xref: /linux/drivers/nvme/host/core.c (revision 13a370b9d275959ac75e92dc14e43eeae75804f8)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include "nvme.h"
36 #include "fabrics.h"
37 
38 #define NVME_MINORS		(1U << MINORBITS)
39 
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
44 
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
49 
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
53 
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
57 
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 		 "max power saving latency for new devices; use PM QOS to change per device");
62 
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66 
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70 
71 /*
72  * nvme_wq - hosts nvme related works that are not reset or delete
73  * nvme_reset_wq - hosts nvme reset works
74  * nvme_delete_wq - hosts nvme delete works
75  *
76  * nvme_wq will host works such are scan, aen handling, fw activation,
77  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78  * runs reset works which also flush works hosted on nvme_wq for
79  * serialization purposes. nvme_delete_wq host controller deletion
80  * works which flush reset works for serialization.
81  */
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
84 
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
87 
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
90 
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
94 
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
99 
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
102 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
103 
104 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
105 {
106 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
107 		return -EBUSY;
108 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
109 		return -EBUSY;
110 	return 0;
111 }
112 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
113 
114 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
115 {
116 	int ret;
117 
118 	ret = nvme_reset_ctrl(ctrl);
119 	if (!ret) {
120 		flush_work(&ctrl->reset_work);
121 		if (ctrl->state != NVME_CTRL_LIVE &&
122 		    ctrl->state != NVME_CTRL_ADMIN_ONLY)
123 			ret = -ENETRESET;
124 	}
125 
126 	return ret;
127 }
128 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
129 
130 static void nvme_delete_ctrl_work(struct work_struct *work)
131 {
132 	struct nvme_ctrl *ctrl =
133 		container_of(work, struct nvme_ctrl, delete_work);
134 
135 	dev_info(ctrl->device,
136 		 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
137 
138 	flush_work(&ctrl->reset_work);
139 	nvme_stop_ctrl(ctrl);
140 	nvme_remove_namespaces(ctrl);
141 	ctrl->ops->delete_ctrl(ctrl);
142 	nvme_uninit_ctrl(ctrl);
143 	nvme_put_ctrl(ctrl);
144 }
145 
146 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
147 {
148 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
149 		return -EBUSY;
150 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
151 		return -EBUSY;
152 	return 0;
153 }
154 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
155 
156 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
157 {
158 	int ret = 0;
159 
160 	/*
161 	 * Keep a reference until the work is flushed since ->delete_ctrl
162 	 * can free the controller.
163 	 */
164 	nvme_get_ctrl(ctrl);
165 	ret = nvme_delete_ctrl(ctrl);
166 	if (!ret)
167 		flush_work(&ctrl->delete_work);
168 	nvme_put_ctrl(ctrl);
169 	return ret;
170 }
171 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
172 
173 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
174 {
175 	return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
176 }
177 
178 static blk_status_t nvme_error_status(struct request *req)
179 {
180 	switch (nvme_req(req)->status & 0x7ff) {
181 	case NVME_SC_SUCCESS:
182 		return BLK_STS_OK;
183 	case NVME_SC_CAP_EXCEEDED:
184 		return BLK_STS_NOSPC;
185 	case NVME_SC_LBA_RANGE:
186 		return BLK_STS_TARGET;
187 	case NVME_SC_BAD_ATTRIBUTES:
188 	case NVME_SC_ONCS_NOT_SUPPORTED:
189 	case NVME_SC_INVALID_OPCODE:
190 	case NVME_SC_INVALID_FIELD:
191 	case NVME_SC_INVALID_NS:
192 		return BLK_STS_NOTSUPP;
193 	case NVME_SC_WRITE_FAULT:
194 	case NVME_SC_READ_ERROR:
195 	case NVME_SC_UNWRITTEN_BLOCK:
196 	case NVME_SC_ACCESS_DENIED:
197 	case NVME_SC_READ_ONLY:
198 	case NVME_SC_COMPARE_FAILED:
199 		return BLK_STS_MEDIUM;
200 	case NVME_SC_GUARD_CHECK:
201 	case NVME_SC_APPTAG_CHECK:
202 	case NVME_SC_REFTAG_CHECK:
203 	case NVME_SC_INVALID_PI:
204 		return BLK_STS_PROTECTION;
205 	case NVME_SC_RESERVATION_CONFLICT:
206 		return BLK_STS_NEXUS;
207 	default:
208 		return BLK_STS_IOERR;
209 	}
210 }
211 
212 static inline bool nvme_req_needs_retry(struct request *req)
213 {
214 	if (blk_noretry_request(req))
215 		return false;
216 	if (nvme_req(req)->status & NVME_SC_DNR)
217 		return false;
218 	if (nvme_req(req)->retries >= nvme_max_retries)
219 		return false;
220 	return true;
221 }
222 
223 void nvme_complete_rq(struct request *req)
224 {
225 	blk_status_t status = nvme_error_status(req);
226 
227 	trace_nvme_complete_rq(req);
228 
229 	if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
230 		if (nvme_req_needs_failover(req, status)) {
231 			nvme_failover_req(req);
232 			return;
233 		}
234 
235 		if (!blk_queue_dying(req->q)) {
236 			nvme_req(req)->retries++;
237 			blk_mq_requeue_request(req, true);
238 			return;
239 		}
240 	}
241 	blk_mq_end_request(req, status);
242 }
243 EXPORT_SYMBOL_GPL(nvme_complete_rq);
244 
245 void nvme_cancel_request(struct request *req, void *data, bool reserved)
246 {
247 	if (!blk_mq_request_started(req))
248 		return;
249 
250 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
251 				"Cancelling I/O %d", req->tag);
252 
253 	nvme_req(req)->status = NVME_SC_ABORT_REQ;
254 	blk_mq_complete_request(req);
255 
256 }
257 EXPORT_SYMBOL_GPL(nvme_cancel_request);
258 
259 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
260 		enum nvme_ctrl_state new_state)
261 {
262 	enum nvme_ctrl_state old_state;
263 	unsigned long flags;
264 	bool changed = false;
265 
266 	spin_lock_irqsave(&ctrl->lock, flags);
267 
268 	old_state = ctrl->state;
269 	switch (new_state) {
270 	case NVME_CTRL_ADMIN_ONLY:
271 		switch (old_state) {
272 		case NVME_CTRL_CONNECTING:
273 			changed = true;
274 			/* FALLTHRU */
275 		default:
276 			break;
277 		}
278 		break;
279 	case NVME_CTRL_LIVE:
280 		switch (old_state) {
281 		case NVME_CTRL_NEW:
282 		case NVME_CTRL_RESETTING:
283 		case NVME_CTRL_CONNECTING:
284 			changed = true;
285 			/* FALLTHRU */
286 		default:
287 			break;
288 		}
289 		break;
290 	case NVME_CTRL_RESETTING:
291 		switch (old_state) {
292 		case NVME_CTRL_NEW:
293 		case NVME_CTRL_LIVE:
294 		case NVME_CTRL_ADMIN_ONLY:
295 			changed = true;
296 			/* FALLTHRU */
297 		default:
298 			break;
299 		}
300 		break;
301 	case NVME_CTRL_CONNECTING:
302 		switch (old_state) {
303 		case NVME_CTRL_NEW:
304 		case NVME_CTRL_RESETTING:
305 			changed = true;
306 			/* FALLTHRU */
307 		default:
308 			break;
309 		}
310 		break;
311 	case NVME_CTRL_DELETING:
312 		switch (old_state) {
313 		case NVME_CTRL_LIVE:
314 		case NVME_CTRL_ADMIN_ONLY:
315 		case NVME_CTRL_RESETTING:
316 		case NVME_CTRL_CONNECTING:
317 			changed = true;
318 			/* FALLTHRU */
319 		default:
320 			break;
321 		}
322 		break;
323 	case NVME_CTRL_DEAD:
324 		switch (old_state) {
325 		case NVME_CTRL_DELETING:
326 			changed = true;
327 			/* FALLTHRU */
328 		default:
329 			break;
330 		}
331 		break;
332 	default:
333 		break;
334 	}
335 
336 	if (changed)
337 		ctrl->state = new_state;
338 
339 	spin_unlock_irqrestore(&ctrl->lock, flags);
340 	if (changed && ctrl->state == NVME_CTRL_LIVE)
341 		nvme_kick_requeue_lists(ctrl);
342 	return changed;
343 }
344 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
345 
346 static void nvme_free_ns_head(struct kref *ref)
347 {
348 	struct nvme_ns_head *head =
349 		container_of(ref, struct nvme_ns_head, ref);
350 
351 	nvme_mpath_remove_disk(head);
352 	ida_simple_remove(&head->subsys->ns_ida, head->instance);
353 	list_del_init(&head->entry);
354 	cleanup_srcu_struct(&head->srcu);
355 	nvme_put_subsystem(head->subsys);
356 	kfree(head);
357 }
358 
359 static void nvme_put_ns_head(struct nvme_ns_head *head)
360 {
361 	kref_put(&head->ref, nvme_free_ns_head);
362 }
363 
364 static void nvme_free_ns(struct kref *kref)
365 {
366 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
367 
368 	if (ns->ndev)
369 		nvme_nvm_unregister(ns);
370 
371 	put_disk(ns->disk);
372 	nvme_put_ns_head(ns->head);
373 	nvme_put_ctrl(ns->ctrl);
374 	kfree(ns);
375 }
376 
377 static void nvme_put_ns(struct nvme_ns *ns)
378 {
379 	kref_put(&ns->kref, nvme_free_ns);
380 }
381 
382 static inline void nvme_clear_nvme_request(struct request *req)
383 {
384 	if (!(req->rq_flags & RQF_DONTPREP)) {
385 		nvme_req(req)->retries = 0;
386 		nvme_req(req)->flags = 0;
387 		req->rq_flags |= RQF_DONTPREP;
388 	}
389 }
390 
391 struct request *nvme_alloc_request(struct request_queue *q,
392 		struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
393 {
394 	unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
395 	struct request *req;
396 
397 	if (qid == NVME_QID_ANY) {
398 		req = blk_mq_alloc_request(q, op, flags);
399 	} else {
400 		req = blk_mq_alloc_request_hctx(q, op, flags,
401 				qid ? qid - 1 : 0);
402 	}
403 	if (IS_ERR(req))
404 		return req;
405 
406 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
407 	nvme_clear_nvme_request(req);
408 	nvme_req(req)->cmd = cmd;
409 
410 	return req;
411 }
412 EXPORT_SYMBOL_GPL(nvme_alloc_request);
413 
414 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
415 {
416 	struct nvme_command c;
417 
418 	memset(&c, 0, sizeof(c));
419 
420 	c.directive.opcode = nvme_admin_directive_send;
421 	c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
422 	c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
423 	c.directive.dtype = NVME_DIR_IDENTIFY;
424 	c.directive.tdtype = NVME_DIR_STREAMS;
425 	c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
426 
427 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
428 }
429 
430 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
431 {
432 	return nvme_toggle_streams(ctrl, false);
433 }
434 
435 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
436 {
437 	return nvme_toggle_streams(ctrl, true);
438 }
439 
440 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
441 				  struct streams_directive_params *s, u32 nsid)
442 {
443 	struct nvme_command c;
444 
445 	memset(&c, 0, sizeof(c));
446 	memset(s, 0, sizeof(*s));
447 
448 	c.directive.opcode = nvme_admin_directive_recv;
449 	c.directive.nsid = cpu_to_le32(nsid);
450 	c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
451 	c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
452 	c.directive.dtype = NVME_DIR_STREAMS;
453 
454 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
455 }
456 
457 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
458 {
459 	struct streams_directive_params s;
460 	int ret;
461 
462 	if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
463 		return 0;
464 	if (!streams)
465 		return 0;
466 
467 	ret = nvme_enable_streams(ctrl);
468 	if (ret)
469 		return ret;
470 
471 	ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
472 	if (ret)
473 		return ret;
474 
475 	ctrl->nssa = le16_to_cpu(s.nssa);
476 	if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
477 		dev_info(ctrl->device, "too few streams (%u) available\n",
478 					ctrl->nssa);
479 		nvme_disable_streams(ctrl);
480 		return 0;
481 	}
482 
483 	ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
484 	dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
485 	return 0;
486 }
487 
488 /*
489  * Check if 'req' has a write hint associated with it. If it does, assign
490  * a valid namespace stream to the write.
491  */
492 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
493 				     struct request *req, u16 *control,
494 				     u32 *dsmgmt)
495 {
496 	enum rw_hint streamid = req->write_hint;
497 
498 	if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
499 		streamid = 0;
500 	else {
501 		streamid--;
502 		if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
503 			return;
504 
505 		*control |= NVME_RW_DTYPE_STREAMS;
506 		*dsmgmt |= streamid << 16;
507 	}
508 
509 	if (streamid < ARRAY_SIZE(req->q->write_hints))
510 		req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
511 }
512 
513 static inline void nvme_setup_flush(struct nvme_ns *ns,
514 		struct nvme_command *cmnd)
515 {
516 	memset(cmnd, 0, sizeof(*cmnd));
517 	cmnd->common.opcode = nvme_cmd_flush;
518 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
519 }
520 
521 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
522 		struct nvme_command *cmnd)
523 {
524 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
525 	struct nvme_dsm_range *range;
526 	struct bio *bio;
527 
528 	range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
529 	if (!range)
530 		return BLK_STS_RESOURCE;
531 
532 	__rq_for_each_bio(bio, req) {
533 		u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
534 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
535 
536 		if (n < segments) {
537 			range[n].cattr = cpu_to_le32(0);
538 			range[n].nlb = cpu_to_le32(nlb);
539 			range[n].slba = cpu_to_le64(slba);
540 		}
541 		n++;
542 	}
543 
544 	if (WARN_ON_ONCE(n != segments)) {
545 		kfree(range);
546 		return BLK_STS_IOERR;
547 	}
548 
549 	memset(cmnd, 0, sizeof(*cmnd));
550 	cmnd->dsm.opcode = nvme_cmd_dsm;
551 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
552 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
553 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
554 
555 	req->special_vec.bv_page = virt_to_page(range);
556 	req->special_vec.bv_offset = offset_in_page(range);
557 	req->special_vec.bv_len = sizeof(*range) * segments;
558 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
559 
560 	return BLK_STS_OK;
561 }
562 
563 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
564 		struct request *req, struct nvme_command *cmnd)
565 {
566 	struct nvme_ctrl *ctrl = ns->ctrl;
567 	u16 control = 0;
568 	u32 dsmgmt = 0;
569 
570 	if (req->cmd_flags & REQ_FUA)
571 		control |= NVME_RW_FUA;
572 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
573 		control |= NVME_RW_LR;
574 
575 	if (req->cmd_flags & REQ_RAHEAD)
576 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
577 
578 	memset(cmnd, 0, sizeof(*cmnd));
579 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
580 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
581 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
582 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
583 
584 	if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
585 		nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
586 
587 	if (ns->ms) {
588 		/*
589 		 * If formated with metadata, the block layer always provides a
590 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
591 		 * we enable the PRACT bit for protection information or set the
592 		 * namespace capacity to zero to prevent any I/O.
593 		 */
594 		if (!blk_integrity_rq(req)) {
595 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
596 				return BLK_STS_NOTSUPP;
597 			control |= NVME_RW_PRINFO_PRACT;
598 		}
599 
600 		switch (ns->pi_type) {
601 		case NVME_NS_DPS_PI_TYPE3:
602 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
603 			break;
604 		case NVME_NS_DPS_PI_TYPE1:
605 		case NVME_NS_DPS_PI_TYPE2:
606 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
607 					NVME_RW_PRINFO_PRCHK_REF;
608 			cmnd->rw.reftag = cpu_to_le32(
609 					nvme_block_nr(ns, blk_rq_pos(req)));
610 			break;
611 		}
612 	}
613 
614 	cmnd->rw.control = cpu_to_le16(control);
615 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
616 	return 0;
617 }
618 
619 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
620 		struct nvme_command *cmd)
621 {
622 	blk_status_t ret = BLK_STS_OK;
623 
624 	nvme_clear_nvme_request(req);
625 
626 	switch (req_op(req)) {
627 	case REQ_OP_DRV_IN:
628 	case REQ_OP_DRV_OUT:
629 		memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
630 		break;
631 	case REQ_OP_FLUSH:
632 		nvme_setup_flush(ns, cmd);
633 		break;
634 	case REQ_OP_WRITE_ZEROES:
635 		/* currently only aliased to deallocate for a few ctrls: */
636 	case REQ_OP_DISCARD:
637 		ret = nvme_setup_discard(ns, req, cmd);
638 		break;
639 	case REQ_OP_READ:
640 	case REQ_OP_WRITE:
641 		ret = nvme_setup_rw(ns, req, cmd);
642 		break;
643 	default:
644 		WARN_ON_ONCE(1);
645 		return BLK_STS_IOERR;
646 	}
647 
648 	cmd->common.command_id = req->tag;
649 	if (ns)
650 		trace_nvme_setup_nvm_cmd(req->q->id, cmd);
651 	else
652 		trace_nvme_setup_admin_cmd(cmd);
653 	return ret;
654 }
655 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
656 
657 /*
658  * Returns 0 on success.  If the result is negative, it's a Linux error code;
659  * if the result is positive, it's an NVM Express status code
660  */
661 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
662 		union nvme_result *result, void *buffer, unsigned bufflen,
663 		unsigned timeout, int qid, int at_head,
664 		blk_mq_req_flags_t flags)
665 {
666 	struct request *req;
667 	int ret;
668 
669 	req = nvme_alloc_request(q, cmd, flags, qid);
670 	if (IS_ERR(req))
671 		return PTR_ERR(req);
672 
673 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
674 
675 	if (buffer && bufflen) {
676 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
677 		if (ret)
678 			goto out;
679 	}
680 
681 	blk_execute_rq(req->q, NULL, req, at_head);
682 	if (result)
683 		*result = nvme_req(req)->result;
684 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
685 		ret = -EINTR;
686 	else
687 		ret = nvme_req(req)->status;
688  out:
689 	blk_mq_free_request(req);
690 	return ret;
691 }
692 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
693 
694 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
695 		void *buffer, unsigned bufflen)
696 {
697 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
698 			NVME_QID_ANY, 0, 0);
699 }
700 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
701 
702 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
703 		unsigned len, u32 seed, bool write)
704 {
705 	struct bio_integrity_payload *bip;
706 	int ret = -ENOMEM;
707 	void *buf;
708 
709 	buf = kmalloc(len, GFP_KERNEL);
710 	if (!buf)
711 		goto out;
712 
713 	ret = -EFAULT;
714 	if (write && copy_from_user(buf, ubuf, len))
715 		goto out_free_meta;
716 
717 	bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
718 	if (IS_ERR(bip)) {
719 		ret = PTR_ERR(bip);
720 		goto out_free_meta;
721 	}
722 
723 	bip->bip_iter.bi_size = len;
724 	bip->bip_iter.bi_sector = seed;
725 	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
726 			offset_in_page(buf));
727 	if (ret == len)
728 		return buf;
729 	ret = -ENOMEM;
730 out_free_meta:
731 	kfree(buf);
732 out:
733 	return ERR_PTR(ret);
734 }
735 
736 static int nvme_submit_user_cmd(struct request_queue *q,
737 		struct nvme_command *cmd, void __user *ubuffer,
738 		unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
739 		u32 meta_seed, u32 *result, unsigned timeout)
740 {
741 	bool write = nvme_is_write(cmd);
742 	struct nvme_ns *ns = q->queuedata;
743 	struct gendisk *disk = ns ? ns->disk : NULL;
744 	struct request *req;
745 	struct bio *bio = NULL;
746 	void *meta = NULL;
747 	int ret;
748 
749 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
750 	if (IS_ERR(req))
751 		return PTR_ERR(req);
752 
753 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
754 	nvme_req(req)->flags |= NVME_REQ_USERCMD;
755 
756 	if (ubuffer && bufflen) {
757 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
758 				GFP_KERNEL);
759 		if (ret)
760 			goto out;
761 		bio = req->bio;
762 		bio->bi_disk = disk;
763 		if (disk && meta_buffer && meta_len) {
764 			meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
765 					meta_seed, write);
766 			if (IS_ERR(meta)) {
767 				ret = PTR_ERR(meta);
768 				goto out_unmap;
769 			}
770 			req->cmd_flags |= REQ_INTEGRITY;
771 		}
772 	}
773 
774 	blk_execute_rq(req->q, disk, req, 0);
775 	if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
776 		ret = -EINTR;
777 	else
778 		ret = nvme_req(req)->status;
779 	if (result)
780 		*result = le32_to_cpu(nvme_req(req)->result.u32);
781 	if (meta && !ret && !write) {
782 		if (copy_to_user(meta_buffer, meta, meta_len))
783 			ret = -EFAULT;
784 	}
785 	kfree(meta);
786  out_unmap:
787 	if (bio)
788 		blk_rq_unmap_user(bio);
789  out:
790 	blk_mq_free_request(req);
791 	return ret;
792 }
793 
794 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
795 {
796 	struct nvme_ctrl *ctrl = rq->end_io_data;
797 
798 	blk_mq_free_request(rq);
799 
800 	if (status) {
801 		dev_err(ctrl->device,
802 			"failed nvme_keep_alive_end_io error=%d\n",
803 				status);
804 		return;
805 	}
806 
807 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
808 }
809 
810 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
811 {
812 	struct request *rq;
813 
814 	rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
815 			NVME_QID_ANY);
816 	if (IS_ERR(rq))
817 		return PTR_ERR(rq);
818 
819 	rq->timeout = ctrl->kato * HZ;
820 	rq->end_io_data = ctrl;
821 
822 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
823 
824 	return 0;
825 }
826 
827 static void nvme_keep_alive_work(struct work_struct *work)
828 {
829 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
830 			struct nvme_ctrl, ka_work);
831 
832 	if (nvme_keep_alive(ctrl)) {
833 		/* allocation failure, reset the controller */
834 		dev_err(ctrl->device, "keep-alive failed\n");
835 		nvme_reset_ctrl(ctrl);
836 		return;
837 	}
838 }
839 
840 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
841 {
842 	if (unlikely(ctrl->kato == 0))
843 		return;
844 
845 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
846 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
847 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
848 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
849 }
850 
851 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
852 {
853 	if (unlikely(ctrl->kato == 0))
854 		return;
855 
856 	cancel_delayed_work_sync(&ctrl->ka_work);
857 }
858 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
859 
860 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
861 {
862 	struct nvme_command c = { };
863 	int error;
864 
865 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
866 	c.identify.opcode = nvme_admin_identify;
867 	c.identify.cns = NVME_ID_CNS_CTRL;
868 
869 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
870 	if (!*id)
871 		return -ENOMEM;
872 
873 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
874 			sizeof(struct nvme_id_ctrl));
875 	if (error)
876 		kfree(*id);
877 	return error;
878 }
879 
880 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
881 		struct nvme_ns_ids *ids)
882 {
883 	struct nvme_command c = { };
884 	int status;
885 	void *data;
886 	int pos;
887 	int len;
888 
889 	c.identify.opcode = nvme_admin_identify;
890 	c.identify.nsid = cpu_to_le32(nsid);
891 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
892 
893 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
894 	if (!data)
895 		return -ENOMEM;
896 
897 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
898 				      NVME_IDENTIFY_DATA_SIZE);
899 	if (status)
900 		goto free_data;
901 
902 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
903 		struct nvme_ns_id_desc *cur = data + pos;
904 
905 		if (cur->nidl == 0)
906 			break;
907 
908 		switch (cur->nidt) {
909 		case NVME_NIDT_EUI64:
910 			if (cur->nidl != NVME_NIDT_EUI64_LEN) {
911 				dev_warn(ctrl->device,
912 					 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
913 					 cur->nidl);
914 				goto free_data;
915 			}
916 			len = NVME_NIDT_EUI64_LEN;
917 			memcpy(ids->eui64, data + pos + sizeof(*cur), len);
918 			break;
919 		case NVME_NIDT_NGUID:
920 			if (cur->nidl != NVME_NIDT_NGUID_LEN) {
921 				dev_warn(ctrl->device,
922 					 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
923 					 cur->nidl);
924 				goto free_data;
925 			}
926 			len = NVME_NIDT_NGUID_LEN;
927 			memcpy(ids->nguid, data + pos + sizeof(*cur), len);
928 			break;
929 		case NVME_NIDT_UUID:
930 			if (cur->nidl != NVME_NIDT_UUID_LEN) {
931 				dev_warn(ctrl->device,
932 					 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
933 					 cur->nidl);
934 				goto free_data;
935 			}
936 			len = NVME_NIDT_UUID_LEN;
937 			uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
938 			break;
939 		default:
940 			/* Skip unnkown types */
941 			len = cur->nidl;
942 			break;
943 		}
944 
945 		len += sizeof(*cur);
946 	}
947 free_data:
948 	kfree(data);
949 	return status;
950 }
951 
952 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
953 {
954 	struct nvme_command c = { };
955 
956 	c.identify.opcode = nvme_admin_identify;
957 	c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
958 	c.identify.nsid = cpu_to_le32(nsid);
959 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
960 				    NVME_IDENTIFY_DATA_SIZE);
961 }
962 
963 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
964 		unsigned nsid)
965 {
966 	struct nvme_id_ns *id;
967 	struct nvme_command c = { };
968 	int error;
969 
970 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
971 	c.identify.opcode = nvme_admin_identify;
972 	c.identify.nsid = cpu_to_le32(nsid);
973 	c.identify.cns = NVME_ID_CNS_NS;
974 
975 	id = kmalloc(sizeof(*id), GFP_KERNEL);
976 	if (!id)
977 		return NULL;
978 
979 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
980 	if (error) {
981 		dev_warn(ctrl->device, "Identify namespace failed\n");
982 		kfree(id);
983 		return NULL;
984 	}
985 
986 	return id;
987 }
988 
989 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
990 		      void *buffer, size_t buflen, u32 *result)
991 {
992 	struct nvme_command c;
993 	union nvme_result res;
994 	int ret;
995 
996 	memset(&c, 0, sizeof(c));
997 	c.features.opcode = nvme_admin_set_features;
998 	c.features.fid = cpu_to_le32(fid);
999 	c.features.dword11 = cpu_to_le32(dword11);
1000 
1001 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1002 			buffer, buflen, 0, NVME_QID_ANY, 0, 0);
1003 	if (ret >= 0 && result)
1004 		*result = le32_to_cpu(res.u32);
1005 	return ret;
1006 }
1007 
1008 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1009 {
1010 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1011 	u32 result;
1012 	int status, nr_io_queues;
1013 
1014 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1015 			&result);
1016 	if (status < 0)
1017 		return status;
1018 
1019 	/*
1020 	 * Degraded controllers might return an error when setting the queue
1021 	 * count.  We still want to be able to bring them online and offer
1022 	 * access to the admin queue, as that might be only way to fix them up.
1023 	 */
1024 	if (status > 0) {
1025 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1026 		*count = 0;
1027 	} else {
1028 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1029 		*count = min(*count, nr_io_queues);
1030 	}
1031 
1032 	return 0;
1033 }
1034 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1035 
1036 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1037 {
1038 	struct nvme_user_io io;
1039 	struct nvme_command c;
1040 	unsigned length, meta_len;
1041 	void __user *metadata;
1042 
1043 	if (copy_from_user(&io, uio, sizeof(io)))
1044 		return -EFAULT;
1045 	if (io.flags)
1046 		return -EINVAL;
1047 
1048 	switch (io.opcode) {
1049 	case nvme_cmd_write:
1050 	case nvme_cmd_read:
1051 	case nvme_cmd_compare:
1052 		break;
1053 	default:
1054 		return -EINVAL;
1055 	}
1056 
1057 	length = (io.nblocks + 1) << ns->lba_shift;
1058 	meta_len = (io.nblocks + 1) * ns->ms;
1059 	metadata = (void __user *)(uintptr_t)io.metadata;
1060 
1061 	if (ns->ext) {
1062 		length += meta_len;
1063 		meta_len = 0;
1064 	} else if (meta_len) {
1065 		if ((io.metadata & 3) || !io.metadata)
1066 			return -EINVAL;
1067 	}
1068 
1069 	memset(&c, 0, sizeof(c));
1070 	c.rw.opcode = io.opcode;
1071 	c.rw.flags = io.flags;
1072 	c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1073 	c.rw.slba = cpu_to_le64(io.slba);
1074 	c.rw.length = cpu_to_le16(io.nblocks);
1075 	c.rw.control = cpu_to_le16(io.control);
1076 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1077 	c.rw.reftag = cpu_to_le32(io.reftag);
1078 	c.rw.apptag = cpu_to_le16(io.apptag);
1079 	c.rw.appmask = cpu_to_le16(io.appmask);
1080 
1081 	return nvme_submit_user_cmd(ns->queue, &c,
1082 			(void __user *)(uintptr_t)io.addr, length,
1083 			metadata, meta_len, io.slba, NULL, 0);
1084 }
1085 
1086 static u32 nvme_known_admin_effects(u8 opcode)
1087 {
1088 	switch (opcode) {
1089 	case nvme_admin_format_nvm:
1090 		return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1091 					NVME_CMD_EFFECTS_CSE_MASK;
1092 	case nvme_admin_sanitize_nvm:
1093 		return NVME_CMD_EFFECTS_CSE_MASK;
1094 	default:
1095 		break;
1096 	}
1097 	return 0;
1098 }
1099 
1100 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1101 								u8 opcode)
1102 {
1103 	u32 effects = 0;
1104 
1105 	if (ns) {
1106 		if (ctrl->effects)
1107 			effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1108 		if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1109 			dev_warn(ctrl->device,
1110 				 "IO command:%02x has unhandled effects:%08x\n",
1111 				 opcode, effects);
1112 		return 0;
1113 	}
1114 
1115 	if (ctrl->effects)
1116 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1117 	else
1118 		effects = nvme_known_admin_effects(opcode);
1119 
1120 	/*
1121 	 * For simplicity, IO to all namespaces is quiesced even if the command
1122 	 * effects say only one namespace is affected.
1123 	 */
1124 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1125 		nvme_start_freeze(ctrl);
1126 		nvme_wait_freeze(ctrl);
1127 	}
1128 	return effects;
1129 }
1130 
1131 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1132 {
1133 	struct nvme_ns *ns, *next;
1134 	LIST_HEAD(rm_list);
1135 
1136 	down_write(&ctrl->namespaces_rwsem);
1137 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1138 		if (ns->disk && nvme_revalidate_disk(ns->disk)) {
1139 			list_move_tail(&ns->list, &rm_list);
1140 		}
1141 	}
1142 	up_write(&ctrl->namespaces_rwsem);
1143 
1144 	list_for_each_entry_safe(ns, next, &rm_list, list)
1145 		nvme_ns_remove(ns);
1146 }
1147 
1148 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1149 {
1150 	/*
1151 	 * Revalidate LBA changes prior to unfreezing. This is necessary to
1152 	 * prevent memory corruption if a logical block size was changed by
1153 	 * this command.
1154 	 */
1155 	if (effects & NVME_CMD_EFFECTS_LBCC)
1156 		nvme_update_formats(ctrl);
1157 	if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1158 		nvme_unfreeze(ctrl);
1159 	if (effects & NVME_CMD_EFFECTS_CCC)
1160 		nvme_init_identify(ctrl);
1161 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1162 		nvme_queue_scan(ctrl);
1163 }
1164 
1165 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1166 			struct nvme_passthru_cmd __user *ucmd)
1167 {
1168 	struct nvme_passthru_cmd cmd;
1169 	struct nvme_command c;
1170 	unsigned timeout = 0;
1171 	u32 effects;
1172 	int status;
1173 
1174 	if (!capable(CAP_SYS_ADMIN))
1175 		return -EACCES;
1176 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1177 		return -EFAULT;
1178 	if (cmd.flags)
1179 		return -EINVAL;
1180 
1181 	memset(&c, 0, sizeof(c));
1182 	c.common.opcode = cmd.opcode;
1183 	c.common.flags = cmd.flags;
1184 	c.common.nsid = cpu_to_le32(cmd.nsid);
1185 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1186 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1187 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1188 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1189 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1190 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1191 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1192 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1193 
1194 	if (cmd.timeout_ms)
1195 		timeout = msecs_to_jiffies(cmd.timeout_ms);
1196 
1197 	effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1198 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1199 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1200 			(void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1201 			0, &cmd.result, timeout);
1202 	nvme_passthru_end(ctrl, effects);
1203 
1204 	if (status >= 0) {
1205 		if (put_user(cmd.result, &ucmd->result))
1206 			return -EFAULT;
1207 	}
1208 
1209 	return status;
1210 }
1211 
1212 /*
1213  * Issue ioctl requests on the first available path.  Note that unlike normal
1214  * block layer requests we will not retry failed request on another controller.
1215  */
1216 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1217 		struct nvme_ns_head **head, int *srcu_idx)
1218 {
1219 #ifdef CONFIG_NVME_MULTIPATH
1220 	if (disk->fops == &nvme_ns_head_ops) {
1221 		*head = disk->private_data;
1222 		*srcu_idx = srcu_read_lock(&(*head)->srcu);
1223 		return nvme_find_path(*head);
1224 	}
1225 #endif
1226 	*head = NULL;
1227 	*srcu_idx = -1;
1228 	return disk->private_data;
1229 }
1230 
1231 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1232 {
1233 	if (head)
1234 		srcu_read_unlock(&head->srcu, idx);
1235 }
1236 
1237 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1238 {
1239 	switch (cmd) {
1240 	case NVME_IOCTL_ID:
1241 		force_successful_syscall_return();
1242 		return ns->head->ns_id;
1243 	case NVME_IOCTL_ADMIN_CMD:
1244 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1245 	case NVME_IOCTL_IO_CMD:
1246 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1247 	case NVME_IOCTL_SUBMIT_IO:
1248 		return nvme_submit_io(ns, (void __user *)arg);
1249 	default:
1250 #ifdef CONFIG_NVM
1251 		if (ns->ndev)
1252 			return nvme_nvm_ioctl(ns, cmd, arg);
1253 #endif
1254 		if (is_sed_ioctl(cmd))
1255 			return sed_ioctl(ns->ctrl->opal_dev, cmd,
1256 					 (void __user *) arg);
1257 		return -ENOTTY;
1258 	}
1259 }
1260 
1261 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1262 		unsigned int cmd, unsigned long arg)
1263 {
1264 	struct nvme_ns_head *head = NULL;
1265 	struct nvme_ns *ns;
1266 	int srcu_idx, ret;
1267 
1268 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1269 	if (unlikely(!ns))
1270 		ret = -EWOULDBLOCK;
1271 	else
1272 		ret = nvme_ns_ioctl(ns, cmd, arg);
1273 	nvme_put_ns_from_disk(head, srcu_idx);
1274 	return ret;
1275 }
1276 
1277 static int nvme_open(struct block_device *bdev, fmode_t mode)
1278 {
1279 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1280 
1281 #ifdef CONFIG_NVME_MULTIPATH
1282 	/* should never be called due to GENHD_FL_HIDDEN */
1283 	if (WARN_ON_ONCE(ns->head->disk))
1284 		goto fail;
1285 #endif
1286 	if (!kref_get_unless_zero(&ns->kref))
1287 		goto fail;
1288 	if (!try_module_get(ns->ctrl->ops->module))
1289 		goto fail_put_ns;
1290 
1291 	return 0;
1292 
1293 fail_put_ns:
1294 	nvme_put_ns(ns);
1295 fail:
1296 	return -ENXIO;
1297 }
1298 
1299 static void nvme_release(struct gendisk *disk, fmode_t mode)
1300 {
1301 	struct nvme_ns *ns = disk->private_data;
1302 
1303 	module_put(ns->ctrl->ops->module);
1304 	nvme_put_ns(ns);
1305 }
1306 
1307 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1308 {
1309 	/* some standard values */
1310 	geo->heads = 1 << 6;
1311 	geo->sectors = 1 << 5;
1312 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1313 	return 0;
1314 }
1315 
1316 #ifdef CONFIG_BLK_DEV_INTEGRITY
1317 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1318 {
1319 	struct blk_integrity integrity;
1320 
1321 	memset(&integrity, 0, sizeof(integrity));
1322 	switch (pi_type) {
1323 	case NVME_NS_DPS_PI_TYPE3:
1324 		integrity.profile = &t10_pi_type3_crc;
1325 		integrity.tag_size = sizeof(u16) + sizeof(u32);
1326 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1327 		break;
1328 	case NVME_NS_DPS_PI_TYPE1:
1329 	case NVME_NS_DPS_PI_TYPE2:
1330 		integrity.profile = &t10_pi_type1_crc;
1331 		integrity.tag_size = sizeof(u16);
1332 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1333 		break;
1334 	default:
1335 		integrity.profile = NULL;
1336 		break;
1337 	}
1338 	integrity.tuple_size = ms;
1339 	blk_integrity_register(disk, &integrity);
1340 	blk_queue_max_integrity_segments(disk->queue, 1);
1341 }
1342 #else
1343 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1344 {
1345 }
1346 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1347 
1348 static void nvme_set_chunk_size(struct nvme_ns *ns)
1349 {
1350 	u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1351 	blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1352 }
1353 
1354 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1355 		unsigned stream_alignment, struct request_queue *queue)
1356 {
1357 	u32 size = queue_logical_block_size(queue);
1358 
1359 	if (stream_alignment)
1360 		size *= stream_alignment;
1361 
1362 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1363 			NVME_DSM_MAX_RANGES);
1364 
1365 	queue->limits.discard_alignment = 0;
1366 	queue->limits.discard_granularity = size;
1367 
1368 	blk_queue_max_discard_sectors(queue, UINT_MAX);
1369 	blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1370 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, queue);
1371 
1372 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1373 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1374 }
1375 
1376 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1377 		struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1378 {
1379 	memset(ids, 0, sizeof(*ids));
1380 
1381 	if (ctrl->vs >= NVME_VS(1, 1, 0))
1382 		memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1383 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1384 		memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1385 	if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1386 		 /* Don't treat error as fatal we potentially
1387 		  * already have a NGUID or EUI-64
1388 		  */
1389 		if (nvme_identify_ns_descs(ctrl, nsid, ids))
1390 			dev_warn(ctrl->device,
1391 				 "%s: Identify Descriptors failed\n", __func__);
1392 	}
1393 }
1394 
1395 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1396 {
1397 	return !uuid_is_null(&ids->uuid) ||
1398 		memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1399 		memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1400 }
1401 
1402 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1403 {
1404 	return uuid_equal(&a->uuid, &b->uuid) &&
1405 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1406 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1407 }
1408 
1409 static void nvme_update_disk_info(struct gendisk *disk,
1410 		struct nvme_ns *ns, struct nvme_id_ns *id)
1411 {
1412 	sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1413 	unsigned short bs = 1 << ns->lba_shift;
1414 	unsigned stream_alignment = 0;
1415 
1416 	if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1417 		stream_alignment = ns->sws * ns->sgs;
1418 
1419 	blk_mq_freeze_queue(disk->queue);
1420 	blk_integrity_unregister(disk);
1421 
1422 	blk_queue_logical_block_size(disk->queue, bs);
1423 	blk_queue_physical_block_size(disk->queue, bs);
1424 	blk_queue_io_min(disk->queue, bs);
1425 
1426 	if (ns->ms && !ns->ext &&
1427 	    (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1428 		nvme_init_integrity(disk, ns->ms, ns->pi_type);
1429 	if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1430 		capacity = 0;
1431 	set_capacity(disk, capacity);
1432 
1433 	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1434 		nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1435 	blk_mq_unfreeze_queue(disk->queue);
1436 }
1437 
1438 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1439 {
1440 	struct nvme_ns *ns = disk->private_data;
1441 
1442 	/*
1443 	 * If identify namespace failed, use default 512 byte block size so
1444 	 * block layer can use before failing read/write for 0 capacity.
1445 	 */
1446 	ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1447 	if (ns->lba_shift == 0)
1448 		ns->lba_shift = 9;
1449 	ns->noiob = le16_to_cpu(id->noiob);
1450 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1451 	ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1452 	/* the PI implementation requires metadata equal t10 pi tuple size */
1453 	if (ns->ms == sizeof(struct t10_pi_tuple))
1454 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1455 	else
1456 		ns->pi_type = 0;
1457 
1458 	if (ns->noiob)
1459 		nvme_set_chunk_size(ns);
1460 	nvme_update_disk_info(disk, ns, id);
1461 	if (ns->ndev)
1462 		nvme_nvm_update_nvm_info(ns);
1463 #ifdef CONFIG_NVME_MULTIPATH
1464 	if (ns->head->disk)
1465 		nvme_update_disk_info(ns->head->disk, ns, id);
1466 #endif
1467 }
1468 
1469 static int nvme_revalidate_disk(struct gendisk *disk)
1470 {
1471 	struct nvme_ns *ns = disk->private_data;
1472 	struct nvme_ctrl *ctrl = ns->ctrl;
1473 	struct nvme_id_ns *id;
1474 	struct nvme_ns_ids ids;
1475 	int ret = 0;
1476 
1477 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1478 		set_capacity(disk, 0);
1479 		return -ENODEV;
1480 	}
1481 
1482 	id = nvme_identify_ns(ctrl, ns->head->ns_id);
1483 	if (!id)
1484 		return -ENODEV;
1485 
1486 	if (id->ncap == 0) {
1487 		ret = -ENODEV;
1488 		goto out;
1489 	}
1490 
1491 	__nvme_revalidate_disk(disk, id);
1492 	nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1493 	if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1494 		dev_err(ctrl->device,
1495 			"identifiers changed for nsid %d\n", ns->head->ns_id);
1496 		ret = -ENODEV;
1497 	}
1498 
1499 out:
1500 	kfree(id);
1501 	return ret;
1502 }
1503 
1504 static char nvme_pr_type(enum pr_type type)
1505 {
1506 	switch (type) {
1507 	case PR_WRITE_EXCLUSIVE:
1508 		return 1;
1509 	case PR_EXCLUSIVE_ACCESS:
1510 		return 2;
1511 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1512 		return 3;
1513 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1514 		return 4;
1515 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1516 		return 5;
1517 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1518 		return 6;
1519 	default:
1520 		return 0;
1521 	}
1522 };
1523 
1524 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1525 				u64 key, u64 sa_key, u8 op)
1526 {
1527 	struct nvme_ns_head *head = NULL;
1528 	struct nvme_ns *ns;
1529 	struct nvme_command c;
1530 	int srcu_idx, ret;
1531 	u8 data[16] = { 0, };
1532 
1533 	ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1534 	if (unlikely(!ns))
1535 		return -EWOULDBLOCK;
1536 
1537 	put_unaligned_le64(key, &data[0]);
1538 	put_unaligned_le64(sa_key, &data[8]);
1539 
1540 	memset(&c, 0, sizeof(c));
1541 	c.common.opcode = op;
1542 	c.common.nsid = cpu_to_le32(ns->head->ns_id);
1543 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1544 
1545 	ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1546 	nvme_put_ns_from_disk(head, srcu_idx);
1547 	return ret;
1548 }
1549 
1550 static int nvme_pr_register(struct block_device *bdev, u64 old,
1551 		u64 new, unsigned flags)
1552 {
1553 	u32 cdw10;
1554 
1555 	if (flags & ~PR_FL_IGNORE_KEY)
1556 		return -EOPNOTSUPP;
1557 
1558 	cdw10 = old ? 2 : 0;
1559 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1560 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1561 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1562 }
1563 
1564 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1565 		enum pr_type type, unsigned flags)
1566 {
1567 	u32 cdw10;
1568 
1569 	if (flags & ~PR_FL_IGNORE_KEY)
1570 		return -EOPNOTSUPP;
1571 
1572 	cdw10 = nvme_pr_type(type) << 8;
1573 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1574 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1575 }
1576 
1577 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1578 		enum pr_type type, bool abort)
1579 {
1580 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1581 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1582 }
1583 
1584 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1585 {
1586 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1587 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1588 }
1589 
1590 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1591 {
1592 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1593 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1594 }
1595 
1596 static const struct pr_ops nvme_pr_ops = {
1597 	.pr_register	= nvme_pr_register,
1598 	.pr_reserve	= nvme_pr_reserve,
1599 	.pr_release	= nvme_pr_release,
1600 	.pr_preempt	= nvme_pr_preempt,
1601 	.pr_clear	= nvme_pr_clear,
1602 };
1603 
1604 #ifdef CONFIG_BLK_SED_OPAL
1605 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1606 		bool send)
1607 {
1608 	struct nvme_ctrl *ctrl = data;
1609 	struct nvme_command cmd;
1610 
1611 	memset(&cmd, 0, sizeof(cmd));
1612 	if (send)
1613 		cmd.common.opcode = nvme_admin_security_send;
1614 	else
1615 		cmd.common.opcode = nvme_admin_security_recv;
1616 	cmd.common.nsid = 0;
1617 	cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1618 	cmd.common.cdw10[1] = cpu_to_le32(len);
1619 
1620 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1621 				      ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1622 }
1623 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1624 #endif /* CONFIG_BLK_SED_OPAL */
1625 
1626 static const struct block_device_operations nvme_fops = {
1627 	.owner		= THIS_MODULE,
1628 	.ioctl		= nvme_ioctl,
1629 	.compat_ioctl	= nvme_ioctl,
1630 	.open		= nvme_open,
1631 	.release	= nvme_release,
1632 	.getgeo		= nvme_getgeo,
1633 	.revalidate_disk= nvme_revalidate_disk,
1634 	.pr_ops		= &nvme_pr_ops,
1635 };
1636 
1637 #ifdef CONFIG_NVME_MULTIPATH
1638 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1639 {
1640 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
1641 
1642 	if (!kref_get_unless_zero(&head->ref))
1643 		return -ENXIO;
1644 	return 0;
1645 }
1646 
1647 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1648 {
1649 	nvme_put_ns_head(disk->private_data);
1650 }
1651 
1652 const struct block_device_operations nvme_ns_head_ops = {
1653 	.owner		= THIS_MODULE,
1654 	.open		= nvme_ns_head_open,
1655 	.release	= nvme_ns_head_release,
1656 	.ioctl		= nvme_ioctl,
1657 	.compat_ioctl	= nvme_ioctl,
1658 	.getgeo		= nvme_getgeo,
1659 	.pr_ops		= &nvme_pr_ops,
1660 };
1661 #endif /* CONFIG_NVME_MULTIPATH */
1662 
1663 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1664 {
1665 	unsigned long timeout =
1666 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1667 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1668 	int ret;
1669 
1670 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1671 		if (csts == ~0)
1672 			return -ENODEV;
1673 		if ((csts & NVME_CSTS_RDY) == bit)
1674 			break;
1675 
1676 		msleep(100);
1677 		if (fatal_signal_pending(current))
1678 			return -EINTR;
1679 		if (time_after(jiffies, timeout)) {
1680 			dev_err(ctrl->device,
1681 				"Device not ready; aborting %s\n", enabled ?
1682 						"initialisation" : "reset");
1683 			return -ENODEV;
1684 		}
1685 	}
1686 
1687 	return ret;
1688 }
1689 
1690 /*
1691  * If the device has been passed off to us in an enabled state, just clear
1692  * the enabled bit.  The spec says we should set the 'shutdown notification
1693  * bits', but doing so may cause the device to complete commands to the
1694  * admin queue ... and we don't know what memory that might be pointing at!
1695  */
1696 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1697 {
1698 	int ret;
1699 
1700 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1701 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1702 
1703 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1704 	if (ret)
1705 		return ret;
1706 
1707 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1708 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1709 
1710 	return nvme_wait_ready(ctrl, cap, false);
1711 }
1712 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1713 
1714 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1715 {
1716 	/*
1717 	 * Default to a 4K page size, with the intention to update this
1718 	 * path in the future to accomodate architectures with differing
1719 	 * kernel and IO page sizes.
1720 	 */
1721 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1722 	int ret;
1723 
1724 	if (page_shift < dev_page_min) {
1725 		dev_err(ctrl->device,
1726 			"Minimum device page size %u too large for host (%u)\n",
1727 			1 << dev_page_min, 1 << page_shift);
1728 		return -ENODEV;
1729 	}
1730 
1731 	ctrl->page_size = 1 << page_shift;
1732 
1733 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1734 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1735 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1736 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1737 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1738 
1739 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1740 	if (ret)
1741 		return ret;
1742 	return nvme_wait_ready(ctrl, cap, true);
1743 }
1744 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1745 
1746 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1747 {
1748 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1749 	u32 csts;
1750 	int ret;
1751 
1752 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1753 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1754 
1755 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1756 	if (ret)
1757 		return ret;
1758 
1759 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1760 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1761 			break;
1762 
1763 		msleep(100);
1764 		if (fatal_signal_pending(current))
1765 			return -EINTR;
1766 		if (time_after(jiffies, timeout)) {
1767 			dev_err(ctrl->device,
1768 				"Device shutdown incomplete; abort shutdown\n");
1769 			return -ENODEV;
1770 		}
1771 	}
1772 
1773 	return ret;
1774 }
1775 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1776 
1777 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1778 		struct request_queue *q)
1779 {
1780 	bool vwc = false;
1781 
1782 	if (ctrl->max_hw_sectors) {
1783 		u32 max_segments =
1784 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1785 
1786 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1787 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1788 	}
1789 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1790 	    is_power_of_2(ctrl->max_hw_sectors))
1791 		blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1792 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1793 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1794 		vwc = true;
1795 	blk_queue_write_cache(q, vwc, vwc);
1796 }
1797 
1798 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1799 {
1800 	__le64 ts;
1801 	int ret;
1802 
1803 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1804 		return 0;
1805 
1806 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1807 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1808 			NULL);
1809 	if (ret)
1810 		dev_warn_once(ctrl->device,
1811 			"could not set timestamp (%d)\n", ret);
1812 	return ret;
1813 }
1814 
1815 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1816 {
1817 	/*
1818 	 * APST (Autonomous Power State Transition) lets us program a
1819 	 * table of power state transitions that the controller will
1820 	 * perform automatically.  We configure it with a simple
1821 	 * heuristic: we are willing to spend at most 2% of the time
1822 	 * transitioning between power states.  Therefore, when running
1823 	 * in any given state, we will enter the next lower-power
1824 	 * non-operational state after waiting 50 * (enlat + exlat)
1825 	 * microseconds, as long as that state's exit latency is under
1826 	 * the requested maximum latency.
1827 	 *
1828 	 * We will not autonomously enter any non-operational state for
1829 	 * which the total latency exceeds ps_max_latency_us.  Users
1830 	 * can set ps_max_latency_us to zero to turn off APST.
1831 	 */
1832 
1833 	unsigned apste;
1834 	struct nvme_feat_auto_pst *table;
1835 	u64 max_lat_us = 0;
1836 	int max_ps = -1;
1837 	int ret;
1838 
1839 	/*
1840 	 * If APST isn't supported or if we haven't been initialized yet,
1841 	 * then don't do anything.
1842 	 */
1843 	if (!ctrl->apsta)
1844 		return 0;
1845 
1846 	if (ctrl->npss > 31) {
1847 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1848 		return 0;
1849 	}
1850 
1851 	table = kzalloc(sizeof(*table), GFP_KERNEL);
1852 	if (!table)
1853 		return 0;
1854 
1855 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1856 		/* Turn off APST. */
1857 		apste = 0;
1858 		dev_dbg(ctrl->device, "APST disabled\n");
1859 	} else {
1860 		__le64 target = cpu_to_le64(0);
1861 		int state;
1862 
1863 		/*
1864 		 * Walk through all states from lowest- to highest-power.
1865 		 * According to the spec, lower-numbered states use more
1866 		 * power.  NPSS, despite the name, is the index of the
1867 		 * lowest-power state, not the number of states.
1868 		 */
1869 		for (state = (int)ctrl->npss; state >= 0; state--) {
1870 			u64 total_latency_us, exit_latency_us, transition_ms;
1871 
1872 			if (target)
1873 				table->entries[state] = target;
1874 
1875 			/*
1876 			 * Don't allow transitions to the deepest state
1877 			 * if it's quirked off.
1878 			 */
1879 			if (state == ctrl->npss &&
1880 			    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1881 				continue;
1882 
1883 			/*
1884 			 * Is this state a useful non-operational state for
1885 			 * higher-power states to autonomously transition to?
1886 			 */
1887 			if (!(ctrl->psd[state].flags &
1888 			      NVME_PS_FLAGS_NON_OP_STATE))
1889 				continue;
1890 
1891 			exit_latency_us =
1892 				(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1893 			if (exit_latency_us > ctrl->ps_max_latency_us)
1894 				continue;
1895 
1896 			total_latency_us =
1897 				exit_latency_us +
1898 				le32_to_cpu(ctrl->psd[state].entry_lat);
1899 
1900 			/*
1901 			 * This state is good.  Use it as the APST idle
1902 			 * target for higher power states.
1903 			 */
1904 			transition_ms = total_latency_us + 19;
1905 			do_div(transition_ms, 20);
1906 			if (transition_ms > (1 << 24) - 1)
1907 				transition_ms = (1 << 24) - 1;
1908 
1909 			target = cpu_to_le64((state << 3) |
1910 					     (transition_ms << 8));
1911 
1912 			if (max_ps == -1)
1913 				max_ps = state;
1914 
1915 			if (total_latency_us > max_lat_us)
1916 				max_lat_us = total_latency_us;
1917 		}
1918 
1919 		apste = 1;
1920 
1921 		if (max_ps == -1) {
1922 			dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1923 		} else {
1924 			dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1925 				max_ps, max_lat_us, (int)sizeof(*table), table);
1926 		}
1927 	}
1928 
1929 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1930 				table, sizeof(*table), NULL);
1931 	if (ret)
1932 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1933 
1934 	kfree(table);
1935 	return ret;
1936 }
1937 
1938 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1939 {
1940 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1941 	u64 latency;
1942 
1943 	switch (val) {
1944 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1945 	case PM_QOS_LATENCY_ANY:
1946 		latency = U64_MAX;
1947 		break;
1948 
1949 	default:
1950 		latency = val;
1951 	}
1952 
1953 	if (ctrl->ps_max_latency_us != latency) {
1954 		ctrl->ps_max_latency_us = latency;
1955 		nvme_configure_apst(ctrl);
1956 	}
1957 }
1958 
1959 struct nvme_core_quirk_entry {
1960 	/*
1961 	 * NVMe model and firmware strings are padded with spaces.  For
1962 	 * simplicity, strings in the quirk table are padded with NULLs
1963 	 * instead.
1964 	 */
1965 	u16 vid;
1966 	const char *mn;
1967 	const char *fr;
1968 	unsigned long quirks;
1969 };
1970 
1971 static const struct nvme_core_quirk_entry core_quirks[] = {
1972 	{
1973 		/*
1974 		 * This Toshiba device seems to die using any APST states.  See:
1975 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1976 		 */
1977 		.vid = 0x1179,
1978 		.mn = "THNSF5256GPUK TOSHIBA",
1979 		.quirks = NVME_QUIRK_NO_APST,
1980 	}
1981 };
1982 
1983 /* match is null-terminated but idstr is space-padded. */
1984 static bool string_matches(const char *idstr, const char *match, size_t len)
1985 {
1986 	size_t matchlen;
1987 
1988 	if (!match)
1989 		return true;
1990 
1991 	matchlen = strlen(match);
1992 	WARN_ON_ONCE(matchlen > len);
1993 
1994 	if (memcmp(idstr, match, matchlen))
1995 		return false;
1996 
1997 	for (; matchlen < len; matchlen++)
1998 		if (idstr[matchlen] != ' ')
1999 			return false;
2000 
2001 	return true;
2002 }
2003 
2004 static bool quirk_matches(const struct nvme_id_ctrl *id,
2005 			  const struct nvme_core_quirk_entry *q)
2006 {
2007 	return q->vid == le16_to_cpu(id->vid) &&
2008 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2009 		string_matches(id->fr, q->fr, sizeof(id->fr));
2010 }
2011 
2012 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2013 		struct nvme_id_ctrl *id)
2014 {
2015 	size_t nqnlen;
2016 	int off;
2017 
2018 	nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2019 	if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2020 		strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2021 		return;
2022 	}
2023 
2024 	if (ctrl->vs >= NVME_VS(1, 2, 1))
2025 		dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2026 
2027 	/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2028 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2029 			"nqn.2014.08.org.nvmexpress:%4x%4x",
2030 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2031 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2032 	off += sizeof(id->sn);
2033 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2034 	off += sizeof(id->mn);
2035 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2036 }
2037 
2038 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2039 {
2040 	ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2041 	kfree(subsys);
2042 }
2043 
2044 static void nvme_release_subsystem(struct device *dev)
2045 {
2046 	__nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2047 }
2048 
2049 static void nvme_destroy_subsystem(struct kref *ref)
2050 {
2051 	struct nvme_subsystem *subsys =
2052 			container_of(ref, struct nvme_subsystem, ref);
2053 
2054 	mutex_lock(&nvme_subsystems_lock);
2055 	list_del(&subsys->entry);
2056 	mutex_unlock(&nvme_subsystems_lock);
2057 
2058 	ida_destroy(&subsys->ns_ida);
2059 	device_del(&subsys->dev);
2060 	put_device(&subsys->dev);
2061 }
2062 
2063 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2064 {
2065 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2066 }
2067 
2068 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2069 {
2070 	struct nvme_subsystem *subsys;
2071 
2072 	lockdep_assert_held(&nvme_subsystems_lock);
2073 
2074 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2075 		if (strcmp(subsys->subnqn, subsysnqn))
2076 			continue;
2077 		if (!kref_get_unless_zero(&subsys->ref))
2078 			continue;
2079 		return subsys;
2080 	}
2081 
2082 	return NULL;
2083 }
2084 
2085 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2086 	struct device_attribute subsys_attr_##_name = \
2087 		__ATTR(_name, _mode, _show, NULL)
2088 
2089 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2090 				    struct device_attribute *attr,
2091 				    char *buf)
2092 {
2093 	struct nvme_subsystem *subsys =
2094 		container_of(dev, struct nvme_subsystem, dev);
2095 
2096 	return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2097 }
2098 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2099 
2100 #define nvme_subsys_show_str_function(field)				\
2101 static ssize_t subsys_##field##_show(struct device *dev,		\
2102 			    struct device_attribute *attr, char *buf)	\
2103 {									\
2104 	struct nvme_subsystem *subsys =					\
2105 		container_of(dev, struct nvme_subsystem, dev);		\
2106 	return sprintf(buf, "%.*s\n",					\
2107 		       (int)sizeof(subsys->field), subsys->field);	\
2108 }									\
2109 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2110 
2111 nvme_subsys_show_str_function(model);
2112 nvme_subsys_show_str_function(serial);
2113 nvme_subsys_show_str_function(firmware_rev);
2114 
2115 static struct attribute *nvme_subsys_attrs[] = {
2116 	&subsys_attr_model.attr,
2117 	&subsys_attr_serial.attr,
2118 	&subsys_attr_firmware_rev.attr,
2119 	&subsys_attr_subsysnqn.attr,
2120 	NULL,
2121 };
2122 
2123 static struct attribute_group nvme_subsys_attrs_group = {
2124 	.attrs = nvme_subsys_attrs,
2125 };
2126 
2127 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2128 	&nvme_subsys_attrs_group,
2129 	NULL,
2130 };
2131 
2132 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2133 {
2134 	int count = 0;
2135 	struct nvme_ctrl *ctrl;
2136 
2137 	mutex_lock(&subsys->lock);
2138 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2139 		if (ctrl->state != NVME_CTRL_DELETING &&
2140 		    ctrl->state != NVME_CTRL_DEAD)
2141 			count++;
2142 	}
2143 	mutex_unlock(&subsys->lock);
2144 
2145 	return count;
2146 }
2147 
2148 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2149 {
2150 	struct nvme_subsystem *subsys, *found;
2151 	int ret;
2152 
2153 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2154 	if (!subsys)
2155 		return -ENOMEM;
2156 	ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2157 	if (ret < 0) {
2158 		kfree(subsys);
2159 		return ret;
2160 	}
2161 	subsys->instance = ret;
2162 	mutex_init(&subsys->lock);
2163 	kref_init(&subsys->ref);
2164 	INIT_LIST_HEAD(&subsys->ctrls);
2165 	INIT_LIST_HEAD(&subsys->nsheads);
2166 	nvme_init_subnqn(subsys, ctrl, id);
2167 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2168 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2169 	memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2170 	subsys->vendor_id = le16_to_cpu(id->vid);
2171 	subsys->cmic = id->cmic;
2172 
2173 	subsys->dev.class = nvme_subsys_class;
2174 	subsys->dev.release = nvme_release_subsystem;
2175 	subsys->dev.groups = nvme_subsys_attrs_groups;
2176 	dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2177 	device_initialize(&subsys->dev);
2178 
2179 	mutex_lock(&nvme_subsystems_lock);
2180 	found = __nvme_find_get_subsystem(subsys->subnqn);
2181 	if (found) {
2182 		/*
2183 		 * Verify that the subsystem actually supports multiple
2184 		 * controllers, else bail out.
2185 		 */
2186 		if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2187 			dev_err(ctrl->device,
2188 				"ignoring ctrl due to duplicate subnqn (%s).\n",
2189 				found->subnqn);
2190 			nvme_put_subsystem(found);
2191 			ret = -EINVAL;
2192 			goto out_unlock;
2193 		}
2194 
2195 		__nvme_release_subsystem(subsys);
2196 		subsys = found;
2197 	} else {
2198 		ret = device_add(&subsys->dev);
2199 		if (ret) {
2200 			dev_err(ctrl->device,
2201 				"failed to register subsystem device.\n");
2202 			goto out_unlock;
2203 		}
2204 		ida_init(&subsys->ns_ida);
2205 		list_add_tail(&subsys->entry, &nvme_subsystems);
2206 	}
2207 
2208 	ctrl->subsys = subsys;
2209 	mutex_unlock(&nvme_subsystems_lock);
2210 
2211 	if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2212 			dev_name(ctrl->device))) {
2213 		dev_err(ctrl->device,
2214 			"failed to create sysfs link from subsystem.\n");
2215 		/* the transport driver will eventually put the subsystem */
2216 		return -EINVAL;
2217 	}
2218 
2219 	mutex_lock(&subsys->lock);
2220 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2221 	mutex_unlock(&subsys->lock);
2222 
2223 	return 0;
2224 
2225 out_unlock:
2226 	mutex_unlock(&nvme_subsystems_lock);
2227 	put_device(&subsys->dev);
2228 	return ret;
2229 }
2230 
2231 int nvme_get_log_ext(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
2232 		     u8 log_page, void *log,
2233 		     size_t size, u64 offset)
2234 {
2235 	struct nvme_command c = { };
2236 	unsigned long dwlen = size / 4 - 1;
2237 
2238 	c.get_log_page.opcode = nvme_admin_get_log_page;
2239 
2240 	if (ns)
2241 		c.get_log_page.nsid = cpu_to_le32(ns->head->ns_id);
2242 	else
2243 		c.get_log_page.nsid = cpu_to_le32(NVME_NSID_ALL);
2244 
2245 	c.get_log_page.lid = log_page;
2246 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2247 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2248 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2249 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2250 
2251 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2252 }
2253 
2254 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2255 			size_t size)
2256 {
2257 	return nvme_get_log_ext(ctrl, NULL, log_page, log, size, 0);
2258 }
2259 
2260 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2261 {
2262 	int ret;
2263 
2264 	if (!ctrl->effects)
2265 		ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2266 
2267 	if (!ctrl->effects)
2268 		return 0;
2269 
2270 	ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2271 					sizeof(*ctrl->effects));
2272 	if (ret) {
2273 		kfree(ctrl->effects);
2274 		ctrl->effects = NULL;
2275 	}
2276 	return ret;
2277 }
2278 
2279 /*
2280  * Initialize the cached copies of the Identify data and various controller
2281  * register in our nvme_ctrl structure.  This should be called as soon as
2282  * the admin queue is fully up and running.
2283  */
2284 int nvme_init_identify(struct nvme_ctrl *ctrl)
2285 {
2286 	struct nvme_id_ctrl *id;
2287 	u64 cap;
2288 	int ret, page_shift;
2289 	u32 max_hw_sectors;
2290 	bool prev_apst_enabled;
2291 
2292 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2293 	if (ret) {
2294 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2295 		return ret;
2296 	}
2297 
2298 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2299 	if (ret) {
2300 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2301 		return ret;
2302 	}
2303 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
2304 
2305 	if (ctrl->vs >= NVME_VS(1, 1, 0))
2306 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
2307 
2308 	ret = nvme_identify_ctrl(ctrl, &id);
2309 	if (ret) {
2310 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2311 		return -EIO;
2312 	}
2313 
2314 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2315 		ret = nvme_get_effects_log(ctrl);
2316 		if (ret < 0)
2317 			return ret;
2318 	}
2319 
2320 	if (!ctrl->identified) {
2321 		int i;
2322 
2323 		ret = nvme_init_subsystem(ctrl, id);
2324 		if (ret)
2325 			goto out_free;
2326 
2327 		/*
2328 		 * Check for quirks.  Quirk can depend on firmware version,
2329 		 * so, in principle, the set of quirks present can change
2330 		 * across a reset.  As a possible future enhancement, we
2331 		 * could re-scan for quirks every time we reinitialize
2332 		 * the device, but we'd have to make sure that the driver
2333 		 * behaves intelligently if the quirks change.
2334 		 */
2335 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2336 			if (quirk_matches(id, &core_quirks[i]))
2337 				ctrl->quirks |= core_quirks[i].quirks;
2338 		}
2339 	}
2340 
2341 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2342 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2343 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2344 	}
2345 
2346 	ctrl->oacs = le16_to_cpu(id->oacs);
2347 	ctrl->oncs = le16_to_cpup(&id->oncs);
2348 	atomic_set(&ctrl->abort_limit, id->acl + 1);
2349 	ctrl->vwc = id->vwc;
2350 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
2351 	if (id->mdts)
2352 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2353 	else
2354 		max_hw_sectors = UINT_MAX;
2355 	ctrl->max_hw_sectors =
2356 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2357 
2358 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
2359 	ctrl->sgls = le32_to_cpu(id->sgls);
2360 	ctrl->kas = le16_to_cpu(id->kas);
2361 
2362 	if (id->rtd3e) {
2363 		/* us -> s */
2364 		u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2365 
2366 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2367 						 shutdown_timeout, 60);
2368 
2369 		if (ctrl->shutdown_timeout != shutdown_timeout)
2370 			dev_info(ctrl->device,
2371 				 "Shutdown timeout set to %u seconds\n",
2372 				 ctrl->shutdown_timeout);
2373 	} else
2374 		ctrl->shutdown_timeout = shutdown_timeout;
2375 
2376 	ctrl->npss = id->npss;
2377 	ctrl->apsta = id->apsta;
2378 	prev_apst_enabled = ctrl->apst_enabled;
2379 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2380 		if (force_apst && id->apsta) {
2381 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2382 			ctrl->apst_enabled = true;
2383 		} else {
2384 			ctrl->apst_enabled = false;
2385 		}
2386 	} else {
2387 		ctrl->apst_enabled = id->apsta;
2388 	}
2389 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2390 
2391 	if (ctrl->ops->flags & NVME_F_FABRICS) {
2392 		ctrl->icdoff = le16_to_cpu(id->icdoff);
2393 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2394 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2395 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2396 
2397 		/*
2398 		 * In fabrics we need to verify the cntlid matches the
2399 		 * admin connect
2400 		 */
2401 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2402 			ret = -EINVAL;
2403 			goto out_free;
2404 		}
2405 
2406 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2407 			dev_err(ctrl->device,
2408 				"keep-alive support is mandatory for fabrics\n");
2409 			ret = -EINVAL;
2410 			goto out_free;
2411 		}
2412 	} else {
2413 		ctrl->cntlid = le16_to_cpu(id->cntlid);
2414 		ctrl->hmpre = le32_to_cpu(id->hmpre);
2415 		ctrl->hmmin = le32_to_cpu(id->hmmin);
2416 		ctrl->hmminds = le32_to_cpu(id->hmminds);
2417 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2418 	}
2419 
2420 	kfree(id);
2421 
2422 	if (ctrl->apst_enabled && !prev_apst_enabled)
2423 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
2424 	else if (!ctrl->apst_enabled && prev_apst_enabled)
2425 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
2426 
2427 	ret = nvme_configure_apst(ctrl);
2428 	if (ret < 0)
2429 		return ret;
2430 
2431 	ret = nvme_configure_timestamp(ctrl);
2432 	if (ret < 0)
2433 		return ret;
2434 
2435 	ret = nvme_configure_directives(ctrl);
2436 	if (ret < 0)
2437 		return ret;
2438 
2439 	ctrl->identified = true;
2440 
2441 	return 0;
2442 
2443 out_free:
2444 	kfree(id);
2445 	return ret;
2446 }
2447 EXPORT_SYMBOL_GPL(nvme_init_identify);
2448 
2449 static int nvme_dev_open(struct inode *inode, struct file *file)
2450 {
2451 	struct nvme_ctrl *ctrl =
2452 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2453 
2454 	switch (ctrl->state) {
2455 	case NVME_CTRL_LIVE:
2456 	case NVME_CTRL_ADMIN_ONLY:
2457 		break;
2458 	default:
2459 		return -EWOULDBLOCK;
2460 	}
2461 
2462 	file->private_data = ctrl;
2463 	return 0;
2464 }
2465 
2466 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2467 {
2468 	struct nvme_ns *ns;
2469 	int ret;
2470 
2471 	down_read(&ctrl->namespaces_rwsem);
2472 	if (list_empty(&ctrl->namespaces)) {
2473 		ret = -ENOTTY;
2474 		goto out_unlock;
2475 	}
2476 
2477 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2478 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2479 		dev_warn(ctrl->device,
2480 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2481 		ret = -EINVAL;
2482 		goto out_unlock;
2483 	}
2484 
2485 	dev_warn(ctrl->device,
2486 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2487 	kref_get(&ns->kref);
2488 	up_read(&ctrl->namespaces_rwsem);
2489 
2490 	ret = nvme_user_cmd(ctrl, ns, argp);
2491 	nvme_put_ns(ns);
2492 	return ret;
2493 
2494 out_unlock:
2495 	up_read(&ctrl->namespaces_rwsem);
2496 	return ret;
2497 }
2498 
2499 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2500 		unsigned long arg)
2501 {
2502 	struct nvme_ctrl *ctrl = file->private_data;
2503 	void __user *argp = (void __user *)arg;
2504 
2505 	switch (cmd) {
2506 	case NVME_IOCTL_ADMIN_CMD:
2507 		return nvme_user_cmd(ctrl, NULL, argp);
2508 	case NVME_IOCTL_IO_CMD:
2509 		return nvme_dev_user_cmd(ctrl, argp);
2510 	case NVME_IOCTL_RESET:
2511 		dev_warn(ctrl->device, "resetting controller\n");
2512 		return nvme_reset_ctrl_sync(ctrl);
2513 	case NVME_IOCTL_SUBSYS_RESET:
2514 		return nvme_reset_subsystem(ctrl);
2515 	case NVME_IOCTL_RESCAN:
2516 		nvme_queue_scan(ctrl);
2517 		return 0;
2518 	default:
2519 		return -ENOTTY;
2520 	}
2521 }
2522 
2523 static const struct file_operations nvme_dev_fops = {
2524 	.owner		= THIS_MODULE,
2525 	.open		= nvme_dev_open,
2526 	.unlocked_ioctl	= nvme_dev_ioctl,
2527 	.compat_ioctl	= nvme_dev_ioctl,
2528 };
2529 
2530 static ssize_t nvme_sysfs_reset(struct device *dev,
2531 				struct device_attribute *attr, const char *buf,
2532 				size_t count)
2533 {
2534 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2535 	int ret;
2536 
2537 	ret = nvme_reset_ctrl_sync(ctrl);
2538 	if (ret < 0)
2539 		return ret;
2540 	return count;
2541 }
2542 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2543 
2544 static ssize_t nvme_sysfs_rescan(struct device *dev,
2545 				struct device_attribute *attr, const char *buf,
2546 				size_t count)
2547 {
2548 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2549 
2550 	nvme_queue_scan(ctrl);
2551 	return count;
2552 }
2553 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2554 
2555 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2556 {
2557 	struct gendisk *disk = dev_to_disk(dev);
2558 
2559 	if (disk->fops == &nvme_fops)
2560 		return nvme_get_ns_from_dev(dev)->head;
2561 	else
2562 		return disk->private_data;
2563 }
2564 
2565 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2566 		char *buf)
2567 {
2568 	struct nvme_ns_head *head = dev_to_ns_head(dev);
2569 	struct nvme_ns_ids *ids = &head->ids;
2570 	struct nvme_subsystem *subsys = head->subsys;
2571 	int serial_len = sizeof(subsys->serial);
2572 	int model_len = sizeof(subsys->model);
2573 
2574 	if (!uuid_is_null(&ids->uuid))
2575 		return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2576 
2577 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2578 		return sprintf(buf, "eui.%16phN\n", ids->nguid);
2579 
2580 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2581 		return sprintf(buf, "eui.%8phN\n", ids->eui64);
2582 
2583 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2584 				  subsys->serial[serial_len - 1] == '\0'))
2585 		serial_len--;
2586 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2587 				 subsys->model[model_len - 1] == '\0'))
2588 		model_len--;
2589 
2590 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2591 		serial_len, subsys->serial, model_len, subsys->model,
2592 		head->ns_id);
2593 }
2594 static DEVICE_ATTR_RO(wwid);
2595 
2596 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2597 		char *buf)
2598 {
2599 	return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2600 }
2601 static DEVICE_ATTR_RO(nguid);
2602 
2603 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2604 		char *buf)
2605 {
2606 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2607 
2608 	/* For backward compatibility expose the NGUID to userspace if
2609 	 * we have no UUID set
2610 	 */
2611 	if (uuid_is_null(&ids->uuid)) {
2612 		printk_ratelimited(KERN_WARNING
2613 				   "No UUID available providing old NGUID\n");
2614 		return sprintf(buf, "%pU\n", ids->nguid);
2615 	}
2616 	return sprintf(buf, "%pU\n", &ids->uuid);
2617 }
2618 static DEVICE_ATTR_RO(uuid);
2619 
2620 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2621 		char *buf)
2622 {
2623 	return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2624 }
2625 static DEVICE_ATTR_RO(eui);
2626 
2627 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2628 		char *buf)
2629 {
2630 	return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2631 }
2632 static DEVICE_ATTR_RO(nsid);
2633 
2634 static struct attribute *nvme_ns_id_attrs[] = {
2635 	&dev_attr_wwid.attr,
2636 	&dev_attr_uuid.attr,
2637 	&dev_attr_nguid.attr,
2638 	&dev_attr_eui.attr,
2639 	&dev_attr_nsid.attr,
2640 	NULL,
2641 };
2642 
2643 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2644 		struct attribute *a, int n)
2645 {
2646 	struct device *dev = container_of(kobj, struct device, kobj);
2647 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2648 
2649 	if (a == &dev_attr_uuid.attr) {
2650 		if (uuid_is_null(&ids->uuid) &&
2651 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2652 			return 0;
2653 	}
2654 	if (a == &dev_attr_nguid.attr) {
2655 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2656 			return 0;
2657 	}
2658 	if (a == &dev_attr_eui.attr) {
2659 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2660 			return 0;
2661 	}
2662 	return a->mode;
2663 }
2664 
2665 const struct attribute_group nvme_ns_id_attr_group = {
2666 	.attrs		= nvme_ns_id_attrs,
2667 	.is_visible	= nvme_ns_id_attrs_are_visible,
2668 };
2669 
2670 #define nvme_show_str_function(field)						\
2671 static ssize_t  field##_show(struct device *dev,				\
2672 			    struct device_attribute *attr, char *buf)		\
2673 {										\
2674         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2675         return sprintf(buf, "%.*s\n",						\
2676 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
2677 }										\
2678 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2679 
2680 nvme_show_str_function(model);
2681 nvme_show_str_function(serial);
2682 nvme_show_str_function(firmware_rev);
2683 
2684 #define nvme_show_int_function(field)						\
2685 static ssize_t  field##_show(struct device *dev,				\
2686 			    struct device_attribute *attr, char *buf)		\
2687 {										\
2688         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
2689         return sprintf(buf, "%d\n", ctrl->field);	\
2690 }										\
2691 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2692 
2693 nvme_show_int_function(cntlid);
2694 
2695 static ssize_t nvme_sysfs_delete(struct device *dev,
2696 				struct device_attribute *attr, const char *buf,
2697 				size_t count)
2698 {
2699 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2700 
2701 	if (device_remove_file_self(dev, attr))
2702 		nvme_delete_ctrl_sync(ctrl);
2703 	return count;
2704 }
2705 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2706 
2707 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2708 					 struct device_attribute *attr,
2709 					 char *buf)
2710 {
2711 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2712 
2713 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2714 }
2715 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2716 
2717 static ssize_t nvme_sysfs_show_state(struct device *dev,
2718 				     struct device_attribute *attr,
2719 				     char *buf)
2720 {
2721 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2722 	static const char *const state_name[] = {
2723 		[NVME_CTRL_NEW]		= "new",
2724 		[NVME_CTRL_LIVE]	= "live",
2725 		[NVME_CTRL_ADMIN_ONLY]	= "only-admin",
2726 		[NVME_CTRL_RESETTING]	= "resetting",
2727 		[NVME_CTRL_CONNECTING]	= "connecting",
2728 		[NVME_CTRL_DELETING]	= "deleting",
2729 		[NVME_CTRL_DEAD]	= "dead",
2730 	};
2731 
2732 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2733 	    state_name[ctrl->state])
2734 		return sprintf(buf, "%s\n", state_name[ctrl->state]);
2735 
2736 	return sprintf(buf, "unknown state\n");
2737 }
2738 
2739 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2740 
2741 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2742 					 struct device_attribute *attr,
2743 					 char *buf)
2744 {
2745 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2746 
2747 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2748 }
2749 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2750 
2751 static ssize_t nvme_sysfs_show_address(struct device *dev,
2752 					 struct device_attribute *attr,
2753 					 char *buf)
2754 {
2755 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2756 
2757 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2758 }
2759 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2760 
2761 static struct attribute *nvme_dev_attrs[] = {
2762 	&dev_attr_reset_controller.attr,
2763 	&dev_attr_rescan_controller.attr,
2764 	&dev_attr_model.attr,
2765 	&dev_attr_serial.attr,
2766 	&dev_attr_firmware_rev.attr,
2767 	&dev_attr_cntlid.attr,
2768 	&dev_attr_delete_controller.attr,
2769 	&dev_attr_transport.attr,
2770 	&dev_attr_subsysnqn.attr,
2771 	&dev_attr_address.attr,
2772 	&dev_attr_state.attr,
2773 	NULL
2774 };
2775 
2776 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2777 		struct attribute *a, int n)
2778 {
2779 	struct device *dev = container_of(kobj, struct device, kobj);
2780 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2781 
2782 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2783 		return 0;
2784 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2785 		return 0;
2786 
2787 	return a->mode;
2788 }
2789 
2790 static struct attribute_group nvme_dev_attrs_group = {
2791 	.attrs		= nvme_dev_attrs,
2792 	.is_visible	= nvme_dev_attrs_are_visible,
2793 };
2794 
2795 static const struct attribute_group *nvme_dev_attr_groups[] = {
2796 	&nvme_dev_attrs_group,
2797 	NULL,
2798 };
2799 
2800 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2801 		unsigned nsid)
2802 {
2803 	struct nvme_ns_head *h;
2804 
2805 	lockdep_assert_held(&subsys->lock);
2806 
2807 	list_for_each_entry(h, &subsys->nsheads, entry) {
2808 		if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2809 			return h;
2810 	}
2811 
2812 	return NULL;
2813 }
2814 
2815 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2816 		struct nvme_ns_head *new)
2817 {
2818 	struct nvme_ns_head *h;
2819 
2820 	lockdep_assert_held(&subsys->lock);
2821 
2822 	list_for_each_entry(h, &subsys->nsheads, entry) {
2823 		if (nvme_ns_ids_valid(&new->ids) &&
2824 		    !list_empty(&h->list) &&
2825 		    nvme_ns_ids_equal(&new->ids, &h->ids))
2826 			return -EINVAL;
2827 	}
2828 
2829 	return 0;
2830 }
2831 
2832 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2833 		unsigned nsid, struct nvme_id_ns *id)
2834 {
2835 	struct nvme_ns_head *head;
2836 	int ret = -ENOMEM;
2837 
2838 	head = kzalloc(sizeof(*head), GFP_KERNEL);
2839 	if (!head)
2840 		goto out;
2841 	ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2842 	if (ret < 0)
2843 		goto out_free_head;
2844 	head->instance = ret;
2845 	INIT_LIST_HEAD(&head->list);
2846 	ret = init_srcu_struct(&head->srcu);
2847 	if (ret)
2848 		goto out_ida_remove;
2849 	head->subsys = ctrl->subsys;
2850 	head->ns_id = nsid;
2851 	kref_init(&head->ref);
2852 
2853 	nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2854 
2855 	ret = __nvme_check_ids(ctrl->subsys, head);
2856 	if (ret) {
2857 		dev_err(ctrl->device,
2858 			"duplicate IDs for nsid %d\n", nsid);
2859 		goto out_cleanup_srcu;
2860 	}
2861 
2862 	ret = nvme_mpath_alloc_disk(ctrl, head);
2863 	if (ret)
2864 		goto out_cleanup_srcu;
2865 
2866 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2867 
2868 	kref_get(&ctrl->subsys->ref);
2869 
2870 	return head;
2871 out_cleanup_srcu:
2872 	cleanup_srcu_struct(&head->srcu);
2873 out_ida_remove:
2874 	ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2875 out_free_head:
2876 	kfree(head);
2877 out:
2878 	return ERR_PTR(ret);
2879 }
2880 
2881 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2882 		struct nvme_id_ns *id)
2883 {
2884 	struct nvme_ctrl *ctrl = ns->ctrl;
2885 	bool is_shared = id->nmic & (1 << 0);
2886 	struct nvme_ns_head *head = NULL;
2887 	int ret = 0;
2888 
2889 	mutex_lock(&ctrl->subsys->lock);
2890 	if (is_shared)
2891 		head = __nvme_find_ns_head(ctrl->subsys, nsid);
2892 	if (!head) {
2893 		head = nvme_alloc_ns_head(ctrl, nsid, id);
2894 		if (IS_ERR(head)) {
2895 			ret = PTR_ERR(head);
2896 			goto out_unlock;
2897 		}
2898 	} else {
2899 		struct nvme_ns_ids ids;
2900 
2901 		nvme_report_ns_ids(ctrl, nsid, id, &ids);
2902 		if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2903 			dev_err(ctrl->device,
2904 				"IDs don't match for shared namespace %d\n",
2905 					nsid);
2906 			ret = -EINVAL;
2907 			goto out_unlock;
2908 		}
2909 	}
2910 
2911 	list_add_tail(&ns->siblings, &head->list);
2912 	ns->head = head;
2913 
2914 out_unlock:
2915 	mutex_unlock(&ctrl->subsys->lock);
2916 	return ret;
2917 }
2918 
2919 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2920 {
2921 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2922 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2923 
2924 	return nsa->head->ns_id - nsb->head->ns_id;
2925 }
2926 
2927 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2928 {
2929 	struct nvme_ns *ns, *ret = NULL;
2930 
2931 	down_read(&ctrl->namespaces_rwsem);
2932 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2933 		if (ns->head->ns_id == nsid) {
2934 			if (!kref_get_unless_zero(&ns->kref))
2935 				continue;
2936 			ret = ns;
2937 			break;
2938 		}
2939 		if (ns->head->ns_id > nsid)
2940 			break;
2941 	}
2942 	up_read(&ctrl->namespaces_rwsem);
2943 	return ret;
2944 }
2945 
2946 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2947 {
2948 	struct streams_directive_params s;
2949 	int ret;
2950 
2951 	if (!ctrl->nr_streams)
2952 		return 0;
2953 
2954 	ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2955 	if (ret)
2956 		return ret;
2957 
2958 	ns->sws = le32_to_cpu(s.sws);
2959 	ns->sgs = le16_to_cpu(s.sgs);
2960 
2961 	if (ns->sws) {
2962 		unsigned int bs = 1 << ns->lba_shift;
2963 
2964 		blk_queue_io_min(ns->queue, bs * ns->sws);
2965 		if (ns->sgs)
2966 			blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2973 {
2974 	struct nvme_ns *ns;
2975 	struct gendisk *disk;
2976 	struct nvme_id_ns *id;
2977 	char disk_name[DISK_NAME_LEN];
2978 	int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2979 
2980 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2981 	if (!ns)
2982 		return;
2983 
2984 	ns->queue = blk_mq_init_queue(ctrl->tagset);
2985 	if (IS_ERR(ns->queue))
2986 		goto out_free_ns;
2987 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
2988 	ns->queue->queuedata = ns;
2989 	ns->ctrl = ctrl;
2990 
2991 	kref_init(&ns->kref);
2992 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2993 
2994 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2995 	nvme_set_queue_limits(ctrl, ns->queue);
2996 
2997 	id = nvme_identify_ns(ctrl, nsid);
2998 	if (!id)
2999 		goto out_free_queue;
3000 
3001 	if (id->ncap == 0)
3002 		goto out_free_id;
3003 
3004 	if (nvme_init_ns_head(ns, nsid, id))
3005 		goto out_free_id;
3006 	nvme_setup_streams_ns(ctrl, ns);
3007 	nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3008 
3009 	if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3010 		if (nvme_nvm_register(ns, disk_name, node)) {
3011 			dev_warn(ctrl->device, "LightNVM init failure\n");
3012 			goto out_unlink_ns;
3013 		}
3014 	}
3015 
3016 	disk = alloc_disk_node(0, node);
3017 	if (!disk)
3018 		goto out_unlink_ns;
3019 
3020 	disk->fops = &nvme_fops;
3021 	disk->private_data = ns;
3022 	disk->queue = ns->queue;
3023 	disk->flags = flags;
3024 	memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3025 	ns->disk = disk;
3026 
3027 	__nvme_revalidate_disk(disk, id);
3028 
3029 	down_write(&ctrl->namespaces_rwsem);
3030 	list_add_tail(&ns->list, &ctrl->namespaces);
3031 	up_write(&ctrl->namespaces_rwsem);
3032 
3033 	nvme_get_ctrl(ctrl);
3034 
3035 	kfree(id);
3036 
3037 	device_add_disk(ctrl->device, ns->disk);
3038 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3039 					&nvme_ns_id_attr_group))
3040 		pr_warn("%s: failed to create sysfs group for identification\n",
3041 			ns->disk->disk_name);
3042 	if (ns->ndev && nvme_nvm_register_sysfs(ns))
3043 		pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3044 			ns->disk->disk_name);
3045 
3046 	nvme_mpath_add_disk(ns->head);
3047 	nvme_fault_inject_init(ns);
3048 	return;
3049  out_unlink_ns:
3050 	mutex_lock(&ctrl->subsys->lock);
3051 	list_del_rcu(&ns->siblings);
3052 	mutex_unlock(&ctrl->subsys->lock);
3053  out_free_id:
3054 	kfree(id);
3055  out_free_queue:
3056 	blk_cleanup_queue(ns->queue);
3057  out_free_ns:
3058 	kfree(ns);
3059 }
3060 
3061 static void nvme_ns_remove(struct nvme_ns *ns)
3062 {
3063 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3064 		return;
3065 
3066 	nvme_fault_inject_fini(ns);
3067 	if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3068 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3069 					&nvme_ns_id_attr_group);
3070 		if (ns->ndev)
3071 			nvme_nvm_unregister_sysfs(ns);
3072 		del_gendisk(ns->disk);
3073 		blk_cleanup_queue(ns->queue);
3074 		if (blk_get_integrity(ns->disk))
3075 			blk_integrity_unregister(ns->disk);
3076 	}
3077 
3078 	mutex_lock(&ns->ctrl->subsys->lock);
3079 	nvme_mpath_clear_current_path(ns);
3080 	list_del_rcu(&ns->siblings);
3081 	mutex_unlock(&ns->ctrl->subsys->lock);
3082 
3083 	down_write(&ns->ctrl->namespaces_rwsem);
3084 	list_del_init(&ns->list);
3085 	up_write(&ns->ctrl->namespaces_rwsem);
3086 
3087 	synchronize_srcu(&ns->head->srcu);
3088 	nvme_mpath_check_last_path(ns);
3089 	nvme_put_ns(ns);
3090 }
3091 
3092 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3093 {
3094 	struct nvme_ns *ns;
3095 
3096 	ns = nvme_find_get_ns(ctrl, nsid);
3097 	if (ns) {
3098 		if (ns->disk && revalidate_disk(ns->disk))
3099 			nvme_ns_remove(ns);
3100 		nvme_put_ns(ns);
3101 	} else
3102 		nvme_alloc_ns(ctrl, nsid);
3103 }
3104 
3105 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3106 					unsigned nsid)
3107 {
3108 	struct nvme_ns *ns, *next;
3109 	LIST_HEAD(rm_list);
3110 
3111 	down_write(&ctrl->namespaces_rwsem);
3112 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3113 		if (ns->head->ns_id > nsid)
3114 			list_move_tail(&ns->list, &rm_list);
3115 	}
3116 	up_write(&ctrl->namespaces_rwsem);
3117 
3118 	list_for_each_entry_safe(ns, next, &rm_list, list)
3119 		nvme_ns_remove(ns);
3120 
3121 }
3122 
3123 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3124 {
3125 	struct nvme_ns *ns;
3126 	__le32 *ns_list;
3127 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3128 	int ret = 0;
3129 
3130 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3131 	if (!ns_list)
3132 		return -ENOMEM;
3133 
3134 	for (i = 0; i < num_lists; i++) {
3135 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3136 		if (ret)
3137 			goto free;
3138 
3139 		for (j = 0; j < min(nn, 1024U); j++) {
3140 			nsid = le32_to_cpu(ns_list[j]);
3141 			if (!nsid)
3142 				goto out;
3143 
3144 			nvme_validate_ns(ctrl, nsid);
3145 
3146 			while (++prev < nsid) {
3147 				ns = nvme_find_get_ns(ctrl, prev);
3148 				if (ns) {
3149 					nvme_ns_remove(ns);
3150 					nvme_put_ns(ns);
3151 				}
3152 			}
3153 		}
3154 		nn -= j;
3155 	}
3156  out:
3157 	nvme_remove_invalid_namespaces(ctrl, prev);
3158  free:
3159 	kfree(ns_list);
3160 	return ret;
3161 }
3162 
3163 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3164 {
3165 	unsigned i;
3166 
3167 	for (i = 1; i <= nn; i++)
3168 		nvme_validate_ns(ctrl, i);
3169 
3170 	nvme_remove_invalid_namespaces(ctrl, nn);
3171 }
3172 
3173 static void nvme_scan_work(struct work_struct *work)
3174 {
3175 	struct nvme_ctrl *ctrl =
3176 		container_of(work, struct nvme_ctrl, scan_work);
3177 	struct nvme_id_ctrl *id;
3178 	unsigned nn;
3179 
3180 	if (ctrl->state != NVME_CTRL_LIVE)
3181 		return;
3182 
3183 	WARN_ON_ONCE(!ctrl->tagset);
3184 
3185 	if (nvme_identify_ctrl(ctrl, &id))
3186 		return;
3187 
3188 	nn = le32_to_cpu(id->nn);
3189 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3190 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3191 		if (!nvme_scan_ns_list(ctrl, nn))
3192 			goto done;
3193 	}
3194 	nvme_scan_ns_sequential(ctrl, nn);
3195  done:
3196 	down_write(&ctrl->namespaces_rwsem);
3197 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
3198 	up_write(&ctrl->namespaces_rwsem);
3199 	kfree(id);
3200 }
3201 
3202 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3203 {
3204 	/*
3205 	 * Only new queue scan work when admin and IO queues are both alive
3206 	 */
3207 	if (ctrl->state == NVME_CTRL_LIVE)
3208 		queue_work(nvme_wq, &ctrl->scan_work);
3209 }
3210 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3211 
3212 /*
3213  * This function iterates the namespace list unlocked to allow recovery from
3214  * controller failure. It is up to the caller to ensure the namespace list is
3215  * not modified by scan work while this function is executing.
3216  */
3217 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3218 {
3219 	struct nvme_ns *ns, *next;
3220 	LIST_HEAD(ns_list);
3221 
3222 	/*
3223 	 * The dead states indicates the controller was not gracefully
3224 	 * disconnected. In that case, we won't be able to flush any data while
3225 	 * removing the namespaces' disks; fail all the queues now to avoid
3226 	 * potentially having to clean up the failed sync later.
3227 	 */
3228 	if (ctrl->state == NVME_CTRL_DEAD)
3229 		nvme_kill_queues(ctrl);
3230 
3231 	down_write(&ctrl->namespaces_rwsem);
3232 	list_splice_init(&ctrl->namespaces, &ns_list);
3233 	up_write(&ctrl->namespaces_rwsem);
3234 
3235 	list_for_each_entry_safe(ns, next, &ns_list, list)
3236 		nvme_ns_remove(ns);
3237 }
3238 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3239 
3240 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3241 {
3242 	char *envp[2] = { NULL, NULL };
3243 	u32 aen_result = ctrl->aen_result;
3244 
3245 	ctrl->aen_result = 0;
3246 	if (!aen_result)
3247 		return;
3248 
3249 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3250 	if (!envp[0])
3251 		return;
3252 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3253 	kfree(envp[0]);
3254 }
3255 
3256 static void nvme_async_event_work(struct work_struct *work)
3257 {
3258 	struct nvme_ctrl *ctrl =
3259 		container_of(work, struct nvme_ctrl, async_event_work);
3260 
3261 	nvme_aen_uevent(ctrl);
3262 	ctrl->ops->submit_async_event(ctrl);
3263 }
3264 
3265 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3266 {
3267 
3268 	u32 csts;
3269 
3270 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3271 		return false;
3272 
3273 	if (csts == ~0)
3274 		return false;
3275 
3276 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3277 }
3278 
3279 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3280 {
3281 	struct nvme_fw_slot_info_log *log;
3282 
3283 	log = kmalloc(sizeof(*log), GFP_KERNEL);
3284 	if (!log)
3285 		return;
3286 
3287 	if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3288 		dev_warn(ctrl->device,
3289 				"Get FW SLOT INFO log error\n");
3290 	kfree(log);
3291 }
3292 
3293 static void nvme_fw_act_work(struct work_struct *work)
3294 {
3295 	struct nvme_ctrl *ctrl = container_of(work,
3296 				struct nvme_ctrl, fw_act_work);
3297 	unsigned long fw_act_timeout;
3298 
3299 	if (ctrl->mtfa)
3300 		fw_act_timeout = jiffies +
3301 				msecs_to_jiffies(ctrl->mtfa * 100);
3302 	else
3303 		fw_act_timeout = jiffies +
3304 				msecs_to_jiffies(admin_timeout * 1000);
3305 
3306 	nvme_stop_queues(ctrl);
3307 	while (nvme_ctrl_pp_status(ctrl)) {
3308 		if (time_after(jiffies, fw_act_timeout)) {
3309 			dev_warn(ctrl->device,
3310 				"Fw activation timeout, reset controller\n");
3311 			nvme_reset_ctrl(ctrl);
3312 			break;
3313 		}
3314 		msleep(100);
3315 	}
3316 
3317 	if (ctrl->state != NVME_CTRL_LIVE)
3318 		return;
3319 
3320 	nvme_start_queues(ctrl);
3321 	/* read FW slot information to clear the AER */
3322 	nvme_get_fw_slot_info(ctrl);
3323 }
3324 
3325 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3326 		union nvme_result *res)
3327 {
3328 	u32 result = le32_to_cpu(res->u32);
3329 
3330 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3331 		return;
3332 
3333 	switch (result & 0x7) {
3334 	case NVME_AER_ERROR:
3335 	case NVME_AER_SMART:
3336 	case NVME_AER_CSS:
3337 	case NVME_AER_VS:
3338 		ctrl->aen_result = result;
3339 		break;
3340 	default:
3341 		break;
3342 	}
3343 
3344 	switch (result & 0xff07) {
3345 	case NVME_AER_NOTICE_NS_CHANGED:
3346 		dev_info(ctrl->device, "rescanning\n");
3347 		nvme_queue_scan(ctrl);
3348 		break;
3349 	case NVME_AER_NOTICE_FW_ACT_STARTING:
3350 		queue_work(nvme_wq, &ctrl->fw_act_work);
3351 		break;
3352 	default:
3353 		dev_warn(ctrl->device, "async event result %08x\n", result);
3354 	}
3355 	queue_work(nvme_wq, &ctrl->async_event_work);
3356 }
3357 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3358 
3359 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3360 {
3361 	nvme_stop_keep_alive(ctrl);
3362 	flush_work(&ctrl->async_event_work);
3363 	flush_work(&ctrl->scan_work);
3364 	cancel_work_sync(&ctrl->fw_act_work);
3365 	if (ctrl->ops->stop_ctrl)
3366 		ctrl->ops->stop_ctrl(ctrl);
3367 }
3368 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3369 
3370 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3371 {
3372 	if (ctrl->kato)
3373 		nvme_start_keep_alive(ctrl);
3374 
3375 	if (ctrl->queue_count > 1) {
3376 		nvme_queue_scan(ctrl);
3377 		queue_work(nvme_wq, &ctrl->async_event_work);
3378 		nvme_start_queues(ctrl);
3379 	}
3380 }
3381 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3382 
3383 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3384 {
3385 	cdev_device_del(&ctrl->cdev, ctrl->device);
3386 }
3387 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3388 
3389 static void nvme_free_ctrl(struct device *dev)
3390 {
3391 	struct nvme_ctrl *ctrl =
3392 		container_of(dev, struct nvme_ctrl, ctrl_device);
3393 	struct nvme_subsystem *subsys = ctrl->subsys;
3394 
3395 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3396 	kfree(ctrl->effects);
3397 
3398 	if (subsys) {
3399 		mutex_lock(&subsys->lock);
3400 		list_del(&ctrl->subsys_entry);
3401 		mutex_unlock(&subsys->lock);
3402 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3403 	}
3404 
3405 	ctrl->ops->free_ctrl(ctrl);
3406 
3407 	if (subsys)
3408 		nvme_put_subsystem(subsys);
3409 }
3410 
3411 /*
3412  * Initialize a NVMe controller structures.  This needs to be called during
3413  * earliest initialization so that we have the initialized structured around
3414  * during probing.
3415  */
3416 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3417 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
3418 {
3419 	int ret;
3420 
3421 	ctrl->state = NVME_CTRL_NEW;
3422 	spin_lock_init(&ctrl->lock);
3423 	INIT_LIST_HEAD(&ctrl->namespaces);
3424 	init_rwsem(&ctrl->namespaces_rwsem);
3425 	ctrl->dev = dev;
3426 	ctrl->ops = ops;
3427 	ctrl->quirks = quirks;
3428 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3429 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3430 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3431 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3432 
3433 	ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3434 	if (ret < 0)
3435 		goto out;
3436 	ctrl->instance = ret;
3437 
3438 	device_initialize(&ctrl->ctrl_device);
3439 	ctrl->device = &ctrl->ctrl_device;
3440 	ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3441 	ctrl->device->class = nvme_class;
3442 	ctrl->device->parent = ctrl->dev;
3443 	ctrl->device->groups = nvme_dev_attr_groups;
3444 	ctrl->device->release = nvme_free_ctrl;
3445 	dev_set_drvdata(ctrl->device, ctrl);
3446 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3447 	if (ret)
3448 		goto out_release_instance;
3449 
3450 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
3451 	ctrl->cdev.owner = ops->module;
3452 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3453 	if (ret)
3454 		goto out_free_name;
3455 
3456 	/*
3457 	 * Initialize latency tolerance controls.  The sysfs files won't
3458 	 * be visible to userspace unless the device actually supports APST.
3459 	 */
3460 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3461 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3462 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3463 
3464 	return 0;
3465 out_free_name:
3466 	kfree_const(dev->kobj.name);
3467 out_release_instance:
3468 	ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3469 out:
3470 	return ret;
3471 }
3472 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3473 
3474 /**
3475  * nvme_kill_queues(): Ends all namespace queues
3476  * @ctrl: the dead controller that needs to end
3477  *
3478  * Call this function when the driver determines it is unable to get the
3479  * controller in a state capable of servicing IO.
3480  */
3481 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3482 {
3483 	struct nvme_ns *ns;
3484 
3485 	down_read(&ctrl->namespaces_rwsem);
3486 
3487 	/* Forcibly unquiesce queues to avoid blocking dispatch */
3488 	if (ctrl->admin_q)
3489 		blk_mq_unquiesce_queue(ctrl->admin_q);
3490 
3491 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3492 		/*
3493 		 * Revalidating a dead namespace sets capacity to 0. This will
3494 		 * end buffered writers dirtying pages that can't be synced.
3495 		 */
3496 		if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3497 			continue;
3498 		revalidate_disk(ns->disk);
3499 		blk_set_queue_dying(ns->queue);
3500 
3501 		/* Forcibly unquiesce queues to avoid blocking dispatch */
3502 		blk_mq_unquiesce_queue(ns->queue);
3503 	}
3504 	up_read(&ctrl->namespaces_rwsem);
3505 }
3506 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3507 
3508 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3509 {
3510 	struct nvme_ns *ns;
3511 
3512 	down_read(&ctrl->namespaces_rwsem);
3513 	list_for_each_entry(ns, &ctrl->namespaces, list)
3514 		blk_mq_unfreeze_queue(ns->queue);
3515 	up_read(&ctrl->namespaces_rwsem);
3516 }
3517 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3518 
3519 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3520 {
3521 	struct nvme_ns *ns;
3522 
3523 	down_read(&ctrl->namespaces_rwsem);
3524 	list_for_each_entry(ns, &ctrl->namespaces, list) {
3525 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3526 		if (timeout <= 0)
3527 			break;
3528 	}
3529 	up_read(&ctrl->namespaces_rwsem);
3530 }
3531 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3532 
3533 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3534 {
3535 	struct nvme_ns *ns;
3536 
3537 	down_read(&ctrl->namespaces_rwsem);
3538 	list_for_each_entry(ns, &ctrl->namespaces, list)
3539 		blk_mq_freeze_queue_wait(ns->queue);
3540 	up_read(&ctrl->namespaces_rwsem);
3541 }
3542 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3543 
3544 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3545 {
3546 	struct nvme_ns *ns;
3547 
3548 	down_read(&ctrl->namespaces_rwsem);
3549 	list_for_each_entry(ns, &ctrl->namespaces, list)
3550 		blk_freeze_queue_start(ns->queue);
3551 	up_read(&ctrl->namespaces_rwsem);
3552 }
3553 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3554 
3555 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3556 {
3557 	struct nvme_ns *ns;
3558 
3559 	down_read(&ctrl->namespaces_rwsem);
3560 	list_for_each_entry(ns, &ctrl->namespaces, list)
3561 		blk_mq_quiesce_queue(ns->queue);
3562 	up_read(&ctrl->namespaces_rwsem);
3563 }
3564 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3565 
3566 void nvme_start_queues(struct nvme_ctrl *ctrl)
3567 {
3568 	struct nvme_ns *ns;
3569 
3570 	down_read(&ctrl->namespaces_rwsem);
3571 	list_for_each_entry(ns, &ctrl->namespaces, list)
3572 		blk_mq_unquiesce_queue(ns->queue);
3573 	up_read(&ctrl->namespaces_rwsem);
3574 }
3575 EXPORT_SYMBOL_GPL(nvme_start_queues);
3576 
3577 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3578 {
3579 	if (!ctrl->ops->reinit_request)
3580 		return 0;
3581 
3582 	return blk_mq_tagset_iter(set, set->driver_data,
3583 			ctrl->ops->reinit_request);
3584 }
3585 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3586 
3587 int __init nvme_core_init(void)
3588 {
3589 	int result = -ENOMEM;
3590 
3591 	nvme_wq = alloc_workqueue("nvme-wq",
3592 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3593 	if (!nvme_wq)
3594 		goto out;
3595 
3596 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3597 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3598 	if (!nvme_reset_wq)
3599 		goto destroy_wq;
3600 
3601 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3602 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3603 	if (!nvme_delete_wq)
3604 		goto destroy_reset_wq;
3605 
3606 	result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3607 	if (result < 0)
3608 		goto destroy_delete_wq;
3609 
3610 	nvme_class = class_create(THIS_MODULE, "nvme");
3611 	if (IS_ERR(nvme_class)) {
3612 		result = PTR_ERR(nvme_class);
3613 		goto unregister_chrdev;
3614 	}
3615 
3616 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3617 	if (IS_ERR(nvme_subsys_class)) {
3618 		result = PTR_ERR(nvme_subsys_class);
3619 		goto destroy_class;
3620 	}
3621 	return 0;
3622 
3623 destroy_class:
3624 	class_destroy(nvme_class);
3625 unregister_chrdev:
3626 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3627 destroy_delete_wq:
3628 	destroy_workqueue(nvme_delete_wq);
3629 destroy_reset_wq:
3630 	destroy_workqueue(nvme_reset_wq);
3631 destroy_wq:
3632 	destroy_workqueue(nvme_wq);
3633 out:
3634 	return result;
3635 }
3636 
3637 void nvme_core_exit(void)
3638 {
3639 	ida_destroy(&nvme_subsystems_ida);
3640 	class_destroy(nvme_subsys_class);
3641 	class_destroy(nvme_class);
3642 	unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3643 	destroy_workqueue(nvme_delete_wq);
3644 	destroy_workqueue(nvme_reset_wq);
3645 	destroy_workqueue(nvme_wq);
3646 }
3647 
3648 MODULE_LICENSE("GPL");
3649 MODULE_VERSION("1.0");
3650 module_init(nvme_core_init);
3651 module_exit(nvme_core_exit);
3652