xref: /linux/drivers/nvme/host/core.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	bool is_shared;
42 	bool is_readonly;
43 	bool is_ready;
44 	bool is_removed;
45 	bool is_rotational;
46 	bool no_vwc;
47 };
48 
49 unsigned int admin_timeout = 60;
50 module_param(admin_timeout, uint, 0644);
51 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
52 EXPORT_SYMBOL_GPL(admin_timeout);
53 
54 unsigned int nvme_io_timeout = 30;
55 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
57 EXPORT_SYMBOL_GPL(nvme_io_timeout);
58 
59 static unsigned char shutdown_timeout = 5;
60 module_param(shutdown_timeout, byte, 0644);
61 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
62 
63 static u8 nvme_max_retries = 5;
64 module_param_named(max_retries, nvme_max_retries, byte, 0644);
65 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
66 
67 static unsigned long default_ps_max_latency_us = 100000;
68 module_param(default_ps_max_latency_us, ulong, 0644);
69 MODULE_PARM_DESC(default_ps_max_latency_us,
70 		 "max power saving latency for new devices; use PM QOS to change per device");
71 
72 static bool force_apst;
73 module_param(force_apst, bool, 0644);
74 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
75 
76 static unsigned long apst_primary_timeout_ms = 100;
77 module_param(apst_primary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_primary_timeout_ms,
79 	"primary APST timeout in ms");
80 
81 static unsigned long apst_secondary_timeout_ms = 2000;
82 module_param(apst_secondary_timeout_ms, ulong, 0644);
83 MODULE_PARM_DESC(apst_secondary_timeout_ms,
84 	"secondary APST timeout in ms");
85 
86 static unsigned long apst_primary_latency_tol_us = 15000;
87 module_param(apst_primary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_primary_latency_tol_us,
89 	"primary APST latency tolerance in us");
90 
91 static unsigned long apst_secondary_latency_tol_us = 100000;
92 module_param(apst_secondary_latency_tol_us, ulong, 0644);
93 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
94 	"secondary APST latency tolerance in us");
95 
96 /*
97  * Older kernels didn't enable protection information if it was at an offset.
98  * Newer kernels do, so it breaks reads on the upgrade if such formats were
99  * used in prior kernels since the metadata written did not contain a valid
100  * checksum.
101  */
102 static bool disable_pi_offsets = false;
103 module_param(disable_pi_offsets, bool, 0444);
104 MODULE_PARM_DESC(disable_pi_offsets,
105 	"disable protection information if it has an offset");
106 
107 /*
108  * nvme_wq - hosts nvme related works that are not reset or delete
109  * nvme_reset_wq - hosts nvme reset works
110  * nvme_delete_wq - hosts nvme delete works
111  *
112  * nvme_wq will host works such as scan, aen handling, fw activation,
113  * keep-alive, periodic reconnects etc. nvme_reset_wq
114  * runs reset works which also flush works hosted on nvme_wq for
115  * serialization purposes. nvme_delete_wq host controller deletion
116  * works which flush reset works for serialization.
117  */
118 struct workqueue_struct *nvme_wq;
119 EXPORT_SYMBOL_GPL(nvme_wq);
120 
121 struct workqueue_struct *nvme_reset_wq;
122 EXPORT_SYMBOL_GPL(nvme_reset_wq);
123 
124 struct workqueue_struct *nvme_delete_wq;
125 EXPORT_SYMBOL_GPL(nvme_delete_wq);
126 
127 static LIST_HEAD(nvme_subsystems);
128 DEFINE_MUTEX(nvme_subsystems_lock);
129 
130 static DEFINE_IDA(nvme_instance_ida);
131 static dev_t nvme_ctrl_base_chr_devt;
132 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
133 static const struct class nvme_class = {
134 	.name = "nvme",
135 	.dev_uevent = nvme_class_uevent,
136 };
137 
138 static const struct class nvme_subsys_class = {
139 	.name = "nvme-subsystem",
140 };
141 
142 static DEFINE_IDA(nvme_ns_chr_minor_ida);
143 static dev_t nvme_ns_chr_devt;
144 static const struct class nvme_ns_chr_class = {
145 	.name = "nvme-generic",
146 };
147 
148 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
149 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
150 					   unsigned nsid);
151 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
152 				   struct nvme_command *cmd);
153 
154 void nvme_queue_scan(struct nvme_ctrl *ctrl)
155 {
156 	/*
157 	 * Only new queue scan work when admin and IO queues are both alive
158 	 */
159 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
160 		queue_work(nvme_wq, &ctrl->scan_work);
161 }
162 
163 /*
164  * Use this function to proceed with scheduling reset_work for a controller
165  * that had previously been set to the resetting state. This is intended for
166  * code paths that can't be interrupted by other reset attempts. A hot removal
167  * may prevent this from succeeding.
168  */
169 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
170 {
171 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
172 		return -EBUSY;
173 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
174 		return -EBUSY;
175 	return 0;
176 }
177 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
178 
179 static void nvme_failfast_work(struct work_struct *work)
180 {
181 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
182 			struct nvme_ctrl, failfast_work);
183 
184 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
185 		return;
186 
187 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
188 	dev_info(ctrl->device, "failfast expired\n");
189 	nvme_kick_requeue_lists(ctrl);
190 }
191 
192 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
193 {
194 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
195 		return;
196 
197 	schedule_delayed_work(&ctrl->failfast_work,
198 			      ctrl->opts->fast_io_fail_tmo * HZ);
199 }
200 
201 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
202 {
203 	if (!ctrl->opts)
204 		return;
205 
206 	cancel_delayed_work_sync(&ctrl->failfast_work);
207 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
208 }
209 
210 
211 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
212 {
213 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
214 		return -EBUSY;
215 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
216 		return -EBUSY;
217 	return 0;
218 }
219 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
220 
221 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
222 {
223 	int ret;
224 
225 	ret = nvme_reset_ctrl(ctrl);
226 	if (!ret) {
227 		flush_work(&ctrl->reset_work);
228 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
229 			ret = -ENETRESET;
230 	}
231 
232 	return ret;
233 }
234 
235 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
236 {
237 	dev_info(ctrl->device,
238 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
239 
240 	flush_work(&ctrl->reset_work);
241 	nvme_stop_ctrl(ctrl);
242 	nvme_remove_namespaces(ctrl);
243 	ctrl->ops->delete_ctrl(ctrl);
244 	nvme_uninit_ctrl(ctrl);
245 }
246 
247 static void nvme_delete_ctrl_work(struct work_struct *work)
248 {
249 	struct nvme_ctrl *ctrl =
250 		container_of(work, struct nvme_ctrl, delete_work);
251 
252 	nvme_do_delete_ctrl(ctrl);
253 }
254 
255 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
256 {
257 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
258 		return -EBUSY;
259 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
260 		return -EBUSY;
261 	return 0;
262 }
263 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
264 
265 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
266 {
267 	/*
268 	 * Keep a reference until nvme_do_delete_ctrl() complete,
269 	 * since ->delete_ctrl can free the controller.
270 	 */
271 	nvme_get_ctrl(ctrl);
272 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
273 		nvme_do_delete_ctrl(ctrl);
274 	nvme_put_ctrl(ctrl);
275 }
276 
277 static blk_status_t nvme_error_status(u16 status)
278 {
279 	switch (status & NVME_SCT_SC_MASK) {
280 	case NVME_SC_SUCCESS:
281 		return BLK_STS_OK;
282 	case NVME_SC_CAP_EXCEEDED:
283 		return BLK_STS_NOSPC;
284 	case NVME_SC_LBA_RANGE:
285 	case NVME_SC_CMD_INTERRUPTED:
286 	case NVME_SC_NS_NOT_READY:
287 		return BLK_STS_TARGET;
288 	case NVME_SC_BAD_ATTRIBUTES:
289 	case NVME_SC_ONCS_NOT_SUPPORTED:
290 	case NVME_SC_INVALID_OPCODE:
291 	case NVME_SC_INVALID_FIELD:
292 	case NVME_SC_INVALID_NS:
293 		return BLK_STS_NOTSUPP;
294 	case NVME_SC_WRITE_FAULT:
295 	case NVME_SC_READ_ERROR:
296 	case NVME_SC_UNWRITTEN_BLOCK:
297 	case NVME_SC_ACCESS_DENIED:
298 	case NVME_SC_READ_ONLY:
299 	case NVME_SC_COMPARE_FAILED:
300 		return BLK_STS_MEDIUM;
301 	case NVME_SC_GUARD_CHECK:
302 	case NVME_SC_APPTAG_CHECK:
303 	case NVME_SC_REFTAG_CHECK:
304 	case NVME_SC_INVALID_PI:
305 		return BLK_STS_PROTECTION;
306 	case NVME_SC_RESERVATION_CONFLICT:
307 		return BLK_STS_RESV_CONFLICT;
308 	case NVME_SC_HOST_PATH_ERROR:
309 		return BLK_STS_TRANSPORT;
310 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
311 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
312 	case NVME_SC_ZONE_TOO_MANY_OPEN:
313 		return BLK_STS_ZONE_OPEN_RESOURCE;
314 	default:
315 		return BLK_STS_IOERR;
316 	}
317 }
318 
319 static void nvme_retry_req(struct request *req)
320 {
321 	unsigned long delay = 0;
322 	u16 crd;
323 
324 	/* The mask and shift result must be <= 3 */
325 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
326 	if (crd)
327 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
328 
329 	nvme_req(req)->retries++;
330 	blk_mq_requeue_request(req, false);
331 	blk_mq_delay_kick_requeue_list(req->q, delay);
332 }
333 
334 static void nvme_log_error(struct request *req)
335 {
336 	struct nvme_ns *ns = req->q->queuedata;
337 	struct nvme_request *nr = nvme_req(req);
338 
339 	if (ns) {
340 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
341 		       ns->disk ? ns->disk->disk_name : "?",
342 		       nvme_get_opcode_str(nr->cmd->common.opcode),
343 		       nr->cmd->common.opcode,
344 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
345 		       blk_rq_bytes(req) >> ns->head->lba_shift,
346 		       nvme_get_error_status_str(nr->status),
347 		       NVME_SCT(nr->status),		/* Status Code Type */
348 		       nr->status & NVME_SC_MASK,	/* Status Code */
349 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
350 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
351 		return;
352 	}
353 
354 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
355 			   dev_name(nr->ctrl->device),
356 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
357 			   nr->cmd->common.opcode,
358 			   nvme_get_error_status_str(nr->status),
359 			   NVME_SCT(nr->status),	/* Status Code Type */
360 			   nr->status & NVME_SC_MASK,	/* Status Code */
361 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
362 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
363 }
364 
365 static void nvme_log_err_passthru(struct request *req)
366 {
367 	struct nvme_ns *ns = req->q->queuedata;
368 	struct nvme_request *nr = nvme_req(req);
369 
370 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
371 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
372 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
373 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
374 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
375 		nr->cmd->common.opcode,
376 		nvme_get_error_status_str(nr->status),
377 		NVME_SCT(nr->status),		/* Status Code Type */
378 		nr->status & NVME_SC_MASK,	/* Status Code */
379 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
380 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
381 		nr->cmd->common.cdw10,
382 		nr->cmd->common.cdw11,
383 		nr->cmd->common.cdw12,
384 		nr->cmd->common.cdw13,
385 		nr->cmd->common.cdw14,
386 		nr->cmd->common.cdw14);
387 }
388 
389 enum nvme_disposition {
390 	COMPLETE,
391 	RETRY,
392 	FAILOVER,
393 	AUTHENTICATE,
394 };
395 
396 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
397 {
398 	if (likely(nvme_req(req)->status == 0))
399 		return COMPLETE;
400 
401 	if (blk_noretry_request(req) ||
402 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
403 	    nvme_req(req)->retries >= nvme_max_retries)
404 		return COMPLETE;
405 
406 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
407 		return AUTHENTICATE;
408 
409 	if (req->cmd_flags & REQ_NVME_MPATH) {
410 		if (nvme_is_path_error(nvme_req(req)->status) ||
411 		    blk_queue_dying(req->q))
412 			return FAILOVER;
413 	} else {
414 		if (blk_queue_dying(req->q))
415 			return COMPLETE;
416 	}
417 
418 	return RETRY;
419 }
420 
421 static inline void nvme_end_req_zoned(struct request *req)
422 {
423 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
424 	    req_op(req) == REQ_OP_ZONE_APPEND) {
425 		struct nvme_ns *ns = req->q->queuedata;
426 
427 		req->__sector = nvme_lba_to_sect(ns->head,
428 			le64_to_cpu(nvme_req(req)->result.u64));
429 	}
430 }
431 
432 static inline void __nvme_end_req(struct request *req)
433 {
434 	nvme_end_req_zoned(req);
435 	nvme_trace_bio_complete(req);
436 	if (req->cmd_flags & REQ_NVME_MPATH)
437 		nvme_mpath_end_request(req);
438 }
439 
440 void nvme_end_req(struct request *req)
441 {
442 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
443 
444 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
445 		if (blk_rq_is_passthrough(req))
446 			nvme_log_err_passthru(req);
447 		else
448 			nvme_log_error(req);
449 	}
450 	__nvme_end_req(req);
451 	blk_mq_end_request(req, status);
452 }
453 
454 void nvme_complete_rq(struct request *req)
455 {
456 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
457 
458 	trace_nvme_complete_rq(req);
459 	nvme_cleanup_cmd(req);
460 
461 	/*
462 	 * Completions of long-running commands should not be able to
463 	 * defer sending of periodic keep alives, since the controller
464 	 * may have completed processing such commands a long time ago
465 	 * (arbitrarily close to command submission time).
466 	 * req->deadline - req->timeout is the command submission time
467 	 * in jiffies.
468 	 */
469 	if (ctrl->kas &&
470 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
471 		ctrl->comp_seen = true;
472 
473 	switch (nvme_decide_disposition(req)) {
474 	case COMPLETE:
475 		nvme_end_req(req);
476 		return;
477 	case RETRY:
478 		nvme_retry_req(req);
479 		return;
480 	case FAILOVER:
481 		nvme_failover_req(req);
482 		return;
483 	case AUTHENTICATE:
484 #ifdef CONFIG_NVME_HOST_AUTH
485 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
486 		nvme_retry_req(req);
487 #else
488 		nvme_end_req(req);
489 #endif
490 		return;
491 	}
492 }
493 EXPORT_SYMBOL_GPL(nvme_complete_rq);
494 
495 void nvme_complete_batch_req(struct request *req)
496 {
497 	trace_nvme_complete_rq(req);
498 	nvme_cleanup_cmd(req);
499 	__nvme_end_req(req);
500 }
501 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
502 
503 /*
504  * Called to unwind from ->queue_rq on a failed command submission so that the
505  * multipathing code gets called to potentially failover to another path.
506  * The caller needs to unwind all transport specific resource allocations and
507  * must return propagate the return value.
508  */
509 blk_status_t nvme_host_path_error(struct request *req)
510 {
511 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
512 	blk_mq_set_request_complete(req);
513 	nvme_complete_rq(req);
514 	return BLK_STS_OK;
515 }
516 EXPORT_SYMBOL_GPL(nvme_host_path_error);
517 
518 bool nvme_cancel_request(struct request *req, void *data)
519 {
520 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
521 				"Cancelling I/O %d", req->tag);
522 
523 	/* don't abort one completed or idle request */
524 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
525 		return true;
526 
527 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
528 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
529 	blk_mq_complete_request(req);
530 	return true;
531 }
532 EXPORT_SYMBOL_GPL(nvme_cancel_request);
533 
534 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
535 {
536 	if (ctrl->tagset) {
537 		blk_mq_tagset_busy_iter(ctrl->tagset,
538 				nvme_cancel_request, ctrl);
539 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
540 	}
541 }
542 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
543 
544 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
545 {
546 	if (ctrl->admin_tagset) {
547 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
548 				nvme_cancel_request, ctrl);
549 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
550 	}
551 }
552 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
553 
554 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
555 		enum nvme_ctrl_state new_state)
556 {
557 	enum nvme_ctrl_state old_state;
558 	unsigned long flags;
559 	bool changed = false;
560 
561 	spin_lock_irqsave(&ctrl->lock, flags);
562 
563 	old_state = nvme_ctrl_state(ctrl);
564 	switch (new_state) {
565 	case NVME_CTRL_LIVE:
566 		switch (old_state) {
567 		case NVME_CTRL_NEW:
568 		case NVME_CTRL_RESETTING:
569 		case NVME_CTRL_CONNECTING:
570 			changed = true;
571 			fallthrough;
572 		default:
573 			break;
574 		}
575 		break;
576 	case NVME_CTRL_RESETTING:
577 		switch (old_state) {
578 		case NVME_CTRL_NEW:
579 		case NVME_CTRL_LIVE:
580 			changed = true;
581 			fallthrough;
582 		default:
583 			break;
584 		}
585 		break;
586 	case NVME_CTRL_CONNECTING:
587 		switch (old_state) {
588 		case NVME_CTRL_NEW:
589 		case NVME_CTRL_RESETTING:
590 			changed = true;
591 			fallthrough;
592 		default:
593 			break;
594 		}
595 		break;
596 	case NVME_CTRL_DELETING:
597 		switch (old_state) {
598 		case NVME_CTRL_LIVE:
599 		case NVME_CTRL_RESETTING:
600 		case NVME_CTRL_CONNECTING:
601 			changed = true;
602 			fallthrough;
603 		default:
604 			break;
605 		}
606 		break;
607 	case NVME_CTRL_DELETING_NOIO:
608 		switch (old_state) {
609 		case NVME_CTRL_DELETING:
610 		case NVME_CTRL_DEAD:
611 			changed = true;
612 			fallthrough;
613 		default:
614 			break;
615 		}
616 		break;
617 	case NVME_CTRL_DEAD:
618 		switch (old_state) {
619 		case NVME_CTRL_DELETING:
620 			changed = true;
621 			fallthrough;
622 		default:
623 			break;
624 		}
625 		break;
626 	default:
627 		break;
628 	}
629 
630 	if (changed) {
631 		WRITE_ONCE(ctrl->state, new_state);
632 		wake_up_all(&ctrl->state_wq);
633 	}
634 
635 	spin_unlock_irqrestore(&ctrl->lock, flags);
636 	if (!changed)
637 		return false;
638 
639 	if (new_state == NVME_CTRL_LIVE) {
640 		if (old_state == NVME_CTRL_CONNECTING)
641 			nvme_stop_failfast_work(ctrl);
642 		nvme_kick_requeue_lists(ctrl);
643 	} else if (new_state == NVME_CTRL_CONNECTING &&
644 		old_state == NVME_CTRL_RESETTING) {
645 		nvme_start_failfast_work(ctrl);
646 	}
647 	return changed;
648 }
649 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
650 
651 /*
652  * Waits for the controller state to be resetting, or returns false if it is
653  * not possible to ever transition to that state.
654  */
655 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
656 {
657 	wait_event(ctrl->state_wq,
658 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
659 		   nvme_state_terminal(ctrl));
660 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
661 }
662 EXPORT_SYMBOL_GPL(nvme_wait_reset);
663 
664 static void nvme_free_ns_head(struct kref *ref)
665 {
666 	struct nvme_ns_head *head =
667 		container_of(ref, struct nvme_ns_head, ref);
668 
669 	nvme_mpath_remove_disk(head);
670 	ida_free(&head->subsys->ns_ida, head->instance);
671 	cleanup_srcu_struct(&head->srcu);
672 	nvme_put_subsystem(head->subsys);
673 	kfree(head);
674 }
675 
676 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
677 {
678 	return kref_get_unless_zero(&head->ref);
679 }
680 
681 void nvme_put_ns_head(struct nvme_ns_head *head)
682 {
683 	kref_put(&head->ref, nvme_free_ns_head);
684 }
685 
686 static void nvme_free_ns(struct kref *kref)
687 {
688 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
689 
690 	put_disk(ns->disk);
691 	nvme_put_ns_head(ns->head);
692 	nvme_put_ctrl(ns->ctrl);
693 	kfree(ns);
694 }
695 
696 bool nvme_get_ns(struct nvme_ns *ns)
697 {
698 	return kref_get_unless_zero(&ns->kref);
699 }
700 
701 void nvme_put_ns(struct nvme_ns *ns)
702 {
703 	kref_put(&ns->kref, nvme_free_ns);
704 }
705 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
706 
707 static inline void nvme_clear_nvme_request(struct request *req)
708 {
709 	nvme_req(req)->status = 0;
710 	nvme_req(req)->retries = 0;
711 	nvme_req(req)->flags = 0;
712 	req->rq_flags |= RQF_DONTPREP;
713 }
714 
715 /* initialize a passthrough request */
716 void nvme_init_request(struct request *req, struct nvme_command *cmd)
717 {
718 	struct nvme_request *nr = nvme_req(req);
719 	bool logging_enabled;
720 
721 	if (req->q->queuedata) {
722 		struct nvme_ns *ns = req->q->disk->private_data;
723 
724 		logging_enabled = ns->head->passthru_err_log_enabled;
725 		req->timeout = NVME_IO_TIMEOUT;
726 	} else { /* no queuedata implies admin queue */
727 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
728 		req->timeout = NVME_ADMIN_TIMEOUT;
729 	}
730 
731 	if (!logging_enabled)
732 		req->rq_flags |= RQF_QUIET;
733 
734 	/* passthru commands should let the driver set the SGL flags */
735 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
736 
737 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
738 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
739 		req->cmd_flags |= REQ_POLLED;
740 	nvme_clear_nvme_request(req);
741 	memcpy(nr->cmd, cmd, sizeof(*cmd));
742 }
743 EXPORT_SYMBOL_GPL(nvme_init_request);
744 
745 /*
746  * For something we're not in a state to send to the device the default action
747  * is to busy it and retry it after the controller state is recovered.  However,
748  * if the controller is deleting or if anything is marked for failfast or
749  * nvme multipath it is immediately failed.
750  *
751  * Note: commands used to initialize the controller will be marked for failfast.
752  * Note: nvme cli/ioctl commands are marked for failfast.
753  */
754 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
755 		struct request *rq)
756 {
757 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
758 
759 	if (state != NVME_CTRL_DELETING_NOIO &&
760 	    state != NVME_CTRL_DELETING &&
761 	    state != NVME_CTRL_DEAD &&
762 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
763 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
764 		return BLK_STS_RESOURCE;
765 	return nvme_host_path_error(rq);
766 }
767 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
768 
769 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
770 		bool queue_live, enum nvme_ctrl_state state)
771 {
772 	struct nvme_request *req = nvme_req(rq);
773 
774 	/*
775 	 * currently we have a problem sending passthru commands
776 	 * on the admin_q if the controller is not LIVE because we can't
777 	 * make sure that they are going out after the admin connect,
778 	 * controller enable and/or other commands in the initialization
779 	 * sequence. until the controller will be LIVE, fail with
780 	 * BLK_STS_RESOURCE so that they will be rescheduled.
781 	 */
782 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
783 		return false;
784 
785 	if (ctrl->ops->flags & NVME_F_FABRICS) {
786 		/*
787 		 * Only allow commands on a live queue, except for the connect
788 		 * command, which is require to set the queue live in the
789 		 * appropinquate states.
790 		 */
791 		switch (state) {
792 		case NVME_CTRL_CONNECTING:
793 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
794 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
795 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
796 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
797 				return true;
798 			break;
799 		default:
800 			break;
801 		case NVME_CTRL_DEAD:
802 			return false;
803 		}
804 	}
805 
806 	return queue_live;
807 }
808 EXPORT_SYMBOL_GPL(__nvme_check_ready);
809 
810 static inline void nvme_setup_flush(struct nvme_ns *ns,
811 		struct nvme_command *cmnd)
812 {
813 	memset(cmnd, 0, sizeof(*cmnd));
814 	cmnd->common.opcode = nvme_cmd_flush;
815 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
816 }
817 
818 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
819 		struct nvme_command *cmnd)
820 {
821 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
822 	struct nvme_dsm_range *range;
823 	struct bio *bio;
824 
825 	/*
826 	 * Some devices do not consider the DSM 'Number of Ranges' field when
827 	 * determining how much data to DMA. Always allocate memory for maximum
828 	 * number of segments to prevent device reading beyond end of buffer.
829 	 */
830 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
831 
832 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
833 	if (!range) {
834 		/*
835 		 * If we fail allocation our range, fallback to the controller
836 		 * discard page. If that's also busy, it's safe to return
837 		 * busy, as we know we can make progress once that's freed.
838 		 */
839 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
840 			return BLK_STS_RESOURCE;
841 
842 		range = page_address(ns->ctrl->discard_page);
843 	}
844 
845 	if (queue_max_discard_segments(req->q) == 1) {
846 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
847 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
848 
849 		range[0].cattr = cpu_to_le32(0);
850 		range[0].nlb = cpu_to_le32(nlb);
851 		range[0].slba = cpu_to_le64(slba);
852 		n = 1;
853 	} else {
854 		__rq_for_each_bio(bio, req) {
855 			u64 slba = nvme_sect_to_lba(ns->head,
856 						    bio->bi_iter.bi_sector);
857 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
858 
859 			if (n < segments) {
860 				range[n].cattr = cpu_to_le32(0);
861 				range[n].nlb = cpu_to_le32(nlb);
862 				range[n].slba = cpu_to_le64(slba);
863 			}
864 			n++;
865 		}
866 	}
867 
868 	if (WARN_ON_ONCE(n != segments)) {
869 		if (virt_to_page(range) == ns->ctrl->discard_page)
870 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
871 		else
872 			kfree(range);
873 		return BLK_STS_IOERR;
874 	}
875 
876 	memset(cmnd, 0, sizeof(*cmnd));
877 	cmnd->dsm.opcode = nvme_cmd_dsm;
878 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
879 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
880 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
881 
882 	bvec_set_virt(&req->special_vec, range, alloc_size);
883 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
884 
885 	return BLK_STS_OK;
886 }
887 
888 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
889 			      struct request *req)
890 {
891 	u32 upper, lower;
892 	u64 ref48;
893 
894 	/* both rw and write zeroes share the same reftag format */
895 	switch (ns->head->guard_type) {
896 	case NVME_NVM_NS_16B_GUARD:
897 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
898 		break;
899 	case NVME_NVM_NS_64B_GUARD:
900 		ref48 = ext_pi_ref_tag(req);
901 		lower = lower_32_bits(ref48);
902 		upper = upper_32_bits(ref48);
903 
904 		cmnd->rw.reftag = cpu_to_le32(lower);
905 		cmnd->rw.cdw3 = cpu_to_le32(upper);
906 		break;
907 	default:
908 		break;
909 	}
910 }
911 
912 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
913 		struct request *req, struct nvme_command *cmnd)
914 {
915 	memset(cmnd, 0, sizeof(*cmnd));
916 
917 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
918 		return nvme_setup_discard(ns, req, cmnd);
919 
920 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
921 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
922 	cmnd->write_zeroes.slba =
923 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
924 	cmnd->write_zeroes.length =
925 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
926 
927 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
928 	    (ns->head->features & NVME_NS_DEAC))
929 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
930 
931 	if (nvme_ns_has_pi(ns->head)) {
932 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
933 
934 		switch (ns->head->pi_type) {
935 		case NVME_NS_DPS_PI_TYPE1:
936 		case NVME_NS_DPS_PI_TYPE2:
937 			nvme_set_ref_tag(ns, cmnd, req);
938 			break;
939 		}
940 	}
941 
942 	return BLK_STS_OK;
943 }
944 
945 /*
946  * NVMe does not support a dedicated command to issue an atomic write. A write
947  * which does adhere to the device atomic limits will silently be executed
948  * non-atomically. The request issuer should ensure that the write is within
949  * the queue atomic writes limits, but just validate this in case it is not.
950  */
951 static bool nvme_valid_atomic_write(struct request *req)
952 {
953 	struct request_queue *q = req->q;
954 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
955 
956 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
957 		return false;
958 
959 	if (boundary_bytes) {
960 		u64 mask = boundary_bytes - 1, imask = ~mask;
961 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
962 		u64 end = start + blk_rq_bytes(req) - 1;
963 
964 		/* If greater then must be crossing a boundary */
965 		if (blk_rq_bytes(req) > boundary_bytes)
966 			return false;
967 
968 		if ((start & imask) != (end & imask))
969 			return false;
970 	}
971 
972 	return true;
973 }
974 
975 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
976 		struct request *req, struct nvme_command *cmnd,
977 		enum nvme_opcode op)
978 {
979 	u16 control = 0;
980 	u32 dsmgmt = 0;
981 
982 	if (req->cmd_flags & REQ_FUA)
983 		control |= NVME_RW_FUA;
984 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
985 		control |= NVME_RW_LR;
986 
987 	if (req->cmd_flags & REQ_RAHEAD)
988 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
989 
990 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
991 		return BLK_STS_INVAL;
992 
993 	cmnd->rw.opcode = op;
994 	cmnd->rw.flags = 0;
995 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
996 	cmnd->rw.cdw2 = 0;
997 	cmnd->rw.cdw3 = 0;
998 	cmnd->rw.metadata = 0;
999 	cmnd->rw.slba =
1000 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1001 	cmnd->rw.length =
1002 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1003 	cmnd->rw.reftag = 0;
1004 	cmnd->rw.lbat = 0;
1005 	cmnd->rw.lbatm = 0;
1006 
1007 	if (ns->head->ms) {
1008 		/*
1009 		 * If formated with metadata, the block layer always provides a
1010 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1011 		 * we enable the PRACT bit for protection information or set the
1012 		 * namespace capacity to zero to prevent any I/O.
1013 		 */
1014 		if (!blk_integrity_rq(req)) {
1015 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1016 				return BLK_STS_NOTSUPP;
1017 			control |= NVME_RW_PRINFO_PRACT;
1018 		}
1019 
1020 		switch (ns->head->pi_type) {
1021 		case NVME_NS_DPS_PI_TYPE3:
1022 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1023 			break;
1024 		case NVME_NS_DPS_PI_TYPE1:
1025 		case NVME_NS_DPS_PI_TYPE2:
1026 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
1027 					NVME_RW_PRINFO_PRCHK_REF;
1028 			if (op == nvme_cmd_zone_append)
1029 				control |= NVME_RW_APPEND_PIREMAP;
1030 			nvme_set_ref_tag(ns, cmnd, req);
1031 			break;
1032 		}
1033 	}
1034 
1035 	cmnd->rw.control = cpu_to_le16(control);
1036 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1037 	return 0;
1038 }
1039 
1040 void nvme_cleanup_cmd(struct request *req)
1041 {
1042 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1043 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1044 
1045 		if (req->special_vec.bv_page == ctrl->discard_page)
1046 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1047 		else
1048 			kfree(bvec_virt(&req->special_vec));
1049 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1050 	}
1051 }
1052 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1053 
1054 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1055 {
1056 	struct nvme_command *cmd = nvme_req(req)->cmd;
1057 	blk_status_t ret = BLK_STS_OK;
1058 
1059 	if (!(req->rq_flags & RQF_DONTPREP))
1060 		nvme_clear_nvme_request(req);
1061 
1062 	switch (req_op(req)) {
1063 	case REQ_OP_DRV_IN:
1064 	case REQ_OP_DRV_OUT:
1065 		/* these are setup prior to execution in nvme_init_request() */
1066 		break;
1067 	case REQ_OP_FLUSH:
1068 		nvme_setup_flush(ns, cmd);
1069 		break;
1070 	case REQ_OP_ZONE_RESET_ALL:
1071 	case REQ_OP_ZONE_RESET:
1072 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1073 		break;
1074 	case REQ_OP_ZONE_OPEN:
1075 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1076 		break;
1077 	case REQ_OP_ZONE_CLOSE:
1078 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1079 		break;
1080 	case REQ_OP_ZONE_FINISH:
1081 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1082 		break;
1083 	case REQ_OP_WRITE_ZEROES:
1084 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1085 		break;
1086 	case REQ_OP_DISCARD:
1087 		ret = nvme_setup_discard(ns, req, cmd);
1088 		break;
1089 	case REQ_OP_READ:
1090 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1091 		break;
1092 	case REQ_OP_WRITE:
1093 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1094 		break;
1095 	case REQ_OP_ZONE_APPEND:
1096 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1097 		break;
1098 	default:
1099 		WARN_ON_ONCE(1);
1100 		return BLK_STS_IOERR;
1101 	}
1102 
1103 	cmd->common.command_id = nvme_cid(req);
1104 	trace_nvme_setup_cmd(req, cmd);
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1108 
1109 /*
1110  * Return values:
1111  * 0:  success
1112  * >0: nvme controller's cqe status response
1113  * <0: kernel error in lieu of controller response
1114  */
1115 int nvme_execute_rq(struct request *rq, bool at_head)
1116 {
1117 	blk_status_t status;
1118 
1119 	status = blk_execute_rq(rq, at_head);
1120 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1121 		return -EINTR;
1122 	if (nvme_req(rq)->status)
1123 		return nvme_req(rq)->status;
1124 	return blk_status_to_errno(status);
1125 }
1126 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1127 
1128 /*
1129  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1130  * if the result is positive, it's an NVM Express status code
1131  */
1132 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1133 		union nvme_result *result, void *buffer, unsigned bufflen,
1134 		int qid, nvme_submit_flags_t flags)
1135 {
1136 	struct request *req;
1137 	int ret;
1138 	blk_mq_req_flags_t blk_flags = 0;
1139 
1140 	if (flags & NVME_SUBMIT_NOWAIT)
1141 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1142 	if (flags & NVME_SUBMIT_RESERVED)
1143 		blk_flags |= BLK_MQ_REQ_RESERVED;
1144 	if (qid == NVME_QID_ANY)
1145 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1146 	else
1147 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1148 						qid - 1);
1149 
1150 	if (IS_ERR(req))
1151 		return PTR_ERR(req);
1152 	nvme_init_request(req, cmd);
1153 	if (flags & NVME_SUBMIT_RETRY)
1154 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1155 
1156 	if (buffer && bufflen) {
1157 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1158 		if (ret)
1159 			goto out;
1160 	}
1161 
1162 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1163 	if (result && ret >= 0)
1164 		*result = nvme_req(req)->result;
1165  out:
1166 	blk_mq_free_request(req);
1167 	return ret;
1168 }
1169 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1170 
1171 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1172 		void *buffer, unsigned bufflen)
1173 {
1174 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1175 			NVME_QID_ANY, 0);
1176 }
1177 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1178 
1179 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1180 {
1181 	u32 effects = 0;
1182 
1183 	if (ns) {
1184 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1185 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1186 			dev_warn_once(ctrl->device,
1187 				"IO command:%02x has unusual effects:%08x\n",
1188 				opcode, effects);
1189 
1190 		/*
1191 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1192 		 * which would deadlock when done on an I/O command.  Note that
1193 		 * We already warn about an unusual effect above.
1194 		 */
1195 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1196 	} else {
1197 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1198 
1199 		/* Ignore execution restrictions if any relaxation bits are set */
1200 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1201 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1202 	}
1203 
1204 	return effects;
1205 }
1206 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1207 
1208 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1209 {
1210 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1211 
1212 	/*
1213 	 * For simplicity, IO to all namespaces is quiesced even if the command
1214 	 * effects say only one namespace is affected.
1215 	 */
1216 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1217 		mutex_lock(&ctrl->scan_lock);
1218 		mutex_lock(&ctrl->subsys->lock);
1219 		nvme_mpath_start_freeze(ctrl->subsys);
1220 		nvme_mpath_wait_freeze(ctrl->subsys);
1221 		nvme_start_freeze(ctrl);
1222 		nvme_wait_freeze(ctrl);
1223 	}
1224 	return effects;
1225 }
1226 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1227 
1228 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1229 		       struct nvme_command *cmd, int status)
1230 {
1231 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1232 		nvme_unfreeze(ctrl);
1233 		nvme_mpath_unfreeze(ctrl->subsys);
1234 		mutex_unlock(&ctrl->subsys->lock);
1235 		mutex_unlock(&ctrl->scan_lock);
1236 	}
1237 	if (effects & NVME_CMD_EFFECTS_CCC) {
1238 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1239 				      &ctrl->flags)) {
1240 			dev_info(ctrl->device,
1241 "controller capabilities changed, reset may be required to take effect.\n");
1242 		}
1243 	}
1244 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1245 		nvme_queue_scan(ctrl);
1246 		flush_work(&ctrl->scan_work);
1247 	}
1248 	if (ns)
1249 		return;
1250 
1251 	switch (cmd->common.opcode) {
1252 	case nvme_admin_set_features:
1253 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1254 		case NVME_FEAT_KATO:
1255 			/*
1256 			 * Keep alive commands interval on the host should be
1257 			 * updated when KATO is modified by Set Features
1258 			 * commands.
1259 			 */
1260 			if (!status)
1261 				nvme_update_keep_alive(ctrl, cmd);
1262 			break;
1263 		default:
1264 			break;
1265 		}
1266 		break;
1267 	default:
1268 		break;
1269 	}
1270 }
1271 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1272 
1273 /*
1274  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1275  *
1276  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1277  *   accounting for transport roundtrip times [..].
1278  */
1279 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1280 {
1281 	unsigned long delay = ctrl->kato * HZ / 2;
1282 
1283 	/*
1284 	 * When using Traffic Based Keep Alive, we need to run
1285 	 * nvme_keep_alive_work at twice the normal frequency, as one
1286 	 * command completion can postpone sending a keep alive command
1287 	 * by up to twice the delay between runs.
1288 	 */
1289 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1290 		delay /= 2;
1291 	return delay;
1292 }
1293 
1294 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1295 {
1296 	unsigned long now = jiffies;
1297 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1298 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1299 
1300 	if (time_after(now, ka_next_check_tm))
1301 		delay = 0;
1302 	else
1303 		delay = ka_next_check_tm - now;
1304 
1305 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1306 }
1307 
1308 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1309 						 blk_status_t status)
1310 {
1311 	struct nvme_ctrl *ctrl = rq->end_io_data;
1312 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1313 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1314 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1315 
1316 	/*
1317 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1318 	 * at the desired frequency.
1319 	 */
1320 	if (rtt <= delay) {
1321 		delay -= rtt;
1322 	} else {
1323 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1324 			 jiffies_to_msecs(rtt));
1325 		delay = 0;
1326 	}
1327 
1328 	blk_mq_free_request(rq);
1329 
1330 	if (status) {
1331 		dev_err(ctrl->device,
1332 			"failed nvme_keep_alive_end_io error=%d\n",
1333 				status);
1334 		return RQ_END_IO_NONE;
1335 	}
1336 
1337 	ctrl->ka_last_check_time = jiffies;
1338 	ctrl->comp_seen = false;
1339 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1340 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1341 	return RQ_END_IO_NONE;
1342 }
1343 
1344 static void nvme_keep_alive_work(struct work_struct *work)
1345 {
1346 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1347 			struct nvme_ctrl, ka_work);
1348 	bool comp_seen = ctrl->comp_seen;
1349 	struct request *rq;
1350 
1351 	ctrl->ka_last_check_time = jiffies;
1352 
1353 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1354 		dev_dbg(ctrl->device,
1355 			"reschedule traffic based keep-alive timer\n");
1356 		ctrl->comp_seen = false;
1357 		nvme_queue_keep_alive_work(ctrl);
1358 		return;
1359 	}
1360 
1361 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1362 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1363 	if (IS_ERR(rq)) {
1364 		/* allocation failure, reset the controller */
1365 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1366 		nvme_reset_ctrl(ctrl);
1367 		return;
1368 	}
1369 	nvme_init_request(rq, &ctrl->ka_cmd);
1370 
1371 	rq->timeout = ctrl->kato * HZ;
1372 	rq->end_io = nvme_keep_alive_end_io;
1373 	rq->end_io_data = ctrl;
1374 	blk_execute_rq_nowait(rq, false);
1375 }
1376 
1377 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1378 {
1379 	if (unlikely(ctrl->kato == 0))
1380 		return;
1381 
1382 	nvme_queue_keep_alive_work(ctrl);
1383 }
1384 
1385 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1386 {
1387 	if (unlikely(ctrl->kato == 0))
1388 		return;
1389 
1390 	cancel_delayed_work_sync(&ctrl->ka_work);
1391 }
1392 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1393 
1394 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1395 				   struct nvme_command *cmd)
1396 {
1397 	unsigned int new_kato =
1398 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1399 
1400 	dev_info(ctrl->device,
1401 		 "keep alive interval updated from %u ms to %u ms\n",
1402 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1403 
1404 	nvme_stop_keep_alive(ctrl);
1405 	ctrl->kato = new_kato;
1406 	nvme_start_keep_alive(ctrl);
1407 }
1408 
1409 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1410 {
1411 	/*
1412 	 * The CNS field occupies a full byte starting with NVMe 1.2
1413 	 */
1414 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1415 		return true;
1416 
1417 	/*
1418 	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1419 	 * larger than that could get truncated and treated as an incorrect
1420 	 * value.
1421 	 *
1422 	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1423 	 * compliance, so they need to be quirked here.
1424 	 */
1425 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1426 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1427 		return cns <= 3;
1428 
1429 	/*
1430 	 * NVMe 1.0 used a single bit for the CNS value.
1431 	 */
1432 	return cns <= 1;
1433 }
1434 
1435 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1436 {
1437 	struct nvme_command c = { };
1438 	int error;
1439 
1440 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1441 	c.identify.opcode = nvme_admin_identify;
1442 	c.identify.cns = NVME_ID_CNS_CTRL;
1443 
1444 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1445 	if (!*id)
1446 		return -ENOMEM;
1447 
1448 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1449 			sizeof(struct nvme_id_ctrl));
1450 	if (error) {
1451 		kfree(*id);
1452 		*id = NULL;
1453 	}
1454 	return error;
1455 }
1456 
1457 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1458 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1459 {
1460 	const char *warn_str = "ctrl returned bogus length:";
1461 	void *data = cur;
1462 
1463 	switch (cur->nidt) {
1464 	case NVME_NIDT_EUI64:
1465 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1466 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1467 				 warn_str, cur->nidl);
1468 			return -1;
1469 		}
1470 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1471 			return NVME_NIDT_EUI64_LEN;
1472 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1473 		return NVME_NIDT_EUI64_LEN;
1474 	case NVME_NIDT_NGUID:
1475 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1476 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1477 				 warn_str, cur->nidl);
1478 			return -1;
1479 		}
1480 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1481 			return NVME_NIDT_NGUID_LEN;
1482 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1483 		return NVME_NIDT_NGUID_LEN;
1484 	case NVME_NIDT_UUID:
1485 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1486 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1487 				 warn_str, cur->nidl);
1488 			return -1;
1489 		}
1490 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1491 			return NVME_NIDT_UUID_LEN;
1492 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1493 		return NVME_NIDT_UUID_LEN;
1494 	case NVME_NIDT_CSI:
1495 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1496 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1497 				 warn_str, cur->nidl);
1498 			return -1;
1499 		}
1500 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1501 		*csi_seen = true;
1502 		return NVME_NIDT_CSI_LEN;
1503 	default:
1504 		/* Skip unknown types */
1505 		return cur->nidl;
1506 	}
1507 }
1508 
1509 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1510 		struct nvme_ns_info *info)
1511 {
1512 	struct nvme_command c = { };
1513 	bool csi_seen = false;
1514 	int status, pos, len;
1515 	void *data;
1516 
1517 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1518 		return 0;
1519 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1520 		return 0;
1521 
1522 	c.identify.opcode = nvme_admin_identify;
1523 	c.identify.nsid = cpu_to_le32(info->nsid);
1524 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1525 
1526 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1527 	if (!data)
1528 		return -ENOMEM;
1529 
1530 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1531 				      NVME_IDENTIFY_DATA_SIZE);
1532 	if (status) {
1533 		dev_warn(ctrl->device,
1534 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1535 			info->nsid, status);
1536 		goto free_data;
1537 	}
1538 
1539 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1540 		struct nvme_ns_id_desc *cur = data + pos;
1541 
1542 		if (cur->nidl == 0)
1543 			break;
1544 
1545 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1546 		if (len < 0)
1547 			break;
1548 
1549 		len += sizeof(*cur);
1550 	}
1551 
1552 	if (nvme_multi_css(ctrl) && !csi_seen) {
1553 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1554 			 info->nsid);
1555 		status = -EINVAL;
1556 	}
1557 
1558 free_data:
1559 	kfree(data);
1560 	return status;
1561 }
1562 
1563 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1564 			struct nvme_id_ns **id)
1565 {
1566 	struct nvme_command c = { };
1567 	int error;
1568 
1569 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1570 	c.identify.opcode = nvme_admin_identify;
1571 	c.identify.nsid = cpu_to_le32(nsid);
1572 	c.identify.cns = NVME_ID_CNS_NS;
1573 
1574 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1575 	if (!*id)
1576 		return -ENOMEM;
1577 
1578 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1579 	if (error) {
1580 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1581 		kfree(*id);
1582 		*id = NULL;
1583 	}
1584 	return error;
1585 }
1586 
1587 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1588 		struct nvme_ns_info *info)
1589 {
1590 	struct nvme_ns_ids *ids = &info->ids;
1591 	struct nvme_id_ns *id;
1592 	int ret;
1593 
1594 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1595 	if (ret)
1596 		return ret;
1597 
1598 	if (id->ncap == 0) {
1599 		/* namespace not allocated or attached */
1600 		info->is_removed = true;
1601 		ret = -ENODEV;
1602 		goto error;
1603 	}
1604 
1605 	info->anagrpid = id->anagrpid;
1606 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1607 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1608 	info->is_ready = true;
1609 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1610 		dev_info(ctrl->device,
1611 			 "Ignoring bogus Namespace Identifiers\n");
1612 	} else {
1613 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1614 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1615 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1616 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1617 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1618 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1619 	}
1620 
1621 error:
1622 	kfree(id);
1623 	return ret;
1624 }
1625 
1626 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1627 		struct nvme_ns_info *info)
1628 {
1629 	struct nvme_id_ns_cs_indep *id;
1630 	struct nvme_command c = {
1631 		.identify.opcode	= nvme_admin_identify,
1632 		.identify.nsid		= cpu_to_le32(info->nsid),
1633 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1634 	};
1635 	int ret;
1636 
1637 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1638 	if (!id)
1639 		return -ENOMEM;
1640 
1641 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1642 	if (!ret) {
1643 		info->anagrpid = id->anagrpid;
1644 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1645 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1646 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1647 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1648 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1649 	}
1650 	kfree(id);
1651 	return ret;
1652 }
1653 
1654 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1655 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1656 {
1657 	union nvme_result res = { 0 };
1658 	struct nvme_command c = { };
1659 	int ret;
1660 
1661 	c.features.opcode = op;
1662 	c.features.fid = cpu_to_le32(fid);
1663 	c.features.dword11 = cpu_to_le32(dword11);
1664 
1665 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1666 			buffer, buflen, NVME_QID_ANY, 0);
1667 	if (ret >= 0 && result)
1668 		*result = le32_to_cpu(res.u32);
1669 	return ret;
1670 }
1671 
1672 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1673 		      unsigned int dword11, void *buffer, size_t buflen,
1674 		      u32 *result)
1675 {
1676 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1677 			     buflen, result);
1678 }
1679 EXPORT_SYMBOL_GPL(nvme_set_features);
1680 
1681 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1682 		      unsigned int dword11, void *buffer, size_t buflen,
1683 		      u32 *result)
1684 {
1685 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1686 			     buflen, result);
1687 }
1688 EXPORT_SYMBOL_GPL(nvme_get_features);
1689 
1690 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1691 {
1692 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1693 	u32 result;
1694 	int status, nr_io_queues;
1695 
1696 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1697 			&result);
1698 	if (status < 0)
1699 		return status;
1700 
1701 	/*
1702 	 * Degraded controllers might return an error when setting the queue
1703 	 * count.  We still want to be able to bring them online and offer
1704 	 * access to the admin queue, as that might be only way to fix them up.
1705 	 */
1706 	if (status > 0) {
1707 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1708 		*count = 0;
1709 	} else {
1710 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1711 		*count = min(*count, nr_io_queues);
1712 	}
1713 
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1717 
1718 #define NVME_AEN_SUPPORTED \
1719 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1720 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1721 
1722 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1723 {
1724 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1725 	int status;
1726 
1727 	if (!supported_aens)
1728 		return;
1729 
1730 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1731 			NULL, 0, &result);
1732 	if (status)
1733 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1734 			 supported_aens);
1735 
1736 	queue_work(nvme_wq, &ctrl->async_event_work);
1737 }
1738 
1739 static int nvme_ns_open(struct nvme_ns *ns)
1740 {
1741 
1742 	/* should never be called due to GENHD_FL_HIDDEN */
1743 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1744 		goto fail;
1745 	if (!nvme_get_ns(ns))
1746 		goto fail;
1747 	if (!try_module_get(ns->ctrl->ops->module))
1748 		goto fail_put_ns;
1749 
1750 	return 0;
1751 
1752 fail_put_ns:
1753 	nvme_put_ns(ns);
1754 fail:
1755 	return -ENXIO;
1756 }
1757 
1758 static void nvme_ns_release(struct nvme_ns *ns)
1759 {
1760 
1761 	module_put(ns->ctrl->ops->module);
1762 	nvme_put_ns(ns);
1763 }
1764 
1765 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1766 {
1767 	return nvme_ns_open(disk->private_data);
1768 }
1769 
1770 static void nvme_release(struct gendisk *disk)
1771 {
1772 	nvme_ns_release(disk->private_data);
1773 }
1774 
1775 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1776 {
1777 	/* some standard values */
1778 	geo->heads = 1 << 6;
1779 	geo->sectors = 1 << 5;
1780 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1781 	return 0;
1782 }
1783 
1784 static bool nvme_init_integrity(struct nvme_ns_head *head,
1785 		struct queue_limits *lim, struct nvme_ns_info *info)
1786 {
1787 	struct blk_integrity *bi = &lim->integrity;
1788 
1789 	memset(bi, 0, sizeof(*bi));
1790 
1791 	if (!head->ms)
1792 		return true;
1793 
1794 	/*
1795 	 * PI can always be supported as we can ask the controller to simply
1796 	 * insert/strip it, which is not possible for other kinds of metadata.
1797 	 */
1798 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1799 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1800 		return nvme_ns_has_pi(head);
1801 
1802 	switch (head->pi_type) {
1803 	case NVME_NS_DPS_PI_TYPE3:
1804 		switch (head->guard_type) {
1805 		case NVME_NVM_NS_16B_GUARD:
1806 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1807 			bi->tag_size = sizeof(u16) + sizeof(u32);
1808 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1809 			break;
1810 		case NVME_NVM_NS_64B_GUARD:
1811 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1812 			bi->tag_size = sizeof(u16) + 6;
1813 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1814 			break;
1815 		default:
1816 			break;
1817 		}
1818 		break;
1819 	case NVME_NS_DPS_PI_TYPE1:
1820 	case NVME_NS_DPS_PI_TYPE2:
1821 		switch (head->guard_type) {
1822 		case NVME_NVM_NS_16B_GUARD:
1823 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1824 			bi->tag_size = sizeof(u16);
1825 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1826 				     BLK_INTEGRITY_REF_TAG;
1827 			break;
1828 		case NVME_NVM_NS_64B_GUARD:
1829 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1830 			bi->tag_size = sizeof(u16);
1831 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1832 				     BLK_INTEGRITY_REF_TAG;
1833 			break;
1834 		default:
1835 			break;
1836 		}
1837 		break;
1838 	default:
1839 		break;
1840 	}
1841 
1842 	bi->tuple_size = head->ms;
1843 	bi->pi_offset = info->pi_offset;
1844 	return true;
1845 }
1846 
1847 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1848 {
1849 	struct nvme_ctrl *ctrl = ns->ctrl;
1850 
1851 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1852 		lim->max_hw_discard_sectors =
1853 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1854 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1855 		lim->max_hw_discard_sectors = UINT_MAX;
1856 	else
1857 		lim->max_hw_discard_sectors = 0;
1858 
1859 	lim->discard_granularity = lim->logical_block_size;
1860 
1861 	if (ctrl->dmrl)
1862 		lim->max_discard_segments = ctrl->dmrl;
1863 	else
1864 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1865 }
1866 
1867 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1868 {
1869 	return uuid_equal(&a->uuid, &b->uuid) &&
1870 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1871 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1872 		a->csi == b->csi;
1873 }
1874 
1875 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1876 		struct nvme_id_ns_nvm **nvmp)
1877 {
1878 	struct nvme_command c = {
1879 		.identify.opcode	= nvme_admin_identify,
1880 		.identify.nsid		= cpu_to_le32(nsid),
1881 		.identify.cns		= NVME_ID_CNS_CS_NS,
1882 		.identify.csi		= NVME_CSI_NVM,
1883 	};
1884 	struct nvme_id_ns_nvm *nvm;
1885 	int ret;
1886 
1887 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1888 	if (!nvm)
1889 		return -ENOMEM;
1890 
1891 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1892 	if (ret)
1893 		kfree(nvm);
1894 	else
1895 		*nvmp = nvm;
1896 	return ret;
1897 }
1898 
1899 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1900 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1901 {
1902 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1903 	u8 guard_type;
1904 
1905 	/* no support for storage tag formats right now */
1906 	if (nvme_elbaf_sts(elbaf))
1907 		return;
1908 
1909 	guard_type = nvme_elbaf_guard_type(elbaf);
1910 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1911 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1912 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1913 
1914 	head->guard_type = guard_type;
1915 	switch (head->guard_type) {
1916 	case NVME_NVM_NS_64B_GUARD:
1917 		head->pi_size = sizeof(struct crc64_pi_tuple);
1918 		break;
1919 	case NVME_NVM_NS_16B_GUARD:
1920 		head->pi_size = sizeof(struct t10_pi_tuple);
1921 		break;
1922 	default:
1923 		break;
1924 	}
1925 }
1926 
1927 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1928 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1929 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1930 {
1931 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1932 	head->pi_type = 0;
1933 	head->pi_size = 0;
1934 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1935 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1936 		return;
1937 
1938 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1939 		nvme_configure_pi_elbas(head, id, nvm);
1940 	} else {
1941 		head->pi_size = sizeof(struct t10_pi_tuple);
1942 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1943 	}
1944 
1945 	if (head->pi_size && head->ms >= head->pi_size)
1946 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1947 	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1948 		if (disable_pi_offsets)
1949 			head->pi_type = 0;
1950 		else
1951 			info->pi_offset = head->ms - head->pi_size;
1952 	}
1953 
1954 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1955 		/*
1956 		 * The NVMe over Fabrics specification only supports metadata as
1957 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1958 		 * remap the separate metadata buffer from the block layer.
1959 		 */
1960 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1961 			return;
1962 
1963 		head->features |= NVME_NS_EXT_LBAS;
1964 
1965 		/*
1966 		 * The current fabrics transport drivers support namespace
1967 		 * metadata formats only if nvme_ns_has_pi() returns true.
1968 		 * Suppress support for all other formats so the namespace will
1969 		 * have a 0 capacity and not be usable through the block stack.
1970 		 *
1971 		 * Note, this check will need to be modified if any drivers
1972 		 * gain the ability to use other metadata formats.
1973 		 */
1974 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
1975 			head->features |= NVME_NS_METADATA_SUPPORTED;
1976 	} else {
1977 		/*
1978 		 * For PCIe controllers, we can't easily remap the separate
1979 		 * metadata buffer from the block layer and thus require a
1980 		 * separate metadata buffer for block layer metadata/PI support.
1981 		 * We allow extended LBAs for the passthrough interface, though.
1982 		 */
1983 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1984 			head->features |= NVME_NS_EXT_LBAS;
1985 		else
1986 			head->features |= NVME_NS_METADATA_SUPPORTED;
1987 	}
1988 }
1989 
1990 
1991 static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
1992 			struct nvme_id_ns *id, struct queue_limits *lim,
1993 			u32 bs, u32 atomic_bs)
1994 {
1995 	unsigned int boundary = 0;
1996 
1997 	if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
1998 		if (le16_to_cpu(id->nabspf))
1999 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2000 	}
2001 	lim->atomic_write_hw_max = atomic_bs;
2002 	lim->atomic_write_hw_boundary = boundary;
2003 	lim->atomic_write_hw_unit_min = bs;
2004 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2005 }
2006 
2007 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2008 {
2009 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2010 }
2011 
2012 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2013 		struct queue_limits *lim)
2014 {
2015 	lim->max_hw_sectors = ctrl->max_hw_sectors;
2016 	lim->max_segments = min_t(u32, USHRT_MAX,
2017 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2018 	lim->max_integrity_segments = ctrl->max_integrity_segments;
2019 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2020 	lim->max_segment_size = UINT_MAX;
2021 	lim->dma_alignment = 3;
2022 }
2023 
2024 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2025 		struct queue_limits *lim)
2026 {
2027 	struct nvme_ns_head *head = ns->head;
2028 	u32 bs = 1U << head->lba_shift;
2029 	u32 atomic_bs, phys_bs, io_opt = 0;
2030 	bool valid = true;
2031 
2032 	/*
2033 	 * The block layer can't support LBA sizes larger than the page size
2034 	 * or smaller than a sector size yet, so catch this early and don't
2035 	 * allow block I/O.
2036 	 */
2037 	if (blk_validate_block_size(bs)) {
2038 		bs = (1 << 9);
2039 		valid = false;
2040 	}
2041 
2042 	atomic_bs = phys_bs = bs;
2043 	if (id->nabo == 0) {
2044 		/*
2045 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
2046 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
2047 		 * 0 then AWUPF must be used instead.
2048 		 */
2049 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2050 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2051 		else
2052 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2053 
2054 		nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2055 	}
2056 
2057 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2058 		/* NPWG = Namespace Preferred Write Granularity */
2059 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2060 		/* NOWS = Namespace Optimal Write Size */
2061 		if (id->nows)
2062 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2063 	}
2064 
2065 	/*
2066 	 * Linux filesystems assume writing a single physical block is
2067 	 * an atomic operation. Hence limit the physical block size to the
2068 	 * value of the Atomic Write Unit Power Fail parameter.
2069 	 */
2070 	lim->logical_block_size = bs;
2071 	lim->physical_block_size = min(phys_bs, atomic_bs);
2072 	lim->io_min = phys_bs;
2073 	lim->io_opt = io_opt;
2074 	if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2075 	    (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2076 		lim->max_write_zeroes_sectors = UINT_MAX;
2077 	else
2078 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2079 	return valid;
2080 }
2081 
2082 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2083 {
2084 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2085 }
2086 
2087 static inline bool nvme_first_scan(struct gendisk *disk)
2088 {
2089 	/* nvme_alloc_ns() scans the disk prior to adding it */
2090 	return !disk_live(disk);
2091 }
2092 
2093 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2094 		struct queue_limits *lim)
2095 {
2096 	struct nvme_ctrl *ctrl = ns->ctrl;
2097 	u32 iob;
2098 
2099 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2100 	    is_power_of_2(ctrl->max_hw_sectors))
2101 		iob = ctrl->max_hw_sectors;
2102 	else
2103 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2104 
2105 	if (!iob)
2106 		return;
2107 
2108 	if (!is_power_of_2(iob)) {
2109 		if (nvme_first_scan(ns->disk))
2110 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2111 				ns->disk->disk_name, iob);
2112 		return;
2113 	}
2114 
2115 	if (blk_queue_is_zoned(ns->disk->queue)) {
2116 		if (nvme_first_scan(ns->disk))
2117 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2118 				ns->disk->disk_name);
2119 		return;
2120 	}
2121 
2122 	lim->chunk_sectors = iob;
2123 }
2124 
2125 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2126 		struct nvme_ns_info *info)
2127 {
2128 	struct queue_limits lim;
2129 	int ret;
2130 
2131 	blk_mq_freeze_queue(ns->disk->queue);
2132 	lim = queue_limits_start_update(ns->disk->queue);
2133 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2134 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2135 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2136 	blk_mq_unfreeze_queue(ns->disk->queue);
2137 
2138 	/* Hide the block-interface for these devices */
2139 	if (!ret)
2140 		ret = -ENODEV;
2141 	return ret;
2142 }
2143 
2144 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2145 		struct nvme_ns_info *info)
2146 {
2147 	struct queue_limits lim;
2148 	struct nvme_id_ns_nvm *nvm = NULL;
2149 	struct nvme_zone_info zi = {};
2150 	struct nvme_id_ns *id;
2151 	sector_t capacity;
2152 	unsigned lbaf;
2153 	int ret;
2154 
2155 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2156 	if (ret)
2157 		return ret;
2158 
2159 	if (id->ncap == 0) {
2160 		/* namespace not allocated or attached */
2161 		info->is_removed = true;
2162 		ret = -ENXIO;
2163 		goto out;
2164 	}
2165 	lbaf = nvme_lbaf_index(id->flbas);
2166 
2167 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2168 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2169 		if (ret < 0)
2170 			goto out;
2171 	}
2172 
2173 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2174 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2175 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2176 		if (ret < 0)
2177 			goto out;
2178 	}
2179 
2180 	blk_mq_freeze_queue(ns->disk->queue);
2181 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2182 	ns->head->nuse = le64_to_cpu(id->nuse);
2183 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2184 
2185 	lim = queue_limits_start_update(ns->disk->queue);
2186 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2187 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2188 	nvme_set_chunk_sectors(ns, id, &lim);
2189 	if (!nvme_update_disk_info(ns, id, &lim))
2190 		capacity = 0;
2191 	nvme_config_discard(ns, &lim);
2192 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2193 	    ns->head->ids.csi == NVME_CSI_ZNS)
2194 		nvme_update_zone_info(ns, &lim, &zi);
2195 
2196 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2197 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2198 	else
2199 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2200 
2201 	if (info->is_rotational)
2202 		lim.features |= BLK_FEAT_ROTATIONAL;
2203 
2204 	/*
2205 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2206 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2207 	 * I/O to namespaces with metadata except when the namespace supports
2208 	 * PI, as it can strip/insert in that case.
2209 	 */
2210 	if (!nvme_init_integrity(ns->head, &lim, info))
2211 		capacity = 0;
2212 
2213 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2214 	if (ret) {
2215 		blk_mq_unfreeze_queue(ns->disk->queue);
2216 		goto out;
2217 	}
2218 
2219 	set_capacity_and_notify(ns->disk, capacity);
2220 
2221 	/*
2222 	 * Only set the DEAC bit if the device guarantees that reads from
2223 	 * deallocated data return zeroes.  While the DEAC bit does not
2224 	 * require that, it must be a no-op if reads from deallocated data
2225 	 * do not return zeroes.
2226 	 */
2227 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2228 		ns->head->features |= NVME_NS_DEAC;
2229 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2230 	set_bit(NVME_NS_READY, &ns->flags);
2231 	blk_mq_unfreeze_queue(ns->disk->queue);
2232 
2233 	if (blk_queue_is_zoned(ns->queue)) {
2234 		ret = blk_revalidate_disk_zones(ns->disk);
2235 		if (ret && !nvme_first_scan(ns->disk))
2236 			goto out;
2237 	}
2238 
2239 	ret = 0;
2240 out:
2241 	kfree(nvm);
2242 	kfree(id);
2243 	return ret;
2244 }
2245 
2246 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2247 {
2248 	bool unsupported = false;
2249 	int ret;
2250 
2251 	switch (info->ids.csi) {
2252 	case NVME_CSI_ZNS:
2253 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2254 			dev_info(ns->ctrl->device,
2255 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2256 				info->nsid);
2257 			ret = nvme_update_ns_info_generic(ns, info);
2258 			break;
2259 		}
2260 		ret = nvme_update_ns_info_block(ns, info);
2261 		break;
2262 	case NVME_CSI_NVM:
2263 		ret = nvme_update_ns_info_block(ns, info);
2264 		break;
2265 	default:
2266 		dev_info(ns->ctrl->device,
2267 			"block device for nsid %u not supported (csi %u)\n",
2268 			info->nsid, info->ids.csi);
2269 		ret = nvme_update_ns_info_generic(ns, info);
2270 		break;
2271 	}
2272 
2273 	/*
2274 	 * If probing fails due an unsupported feature, hide the block device,
2275 	 * but still allow other access.
2276 	 */
2277 	if (ret == -ENODEV) {
2278 		ns->disk->flags |= GENHD_FL_HIDDEN;
2279 		set_bit(NVME_NS_READY, &ns->flags);
2280 		unsupported = true;
2281 		ret = 0;
2282 	}
2283 
2284 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2285 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2286 		struct queue_limits lim;
2287 
2288 		blk_mq_freeze_queue(ns->head->disk->queue);
2289 		/*
2290 		 * queue_limits mixes values that are the hardware limitations
2291 		 * for bio splitting with what is the device configuration.
2292 		 *
2293 		 * For NVMe the device configuration can change after e.g. a
2294 		 * Format command, and we really want to pick up the new format
2295 		 * value here.  But we must still stack the queue limits to the
2296 		 * least common denominator for multipathing to split the bios
2297 		 * properly.
2298 		 *
2299 		 * To work around this, we explicitly set the device
2300 		 * configuration to those that we just queried, but only stack
2301 		 * the splitting limits in to make sure we still obey possibly
2302 		 * lower limitations of other controllers.
2303 		 */
2304 		lim = queue_limits_start_update(ns->head->disk->queue);
2305 		lim.logical_block_size = ns_lim->logical_block_size;
2306 		lim.physical_block_size = ns_lim->physical_block_size;
2307 		lim.io_min = ns_lim->io_min;
2308 		lim.io_opt = ns_lim->io_opt;
2309 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2310 					ns->head->disk->disk_name);
2311 		if (unsupported)
2312 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2313 		else
2314 			nvme_init_integrity(ns->head, &lim, info);
2315 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2316 
2317 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2318 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2319 		nvme_mpath_revalidate_paths(ns);
2320 
2321 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2322 	}
2323 
2324 	return ret;
2325 }
2326 
2327 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2328 		enum blk_unique_id type)
2329 {
2330 	struct nvme_ns_ids *ids = &ns->head->ids;
2331 
2332 	if (type != BLK_UID_EUI64)
2333 		return -EINVAL;
2334 
2335 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2336 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2337 		return sizeof(ids->nguid);
2338 	}
2339 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2340 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2341 		return sizeof(ids->eui64);
2342 	}
2343 
2344 	return -EINVAL;
2345 }
2346 
2347 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2348 		enum blk_unique_id type)
2349 {
2350 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2351 }
2352 
2353 #ifdef CONFIG_BLK_SED_OPAL
2354 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2355 		bool send)
2356 {
2357 	struct nvme_ctrl *ctrl = data;
2358 	struct nvme_command cmd = { };
2359 
2360 	if (send)
2361 		cmd.common.opcode = nvme_admin_security_send;
2362 	else
2363 		cmd.common.opcode = nvme_admin_security_recv;
2364 	cmd.common.nsid = 0;
2365 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2366 	cmd.common.cdw11 = cpu_to_le32(len);
2367 
2368 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2369 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2370 }
2371 
2372 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2373 {
2374 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2375 		if (!ctrl->opal_dev)
2376 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2377 		else if (was_suspended)
2378 			opal_unlock_from_suspend(ctrl->opal_dev);
2379 	} else {
2380 		free_opal_dev(ctrl->opal_dev);
2381 		ctrl->opal_dev = NULL;
2382 	}
2383 }
2384 #else
2385 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2386 {
2387 }
2388 #endif /* CONFIG_BLK_SED_OPAL */
2389 
2390 #ifdef CONFIG_BLK_DEV_ZONED
2391 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2392 		unsigned int nr_zones, report_zones_cb cb, void *data)
2393 {
2394 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2395 			data);
2396 }
2397 #else
2398 #define nvme_report_zones	NULL
2399 #endif /* CONFIG_BLK_DEV_ZONED */
2400 
2401 const struct block_device_operations nvme_bdev_ops = {
2402 	.owner		= THIS_MODULE,
2403 	.ioctl		= nvme_ioctl,
2404 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2405 	.open		= nvme_open,
2406 	.release	= nvme_release,
2407 	.getgeo		= nvme_getgeo,
2408 	.get_unique_id	= nvme_get_unique_id,
2409 	.report_zones	= nvme_report_zones,
2410 	.pr_ops		= &nvme_pr_ops,
2411 };
2412 
2413 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2414 		u32 timeout, const char *op)
2415 {
2416 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2417 	u32 csts;
2418 	int ret;
2419 
2420 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2421 		if (csts == ~0)
2422 			return -ENODEV;
2423 		if ((csts & mask) == val)
2424 			break;
2425 
2426 		usleep_range(1000, 2000);
2427 		if (fatal_signal_pending(current))
2428 			return -EINTR;
2429 		if (time_after(jiffies, timeout_jiffies)) {
2430 			dev_err(ctrl->device,
2431 				"Device not ready; aborting %s, CSTS=0x%x\n",
2432 				op, csts);
2433 			return -ENODEV;
2434 		}
2435 	}
2436 
2437 	return ret;
2438 }
2439 
2440 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2441 {
2442 	int ret;
2443 
2444 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2445 	if (shutdown)
2446 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2447 	else
2448 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2449 
2450 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2451 	if (ret)
2452 		return ret;
2453 
2454 	if (shutdown) {
2455 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2456 				       NVME_CSTS_SHST_CMPLT,
2457 				       ctrl->shutdown_timeout, "shutdown");
2458 	}
2459 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2460 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2461 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2462 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2463 }
2464 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2465 
2466 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2467 {
2468 	unsigned dev_page_min;
2469 	u32 timeout;
2470 	int ret;
2471 
2472 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2473 	if (ret) {
2474 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2475 		return ret;
2476 	}
2477 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2478 
2479 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2480 		dev_err(ctrl->device,
2481 			"Minimum device page size %u too large for host (%u)\n",
2482 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2483 		return -ENODEV;
2484 	}
2485 
2486 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2487 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2488 	else
2489 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2490 
2491 	/*
2492 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2493 	 * makes it possible for media related commands to return the error
2494 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2495 	 * restructured to handle retries, disable CC.CRIME.
2496 	 */
2497 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2498 
2499 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2500 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2501 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2502 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2503 	if (ret)
2504 		return ret;
2505 
2506 	/* CAP value may change after initial CC write */
2507 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2508 	if (ret)
2509 		return ret;
2510 
2511 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2512 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2513 		u32 crto, ready_timeout;
2514 
2515 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2516 		if (ret) {
2517 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2518 				ret);
2519 			return ret;
2520 		}
2521 
2522 		/*
2523 		 * CRTO should always be greater or equal to CAP.TO, but some
2524 		 * devices are known to get this wrong. Use the larger of the
2525 		 * two values.
2526 		 */
2527 		ready_timeout = NVME_CRTO_CRWMT(crto);
2528 
2529 		if (ready_timeout < timeout)
2530 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2531 				      crto, ctrl->cap);
2532 		else
2533 			timeout = ready_timeout;
2534 	}
2535 
2536 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2537 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2538 	if (ret)
2539 		return ret;
2540 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2541 			       (timeout + 1) / 2, "initialisation");
2542 }
2543 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2544 
2545 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2546 {
2547 	__le64 ts;
2548 	int ret;
2549 
2550 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2551 		return 0;
2552 
2553 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2554 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2555 			NULL);
2556 	if (ret)
2557 		dev_warn_once(ctrl->device,
2558 			"could not set timestamp (%d)\n", ret);
2559 	return ret;
2560 }
2561 
2562 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2563 {
2564 	struct nvme_feat_host_behavior *host;
2565 	u8 acre = 0, lbafee = 0;
2566 	int ret;
2567 
2568 	/* Don't bother enabling the feature if retry delay is not reported */
2569 	if (ctrl->crdt[0])
2570 		acre = NVME_ENABLE_ACRE;
2571 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2572 		lbafee = NVME_ENABLE_LBAFEE;
2573 
2574 	if (!acre && !lbafee)
2575 		return 0;
2576 
2577 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2578 	if (!host)
2579 		return 0;
2580 
2581 	host->acre = acre;
2582 	host->lbafee = lbafee;
2583 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2584 				host, sizeof(*host), NULL);
2585 	kfree(host);
2586 	return ret;
2587 }
2588 
2589 /*
2590  * The function checks whether the given total (exlat + enlat) latency of
2591  * a power state allows the latter to be used as an APST transition target.
2592  * It does so by comparing the latency to the primary and secondary latency
2593  * tolerances defined by module params. If there's a match, the corresponding
2594  * timeout value is returned and the matching tolerance index (1 or 2) is
2595  * reported.
2596  */
2597 static bool nvme_apst_get_transition_time(u64 total_latency,
2598 		u64 *transition_time, unsigned *last_index)
2599 {
2600 	if (total_latency <= apst_primary_latency_tol_us) {
2601 		if (*last_index == 1)
2602 			return false;
2603 		*last_index = 1;
2604 		*transition_time = apst_primary_timeout_ms;
2605 		return true;
2606 	}
2607 	if (apst_secondary_timeout_ms &&
2608 		total_latency <= apst_secondary_latency_tol_us) {
2609 		if (*last_index <= 2)
2610 			return false;
2611 		*last_index = 2;
2612 		*transition_time = apst_secondary_timeout_ms;
2613 		return true;
2614 	}
2615 	return false;
2616 }
2617 
2618 /*
2619  * APST (Autonomous Power State Transition) lets us program a table of power
2620  * state transitions that the controller will perform automatically.
2621  *
2622  * Depending on module params, one of the two supported techniques will be used:
2623  *
2624  * - If the parameters provide explicit timeouts and tolerances, they will be
2625  *   used to build a table with up to 2 non-operational states to transition to.
2626  *   The default parameter values were selected based on the values used by
2627  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2628  *   regeneration of the APST table in the event of switching between external
2629  *   and battery power, the timeouts and tolerances reflect a compromise
2630  *   between values used by Microsoft for AC and battery scenarios.
2631  * - If not, we'll configure the table with a simple heuristic: we are willing
2632  *   to spend at most 2% of the time transitioning between power states.
2633  *   Therefore, when running in any given state, we will enter the next
2634  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2635  *   microseconds, as long as that state's exit latency is under the requested
2636  *   maximum latency.
2637  *
2638  * We will not autonomously enter any non-operational state for which the total
2639  * latency exceeds ps_max_latency_us.
2640  *
2641  * Users can set ps_max_latency_us to zero to turn off APST.
2642  */
2643 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2644 {
2645 	struct nvme_feat_auto_pst *table;
2646 	unsigned apste = 0;
2647 	u64 max_lat_us = 0;
2648 	__le64 target = 0;
2649 	int max_ps = -1;
2650 	int state;
2651 	int ret;
2652 	unsigned last_lt_index = UINT_MAX;
2653 
2654 	/*
2655 	 * If APST isn't supported or if we haven't been initialized yet,
2656 	 * then don't do anything.
2657 	 */
2658 	if (!ctrl->apsta)
2659 		return 0;
2660 
2661 	if (ctrl->npss > 31) {
2662 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2663 		return 0;
2664 	}
2665 
2666 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2667 	if (!table)
2668 		return 0;
2669 
2670 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2671 		/* Turn off APST. */
2672 		dev_dbg(ctrl->device, "APST disabled\n");
2673 		goto done;
2674 	}
2675 
2676 	/*
2677 	 * Walk through all states from lowest- to highest-power.
2678 	 * According to the spec, lower-numbered states use more power.  NPSS,
2679 	 * despite the name, is the index of the lowest-power state, not the
2680 	 * number of states.
2681 	 */
2682 	for (state = (int)ctrl->npss; state >= 0; state--) {
2683 		u64 total_latency_us, exit_latency_us, transition_ms;
2684 
2685 		if (target)
2686 			table->entries[state] = target;
2687 
2688 		/*
2689 		 * Don't allow transitions to the deepest state if it's quirked
2690 		 * off.
2691 		 */
2692 		if (state == ctrl->npss &&
2693 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2694 			continue;
2695 
2696 		/*
2697 		 * Is this state a useful non-operational state for higher-power
2698 		 * states to autonomously transition to?
2699 		 */
2700 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2701 			continue;
2702 
2703 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2704 		if (exit_latency_us > ctrl->ps_max_latency_us)
2705 			continue;
2706 
2707 		total_latency_us = exit_latency_us +
2708 			le32_to_cpu(ctrl->psd[state].entry_lat);
2709 
2710 		/*
2711 		 * This state is good. It can be used as the APST idle target
2712 		 * for higher power states.
2713 		 */
2714 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2715 			if (!nvme_apst_get_transition_time(total_latency_us,
2716 					&transition_ms, &last_lt_index))
2717 				continue;
2718 		} else {
2719 			transition_ms = total_latency_us + 19;
2720 			do_div(transition_ms, 20);
2721 			if (transition_ms > (1 << 24) - 1)
2722 				transition_ms = (1 << 24) - 1;
2723 		}
2724 
2725 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2726 		if (max_ps == -1)
2727 			max_ps = state;
2728 		if (total_latency_us > max_lat_us)
2729 			max_lat_us = total_latency_us;
2730 	}
2731 
2732 	if (max_ps == -1)
2733 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2734 	else
2735 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2736 			max_ps, max_lat_us, (int)sizeof(*table), table);
2737 	apste = 1;
2738 
2739 done:
2740 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2741 				table, sizeof(*table), NULL);
2742 	if (ret)
2743 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2744 	kfree(table);
2745 	return ret;
2746 }
2747 
2748 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2749 {
2750 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2751 	u64 latency;
2752 
2753 	switch (val) {
2754 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2755 	case PM_QOS_LATENCY_ANY:
2756 		latency = U64_MAX;
2757 		break;
2758 
2759 	default:
2760 		latency = val;
2761 	}
2762 
2763 	if (ctrl->ps_max_latency_us != latency) {
2764 		ctrl->ps_max_latency_us = latency;
2765 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2766 			nvme_configure_apst(ctrl);
2767 	}
2768 }
2769 
2770 struct nvme_core_quirk_entry {
2771 	/*
2772 	 * NVMe model and firmware strings are padded with spaces.  For
2773 	 * simplicity, strings in the quirk table are padded with NULLs
2774 	 * instead.
2775 	 */
2776 	u16 vid;
2777 	const char *mn;
2778 	const char *fr;
2779 	unsigned long quirks;
2780 };
2781 
2782 static const struct nvme_core_quirk_entry core_quirks[] = {
2783 	{
2784 		/*
2785 		 * This Toshiba device seems to die using any APST states.  See:
2786 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2787 		 */
2788 		.vid = 0x1179,
2789 		.mn = "THNSF5256GPUK TOSHIBA",
2790 		.quirks = NVME_QUIRK_NO_APST,
2791 	},
2792 	{
2793 		/*
2794 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2795 		 * condition associated with actions related to suspend to idle
2796 		 * LiteON has resolved the problem in future firmware
2797 		 */
2798 		.vid = 0x14a4,
2799 		.fr = "22301111",
2800 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2801 	},
2802 	{
2803 		/*
2804 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2805 		 * aborts I/O during any load, but more easily reproducible
2806 		 * with discards (fstrim).
2807 		 *
2808 		 * The device is left in a state where it is also not possible
2809 		 * to use "nvme set-feature" to disable APST, but booting with
2810 		 * nvme_core.default_ps_max_latency=0 works.
2811 		 */
2812 		.vid = 0x1e0f,
2813 		.mn = "KCD6XVUL6T40",
2814 		.quirks = NVME_QUIRK_NO_APST,
2815 	},
2816 	{
2817 		/*
2818 		 * The external Samsung X5 SSD fails initialization without a
2819 		 * delay before checking if it is ready and has a whole set of
2820 		 * other problems.  To make this even more interesting, it
2821 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2822 		 * does not need or want these quirks.
2823 		 */
2824 		.vid = 0x144d,
2825 		.mn = "Samsung Portable SSD X5",
2826 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2827 			  NVME_QUIRK_NO_DEEPEST_PS |
2828 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2829 	}
2830 };
2831 
2832 /* match is null-terminated but idstr is space-padded. */
2833 static bool string_matches(const char *idstr, const char *match, size_t len)
2834 {
2835 	size_t matchlen;
2836 
2837 	if (!match)
2838 		return true;
2839 
2840 	matchlen = strlen(match);
2841 	WARN_ON_ONCE(matchlen > len);
2842 
2843 	if (memcmp(idstr, match, matchlen))
2844 		return false;
2845 
2846 	for (; matchlen < len; matchlen++)
2847 		if (idstr[matchlen] != ' ')
2848 			return false;
2849 
2850 	return true;
2851 }
2852 
2853 static bool quirk_matches(const struct nvme_id_ctrl *id,
2854 			  const struct nvme_core_quirk_entry *q)
2855 {
2856 	return q->vid == le16_to_cpu(id->vid) &&
2857 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2858 		string_matches(id->fr, q->fr, sizeof(id->fr));
2859 }
2860 
2861 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2862 		struct nvme_id_ctrl *id)
2863 {
2864 	size_t nqnlen;
2865 	int off;
2866 
2867 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2868 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2869 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2870 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2871 			return;
2872 		}
2873 
2874 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2875 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2876 	}
2877 
2878 	/*
2879 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2880 	 * Base Specification 2.0.  It is slightly different from the format
2881 	 * specified there due to historic reasons, and we can't change it now.
2882 	 */
2883 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2884 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2885 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2886 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2887 	off += sizeof(id->sn);
2888 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2889 	off += sizeof(id->mn);
2890 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2891 }
2892 
2893 static void nvme_release_subsystem(struct device *dev)
2894 {
2895 	struct nvme_subsystem *subsys =
2896 		container_of(dev, struct nvme_subsystem, dev);
2897 
2898 	if (subsys->instance >= 0)
2899 		ida_free(&nvme_instance_ida, subsys->instance);
2900 	kfree(subsys);
2901 }
2902 
2903 static void nvme_destroy_subsystem(struct kref *ref)
2904 {
2905 	struct nvme_subsystem *subsys =
2906 			container_of(ref, struct nvme_subsystem, ref);
2907 
2908 	mutex_lock(&nvme_subsystems_lock);
2909 	list_del(&subsys->entry);
2910 	mutex_unlock(&nvme_subsystems_lock);
2911 
2912 	ida_destroy(&subsys->ns_ida);
2913 	device_del(&subsys->dev);
2914 	put_device(&subsys->dev);
2915 }
2916 
2917 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2918 {
2919 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2920 }
2921 
2922 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2923 {
2924 	struct nvme_subsystem *subsys;
2925 
2926 	lockdep_assert_held(&nvme_subsystems_lock);
2927 
2928 	/*
2929 	 * Fail matches for discovery subsystems. This results
2930 	 * in each discovery controller bound to a unique subsystem.
2931 	 * This avoids issues with validating controller values
2932 	 * that can only be true when there is a single unique subsystem.
2933 	 * There may be multiple and completely independent entities
2934 	 * that provide discovery controllers.
2935 	 */
2936 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2937 		return NULL;
2938 
2939 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2940 		if (strcmp(subsys->subnqn, subsysnqn))
2941 			continue;
2942 		if (!kref_get_unless_zero(&subsys->ref))
2943 			continue;
2944 		return subsys;
2945 	}
2946 
2947 	return NULL;
2948 }
2949 
2950 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2951 {
2952 	return ctrl->opts && ctrl->opts->discovery_nqn;
2953 }
2954 
2955 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2956 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2957 {
2958 	struct nvme_ctrl *tmp;
2959 
2960 	lockdep_assert_held(&nvme_subsystems_lock);
2961 
2962 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2963 		if (nvme_state_terminal(tmp))
2964 			continue;
2965 
2966 		if (tmp->cntlid == ctrl->cntlid) {
2967 			dev_err(ctrl->device,
2968 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2969 				ctrl->cntlid, dev_name(tmp->device),
2970 				subsys->subnqn);
2971 			return false;
2972 		}
2973 
2974 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2975 		    nvme_discovery_ctrl(ctrl))
2976 			continue;
2977 
2978 		dev_err(ctrl->device,
2979 			"Subsystem does not support multiple controllers\n");
2980 		return false;
2981 	}
2982 
2983 	return true;
2984 }
2985 
2986 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2987 {
2988 	struct nvme_subsystem *subsys, *found;
2989 	int ret;
2990 
2991 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2992 	if (!subsys)
2993 		return -ENOMEM;
2994 
2995 	subsys->instance = -1;
2996 	mutex_init(&subsys->lock);
2997 	kref_init(&subsys->ref);
2998 	INIT_LIST_HEAD(&subsys->ctrls);
2999 	INIT_LIST_HEAD(&subsys->nsheads);
3000 	nvme_init_subnqn(subsys, ctrl, id);
3001 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3002 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
3003 	subsys->vendor_id = le16_to_cpu(id->vid);
3004 	subsys->cmic = id->cmic;
3005 
3006 	/* Versions prior to 1.4 don't necessarily report a valid type */
3007 	if (id->cntrltype == NVME_CTRL_DISC ||
3008 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3009 		subsys->subtype = NVME_NQN_DISC;
3010 	else
3011 		subsys->subtype = NVME_NQN_NVME;
3012 
3013 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3014 		dev_err(ctrl->device,
3015 			"Subsystem %s is not a discovery controller",
3016 			subsys->subnqn);
3017 		kfree(subsys);
3018 		return -EINVAL;
3019 	}
3020 	subsys->awupf = le16_to_cpu(id->awupf);
3021 	nvme_mpath_default_iopolicy(subsys);
3022 
3023 	subsys->dev.class = &nvme_subsys_class;
3024 	subsys->dev.release = nvme_release_subsystem;
3025 	subsys->dev.groups = nvme_subsys_attrs_groups;
3026 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3027 	device_initialize(&subsys->dev);
3028 
3029 	mutex_lock(&nvme_subsystems_lock);
3030 	found = __nvme_find_get_subsystem(subsys->subnqn);
3031 	if (found) {
3032 		put_device(&subsys->dev);
3033 		subsys = found;
3034 
3035 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3036 			ret = -EINVAL;
3037 			goto out_put_subsystem;
3038 		}
3039 	} else {
3040 		ret = device_add(&subsys->dev);
3041 		if (ret) {
3042 			dev_err(ctrl->device,
3043 				"failed to register subsystem device.\n");
3044 			put_device(&subsys->dev);
3045 			goto out_unlock;
3046 		}
3047 		ida_init(&subsys->ns_ida);
3048 		list_add_tail(&subsys->entry, &nvme_subsystems);
3049 	}
3050 
3051 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3052 				dev_name(ctrl->device));
3053 	if (ret) {
3054 		dev_err(ctrl->device,
3055 			"failed to create sysfs link from subsystem.\n");
3056 		goto out_put_subsystem;
3057 	}
3058 
3059 	if (!found)
3060 		subsys->instance = ctrl->instance;
3061 	ctrl->subsys = subsys;
3062 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3063 	mutex_unlock(&nvme_subsystems_lock);
3064 	return 0;
3065 
3066 out_put_subsystem:
3067 	nvme_put_subsystem(subsys);
3068 out_unlock:
3069 	mutex_unlock(&nvme_subsystems_lock);
3070 	return ret;
3071 }
3072 
3073 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3074 		void *log, size_t size, u64 offset)
3075 {
3076 	struct nvme_command c = { };
3077 	u32 dwlen = nvme_bytes_to_numd(size);
3078 
3079 	c.get_log_page.opcode = nvme_admin_get_log_page;
3080 	c.get_log_page.nsid = cpu_to_le32(nsid);
3081 	c.get_log_page.lid = log_page;
3082 	c.get_log_page.lsp = lsp;
3083 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3084 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3085 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3086 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3087 	c.get_log_page.csi = csi;
3088 
3089 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3090 }
3091 
3092 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3093 				struct nvme_effects_log **log)
3094 {
3095 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3096 	int ret;
3097 
3098 	if (cel)
3099 		goto out;
3100 
3101 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3102 	if (!cel)
3103 		return -ENOMEM;
3104 
3105 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3106 			cel, sizeof(*cel), 0);
3107 	if (ret) {
3108 		kfree(cel);
3109 		return ret;
3110 	}
3111 
3112 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3113 out:
3114 	*log = cel;
3115 	return 0;
3116 }
3117 
3118 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3119 {
3120 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3121 
3122 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3123 		return UINT_MAX;
3124 	return val;
3125 }
3126 
3127 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3128 {
3129 	struct nvme_command c = { };
3130 	struct nvme_id_ctrl_nvm *id;
3131 	int ret;
3132 
3133 	/*
3134 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3135 	 * to the write-zeroes, we are cautious and limit the size to the
3136 	 * controllers max_hw_sectors value, which is based on the MDTS field
3137 	 * and possibly other limiting factors.
3138 	 */
3139 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3140 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3141 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3142 	else
3143 		ctrl->max_zeroes_sectors = 0;
3144 
3145 	if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3146 	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3147 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3148 		return 0;
3149 
3150 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3151 	if (!id)
3152 		return -ENOMEM;
3153 
3154 	c.identify.opcode = nvme_admin_identify;
3155 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3156 	c.identify.csi = NVME_CSI_NVM;
3157 
3158 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3159 	if (ret)
3160 		goto free_data;
3161 
3162 	ctrl->dmrl = id->dmrl;
3163 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3164 	if (id->wzsl)
3165 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3166 
3167 free_data:
3168 	if (ret > 0)
3169 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3170 	kfree(id);
3171 	return ret;
3172 }
3173 
3174 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3175 {
3176 	struct nvme_effects_log	*log = ctrl->effects;
3177 
3178 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3179 						NVME_CMD_EFFECTS_NCC |
3180 						NVME_CMD_EFFECTS_CSE_MASK);
3181 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3182 						NVME_CMD_EFFECTS_CSE_MASK);
3183 
3184 	/*
3185 	 * The spec says the result of a security receive command depends on
3186 	 * the previous security send command. As such, many vendors log this
3187 	 * command as one to submitted only when no other commands to the same
3188 	 * namespace are outstanding. The intention is to tell the host to
3189 	 * prevent mixing security send and receive.
3190 	 *
3191 	 * This driver can only enforce such exclusive access against IO
3192 	 * queues, though. We are not readily able to enforce such a rule for
3193 	 * two commands to the admin queue, which is the only queue that
3194 	 * matters for this command.
3195 	 *
3196 	 * Rather than blindly freezing the IO queues for this effect that
3197 	 * doesn't even apply to IO, mask it off.
3198 	 */
3199 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3200 
3201 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3202 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3203 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3204 }
3205 
3206 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3207 {
3208 	int ret = 0;
3209 
3210 	if (ctrl->effects)
3211 		return 0;
3212 
3213 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3214 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3215 		if (ret < 0)
3216 			return ret;
3217 	}
3218 
3219 	if (!ctrl->effects) {
3220 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
3221 		if (!ctrl->effects)
3222 			return -ENOMEM;
3223 		xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
3224 	}
3225 
3226 	nvme_init_known_nvm_effects(ctrl);
3227 	return 0;
3228 }
3229 
3230 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3231 {
3232 	/*
3233 	 * In fabrics we need to verify the cntlid matches the
3234 	 * admin connect
3235 	 */
3236 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3237 		dev_err(ctrl->device,
3238 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3239 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3240 		return -EINVAL;
3241 	}
3242 
3243 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3244 		dev_err(ctrl->device,
3245 			"keep-alive support is mandatory for fabrics\n");
3246 		return -EINVAL;
3247 	}
3248 
3249 	if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3250 		dev_err(ctrl->device,
3251 			"I/O queue command capsule supported size %d < 4\n",
3252 			ctrl->ioccsz);
3253 		return -EINVAL;
3254 	}
3255 
3256 	if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3257 		dev_err(ctrl->device,
3258 			"I/O queue response capsule supported size %d < 1\n",
3259 			ctrl->iorcsz);
3260 		return -EINVAL;
3261 	}
3262 
3263 	if (!ctrl->maxcmd) {
3264 		dev_warn(ctrl->device,
3265 			"Firmware bug: maximum outstanding commands is 0\n");
3266 		ctrl->maxcmd = ctrl->sqsize + 1;
3267 	}
3268 
3269 	return 0;
3270 }
3271 
3272 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3273 {
3274 	struct queue_limits lim;
3275 	struct nvme_id_ctrl *id;
3276 	u32 max_hw_sectors;
3277 	bool prev_apst_enabled;
3278 	int ret;
3279 
3280 	ret = nvme_identify_ctrl(ctrl, &id);
3281 	if (ret) {
3282 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3283 		return -EIO;
3284 	}
3285 
3286 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3287 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3288 
3289 	if (!ctrl->identified) {
3290 		unsigned int i;
3291 
3292 		/*
3293 		 * Check for quirks.  Quirk can depend on firmware version,
3294 		 * so, in principle, the set of quirks present can change
3295 		 * across a reset.  As a possible future enhancement, we
3296 		 * could re-scan for quirks every time we reinitialize
3297 		 * the device, but we'd have to make sure that the driver
3298 		 * behaves intelligently if the quirks change.
3299 		 */
3300 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3301 			if (quirk_matches(id, &core_quirks[i]))
3302 				ctrl->quirks |= core_quirks[i].quirks;
3303 		}
3304 
3305 		ret = nvme_init_subsystem(ctrl, id);
3306 		if (ret)
3307 			goto out_free;
3308 
3309 		ret = nvme_init_effects(ctrl, id);
3310 		if (ret)
3311 			goto out_free;
3312 	}
3313 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3314 	       sizeof(ctrl->subsys->firmware_rev));
3315 
3316 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3317 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3318 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3319 	}
3320 
3321 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3322 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3323 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3324 
3325 	ctrl->oacs = le16_to_cpu(id->oacs);
3326 	ctrl->oncs = le16_to_cpu(id->oncs);
3327 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3328 	ctrl->oaes = le32_to_cpu(id->oaes);
3329 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3330 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3331 
3332 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3333 	ctrl->vwc = id->vwc;
3334 	if (id->mdts)
3335 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3336 	else
3337 		max_hw_sectors = UINT_MAX;
3338 	ctrl->max_hw_sectors =
3339 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3340 
3341 	lim = queue_limits_start_update(ctrl->admin_q);
3342 	nvme_set_ctrl_limits(ctrl, &lim);
3343 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3344 	if (ret)
3345 		goto out_free;
3346 
3347 	ctrl->sgls = le32_to_cpu(id->sgls);
3348 	ctrl->kas = le16_to_cpu(id->kas);
3349 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3350 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3351 
3352 	ctrl->cntrltype = id->cntrltype;
3353 	ctrl->dctype = id->dctype;
3354 
3355 	if (id->rtd3e) {
3356 		/* us -> s */
3357 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3358 
3359 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3360 						 shutdown_timeout, 60);
3361 
3362 		if (ctrl->shutdown_timeout != shutdown_timeout)
3363 			dev_info(ctrl->device,
3364 				 "D3 entry latency set to %u seconds\n",
3365 				 ctrl->shutdown_timeout);
3366 	} else
3367 		ctrl->shutdown_timeout = shutdown_timeout;
3368 
3369 	ctrl->npss = id->npss;
3370 	ctrl->apsta = id->apsta;
3371 	prev_apst_enabled = ctrl->apst_enabled;
3372 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3373 		if (force_apst && id->apsta) {
3374 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3375 			ctrl->apst_enabled = true;
3376 		} else {
3377 			ctrl->apst_enabled = false;
3378 		}
3379 	} else {
3380 		ctrl->apst_enabled = id->apsta;
3381 	}
3382 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3383 
3384 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3385 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3386 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3387 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3388 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3389 
3390 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3391 		if (ret)
3392 			goto out_free;
3393 	} else {
3394 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3395 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3396 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3397 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3398 	}
3399 
3400 	ret = nvme_mpath_init_identify(ctrl, id);
3401 	if (ret < 0)
3402 		goto out_free;
3403 
3404 	if (ctrl->apst_enabled && !prev_apst_enabled)
3405 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3406 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3407 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3408 
3409 out_free:
3410 	kfree(id);
3411 	return ret;
3412 }
3413 
3414 /*
3415  * Initialize the cached copies of the Identify data and various controller
3416  * register in our nvme_ctrl structure.  This should be called as soon as
3417  * the admin queue is fully up and running.
3418  */
3419 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3420 {
3421 	int ret;
3422 
3423 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3424 	if (ret) {
3425 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3426 		return ret;
3427 	}
3428 
3429 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3430 
3431 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3432 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3433 
3434 	ret = nvme_init_identify(ctrl);
3435 	if (ret)
3436 		return ret;
3437 
3438 	ret = nvme_configure_apst(ctrl);
3439 	if (ret < 0)
3440 		return ret;
3441 
3442 	ret = nvme_configure_timestamp(ctrl);
3443 	if (ret < 0)
3444 		return ret;
3445 
3446 	ret = nvme_configure_host_options(ctrl);
3447 	if (ret < 0)
3448 		return ret;
3449 
3450 	nvme_configure_opal(ctrl, was_suspended);
3451 
3452 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3453 		/*
3454 		 * Do not return errors unless we are in a controller reset,
3455 		 * the controller works perfectly fine without hwmon.
3456 		 */
3457 		ret = nvme_hwmon_init(ctrl);
3458 		if (ret == -EINTR)
3459 			return ret;
3460 	}
3461 
3462 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3463 	ctrl->identified = true;
3464 
3465 	nvme_start_keep_alive(ctrl);
3466 
3467 	return 0;
3468 }
3469 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3470 
3471 static int nvme_dev_open(struct inode *inode, struct file *file)
3472 {
3473 	struct nvme_ctrl *ctrl =
3474 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3475 
3476 	switch (nvme_ctrl_state(ctrl)) {
3477 	case NVME_CTRL_LIVE:
3478 		break;
3479 	default:
3480 		return -EWOULDBLOCK;
3481 	}
3482 
3483 	nvme_get_ctrl(ctrl);
3484 	if (!try_module_get(ctrl->ops->module)) {
3485 		nvme_put_ctrl(ctrl);
3486 		return -EINVAL;
3487 	}
3488 
3489 	file->private_data = ctrl;
3490 	return 0;
3491 }
3492 
3493 static int nvme_dev_release(struct inode *inode, struct file *file)
3494 {
3495 	struct nvme_ctrl *ctrl =
3496 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3497 
3498 	module_put(ctrl->ops->module);
3499 	nvme_put_ctrl(ctrl);
3500 	return 0;
3501 }
3502 
3503 static const struct file_operations nvme_dev_fops = {
3504 	.owner		= THIS_MODULE,
3505 	.open		= nvme_dev_open,
3506 	.release	= nvme_dev_release,
3507 	.unlocked_ioctl	= nvme_dev_ioctl,
3508 	.compat_ioctl	= compat_ptr_ioctl,
3509 	.uring_cmd	= nvme_dev_uring_cmd,
3510 };
3511 
3512 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3513 		unsigned nsid)
3514 {
3515 	struct nvme_ns_head *h;
3516 
3517 	lockdep_assert_held(&ctrl->subsys->lock);
3518 
3519 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3520 		/*
3521 		 * Private namespaces can share NSIDs under some conditions.
3522 		 * In that case we can't use the same ns_head for namespaces
3523 		 * with the same NSID.
3524 		 */
3525 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3526 			continue;
3527 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3528 			return h;
3529 	}
3530 
3531 	return NULL;
3532 }
3533 
3534 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3535 		struct nvme_ns_ids *ids)
3536 {
3537 	bool has_uuid = !uuid_is_null(&ids->uuid);
3538 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3539 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3540 	struct nvme_ns_head *h;
3541 
3542 	lockdep_assert_held(&subsys->lock);
3543 
3544 	list_for_each_entry(h, &subsys->nsheads, entry) {
3545 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3546 			return -EINVAL;
3547 		if (has_nguid &&
3548 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3549 			return -EINVAL;
3550 		if (has_eui64 &&
3551 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3552 			return -EINVAL;
3553 	}
3554 
3555 	return 0;
3556 }
3557 
3558 static void nvme_cdev_rel(struct device *dev)
3559 {
3560 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3561 }
3562 
3563 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3564 {
3565 	cdev_device_del(cdev, cdev_device);
3566 	put_device(cdev_device);
3567 }
3568 
3569 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3570 		const struct file_operations *fops, struct module *owner)
3571 {
3572 	int minor, ret;
3573 
3574 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3575 	if (minor < 0)
3576 		return minor;
3577 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3578 	cdev_device->class = &nvme_ns_chr_class;
3579 	cdev_device->release = nvme_cdev_rel;
3580 	device_initialize(cdev_device);
3581 	cdev_init(cdev, fops);
3582 	cdev->owner = owner;
3583 	ret = cdev_device_add(cdev, cdev_device);
3584 	if (ret)
3585 		put_device(cdev_device);
3586 
3587 	return ret;
3588 }
3589 
3590 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3591 {
3592 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3593 }
3594 
3595 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3596 {
3597 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3598 	return 0;
3599 }
3600 
3601 static const struct file_operations nvme_ns_chr_fops = {
3602 	.owner		= THIS_MODULE,
3603 	.open		= nvme_ns_chr_open,
3604 	.release	= nvme_ns_chr_release,
3605 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3606 	.compat_ioctl	= compat_ptr_ioctl,
3607 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3608 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3609 };
3610 
3611 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3612 {
3613 	int ret;
3614 
3615 	ns->cdev_device.parent = ns->ctrl->device;
3616 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3617 			   ns->ctrl->instance, ns->head->instance);
3618 	if (ret)
3619 		return ret;
3620 
3621 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3622 			     ns->ctrl->ops->module);
3623 }
3624 
3625 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3626 		struct nvme_ns_info *info)
3627 {
3628 	struct nvme_ns_head *head;
3629 	size_t size = sizeof(*head);
3630 	int ret = -ENOMEM;
3631 
3632 #ifdef CONFIG_NVME_MULTIPATH
3633 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3634 #endif
3635 
3636 	head = kzalloc(size, GFP_KERNEL);
3637 	if (!head)
3638 		goto out;
3639 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3640 	if (ret < 0)
3641 		goto out_free_head;
3642 	head->instance = ret;
3643 	INIT_LIST_HEAD(&head->list);
3644 	ret = init_srcu_struct(&head->srcu);
3645 	if (ret)
3646 		goto out_ida_remove;
3647 	head->subsys = ctrl->subsys;
3648 	head->ns_id = info->nsid;
3649 	head->ids = info->ids;
3650 	head->shared = info->is_shared;
3651 	head->rotational = info->is_rotational;
3652 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3653 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3654 	kref_init(&head->ref);
3655 
3656 	if (head->ids.csi) {
3657 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3658 		if (ret)
3659 			goto out_cleanup_srcu;
3660 	} else
3661 		head->effects = ctrl->effects;
3662 
3663 	ret = nvme_mpath_alloc_disk(ctrl, head);
3664 	if (ret)
3665 		goto out_cleanup_srcu;
3666 
3667 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3668 
3669 	kref_get(&ctrl->subsys->ref);
3670 
3671 	return head;
3672 out_cleanup_srcu:
3673 	cleanup_srcu_struct(&head->srcu);
3674 out_ida_remove:
3675 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3676 out_free_head:
3677 	kfree(head);
3678 out:
3679 	if (ret > 0)
3680 		ret = blk_status_to_errno(nvme_error_status(ret));
3681 	return ERR_PTR(ret);
3682 }
3683 
3684 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3685 		struct nvme_ns_ids *ids)
3686 {
3687 	struct nvme_subsystem *s;
3688 	int ret = 0;
3689 
3690 	/*
3691 	 * Note that this check is racy as we try to avoid holding the global
3692 	 * lock over the whole ns_head creation.  But it is only intended as
3693 	 * a sanity check anyway.
3694 	 */
3695 	mutex_lock(&nvme_subsystems_lock);
3696 	list_for_each_entry(s, &nvme_subsystems, entry) {
3697 		if (s == this)
3698 			continue;
3699 		mutex_lock(&s->lock);
3700 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3701 		mutex_unlock(&s->lock);
3702 		if (ret)
3703 			break;
3704 	}
3705 	mutex_unlock(&nvme_subsystems_lock);
3706 
3707 	return ret;
3708 }
3709 
3710 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3711 {
3712 	struct nvme_ctrl *ctrl = ns->ctrl;
3713 	struct nvme_ns_head *head = NULL;
3714 	int ret;
3715 
3716 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3717 	if (ret) {
3718 		/*
3719 		 * We've found two different namespaces on two different
3720 		 * subsystems that report the same ID.  This is pretty nasty
3721 		 * for anything that actually requires unique device
3722 		 * identification.  In the kernel we need this for multipathing,
3723 		 * and in user space the /dev/disk/by-id/ links rely on it.
3724 		 *
3725 		 * If the device also claims to be multi-path capable back off
3726 		 * here now and refuse the probe the second device as this is a
3727 		 * recipe for data corruption.  If not this is probably a
3728 		 * cheap consumer device if on the PCIe bus, so let the user
3729 		 * proceed and use the shiny toy, but warn that with changing
3730 		 * probing order (which due to our async probing could just be
3731 		 * device taking longer to startup) the other device could show
3732 		 * up at any time.
3733 		 */
3734 		nvme_print_device_info(ctrl);
3735 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3736 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3737 		     info->is_shared)) {
3738 			dev_err(ctrl->device,
3739 				"ignoring nsid %d because of duplicate IDs\n",
3740 				info->nsid);
3741 			return ret;
3742 		}
3743 
3744 		dev_err(ctrl->device,
3745 			"clearing duplicate IDs for nsid %d\n", info->nsid);
3746 		dev_err(ctrl->device,
3747 			"use of /dev/disk/by-id/ may cause data corruption\n");
3748 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3749 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3750 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3751 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3752 	}
3753 
3754 	mutex_lock(&ctrl->subsys->lock);
3755 	head = nvme_find_ns_head(ctrl, info->nsid);
3756 	if (!head) {
3757 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3758 		if (ret) {
3759 			dev_err(ctrl->device,
3760 				"duplicate IDs in subsystem for nsid %d\n",
3761 				info->nsid);
3762 			goto out_unlock;
3763 		}
3764 		head = nvme_alloc_ns_head(ctrl, info);
3765 		if (IS_ERR(head)) {
3766 			ret = PTR_ERR(head);
3767 			goto out_unlock;
3768 		}
3769 	} else {
3770 		ret = -EINVAL;
3771 		if (!info->is_shared || !head->shared) {
3772 			dev_err(ctrl->device,
3773 				"Duplicate unshared namespace %d\n",
3774 				info->nsid);
3775 			goto out_put_ns_head;
3776 		}
3777 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3778 			dev_err(ctrl->device,
3779 				"IDs don't match for shared namespace %d\n",
3780 					info->nsid);
3781 			goto out_put_ns_head;
3782 		}
3783 
3784 		if (!multipath) {
3785 			dev_warn(ctrl->device,
3786 				"Found shared namespace %d, but multipathing not supported.\n",
3787 				info->nsid);
3788 			dev_warn_once(ctrl->device,
3789 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n");
3790 		}
3791 	}
3792 
3793 	list_add_tail_rcu(&ns->siblings, &head->list);
3794 	ns->head = head;
3795 	mutex_unlock(&ctrl->subsys->lock);
3796 	return 0;
3797 
3798 out_put_ns_head:
3799 	nvme_put_ns_head(head);
3800 out_unlock:
3801 	mutex_unlock(&ctrl->subsys->lock);
3802 	return ret;
3803 }
3804 
3805 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3806 {
3807 	struct nvme_ns *ns, *ret = NULL;
3808 	int srcu_idx;
3809 
3810 	srcu_idx = srcu_read_lock(&ctrl->srcu);
3811 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
3812 				 srcu_read_lock_held(&ctrl->srcu)) {
3813 		if (ns->head->ns_id == nsid) {
3814 			if (!nvme_get_ns(ns))
3815 				continue;
3816 			ret = ns;
3817 			break;
3818 		}
3819 		if (ns->head->ns_id > nsid)
3820 			break;
3821 	}
3822 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
3823 	return ret;
3824 }
3825 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
3826 
3827 /*
3828  * Add the namespace to the controller list while keeping the list ordered.
3829  */
3830 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3831 {
3832 	struct nvme_ns *tmp;
3833 
3834 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3835 		if (tmp->head->ns_id < ns->head->ns_id) {
3836 			list_add_rcu(&ns->list, &tmp->list);
3837 			return;
3838 		}
3839 	}
3840 	list_add(&ns->list, &ns->ctrl->namespaces);
3841 }
3842 
3843 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3844 {
3845 	struct queue_limits lim = { };
3846 	struct nvme_ns *ns;
3847 	struct gendisk *disk;
3848 	int node = ctrl->numa_node;
3849 
3850 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3851 	if (!ns)
3852 		return;
3853 
3854 	if (ctrl->opts && ctrl->opts->data_digest)
3855 		lim.features |= BLK_FEAT_STABLE_WRITES;
3856 	if (ctrl->ops->supports_pci_p2pdma &&
3857 	    ctrl->ops->supports_pci_p2pdma(ctrl))
3858 		lim.features |= BLK_FEAT_PCI_P2PDMA;
3859 
3860 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
3861 	if (IS_ERR(disk))
3862 		goto out_free_ns;
3863 	disk->fops = &nvme_bdev_ops;
3864 	disk->private_data = ns;
3865 
3866 	ns->disk = disk;
3867 	ns->queue = disk->queue;
3868 	ns->ctrl = ctrl;
3869 	kref_init(&ns->kref);
3870 
3871 	if (nvme_init_ns_head(ns, info))
3872 		goto out_cleanup_disk;
3873 
3874 	/*
3875 	 * If multipathing is enabled, the device name for all disks and not
3876 	 * just those that represent shared namespaces needs to be based on the
3877 	 * subsystem instance.  Using the controller instance for private
3878 	 * namespaces could lead to naming collisions between shared and private
3879 	 * namespaces if they don't use a common numbering scheme.
3880 	 *
3881 	 * If multipathing is not enabled, disk names must use the controller
3882 	 * instance as shared namespaces will show up as multiple block
3883 	 * devices.
3884 	 */
3885 	if (nvme_ns_head_multipath(ns->head)) {
3886 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3887 			ctrl->instance, ns->head->instance);
3888 		disk->flags |= GENHD_FL_HIDDEN;
3889 	} else if (multipath) {
3890 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3891 			ns->head->instance);
3892 	} else {
3893 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3894 			ns->head->instance);
3895 	}
3896 
3897 	if (nvme_update_ns_info(ns, info))
3898 		goto out_unlink_ns;
3899 
3900 	mutex_lock(&ctrl->namespaces_lock);
3901 	/*
3902 	 * Ensure that no namespaces are added to the ctrl list after the queues
3903 	 * are frozen, thereby avoiding a deadlock between scan and reset.
3904 	 */
3905 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
3906 		mutex_unlock(&ctrl->namespaces_lock);
3907 		goto out_unlink_ns;
3908 	}
3909 	nvme_ns_add_to_ctrl_list(ns);
3910 	mutex_unlock(&ctrl->namespaces_lock);
3911 	synchronize_srcu(&ctrl->srcu);
3912 	nvme_get_ctrl(ctrl);
3913 
3914 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
3915 		goto out_cleanup_ns_from_list;
3916 
3917 	if (!nvme_ns_head_multipath(ns->head))
3918 		nvme_add_ns_cdev(ns);
3919 
3920 	nvme_mpath_add_disk(ns, info->anagrpid);
3921 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3922 
3923 	/*
3924 	 * Set ns->disk->device->driver_data to ns so we can access
3925 	 * ns->head->passthru_err_log_enabled in
3926 	 * nvme_io_passthru_err_log_enabled_[store | show]().
3927 	 */
3928 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
3929 
3930 	return;
3931 
3932  out_cleanup_ns_from_list:
3933 	nvme_put_ctrl(ctrl);
3934 	mutex_lock(&ctrl->namespaces_lock);
3935 	list_del_rcu(&ns->list);
3936 	mutex_unlock(&ctrl->namespaces_lock);
3937 	synchronize_srcu(&ctrl->srcu);
3938  out_unlink_ns:
3939 	mutex_lock(&ctrl->subsys->lock);
3940 	list_del_rcu(&ns->siblings);
3941 	if (list_empty(&ns->head->list))
3942 		list_del_init(&ns->head->entry);
3943 	mutex_unlock(&ctrl->subsys->lock);
3944 	nvme_put_ns_head(ns->head);
3945  out_cleanup_disk:
3946 	put_disk(disk);
3947  out_free_ns:
3948 	kfree(ns);
3949 }
3950 
3951 static void nvme_ns_remove(struct nvme_ns *ns)
3952 {
3953 	bool last_path = false;
3954 
3955 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3956 		return;
3957 
3958 	clear_bit(NVME_NS_READY, &ns->flags);
3959 	set_capacity(ns->disk, 0);
3960 	nvme_fault_inject_fini(&ns->fault_inject);
3961 
3962 	/*
3963 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
3964 	 * this ns going back into current_path.
3965 	 */
3966 	synchronize_srcu(&ns->head->srcu);
3967 
3968 	/* wait for concurrent submissions */
3969 	if (nvme_mpath_clear_current_path(ns))
3970 		synchronize_srcu(&ns->head->srcu);
3971 
3972 	mutex_lock(&ns->ctrl->subsys->lock);
3973 	list_del_rcu(&ns->siblings);
3974 	if (list_empty(&ns->head->list)) {
3975 		list_del_init(&ns->head->entry);
3976 		last_path = true;
3977 	}
3978 	mutex_unlock(&ns->ctrl->subsys->lock);
3979 
3980 	/* guarantee not available in head->list */
3981 	synchronize_srcu(&ns->head->srcu);
3982 
3983 	if (!nvme_ns_head_multipath(ns->head))
3984 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3985 	del_gendisk(ns->disk);
3986 
3987 	mutex_lock(&ns->ctrl->namespaces_lock);
3988 	list_del_rcu(&ns->list);
3989 	mutex_unlock(&ns->ctrl->namespaces_lock);
3990 	synchronize_srcu(&ns->ctrl->srcu);
3991 
3992 	if (last_path)
3993 		nvme_mpath_shutdown_disk(ns->head);
3994 	nvme_put_ns(ns);
3995 }
3996 
3997 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3998 {
3999 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4000 
4001 	if (ns) {
4002 		nvme_ns_remove(ns);
4003 		nvme_put_ns(ns);
4004 	}
4005 }
4006 
4007 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4008 {
4009 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4010 
4011 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4012 		dev_err(ns->ctrl->device,
4013 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4014 		goto out;
4015 	}
4016 
4017 	ret = nvme_update_ns_info(ns, info);
4018 out:
4019 	/*
4020 	 * Only remove the namespace if we got a fatal error back from the
4021 	 * device, otherwise ignore the error and just move on.
4022 	 *
4023 	 * TODO: we should probably schedule a delayed retry here.
4024 	 */
4025 	if (ret > 0 && (ret & NVME_STATUS_DNR))
4026 		nvme_ns_remove(ns);
4027 }
4028 
4029 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4030 {
4031 	struct nvme_ns_info info = { .nsid = nsid };
4032 	struct nvme_ns *ns;
4033 	int ret = 1;
4034 
4035 	if (nvme_identify_ns_descs(ctrl, &info))
4036 		return;
4037 
4038 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4039 		dev_warn(ctrl->device,
4040 			"command set not reported for nsid: %d\n", nsid);
4041 		return;
4042 	}
4043 
4044 	/*
4045 	 * If available try to use the Command Set Idependent Identify Namespace
4046 	 * data structure to find all the generic information that is needed to
4047 	 * set up a namespace.  If not fall back to the legacy version.
4048 	 */
4049 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4050 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4051 	    ctrl->vs >= NVME_VS(2, 0, 0))
4052 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4053 	if (ret > 0)
4054 		ret = nvme_ns_info_from_identify(ctrl, &info);
4055 
4056 	if (info.is_removed)
4057 		nvme_ns_remove_by_nsid(ctrl, nsid);
4058 
4059 	/*
4060 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4061 	 * becomes ready and restart the scan.
4062 	 */
4063 	if (ret || !info.is_ready)
4064 		return;
4065 
4066 	ns = nvme_find_get_ns(ctrl, nsid);
4067 	if (ns) {
4068 		nvme_validate_ns(ns, &info);
4069 		nvme_put_ns(ns);
4070 	} else {
4071 		nvme_alloc_ns(ctrl, &info);
4072 	}
4073 }
4074 
4075 /**
4076  * struct async_scan_info - keeps track of controller & NSIDs to scan
4077  * @ctrl:	Controller on which namespaces are being scanned
4078  * @next_nsid:	Index of next NSID to scan in ns_list
4079  * @ns_list:	Pointer to list of NSIDs to scan
4080  *
4081  * Note: There is a single async_scan_info structure shared by all instances
4082  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4083  * operations on next_nsid are critical to ensure each instance scans a unique
4084  * NSID.
4085  */
4086 struct async_scan_info {
4087 	struct nvme_ctrl *ctrl;
4088 	atomic_t next_nsid;
4089 	__le32 *ns_list;
4090 };
4091 
4092 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4093 {
4094 	struct async_scan_info *scan_info = data;
4095 	int idx;
4096 	u32 nsid;
4097 
4098 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4099 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4100 
4101 	nvme_scan_ns(scan_info->ctrl, nsid);
4102 }
4103 
4104 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4105 					unsigned nsid)
4106 {
4107 	struct nvme_ns *ns, *next;
4108 	LIST_HEAD(rm_list);
4109 
4110 	mutex_lock(&ctrl->namespaces_lock);
4111 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4112 		if (ns->head->ns_id > nsid) {
4113 			list_del_rcu(&ns->list);
4114 			synchronize_srcu(&ctrl->srcu);
4115 			list_add_tail_rcu(&ns->list, &rm_list);
4116 		}
4117 	}
4118 	mutex_unlock(&ctrl->namespaces_lock);
4119 
4120 	list_for_each_entry_safe(ns, next, &rm_list, list)
4121 		nvme_ns_remove(ns);
4122 }
4123 
4124 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4125 {
4126 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4127 	__le32 *ns_list;
4128 	u32 prev = 0;
4129 	int ret = 0, i;
4130 	ASYNC_DOMAIN(domain);
4131 	struct async_scan_info scan_info;
4132 
4133 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4134 	if (!ns_list)
4135 		return -ENOMEM;
4136 
4137 	scan_info.ctrl = ctrl;
4138 	scan_info.ns_list = ns_list;
4139 	for (;;) {
4140 		struct nvme_command cmd = {
4141 			.identify.opcode	= nvme_admin_identify,
4142 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4143 			.identify.nsid		= cpu_to_le32(prev),
4144 		};
4145 
4146 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4147 					    NVME_IDENTIFY_DATA_SIZE);
4148 		if (ret) {
4149 			dev_warn(ctrl->device,
4150 				"Identify NS List failed (status=0x%x)\n", ret);
4151 			goto free;
4152 		}
4153 
4154 		atomic_set(&scan_info.next_nsid, 0);
4155 		for (i = 0; i < nr_entries; i++) {
4156 			u32 nsid = le32_to_cpu(ns_list[i]);
4157 
4158 			if (!nsid)	/* end of the list? */
4159 				goto out;
4160 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4161 						&domain);
4162 			while (++prev < nsid)
4163 				nvme_ns_remove_by_nsid(ctrl, prev);
4164 		}
4165 		async_synchronize_full_domain(&domain);
4166 	}
4167  out:
4168 	nvme_remove_invalid_namespaces(ctrl, prev);
4169  free:
4170 	async_synchronize_full_domain(&domain);
4171 	kfree(ns_list);
4172 	return ret;
4173 }
4174 
4175 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4176 {
4177 	struct nvme_id_ctrl *id;
4178 	u32 nn, i;
4179 
4180 	if (nvme_identify_ctrl(ctrl, &id))
4181 		return;
4182 	nn = le32_to_cpu(id->nn);
4183 	kfree(id);
4184 
4185 	for (i = 1; i <= nn; i++)
4186 		nvme_scan_ns(ctrl, i);
4187 
4188 	nvme_remove_invalid_namespaces(ctrl, nn);
4189 }
4190 
4191 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4192 {
4193 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4194 	__le32 *log;
4195 	int error;
4196 
4197 	log = kzalloc(log_size, GFP_KERNEL);
4198 	if (!log)
4199 		return;
4200 
4201 	/*
4202 	 * We need to read the log to clear the AEN, but we don't want to rely
4203 	 * on it for the changed namespace information as userspace could have
4204 	 * raced with us in reading the log page, which could cause us to miss
4205 	 * updates.
4206 	 */
4207 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4208 			NVME_CSI_NVM, log, log_size, 0);
4209 	if (error)
4210 		dev_warn(ctrl->device,
4211 			"reading changed ns log failed: %d\n", error);
4212 
4213 	kfree(log);
4214 }
4215 
4216 static void nvme_scan_work(struct work_struct *work)
4217 {
4218 	struct nvme_ctrl *ctrl =
4219 		container_of(work, struct nvme_ctrl, scan_work);
4220 	int ret;
4221 
4222 	/* No tagset on a live ctrl means IO queues could not created */
4223 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4224 		return;
4225 
4226 	/*
4227 	 * Identify controller limits can change at controller reset due to
4228 	 * new firmware download, even though it is not common we cannot ignore
4229 	 * such scenario. Controller's non-mdts limits are reported in the unit
4230 	 * of logical blocks that is dependent on the format of attached
4231 	 * namespace. Hence re-read the limits at the time of ns allocation.
4232 	 */
4233 	ret = nvme_init_non_mdts_limits(ctrl);
4234 	if (ret < 0) {
4235 		dev_warn(ctrl->device,
4236 			"reading non-mdts-limits failed: %d\n", ret);
4237 		return;
4238 	}
4239 
4240 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4241 		dev_info(ctrl->device, "rescanning namespaces.\n");
4242 		nvme_clear_changed_ns_log(ctrl);
4243 	}
4244 
4245 	mutex_lock(&ctrl->scan_lock);
4246 	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4247 		nvme_scan_ns_sequential(ctrl);
4248 	} else {
4249 		/*
4250 		 * Fall back to sequential scan if DNR is set to handle broken
4251 		 * devices which should support Identify NS List (as per the VS
4252 		 * they report) but don't actually support it.
4253 		 */
4254 		ret = nvme_scan_ns_list(ctrl);
4255 		if (ret > 0 && ret & NVME_STATUS_DNR)
4256 			nvme_scan_ns_sequential(ctrl);
4257 	}
4258 	mutex_unlock(&ctrl->scan_lock);
4259 }
4260 
4261 /*
4262  * This function iterates the namespace list unlocked to allow recovery from
4263  * controller failure. It is up to the caller to ensure the namespace list is
4264  * not modified by scan work while this function is executing.
4265  */
4266 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4267 {
4268 	struct nvme_ns *ns, *next;
4269 	LIST_HEAD(ns_list);
4270 
4271 	/*
4272 	 * make sure to requeue I/O to all namespaces as these
4273 	 * might result from the scan itself and must complete
4274 	 * for the scan_work to make progress
4275 	 */
4276 	nvme_mpath_clear_ctrl_paths(ctrl);
4277 
4278 	/*
4279 	 * Unquiesce io queues so any pending IO won't hang, especially
4280 	 * those submitted from scan work
4281 	 */
4282 	nvme_unquiesce_io_queues(ctrl);
4283 
4284 	/* prevent racing with ns scanning */
4285 	flush_work(&ctrl->scan_work);
4286 
4287 	/*
4288 	 * The dead states indicates the controller was not gracefully
4289 	 * disconnected. In that case, we won't be able to flush any data while
4290 	 * removing the namespaces' disks; fail all the queues now to avoid
4291 	 * potentially having to clean up the failed sync later.
4292 	 */
4293 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4294 		nvme_mark_namespaces_dead(ctrl);
4295 
4296 	/* this is a no-op when called from the controller reset handler */
4297 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4298 
4299 	mutex_lock(&ctrl->namespaces_lock);
4300 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4301 	mutex_unlock(&ctrl->namespaces_lock);
4302 	synchronize_srcu(&ctrl->srcu);
4303 
4304 	list_for_each_entry_safe(ns, next, &ns_list, list)
4305 		nvme_ns_remove(ns);
4306 }
4307 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4308 
4309 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4310 {
4311 	const struct nvme_ctrl *ctrl =
4312 		container_of(dev, struct nvme_ctrl, ctrl_device);
4313 	struct nvmf_ctrl_options *opts = ctrl->opts;
4314 	int ret;
4315 
4316 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4317 	if (ret)
4318 		return ret;
4319 
4320 	if (opts) {
4321 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4322 		if (ret)
4323 			return ret;
4324 
4325 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4326 				opts->trsvcid ?: "none");
4327 		if (ret)
4328 			return ret;
4329 
4330 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4331 				opts->host_traddr ?: "none");
4332 		if (ret)
4333 			return ret;
4334 
4335 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4336 				opts->host_iface ?: "none");
4337 	}
4338 	return ret;
4339 }
4340 
4341 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4342 {
4343 	char *envp[2] = { envdata, NULL };
4344 
4345 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4346 }
4347 
4348 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4349 {
4350 	char *envp[2] = { NULL, NULL };
4351 	u32 aen_result = ctrl->aen_result;
4352 
4353 	ctrl->aen_result = 0;
4354 	if (!aen_result)
4355 		return;
4356 
4357 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4358 	if (!envp[0])
4359 		return;
4360 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4361 	kfree(envp[0]);
4362 }
4363 
4364 static void nvme_async_event_work(struct work_struct *work)
4365 {
4366 	struct nvme_ctrl *ctrl =
4367 		container_of(work, struct nvme_ctrl, async_event_work);
4368 
4369 	nvme_aen_uevent(ctrl);
4370 
4371 	/*
4372 	 * The transport drivers must guarantee AER submission here is safe by
4373 	 * flushing ctrl async_event_work after changing the controller state
4374 	 * from LIVE and before freeing the admin queue.
4375 	*/
4376 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4377 		ctrl->ops->submit_async_event(ctrl);
4378 }
4379 
4380 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4381 {
4382 
4383 	u32 csts;
4384 
4385 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4386 		return false;
4387 
4388 	if (csts == ~0)
4389 		return false;
4390 
4391 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4392 }
4393 
4394 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4395 {
4396 	struct nvme_fw_slot_info_log *log;
4397 	u8 next_fw_slot, cur_fw_slot;
4398 
4399 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4400 	if (!log)
4401 		return;
4402 
4403 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4404 			 log, sizeof(*log), 0)) {
4405 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4406 		goto out_free_log;
4407 	}
4408 
4409 	cur_fw_slot = log->afi & 0x7;
4410 	next_fw_slot = (log->afi & 0x70) >> 4;
4411 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4412 		dev_info(ctrl->device,
4413 			 "Firmware is activated after next Controller Level Reset\n");
4414 		goto out_free_log;
4415 	}
4416 
4417 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4418 		sizeof(ctrl->subsys->firmware_rev));
4419 
4420 out_free_log:
4421 	kfree(log);
4422 }
4423 
4424 static void nvme_fw_act_work(struct work_struct *work)
4425 {
4426 	struct nvme_ctrl *ctrl = container_of(work,
4427 				struct nvme_ctrl, fw_act_work);
4428 	unsigned long fw_act_timeout;
4429 
4430 	nvme_auth_stop(ctrl);
4431 
4432 	if (ctrl->mtfa)
4433 		fw_act_timeout = jiffies +
4434 				msecs_to_jiffies(ctrl->mtfa * 100);
4435 	else
4436 		fw_act_timeout = jiffies +
4437 				msecs_to_jiffies(admin_timeout * 1000);
4438 
4439 	nvme_quiesce_io_queues(ctrl);
4440 	while (nvme_ctrl_pp_status(ctrl)) {
4441 		if (time_after(jiffies, fw_act_timeout)) {
4442 			dev_warn(ctrl->device,
4443 				"Fw activation timeout, reset controller\n");
4444 			nvme_try_sched_reset(ctrl);
4445 			return;
4446 		}
4447 		msleep(100);
4448 	}
4449 
4450 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4451 		return;
4452 
4453 	nvme_unquiesce_io_queues(ctrl);
4454 	/* read FW slot information to clear the AER */
4455 	nvme_get_fw_slot_info(ctrl);
4456 
4457 	queue_work(nvme_wq, &ctrl->async_event_work);
4458 }
4459 
4460 static u32 nvme_aer_type(u32 result)
4461 {
4462 	return result & 0x7;
4463 }
4464 
4465 static u32 nvme_aer_subtype(u32 result)
4466 {
4467 	return (result & 0xff00) >> 8;
4468 }
4469 
4470 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4471 {
4472 	u32 aer_notice_type = nvme_aer_subtype(result);
4473 	bool requeue = true;
4474 
4475 	switch (aer_notice_type) {
4476 	case NVME_AER_NOTICE_NS_CHANGED:
4477 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4478 		nvme_queue_scan(ctrl);
4479 		break;
4480 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4481 		/*
4482 		 * We are (ab)using the RESETTING state to prevent subsequent
4483 		 * recovery actions from interfering with the controller's
4484 		 * firmware activation.
4485 		 */
4486 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4487 			requeue = false;
4488 			queue_work(nvme_wq, &ctrl->fw_act_work);
4489 		}
4490 		break;
4491 #ifdef CONFIG_NVME_MULTIPATH
4492 	case NVME_AER_NOTICE_ANA:
4493 		if (!ctrl->ana_log_buf)
4494 			break;
4495 		queue_work(nvme_wq, &ctrl->ana_work);
4496 		break;
4497 #endif
4498 	case NVME_AER_NOTICE_DISC_CHANGED:
4499 		ctrl->aen_result = result;
4500 		break;
4501 	default:
4502 		dev_warn(ctrl->device, "async event result %08x\n", result);
4503 	}
4504 	return requeue;
4505 }
4506 
4507 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4508 {
4509 	dev_warn(ctrl->device,
4510 		"resetting controller due to persistent internal error\n");
4511 	nvme_reset_ctrl(ctrl);
4512 }
4513 
4514 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4515 		volatile union nvme_result *res)
4516 {
4517 	u32 result = le32_to_cpu(res->u32);
4518 	u32 aer_type = nvme_aer_type(result);
4519 	u32 aer_subtype = nvme_aer_subtype(result);
4520 	bool requeue = true;
4521 
4522 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4523 		return;
4524 
4525 	trace_nvme_async_event(ctrl, result);
4526 	switch (aer_type) {
4527 	case NVME_AER_NOTICE:
4528 		requeue = nvme_handle_aen_notice(ctrl, result);
4529 		break;
4530 	case NVME_AER_ERROR:
4531 		/*
4532 		 * For a persistent internal error, don't run async_event_work
4533 		 * to submit a new AER. The controller reset will do it.
4534 		 */
4535 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4536 			nvme_handle_aer_persistent_error(ctrl);
4537 			return;
4538 		}
4539 		fallthrough;
4540 	case NVME_AER_SMART:
4541 	case NVME_AER_CSS:
4542 	case NVME_AER_VS:
4543 		ctrl->aen_result = result;
4544 		break;
4545 	default:
4546 		break;
4547 	}
4548 
4549 	if (requeue)
4550 		queue_work(nvme_wq, &ctrl->async_event_work);
4551 }
4552 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4553 
4554 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4555 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4556 {
4557 	struct queue_limits lim = {};
4558 	int ret;
4559 
4560 	memset(set, 0, sizeof(*set));
4561 	set->ops = ops;
4562 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4563 	if (ctrl->ops->flags & NVME_F_FABRICS)
4564 		/* Reserved for fabric connect and keep alive */
4565 		set->reserved_tags = 2;
4566 	set->numa_node = ctrl->numa_node;
4567 	set->flags = BLK_MQ_F_NO_SCHED;
4568 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4569 		set->flags |= BLK_MQ_F_BLOCKING;
4570 	set->cmd_size = cmd_size;
4571 	set->driver_data = ctrl;
4572 	set->nr_hw_queues = 1;
4573 	set->timeout = NVME_ADMIN_TIMEOUT;
4574 	ret = blk_mq_alloc_tag_set(set);
4575 	if (ret)
4576 		return ret;
4577 
4578 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4579 	if (IS_ERR(ctrl->admin_q)) {
4580 		ret = PTR_ERR(ctrl->admin_q);
4581 		goto out_free_tagset;
4582 	}
4583 
4584 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4585 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4586 		if (IS_ERR(ctrl->fabrics_q)) {
4587 			ret = PTR_ERR(ctrl->fabrics_q);
4588 			goto out_cleanup_admin_q;
4589 		}
4590 	}
4591 
4592 	ctrl->admin_tagset = set;
4593 	return 0;
4594 
4595 out_cleanup_admin_q:
4596 	blk_mq_destroy_queue(ctrl->admin_q);
4597 	blk_put_queue(ctrl->admin_q);
4598 out_free_tagset:
4599 	blk_mq_free_tag_set(set);
4600 	ctrl->admin_q = NULL;
4601 	ctrl->fabrics_q = NULL;
4602 	return ret;
4603 }
4604 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4605 
4606 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4607 {
4608 	/*
4609 	 * As we're about to destroy the queue and free tagset
4610 	 * we can not have keep-alive work running.
4611 	 */
4612 	nvme_stop_keep_alive(ctrl);
4613 	blk_mq_destroy_queue(ctrl->admin_q);
4614 	blk_put_queue(ctrl->admin_q);
4615 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4616 		blk_mq_destroy_queue(ctrl->fabrics_q);
4617 		blk_put_queue(ctrl->fabrics_q);
4618 	}
4619 	blk_mq_free_tag_set(ctrl->admin_tagset);
4620 }
4621 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4622 
4623 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4624 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4625 		unsigned int cmd_size)
4626 {
4627 	int ret;
4628 
4629 	memset(set, 0, sizeof(*set));
4630 	set->ops = ops;
4631 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4632 	/*
4633 	 * Some Apple controllers requires tags to be unique across admin and
4634 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4635 	 */
4636 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4637 		set->reserved_tags = NVME_AQ_DEPTH;
4638 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4639 		/* Reserved for fabric connect */
4640 		set->reserved_tags = 1;
4641 	set->numa_node = ctrl->numa_node;
4642 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4643 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4644 		set->flags |= BLK_MQ_F_BLOCKING;
4645 	set->cmd_size = cmd_size;
4646 	set->driver_data = ctrl;
4647 	set->nr_hw_queues = ctrl->queue_count - 1;
4648 	set->timeout = NVME_IO_TIMEOUT;
4649 	set->nr_maps = nr_maps;
4650 	ret = blk_mq_alloc_tag_set(set);
4651 	if (ret)
4652 		return ret;
4653 
4654 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4655 		struct queue_limits lim = {
4656 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4657 		};
4658 
4659 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4660         	if (IS_ERR(ctrl->connect_q)) {
4661 			ret = PTR_ERR(ctrl->connect_q);
4662 			goto out_free_tag_set;
4663 		}
4664 	}
4665 
4666 	ctrl->tagset = set;
4667 	return 0;
4668 
4669 out_free_tag_set:
4670 	blk_mq_free_tag_set(set);
4671 	ctrl->connect_q = NULL;
4672 	return ret;
4673 }
4674 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4675 
4676 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4677 {
4678 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4679 		blk_mq_destroy_queue(ctrl->connect_q);
4680 		blk_put_queue(ctrl->connect_q);
4681 	}
4682 	blk_mq_free_tag_set(ctrl->tagset);
4683 }
4684 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4685 
4686 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4687 {
4688 	nvme_mpath_stop(ctrl);
4689 	nvme_auth_stop(ctrl);
4690 	nvme_stop_failfast_work(ctrl);
4691 	flush_work(&ctrl->async_event_work);
4692 	cancel_work_sync(&ctrl->fw_act_work);
4693 	if (ctrl->ops->stop_ctrl)
4694 		ctrl->ops->stop_ctrl(ctrl);
4695 }
4696 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4697 
4698 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4699 {
4700 	nvme_enable_aen(ctrl);
4701 
4702 	/*
4703 	 * persistent discovery controllers need to send indication to userspace
4704 	 * to re-read the discovery log page to learn about possible changes
4705 	 * that were missed. We identify persistent discovery controllers by
4706 	 * checking that they started once before, hence are reconnecting back.
4707 	 */
4708 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4709 	    nvme_discovery_ctrl(ctrl))
4710 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4711 
4712 	if (ctrl->queue_count > 1) {
4713 		nvme_queue_scan(ctrl);
4714 		nvme_unquiesce_io_queues(ctrl);
4715 		nvme_mpath_update(ctrl);
4716 	}
4717 
4718 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4719 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4720 }
4721 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4722 
4723 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4724 {
4725 	nvme_stop_keep_alive(ctrl);
4726 	nvme_hwmon_exit(ctrl);
4727 	nvme_fault_inject_fini(&ctrl->fault_inject);
4728 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4729 	cdev_device_del(&ctrl->cdev, ctrl->device);
4730 	nvme_put_ctrl(ctrl);
4731 }
4732 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4733 
4734 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4735 {
4736 	struct nvme_effects_log	*cel;
4737 	unsigned long i;
4738 
4739 	xa_for_each(&ctrl->cels, i, cel) {
4740 		xa_erase(&ctrl->cels, i);
4741 		kfree(cel);
4742 	}
4743 
4744 	xa_destroy(&ctrl->cels);
4745 }
4746 
4747 static void nvme_free_ctrl(struct device *dev)
4748 {
4749 	struct nvme_ctrl *ctrl =
4750 		container_of(dev, struct nvme_ctrl, ctrl_device);
4751 	struct nvme_subsystem *subsys = ctrl->subsys;
4752 
4753 	if (!subsys || ctrl->instance != subsys->instance)
4754 		ida_free(&nvme_instance_ida, ctrl->instance);
4755 	nvme_free_cels(ctrl);
4756 	nvme_mpath_uninit(ctrl);
4757 	cleanup_srcu_struct(&ctrl->srcu);
4758 	nvme_auth_stop(ctrl);
4759 	nvme_auth_free(ctrl);
4760 	__free_page(ctrl->discard_page);
4761 	free_opal_dev(ctrl->opal_dev);
4762 
4763 	if (subsys) {
4764 		mutex_lock(&nvme_subsystems_lock);
4765 		list_del(&ctrl->subsys_entry);
4766 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4767 		mutex_unlock(&nvme_subsystems_lock);
4768 	}
4769 
4770 	ctrl->ops->free_ctrl(ctrl);
4771 
4772 	if (subsys)
4773 		nvme_put_subsystem(subsys);
4774 }
4775 
4776 /*
4777  * Initialize a NVMe controller structures.  This needs to be called during
4778  * earliest initialization so that we have the initialized structured around
4779  * during probing.
4780  *
4781  * On success, the caller must use the nvme_put_ctrl() to release this when
4782  * needed, which also invokes the ops->free_ctrl() callback.
4783  */
4784 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4785 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
4786 {
4787 	int ret;
4788 
4789 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
4790 	ctrl->passthru_err_log_enabled = false;
4791 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4792 	spin_lock_init(&ctrl->lock);
4793 	mutex_init(&ctrl->namespaces_lock);
4794 
4795 	ret = init_srcu_struct(&ctrl->srcu);
4796 	if (ret)
4797 		return ret;
4798 
4799 	mutex_init(&ctrl->scan_lock);
4800 	INIT_LIST_HEAD(&ctrl->namespaces);
4801 	xa_init(&ctrl->cels);
4802 	ctrl->dev = dev;
4803 	ctrl->ops = ops;
4804 	ctrl->quirks = quirks;
4805 	ctrl->numa_node = NUMA_NO_NODE;
4806 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4807 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4808 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4809 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4810 	init_waitqueue_head(&ctrl->state_wq);
4811 
4812 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4813 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4814 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4815 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4816 	ctrl->ka_last_check_time = jiffies;
4817 
4818 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4819 			PAGE_SIZE);
4820 	ctrl->discard_page = alloc_page(GFP_KERNEL);
4821 	if (!ctrl->discard_page) {
4822 		ret = -ENOMEM;
4823 		goto out;
4824 	}
4825 
4826 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4827 	if (ret < 0)
4828 		goto out;
4829 	ctrl->instance = ret;
4830 
4831 	ret = nvme_auth_init_ctrl(ctrl);
4832 	if (ret)
4833 		goto out_release_instance;
4834 
4835 	nvme_mpath_init_ctrl(ctrl);
4836 
4837 	device_initialize(&ctrl->ctrl_device);
4838 	ctrl->device = &ctrl->ctrl_device;
4839 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4840 			ctrl->instance);
4841 	ctrl->device->class = &nvme_class;
4842 	ctrl->device->parent = ctrl->dev;
4843 	if (ops->dev_attr_groups)
4844 		ctrl->device->groups = ops->dev_attr_groups;
4845 	else
4846 		ctrl->device->groups = nvme_dev_attr_groups;
4847 	ctrl->device->release = nvme_free_ctrl;
4848 	dev_set_drvdata(ctrl->device, ctrl);
4849 
4850 	return ret;
4851 
4852 out_release_instance:
4853 	ida_free(&nvme_instance_ida, ctrl->instance);
4854 out:
4855 	if (ctrl->discard_page)
4856 		__free_page(ctrl->discard_page);
4857 	cleanup_srcu_struct(&ctrl->srcu);
4858 	return ret;
4859 }
4860 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4861 
4862 /*
4863  * On success, returns with an elevated controller reference and caller must
4864  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
4865  */
4866 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
4867 {
4868 	int ret;
4869 
4870 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4871 	if (ret)
4872 		return ret;
4873 
4874 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
4875 	ctrl->cdev.owner = ctrl->ops->module;
4876 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4877 	if (ret)
4878 		return ret;
4879 
4880 	/*
4881 	 * Initialize latency tolerance controls.  The sysfs files won't
4882 	 * be visible to userspace unless the device actually supports APST.
4883 	 */
4884 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4885 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4886 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4887 
4888 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4889 	nvme_get_ctrl(ctrl);
4890 
4891 	return 0;
4892 }
4893 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
4894 
4895 /* let I/O to all namespaces fail in preparation for surprise removal */
4896 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4897 {
4898 	struct nvme_ns *ns;
4899 	int srcu_idx;
4900 
4901 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4902 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4903 				 srcu_read_lock_held(&ctrl->srcu))
4904 		blk_mark_disk_dead(ns->disk);
4905 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4906 }
4907 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4908 
4909 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4910 {
4911 	struct nvme_ns *ns;
4912 	int srcu_idx;
4913 
4914 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4915 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4916 				 srcu_read_lock_held(&ctrl->srcu))
4917 		blk_mq_unfreeze_queue_non_owner(ns->queue);
4918 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4919 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4920 }
4921 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4922 
4923 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4924 {
4925 	struct nvme_ns *ns;
4926 	int srcu_idx;
4927 
4928 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4929 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4930 				 srcu_read_lock_held(&ctrl->srcu)) {
4931 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4932 		if (timeout <= 0)
4933 			break;
4934 	}
4935 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4936 	return timeout;
4937 }
4938 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4939 
4940 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4941 {
4942 	struct nvme_ns *ns;
4943 	int srcu_idx;
4944 
4945 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4946 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4947 				 srcu_read_lock_held(&ctrl->srcu))
4948 		blk_mq_freeze_queue_wait(ns->queue);
4949 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4950 }
4951 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4952 
4953 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4954 {
4955 	struct nvme_ns *ns;
4956 	int srcu_idx;
4957 
4958 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
4959 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4960 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4961 				 srcu_read_lock_held(&ctrl->srcu))
4962 		/*
4963 		 * Typical non_owner use case is from pci driver, in which
4964 		 * start_freeze is called from timeout work function, but
4965 		 * unfreeze is done in reset work context
4966 		 */
4967 		blk_freeze_queue_start_non_owner(ns->queue);
4968 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4969 }
4970 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4971 
4972 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4973 {
4974 	if (!ctrl->tagset)
4975 		return;
4976 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4977 		blk_mq_quiesce_tagset(ctrl->tagset);
4978 	else
4979 		blk_mq_wait_quiesce_done(ctrl->tagset);
4980 }
4981 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4982 
4983 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4984 {
4985 	if (!ctrl->tagset)
4986 		return;
4987 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4988 		blk_mq_unquiesce_tagset(ctrl->tagset);
4989 }
4990 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4991 
4992 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4993 {
4994 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4995 		blk_mq_quiesce_queue(ctrl->admin_q);
4996 	else
4997 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4998 }
4999 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5000 
5001 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5002 {
5003 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5004 		blk_mq_unquiesce_queue(ctrl->admin_q);
5005 }
5006 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5007 
5008 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5009 {
5010 	struct nvme_ns *ns;
5011 	int srcu_idx;
5012 
5013 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5014 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5015 				 srcu_read_lock_held(&ctrl->srcu))
5016 		blk_sync_queue(ns->queue);
5017 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5018 }
5019 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5020 
5021 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5022 {
5023 	nvme_sync_io_queues(ctrl);
5024 	if (ctrl->admin_q)
5025 		blk_sync_queue(ctrl->admin_q);
5026 }
5027 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5028 
5029 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5030 {
5031 	if (file->f_op != &nvme_dev_fops)
5032 		return NULL;
5033 	return file->private_data;
5034 }
5035 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5036 
5037 /*
5038  * Check we didn't inadvertently grow the command structure sizes:
5039  */
5040 static inline void _nvme_check_size(void)
5041 {
5042 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5043 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5044 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5045 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5046 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5047 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5048 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5049 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5050 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5051 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5052 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5053 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5054 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5055 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5056 			NVME_IDENTIFY_DATA_SIZE);
5057 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5058 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5059 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5060 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5061 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5062 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5063 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5064 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5065 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5066 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5067 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5068 }
5069 
5070 
5071 static int __init nvme_core_init(void)
5072 {
5073 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5074 	int result = -ENOMEM;
5075 
5076 	_nvme_check_size();
5077 
5078 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5079 	if (!nvme_wq)
5080 		goto out;
5081 
5082 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5083 	if (!nvme_reset_wq)
5084 		goto destroy_wq;
5085 
5086 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5087 	if (!nvme_delete_wq)
5088 		goto destroy_reset_wq;
5089 
5090 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5091 			NVME_MINORS, "nvme");
5092 	if (result < 0)
5093 		goto destroy_delete_wq;
5094 
5095 	result = class_register(&nvme_class);
5096 	if (result)
5097 		goto unregister_chrdev;
5098 
5099 	result = class_register(&nvme_subsys_class);
5100 	if (result)
5101 		goto destroy_class;
5102 
5103 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5104 				     "nvme-generic");
5105 	if (result < 0)
5106 		goto destroy_subsys_class;
5107 
5108 	result = class_register(&nvme_ns_chr_class);
5109 	if (result)
5110 		goto unregister_generic_ns;
5111 
5112 	result = nvme_init_auth();
5113 	if (result)
5114 		goto destroy_ns_chr;
5115 	return 0;
5116 
5117 destroy_ns_chr:
5118 	class_unregister(&nvme_ns_chr_class);
5119 unregister_generic_ns:
5120 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5121 destroy_subsys_class:
5122 	class_unregister(&nvme_subsys_class);
5123 destroy_class:
5124 	class_unregister(&nvme_class);
5125 unregister_chrdev:
5126 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5127 destroy_delete_wq:
5128 	destroy_workqueue(nvme_delete_wq);
5129 destroy_reset_wq:
5130 	destroy_workqueue(nvme_reset_wq);
5131 destroy_wq:
5132 	destroy_workqueue(nvme_wq);
5133 out:
5134 	return result;
5135 }
5136 
5137 static void __exit nvme_core_exit(void)
5138 {
5139 	nvme_exit_auth();
5140 	class_unregister(&nvme_ns_chr_class);
5141 	class_unregister(&nvme_subsys_class);
5142 	class_unregister(&nvme_class);
5143 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5144 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5145 	destroy_workqueue(nvme_delete_wq);
5146 	destroy_workqueue(nvme_reset_wq);
5147 	destroy_workqueue(nvme_wq);
5148 	ida_destroy(&nvme_ns_chr_minor_ida);
5149 	ida_destroy(&nvme_instance_ida);
5150 }
5151 
5152 MODULE_LICENSE("GPL");
5153 MODULE_VERSION("1.0");
5154 MODULE_DESCRIPTION("NVMe host core framework");
5155 module_init(nvme_core_init);
5156 module_exit(nvme_core_exit);
5157