 
920 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
921 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
922 	cmnd->write_zeroes.slba =
923 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
924 	cmnd->write_zeroes.length =
925 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
926 
927 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
928 	    (ns->head->features & NVME_NS_DEAC))
929 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
930 
931 	if (nvme_ns_has_pi(ns->head)) {
932 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
933 
934 		switch (ns->head->pi_type) {
935 		case NVME_NS_DPS_PI_TYPE1:
936 		case NVME_NS_DPS_PI_TYPE2:
937 			nvme_set_ref_tag(ns, cmnd, req);
938 			break;
939 		}
940 	}
941 
942 	return BLK_STS_OK;
943 }
944 
945 /*
946  * NVMe does not support a dedicated command to issue an atomic write. A write
947  * which does adhere to the device atomic limits will silently be executed
948  * non-atomically. The request issuer should ensure that the write is within
949  * the queue atomic writes limits, but just validate this in case it is not.
950  */
951 static bool nvme_valid_atomic_write(struct request *req)
952 {
953 	struct request_queue *q = req->q;
954 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
955 
956 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
957 		return false;
958 
959 	if (boundary_bytes) {
960 		u64 mask = boundary_bytes - 1, imask = ~mask;
961 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
962 		u64 end = start + blk_rq_bytes(req) - 1;
963 
964 		/* If greater then must be crossing a boundary */
965 		if (blk_rq_bytes(req) > boundary_bytes)
966 			return false;
967 
968 		if ((start & imask) != (end & imask))
969 			return false;
970 	}
971 
972 	return true;
973 }
974 
975 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
976 		struct request *req, struct nvme_command *cmnd,
977 		enum nvme_opcode op)
978 {
979 	u16 control = 0;
980 	u32 dsmgmt = 0;
981 
982 	if (req->cmd_flags & REQ_FUA)
983 		control |= NVME_RW_FUA;
984 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
985 		control |= NVME_RW_LR;
986 
987 	if (req->cmd_flags & REQ_RAHEAD)
988 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
989 
990 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
991 		return BLK_STS_INVAL;
992 
993 	cmnd->rw.opcode = op;
994 	cmnd->rw.flags = 0;
995 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
996 	cmnd->rw.cdw2 = 0;
997 	cmnd->rw.cdw3 = 0;
998 	cmnd->rw.metadata = 0;
999 	cmnd->rw.slba =
1000 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1001 	cmnd->rw.length =
1002 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1003 	cmnd->rw.reftag = 0;
1004 	cmnd->rw.lbat = 0;
1005 	cmnd->rw.lbatm = 0;
1006 
1007 	if (ns->head->ms) {
1008 		/*
1009 		 * If formated with metadata, the block layer always provides a
1010 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1011 		 * we enable the PRACT bit for protection information or set the
1012 		 * namespace capacity to zero to prevent any I/O.
1013 		 */
1014 		if (!blk_integrity_rq(req)) {
1015 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1016 				return BLK_STS_NOTSUPP;
1017 			control |= NVME_RW_PRINFO_PRACT;
1018 		}
1019 
1020 		switch (ns->head->pi_type) {
1021 		case NVME_NS_DPS_PI_TYPE3:
1022 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1023 			break;
1024 		case NVME_NS_DPS_PI_TYPE1:
1025 		case NVME_NS_DPS_PI_TYPE2:
1026 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
1027 					NVME_RW_PRINFO_PRCHK_REF;
1028 			if (op == nvme_cmd_zone_append)
1029 				control |= NVME_RW_APPEND_PIREMAP;
1030 			nvme_set_ref_tag(ns, cmnd, req);
1031 			break;
1032 		}
1033 	}
1034 
1035 	cmnd->rw.control = cpu_to_le16(control);
1036 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1037 	return 0;
1038 }
1039 
1040 void nvme_cleanup_cmd(struct request *req)
1041 {
1042 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1043 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1044 
1045 		if (req->special_vec.bv_page == ctrl->discard_page)
1046 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1047 		else
1048 			kfree(bvec_virt(&req->special_vec));
1049 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1050 	}
1051 }
1052 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1053 
1054 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1055 {
1056 	struct nvme_command *cmd = nvme_req(req)->cmd;
1057 	blk_status_t ret = BLK_STS_OK;
1058 
1059 	if (!(req->rq_flags & RQF_DONTPREP))
1060 		nvme_clear_nvme_request(req);
1061 
1062 	switch (req_op(req)) {
1063 	case REQ_OP_DRV_IN:
1064 	case REQ_OP_DRV_OUT:
1065 		/* these are setup prior to execution in nvme_init_request() */
1066 		break;
1067 	case REQ_OP_FLUSH:
1068 		nvme_setup_flush(ns, cmd);
1069 		break;
1070 	case REQ_OP_ZONE_RESET_ALL:
1071 	case REQ_OP_ZONE_RESET:
1072 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1073 		break;
1074 	case REQ_OP_ZONE_OPEN:
1075 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1076 		break;
1077 	case REQ_OP_ZONE_CLOSE:
1078 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1079 		break;
1080 	case REQ_OP_ZONE_FINISH:
1081 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1082 		break;
1083 	case REQ_OP_WRITE_ZEROES:
1084 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1085 		break;
1086 	case REQ_OP_DISCARD:
1087 		ret = nvme_setup_discard(ns, req, cmd);
1088 		break;
1089 	case REQ_OP_READ:
1090 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1091 		break;
1092 	case REQ_OP_WRITE:
1093 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1094 		break;
1095 	case REQ_OP_ZONE_APPEND:
1096 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1097 		break;
1098 	default:
1099 		WARN_ON_ONCE(1);
1100 		return BLK_STS_IOERR;
1101 	}
1102 
1103 	cmd->common.command_id = nvme_cid(req);
1104 	trace_nvme_setup_cmd(req, cmd);
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1108 
1109 /*
1110  * Return values:
1111  * 0:  success
1112  * >0: nvme controller's cqe status response
1113  * <0: kernel error in lieu of controller response
1114  */
1115 int nvme_execute_rq(struct request *rq, bool at_head)
1116 {
1117 	blk_status_t status;
1118 
1119 	status = blk_execute_rq(rq, at_head);
1120 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1121 		return -EINTR;
1122 	if (nvme_req(rq)->status)
1123 		return nvme_req(rq)->status;
1124 	return blk_status_to_errno(status);
1125 }
1126 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1127 
1128 /*
1129  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1130  * if the result is positive, it's an NVM Express status code
1131  */
1132 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1133 		union nvme_result *result, void *buffer, unsigned bufflen,
1134 		int qid, nvme_submit_flags_t flags)
1135 {
1136 	struct request *req;
1137 	int ret;
1138 	blk_mq_req_flags_t blk_flags = 0;
1139 
1140 	if (flags & NVME_SUBMIT_NOWAIT)
1141 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1142 	if (flags & NVME_SUBMIT_RESERVED)
1143 		blk_flags |= BLK_MQ_REQ_RESERVED;
1144 	if (qid == NVME_QID_ANY)
1145 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1146 	else
1147 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1148 						qid - 1);
1149 
1150 	if (IS_ERR(req))
1151 		return PTR_ERR(req);
1152 	nvme_init_request(req, cmd);
1153 	if (flags & NVME_SUBMIT_RETRY)
1154 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1155 
1156 	if (buffer && bufflen) {
1157 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1158 		if (ret)
1159 			goto out;
1160 	}
1161 
1162 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1163 	if (result && ret >= 0)
1164 		*result = nvme_req(req)->result;
1165  out:
1166 	blk_mq_free_request(req);
1167 	return ret;
1168 }
1169 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1170 
1171 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1172 		void *buffer, unsigned bufflen)
1173 {
1174 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1175 			NVME_QID_ANY, 0);
1176 }
1177 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1178 
1179 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1180 {
1181 	u32 effects = 0;
1182 
1183 	if (ns) {
1184 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1185 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1186 			dev_warn_once(ctrl->device,
1187 				"IO command:%02x has unusual effects:%08x\n",
1188 				opcode, effects);
1189 
1190 		/*
1191 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1192 		 * which would deadlock when done on an I/O command.  Note that
1193 		 * We already warn about an unusual effect above.
1194 		 */
1195 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1196 	} else {
1197 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1198 
1199 		/* Ignore execution restrictions if any relaxation bits are set */
1200 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1201 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1202 	}
1203 
1204 	return effects;
1205 }
1206 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1207 
1208 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1209 {
1210 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1211 
1212 	/*
1213 	 * For simplicity, IO to all namespaces is quiesced even if the command
1214 	 * effects say only one namespace is affected.
1215 	 */
1216 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1217 		mutex_lock(&ctrl->scan_lock);
1218 		mutex_lock(&ctrl->subsys->lock);
1219 		nvme_mpath_start_freeze(ctrl->subsys);
1220 		nvme_mpath_wait_freeze(ctrl->subsys);
1221 		nvme_start_freeze(ctrl);
1222 		nvme_wait_freeze(ctrl);
1223 	}
1224 	return effects;
1225 }
1226 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1227 
1228 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1229 		       struct nvme_command *cmd, int status)
1230 {
1231 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1232 		nvme_unfreeze(ctrl);
1233 		nvme_mpath_unfreeze(ctrl->subsys);
1234 		mutex_unlock(&ctrl->subsys->lock);
1235 		mutex_unlock(&ctrl->scan_lock);
1236 	}
1237 	if (effects & NVME_CMD_EFFECTS_CCC) {
1238 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1239 				      &ctrl->flags)) {
1240 			dev_info(ctrl->device,
1241 "controller capabilities changed, reset may be required to take effect.\n");
1242 		}
1243 	}
1244 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1245 		nvme_queue_scan(ctrl);
1246 		flush_work(&ctrl->scan_work);
1247 	}
1248 	if (ns)
1249 		return;
1250 
1251 	switch (cmd->common.opcode) {
1252 	case nvme_admin_set_features:
1253 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1254 		case NVME_FEAT_KATO:
1255 			/*
1256 			 * Keep alive commands interval on the host should be
1257 			 * updated when KATO is modified by Set Features
1258 			 * commands.
1259 			 */
1260 			if (!status)
1261 				nvme_update_keep_alive(ctrl, cmd);
1262 			break;
1263 		default:
1264 			break;
1265 		}
1266 		break;
1267 	default:
1268 		break;
1269 	}
1270 }
1271 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1272 
1273 /*
1274  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1275  *
1276  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1277  *   accounting for transport roundtrip times [..].
1278  */
1279 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1280 {
1281 	unsigned long delay = ctrl->kato * HZ / 2;
1282 
1283 	/*
1284 	 * When using Traffic Based Keep Alive, we need to run
1285 	 * nvme_keep_alive_work at twice the normal frequency, as one
1286 	 * command completion can postpone sending a keep alive command
1287 	 * by up to twice the delay between runs.
1288 	 */
1289 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1290 		delay /= 2;
1291 	return delay;
1292 }
1293 
1294 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1295 {
1296 	unsigned long now = jiffies;
1297 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1298 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1299 
1300 	if (time_after(now, ka_next_check_tm))
1301 		delay = 0;
1302 	else
1303 		delay = ka_next_check_tm - now;
1304 
1305 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1306 }
1307 
1308 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1309 						 blk_status_t status)
1310 {
1311 	struct nvme_ctrl *ctrl = rq->end_io_data;
1312 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1313 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1314 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1315 
1316 	/*
1317 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1318 	 * at the desired frequency.
1319 	 */
1320 	if (rtt <= delay) {
1321 		delay -= rtt;
1322 	} else {
1323 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1324 			 jiffies_to_msecs(rtt));
1325 		delay = 0;
1326 	}
1327 
1328 	blk_mq_free_request(rq);
1329 
1330 	if (status) {
1331 		dev_err(ctrl->device,
1332 			"failed nvme_keep_alive_end_io error=%d\n",
1333 				status);
1334 		return RQ_END_IO_NONE;
1335 	}
1336 
1337 	ctrl->ka_last_check_time = jiffies;
1338 	ctrl->comp_seen = false;
1339 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1340 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1341 	return RQ_END_IO_NONE;
1342 }
1343 
1344 static void nvme_keep_alive_work(struct work_struct *work)
1345 {
1346 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1347 			struct nvme_ctrl, ka_work);
1348 	bool comp_seen = ctrl->comp_seen;
1349 	struct request *rq;
1350 
1351 	ctrl->ka_last_check_time = jiffies;
1352 
1353 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1354 		dev_dbg(ctrl->device,
1355 			"reschedule traffic based keep-alive timer\n");
1356 		ctrl->comp_seen = false;
1357 		nvme_queue_keep_alive_work(ctrl);
1358 		return;
1359 	}
1360 
1361 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1362 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1363 	if (IS_ERR(rq)) {
1364 		/* allocation failure, reset the controller */
1365 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1366 		nvme_reset_ctrl(ctrl);
1367 		return;
1368 	}
1369 	nvme_init_request(rq, &ctrl->ka_cmd);
1370 
1371 	rq->timeout = ctrl->kato * HZ;
1372 	rq->end_io = nvme_keep_alive_end_io;
1373 	rq->end_io_data = ctrl;
1374 	blk_execute_rq_nowait(rq, false);
1375 }
1376 
1377 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1378 {
1379 	if (unlikely(ctrl->kato == 0))
1380 		return;
1381 
1382 	nvme_queue_keep_alive_work(ctrl);
1383 }
1384 
1385 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1386 {
1387 	if (unlikely(ctrl->kato == 0))
1388 		return;
1389 
1390 	cancel_delayed_work_sync(&ctrl->ka_work);
1391 }
1392 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1393 
1394 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1395 				   struct nvme_command *cmd)
1396 {
1397 	unsigned int new_kato =
1398 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1399 
1400 	dev_info(ctrl->device,
1401 		 "keep alive interval updated from %u ms to %u ms\n",
1402 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1403 
1404 	nvme_stop_keep_alive(ctrl);
1405 	ctrl->kato = new_kato;
1406 	nvme_start_keep_alive(ctrl);
1407 }
1408 
1409 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1410 {
1411 	/*
1412 	 * The CNS field occupies a full byte starting with NVMe 1.2
1413 	 */
1414 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1415 		return true;
1416 
1417 	/*
1418 	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1419 	 * larger than that could get truncated and treated as an incorrect
1420 	 * value.
1421 	 *
1422 	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1423 	 * compliance, so they need to be quirked here.
1424 	 */
1425 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1426 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1427 		return cns <= 3;
1428 
1429 	/*
1430 	 * NVMe 1.0 used a single bit for the CNS value.
1431 	 */
1432 	return cns <= 1;
1433 }
1434 
1435 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1436 {
1437 	struct nvme_command c = { };
1438 	int error;
1439 
1440 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1441 	c.identify.opcode = nvme_admin_identify;
1442 	c.identify.cns = NVME_ID_CNS_CTRL;
1443 
1444 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1445 	if (!*id)
1446 		return -ENOMEM;
1447 
1448 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1449 			sizeof(struct nvme_id_ctrl));
1450 	if (error) {
1451 		kfree(*id);
1452 		*id = NULL;
1453 	}
1454 	return error;
1455 }
1456 
1457 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1458 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1459 {
1460 	const char *warn_str = "ctrl returned bogus length:";
1461 	void *data = cur;
1462 
1463 	switch (cur->nidt) {
1464 	case NVME_NIDT_EUI64:
1465 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1466 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1467 				 warn_str, cur->nidl);
1468 			return -1;
1469 		}
1470 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1471 			return NVME_NIDT_EUI64_LEN;
1472 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1473 		return NVME_NIDT_EUI64_LEN;
1474 	case NVME_NIDT_NGUID:
1475 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1476 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1477 				 warn_str, cur->nidl);
1478 			return -1;
1479 		}
1480 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1481 			return NVME_NIDT_NGUID_LEN;
1482 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1483 		return NVME_NIDT_NGUID_LEN;
1484 	case NVME_NIDT_UUID:
1485 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1486 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1487 				 warn_str, cur->nidl);
1488 			return -1;
1489 		}
1490 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1491 			return NVME_NIDT_UUID_LEN;
1492 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1493 		return NVME_NIDT_UUID_LEN;
1494 	case NVME_NIDT_CSI:
1495 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1496 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1497 				 warn_str, cur->nidl);
1498 			return -1;
1499 		}
1500 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1501 		*csi_seen = true;
1502 		return NVME_NIDT_CSI_LEN;
1503 	default:
1504 		/* Skip unknown types */
1505 		return cur->nidl;
1506 	}
1507 }
1508 
1509 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1510 		struct nvme_ns_info *info)
1511 {
1512 	struct nvme_command c = { };
1513 	bool csi_seen = false;
1514 	int status, pos, len;
1515 	void *data;
1516 
1517 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1518 		return 0;
1519 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1520 		return 0;
1521 
1522 	c.identify.opcode = nvme_admin_identify;
1523 	c.identify.nsid = cpu_to_le32(info->nsid);
1524 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1525 
1526 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1527 	if (!data)
1528 		return -ENOMEM;
1529 
1530 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1531 				      NVME_IDENTIFY_DATA_SIZE);
1532 	if (status) {
1533 		dev_warn(ctrl->device,
1534 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1535 			info->nsid, status);
1536 		goto free_data;
1537 	}
1538 
1539 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1540 		struct nvme_ns_id_desc *cur = data + pos;
1541 
1542 		if (cur->nidl == 0)
1543 			break;
1544 
1545 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1546 		if (len < 0)
1547 			break;
1548 
1549 		len += sizeof(*cur);
1550 	}
1551 
1552 	if (nvme_multi_css(ctrl) && !csi_seen) {
1553 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1554 			 info->nsid);
1555 		status = -EINVAL;
1556 	}
1557 
1558 free_data:
1559 	kfree(data);
1560 	return status;
1561 }
1562 
1563 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1564 			struct nvme_id_ns **id)
1565 {
1566 	struct nvme_command c = { };
1567 	int error;
1568 
1569 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1570 	c.identify.opcode = nvme_admin_identify;
1571 	c.identify.nsid = cpu_to_le32(nsid);
1572 	c.identify.cns = NVME_ID_CNS_NS;
1573 
1574 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1575 	if (!*id)
1576 		return -ENOMEM;
1577 
1578 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1579 	if (error) {
1580 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1581 		kfree(*id);
1582 		*id = NULL;
1583 	}
1584 	return error;
1585 }
1586 
1587 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1588 		struct nvme_ns_info *info)
1589 {
1590 	struct nvme_ns_ids *ids = &info->ids;
1591 	struct nvme_id_ns *id;
1592 	int ret;
1593 
1594 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1595 	if (ret)
1596 		return ret;
1597 
1598 	if (id->ncap == 0) {
1599 		/* namespace not allocated or attached */
1600 		info->is_removed = true;
1601 		ret = -ENODEV;
1602 		goto error;
1603 	}
1604 
1605 	info->anagrpid = id->anagrpid;
1606 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1607 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1608 	info->is_ready = true;
1609 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1610 		dev_info(ctrl->device,
1611 			 "Ignoring bogus Namespace Identifiers\n");
1612 	} else {
1613 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1614 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1615 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1616 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1617 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1618 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1619 	}
1620 
1621 error:
1622 	kfree(id);
1623 	return ret;
1624 }
1625 
1626 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1627 		struct nvme_ns_info *info)
1628 {
1629 	struct nvme_id_ns_cs_indep *id;
1630 	struct nvme_command c = {
1631 		.identify.opcode	= nvme_admin_identify,
1632 		.identify.nsid		= cpu_to_le32(info->nsid),
1633 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1634 	};
1635 	int ret;
1636 
1637 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1638 	if (!id)
1639 		return -ENOMEM;
1640 
1641 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1642 	if (!ret) {
1643 		info->anagrpid = id->anagrpid;
1644 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1645 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1646 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1647 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1648 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1649 	}
1650 	kfree(id);
1651 	return ret;
1652 }
1653 
1654 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1655 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1656 {
1657 	union nvme_result res = { 0 };
1658 	struct nvme_command c = { };
1659 	int ret;
1660 
1661 	c.features.opcode = op;
1662 	c.features.fid = cpu_to_le32(fid);
1663 	c.features.dword11 = cpu_to_le32(dword11);
1664 
1665 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1666 			buffer, buflen, NVME_QID_ANY, 0);
1667 	if (ret >= 0 && result)
1668 		*result = le32_to_cpu(res.u32);
1669 	return ret;
1670 }
1671 
1672 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1673 		      unsigned int dword11, void *buffer, size_t buflen,
1674 		      u32 *result)
1675 {
1676 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1677 			     buflen, result);
1678 }
1679 EXPORT_SYMBOL_GPL(nvme_set_features);
1680 
1681 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1682 		      unsigned int dword11, void *buffer, size_t buflen,
1683 		      u32 *result)
1684 {
1685 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1686 			     buflen, result);
1687 }
1688 EXPORT_SYMBOL_GPL(nvme_get_features);
1689 
1690 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1691 {
1692 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1693 	u32 result;
1694 	int status, nr_io_queues;
1695 
1696 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1697 			&result);
1698 	if (status < 0)
1699 		return status;
1700 
1701 	/*
1702 	 * Degraded controllers might return an error when setting the queue
1703 	 * count.  We still want to be able to bring them online and offer
1704 	 * access to the admin queue, as that might be only way to fix them up.
1705 	 */
1706 	if (status > 0) {
1707 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1708 		*count = 0;
1709 	} else {
1710 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1711 		*count = min(*count, nr_io_queues);
1712 	}
1713 
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1717 
1718 #define NVME_AEN_SUPPORTED \
1719 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1720 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1721 
1722 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1723 {
1724 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1725 	int status;
1726 
1727 	if (!supported_aens)
1728 		return;
1729 
1730 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1731 			NULL, 0, &result);
1732 	if (status)
1733 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1734 			 supported_aens);
1735 
1736 	queue_work(nvme_wq, &ctrl->async_event_work);
1737 }
1738 
1739 static int nvme_ns_open(struct nvme_ns *ns)
1740 {
1741 
1742 	/* should never be called due to GENHD_FL_HIDDEN */
1743 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1744 		goto fail;
1745 	if (!nvme_get_ns(ns))
1746 		goto fail;
1747 	if (!try_module_get(ns->ctrl->ops->module))
1748 		goto fail_put_ns;
1749 
1750 	return 0;
1751 
1752 fail_put_ns:
1753 	nvme_put_ns(ns);
1754 fail:
1755 	return -ENXIO;
1756 }
1757 
1758 static void nvme_ns_release(struct nvme_ns *ns)
1759 {
1760 
1761 	module_put(ns->ctrl->ops->module);
1762 	nvme_put_ns(ns);
1763 }
1764 
1765 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1766 {
1767 	return nvme_ns_open(disk->private_data);
1768 }
1769 
1770 static void nvme_release(struct gendisk *disk)
1771 {
1772 	nvme_ns_release(disk->private_data);
1773 }
1774 
1775 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1776 {
1777 	/* some standard values */
1778 	geo->heads = 1 << 6;
1779 	geo->sectors = 1 << 5;
1780 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1781 	return 0;
1782 }
1783 
1784 static bool nvme_init_integrity(struct nvme_ns_head *head,
1785 		struct queue_limits *lim, struct nvme_ns_info *info)
1786 {
1787 	struct blk_integrity *bi = &lim->integrity;
1788 
1789 	memset(bi, 0, sizeof(*bi));
1790 
1791 	if (!head->ms)
1792 		return true;
1793 
1794 	/*
1795 	 * PI can always be supported as we can ask the controller to simply
1796 	 * insert/strip it, which is not possible for other kinds of metadata.
1797 	 */
1798 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1799 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1800 		return nvme_ns_has_pi(head);
1801 
1802 	switch (head->pi_type) {
1803 	case NVME_NS_DPS_PI_TYPE3:
1804 		switch (head->guard_type) {
1805 		case NVME_NVM_NS_16B_GUARD:
1806 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1807 			bi->tag_size = sizeof(u16) + sizeof(u32);
1808 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1809 			break;
1810 		case NVME_NVM_NS_64B_GUARD:
1811 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1812 			bi->tag_size = sizeof(u16) + 6;
1813 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1814 			break;
1815 		default:
1816 			break;
1817 		}
1818 		break;
1819 	case NVME_NS_DPS_PI_TYPE1:
1820 	case NVME_NS_DPS_PI_TYPE2:
1821 		switch (head->guard_type) {
1822 		case NVME_NVM_NS_16B_GUARD:
1823 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1824 			bi->tag_size = sizeof(u16);
1825 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1826 				     BLK_INTEGRITY_REF_TAG;
1827 			break;
1828 		case NVME_NVM_NS_64B_GUARD:
1829 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1830 			bi->tag_size = sizeof(u16);
1831 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1832 				     BLK_INTEGRITY_REF_TAG;
1833 			break;
1834 		default:
1835 			break;
1836 		}
1837 		break;
1838 	default:
1839 		break;
1840 	}
1841 
1842 	bi->tuple_size = head->ms;
1843 	bi->pi_offset = info->pi_offset;
1844 	return true;
1845 }
1846 
1847 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1848 {
1849 	struct nvme_ctrl *ctrl = ns->ctrl;
1850 
1851 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1852 		lim->max_hw_discard_sectors =
1853 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1854 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1855 		lim->max_hw_discard_sectors = UINT_MAX;
1856 	else
1857 		lim->max_hw_discard_sectors = 0;
1858 
1859 	lim->discard_granularity = lim->logical_block_size;
1860 
1861 	if (ctrl->dmrl)
1862 		lim->max_discard_segments = ctrl->dmrl;
1863 	else
1864 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1865 }
1866 
1867 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1868 {
1869 	return uuid_equal(&a->uuid, &b->uuid) &&
1870 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1871 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1872 		a->csi == b->csi;
1873 }
1874 
1875 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1876 		struct nvme_id_ns_nvm **nvmp)
1877 {
1878 	struct nvme_command c = {
1879 		.identify.opcode	= nvme_admin_identify,
1880 		.identify.nsid		= cpu_to_le32(nsid),
1881 		.identify.cns		= NVME_ID_CNS_CS_NS,
1882 		.identify.csi		= NVME_CSI_NVM,
1883 	};
1884 	struct nvme_id_ns_nvm *nvm;
1885 	int ret;
1886 
1887 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1888 	if (!nvm)
1889 		return -ENOMEM;
1890 
1891 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1892 	if (ret)
1893 		kfree(nvm);
1894 	else
1895 		*nvmp = nvm;
1896 	return ret;
1897 }
1898 
1899 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1900 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1901 {
1902 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1903 	u8 guard_type;
1904 
1905 	/* no support for storage tag formats right now */
1906 	if (nvme_elbaf_sts(elbaf))
1907 		return;
1908 
1909 	guard_type = nvme_elbaf_guard_type(elbaf);
1910 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1911 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1912 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1913 
1914 	head->guard_type = guard_type;
1915 	switch (head->guard_type) {
1916 	case NVME_NVM_NS_64B_GUARD:
1917 		head->pi_size = sizeof(struct crc64_pi_tuple);
1918 		break;
1919 	case NVME_NVM_NS_16B_GUARD:
1920 		head->pi_size = sizeof(struct t10_pi_tuple);
1921 		break;
1922 	default:
1923 		break;
1924 	}
1925 }
1926 
1927 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1928 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1929 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1930 {
1931 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1932 	head->pi_type = 0;
1933 	head->pi_size = 0;
1934 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1935 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1936 		return;
1937 
1938 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1939 		nvme_configure_pi_elbas(head, id, nvm);
1940 	} else {
1941 		head->pi_size = sizeof(struct t10_pi_tuple);
1942 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1943 	}
1944 
1945 	if (head->pi_size && head->ms >= head->pi_size)
1946 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1947 	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1948 		if (disable_pi_offsets)
1949 			head->pi_type = 0;
1950 		else
1951 			info->pi_offset = head->ms - head->pi_size;
1952 	}
1953 
1954 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1955 		/*
1956 		 * The NVMe over Fabrics specification only supports metadata as
1957 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1958 		 * remap the separate metadata buffer from the block layer.
1959 		 */
1960 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1961 			return;
1962 
1963 		head->features |= NVME_NS_EXT_LBAS;
1964 
1965 		/*
1966 		 * The current fabrics transport drivers support namespace
1967 		 * metadata formats only if nvme_ns_has_pi() returns true.
1968 		 * Suppress support for all other formats so the namespace will
1969 		 * have a 0 capacity and not be usable through the block stack.
1970 		 *
1971 		 * Note, this check will need to be modified if any drivers
1972 		 * gain the ability to use other metadata formats.
1973 		 */
1974 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1975 			head->features |= NVME_NS_METADATA_SUPPORTED;
1976 	} else {
1977 		/*
1978 		 * For PCIe controllers, we can't easily remap the separate
1979 		 * metadata buffer from the block layer and thus require a
1980 		 * separate metadata buffer for block layer metadata/PI support.
1981 		 * We allow extended LBAs for the passthrough interface, though.
1982 		 */
1983 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1984 			head->features |= NVME_NS_EXT_LBAS;
1985 		else
1986 			head->features |= NVME_NS_METADATA_SUPPORTED;
1987 	}
1988 }
1989 
1990 
1991 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1992 			struct nvme_id_ns *id, struct queue_limits *lim,
1993 			u32 bs, u32 atomic_bs)
1994 {
1995 	unsigned int boundary = 0;
1996 
1997 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1998 		if (le16_to_cpu(id->nabspf))
1999 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2000 	}
2001 	lim->atomic_write_hw_max = atomic_bs;
2002 	lim->atomic_write_hw_boundary = boundary;
2003 	lim->atomic_write_hw_unit_min = bs;
2004 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2005 	lim->features |= BLK_FEAT_ATOMIC_WRITES;
2006 }
2007 
2008 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2009 {
2010 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2011 }
2012 
2013 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2014 		struct queue_limits *lim)
2015 {
2016 	lim->max_hw_sectors = ctrl->max_hw_sectors;
2017 	lim->max_segments = min_t(u32, USHRT_MAX,
2018 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2019 	lim->max_integrity_segments = ctrl->max_integrity_segments;
2020 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2021 	lim->max_segment_size = UINT_MAX;
2022 	lim->dma_alignment = 3;
2023 }
2024 
2025 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2026 		struct queue_limits *lim)
2027 {
2028 	struct nvme_ns_head *head = ns->head;
2029 	u32 bs = 1U << head->lba_shift;
2030 	u32 atomic_bs, phys_bs, io_opt = 0;
2031 	bool valid = true;
2032 
2033 	/*
2034 	 * The block layer can't support LBA sizes larger than the page size
2035 	 * or smaller than a sector size yet, so catch this early and don't
2036 	 * allow block I/O.
2037 	 */
2038 	if (blk_validate_block_size(bs)) {
2039 		bs = (1 << 9);
2040 		valid = false;
2041 	}
2042 
2043 	atomic_bs = phys_bs = bs;
2044 	if (id->nabo == 0) {
2045 		/*
2046 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2047 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2048 		 * 0 then AWUPF must be used instead.
2049 		 */
2050 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2051 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2052 		else
2053 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2054 
2055 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2056 	}
2057 
2058 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2059 		/* NPWG = Namespace Preferred Write Granularity */
2060 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2061 		/* NOWS = Namespace Optimal Write Size */
2062 		if (id->nows)
2063 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2064 	}
2065 
2066 	/*
2067 	 * Linux filesystems assume writing a single physical block is
2068 	 * an atomic operation. Hence limit the physical block size to the
2069 	 * value of the Atomic Write Unit Power Fail parameter.
2070 	 */
2071 	lim->logical_block_size = bs;
2072 	lim->physical_block_size = min(phys_bs, atomic_bs);
2073 	lim->io_min = phys_bs;
2074 	lim->io_opt = io_opt;
2075 	if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2076 	    (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2077 		lim->max_write_zeroes_sectors = UINT_MAX;
2078 	else
2079 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2080 	return valid;
2081 }
2082 
2083 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2084 {
2085 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2086 }
2087 
2088 static inline bool nvme_first_scan(struct gendisk *disk)
2089 {
2090 	/* nvme_alloc_ns() scans the disk prior to adding it */
2091 	return !disk_live(disk);
2092 }
2093 
2094 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2095 		struct queue_limits *lim)
2096 {
2097 	struct nvme_ctrl *ctrl = ns->ctrl;
2098 	u32 iob;
2099 
2100 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2101 	    is_power_of_2(ctrl->max_hw_sectors))
2102 		iob = ctrl->max_hw_sectors;
2103 	else
2104 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2105 
2106 	if (!iob)
2107 		return;
2108 
2109 	if (!is_power_of_2(iob)) {
2110 		if (nvme_first_scan(ns->disk))
2111 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2112 				ns->disk->disk_name, iob);
2113 		return;
2114 	}
2115 
2116 	if (blk_queue_is_zoned(ns->disk->queue)) {
2117 		if (nvme_first_scan(ns->disk))
2118 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2119 				ns->disk->disk_name);
2120 		return;
2121 	}
2122 
2123 	lim->chunk_sectors = iob;
2124 }
2125 
2126 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2127 		struct nvme_ns_info *info)
2128 {
2129 	struct queue_limits lim;
2130 	int ret;
2131 
2132 	lim = queue_limits_start_update(ns->disk->queue);
2133 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2134 
2135 	blk_mq_freeze_queue(ns->disk->queue);
2136 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2137 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2138 	blk_mq_unfreeze_queue(ns->disk->queue);
2139 
2140 	/* Hide the block-interface for these devices */
2141 	if (!ret)
2142 		ret = -ENODEV;
2143 	return ret;
2144 }
2145 
2146 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2147 		struct nvme_ns_info *info)
2148 {
2149 	struct queue_limits lim;
2150 	struct nvme_id_ns_nvm *nvm = NULL;
2151 	struct nvme_zone_info zi = {};
2152 	struct nvme_id_ns *id;
2153 	sector_t capacity;
2154 	unsigned lbaf;
2155 	int ret;
2156 
2157 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2158 	if (ret)
2159 		return ret;
2160 
2161 	if (id->ncap == 0) {
2162 		/* namespace not allocated or attached */
2163 		info->is_removed = true;
2164 		ret = -ENXIO;
2165 		goto out;
2166 	}
2167 	lbaf = nvme_lbaf_index(id->flbas);
2168 
2169 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2170 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2171 		if (ret < 0)
2172 			goto out;
2173 	}
2174 
2175 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2176 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2177 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2178 		if (ret < 0)
2179 			goto out;
2180 	}
2181 
2182 	lim = queue_limits_start_update(ns->disk->queue);
2183 
2184 	blk_mq_freeze_queue(ns->disk->queue);
2185 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2186 	ns->head->nuse = le64_to_cpu(id->nuse);
2187 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2188 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2189 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2190 	nvme_set_chunk_sectors(ns, id, &lim);
2191 	if (!nvme_update_disk_info(ns, id, &lim))
2192 		capacity = 0;
2193 	nvme_config_discard(ns, &lim);
2194 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2195 	    ns->head->ids.csi == NVME_CSI_ZNS)
2196 		nvme_update_zone_info(ns, &lim, &zi);
2197 
2198 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2199 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2200 	else
2201 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2202 
2203 	if (info->is_rotational)
2204 		lim.features |= BLK_FEAT_ROTATIONAL;
2205 
2206 	/*
2207 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2208 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2209 	 * I/O to namespaces with metadata except when the namespace supports
2210 	 * PI, as it can strip/insert in that case.
2211 	 */
2212 	if (!nvme_init_integrity(ns->head, &lim, info))
2213 		capacity = 0;
2214 
2215 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2216 	if (ret) {
2217 		blk_mq_unfreeze_queue(ns->disk->queue);
2218 		goto out;
2219 	}
2220 
2221 	set_capacity_and_notify(ns->disk, capacity);
2222 
2223 	/*
2224 	 * Only set the DEAC bit if the device guarantees that reads from
2225 	 * deallocated data return zeroes.  While the DEAC bit does not
2226 	 * require that, it must be a no-op if reads from deallocated data
2227 	 * do not return zeroes.
2228 	 */
2229 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2230 		ns->head->features |= NVME_NS_DEAC;
2231 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2232 	set_bit(NVME_NS_READY, &ns->flags);
2233 	blk_mq_unfreeze_queue(ns->disk->queue);
2234 
2235 	if (blk_queue_is_zoned(ns->queue)) {
2236 		ret = blk_revalidate_disk_zones(ns->disk);
2237 		if (ret && !nvme_first_scan(ns->disk))
2238 			goto out;
2239 	}
2240 
2241 	ret = 0;
2242 out:
2243 	kfree(nvm);
2244 	kfree(id);
2245 	return ret;
2246 }
2247 
2248 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2249 {
2250 	bool unsupported = false;
2251 	int ret;
2252 
2253 	switch (info->ids.csi) {
2254 	case NVME_CSI_ZNS:
2255 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2256 			dev_info(ns->ctrl->device,
2257 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2258 				info->nsid);
2259 			ret = nvme_update_ns_info_generic(ns, info);
2260 			break;
2261 		}
2262 		ret = nvme_update_ns_info_block(ns, info);
2263 		break;
2264 	case NVME_CSI_NVM:
2265 		ret = nvme_update_ns_info_block(ns, info);
2266 		break;
2267 	default:
2268 		dev_info(ns->ctrl->device,
2269 			"block device for nsid %u not supported (csi %u)\n",
2270 			info->nsid, info->ids.csi);
2271 		ret = nvme_update_ns_info_generic(ns, info);
2272 		break;
2273 	}
2274 
2275 	/*
2276 	 * If probing fails due an unsupported feature, hide the block device,
2277 	 * but still allow other access.
2278 	 */
2279 	if (ret == -ENODEV) {
2280 		ns->disk->flags |= GENHD_FL_HIDDEN;
2281 		set_bit(NVME_NS_READY, &ns->flags);
2282 		unsupported = true;
2283 		ret = 0;
2284 	}
2285 
2286 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2287 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2288 		struct queue_limits lim;
2289 
2290 		lim = queue_limits_start_update(ns->head->disk->queue);
2291 		blk_mq_freeze_queue(ns->head->disk->queue);
2292 		/*
2293 		 * queue_limits mixes values that are the hardware limitations
2294 		 * for bio splitting with what is the device configuration.
2295 		 *
2296 		 * For NVMe the device configuration can change after e.g. a
2297 		 * Format command, and we really want to pick up the new format
2298 		 * value here.  But we must still stack the queue limits to the
2299 		 * least common denominator for multipathing to split the bios
2300 		 * properly.
2301 		 *
2302 		 * To work around this, we explicitly set the device
2303 		 * configuration to those that we just queried, but only stack
2304 		 * the splitting limits in to make sure we still obey possibly
2305 		 * lower limitations of other controllers.
2306 		 */
2307 		lim.logical_block_size = ns_lim->logical_block_size;
2308 		lim.physical_block_size = ns_lim->physical_block_size;
2309 		lim.io_min = ns_lim->io_min;
2310 		lim.io_opt = ns_lim->io_opt;
2311 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2312 					ns->head->disk->disk_name);
2313 		if (unsupported)
2314 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2315 		else
2316 			nvme_init_integrity(ns->head, &lim, info);
2317 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2318 
2319 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2320 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2321 		nvme_mpath_revalidate_paths(ns);
2322 
2323 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2324 	}
2325 
2326 	return ret;
2327 }
2328 
2329 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2330 		enum blk_unique_id type)
2331 {
2332 	struct nvme_ns_ids *ids = &ns->head->ids;
2333 
2334 	if (type != BLK_UID_EUI64)
2335 		return -EINVAL;
2336 
2337 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2338 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2339 		return sizeof(ids->nguid);
2340 	}
2341 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2342 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2343 		return sizeof(ids->eui64);
2344 	}
2345 
2346 	return -EINVAL;
2347 }
2348 
2349 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2350 		enum blk_unique_id type)
2351 {
2352 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2353 }
2354 
2355 #ifdef CONFIG_BLK_SED_OPAL
2356 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2357 		bool send)
2358 {
2359 	struct nvme_ctrl *ctrl = data;
2360 	struct nvme_command cmd = { };
2361 
2362 	if (send)
2363 		cmd.common.opcode = nvme_admin_security_send;
2364 	else
2365 		cmd.common.opcode = nvme_admin_security_recv;
2366 	cmd.common.nsid = 0;
2367 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2368 	cmd.common.cdw11 = cpu_to_le32(len);
2369 
2370 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2371 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2372 }
2373 
2374 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2375 {
2376 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2377 		if (!ctrl->opal_dev)
2378 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2379 		else if (was_suspended)
2380 			opal_unlock_from_suspend(ctrl->opal_dev);
2381 	} else {
2382 		free_opal_dev(ctrl->opal_dev);
2383 		ctrl->opal_dev = NULL;
2384 	}
2385 }
2386 #else
2387 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2388 {
2389 }
2390 #endif /* CONFIG_BLK_SED_OPAL */
2391 
2392 #ifdef CONFIG_BLK_DEV_ZONED
2393 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2394 		unsigned int nr_zones, report_zones_cb cb, void *data)
2395 {
2396 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2397 			data);
2398 }
2399 #else
2400 #define nvme_report_zones	NULL
2401 #endif /* CONFIG_BLK_DEV_ZONED */
2402 
2403 const struct block_device_operations nvme_bdev_ops = {
2404 	.owner		= THIS_MODULE,
2405 	.ioctl		= nvme_ioctl,
2406 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2407 	.open		= nvme_open,
2408 	.release	= nvme_release,
2409 	.getgeo		= nvme_getgeo,
2410 	.get_unique_id	= nvme_get_unique_id,
2411 	.report_zones	= nvme_report_zones,
2412 	.pr_ops		= &nvme_pr_ops,
2413 };
2414 
2415 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2416 		u32 timeout, const char *op)
2417 {
2418 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2419 	u32 csts;
2420 	int ret;
2421 
2422 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2423 		if (csts == ~0)
2424 			return -ENODEV;
2425 		if ((csts & mask) == val)
2426 			break;
2427 
2428 		usleep_range(1000, 2000);
2429 		if (fatal_signal_pending(current))
2430 			return -EINTR;
2431 		if (time_after(jiffies, timeout_jiffies)) {
2432 			dev_err(ctrl->device,
2433 				"Device not ready; aborting %s, CSTS=0x%x\n",
2434 				op, csts);
2435 			return -ENODEV;
2436 		}
2437 	}
2438 
2439 	return ret;
2440 }
2441 
2442 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2443 {
2444 	int ret;
2445 
2446 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2447 	if (shutdown)
2448 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2449 	else
2450 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2451 
2452 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2453 	if (ret)
2454 		return ret;
2455 
2456 	if (shutdown) {
2457 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2458 				       NVME_CSTS_SHST_CMPLT,
2459 				       ctrl->shutdown_timeout, "shutdown");
2460 	}
2461 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2462 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2463 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2464 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2465 }
2466 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2467 
2468 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2469 {
2470 	unsigned dev_page_min;
2471 	u32 timeout;
2472 	int ret;
2473 
2474 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2475 	if (ret) {
2476 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2477 		return ret;
2478 	}
2479 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2480 
2481 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2482 		dev_err(ctrl->device,
2483 			"Minimum device page size %u too large for host (%u)\n",
2484 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2485 		return -ENODEV;
2486 	}
2487 
2488 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2489 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2490 	else
2491 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2492 
2493 	/*
2494 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2495 	 * makes it possible for media related commands to return the error
2496 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2497 	 * restructured to handle retries, disable CC.CRIME.
2498 	 */
2499 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2500 
2501 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2502 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2503 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2504 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2505 	if (ret)
2506 		return ret;
2507 
2508 	/* CAP value may change after initial CC write */
2509 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2510 	if (ret)
2511 		return ret;
2512 
2513 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2514 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2515 		u32 crto, ready_timeout;
2516 
2517 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2518 		if (ret) {
2519 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2520 				ret);
2521 			return ret;
2522 		}
2523 
2524 		/*
2525 		 * CRTO should always be greater or equal to CAP.TO, but some
2526 		 * devices are known to get this wrong. Use the larger of the
2527 		 * two values.
2528 		 */
2529 		ready_timeout = NVME_CRTO_CRWMT(crto);
2530 
2531 		if (ready_timeout < timeout)
2532 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2533 				      crto, ctrl->cap);
2534 		else
2535 			timeout = ready_timeout;
2536 	}
2537 
2538 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2539 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2540 	if (ret)
2541 		return ret;
2542 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2543 			       (timeout + 1) / 2, "initialisation");
2544 }
2545 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2546 
2547 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2548 {
2549 	__le64 ts;
2550 	int ret;
2551 
2552 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2553 		return 0;
2554 
2555 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2556 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2557 			NULL);
2558 	if (ret)
2559 		dev_warn_once(ctrl->device,
2560 			"could not set timestamp (%d)\n", ret);
2561 	return ret;
2562 }
2563 
2564 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2565 {
2566 	struct nvme_feat_host_behavior *host;
2567 	u8 acre = 0, lbafee = 0;
2568 	int ret;
2569 
2570 	/* Don't bother enabling the feature if retry delay is not reported */
2571 	if (ctrl->crdt[0])
2572 		acre = NVME_ENABLE_ACRE;
2573 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2574 		lbafee = NVME_ENABLE_LBAFEE;
2575 
2576 	if (!acre && !lbafee)
2577 		return 0;
2578 
2579 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2580 	if (!host)
2581 		return 0;
2582 
2583 	host->acre = acre;
2584 	host->lbafee = lbafee;
2585 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2586 				host, sizeof(*host), NULL);
2587 	kfree(host);
2588 	return ret;
2589 }
2590 
2591 /*
2592  * The function checks whether the given total (exlat + enlat) latency of
2593  * a power state allows the latter to be used as an APST transition target.
2594  * It does so by comparing the latency to the primary and secondary latency
2595  * tolerances defined by module params. If there's a match, the corresponding
2596  * timeout value is returned and the matching tolerance index (1 or 2) is
2597  * reported.
2598  */
2599 static bool nvme_apst_get_transition_time(u64 total_latency,
2600 		u64 *transition_time, unsigned *last_index)
2601 {
2602 	if (total_latency <= apst_primary_latency_tol_us) {
2603 		if (*last_index == 1)
2604 			return false;
2605 		*last_index = 1;
2606 		*transition_time = apst_primary_timeout_ms;
2607 		return true;
2608 	}
2609 	if (apst_secondary_timeout_ms &&
2610 		total_latency <= apst_secondary_latency_tol_us) {
2611 		if (*last_index <= 2)
2612 			return false;
2613 		*last_index = 2;
2614 		*transition_time = apst_secondary_timeout_ms;
2615 		return true;
2616 	}
2617 	return false;
2618 }
2619 
2620 /*
2621  * APST (Autonomous Power State Transition) lets us program a table of power
2622  * state transitions that the controller will perform automatically.
2623  *
2624  * Depending on module params, one of the two supported techniques will be used:
2625  *
2626  * - If the parameters provide explicit timeouts and tolerances, they will be
2627  *   used to build a table with up to 2 non-operational states to transition to.
2628  *   The default parameter values were selected based on the values used by
2629  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2630  *   regeneration of the APST table in the event of switching between external
2631  *   and battery power, the timeouts and tolerances reflect a compromise
2632  *   between values used by Microsoft for AC and battery scenarios.
2633  * - If not, we'll configure the table with a simple heuristic: we are willing
2634  *   to spend at most 2% of the time transitioning between power states.
2635  *   Therefore, when running in any given state, we will enter the next
2636  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2637  *   microseconds, as long as that state's exit latency is under the requested
2638  *   maximum latency.
2639  *
2640  * We will not autonomously enter any non-operational state for which the total
2641  * latency exceeds ps_max_latency_us.
2642  *
2643  * Users can set ps_max_latency_us to zero to turn off APST.
2644  */
2645 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2646 {
2647 	struct nvme_feat_auto_pst *table;
2648 	unsigned apste = 0;
2649 	u64 max_lat_us = 0;
2650 	__le64 target = 0;
2651 	int max_ps = -1;
2652 	int state;
2653 	int ret;
2654 	unsigned last_lt_index = UINT_MAX;
2655 
2656 	/*
2657 	 * If APST isn't supported or if we haven't been initialized yet,
2658 	 * then don't do anything.
2659 	 */
2660 	if (!ctrl->apsta)
2661 		return 0;
2662 
2663 	if (ctrl->npss > 31) {
2664 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2665 		return 0;
2666 	}
2667 
2668 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2669 	if (!table)
2670 		return 0;
2671 
2672 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2673 		/* Turn off APST. */
2674 		dev_dbg(ctrl->device, "APST disabled\n");
2675 		goto done;
2676 	}
2677 
2678 	/*
2679 	 * Walk through all states from lowest- to highest-power.
2680 	 * According to the spec, lower-numbered states use more power.  NPSS,
2681 	 * despite the name, is the index of the lowest-power state, not the
2682 	 * number of states.
2683 	 */
2684 	for (state = (int)ctrl->npss; state >= 0; state--) {
2685 		u64 total_latency_us, exit_latency_us, transition_ms;
2686 
2687 		if (target)
2688 			table->entries[state] = target;
2689 
2690 		/*
2691 		 * Don't allow transitions to the deepest state if it's quirked
2692 		 * off.
2693 		 */
2694 		if (state == ctrl->npss &&
2695 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2696 			continue;
2697 
2698 		/*
2699 		 * Is this state a useful non-operational state for higher-power
2700 		 * states to autonomously transition to?
2701 		 */
2702 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2703 			continue;
2704 
2705 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2706 		if (exit_latency_us > ctrl->ps_max_latency_us)
2707 			continue;
2708 
2709 		total_latency_us = exit_latency_us +
2710 			le32_to_cpu(ctrl->psd[state].entry_lat);
2711 
2712 		/*
2713 		 * This state is good. It can be used as the APST idle target
2714 		 * for higher power states.
2715 		 */
2716 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2717 			if (!nvme_apst_get_transition_time(total_latency_us,
2718 					&transition_ms, &last_lt_index))
2719 				continue;
2720 		} else {
2721 			transition_ms = total_latency_us + 19;
2722 			do_div(transition_ms, 20);
2723 			if (transition_ms > (1 << 24) - 1)
2724 				transition_ms = (1 << 24) - 1;
2725 		}
2726 
2727 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2728 		if (max_ps == -1)
2729 			max_ps = state;
2730 		if (total_latency_us > max_lat_us)
2731 			max_lat_us = total_latency_us;
2732 	}
2733 
2734 	if (max_ps == -1)
2735 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2736 	else
2737 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2738 			max_ps, max_lat_us, (int)sizeof(*table), table);
2739 	apste = 1;
2740 
2741 done:
2742 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2743 				table, sizeof(*table), NULL);
2744 	if (ret)
2745 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2746 	kfree(table);
2747 	return ret;
2748 }
2749 
2750 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2751 {
2752 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2753 	u64 latency;
2754 
2755 	switch (val) {
2756 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2757 	case PM_QOS_LATENCY_ANY:
2758 		latency = U64_MAX;
2759 		break;
2760 
2761 	default:
2762 		latency = val;
2763 	}
2764 
2765 	if (ctrl->ps_max_latency_us != latency) {
2766 		ctrl->ps_max_latency_us = latency;
2767 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2768 			nvme_configure_apst(ctrl);
2769 	}
2770 }
2771 
2772 struct nvme_core_quirk_entry {
2773 	/*
2774 	 * NVMe model and firmware strings are padded with spaces.  For
2775 	 * simplicity, strings in the quirk table are padded with NULLs
2776 	 * instead.
2777 	 */
2778 	u16 vid;
2779 	const char *mn;
2780 	const char *fr;
2781 	unsigned long quirks;
2782 };
2783 
2784 static const struct nvme_core_quirk_entry core_quirks[] = {
2785 	{
2786 		/*
2787 		 * This Toshiba device seems to die using any APST states.  See:
2788 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2789 		 */
2790 		.vid = 0x1179,
2791 		.mn = "THNSF5256GPUK TOSHIBA",
2792 		.quirks = NVME_QUIRK_NO_APST,
2793 	},
2794 	{
2795 		/*
2796 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2797 		 * condition associated with actions related to suspend to idle
2798 		 * LiteON has resolved the problem in future firmware
2799 		 */
2800 		.vid = 0x14a4,
2801 		.fr = "22301111",
2802 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2803 	},
2804 	{
2805 		/*
2806 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2807 		 * aborts I/O during any load, but more easily reproducible
2808 		 * with discards (fstrim).
2809 		 *
2810 		 * The device is left in a state where it is also not possible
2811 		 * to use "nvme set-feature" to disable APST, but booting with
2812 		 * nvme_core.default_ps_max_latency=0 works.
2813 		 */
2814 		.vid = 0x1e0f,
2815 		.mn = "KCD6XVUL6T40",
2816 		.quirks = NVME_QUIRK_NO_APST,
2817 	},
2818 	{
2819 		/*
2820 		 * The external Samsung X5 SSD fails initialization without a
2821 		 * delay before checking if it is ready and has a whole set of
2822 		 * other problems.  To make this even more interesting, it
2823 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2824 		 * does not need or want these quirks.
2825 		 */
2826 		.vid = 0x144d,
2827 		.mn = "Samsung Portable SSD X5",
2828 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2829 			  NVME_QUIRK_NO_DEEPEST_PS |
2830 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2831 	}
2832 };
2833 
2834 /* match is null-terminated but idstr is space-padded. */
2835 static bool string_matches(const char *idstr, const char *match, size_t len)
2836 {
2837 	size_t matchlen;
2838 
2839 	if (!match)
2840 		return true;
2841 
2842 	matchlen = strlen(match);
2843 	WARN_ON_ONCE(matchlen > len);
2844 
2845 	if (memcmp(idstr, match, matchlen))
2846 		return false;
2847 
2848 	for (; matchlen < len; matchlen++)
2849 		if (idstr[matchlen] != ' ')
2850 			return false;
2851 
2852 	return true;
2853 }
2854 
2855 static bool quirk_matches(const struct nvme_id_ctrl *id,
2856 			  const struct nvme_core_quirk_entry *q)
2857 {
2858 	return q->vid == le16_to_cpu(id->vid) &&
2859 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2860 		string_matches(id->fr, q->fr, sizeof(id->fr));
2861 }
2862 
2863 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2864 		struct nvme_id_ctrl *id)
2865 {
2866 	size_t nqnlen;
2867 	int off;
2868 
2869 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2870 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2871 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2872 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2873 			return;
2874 		}
2875 
2876 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2877 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2878 	}
2879 
2880 	/*
2881 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2882 	 * Base Specification 2.0.  It is slightly different from the format
2883 	 * specified there due to historic reasons, and we can't change it now.
2884 	 */
2885 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2886 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2887 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2888 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2889 	off += sizeof(id->sn);
2890 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2891 	off += sizeof(id->mn);
2892 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2893 }
2894 
2895 static void nvme_release_subsystem(struct device *dev)
2896 {
2897 	struct nvme_subsystem *subsys =
2898 		container_of(dev, struct nvme_subsystem, dev);
2899 
2900 	if (subsys->instance >= 0)
2901 		ida_free(&nvme_instance_ida, subsys->instance);
2902 	kfree(subsys);
2903 }
2904 
2905 static void nvme_destroy_subsystem(struct kref *ref)
2906 {
2907 	struct nvme_subsystem *subsys =
2908 			container_of(ref, struct nvme_subsystem, ref);
2909 
2910 	mutex_lock(&nvme_subsystems_lock);
2911 	list_del(&subsys->entry);
2912 	mutex_unlock(&nvme_subsystems_lock);
2913 
2914 	ida_destroy(&subsys->ns_ida);
2915 	device_del(&subsys->dev);
2916 	put_device(&subsys->dev);
2917 }
2918 
2919 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2920 {
2921 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2922 }
2923 
2924 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2925 {
2926 	struct nvme_subsystem *subsys;
2927 
2928 	lockdep_assert_held(&nvme_subsystems_lock);
2929 
2930 	/*
2931 	 * Fail matches for discovery subsystems. This results
2932 	 * in each discovery controller bound to a unique subsystem.
2933 	 * This avoids issues with validating controller values
2934 	 * that can only be true when there is a single unique subsystem.
2935 	 * There may be multiple and completely independent entities
2936 	 * that provide discovery controllers.
2937 	 */
2938 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2939 		return NULL;
2940 
2941 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2942 		if (strcmp(subsys->subnqn, subsysnqn))
2943 			continue;
2944 		if (!kref_get_unless_zero(&subsys->ref))
2945 			continue;
2946 		return subsys;
2947 	}
2948 
2949 	return NULL;
2950 }
2951 
2952 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2953 {
2954 	return ctrl->opts && ctrl->opts->discovery_nqn;
2955 }
2956 
2957 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2958 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2959 {
2960 	struct nvme_ctrl *tmp;
2961 
2962 	lockdep_assert_held(&nvme_subsystems_lock);
2963 
2964 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2965 		if (nvme_state_terminal(tmp))
2966 			continue;
2967 
2968 		if (tmp->cntlid == ctrl->cntlid) {
2969 			dev_err(ctrl->device,
2970 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2971 				ctrl->cntlid, dev_name(tmp->device),
2972 				subsys->subnqn);
2973 			return false;
2974 		}
2975 
2976 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2977 		    nvme_discovery_ctrl(ctrl))
2978 			continue;
2979 
2980 		dev_err(ctrl->device,
2981 			"Subsystem does not support multiple controllers\n");
2982 		return false;
2983 	}
2984 
2985 	return true;
2986 }
2987 
2988 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2989 {
2990 	struct nvme_subsystem *subsys, *found;
2991 	int ret;
2992 
2993 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2994 	if (!subsys)
2995 		return -ENOMEM;
2996 
2997 	subsys->instance = -1;
2998 	mutex_init(&subsys->lock);
2999 	kref_init(&subsys->ref);
3000 	INIT_LIST_HEAD(&subsys->ctrls);
3001 	INIT_LIST_HEAD(&subsys->nsheads);
3002 	nvme_init_subnqn(subsys, ctrl, id);
3003 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3004 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
3005 	subsys->vendor_id = le16_to_cpu(id->vid);
3006 	subsys->cmic = id->cmic;
3007 
3008 	/* Versions prior to 1.4 don't necessarily report a valid type */
3009 	if (id->cntrltype == NVME_CTRL_DISC ||
3010 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3011 		subsys->subtype = NVME_NQN_DISC;
3012 	else
3013 		subsys->subtype = NVME_NQN_NVME;
3014 
3015 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3016 		dev_err(ctrl->device,
3017 			"Subsystem %s is not a discovery controller",
3018 			subsys->subnqn);
3019 		kfree(subsys);
3020 		return -EINVAL;
3021 	}
3022 	subsys->awupf = le16_to_cpu(id->awupf);
3023 	nvme_mpath_default_iopolicy(subsys);
3024 
3025 	subsys->dev.class = &nvme_subsys_class;
3026 	subsys->dev.release = nvme_release_subsystem;
3027 	subsys->dev.groups = nvme_subsys_attrs_groups;
3028 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3029 	device_initialize(&subsys->dev);
3030 
3031 	mutex_lock(&nvme_subsystems_lock);
3032 	found = __nvme_find_get_subsystem(subsys->subnqn);
3033 	if (found) {
3034 		put_device(&subsys->dev);
3035 		subsys = found;
3036 
3037 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3038 			ret = -EINVAL;
3039 			goto out_put_subsystem;
3040 		}
3041 	} else {
3042 		ret = device_add(&subsys->dev);
3043 		if (ret) {
3044 			dev_err(ctrl->device,
3045 				"failed to register subsystem device.\n");
3046 			put_device(&subsys->dev);
3047 			goto out_unlock;
3048 		}
3049 		ida_init(&subsys->ns_ida);
3050 		list_add_tail(&subsys->entry, &nvme_subsystems);
3051 	}
3052 
3053 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3054 				dev_name(ctrl->device));
3055 	if (ret) {
3056 		dev_err(ctrl->device,
3057 			"failed to create sysfs link from subsystem.\n");
3058 		goto out_put_subsystem;
3059 	}
3060 
3061 	if (!found)
3062 		subsys->instance = ctrl->instance;
3063 	ctrl->subsys = subsys;
3064 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3065 	mutex_unlock(&nvme_subsystems_lock);
3066 	return 0;
3067 
3068 out_put_subsystem:
3069 	nvme_put_subsystem(subsys);
3070 out_unlock:
3071 	mutex_unlock(&nvme_subsystems_lock);
3072 	return ret;
3073 }
3074 
3075 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3076 		void *log, size_t size, u64 offset)
3077 {
3078 	struct nvme_command c = { };
3079 	u32 dwlen = nvme_bytes_to_numd(size);
3080 
3081 	c.get_log_page.opcode = nvme_admin_get_log_page;
3082 	c.get_log_page.nsid = cpu_to_le32(nsid);
3083 	c.get_log_page.lid = log_page;
3084 	c.get_log_page.lsp = lsp;
3085 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3086 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3087 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3088 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3089 	c.get_log_page.csi = csi;
3090 
3091 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3092 }
3093 
3094 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3095 				struct nvme_effects_log **log)
3096 {
3097 	struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3098 	int ret;
3099 
3100 	if (cel)
3101 		goto out;
3102 
3103 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3104 	if (!cel)
3105 		return -ENOMEM;
3106 
3107 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3108 			cel, sizeof(*cel), 0);
3109 	if (ret) {
3110 		kfree(cel);
3111 		return ret;
3112 	}
3113 
3114 	old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3115 	if (xa_is_err(old)) {
3116 		kfree(cel);
3117 		return xa_err(old);
3118 	}
3119 out:
3120 	*log = cel;
3121 	return 0;
3122 }
3123 
3124 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3125 {
3126 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3127 
3128 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3129 		return UINT_MAX;
3130 	return val;
3131 }
3132 
3133 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3134 {
3135 	struct nvme_command c = { };
3136 	struct nvme_id_ctrl_nvm *id;
3137 	int ret;
3138 
3139 	/*
3140 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3141 	 * to the write-zeroes, we are cautious and limit the size to the
3142 	 * controllers max_hw_sectors value, which is based on the MDTS field
3143 	 * and possibly other limiting factors.
3144 	 */
3145 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3146 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3147 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3148 	else
3149 		ctrl->max_zeroes_sectors = 0;
3150 
3151 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3152 	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3153 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3154 		return 0;
3155 
3156 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3157 	if (!id)
3158 		return -ENOMEM;
3159 
3160 	c.identify.opcode = nvme_admin_identify;
3161 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3162 	c.identify.csi = NVME_CSI_NVM;
3163 
3164 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3165 	if (ret)
3166 		goto free_data;
3167 
3168 	ctrl->dmrl = id->dmrl;
3169 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3170 	if (id->wzsl)
3171 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3172 
3173 free_data:
3174 	if (ret > 0)
3175 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3176 	kfree(id);
3177 	return ret;
3178 }
3179 
3180 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3181 		u8 csi, struct nvme_effects_log **log)
3182 {
3183 	struct nvme_effects_log *effects, *old;
3184 
3185 	effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3186 	if (!effects)
3187 		return -ENOMEM;
3188 
3189 	old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3190 	if (xa_is_err(old)) {
3191 		kfree(effects);
3192 		return xa_err(old);
3193 	}
3194 
3195 	*log = effects;
3196 	return 0;
3197 }
3198 
3199 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3200 {
3201 	struct nvme_effects_log	*log = ctrl->effects;
3202 
3203 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3204 						NVME_CMD_EFFECTS_NCC |
3205 						NVME_CMD_EFFECTS_CSE_MASK);
3206 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3207 						NVME_CMD_EFFECTS_CSE_MASK);
3208 
3209 	/*
3210 	 * The spec says the result of a security receive command depends on
3211 	 * the previous security send command. As such, many vendors log this
3212 	 * command as one to submitted only when no other commands to the same
3213 	 * namespace are outstanding. The intention is to tell the host to
3214 	 * prevent mixing security send and receive.
3215 	 *
3216 	 * This driver can only enforce such exclusive access against IO
3217 	 * queues, though. We are not readily able to enforce such a rule for
3218 	 * two commands to the admin queue, which is the only queue that
3219 	 * matters for this command.
3220 	 *
3221 	 * Rather than blindly freezing the IO queues for this effect that
3222 	 * doesn't even apply to IO, mask it off.
3223 	 */
3224 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3225 
3226 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3227 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3228 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3229 }
3230 
3231 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3232 {
3233 	int ret = 0;
3234 
3235 	if (ctrl->effects)
3236 		return 0;
3237 
3238 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3239 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3240 		if (ret < 0)
3241 			return ret;
3242 	}
3243 
3244 	if (!ctrl->effects) {
3245 		ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3246 		if (ret < 0)
3247 			return ret;
3248 	}
3249 
3250 	nvme_init_known_nvm_effects(ctrl);
3251 	return 0;
3252 }
3253 
3254 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3255 {
3256 	/*
3257 	 * In fabrics we need to verify the cntlid matches the
3258 	 * admin connect
3259 	 */
3260 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3261 		dev_err(ctrl->device,
3262 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3263 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3264 		return -EINVAL;
3265 	}
3266 
3267 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3268 		dev_err(ctrl->device,
3269 			"keep-alive support is mandatory for fabrics\n");
3270 		return -EINVAL;
3271 	}
3272 
3273 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3274 		dev_err(ctrl->device,
3275 			"I/O queue command capsule supported size %d < 4\n",
3276 			ctrl->ioccsz);
3277 		return -EINVAL;
3278 	}
3279 
3280 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3281 		dev_err(ctrl->device,
3282 			"I/O queue response capsule supported size %d < 1\n",
3283 			ctrl->iorcsz);
3284 		return -EINVAL;
3285 	}
3286 
3287 	if (!ctrl->maxcmd) {
3288 		dev_warn(ctrl->device,
3289 			"Firmware bug: maximum outstanding commands is 0\n");
3290 		ctrl->maxcmd = ctrl->sqsize + 1;
3291 	}
3292 
3293 	return 0;
3294 }
3295 
3296 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3297 {
3298 	struct queue_limits lim;
3299 	struct nvme_id_ctrl *id;
3300 	u32 max_hw_sectors;
3301 	bool prev_apst_enabled;
3302 	int ret;
3303 
3304 	ret = nvme_identify_ctrl(ctrl, &id);
3305 	if (ret) {
3306 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3307 		return -EIO;
3308 	}
3309 
3310 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3311 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3312 
3313 	if (!ctrl->identified) {
3314 		unsigned int i;
3315 
3316 		/*
3317 		 * Check for quirks.  Quirk can depend on firmware version,
3318 		 * so, in principle, the set of quirks present can change
3319 		 * across a reset.  As a possible future enhancement, we
3320 		 * could re-scan for quirks every time we reinitialize
3321 		 * the device, but we'd have to make sure that the driver
3322 		 * behaves intelligently if the quirks change.
3323 		 */
3324 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3325 			if (quirk_matches(id, &core_quirks[i]))
3326 				ctrl->quirks |= core_quirks[i].quirks;
3327 		}
3328 
3329 		ret = nvme_init_subsystem(ctrl, id);
3330 		if (ret)
3331 			goto out_free;
3332 
3333 		ret = nvme_init_effects(ctrl, id);
3334 		if (ret)
3335 			goto out_free;
3336 	}
3337 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3338 	       sizeof(ctrl->subsys->firmware_rev));
3339 
3340 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3341 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3342 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3343 	}
3344 
3345 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3346 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3347 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3348 
3349 	ctrl->oacs = le16_to_cpu(id->oacs);
3350 	ctrl->oncs = le16_to_cpu(id->oncs);
3351 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3352 	ctrl->oaes = le32_to_cpu(id->oaes);
3353 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3354 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3355 
3356 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3357 	ctrl->vwc = id->vwc;
3358 	if (id->mdts)
3359 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3360 	else
3361 		max_hw_sectors = UINT_MAX;
3362 	ctrl->max_hw_sectors =
3363 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3364 
3365 	lim = queue_limits_start_update(ctrl->admin_q);
3366 	nvme_set_ctrl_limits(ctrl, &lim);
3367 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3368 	if (ret)
3369 		goto out_free;
3370 
3371 	ctrl->sgls = le32_to_cpu(id->sgls);
3372 	ctrl->kas = le16_to_cpu(id->kas);
3373 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3374 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3375 
3376 	ctrl->cntrltype = id->cntrltype;
3377 	ctrl->dctype = id->dctype;
3378 
3379 	if (id->rtd3e) {
3380 		/* us -> s */
3381 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3382 
3383 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3384 						 shutdown_timeout, 60);
3385 
3386 		if (ctrl->shutdown_timeout != shutdown_timeout)
3387 			dev_info(ctrl->device,
3388 				 "D3 entry latency set to %u seconds\n",
3389 				 ctrl->shutdown_timeout);
3390 	} else
3391 		ctrl->shutdown_timeout = shutdown_timeout;
3392 
3393 	ctrl->npss = id->npss;
3394 	ctrl->apsta = id->apsta;
3395 	prev_apst_enabled = ctrl->apst_enabled;
3396 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3397 		if (force_apst && id->apsta) {
3398 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3399 			ctrl->apst_enabled = true;
3400 		} else {
3401 			ctrl->apst_enabled = false;
3402 		}
3403 	} else {
3404 		ctrl->apst_enabled = id->apsta;
3405 	}
3406 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3407 
3408 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3409 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3410 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3411 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3412 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3413 
3414 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3415 		if (ret)
3416 			goto out_free;
3417 	} else {
3418 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3419 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3420 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3421 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3422 	}
3423 
3424 	ret = nvme_mpath_init_identify(ctrl, id);
3425 	if (ret < 0)
3426 		goto out_free;
3427 
3428 	if (ctrl->apst_enabled && !prev_apst_enabled)
3429 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3430 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3431 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3432 
3433 out_free:
3434 	kfree(id);
3435 	return ret;
3436 }
3437 
3438 /*
3439  * Initialize the cached copies of the Identify data and various controller
3440  * register in our nvme_ctrl structure.  This should be called as soon as
3441  * the admin queue is fully up and running.
3442  */
3443 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3444 {
3445 	int ret;
3446 
3447 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3448 	if (ret) {
3449 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3450 		return ret;
3451 	}
3452 
3453 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3454 
3455 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3456 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3457 
3458 	ret = nvme_init_identify(ctrl);
3459 	if (ret)
3460 		return ret;
3461 
3462 	ret = nvme_configure_apst(ctrl);
3463 	if (ret < 0)
3464 		return ret;
3465 
3466 	ret = nvme_configure_timestamp(ctrl);
3467 	if (ret < 0)
3468 		return ret;
3469 
3470 	ret = nvme_configure_host_options(ctrl);
3471 	if (ret < 0)
3472 		return ret;
3473 
3474 	nvme_configure_opal(ctrl, was_suspended);
3475 
3476 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3477 		/*
3478 		 * Do not return errors unless we are in a controller reset,
3479 		 * the controller works perfectly fine without hwmon.
3480 		 */
3481 		ret = nvme_hwmon_init(ctrl);
3482 		if (ret == -EINTR)
3483 			return ret;
3484 	}
3485 
3486 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3487 	ctrl->identified = true;
3488 
3489 	nvme_start_keep_alive(ctrl);
3490 
3491 	return 0;
3492 }
3493 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3494 
3495 static int nvme_dev_open(struct inode *inode, struct file *file)
3496 {
3497 	struct nvme_ctrl *ctrl =
3498 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3499 
3500 	switch (nvme_ctrl_state(ctrl)) {
3501 	case NVME_CTRL_LIVE:
3502 		break;
3503 	default:
3504 		return -EWOULDBLOCK;
3505 	}
3506 
3507 	nvme_get_ctrl(ctrl);
3508 	if (!try_module_get(ctrl->ops->module)) {
3509 		nvme_put_ctrl(ctrl);
3510 		return -EINVAL;
3511 	}
3512 
3513 	file->private_data = ctrl;
3514 	return 0;
3515 }
3516 
3517 static int nvme_dev_release(struct inode *inode, struct file *file)
3518 {
3519 	struct nvme_ctrl *ctrl =
3520 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3521 
3522 	module_put(ctrl->ops->module);
3523 	nvme_put_ctrl(ctrl);
3524 	return 0;
3525 }
3526 
3527 static const struct file_operations nvme_dev_fops = {
3528 	.owner		= THIS_MODULE,
3529 	.open		= nvme_dev_open,
3530 	.release	= nvme_dev_release,
3531 	.unlocked_ioctl	= nvme_dev_ioctl,
3532 	.compat_ioctl	= compat_ptr_ioctl,
3533 	.uring_cmd	= nvme_dev_uring_cmd,
3534 };
3535 
3536 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3537 		unsigned nsid)
3538 {
3539 	struct nvme_ns_head *h;
3540 
3541 	lockdep_assert_held(&ctrl->subsys->lock);
3542 
3543 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3544 		/*
3545 		 * Private namespaces can share NSIDs under some conditions.
3546 		 * In that case we can't use the same ns_head for namespaces
3547 		 * with the same NSID.
3548 		 */
3549 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3550 			continue;
3551 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3552 			return h;
3553 	}
3554 
3555 	return NULL;
3556 }
3557 
3558 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3559 		struct nvme_ns_ids *ids)
3560 {
3561 	bool has_uuid = !uuid_is_null(&ids->uuid);
3562 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3563 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3564 	struct nvme_ns_head *h;
3565 
3566 	lockdep_assert_held(&subsys->lock);
3567 
3568 	list_for_each_entry(h, &subsys->nsheads, entry) {
3569 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3570 			return -EINVAL;
3571 		if (has_nguid &&
3572 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3573 			return -EINVAL;
3574 		if (has_eui64 &&
3575 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3576 			return -EINVAL;
3577 	}
3578 
3579 	return 0;
3580 }
3581 
3582 static void nvme_cdev_rel(struct device *dev)
3583 {
3584 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3585 }
3586 
3587 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3588 {
3589 	cdev_device_del(cdev, cdev_device);
3590 	put_device(cdev_device);
3591 }
3592 
3593 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3594 		const struct file_operations *fops, struct module *owner)
3595 {
3596 	int minor, ret;
3597 
3598 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3599 	if (minor < 0)
3600 		return minor;
3601 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3602 	cdev_device->class = &nvme_ns_chr_class;
3603 	cdev_device->release = nvme_cdev_rel;
3604 	device_initialize(cdev_device);
3605 	cdev_init(cdev, fops);
3606 	cdev->owner = owner;
3607 	ret = cdev_device_add(cdev, cdev_device);
3608 	if (ret)
3609 		put_device(cdev_device);
3610 
3611 	return ret;
3612 }
3613 
3614 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3615 {
3616 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3617 }
3618 
3619 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3620 {
3621 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3622 	return 0;
3623 }
3624 
3625 static const struct file_operations nvme_ns_chr_fops = {
3626 	.owner		= THIS_MODULE,
3627 	.open		= nvme_ns_chr_open,
3628 	.release	= nvme_ns_chr_release,
3629 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3630 	.compat_ioctl	= compat_ptr_ioctl,
3631 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3632 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3633 };
3634 
3635 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3636 {
3637 	int ret;
3638 
3639 	ns->cdev_device.parent = ns->ctrl->device;
3640 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3641 			   ns->ctrl->instance, ns->head->instance);
3642 	if (ret)
3643 		return ret;
3644 
3645 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3646 			     ns->ctrl->ops->module);
3647 }
3648 
3649 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3650 		struct nvme_ns_info *info)
3651 {
3652 	struct nvme_ns_head *head;
3653 	size_t size = sizeof(*head);
3654 	int ret = -ENOMEM;
3655 
3656 #ifdef CONFIG_NVME_MULTIPATH
3657 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3658 #endif
3659 
3660 	head = kzalloc(size, GFP_KERNEL);
3661 	if (!head)
3662 		goto out;
3663 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3664 	if (ret < 0)
3665 		goto out_free_head;
3666 	head->instance = ret;
3667 	INIT_LIST_HEAD(&head->list);
3668 	ret = init_srcu_struct(&head->srcu);
3669 	if (ret)
3670 		goto out_ida_remove;
3671 	head->subsys = ctrl->subsys;
3672 	head->ns_id = info->nsid;
3673 	head->ids = info->ids;
3674 	head->shared = info->is_shared;
3675 	head->rotational = info->is_rotational;
3676 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3677 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3678 	kref_init(&head->ref);
3679 
3680 	if (head->ids.csi) {
3681 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3682 		if (ret)
3683 			goto out_cleanup_srcu;
3684 	} else
3685 		head->effects = ctrl->effects;
3686 
3687 	ret = nvme_mpath_alloc_disk(ctrl, head);
3688 	if (ret)
3689 		goto out_cleanup_srcu;
3690 
3691 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3692 
3693 	kref_get(&ctrl->subsys->ref);
3694 
3695 	return head;
3696 out_cleanup_srcu:
3697 	cleanup_srcu_struct(&head->srcu);
3698 out_ida_remove:
3699 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3700 out_free_head:
3701 	kfree(head);
3702 out:
3703 	if (ret > 0)
3704 		ret = blk_status_to_errno(nvme_error_status(ret));
3705 	return ERR_PTR(ret);
3706 }
3707 
3708 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3709 		struct nvme_ns_ids *ids)
3710 {
3711 	struct nvme_subsystem *s;
3712 	int ret = 0;
3713 
3714 	/*
3715 	 * Note that this check is racy as we try to avoid holding the global
3716 	 * lock over the whole ns_head creation.  But it is only intended as
3717 	 * a sanity check anyway.
3718 	 */
3719 	mutex_lock(&nvme_subsystems_lock);
3720 	list_for_each_entry(s, &nvme_subsystems, entry) {
3721 		if (s == this)
3722 			continue;
3723 		mutex_lock(&s->lock);
3724 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3725 		mutex_unlock(&s->lock);
3726 		if (ret)
3727 			break;
3728 	}
3729 	mutex_unlock(&nvme_subsystems_lock);
3730 
3731 	return ret;
3732 }
3733 
3734 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3735 {
3736 	struct nvme_ctrl *ctrl = ns->ctrl;
3737 	struct nvme_ns_head *head = NULL;
3738 	int ret;
3739 
3740 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3741 	if (ret) {
3742 		/*
3743 		 * We've found two different namespaces on two different
3744 		 * subsystems that report the same ID.  This is pretty nasty
3745 		 * for anything that actually requires unique device
3746 		 * identification.  In the kernel we need this for multipathing,
3747 		 * and in user space the /dev/disk/by-id/ links rely on it.
3748 		 *
3749 		 * If the device also claims to be multi-path capable back off
3750 		 * here now and refuse the probe the second device as this is a
3751 		 * recipe for data corruption.  If not this is probably a
3752 		 * cheap consumer device if on the PCIe bus, so let the user
3753 		 * proceed and use the shiny toy, but warn that with changing
3754 		 * probing order (which due to our async probing could just be
3755 		 * device taking longer to startup) the other device could show
3756 		 * up at any time.
3757 		 */
3758 		nvme_print_device_info(ctrl);
3759 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3760 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3761 		     info->is_shared)) {
3762 			dev_err(ctrl->device,
3763 				"ignoring nsid %d because of duplicate IDs\n",
3764 				info->nsid);
3765 			return ret;
3766 		}
3767 
3768 		dev_err(ctrl->device,
3769 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3770 		dev_err(ctrl->device,
3771 			"use of /dev/disk/by-id/ may cause data corruption\n");
3772 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3773 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3774 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3775 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3776 	}
3777 
3778 	mutex_lock(&ctrl->subsys->lock);
3779 	head = nvme_find_ns_head(ctrl, info->nsid);
3780 	if (!head) {
3781 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3782 		if (ret) {
3783 			dev_err(ctrl->device,
3784 				"duplicate IDs in subsystem for nsid %d\n",
3785 				info->nsid);
3786 			goto out_unlock;
3787 		}
3788 		head = nvme_alloc_ns_head(ctrl, info);
3789 		if (IS_ERR(head)) {
3790 			ret = PTR_ERR(head);
3791 			goto out_unlock;
3792 		}
3793 	} else {
3794 		ret = -EINVAL;
3795 		if (!info->is_shared || !head->shared) {
3796 			dev_err(ctrl->device,
3797 				"Duplicate unshared namespace %d\n",
3798 				info->nsid);
3799 			goto out_put_ns_head;
3800 		}
3801 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3802 			dev_err(ctrl->device,
3803 				"IDs don't match for shared namespace %d\n",
3804 					info->nsid);
3805 			goto out_put_ns_head;
3806 		}
3807 
3808 		if (!multipath) {
3809 			dev_warn(ctrl->device,
3810 				"Found shared namespace %d, but multipathing not supported.\n",
3811 				info->nsid);
3812 			dev_warn_once(ctrl->device,
3813 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3814 		}
3815 	}
3816 
3817 	list_add_tail_rcu(&ns->siblings, &head->list);
3818 	ns->head = head;
3819 	mutex_unlock(&ctrl->subsys->lock);
3820 	return 0;
3821 
3822 out_put_ns_head:
3823 	nvme_put_ns_head(head);
3824 out_unlock:
3825 	mutex_unlock(&ctrl->subsys->lock);
3826 	return ret;
3827 }
3828 
3829 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3830 {
3831 	struct nvme_ns *ns, *ret = NULL;
3832 	int srcu_idx;
3833 
3834 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3835 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3836 				 srcu_read_lock_held(&ctrl->srcu)) {
3837 		if (ns->head->ns_id == nsid) {
3838 			if (!nvme_get_ns(ns))
3839 				continue;
3840 			ret = ns;
3841 			break;
3842 		}
3843 		if (ns->head->ns_id > nsid)
3844 			break;
3845 	}
3846 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3847 	return ret;
3848 }
3849 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
3850 
3851 /*
3852  * Add the namespace to the controller list while keeping the list ordered.
3853  */
3854 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3855 {
3856 	struct nvme_ns *tmp;
3857 
3858 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3859 		if (tmp->head->ns_id < ns->head->ns_id) {
3860 			list_add_rcu(&ns->list, &tmp->list);
3861 			return;
3862 		}
3863 	}
3864 	list_add(&ns->list, &ns->ctrl->namespaces);
3865 }
3866 
3867 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3868 {
3869 	struct queue_limits lim = { };
3870 	struct nvme_ns *ns;
3871 	struct gendisk *disk;
3872 	int node = ctrl->numa_node;
3873 
3874 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3875 	if (!ns)
3876 		return;
3877 
3878 	if (ctrl->opts && ctrl->opts->data_digest)
3879 		lim.features |= BLK_FEAT_STABLE_WRITES;
3880 	if (ctrl->ops->supports_pci_p2pdma &&
3881 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3882 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3883 
3884 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3885 	if (IS_ERR(disk))
3886 		goto out_free_ns;
3887 	disk->fops = &nvme_bdev_ops;
3888 	disk->private_data = ns;
3889 
3890 	ns->disk = disk;
3891 	ns->queue = disk->queue;
3892 	ns->ctrl = ctrl;
3893 	kref_init(&ns->kref);
3894 
3895 	if (nvme_init_ns_head(ns, info))
3896 		goto out_cleanup_disk;
3897 
3898 	/*
3899 	 * If multipathing is enabled, the device name for all disks and not
3900 	 * just those that represent shared namespaces needs to be based on the
3901 	 * subsystem instance.  Using the controller instance for private
3902 	 * namespaces could lead to naming collisions between shared and private
3903 	 * namespaces if they don't use a common numbering scheme.
3904 	 *
3905 	 * If multipathing is not enabled, disk names must use the controller
3906 	 * instance as shared namespaces will show up as multiple block
3907 	 * devices.
3908 	 */
3909 	if (nvme_ns_head_multipath(ns->head)) {
3910 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3911 			ctrl->instance, ns->head->instance);
3912 		disk->flags |= GENHD_FL_HIDDEN;
3913 	} else if (multipath) {
3914 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3915 			ns->head->instance);
3916 	} else {
3917 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3918 			ns->head->instance);
3919 	}
3920 
3921 	if (nvme_update_ns_info(ns, info))
3922 		goto out_unlink_ns;
3923 
3924 	mutex_lock(&ctrl->namespaces_lock);
3925 	/*
3926 	 * Ensure that no namespaces are added to the ctrl list after the queues
3927 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3928 	 */
3929 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3930 		mutex_unlock(&ctrl->namespaces_lock);
3931 		goto out_unlink_ns;
3932 	}
3933 	nvme_ns_add_to_ctrl_list(ns);
3934 	mutex_unlock(&ctrl->namespaces_lock);
3935 	synchronize_srcu(&ctrl->srcu);
3936 	nvme_get_ctrl(ctrl);
3937 
3938 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3939 		goto out_cleanup_ns_from_list;
3940 
3941 	if (!nvme_ns_head_multipath(ns->head))
3942 		nvme_add_ns_cdev(ns);
3943 
3944 	nvme_mpath_add_disk(ns, info->anagrpid);
3945 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3946 
3947 	/*
3948 	 * Set ns->disk->device->driver_data to ns so we can access
3949 	 * ns->head->passthru_err_log_enabled in
3950 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3951 	 */
3952 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3953 
3954 	return;
3955 
3956  out_cleanup_ns_from_list:
3957 	nvme_put_ctrl(ctrl);
3958 	mutex_lock(&ctrl->namespaces_lock);
3959 	list_del_rcu(&ns->list);
3960 	mutex_unlock(&ctrl->namespaces_lock);
3961 	synchronize_srcu(&ctrl->srcu);
3962  out_unlink_ns:
3963 	mutex_lock(&ctrl->subsys->lock);
3964 	list_del_rcu(&ns->siblings);
3965 	if (list_empty(&ns->head->list))
3966 		list_del_init(&ns->head->entry);
3967 	mutex_unlock(&ctrl->subsys->lock);
3968 	nvme_put_ns_head(ns->head);
3969  out_cleanup_disk:
3970 	put_disk(disk);
3971  out_free_ns:
3972 	kfree(ns);
3973 }
3974 
3975 static void nvme_ns_remove(struct nvme_ns *ns)
3976 {
3977 	bool last_path = false;
3978 
3979 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3980 		return;
3981 
3982 	clear_bit(NVME_NS_READY, &ns->flags);
3983 	set_capacity(ns->disk, 0);
3984 	nvme_fault_inject_fini(&ns->fault_inject);
3985 
3986 	/*
3987 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3988 	 * this ns going back into current_path.
3989 	 */
3990 	synchronize_srcu(&ns->head->srcu);
3991 
3992 	/* wait for concurrent submissions */
3993 	if (nvme_mpath_clear_current_path(ns))
3994 		synchronize_srcu(&ns->head->srcu);
3995 
3996 	mutex_lock(&ns->ctrl->subsys->lock);
3997 	list_del_rcu(&ns->siblings);
3998 	if (list_empty(&ns->head->list)) {
3999 		list_del_init(&ns->head->entry);
4000 		last_path = true;
4001 	}
4002 	mutex_unlock(&ns->ctrl->subsys->lock);
4003 
4004 	/* guarantee not available in head->list */
4005 	synchronize_srcu(&ns->head->srcu);
4006 
4007 	if (!nvme_ns_head_multipath(ns->head))
4008 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4009 	del_gendisk(ns->disk);
4010 
4011 	mutex_lock(&ns->ctrl->namespaces_lock);
4012 	list_del_rcu(&ns->list);
4013 	mutex_unlock(&ns->ctrl->namespaces_lock);
4014 	synchronize_srcu(&ns->ctrl->srcu);
4015 
4016 	if (last_path)
4017 		nvme_mpath_shutdown_disk(ns->head);
4018 	nvme_put_ns(ns);
4019 }
4020 
4021 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4022 {
4023 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4024 
4025 	if (ns) {
4026 		nvme_ns_remove(ns);
4027 		nvme_put_ns(ns);
4028 	}
4029 }
4030 
4031 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4032 {
4033 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4034 
4035 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4036 		dev_err(ns->ctrl->device,
4037 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4038 		goto out;
4039 	}
4040 
4041 	ret = nvme_update_ns_info(ns, info);
4042 out:
4043 	/*
4044 	 * Only remove the namespace if we got a fatal error back from the
4045 	 * device, otherwise ignore the error and just move on.
4046 	 *
4047 	 * TODO: we should probably schedule a delayed retry here.
4048 	 */
4049 	if (ret > 0 && (ret & NVME_STATUS_DNR))
4050 		nvme_ns_remove(ns);
4051 }
4052 
4053 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4054 {
4055 	struct nvme_ns_info info = { .nsid = nsid };
4056 	struct nvme_ns *ns;
4057 	int ret = 1;
4058 
4059 	if (nvme_identify_ns_descs(ctrl, &info))
4060 		return;
4061 
4062 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4063 		dev_warn(ctrl->device,
4064 			"command set not reported for nsid: %d\n", nsid);
4065 		return;
4066 	}
4067 
4068 	/*
4069 	 * If available try to use the Command Set Idependent Identify Namespace
4070 	 * data structure to find all the generic information that is needed to
4071 	 * set up a namespace.  If not fall back to the legacy version.
4072 	 */
4073 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4074 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4075 	    ctrl->vs >= NVME_VS(2, 0, 0))
4076 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4077 	if (ret > 0)
4078 		ret = nvme_ns_info_from_identify(ctrl, &info);
4079 
4080 	if (info.is_removed)
4081 		nvme_ns_remove_by_nsid(ctrl, nsid);
4082 
4083 	/*
4084 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4085 	 * becomes ready and restart the scan.
4086 	 */
4087 	if (ret || !info.is_ready)
4088 		return;
4089 
4090 	ns = nvme_find_get_ns(ctrl, nsid);
4091 	if (ns) {
4092 		nvme_validate_ns(ns, &info);
4093 		nvme_put_ns(ns);
4094 	} else {
4095 		nvme_alloc_ns(ctrl, &info);
4096 	}
4097 }
4098 
4099 /**
4100  * struct async_scan_info - keeps track of controller & NSIDs to scan
4101  * @ctrl:	Controller on which namespaces are being scanned
4102  * @next_nsid:	Index of next NSID to scan in ns_list
4103  * @ns_list:	Pointer to list of NSIDs to scan
4104  *
4105  * Note: There is a single async_scan_info structure shared by all instances
4106  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4107  * operations on next_nsid are critical to ensure each instance scans a unique
4108  * NSID.
4109  */
4110 struct async_scan_info {
4111 	struct nvme_ctrl *ctrl;
4112 	atomic_t next_nsid;
4113 	__le32 *ns_list;
4114 };
4115 
4116 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4117 {
4118 	struct async_scan_info *scan_info = data;
4119 	int idx;
4120 	u32 nsid;
4121 
4122 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4123 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4124 
4125 	nvme_scan_ns(scan_info->ctrl, nsid);
4126 }
4127 
4128 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4129 					unsigned nsid)
4130 {
4131 	struct nvme_ns *ns, *next;
4132 	LIST_HEAD(rm_list);
4133 
4134 	mutex_lock(&ctrl->namespaces_lock);
4135 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4136 		if (ns->head->ns_id > nsid) {
4137 			list_del_rcu(&ns->list);
4138 			synchronize_srcu(&ctrl->srcu);
4139 			list_add_tail_rcu(&ns->list, &rm_list);
4140 		}
4141 	}
4142 	mutex_unlock(&ctrl->namespaces_lock);
4143 
4144 	list_for_each_entry_safe(ns, next, &rm_list, list)
4145 		nvme_ns_remove(ns);
4146 }
4147 
4148 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4149 {
4150 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4151 	__le32 *ns_list;
4152 	u32 prev = 0;
4153 	int ret = 0, i;
4154 	ASYNC_DOMAIN(domain);
4155 	struct async_scan_info scan_info;
4156 
4157 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4158 	if (!ns_list)
4159 		return -ENOMEM;
4160 
4161 	scan_info.ctrl = ctrl;
4162 	scan_info.ns_list = ns_list;
4163 	for (;;) {
4164 		struct nvme_command cmd = {
4165 			.identify.opcode	= nvme_admin_identify,
4166 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4167 			.identify.nsid		= cpu_to_le32(prev),
4168 		};
4169 
4170 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4171 					    NVME_IDENTIFY_DATA_SIZE);
4172 		if (ret) {
4173 			dev_warn(ctrl->device,
4174 				"Identify NS List failed (status=0x%x)\n", ret);
4175 			goto free;
4176 		}
4177 
4178 		atomic_set(&scan_info.next_nsid, 0);
4179 		for (i = 0; i < nr_entries; i++) {
4180 			u32 nsid = le32_to_cpu(ns_list[i]);
4181 
4182 			if (!nsid)	/* end of the list? */
4183 				goto out;
4184 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4185 						&domain);
4186 			while (++prev < nsid)
4187 				nvme_ns_remove_by_nsid(ctrl, prev);
4188 		}
4189 		async_synchronize_full_domain(&domain);
4190 	}
4191  out:
4192 	nvme_remove_invalid_namespaces(ctrl, prev);
4193  free:
4194 	async_synchronize_full_domain(&domain);
4195 	kfree(ns_list);
4196 	return ret;
4197 }
4198 
4199 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4200 {
4201 	struct nvme_id_ctrl *id;
4202 	u32 nn, i;
4203 
4204 	if (nvme_identify_ctrl(ctrl, &id))
4205 		return;
4206 	nn = le32_to_cpu(id->nn);
4207 	kfree(id);
4208 
4209 	for (i = 1; i <= nn; i++)
4210 		nvme_scan_ns(ctrl, i);
4211 
4212 	nvme_remove_invalid_namespaces(ctrl, nn);
4213 }
4214 
4215 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4216 {
4217 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4218 	__le32 *log;
4219 	int error;
4220 
4221 	log = kzalloc(log_size, GFP_KERNEL);
4222 	if (!log)
4223 		return;
4224 
4225 	/*
4226 	 * We need to read the log to clear the AEN, but we don't want to rely
4227 	 * on it for the changed namespace information as userspace could have
4228 	 * raced with us in reading the log page, which could cause us to miss
4229 	 * updates.
4230 	 */
4231 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4232 			NVME_CSI_NVM, log, log_size, 0);
4233 	if (error)
4234 		dev_warn(ctrl->device,
4235 			"reading changed ns log failed: %d\n", error);
4236 
4237 	kfree(log);
4238 }
4239 
4240 static void nvme_scan_work(struct work_struct *work)
4241 {
4242 	struct nvme_ctrl *ctrl =
4243 		container_of(work, struct nvme_ctrl, scan_work);
4244 	int ret;
4245 
4246 	/* No tagset on a live ctrl means IO queues could not created */
4247 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4248 		return;
4249 
4250 	/*
4251 	 * Identify controller limits can change at controller reset due to
4252 	 * new firmware download, even though it is not common we cannot ignore
4253 	 * such scenario. Controller's non-mdts limits are reported in the unit
4254 	 * of logical blocks that is dependent on the format of attached
4255 	 * namespace. Hence re-read the limits at the time of ns allocation.
4256 	 */
4257 	ret = nvme_init_non_mdts_limits(ctrl);
4258 	if (ret < 0) {
4259 		dev_warn(ctrl->device,
4260 			"reading non-mdts-limits failed: %d\n", ret);
4261 		return;
4262 	}
4263 
4264 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4265 		dev_info(ctrl->device, "rescanning namespaces.\n");
4266 		nvme_clear_changed_ns_log(ctrl);
4267 	}
4268 
4269 	mutex_lock(&ctrl->scan_lock);
4270 	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4271 		nvme_scan_ns_sequential(ctrl);
4272 	} else {
4273 		/*
4274 		 * Fall back to sequential scan if DNR is set to handle broken
4275 		 * devices which should support Identify NS List (as per the VS
4276 		 * they report) but don't actually support it.
4277 		 */
4278 		ret = nvme_scan_ns_list(ctrl);
4279 		if (ret > 0 && ret & NVME_STATUS_DNR)
4280 			nvme_scan_ns_sequential(ctrl);
4281 	}
4282 	mutex_unlock(&ctrl->scan_lock);
4283 }
4284 
4285 /*
4286  * This function iterates the namespace list unlocked to allow recovery from
4287  * controller failure. It is up to the caller to ensure the namespace list is
4288  * not modified by scan work while this function is executing.
4289  */
4290 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4291 {
4292 	struct nvme_ns *ns, *next;
4293 	LIST_HEAD(ns_list);
4294 
4295 	/*
4296 	 * make sure to requeue I/O to all namespaces as these
4297 	 * might result from the scan itself and must complete
4298 	 * for the scan_work to make progress
4299 	 */
4300 	nvme_mpath_clear_ctrl_paths(ctrl);
4301 
4302 	/*
4303 	 * Unquiesce io queues so any pending IO won't hang, especially
4304 	 * those submitted from scan work
4305 	 */
4306 	nvme_unquiesce_io_queues(ctrl);
4307 
4308 	/* prevent racing with ns scanning */
4309 	flush_work(&ctrl->scan_work);
4310 
4311 	/*
4312 	 * The dead states indicates the controller was not gracefully
4313 	 * disconnected. In that case, we won't be able to flush any data while
4314 	 * removing the namespaces' disks; fail all the queues now to avoid
4315 	 * potentially having to clean up the failed sync later.
4316 	 */
4317 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4318 		nvme_mark_namespaces_dead(ctrl);
4319 
4320 	/* this is a no-op when called from the controller reset handler */
4321 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4322 
4323 	mutex_lock(&ctrl->namespaces_lock);
4324 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4325 	mutex_unlock(&ctrl->namespaces_lock);
4326 	synchronize_srcu(&ctrl->srcu);
4327 
4328 	list_for_each_entry_safe(ns, next, &ns_list, list)
4329 		nvme_ns_remove(ns);
4330 }
4331 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4332 
4333 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4334 {
4335 	const struct nvme_ctrl *ctrl =
4336 		container_of(dev, struct nvme_ctrl, ctrl_device);
4337 	struct nvmf_ctrl_options *opts = ctrl->opts;
4338 	int ret;
4339 
4340 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4341 	if (ret)
4342 		return ret;
4343 
4344 	if (opts) {
4345 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4346 		if (ret)
4347 			return ret;
4348 
4349 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4350 				opts->trsvcid ?: "none");
4351 		if (ret)
4352 			return ret;
4353 
4354 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4355 				opts->host_traddr ?: "none");
4356 		if (ret)
4357 			return ret;
4358 
4359 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4360 				opts->host_iface ?: "none");
4361 	}
4362 	return ret;
4363 }
4364 
4365 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4366 {
4367 	char *envp[2] = { envdata, NULL };
4368 
4369 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4370 }
4371 
4372 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4373 {
4374 	char *envp[2] = { NULL, NULL };
4375 	u32 aen_result = ctrl->aen_result;
4376 
4377 	ctrl->aen_result = 0;
4378 	if (!aen_result)
4379 		return;
4380 
4381 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4382 	if (!envp[0])
4383 		return;
4384 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4385 	kfree(envp[0]);
4386 }
4387 
4388 static void nvme_async_event_work(struct work_struct *work)
4389 {
4390 	struct nvme_ctrl *ctrl =
4391 		container_of(work, struct nvme_ctrl, async_event_work);
4392 
4393 	nvme_aen_uevent(ctrl);
4394 
4395 	/*
4396 	 * The transport drivers must guarantee AER submission here is safe by
4397 	 * flushing ctrl async_event_work after changing the controller state
4398 	 * from LIVE and before freeing the admin queue.
4399 	*/
4400 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4401 		ctrl->ops->submit_async_event(ctrl);
4402 }
4403 
4404 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4405 {
4406 
4407 	u32 csts;
4408 
4409 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4410 		return false;
4411 
4412 	if (csts == ~0)
4413 		return false;
4414 
4415 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4416 }
4417 
4418 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4419 {
4420 	struct nvme_fw_slot_info_log *log;
4421 	u8 next_fw_slot, cur_fw_slot;
4422 
4423 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4424 	if (!log)
4425 		return;
4426 
4427 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4428 			 log, sizeof(*log), 0)) {
4429 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4430 		goto out_free_log;
4431 	}
4432 
4433 	cur_fw_slot = log->afi & 0x7;
4434 	next_fw_slot = (log->afi & 0x70) >> 4;
4435 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4436 		dev_info(ctrl->device,
4437 			 "Firmware is activated after next Controller Level Reset\n");
4438 		goto out_free_log;
4439 	}
4440 
4441 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4442 		sizeof(ctrl->subsys->firmware_rev));
4443 
4444 out_free_log:
4445 	kfree(log);
4446 }
4447 
4448 static void nvme_fw_act_work(struct work_struct *work)
4449 {
4450 	struct nvme_ctrl *ctrl = container_of(work,
4451 				struct nvme_ctrl, fw_act_work);
4452 	unsigned long fw_act_timeout;
4453 
4454 	nvme_auth_stop(ctrl);
4455 
4456 	if (ctrl->mtfa)
4457 		fw_act_timeout = jiffies +
4458 				msecs_to_jiffies(ctrl->mtfa * 100);
4459 	else
4460 		fw_act_timeout = jiffies +
4461 				msecs_to_jiffies(admin_timeout * 1000);
4462 
4463 	nvme_quiesce_io_queues(ctrl);
4464 	while (nvme_ctrl_pp_status(ctrl)) {
4465 		if (time_after(jiffies, fw_act_timeout)) {
4466 			dev_warn(ctrl->device,
4467 				"Fw activation timeout, reset controller\n");
4468 			nvme_try_sched_reset(ctrl);
4469 			return;
4470 		}
4471 		msleep(100);
4472 	}
4473 
4474 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4475 		return;
4476 
4477 	nvme_unquiesce_io_queues(ctrl);
4478 	/* read FW slot information to clear the AER */
4479 	nvme_get_fw_slot_info(ctrl);
4480 
4481 	queue_work(nvme_wq, &ctrl->async_event_work);
4482 }
4483 
4484 static u32 nvme_aer_type(u32 result)
4485 {
4486 	return result & 0x7;
4487 }
4488 
4489 static u32 nvme_aer_subtype(u32 result)
4490 {
4491 	return (result & 0xff00) >> 8;
4492 }
4493 
4494 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4495 {
4496 	u32 aer_notice_type = nvme_aer_subtype(result);
4497 	bool requeue = true;
4498 
4499 	switch (aer_notice_type) {
4500 	case NVME_AER_NOTICE_NS_CHANGED:
4501 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4502 		nvme_queue_scan(ctrl);
4503 		break;
4504 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4505 		/*
4506 		 * We are (ab)using the RESETTING state to prevent subsequent
4507 		 * recovery actions from interfering with the controller's
4508 		 * firmware activation.
4509 		 */
4510 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4511 			requeue = false;
4512 			queue_work(nvme_wq, &ctrl->fw_act_work);
4513 		}
4514 		break;
4515 #ifdef CONFIG_NVME_MULTIPATH
4516 	case NVME_AER_NOTICE_ANA:
4517 		if (!ctrl->ana_log_buf)
4518 			break;
4519 		queue_work(nvme_wq, &ctrl->ana_work);
4520 		break;
4521 #endif
4522 	case NVME_AER_NOTICE_DISC_CHANGED:
4523 		ctrl->aen_result = result;
4524 		break;
4525 	default:
4526 		dev_warn(ctrl->device, "async event result %08x\n", result);
4527 	}
4528 	return requeue;
4529 }
4530 
4531 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4532 {
4533 	dev_warn(ctrl->device,
4534 		"resetting controller due to persistent internal error\n");
4535 	nvme_reset_ctrl(ctrl);
4536 }
4537 
4538 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4539 		volatile union nvme_result *res)
4540 {
4541 	u32 result = le32_to_cpu(res->u32);
4542 	u32 aer_type = nvme_aer_type(result);
4543 	u32 aer_subtype = nvme_aer_subtype(result);
4544 	bool requeue = true;
4545 
4546 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4547 		return;
4548 
4549 	trace_nvme_async_event(ctrl, result);
4550 	switch (aer_type) {
4551 	case NVME_AER_NOTICE:
4552 		requeue = nvme_handle_aen_notice(ctrl, result);
4553 		break;
4554 	case NVME_AER_ERROR:
4555 		/*
4556 		 * For a persistent internal error, don't run async_event_work
4557 		 * to submit a new AER. The controller reset will do it.
4558 		 */
4559 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4560 			nvme_handle_aer_persistent_error(ctrl);
4561 			return;
4562 		}
4563 		fallthrough;
4564 	case NVME_AER_SMART:
4565 	case NVME_AER_CSS:
4566 	case NVME_AER_VS:
4567 		ctrl->aen_result = result;
4568 		break;
4569 	default:
4570 		break;
4571 	}
4572 
4573 	if (requeue)
4574 		queue_work(nvme_wq, &ctrl->async_event_work);
4575 }
4576 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4577 
4578 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4579 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4580 {
4581 	struct queue_limits lim = {};
4582 	int ret;
4583 
4584 	memset(set, 0, sizeof(*set));
4585 	set->ops = ops;
4586 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4587 	if (ctrl->ops->flags & NVME_F_FABRICS)
4588 		/* Reserved for fabric connect and keep alive */
4589 		set->reserved_tags = 2;
4590 	set->numa_node = ctrl->numa_node;
4591 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4592 		set->flags |= BLK_MQ_F_BLOCKING;
4593 	set->cmd_size = cmd_size;
4594 	set->driver_data = ctrl;
4595 	set->nr_hw_queues = 1;
4596 	set->timeout = NVME_ADMIN_TIMEOUT;
4597 	ret = blk_mq_alloc_tag_set(set);
4598 	if (ret)
4599 		return ret;
4600 
4601 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4602 	if (IS_ERR(ctrl->admin_q)) {
4603 		ret = PTR_ERR(ctrl->admin_q);
4604 		goto out_free_tagset;
4605 	}
4606 
4607 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4608 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4609 		if (IS_ERR(ctrl->fabrics_q)) {
4610 			ret = PTR_ERR(ctrl->fabrics_q);
4611 			goto out_cleanup_admin_q;
4612 		}
4613 	}
4614 
4615 	ctrl->admin_tagset = set;
4616 	return 0;
4617 
4618 out_cleanup_admin_q:
4619 	blk_mq_destroy_queue(ctrl->admin_q);
4620 	blk_put_queue(ctrl->admin_q);
4621 out_free_tagset:
4622 	blk_mq_free_tag_set(set);
4623 	ctrl->admin_q = NULL;
4624 	ctrl->fabrics_q = NULL;
4625 	return ret;
4626 }
4627 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4628 
4629 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4630 {
4631 	/*
4632 	 * As we're about to destroy the queue and free tagset
4633 	 * we can not have keep-alive work running.
4634 	 */
4635 	nvme_stop_keep_alive(ctrl);
4636 	blk_mq_destroy_queue(ctrl->admin_q);
4637 	blk_put_queue(ctrl->admin_q);
4638 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4639 		blk_mq_destroy_queue(ctrl->fabrics_q);
4640 		blk_put_queue(ctrl->fabrics_q);
4641 	}
4642 	blk_mq_free_tag_set(ctrl->admin_tagset);
4643 }
4644 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4645 
4646 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4647 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4648 		unsigned int cmd_size)
4649 {
4650 	int ret;
4651 
4652 	memset(set, 0, sizeof(*set));
4653 	set->ops = ops;
4654 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4655 	/*
4656 	 * Some Apple controllers requires tags to be unique across admin and
4657 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4658 	 */
4659 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4660 		set->reserved_tags = NVME_AQ_DEPTH;
4661 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4662 		/* Reserved for fabric connect */
4663 		set->reserved_tags = 1;
4664 	set->numa_node = ctrl->numa_node;
4665 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4666 		set->flags |= BLK_MQ_F_BLOCKING;
4667 	set->cmd_size = cmd_size;
4668 	set->driver_data = ctrl;
4669 	set->nr_hw_queues = ctrl->queue_count - 1;
4670 	set->timeout = NVME_IO_TIMEOUT;
4671 	set->nr_maps = nr_maps;
4672 	ret = blk_mq_alloc_tag_set(set);
4673 	if (ret)
4674 		return ret;
4675 
4676 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4677 		struct queue_limits lim = {
4678 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4679 		};
4680 
4681 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4682         	if (IS_ERR(ctrl->connect_q)) {
4683 			ret = PTR_ERR(ctrl->connect_q);
4684 			goto out_free_tag_set;
4685 		}
4686 	}
4687 
4688 	ctrl->tagset = set;
4689 	return 0;
4690 
4691 out_free_tag_set:
4692 	blk_mq_free_tag_set(set);
4693 	ctrl->connect_q = NULL;
4694 	return ret;
4695 }
4696 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4697 
4698 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4699 {
4700 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4701 		blk_mq_destroy_queue(ctrl->connect_q);
4702 		blk_put_queue(ctrl->connect_q);
4703 	}
4704 	blk_mq_free_tag_set(ctrl->tagset);
4705 }
4706 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4707 
4708 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4709 {
4710 	nvme_mpath_stop(ctrl);
4711 	nvme_auth_stop(ctrl);
4712 	nvme_stop_failfast_work(ctrl);
4713 	flush_work(&ctrl->async_event_work);
4714 	cancel_work_sync(&ctrl->fw_act_work);
4715 	if (ctrl->ops->stop_ctrl)
4716 		ctrl->ops->stop_ctrl(ctrl);
4717 }
4718 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4719 
4720 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4721 {
4722 	nvme_enable_aen(ctrl);
4723 
4724 	/*
4725 	 * persistent discovery controllers need to send indication to userspace
4726 	 * to re-read the discovery log page to learn about possible changes
4727 	 * that were missed. We identify persistent discovery controllers by
4728 	 * checking that they started once before, hence are reconnecting back.
4729 	 */
4730 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4731 	    nvme_discovery_ctrl(ctrl))
4732 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4733 
4734 	if (ctrl->queue_count > 1) {
4735 		nvme_queue_scan(ctrl);
4736 		nvme_unquiesce_io_queues(ctrl);
4737 		nvme_mpath_update(ctrl);
4738 	}
4739 
4740 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4741 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4742 }
4743 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4744 
4745 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4746 {
4747 	nvme_stop_keep_alive(ctrl);
4748 	nvme_hwmon_exit(ctrl);
4749 	nvme_fault_inject_fini(&ctrl->fault_inject);
4750 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4751 	cdev_device_del(&ctrl->cdev, ctrl->device);
4752 	nvme_put_ctrl(ctrl);
4753 }
4754 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4755 
4756 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4757 {
4758 	struct nvme_effects_log	*cel;
4759 	unsigned long i;
4760 
4761 	xa_for_each(&ctrl->cels, i, cel) {
4762 		xa_erase(&ctrl->cels, i);
4763 		kfree(cel);
4764 	}
4765 
4766 	xa_destroy(&ctrl->cels);
4767 }
4768 
4769 static void nvme_free_ctrl(struct device *dev)
4770 {
4771 	struct nvme_ctrl *ctrl =
4772 		container_of(dev, struct nvme_ctrl, ctrl_device);
4773 	struct nvme_subsystem *subsys = ctrl->subsys;
4774 
4775 	if (!subsys || ctrl->instance != subsys->instance)
4776 		ida_free(&nvme_instance_ida, ctrl->instance);
4777 	nvme_free_cels(ctrl);
4778 	nvme_mpath_uninit(ctrl);
4779 	cleanup_srcu_struct(&ctrl->srcu);
4780 	nvme_auth_stop(ctrl);
4781 	nvme_auth_free(ctrl);
4782 	__free_page(ctrl->discard_page);
4783 	free_opal_dev(ctrl->opal_dev);
4784 
4785 	if (subsys) {
4786 		mutex_lock(&nvme_subsystems_lock);
4787 		list_del(&ctrl->subsys_entry);
4788 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4789 		mutex_unlock(&nvme_subsystems_lock);
4790 	}
4791 
4792 	ctrl->ops->free_ctrl(ctrl);
4793 
4794 	if (subsys)
4795 		nvme_put_subsystem(subsys);
4796 }
4797 
4798 /*
4799  * Initialize a NVMe controller structures.  This needs to be called during
4800  * earliest initialization so that we have the initialized structured around
4801  * during probing.
4802  *
4803  * On success, the caller must use the nvme_put_ctrl() to release this when
4804  * needed, which also invokes the ops->free_ctrl() callback.
4805  */
4806 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4807 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4808 {
4809 	int ret;
4810 
4811 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4812 	ctrl->passthru_err_log_enabled = false;
4813 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4814 	spin_lock_init(&ctrl->lock);
4815 	mutex_init(&ctrl->namespaces_lock);
4816 
4817 	ret = init_srcu_struct(&ctrl->srcu);
4818 	if (ret)
4819 		return ret;
4820 
4821 	mutex_init(&ctrl->scan_lock);
4822 	INIT_LIST_HEAD(&ctrl->namespaces);
4823 	xa_init(&ctrl->cels);
4824 	ctrl->dev = dev;
4825 	ctrl->ops = ops;
4826 	ctrl->quirks = quirks;
4827 	ctrl->numa_node = NUMA_NO_NODE;
4828 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4829 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4830 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4831 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4832 	init_waitqueue_head(&ctrl->state_wq);
4833 
4834 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4835 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4836 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4837 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4838 	ctrl->ka_last_check_time = jiffies;
4839 
4840 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4841 			PAGE_SIZE);
4842 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4843 	if (!ctrl->discard_page) {
4844 		ret = -ENOMEM;
4845 		goto out;
4846 	}
4847 
4848 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4849 	if (ret < 0)
4850 		goto out;
4851 	ctrl->instance = ret;
4852 
4853 	ret = nvme_auth_init_ctrl(ctrl);
4854 	if (ret)
4855 		goto out_release_instance;
4856 
4857 	nvme_mpath_init_ctrl(ctrl);
4858 
4859 	device_initialize(&ctrl->ctrl_device);
4860 	ctrl->device = &ctrl->ctrl_device;
4861 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4862 			ctrl->instance);
4863 	ctrl->device->class = &nvme_class;
4864 	ctrl->device->parent = ctrl->dev;
4865 	if (ops->dev_attr_groups)
4866 		ctrl->device->groups = ops->dev_attr_groups;
4867 	else
4868 		ctrl->device->groups = nvme_dev_attr_groups;
4869 	ctrl->device->release = nvme_free_ctrl;
4870 	dev_set_drvdata(ctrl->device, ctrl);
4871 
4872 	return ret;
4873 
4874 out_release_instance:
4875 	ida_free(&nvme_instance_ida, ctrl->instance);
4876 out:
4877 	if (ctrl->discard_page)
4878 		__free_page(ctrl->discard_page);
4879 	cleanup_srcu_struct(&ctrl->srcu);
4880 	return ret;
4881 }
4882 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4883 
4884 /*
4885  * On success, returns with an elevated controller reference and caller must
4886  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4887  */
4888 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4889 {
4890 	int ret;
4891 
4892 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4893 	if (ret)
4894 		return ret;
4895 
4896 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4897 	ctrl->cdev.owner = ctrl->ops->module;
4898 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4899 	if (ret)
4900 		return ret;
4901 
4902 	/*
4903 	 * Initialize latency tolerance controls.  The sysfs files won't
4904 	 * be visible to userspace unless the device actually supports APST.
4905 	 */
4906 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4907 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4908 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4909 
4910 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4911 	nvme_get_ctrl(ctrl);
4912 
4913 	return 0;
4914 }
4915 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4916 
4917 /* let I/O to all namespaces fail in preparation for surprise removal */
4918 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4919 {
4920 	struct nvme_ns *ns;
4921 	int srcu_idx;
4922 
4923 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4924 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4925 				 srcu_read_lock_held(&ctrl->srcu))
4926 		blk_mark_disk_dead(ns->disk);
4927 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4928 }
4929 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4930 
4931 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4932 {
4933 	struct nvme_ns *ns;
4934 	int srcu_idx;
4935 
4936 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4937 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4938 				 srcu_read_lock_held(&ctrl->srcu))
4939 		blk_mq_unfreeze_queue_non_owner(ns->queue);
4940 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4941 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4942 }
4943 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4944 
4945 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4946 {
4947 	struct nvme_ns *ns;
4948 	int srcu_idx;
4949 
4950 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4951 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4952 				 srcu_read_lock_held(&ctrl->srcu)) {
4953 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4954 		if (timeout <= 0)
4955 			break;
4956 	}
4957 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4958 	return timeout;
4959 }
4960 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4961 
4962 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4963 {
4964 	struct nvme_ns *ns;
4965 	int srcu_idx;
4966 
4967 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4968 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4969 				 srcu_read_lock_held(&ctrl->srcu))
4970 		blk_mq_freeze_queue_wait(ns->queue);
4971 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4972 }
4973 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4974 
4975 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4976 {
4977 	struct nvme_ns *ns;
4978 	int srcu_idx;
4979 
4980 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4981 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4982 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4983 				 srcu_read_lock_held(&ctrl->srcu))
4984 		/*
4985 		 * Typical non_owner use case is from pci driver, in which
4986 		 * start_freeze is called from timeout work function, but
4987 		 * unfreeze is done in reset work context
4988 		 */
4989 		blk_freeze_queue_start_non_owner(ns->queue);
4990 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4991 }
4992 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4993 
4994 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4995 {
4996 	if (!ctrl->tagset)
4997 		return;
4998 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4999 		blk_mq_quiesce_tagset(ctrl->tagset);
5000 	else
5001 		blk_mq_wait_quiesce_done(ctrl->tagset);
5002 }
5003 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5004 
5005 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5006 {
5007 	if (!ctrl->tagset)
5008 		return;
5009 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5010 		blk_mq_unquiesce_tagset(ctrl->tagset);
5011 }
5012 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5013 
5014 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5015 {
5016 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5017 		blk_mq_quiesce_queue(ctrl->admin_q);
5018 	else
5019 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5020 }
5021 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5022 
5023 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5024 {
5025 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5026 		blk_mq_unquiesce_queue(ctrl->admin_q);
5027 }
5028 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5029 
5030 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5031 {
5032 	struct nvme_ns *ns;
5033 	int srcu_idx;
5034 
5035 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5036 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5037 				 srcu_read_lock_held(&ctrl->srcu))
5038 		blk_sync_queue(ns->queue);
5039 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5040 }
5041 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5042 
5043 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5044 {
5045 	nvme_sync_io_queues(ctrl);
5046 	if (ctrl->admin_q)
5047 		blk_sync_queue(ctrl->admin_q);
5048 }
5049 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5050 
5051 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5052 {
5053 	if (file->f_op != &nvme_dev_fops)
5054 		return NULL;
5055 	return file->private_data;
5056 }
5057 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5058 
5059 /*
5060  * Check we didn't inadvertently grow the command structure sizes:
5061  */
5062 static inline void _nvme_check_size(void)
5063 {
5064 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5065 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5066 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5067 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5068 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5069 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5070 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5071 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5072 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5073 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5074 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5075 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5076 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5077 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5078 			NVME_IDENTIFY_DATA_SIZE);
5079 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5080 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5081 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5082 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5083 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5084 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5085 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5086 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5087 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5088 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5089 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5090 }
5091 
5092 
5093 static int __init nvme_core_init(void)
5094 {
5095 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5096 	int result = -ENOMEM;
5097 
5098 	_nvme_check_size();
5099 
5100 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5101 	if (!nvme_wq)
5102 		goto out;
5103 
5104 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5105 	if (!nvme_reset_wq)
5106 		goto destroy_wq;
5107 
5108 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5109 	if (!nvme_delete_wq)
5110 		goto destroy_reset_wq;
5111 
5112 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5113 			NVME_MINORS, "nvme");
5114 	if (result < 0)
5115 		goto destroy_delete_wq;
5116 
5117 	result = class_register(&nvme_class);
5118 	if (result)
5119 		goto unregister_chrdev;
5120 
5121 	result = class_register(&nvme_subsys_class);
5122 	if (result)
5123 		goto destroy_class;
5124 
5125 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5126 				     "nvme-generic");
5127 	if (result < 0)
5128 		goto destroy_subsys_class;
5129 
5130 	result = class_register(&nvme_ns_chr_class);
5131 	if (result)
5132 		goto unregister_generic_ns;
5133 
5134 	result = nvme_init_auth();
5135 	if (result)
5136 		goto destroy_ns_chr;
5137 	return 0;
5138 
5139 destroy_ns_chr:
5140 	class_unregister(&nvme_ns_chr_class);
5141 unregister_generic_ns:
5142 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5143 destroy_subsys_class:
5144 	class_unregister(&nvme_subsys_class);
5145 destroy_class:
5146 	class_unregister(&nvme_class);
5147 unregister_chrdev:
5148 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5149 destroy_delete_wq:
5150 	destroy_workqueue(nvme_delete_wq);
5151 destroy_reset_wq:
5152 	destroy_workqueue(nvme_reset_wq);
5153 destroy_wq:
5154 	destroy_workqueue(nvme_wq);
5155 out:
5156 	return result;
5157 }
5158 
5159 static void __exit nvme_core_exit(void)
5160 {
5161 	nvme_exit_auth();
5162 	class_unregister(&nvme_ns_chr_class);
5163 	class_unregister(&nvme_subsys_class);
5164 	class_unregister(&nvme_class);
5165 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5166 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5167 	destroy_workqueue(nvme_delete_wq);
5168 	destroy_workqueue(nvme_reset_wq);
5169 	destroy_workqueue(nvme_wq);
5170 	ida_destroy(&nvme_ns_chr_minor_ida);
5171 	ida_destroy(&nvme_instance_ida);
5172 }
5173 
5174 MODULE_LICENSE("GPL");
5175 MODULE_VERSION("1.0");
5176 MODULE_DESCRIPTION("NVMe host core framework");
5177 module_init(nvme_core_init);
5178 module_exit(nvme_core_exit);
5179