xref: /linux/drivers/nvme/host/core.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/async.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-mq.h>
10 #include <linux/blk-integrity.h>
11 #include <linux/compat.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/hdreg.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/pr.h>
21 #include <linux/ptrace.h>
22 #include <linux/nvme_ioctl.h>
23 #include <linux/pm_qos.h>
24 #include <linux/ratelimit.h>
25 #include <linux/unaligned.h>
26 
27 #include "nvme.h"
28 #include "fabrics.h"
29 #include <linux/nvme-auth.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33 
34 #define NVME_MINORS		(1U << MINORBITS)
35 
36 struct nvme_ns_info {
37 	struct nvme_ns_ids ids;
38 	u32 nsid;
39 	__le32 anagrpid;
40 	u8 pi_offset;
41 	u16 endgid;
42 	u64 runs;
43 	bool is_shared;
44 	bool is_readonly;
45 	bool is_ready;
46 	bool is_removed;
47 	bool is_rotational;
48 	bool no_vwc;
49 };
50 
51 unsigned int admin_timeout = 60;
52 module_param(admin_timeout, uint, 0644);
53 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
54 EXPORT_SYMBOL_GPL(admin_timeout);
55 
56 unsigned int nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59 EXPORT_SYMBOL_GPL(nvme_io_timeout);
60 
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64 
65 static u8 nvme_max_retries = 5;
66 module_param_named(max_retries, nvme_max_retries, byte, 0644);
67 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
68 
69 static unsigned long default_ps_max_latency_us = 100000;
70 module_param(default_ps_max_latency_us, ulong, 0644);
71 MODULE_PARM_DESC(default_ps_max_latency_us,
72 		 "max power saving latency for new devices; use PM QOS to change per device");
73 
74 static bool force_apst;
75 module_param(force_apst, bool, 0644);
76 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
77 
78 static unsigned long apst_primary_timeout_ms = 100;
79 module_param(apst_primary_timeout_ms, ulong, 0644);
80 MODULE_PARM_DESC(apst_primary_timeout_ms,
81 	"primary APST timeout in ms");
82 
83 static unsigned long apst_secondary_timeout_ms = 2000;
84 module_param(apst_secondary_timeout_ms, ulong, 0644);
85 MODULE_PARM_DESC(apst_secondary_timeout_ms,
86 	"secondary APST timeout in ms");
87 
88 static unsigned long apst_primary_latency_tol_us = 15000;
89 module_param(apst_primary_latency_tol_us, ulong, 0644);
90 MODULE_PARM_DESC(apst_primary_latency_tol_us,
91 	"primary APST latency tolerance in us");
92 
93 static unsigned long apst_secondary_latency_tol_us = 100000;
94 module_param(apst_secondary_latency_tol_us, ulong, 0644);
95 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
96 	"secondary APST latency tolerance in us");
97 
98 /*
99  * Older kernels didn't enable protection information if it was at an offset.
100  * Newer kernels do, so it breaks reads on the upgrade if such formats were
101  * used in prior kernels since the metadata written did not contain a valid
102  * checksum.
103  */
104 static bool disable_pi_offsets = false;
105 module_param(disable_pi_offsets, bool, 0444);
106 MODULE_PARM_DESC(disable_pi_offsets,
107 	"disable protection information if it has an offset");
108 
109 /*
110  * nvme_wq - hosts nvme related works that are not reset or delete
111  * nvme_reset_wq - hosts nvme reset works
112  * nvme_delete_wq - hosts nvme delete works
113  *
114  * nvme_wq will host works such as scan, aen handling, fw activation,
115  * keep-alive, periodic reconnects etc. nvme_reset_wq
116  * runs reset works which also flush works hosted on nvme_wq for
117  * serialization purposes. nvme_delete_wq host controller deletion
118  * works which flush reset works for serialization.
119  */
120 struct workqueue_struct *nvme_wq;
121 EXPORT_SYMBOL_GPL(nvme_wq);
122 
123 struct workqueue_struct *nvme_reset_wq;
124 EXPORT_SYMBOL_GPL(nvme_reset_wq);
125 
126 struct workqueue_struct *nvme_delete_wq;
127 EXPORT_SYMBOL_GPL(nvme_delete_wq);
128 
129 static LIST_HEAD(nvme_subsystems);
130 DEFINE_MUTEX(nvme_subsystems_lock);
131 
132 static DEFINE_IDA(nvme_instance_ida);
133 static dev_t nvme_ctrl_base_chr_devt;
134 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
135 static const struct class nvme_class = {
136 	.name = "nvme",
137 	.dev_uevent = nvme_class_uevent,
138 };
139 
140 static const struct class nvme_subsys_class = {
141 	.name = "nvme-subsystem",
142 };
143 
144 static DEFINE_IDA(nvme_ns_chr_minor_ida);
145 static dev_t nvme_ns_chr_devt;
146 static const struct class nvme_ns_chr_class = {
147 	.name = "nvme-generic",
148 };
149 
150 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
151 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
152 					   unsigned nsid);
153 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
154 				   struct nvme_command *cmd);
155 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
156 		u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi);
157 
158 void nvme_queue_scan(struct nvme_ctrl *ctrl)
159 {
160 	/*
161 	 * Only new queue scan work when admin and IO queues are both alive
162 	 */
163 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
164 		queue_work(nvme_wq, &ctrl->scan_work);
165 }
166 
167 /*
168  * Use this function to proceed with scheduling reset_work for a controller
169  * that had previously been set to the resetting state. This is intended for
170  * code paths that can't be interrupted by other reset attempts. A hot removal
171  * may prevent this from succeeding.
172  */
173 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
174 {
175 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
176 		return -EBUSY;
177 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
178 		return -EBUSY;
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
182 
183 static void nvme_failfast_work(struct work_struct *work)
184 {
185 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
186 			struct nvme_ctrl, failfast_work);
187 
188 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
189 		return;
190 
191 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
192 	dev_info(ctrl->device, "failfast expired\n");
193 	nvme_kick_requeue_lists(ctrl);
194 }
195 
196 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
197 {
198 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
199 		return;
200 
201 	schedule_delayed_work(&ctrl->failfast_work,
202 			      ctrl->opts->fast_io_fail_tmo * HZ);
203 }
204 
205 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
206 {
207 	if (!ctrl->opts)
208 		return;
209 
210 	cancel_delayed_work_sync(&ctrl->failfast_work);
211 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
212 }
213 
214 
215 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
216 {
217 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
218 		return -EBUSY;
219 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
220 		return -EBUSY;
221 	return 0;
222 }
223 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
224 
225 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
226 {
227 	int ret;
228 
229 	ret = nvme_reset_ctrl(ctrl);
230 	if (!ret) {
231 		flush_work(&ctrl->reset_work);
232 		if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
233 			ret = -ENETRESET;
234 	}
235 
236 	return ret;
237 }
238 
239 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
240 {
241 	dev_info(ctrl->device,
242 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
243 
244 	flush_work(&ctrl->reset_work);
245 	nvme_stop_ctrl(ctrl);
246 	nvme_remove_namespaces(ctrl);
247 	ctrl->ops->delete_ctrl(ctrl);
248 	nvme_uninit_ctrl(ctrl);
249 }
250 
251 static void nvme_delete_ctrl_work(struct work_struct *work)
252 {
253 	struct nvme_ctrl *ctrl =
254 		container_of(work, struct nvme_ctrl, delete_work);
255 
256 	nvme_do_delete_ctrl(ctrl);
257 }
258 
259 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
260 {
261 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
262 		return -EBUSY;
263 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
264 		return -EBUSY;
265 	return 0;
266 }
267 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
268 
269 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
270 {
271 	/*
272 	 * Keep a reference until nvme_do_delete_ctrl() complete,
273 	 * since ->delete_ctrl can free the controller.
274 	 */
275 	nvme_get_ctrl(ctrl);
276 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
277 		nvme_do_delete_ctrl(ctrl);
278 	nvme_put_ctrl(ctrl);
279 }
280 
281 static blk_status_t nvme_error_status(u16 status)
282 {
283 	switch (status & NVME_SCT_SC_MASK) {
284 	case NVME_SC_SUCCESS:
285 		return BLK_STS_OK;
286 	case NVME_SC_CAP_EXCEEDED:
287 		return BLK_STS_NOSPC;
288 	case NVME_SC_LBA_RANGE:
289 	case NVME_SC_CMD_INTERRUPTED:
290 	case NVME_SC_NS_NOT_READY:
291 		return BLK_STS_TARGET;
292 	case NVME_SC_BAD_ATTRIBUTES:
293 	case NVME_SC_INVALID_OPCODE:
294 	case NVME_SC_INVALID_FIELD:
295 	case NVME_SC_INVALID_NS:
296 		return BLK_STS_NOTSUPP;
297 	case NVME_SC_WRITE_FAULT:
298 	case NVME_SC_READ_ERROR:
299 	case NVME_SC_UNWRITTEN_BLOCK:
300 	case NVME_SC_ACCESS_DENIED:
301 	case NVME_SC_READ_ONLY:
302 	case NVME_SC_COMPARE_FAILED:
303 		return BLK_STS_MEDIUM;
304 	case NVME_SC_GUARD_CHECK:
305 	case NVME_SC_APPTAG_CHECK:
306 	case NVME_SC_REFTAG_CHECK:
307 	case NVME_SC_INVALID_PI:
308 		return BLK_STS_PROTECTION;
309 	case NVME_SC_RESERVATION_CONFLICT:
310 		return BLK_STS_RESV_CONFLICT;
311 	case NVME_SC_HOST_PATH_ERROR:
312 		return BLK_STS_TRANSPORT;
313 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
314 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
315 	case NVME_SC_ZONE_TOO_MANY_OPEN:
316 		return BLK_STS_ZONE_OPEN_RESOURCE;
317 	default:
318 		return BLK_STS_IOERR;
319 	}
320 }
321 
322 static void nvme_retry_req(struct request *req)
323 {
324 	unsigned long delay = 0;
325 	u16 crd;
326 
327 	/* The mask and shift result must be <= 3 */
328 	crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
329 	if (crd)
330 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
331 
332 	nvme_req(req)->retries++;
333 	blk_mq_requeue_request(req, false);
334 	blk_mq_delay_kick_requeue_list(req->q, delay);
335 }
336 
337 static void nvme_log_error(struct request *req)
338 {
339 	struct nvme_ns *ns = req->q->queuedata;
340 	struct nvme_request *nr = nvme_req(req);
341 
342 	if (ns) {
343 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
344 		       ns->disk ? ns->disk->disk_name : "?",
345 		       nvme_get_opcode_str(nr->cmd->common.opcode),
346 		       nr->cmd->common.opcode,
347 		       nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
348 		       blk_rq_bytes(req) >> ns->head->lba_shift,
349 		       nvme_get_error_status_str(nr->status),
350 		       NVME_SCT(nr->status),		/* Status Code Type */
351 		       nr->status & NVME_SC_MASK,	/* Status Code */
352 		       nr->status & NVME_STATUS_MORE ? "MORE " : "",
353 		       nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
354 		return;
355 	}
356 
357 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
358 			   dev_name(nr->ctrl->device),
359 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 			   nr->cmd->common.opcode,
361 			   nvme_get_error_status_str(nr->status),
362 			   NVME_SCT(nr->status),	/* Status Code Type */
363 			   nr->status & NVME_SC_MASK,	/* Status Code */
364 			   nr->status & NVME_STATUS_MORE ? "MORE " : "",
365 			   nr->status & NVME_STATUS_DNR  ? "DNR "  : "");
366 }
367 
368 static void nvme_log_err_passthru(struct request *req)
369 {
370 	struct nvme_ns *ns = req->q->queuedata;
371 	struct nvme_request *nr = nvme_req(req);
372 
373 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
374 		"cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
375 		ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
376 		ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
377 		     nvme_get_admin_opcode_str(nr->cmd->common.opcode),
378 		nr->cmd->common.opcode,
379 		nvme_get_error_status_str(nr->status),
380 		NVME_SCT(nr->status),		/* Status Code Type */
381 		nr->status & NVME_SC_MASK,	/* Status Code */
382 		nr->status & NVME_STATUS_MORE ? "MORE " : "",
383 		nr->status & NVME_STATUS_DNR  ? "DNR "  : "",
384 		le32_to_cpu(nr->cmd->common.cdw10),
385 		le32_to_cpu(nr->cmd->common.cdw11),
386 		le32_to_cpu(nr->cmd->common.cdw12),
387 		le32_to_cpu(nr->cmd->common.cdw13),
388 		le32_to_cpu(nr->cmd->common.cdw14),
389 		le32_to_cpu(nr->cmd->common.cdw15));
390 }
391 
392 enum nvme_disposition {
393 	COMPLETE,
394 	RETRY,
395 	FAILOVER,
396 	AUTHENTICATE,
397 };
398 
399 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
400 {
401 	if (likely(nvme_req(req)->status == 0))
402 		return COMPLETE;
403 
404 	if (blk_noretry_request(req) ||
405 	    (nvme_req(req)->status & NVME_STATUS_DNR) ||
406 	    nvme_req(req)->retries >= nvme_max_retries)
407 		return COMPLETE;
408 
409 	if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
410 		return AUTHENTICATE;
411 
412 	if (req->cmd_flags & REQ_NVME_MPATH) {
413 		if (nvme_is_path_error(nvme_req(req)->status) ||
414 		    blk_queue_dying(req->q))
415 			return FAILOVER;
416 	} else {
417 		if (blk_queue_dying(req->q))
418 			return COMPLETE;
419 	}
420 
421 	return RETRY;
422 }
423 
424 static inline void nvme_end_req_zoned(struct request *req)
425 {
426 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
427 	    req_op(req) == REQ_OP_ZONE_APPEND) {
428 		struct nvme_ns *ns = req->q->queuedata;
429 
430 		req->__sector = nvme_lba_to_sect(ns->head,
431 			le64_to_cpu(nvme_req(req)->result.u64));
432 	}
433 }
434 
435 static inline void __nvme_end_req(struct request *req)
436 {
437 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
438 		if (blk_rq_is_passthrough(req))
439 			nvme_log_err_passthru(req);
440 		else
441 			nvme_log_error(req);
442 	}
443 	nvme_end_req_zoned(req);
444 	nvme_trace_bio_complete(req);
445 	if (req->cmd_flags & REQ_NVME_MPATH)
446 		nvme_mpath_end_request(req);
447 }
448 
449 void nvme_end_req(struct request *req)
450 {
451 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
452 
453 	__nvme_end_req(req);
454 	blk_mq_end_request(req, status);
455 }
456 
457 void nvme_complete_rq(struct request *req)
458 {
459 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
460 
461 	trace_nvme_complete_rq(req);
462 	nvme_cleanup_cmd(req);
463 
464 	/*
465 	 * Completions of long-running commands should not be able to
466 	 * defer sending of periodic keep alives, since the controller
467 	 * may have completed processing such commands a long time ago
468 	 * (arbitrarily close to command submission time).
469 	 * req->deadline - req->timeout is the command submission time
470 	 * in jiffies.
471 	 */
472 	if (ctrl->kas &&
473 	    req->deadline - req->timeout >= ctrl->ka_last_check_time)
474 		ctrl->comp_seen = true;
475 
476 	switch (nvme_decide_disposition(req)) {
477 	case COMPLETE:
478 		nvme_end_req(req);
479 		return;
480 	case RETRY:
481 		nvme_retry_req(req);
482 		return;
483 	case FAILOVER:
484 		nvme_failover_req(req);
485 		return;
486 	case AUTHENTICATE:
487 #ifdef CONFIG_NVME_HOST_AUTH
488 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
489 		nvme_retry_req(req);
490 #else
491 		nvme_end_req(req);
492 #endif
493 		return;
494 	}
495 }
496 EXPORT_SYMBOL_GPL(nvme_complete_rq);
497 
498 void nvme_complete_batch_req(struct request *req)
499 {
500 	trace_nvme_complete_rq(req);
501 	nvme_cleanup_cmd(req);
502 	__nvme_end_req(req);
503 }
504 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
505 
506 /*
507  * Called to unwind from ->queue_rq on a failed command submission so that the
508  * multipathing code gets called to potentially failover to another path.
509  * The caller needs to unwind all transport specific resource allocations and
510  * must return propagate the return value.
511  */
512 blk_status_t nvme_host_path_error(struct request *req)
513 {
514 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
515 	blk_mq_set_request_complete(req);
516 	nvme_complete_rq(req);
517 	return BLK_STS_OK;
518 }
519 EXPORT_SYMBOL_GPL(nvme_host_path_error);
520 
521 bool nvme_cancel_request(struct request *req, void *data)
522 {
523 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
524 				"Cancelling I/O %d", req->tag);
525 
526 	/* don't abort one completed or idle request */
527 	if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
528 		return true;
529 
530 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
531 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
532 	blk_mq_complete_request(req);
533 	return true;
534 }
535 EXPORT_SYMBOL_GPL(nvme_cancel_request);
536 
537 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
538 {
539 	if (ctrl->tagset) {
540 		blk_mq_tagset_busy_iter(ctrl->tagset,
541 				nvme_cancel_request, ctrl);
542 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
543 	}
544 }
545 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
546 
547 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
548 {
549 	if (ctrl->admin_tagset) {
550 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
551 				nvme_cancel_request, ctrl);
552 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
553 	}
554 }
555 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
556 
557 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
558 		enum nvme_ctrl_state new_state)
559 {
560 	enum nvme_ctrl_state old_state;
561 	unsigned long flags;
562 	bool changed = false;
563 
564 	spin_lock_irqsave(&ctrl->lock, flags);
565 
566 	old_state = nvme_ctrl_state(ctrl);
567 	switch (new_state) {
568 	case NVME_CTRL_LIVE:
569 		switch (old_state) {
570 		case NVME_CTRL_CONNECTING:
571 			changed = true;
572 			fallthrough;
573 		default:
574 			break;
575 		}
576 		break;
577 	case NVME_CTRL_RESETTING:
578 		switch (old_state) {
579 		case NVME_CTRL_NEW:
580 		case NVME_CTRL_LIVE:
581 			changed = true;
582 			fallthrough;
583 		default:
584 			break;
585 		}
586 		break;
587 	case NVME_CTRL_CONNECTING:
588 		switch (old_state) {
589 		case NVME_CTRL_NEW:
590 		case NVME_CTRL_RESETTING:
591 			changed = true;
592 			fallthrough;
593 		default:
594 			break;
595 		}
596 		break;
597 	case NVME_CTRL_DELETING:
598 		switch (old_state) {
599 		case NVME_CTRL_LIVE:
600 		case NVME_CTRL_RESETTING:
601 		case NVME_CTRL_CONNECTING:
602 			changed = true;
603 			fallthrough;
604 		default:
605 			break;
606 		}
607 		break;
608 	case NVME_CTRL_DELETING_NOIO:
609 		switch (old_state) {
610 		case NVME_CTRL_DELETING:
611 		case NVME_CTRL_DEAD:
612 			changed = true;
613 			fallthrough;
614 		default:
615 			break;
616 		}
617 		break;
618 	case NVME_CTRL_DEAD:
619 		switch (old_state) {
620 		case NVME_CTRL_DELETING:
621 			changed = true;
622 			fallthrough;
623 		default:
624 			break;
625 		}
626 		break;
627 	default:
628 		break;
629 	}
630 
631 	if (changed) {
632 		WRITE_ONCE(ctrl->state, new_state);
633 		wake_up_all(&ctrl->state_wq);
634 	}
635 
636 	spin_unlock_irqrestore(&ctrl->lock, flags);
637 	if (!changed)
638 		return false;
639 
640 	if (new_state == NVME_CTRL_LIVE) {
641 		if (old_state == NVME_CTRL_CONNECTING)
642 			nvme_stop_failfast_work(ctrl);
643 		nvme_kick_requeue_lists(ctrl);
644 	} else if (new_state == NVME_CTRL_CONNECTING &&
645 		old_state == NVME_CTRL_RESETTING) {
646 		nvme_start_failfast_work(ctrl);
647 	}
648 	return changed;
649 }
650 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
651 
652 /*
653  * Waits for the controller state to be resetting, or returns false if it is
654  * not possible to ever transition to that state.
655  */
656 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657 {
658 	wait_event(ctrl->state_wq,
659 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660 		   nvme_state_terminal(ctrl));
661 	return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
662 }
663 EXPORT_SYMBOL_GPL(nvme_wait_reset);
664 
665 static void nvme_free_ns_head(struct kref *ref)
666 {
667 	struct nvme_ns_head *head =
668 		container_of(ref, struct nvme_ns_head, ref);
669 
670 	nvme_mpath_put_disk(head);
671 	ida_free(&head->subsys->ns_ida, head->instance);
672 	cleanup_srcu_struct(&head->srcu);
673 	nvme_put_subsystem(head->subsys);
674 	kfree(head->plids);
675 	kfree(head);
676 }
677 
678 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
679 {
680 	return kref_get_unless_zero(&head->ref);
681 }
682 
683 void nvme_put_ns_head(struct nvme_ns_head *head)
684 {
685 	kref_put(&head->ref, nvme_free_ns_head);
686 }
687 
688 static void nvme_free_ns(struct kref *kref)
689 {
690 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
691 
692 	put_disk(ns->disk);
693 	nvme_put_ns_head(ns->head);
694 	nvme_put_ctrl(ns->ctrl);
695 	kfree(ns);
696 }
697 
698 bool nvme_get_ns(struct nvme_ns *ns)
699 {
700 	return kref_get_unless_zero(&ns->kref);
701 }
702 
703 void nvme_put_ns(struct nvme_ns *ns)
704 {
705 	kref_put(&ns->kref, nvme_free_ns);
706 }
707 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
708 
709 static inline void nvme_clear_nvme_request(struct request *req)
710 {
711 	nvme_req(req)->status = 0;
712 	nvme_req(req)->retries = 0;
713 	nvme_req(req)->flags = 0;
714 	req->rq_flags |= RQF_DONTPREP;
715 }
716 
717 /* initialize a passthrough request */
718 void nvme_init_request(struct request *req, struct nvme_command *cmd)
719 {
720 	struct nvme_request *nr = nvme_req(req);
721 	bool logging_enabled;
722 
723 	if (req->q->queuedata) {
724 		struct nvme_ns *ns = req->q->disk->private_data;
725 
726 		logging_enabled = ns->head->passthru_err_log_enabled;
727 		req->timeout = NVME_IO_TIMEOUT;
728 	} else { /* no queuedata implies admin queue */
729 		logging_enabled = nr->ctrl->passthru_err_log_enabled;
730 		req->timeout = NVME_ADMIN_TIMEOUT;
731 	}
732 
733 	if (!logging_enabled)
734 		req->rq_flags |= RQF_QUIET;
735 
736 	/* passthru commands should let the driver set the SGL flags */
737 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
738 
739 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
740 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
741 		req->cmd_flags |= REQ_POLLED;
742 	nvme_clear_nvme_request(req);
743 	memcpy(nr->cmd, cmd, sizeof(*cmd));
744 }
745 EXPORT_SYMBOL_GPL(nvme_init_request);
746 
747 /*
748  * For something we're not in a state to send to the device the default action
749  * is to busy it and retry it after the controller state is recovered.  However,
750  * if the controller is deleting or if anything is marked for failfast or
751  * nvme multipath it is immediately failed.
752  *
753  * Note: commands used to initialize the controller will be marked for failfast.
754  * Note: nvme cli/ioctl commands are marked for failfast.
755  */
756 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
757 		struct request *rq)
758 {
759 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
760 
761 	if (state != NVME_CTRL_DELETING_NOIO &&
762 	    state != NVME_CTRL_DELETING &&
763 	    state != NVME_CTRL_DEAD &&
764 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
765 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
766 		return BLK_STS_RESOURCE;
767 
768 	if (!(rq->rq_flags & RQF_DONTPREP))
769 		nvme_clear_nvme_request(rq);
770 
771 	return nvme_host_path_error(rq);
772 }
773 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
774 
775 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
776 		bool queue_live, enum nvme_ctrl_state state)
777 {
778 	struct nvme_request *req = nvme_req(rq);
779 
780 	/*
781 	 * currently we have a problem sending passthru commands
782 	 * on the admin_q if the controller is not LIVE because we can't
783 	 * make sure that they are going out after the admin connect,
784 	 * controller enable and/or other commands in the initialization
785 	 * sequence. until the controller will be LIVE, fail with
786 	 * BLK_STS_RESOURCE so that they will be rescheduled.
787 	 */
788 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
789 		return false;
790 
791 	if (ctrl->ops->flags & NVME_F_FABRICS) {
792 		/*
793 		 * Only allow commands on a live queue, except for the connect
794 		 * command, which is require to set the queue live in the
795 		 * appropinquate states.
796 		 */
797 		switch (state) {
798 		case NVME_CTRL_CONNECTING:
799 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
800 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
801 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
802 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
803 				return true;
804 			break;
805 		default:
806 			break;
807 		case NVME_CTRL_DEAD:
808 			return false;
809 		}
810 	}
811 
812 	return queue_live;
813 }
814 EXPORT_SYMBOL_GPL(__nvme_check_ready);
815 
816 static inline void nvme_setup_flush(struct nvme_ns *ns,
817 		struct nvme_command *cmnd)
818 {
819 	memset(cmnd, 0, sizeof(*cmnd));
820 	cmnd->common.opcode = nvme_cmd_flush;
821 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
822 }
823 
824 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
825 		struct nvme_command *cmnd)
826 {
827 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
828 	struct nvme_dsm_range *range;
829 	struct bio *bio;
830 
831 	/*
832 	 * Some devices do not consider the DSM 'Number of Ranges' field when
833 	 * determining how much data to DMA. Always allocate memory for maximum
834 	 * number of segments to prevent device reading beyond end of buffer.
835 	 */
836 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
837 
838 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
839 	if (!range) {
840 		/*
841 		 * If we fail allocation our range, fallback to the controller
842 		 * discard page. If that's also busy, it's safe to return
843 		 * busy, as we know we can make progress once that's freed.
844 		 */
845 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
846 			return BLK_STS_RESOURCE;
847 
848 		range = page_address(ns->ctrl->discard_page);
849 	}
850 
851 	if (queue_max_discard_segments(req->q) == 1) {
852 		u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req));
853 		u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9);
854 
855 		range[0].cattr = cpu_to_le32(0);
856 		range[0].nlb = cpu_to_le32(nlb);
857 		range[0].slba = cpu_to_le64(slba);
858 		n = 1;
859 	} else {
860 		__rq_for_each_bio(bio, req) {
861 			u64 slba = nvme_sect_to_lba(ns->head,
862 						    bio->bi_iter.bi_sector);
863 			u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
864 
865 			if (n < segments) {
866 				range[n].cattr = cpu_to_le32(0);
867 				range[n].nlb = cpu_to_le32(nlb);
868 				range[n].slba = cpu_to_le64(slba);
869 			}
870 			n++;
871 		}
872 	}
873 
874 	if (WARN_ON_ONCE(n != segments)) {
875 		if (virt_to_page(range) == ns->ctrl->discard_page)
876 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
877 		else
878 			kfree(range);
879 		return BLK_STS_IOERR;
880 	}
881 
882 	memset(cmnd, 0, sizeof(*cmnd));
883 	cmnd->dsm.opcode = nvme_cmd_dsm;
884 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
885 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
886 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
887 
888 	bvec_set_virt(&req->special_vec, range, alloc_size);
889 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
890 
891 	return BLK_STS_OK;
892 }
893 
894 static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
895 {
896 	cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
897 	cmnd->rw.lbatm = cpu_to_le16(0xffff);
898 }
899 
900 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
901 			      struct request *req)
902 {
903 	u32 upper, lower;
904 	u64 ref48;
905 
906 	/* only type1 and type 2 PI formats have a reftag */
907 	switch (ns->head->pi_type) {
908 	case NVME_NS_DPS_PI_TYPE1:
909 	case NVME_NS_DPS_PI_TYPE2:
910 		break;
911 	default:
912 		return;
913 	}
914 
915 	/* both rw and write zeroes share the same reftag format */
916 	switch (ns->head->guard_type) {
917 	case NVME_NVM_NS_16B_GUARD:
918 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
919 		break;
920 	case NVME_NVM_NS_64B_GUARD:
921 		ref48 = ext_pi_ref_tag(req);
922 		lower = lower_32_bits(ref48);
923 		upper = upper_32_bits(ref48);
924 
925 		cmnd->rw.reftag = cpu_to_le32(lower);
926 		cmnd->rw.cdw3 = cpu_to_le32(upper);
927 		break;
928 	default:
929 		break;
930 	}
931 }
932 
933 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
934 		struct request *req, struct nvme_command *cmnd)
935 {
936 	memset(cmnd, 0, sizeof(*cmnd));
937 
938 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
939 		return nvme_setup_discard(ns, req, cmnd);
940 
941 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
942 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
943 	cmnd->write_zeroes.slba =
944 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
945 	cmnd->write_zeroes.length =
946 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
947 
948 	if (!(req->cmd_flags & REQ_NOUNMAP) &&
949 	    (ns->head->features & NVME_NS_DEAC))
950 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
951 
952 	if (nvme_ns_has_pi(ns->head)) {
953 		cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
954 		nvme_set_ref_tag(ns, cmnd, req);
955 	}
956 
957 	return BLK_STS_OK;
958 }
959 
960 /*
961  * NVMe does not support a dedicated command to issue an atomic write. A write
962  * which does adhere to the device atomic limits will silently be executed
963  * non-atomically. The request issuer should ensure that the write is within
964  * the queue atomic writes limits, but just validate this in case it is not.
965  */
966 static bool nvme_valid_atomic_write(struct request *req)
967 {
968 	struct request_queue *q = req->q;
969 	u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
970 
971 	if (blk_rq_bytes(req) > queue_atomic_write_unit_max_bytes(q))
972 		return false;
973 
974 	if (boundary_bytes) {
975 		u64 mask = boundary_bytes - 1, imask = ~mask;
976 		u64 start = blk_rq_pos(req) << SECTOR_SHIFT;
977 		u64 end = start + blk_rq_bytes(req) - 1;
978 
979 		/* If greater then must be crossing a boundary */
980 		if (blk_rq_bytes(req) > boundary_bytes)
981 			return false;
982 
983 		if ((start & imask) != (end & imask))
984 			return false;
985 	}
986 
987 	return true;
988 }
989 
990 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
991 		struct request *req, struct nvme_command *cmnd,
992 		enum nvme_opcode op)
993 {
994 	u16 control = 0;
995 	u32 dsmgmt = 0;
996 
997 	if (req->cmd_flags & REQ_FUA)
998 		control |= NVME_RW_FUA;
999 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
1000 		control |= NVME_RW_LR;
1001 
1002 	if (req->cmd_flags & REQ_RAHEAD)
1003 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
1004 
1005 	if (op == nvme_cmd_write && ns->head->nr_plids) {
1006 		u16 write_stream = req->bio->bi_write_stream;
1007 
1008 		if (WARN_ON_ONCE(write_stream > ns->head->nr_plids))
1009 			return BLK_STS_INVAL;
1010 
1011 		if (write_stream) {
1012 			dsmgmt |= ns->head->plids[write_stream - 1] << 16;
1013 			control |= NVME_RW_DTYPE_DPLCMT;
1014 		}
1015 	}
1016 
1017 	if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
1018 		return BLK_STS_INVAL;
1019 
1020 	cmnd->rw.opcode = op;
1021 	cmnd->rw.flags = 0;
1022 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1023 	cmnd->rw.cdw2 = 0;
1024 	cmnd->rw.cdw3 = 0;
1025 	cmnd->rw.metadata = 0;
1026 	cmnd->rw.slba =
1027 		cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1028 	cmnd->rw.length =
1029 		cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1030 	cmnd->rw.reftag = 0;
1031 	cmnd->rw.lbat = 0;
1032 	cmnd->rw.lbatm = 0;
1033 
1034 	if (ns->head->ms) {
1035 		/*
1036 		 * If formatted with metadata, the block layer always provides a
1037 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
1038 		 * we enable the PRACT bit for protection information or set the
1039 		 * namespace capacity to zero to prevent any I/O.
1040 		 */
1041 		if (!blk_integrity_rq(req)) {
1042 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1043 				return BLK_STS_NOTSUPP;
1044 			control |= NVME_RW_PRINFO_PRACT;
1045 			nvme_set_ref_tag(ns, cmnd, req);
1046 		}
1047 
1048 		if (bio_integrity_flagged(req->bio, BIP_CHECK_GUARD))
1049 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
1050 		if (bio_integrity_flagged(req->bio, BIP_CHECK_REFTAG)) {
1051 			control |= NVME_RW_PRINFO_PRCHK_REF;
1052 			if (op == nvme_cmd_zone_append)
1053 				control |= NVME_RW_APPEND_PIREMAP;
1054 			nvme_set_ref_tag(ns, cmnd, req);
1055 		}
1056 		if (bio_integrity_flagged(req->bio, BIP_CHECK_APPTAG)) {
1057 			control |= NVME_RW_PRINFO_PRCHK_APP;
1058 			nvme_set_app_tag(req, cmnd);
1059 		}
1060 	}
1061 
1062 	cmnd->rw.control = cpu_to_le16(control);
1063 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1064 	return 0;
1065 }
1066 
1067 void nvme_cleanup_cmd(struct request *req)
1068 {
1069 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1070 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1071 
1072 		if (req->special_vec.bv_page == ctrl->discard_page)
1073 			clear_bit_unlock(0, &ctrl->discard_page_busy);
1074 		else
1075 			kfree(bvec_virt(&req->special_vec));
1076 		req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1077 	}
1078 }
1079 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1080 
1081 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1082 {
1083 	struct nvme_command *cmd = nvme_req(req)->cmd;
1084 	blk_status_t ret = BLK_STS_OK;
1085 
1086 	if (!(req->rq_flags & RQF_DONTPREP))
1087 		nvme_clear_nvme_request(req);
1088 
1089 	switch (req_op(req)) {
1090 	case REQ_OP_DRV_IN:
1091 	case REQ_OP_DRV_OUT:
1092 		/* these are setup prior to execution in nvme_init_request() */
1093 		break;
1094 	case REQ_OP_FLUSH:
1095 		nvme_setup_flush(ns, cmd);
1096 		break;
1097 	case REQ_OP_ZONE_RESET_ALL:
1098 	case REQ_OP_ZONE_RESET:
1099 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
1100 		break;
1101 	case REQ_OP_ZONE_OPEN:
1102 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
1103 		break;
1104 	case REQ_OP_ZONE_CLOSE:
1105 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
1106 		break;
1107 	case REQ_OP_ZONE_FINISH:
1108 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
1109 		break;
1110 	case REQ_OP_WRITE_ZEROES:
1111 		ret = nvme_setup_write_zeroes(ns, req, cmd);
1112 		break;
1113 	case REQ_OP_DISCARD:
1114 		ret = nvme_setup_discard(ns, req, cmd);
1115 		break;
1116 	case REQ_OP_READ:
1117 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1118 		break;
1119 	case REQ_OP_WRITE:
1120 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1121 		break;
1122 	case REQ_OP_ZONE_APPEND:
1123 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1124 		break;
1125 	default:
1126 		WARN_ON_ONCE(1);
1127 		return BLK_STS_IOERR;
1128 	}
1129 
1130 	cmd->common.command_id = nvme_cid(req);
1131 	trace_nvme_setup_cmd(req, cmd);
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1135 
1136 /*
1137  * Return values:
1138  * 0:  success
1139  * >0: nvme controller's cqe status response
1140  * <0: kernel error in lieu of controller response
1141  */
1142 int nvme_execute_rq(struct request *rq, bool at_head)
1143 {
1144 	blk_status_t status;
1145 
1146 	status = blk_execute_rq(rq, at_head);
1147 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1148 		return -EINTR;
1149 	if (nvme_req(rq)->status)
1150 		return nvme_req(rq)->status;
1151 	return blk_status_to_errno(status);
1152 }
1153 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1154 
1155 /*
1156  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1157  * if the result is positive, it's an NVM Express status code
1158  */
1159 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1160 		union nvme_result *result, void *buffer, unsigned bufflen,
1161 		int qid, nvme_submit_flags_t flags)
1162 {
1163 	struct request *req;
1164 	int ret;
1165 	blk_mq_req_flags_t blk_flags = 0;
1166 
1167 	if (flags & NVME_SUBMIT_NOWAIT)
1168 		blk_flags |= BLK_MQ_REQ_NOWAIT;
1169 	if (flags & NVME_SUBMIT_RESERVED)
1170 		blk_flags |= BLK_MQ_REQ_RESERVED;
1171 	if (qid == NVME_QID_ANY)
1172 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags);
1173 	else
1174 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags,
1175 						qid - 1);
1176 
1177 	if (IS_ERR(req))
1178 		return PTR_ERR(req);
1179 	nvme_init_request(req, cmd);
1180 	if (flags & NVME_SUBMIT_RETRY)
1181 		req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1182 
1183 	if (buffer && bufflen) {
1184 		ret = blk_rq_map_kern(req, buffer, bufflen, GFP_KERNEL);
1185 		if (ret)
1186 			goto out;
1187 	}
1188 
1189 	ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1190 	if (result && ret >= 0)
1191 		*result = nvme_req(req)->result;
1192  out:
1193 	blk_mq_free_request(req);
1194 	return ret;
1195 }
1196 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1197 
1198 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1199 		void *buffer, unsigned bufflen)
1200 {
1201 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1202 			NVME_QID_ANY, 0);
1203 }
1204 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1205 
1206 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1207 {
1208 	u32 effects = 0;
1209 
1210 	if (ns) {
1211 		effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1212 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1213 			dev_warn_once(ctrl->device,
1214 				"IO command:%02x has unusual effects:%08x\n",
1215 				opcode, effects);
1216 
1217 		/*
1218 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1219 		 * which would deadlock when done on an I/O command.  Note that
1220 		 * We already warn about an unusual effect above.
1221 		 */
1222 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1223 	} else {
1224 		effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1225 
1226 		/* Ignore execution restrictions if any relaxation bits are set */
1227 		if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1228 			effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1229 	}
1230 
1231 	return effects;
1232 }
1233 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1234 
1235 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1236 {
1237 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1238 
1239 	/*
1240 	 * For simplicity, IO to all namespaces is quiesced even if the command
1241 	 * effects say only one namespace is affected.
1242 	 */
1243 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1244 		mutex_lock(&ctrl->scan_lock);
1245 		mutex_lock(&ctrl->subsys->lock);
1246 		nvme_mpath_start_freeze(ctrl->subsys);
1247 		nvme_mpath_wait_freeze(ctrl->subsys);
1248 		nvme_start_freeze(ctrl);
1249 		nvme_wait_freeze(ctrl);
1250 	}
1251 	return effects;
1252 }
1253 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1254 
1255 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1256 		       struct nvme_command *cmd, int status)
1257 {
1258 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1259 		nvme_unfreeze(ctrl);
1260 		nvme_mpath_unfreeze(ctrl->subsys);
1261 		mutex_unlock(&ctrl->subsys->lock);
1262 		mutex_unlock(&ctrl->scan_lock);
1263 	}
1264 	if (effects & NVME_CMD_EFFECTS_CCC) {
1265 		if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1266 				      &ctrl->flags)) {
1267 			dev_info(ctrl->device,
1268 "controller capabilities changed, reset may be required to take effect.\n");
1269 		}
1270 	}
1271 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1272 		nvme_queue_scan(ctrl);
1273 		flush_work(&ctrl->scan_work);
1274 	}
1275 	if (ns)
1276 		return;
1277 
1278 	switch (cmd->common.opcode) {
1279 	case nvme_admin_set_features:
1280 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1281 		case NVME_FEAT_KATO:
1282 			/*
1283 			 * Keep alive commands interval on the host should be
1284 			 * updated when KATO is modified by Set Features
1285 			 * commands.
1286 			 */
1287 			if (!status)
1288 				nvme_update_keep_alive(ctrl, cmd);
1289 			break;
1290 		default:
1291 			break;
1292 		}
1293 		break;
1294 	default:
1295 		break;
1296 	}
1297 }
1298 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1299 
1300 /*
1301  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1302  *
1303  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1304  *   accounting for transport roundtrip times [..].
1305  */
1306 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1307 {
1308 	unsigned long delay = ctrl->kato * HZ / 2;
1309 
1310 	/*
1311 	 * When using Traffic Based Keep Alive, we need to run
1312 	 * nvme_keep_alive_work at twice the normal frequency, as one
1313 	 * command completion can postpone sending a keep alive command
1314 	 * by up to twice the delay between runs.
1315 	 */
1316 	if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1317 		delay /= 2;
1318 	return delay;
1319 }
1320 
1321 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1322 {
1323 	unsigned long now = jiffies;
1324 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1325 	unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1326 
1327 	if (time_after(now, ka_next_check_tm))
1328 		delay = 0;
1329 	else
1330 		delay = ka_next_check_tm - now;
1331 
1332 	queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1333 }
1334 
1335 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1336 						 blk_status_t status)
1337 {
1338 	struct nvme_ctrl *ctrl = rq->end_io_data;
1339 	unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1340 	unsigned long delay = nvme_keep_alive_work_period(ctrl);
1341 	enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1342 
1343 	/*
1344 	 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1345 	 * at the desired frequency.
1346 	 */
1347 	if (rtt <= delay) {
1348 		delay -= rtt;
1349 	} else {
1350 		dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1351 			 jiffies_to_msecs(rtt));
1352 		delay = 0;
1353 	}
1354 
1355 	blk_mq_free_request(rq);
1356 
1357 	if (status) {
1358 		dev_err(ctrl->device,
1359 			"failed nvme_keep_alive_end_io error=%d\n",
1360 				status);
1361 		return RQ_END_IO_NONE;
1362 	}
1363 
1364 	ctrl->ka_last_check_time = jiffies;
1365 	ctrl->comp_seen = false;
1366 	if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1367 		queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1368 	return RQ_END_IO_NONE;
1369 }
1370 
1371 static void nvme_keep_alive_work(struct work_struct *work)
1372 {
1373 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1374 			struct nvme_ctrl, ka_work);
1375 	bool comp_seen = ctrl->comp_seen;
1376 	struct request *rq;
1377 
1378 	ctrl->ka_last_check_time = jiffies;
1379 
1380 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1381 		dev_dbg(ctrl->device,
1382 			"reschedule traffic based keep-alive timer\n");
1383 		ctrl->comp_seen = false;
1384 		nvme_queue_keep_alive_work(ctrl);
1385 		return;
1386 	}
1387 
1388 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1389 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1390 	if (IS_ERR(rq)) {
1391 		/* allocation failure, reset the controller */
1392 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1393 		nvme_reset_ctrl(ctrl);
1394 		return;
1395 	}
1396 	nvme_init_request(rq, &ctrl->ka_cmd);
1397 
1398 	rq->timeout = ctrl->kato * HZ;
1399 	rq->end_io = nvme_keep_alive_end_io;
1400 	rq->end_io_data = ctrl;
1401 	blk_execute_rq_nowait(rq, false);
1402 }
1403 
1404 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1405 {
1406 	if (unlikely(ctrl->kato == 0))
1407 		return;
1408 
1409 	nvme_queue_keep_alive_work(ctrl);
1410 }
1411 
1412 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1413 {
1414 	if (unlikely(ctrl->kato == 0))
1415 		return;
1416 
1417 	cancel_delayed_work_sync(&ctrl->ka_work);
1418 }
1419 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1420 
1421 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1422 				   struct nvme_command *cmd)
1423 {
1424 	unsigned int new_kato =
1425 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1426 
1427 	dev_info(ctrl->device,
1428 		 "keep alive interval updated from %u ms to %u ms\n",
1429 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1430 
1431 	nvme_stop_keep_alive(ctrl);
1432 	ctrl->kato = new_kato;
1433 	nvme_start_keep_alive(ctrl);
1434 }
1435 
1436 static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1437 {
1438 	/*
1439 	 * The CNS field occupies a full byte starting with NVMe 1.2
1440 	 */
1441 	if (ctrl->vs >= NVME_VS(1, 2, 0))
1442 		return true;
1443 
1444 	/*
1445 	 * NVMe 1.1 expanded the CNS value to two bits, which means values
1446 	 * larger than that could get truncated and treated as an incorrect
1447 	 * value.
1448 	 *
1449 	 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1450 	 * compliance, so they need to be quirked here.
1451 	 */
1452 	if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1453 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1454 		return cns <= 3;
1455 
1456 	/*
1457 	 * NVMe 1.0 used a single bit for the CNS value.
1458 	 */
1459 	return cns <= 1;
1460 }
1461 
1462 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1463 {
1464 	struct nvme_command c = { };
1465 	int error;
1466 
1467 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1468 	c.identify.opcode = nvme_admin_identify;
1469 	c.identify.cns = NVME_ID_CNS_CTRL;
1470 
1471 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1472 	if (!*id)
1473 		return -ENOMEM;
1474 
1475 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1476 			sizeof(struct nvme_id_ctrl));
1477 	if (error) {
1478 		kfree(*id);
1479 		*id = NULL;
1480 	}
1481 	return error;
1482 }
1483 
1484 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1485 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1486 {
1487 	const char *warn_str = "ctrl returned bogus length:";
1488 	void *data = cur;
1489 
1490 	switch (cur->nidt) {
1491 	case NVME_NIDT_EUI64:
1492 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1493 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1494 				 warn_str, cur->nidl);
1495 			return -1;
1496 		}
1497 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1498 			return NVME_NIDT_EUI64_LEN;
1499 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1500 		return NVME_NIDT_EUI64_LEN;
1501 	case NVME_NIDT_NGUID:
1502 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1503 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1504 				 warn_str, cur->nidl);
1505 			return -1;
1506 		}
1507 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1508 			return NVME_NIDT_NGUID_LEN;
1509 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1510 		return NVME_NIDT_NGUID_LEN;
1511 	case NVME_NIDT_UUID:
1512 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1513 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1514 				 warn_str, cur->nidl);
1515 			return -1;
1516 		}
1517 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1518 			return NVME_NIDT_UUID_LEN;
1519 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1520 		return NVME_NIDT_UUID_LEN;
1521 	case NVME_NIDT_CSI:
1522 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1523 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1524 				 warn_str, cur->nidl);
1525 			return -1;
1526 		}
1527 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1528 		*csi_seen = true;
1529 		return NVME_NIDT_CSI_LEN;
1530 	default:
1531 		/* Skip unknown types */
1532 		return cur->nidl;
1533 	}
1534 }
1535 
1536 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1537 		struct nvme_ns_info *info)
1538 {
1539 	struct nvme_command c = { };
1540 	bool csi_seen = false;
1541 	int status, pos, len;
1542 	void *data;
1543 
1544 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1545 		return 0;
1546 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1547 		return 0;
1548 
1549 	c.identify.opcode = nvme_admin_identify;
1550 	c.identify.nsid = cpu_to_le32(info->nsid);
1551 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1552 
1553 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1554 	if (!data)
1555 		return -ENOMEM;
1556 
1557 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1558 				      NVME_IDENTIFY_DATA_SIZE);
1559 	if (status) {
1560 		dev_warn(ctrl->device,
1561 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1562 			info->nsid, status);
1563 		goto free_data;
1564 	}
1565 
1566 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1567 		struct nvme_ns_id_desc *cur = data + pos;
1568 
1569 		if (cur->nidl == 0)
1570 			break;
1571 
1572 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1573 		if (len < 0)
1574 			break;
1575 
1576 		len += sizeof(*cur);
1577 	}
1578 
1579 	if (nvme_multi_css(ctrl) && !csi_seen) {
1580 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1581 			 info->nsid);
1582 		status = -EINVAL;
1583 	}
1584 
1585 free_data:
1586 	kfree(data);
1587 	return status;
1588 }
1589 
1590 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1591 			struct nvme_id_ns **id)
1592 {
1593 	struct nvme_command c = { };
1594 	int error;
1595 
1596 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1597 	c.identify.opcode = nvme_admin_identify;
1598 	c.identify.nsid = cpu_to_le32(nsid);
1599 	c.identify.cns = NVME_ID_CNS_NS;
1600 
1601 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1602 	if (!*id)
1603 		return -ENOMEM;
1604 
1605 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1606 	if (error) {
1607 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1608 		kfree(*id);
1609 		*id = NULL;
1610 	}
1611 	return error;
1612 }
1613 
1614 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1615 		struct nvme_ns_info *info)
1616 {
1617 	struct nvme_ns_ids *ids = &info->ids;
1618 	struct nvme_id_ns *id;
1619 	int ret;
1620 
1621 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1622 	if (ret)
1623 		return ret;
1624 
1625 	if (id->ncap == 0) {
1626 		/* namespace not allocated or attached */
1627 		info->is_removed = true;
1628 		ret = -ENODEV;
1629 		goto error;
1630 	}
1631 
1632 	info->anagrpid = id->anagrpid;
1633 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1634 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1635 	info->is_ready = true;
1636 	info->endgid = le16_to_cpu(id->endgid);
1637 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1638 		dev_info(ctrl->device,
1639 			 "Ignoring bogus Namespace Identifiers\n");
1640 	} else {
1641 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1642 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1643 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1644 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1645 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1646 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1647 	}
1648 
1649 error:
1650 	kfree(id);
1651 	return ret;
1652 }
1653 
1654 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1655 		struct nvme_ns_info *info)
1656 {
1657 	struct nvme_id_ns_cs_indep *id;
1658 	struct nvme_command c = {
1659 		.identify.opcode	= nvme_admin_identify,
1660 		.identify.nsid		= cpu_to_le32(info->nsid),
1661 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1662 	};
1663 	int ret;
1664 
1665 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1666 	if (!id)
1667 		return -ENOMEM;
1668 
1669 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1670 	if (!ret) {
1671 		info->anagrpid = id->anagrpid;
1672 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1673 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1674 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1675 		info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1676 		info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1677 		info->endgid = le16_to_cpu(id->endgid);
1678 	}
1679 	kfree(id);
1680 	return ret;
1681 }
1682 
1683 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1684 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1685 {
1686 	union nvme_result res = { 0 };
1687 	struct nvme_command c = { };
1688 	int ret;
1689 
1690 	c.features.opcode = op;
1691 	c.features.fid = cpu_to_le32(fid);
1692 	c.features.dword11 = cpu_to_le32(dword11);
1693 
1694 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1695 			buffer, buflen, NVME_QID_ANY, 0);
1696 	if (ret >= 0 && result)
1697 		*result = le32_to_cpu(res.u32);
1698 	return ret;
1699 }
1700 
1701 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1702 		      unsigned int dword11, void *buffer, size_t buflen,
1703 		      void *result)
1704 {
1705 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1706 			     buflen, result);
1707 }
1708 EXPORT_SYMBOL_GPL(nvme_set_features);
1709 
1710 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1711 		      unsigned int dword11, void *buffer, size_t buflen,
1712 		      void *result)
1713 {
1714 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1715 			     buflen, result);
1716 }
1717 EXPORT_SYMBOL_GPL(nvme_get_features);
1718 
1719 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1720 {
1721 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1722 	u32 result;
1723 	int status, nr_io_queues;
1724 
1725 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1726 			&result);
1727 
1728 	/*
1729 	 * It's either a kernel error or the host observed a connection
1730 	 * lost. In either case it's not possible communicate with the
1731 	 * controller and thus enter the error code path.
1732 	 */
1733 	if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1734 		return status;
1735 
1736 	/*
1737 	 * Degraded controllers might return an error when setting the queue
1738 	 * count.  We still want to be able to bring them online and offer
1739 	 * access to the admin queue, as that might be only way to fix them up.
1740 	 */
1741 	if (status > 0) {
1742 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1743 		*count = 0;
1744 	} else {
1745 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1746 		*count = min(*count, nr_io_queues);
1747 	}
1748 
1749 	return 0;
1750 }
1751 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1752 
1753 #define NVME_AEN_SUPPORTED \
1754 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1755 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1756 
1757 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1758 {
1759 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1760 	int status;
1761 
1762 	if (!supported_aens)
1763 		return;
1764 
1765 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1766 			NULL, 0, &result);
1767 	if (status)
1768 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1769 			 supported_aens);
1770 
1771 	queue_work(nvme_wq, &ctrl->async_event_work);
1772 }
1773 
1774 static int nvme_ns_open(struct nvme_ns *ns)
1775 {
1776 
1777 	/* should never be called due to GENHD_FL_HIDDEN */
1778 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1779 		goto fail;
1780 	if (!nvme_get_ns(ns))
1781 		goto fail;
1782 	if (!try_module_get(ns->ctrl->ops->module))
1783 		goto fail_put_ns;
1784 
1785 	return 0;
1786 
1787 fail_put_ns:
1788 	nvme_put_ns(ns);
1789 fail:
1790 	return -ENXIO;
1791 }
1792 
1793 static void nvme_ns_release(struct nvme_ns *ns)
1794 {
1795 
1796 	module_put(ns->ctrl->ops->module);
1797 	nvme_put_ns(ns);
1798 }
1799 
1800 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1801 {
1802 	return nvme_ns_open(disk->private_data);
1803 }
1804 
1805 static void nvme_release(struct gendisk *disk)
1806 {
1807 	nvme_ns_release(disk->private_data);
1808 }
1809 
1810 int nvme_getgeo(struct gendisk *disk, struct hd_geometry *geo)
1811 {
1812 	/* some standard values */
1813 	geo->heads = 1 << 6;
1814 	geo->sectors = 1 << 5;
1815 	geo->cylinders = get_capacity(disk) >> 11;
1816 	return 0;
1817 }
1818 
1819 static bool nvme_init_integrity(struct nvme_ns_head *head,
1820 		struct queue_limits *lim, struct nvme_ns_info *info)
1821 {
1822 	struct blk_integrity *bi = &lim->integrity;
1823 
1824 	memset(bi, 0, sizeof(*bi));
1825 
1826 	if (!head->ms)
1827 		return true;
1828 
1829 	/*
1830 	 * PI can always be supported as we can ask the controller to simply
1831 	 * insert/strip it, which is not possible for other kinds of metadata.
1832 	 */
1833 	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1834 	    !(head->features & NVME_NS_METADATA_SUPPORTED))
1835 		return nvme_ns_has_pi(head);
1836 
1837 	switch (head->pi_type) {
1838 	case NVME_NS_DPS_PI_TYPE3:
1839 		switch (head->guard_type) {
1840 		case NVME_NVM_NS_16B_GUARD:
1841 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1842 			bi->tag_size = sizeof(u16) + sizeof(u32);
1843 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1844 			break;
1845 		case NVME_NVM_NS_64B_GUARD:
1846 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1847 			bi->tag_size = sizeof(u16) + 6;
1848 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1849 			break;
1850 		default:
1851 			break;
1852 		}
1853 		break;
1854 	case NVME_NS_DPS_PI_TYPE1:
1855 	case NVME_NS_DPS_PI_TYPE2:
1856 		switch (head->guard_type) {
1857 		case NVME_NVM_NS_16B_GUARD:
1858 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1859 			bi->tag_size = sizeof(u16);
1860 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1861 				     BLK_INTEGRITY_REF_TAG;
1862 			break;
1863 		case NVME_NVM_NS_64B_GUARD:
1864 			bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1865 			bi->tag_size = sizeof(u16);
1866 			bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1867 				     BLK_INTEGRITY_REF_TAG;
1868 			break;
1869 		default:
1870 			break;
1871 		}
1872 		break;
1873 	default:
1874 		break;
1875 	}
1876 
1877 	bi->metadata_size = head->ms;
1878 	if (bi->csum_type) {
1879 		bi->pi_tuple_size = head->pi_size;
1880 		bi->pi_offset = info->pi_offset;
1881 	}
1882 	return true;
1883 }
1884 
1885 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1886 {
1887 	struct nvme_ctrl *ctrl = ns->ctrl;
1888 
1889 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX))
1890 		lim->max_hw_discard_sectors =
1891 			nvme_lba_to_sect(ns->head, ctrl->dmrsl);
1892 	else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1893 		lim->max_hw_discard_sectors = UINT_MAX;
1894 	else
1895 		lim->max_hw_discard_sectors = 0;
1896 
1897 	lim->discard_granularity = lim->logical_block_size;
1898 
1899 	if (ctrl->dmrl)
1900 		lim->max_discard_segments = ctrl->dmrl;
1901 	else
1902 		lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1903 }
1904 
1905 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1906 {
1907 	return uuid_equal(&a->uuid, &b->uuid) &&
1908 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1909 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1910 		a->csi == b->csi;
1911 }
1912 
1913 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1914 		struct nvme_id_ns_nvm **nvmp)
1915 {
1916 	struct nvme_command c = {
1917 		.identify.opcode	= nvme_admin_identify,
1918 		.identify.nsid		= cpu_to_le32(nsid),
1919 		.identify.cns		= NVME_ID_CNS_CS_NS,
1920 		.identify.csi		= NVME_CSI_NVM,
1921 	};
1922 	struct nvme_id_ns_nvm *nvm;
1923 	int ret;
1924 
1925 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1926 	if (!nvm)
1927 		return -ENOMEM;
1928 
1929 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1930 	if (ret)
1931 		kfree(nvm);
1932 	else
1933 		*nvmp = nvm;
1934 	return ret;
1935 }
1936 
1937 static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1938 		struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1939 {
1940 	u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1941 	u8 guard_type;
1942 
1943 	/* no support for storage tag formats right now */
1944 	if (nvme_elbaf_sts(elbaf))
1945 		return;
1946 
1947 	guard_type = nvme_elbaf_guard_type(elbaf);
1948 	if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1949 	     guard_type == NVME_NVM_NS_QTYPE_GUARD)
1950 		guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1951 
1952 	head->guard_type = guard_type;
1953 	switch (head->guard_type) {
1954 	case NVME_NVM_NS_64B_GUARD:
1955 		head->pi_size = sizeof(struct crc64_pi_tuple);
1956 		break;
1957 	case NVME_NVM_NS_16B_GUARD:
1958 		head->pi_size = sizeof(struct t10_pi_tuple);
1959 		break;
1960 	default:
1961 		break;
1962 	}
1963 }
1964 
1965 static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1966 		struct nvme_ns_head *head, struct nvme_id_ns *id,
1967 		struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1968 {
1969 	head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1970 	head->pi_type = 0;
1971 	head->pi_size = 0;
1972 	head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1973 	if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1974 		return;
1975 
1976 	if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1977 		nvme_configure_pi_elbas(head, id, nvm);
1978 	} else {
1979 		head->pi_size = sizeof(struct t10_pi_tuple);
1980 		head->guard_type = NVME_NVM_NS_16B_GUARD;
1981 	}
1982 
1983 	if (head->pi_size && head->ms >= head->pi_size)
1984 		head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1985 	if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1986 		if (disable_pi_offsets)
1987 			head->pi_type = 0;
1988 		else
1989 			info->pi_offset = head->ms - head->pi_size;
1990 	}
1991 
1992 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1993 		/*
1994 		 * The NVMe over Fabrics specification only supports metadata as
1995 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1996 		 * remap the separate metadata buffer from the block layer.
1997 		 */
1998 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1999 			return;
2000 
2001 		head->features |= NVME_NS_EXT_LBAS;
2002 
2003 		/*
2004 		 * The current fabrics transport drivers support namespace
2005 		 * metadata formats only if nvme_ns_has_pi() returns true.
2006 		 * Suppress support for all other formats so the namespace will
2007 		 * have a 0 capacity and not be usable through the block stack.
2008 		 *
2009 		 * Note, this check will need to be modified if any drivers
2010 		 * gain the ability to use other metadata formats.
2011 		 */
2012 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
2013 			head->features |= NVME_NS_METADATA_SUPPORTED;
2014 	} else {
2015 		/*
2016 		 * For PCIe controllers, we can't easily remap the separate
2017 		 * metadata buffer from the block layer and thus require a
2018 		 * separate metadata buffer for block layer metadata/PI support.
2019 		 * We allow extended LBAs for the passthrough interface, though.
2020 		 */
2021 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
2022 			head->features |= NVME_NS_EXT_LBAS;
2023 		else
2024 			head->features |= NVME_NS_METADATA_SUPPORTED;
2025 	}
2026 }
2027 
2028 
2029 static u32 nvme_configure_atomic_write(struct nvme_ns *ns,
2030 		struct nvme_id_ns *id, struct queue_limits *lim, u32 bs)
2031 {
2032 	u32 atomic_bs, boundary = 0;
2033 
2034 	/*
2035 	 * We do not support an offset for the atomic boundaries.
2036 	 */
2037 	if (id->nabo)
2038 		return bs;
2039 
2040 	if ((id->nsfeat & NVME_NS_FEAT_ATOMICS) && id->nawupf) {
2041 		/*
2042 		 * Use the per-namespace atomic write unit when available.
2043 		 */
2044 		atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2045 		if (id->nabspf)
2046 			boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2047 	} else {
2048 		/*
2049 		 * Use the controller wide atomic write unit.  This sucks
2050 		 * because the limit is defined in terms of logical blocks while
2051 		 * namespaces can have different formats, and because there is
2052 		 * no clear language in the specification prohibiting different
2053 		 * values for different controllers in the subsystem.
2054 		 */
2055 		atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2056 	}
2057 
2058 	lim->atomic_write_hw_max = atomic_bs;
2059 	lim->atomic_write_hw_boundary = boundary;
2060 	lim->atomic_write_hw_unit_min = bs;
2061 	lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2062 	lim->features |= BLK_FEAT_ATOMIC_WRITES;
2063 	return atomic_bs;
2064 }
2065 
2066 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2067 {
2068 	return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2069 }
2070 
2071 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2072 		struct queue_limits *lim)
2073 {
2074 	lim->max_hw_sectors = ctrl->max_hw_sectors;
2075 	lim->max_segments = min_t(u32, USHRT_MAX,
2076 		min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2077 	lim->max_integrity_segments = ctrl->max_integrity_segments;
2078 	lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2079 	lim->max_segment_size = UINT_MAX;
2080 	lim->dma_alignment = 3;
2081 }
2082 
2083 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2084 		struct queue_limits *lim)
2085 {
2086 	struct nvme_ns_head *head = ns->head;
2087 	u32 bs = 1U << head->lba_shift;
2088 	u32 atomic_bs, phys_bs, io_opt = 0;
2089 	bool valid = true;
2090 
2091 	/*
2092 	 * The block layer can't support LBA sizes larger than the page size
2093 	 * or smaller than a sector size yet, so catch this early and don't
2094 	 * allow block I/O.
2095 	 */
2096 	if (blk_validate_block_size(bs)) {
2097 		bs = (1 << 9);
2098 		valid = false;
2099 	}
2100 
2101 	phys_bs = bs;
2102 	atomic_bs = nvme_configure_atomic_write(ns, id, lim, bs);
2103 
2104 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2105 		/* NPWG = Namespace Preferred Write Granularity */
2106 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2107 		/* NOWS = Namespace Optimal Write Size */
2108 		if (id->nows)
2109 			io_opt = bs * (1 + le16_to_cpu(id->nows));
2110 	}
2111 
2112 	/*
2113 	 * Linux filesystems assume writing a single physical block is
2114 	 * an atomic operation. Hence limit the physical block size to the
2115 	 * value of the Atomic Write Unit Power Fail parameter.
2116 	 */
2117 	lim->logical_block_size = bs;
2118 	lim->physical_block_size = min(phys_bs, atomic_bs);
2119 	lim->io_min = phys_bs;
2120 	lim->io_opt = io_opt;
2121 	if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2122 	    (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2123 		lim->max_write_zeroes_sectors = UINT_MAX;
2124 	else
2125 		lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2126 	return valid;
2127 }
2128 
2129 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2130 {
2131 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2132 }
2133 
2134 static inline bool nvme_first_scan(struct gendisk *disk)
2135 {
2136 	/* nvme_alloc_ns() scans the disk prior to adding it */
2137 	return !disk_live(disk);
2138 }
2139 
2140 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2141 		struct queue_limits *lim)
2142 {
2143 	struct nvme_ctrl *ctrl = ns->ctrl;
2144 	u32 iob;
2145 
2146 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2147 	    is_power_of_2(ctrl->max_hw_sectors))
2148 		iob = ctrl->max_hw_sectors;
2149 	else
2150 		iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob));
2151 
2152 	if (!iob)
2153 		return;
2154 
2155 	if (!is_power_of_2(iob)) {
2156 		if (nvme_first_scan(ns->disk))
2157 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2158 				ns->disk->disk_name, iob);
2159 		return;
2160 	}
2161 
2162 	if (blk_queue_is_zoned(ns->disk->queue)) {
2163 		if (nvme_first_scan(ns->disk))
2164 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
2165 				ns->disk->disk_name);
2166 		return;
2167 	}
2168 
2169 	lim->chunk_sectors = iob;
2170 }
2171 
2172 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2173 		struct nvme_ns_info *info)
2174 {
2175 	struct queue_limits lim;
2176 	unsigned int memflags;
2177 	int ret;
2178 
2179 	lim = queue_limits_start_update(ns->disk->queue);
2180 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2181 
2182 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2183 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2184 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2185 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2186 
2187 	/* Hide the block-interface for these devices */
2188 	if (!ret)
2189 		ret = -ENODEV;
2190 	return ret;
2191 }
2192 
2193 static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl,
2194 				      struct nvme_ns_info *info, u8 fdp_idx)
2195 {
2196 	struct nvme_fdp_config_log hdr, *h;
2197 	struct nvme_fdp_config_desc *desc;
2198 	size_t size = sizeof(hdr);
2199 	void *log, *end;
2200 	int i, n, ret;
2201 
2202 	ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2203 			       NVME_CSI_NVM, &hdr, size, 0, info->endgid);
2204 	if (ret) {
2205 		dev_warn(ctrl->device,
2206 			 "FDP configs log header status:0x%x endgid:%d\n", ret,
2207 			 info->endgid);
2208 		return ret;
2209 	}
2210 
2211 	size = le32_to_cpu(hdr.sze);
2212 	if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) {
2213 		dev_warn(ctrl->device, "FDP config size too large:%zu\n",
2214 			 size);
2215 		return 0;
2216 	}
2217 
2218 	h = kvmalloc(size, GFP_KERNEL);
2219 	if (!h)
2220 		return -ENOMEM;
2221 
2222 	ret = nvme_get_log_lsi(ctrl, 0, NVME_LOG_FDP_CONFIGS, 0,
2223 			       NVME_CSI_NVM, h, size, 0, info->endgid);
2224 	if (ret) {
2225 		dev_warn(ctrl->device,
2226 			 "FDP configs log status:0x%x endgid:%d\n", ret,
2227 			 info->endgid);
2228 		goto out;
2229 	}
2230 
2231 	n = le16_to_cpu(h->numfdpc) + 1;
2232 	if (fdp_idx > n) {
2233 		dev_warn(ctrl->device, "FDP index:%d out of range:%d\n",
2234 			 fdp_idx, n);
2235 		/* Proceed without registering FDP streams */
2236 		ret = 0;
2237 		goto out;
2238 	}
2239 
2240 	log = h + 1;
2241 	desc = log;
2242 	end = log + size - sizeof(*h);
2243 	for (i = 0; i < fdp_idx; i++) {
2244 		log += le16_to_cpu(desc->dsze);
2245 		desc = log;
2246 		if (log >= end) {
2247 			dev_warn(ctrl->device,
2248 				 "FDP invalid config descriptor list\n");
2249 			ret = 0;
2250 			goto out;
2251 		}
2252 	}
2253 
2254 	if (le32_to_cpu(desc->nrg) > 1) {
2255 		dev_warn(ctrl->device, "FDP NRG > 1 not supported\n");
2256 		ret = 0;
2257 		goto out;
2258 	}
2259 
2260 	info->runs = le64_to_cpu(desc->runs);
2261 out:
2262 	kvfree(h);
2263 	return ret;
2264 }
2265 
2266 static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2267 {
2268 	struct nvme_ns_head *head = ns->head;
2269 	struct nvme_ctrl *ctrl = ns->ctrl;
2270 	struct nvme_fdp_ruh_status *ruhs;
2271 	struct nvme_fdp_config fdp;
2272 	struct nvme_command c = {};
2273 	size_t size;
2274 	int i, ret;
2275 
2276 	/*
2277 	 * The FDP configuration is static for the lifetime of the namespace,
2278 	 * so return immediately if we've already registered this namespace's
2279 	 * streams.
2280 	 */
2281 	if (head->nr_plids)
2282 		return 0;
2283 
2284 	ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0,
2285 				&fdp);
2286 	if (ret) {
2287 		dev_warn(ctrl->device, "FDP get feature status:0x%x\n", ret);
2288 		return ret;
2289 	}
2290 
2291 	if (!(fdp.flags & FDPCFG_FDPE))
2292 		return 0;
2293 
2294 	ret = nvme_query_fdp_granularity(ctrl, info, fdp.fdpcidx);
2295 	if (!info->runs)
2296 		return ret;
2297 
2298 	size = struct_size(ruhs, ruhsd, S8_MAX - 1);
2299 	ruhs = kzalloc(size, GFP_KERNEL);
2300 	if (!ruhs)
2301 		return -ENOMEM;
2302 
2303 	c.imr.opcode = nvme_cmd_io_mgmt_recv;
2304 	c.imr.nsid = cpu_to_le32(head->ns_id);
2305 	c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS;
2306 	c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size));
2307 	ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size);
2308 	if (ret) {
2309 		dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n", ret);
2310 		goto free;
2311 	}
2312 
2313 	head->nr_plids = le16_to_cpu(ruhs->nruhsd);
2314 	if (!head->nr_plids)
2315 		goto free;
2316 
2317 	head->plids = kcalloc(head->nr_plids, sizeof(*head->plids),
2318 			      GFP_KERNEL);
2319 	if (!head->plids) {
2320 		dev_warn(ctrl->device,
2321 			 "failed to allocate %u FDP placement IDs\n",
2322 			 head->nr_plids);
2323 		head->nr_plids = 0;
2324 		ret = -ENOMEM;
2325 		goto free;
2326 	}
2327 
2328 	for (i = 0; i < head->nr_plids; i++)
2329 		head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid);
2330 free:
2331 	kfree(ruhs);
2332 	return ret;
2333 }
2334 
2335 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2336 		struct nvme_ns_info *info)
2337 {
2338 	struct queue_limits lim;
2339 	struct nvme_id_ns_nvm *nvm = NULL;
2340 	struct nvme_zone_info zi = {};
2341 	struct nvme_id_ns *id;
2342 	unsigned int memflags;
2343 	sector_t capacity;
2344 	unsigned lbaf;
2345 	int ret;
2346 
2347 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2348 	if (ret)
2349 		return ret;
2350 
2351 	if (id->ncap == 0) {
2352 		/* namespace not allocated or attached */
2353 		info->is_removed = true;
2354 		ret = -ENXIO;
2355 		goto out;
2356 	}
2357 	lbaf = nvme_lbaf_index(id->flbas);
2358 
2359 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2360 		ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm);
2361 		if (ret < 0)
2362 			goto out;
2363 	}
2364 
2365 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2366 	    ns->head->ids.csi == NVME_CSI_ZNS) {
2367 		ret = nvme_query_zone_info(ns, lbaf, &zi);
2368 		if (ret < 0)
2369 			goto out;
2370 	}
2371 
2372 	if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) {
2373 		ret = nvme_query_fdp_info(ns, info);
2374 		if (ret < 0)
2375 			goto out;
2376 	}
2377 
2378 	lim = queue_limits_start_update(ns->disk->queue);
2379 
2380 	memflags = blk_mq_freeze_queue(ns->disk->queue);
2381 	ns->head->lba_shift = id->lbaf[lbaf].ds;
2382 	ns->head->nuse = le64_to_cpu(id->nuse);
2383 	capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze));
2384 	nvme_set_ctrl_limits(ns->ctrl, &lim);
2385 	nvme_configure_metadata(ns->ctrl, ns->head, id, nvm, info);
2386 	nvme_set_chunk_sectors(ns, id, &lim);
2387 	if (!nvme_update_disk_info(ns, id, &lim))
2388 		capacity = 0;
2389 
2390 	nvme_config_discard(ns, &lim);
2391 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2392 	    ns->head->ids.csi == NVME_CSI_ZNS)
2393 		nvme_update_zone_info(ns, &lim, &zi);
2394 
2395 	if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2396 		lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2397 	else
2398 		lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2399 
2400 	if (info->is_rotational)
2401 		lim.features |= BLK_FEAT_ROTATIONAL;
2402 
2403 	/*
2404 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
2405 	 * metadata masquerading as Type 0 if supported, otherwise reject block
2406 	 * I/O to namespaces with metadata except when the namespace supports
2407 	 * PI, as it can strip/insert in that case.
2408 	 */
2409 	if (!nvme_init_integrity(ns->head, &lim, info))
2410 		capacity = 0;
2411 
2412 	lim.max_write_streams = ns->head->nr_plids;
2413 	if (lim.max_write_streams)
2414 		lim.write_stream_granularity = min(info->runs, U32_MAX);
2415 	else
2416 		lim.write_stream_granularity = 0;
2417 
2418 	/*
2419 	 * Only set the DEAC bit if the device guarantees that reads from
2420 	 * deallocated data return zeroes.  While the DEAC bit does not
2421 	 * require that, it must be a no-op if reads from deallocated data
2422 	 * do not return zeroes.
2423 	 */
2424 	if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) {
2425 		ns->head->features |= NVME_NS_DEAC;
2426 		lim.max_hw_wzeroes_unmap_sectors = lim.max_write_zeroes_sectors;
2427 	}
2428 
2429 	ret = queue_limits_commit_update(ns->disk->queue, &lim);
2430 	if (ret) {
2431 		blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2432 		goto out;
2433 	}
2434 
2435 	set_capacity_and_notify(ns->disk, capacity);
2436 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2437 	set_bit(NVME_NS_READY, &ns->flags);
2438 	blk_mq_unfreeze_queue(ns->disk->queue, memflags);
2439 
2440 	if (blk_queue_is_zoned(ns->queue)) {
2441 		ret = blk_revalidate_disk_zones(ns->disk);
2442 		if (ret && !nvme_first_scan(ns->disk))
2443 			goto out;
2444 	}
2445 
2446 	ret = 0;
2447 out:
2448 	kfree(nvm);
2449 	kfree(id);
2450 	return ret;
2451 }
2452 
2453 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2454 {
2455 	bool unsupported = false;
2456 	int ret;
2457 
2458 	switch (info->ids.csi) {
2459 	case NVME_CSI_ZNS:
2460 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2461 			dev_info(ns->ctrl->device,
2462 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2463 				info->nsid);
2464 			ret = nvme_update_ns_info_generic(ns, info);
2465 			break;
2466 		}
2467 		ret = nvme_update_ns_info_block(ns, info);
2468 		break;
2469 	case NVME_CSI_NVM:
2470 		ret = nvme_update_ns_info_block(ns, info);
2471 		break;
2472 	default:
2473 		dev_info(ns->ctrl->device,
2474 			"block device for nsid %u not supported (csi %u)\n",
2475 			info->nsid, info->ids.csi);
2476 		ret = nvme_update_ns_info_generic(ns, info);
2477 		break;
2478 	}
2479 
2480 	/*
2481 	 * If probing fails due an unsupported feature, hide the block device,
2482 	 * but still allow other access.
2483 	 */
2484 	if (ret == -ENODEV) {
2485 		ns->disk->flags |= GENHD_FL_HIDDEN;
2486 		set_bit(NVME_NS_READY, &ns->flags);
2487 		unsupported = true;
2488 		ret = 0;
2489 	}
2490 
2491 	if (!ret && nvme_ns_head_multipath(ns->head)) {
2492 		struct queue_limits *ns_lim = &ns->disk->queue->limits;
2493 		struct queue_limits lim;
2494 		unsigned int memflags;
2495 
2496 		lim = queue_limits_start_update(ns->head->disk->queue);
2497 		memflags = blk_mq_freeze_queue(ns->head->disk->queue);
2498 		/*
2499 		 * queue_limits mixes values that are the hardware limitations
2500 		 * for bio splitting with what is the device configuration.
2501 		 *
2502 		 * For NVMe the device configuration can change after e.g. a
2503 		 * Format command, and we really want to pick up the new format
2504 		 * value here.  But we must still stack the queue limits to the
2505 		 * least common denominator for multipathing to split the bios
2506 		 * properly.
2507 		 *
2508 		 * To work around this, we explicitly set the device
2509 		 * configuration to those that we just queried, but only stack
2510 		 * the splitting limits in to make sure we still obey possibly
2511 		 * lower limitations of other controllers.
2512 		 */
2513 		lim.logical_block_size = ns_lim->logical_block_size;
2514 		lim.physical_block_size = ns_lim->physical_block_size;
2515 		lim.io_min = ns_lim->io_min;
2516 		lim.io_opt = ns_lim->io_opt;
2517 		queue_limits_stack_bdev(&lim, ns->disk->part0, 0,
2518 					ns->head->disk->disk_name);
2519 		if (unsupported)
2520 			ns->head->disk->flags |= GENHD_FL_HIDDEN;
2521 		else
2522 			nvme_init_integrity(ns->head, &lim, info);
2523 		lim.max_write_streams = ns_lim->max_write_streams;
2524 		lim.write_stream_granularity = ns_lim->write_stream_granularity;
2525 		ret = queue_limits_commit_update(ns->head->disk->queue, &lim);
2526 
2527 		set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk));
2528 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2529 		nvme_mpath_revalidate_paths(ns);
2530 
2531 		blk_mq_unfreeze_queue(ns->head->disk->queue, memflags);
2532 	}
2533 
2534 	return ret;
2535 }
2536 
2537 int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2538 		enum blk_unique_id type)
2539 {
2540 	struct nvme_ns_ids *ids = &ns->head->ids;
2541 
2542 	if (type != BLK_UID_EUI64)
2543 		return -EINVAL;
2544 
2545 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) {
2546 		memcpy(id, &ids->nguid, sizeof(ids->nguid));
2547 		return sizeof(ids->nguid);
2548 	}
2549 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) {
2550 		memcpy(id, &ids->eui64, sizeof(ids->eui64));
2551 		return sizeof(ids->eui64);
2552 	}
2553 
2554 	return -EINVAL;
2555 }
2556 
2557 static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2558 		enum blk_unique_id type)
2559 {
2560 	return nvme_ns_get_unique_id(disk->private_data, id, type);
2561 }
2562 
2563 #ifdef CONFIG_BLK_SED_OPAL
2564 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2565 		bool send)
2566 {
2567 	struct nvme_ctrl *ctrl = data;
2568 	struct nvme_command cmd = { };
2569 
2570 	if (send)
2571 		cmd.common.opcode = nvme_admin_security_send;
2572 	else
2573 		cmd.common.opcode = nvme_admin_security_recv;
2574 	cmd.common.nsid = 0;
2575 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2576 	cmd.common.cdw11 = cpu_to_le32(len);
2577 
2578 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2579 			NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2580 }
2581 
2582 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2583 {
2584 	if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2585 		if (!ctrl->opal_dev)
2586 			ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2587 		else if (was_suspended)
2588 			opal_unlock_from_suspend(ctrl->opal_dev);
2589 	} else {
2590 		free_opal_dev(ctrl->opal_dev);
2591 		ctrl->opal_dev = NULL;
2592 	}
2593 }
2594 #else
2595 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2596 {
2597 }
2598 #endif /* CONFIG_BLK_SED_OPAL */
2599 
2600 #ifdef CONFIG_BLK_DEV_ZONED
2601 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2602 		unsigned int nr_zones, report_zones_cb cb, void *data)
2603 {
2604 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2605 			data);
2606 }
2607 #else
2608 #define nvme_report_zones	NULL
2609 #endif /* CONFIG_BLK_DEV_ZONED */
2610 
2611 const struct block_device_operations nvme_bdev_ops = {
2612 	.owner		= THIS_MODULE,
2613 	.ioctl		= nvme_ioctl,
2614 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2615 	.open		= nvme_open,
2616 	.release	= nvme_release,
2617 	.getgeo		= nvme_getgeo,
2618 	.get_unique_id	= nvme_get_unique_id,
2619 	.report_zones	= nvme_report_zones,
2620 	.pr_ops		= &nvme_pr_ops,
2621 };
2622 
2623 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2624 		u32 timeout, const char *op)
2625 {
2626 	unsigned long timeout_jiffies = jiffies + timeout * HZ;
2627 	u32 csts;
2628 	int ret;
2629 
2630 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2631 		if (csts == ~0)
2632 			return -ENODEV;
2633 		if ((csts & mask) == val)
2634 			break;
2635 
2636 		usleep_range(1000, 2000);
2637 		if (fatal_signal_pending(current))
2638 			return -EINTR;
2639 		if (time_after(jiffies, timeout_jiffies)) {
2640 			dev_err(ctrl->device,
2641 				"Device not ready; aborting %s, CSTS=0x%x\n",
2642 				op, csts);
2643 			return -ENODEV;
2644 		}
2645 	}
2646 
2647 	return ret;
2648 }
2649 
2650 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2651 {
2652 	int ret;
2653 
2654 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2655 	if (shutdown)
2656 		ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2657 	else
2658 		ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2659 
2660 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2661 	if (ret)
2662 		return ret;
2663 
2664 	if (shutdown) {
2665 		return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2666 				       NVME_CSTS_SHST_CMPLT,
2667 				       ctrl->shutdown_timeout, "shutdown");
2668 	}
2669 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2670 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2671 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2672 			       (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2673 }
2674 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2675 
2676 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2677 {
2678 	unsigned dev_page_min;
2679 	u32 timeout;
2680 	int ret;
2681 
2682 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2683 	if (ret) {
2684 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2685 		return ret;
2686 	}
2687 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2688 
2689 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2690 		dev_err(ctrl->device,
2691 			"Minimum device page size %u too large for host (%u)\n",
2692 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2693 		return -ENODEV;
2694 	}
2695 
2696 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2697 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2698 	else
2699 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2700 
2701 	/*
2702 	 * Setting CRIME results in CSTS.RDY before the media is ready. This
2703 	 * makes it possible for media related commands to return the error
2704 	 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2705 	 * restructured to handle retries, disable CC.CRIME.
2706 	 */
2707 	ctrl->ctrl_config &= ~NVME_CC_CRIME;
2708 
2709 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2710 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2711 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2712 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2713 	if (ret)
2714 		return ret;
2715 
2716 	/* CAP value may change after initial CC write */
2717 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2718 	if (ret)
2719 		return ret;
2720 
2721 	timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2722 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2723 		u32 crto, ready_timeout;
2724 
2725 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2726 		if (ret) {
2727 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2728 				ret);
2729 			return ret;
2730 		}
2731 
2732 		/*
2733 		 * CRTO should always be greater or equal to CAP.TO, but some
2734 		 * devices are known to get this wrong. Use the larger of the
2735 		 * two values.
2736 		 */
2737 		ready_timeout = NVME_CRTO_CRWMT(crto);
2738 
2739 		if (ready_timeout < timeout)
2740 			dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2741 				      crto, ctrl->cap);
2742 		else
2743 			timeout = ready_timeout;
2744 	}
2745 
2746 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2747 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2748 	if (ret)
2749 		return ret;
2750 	return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2751 			       (timeout + 1) / 2, "initialisation");
2752 }
2753 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2754 
2755 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2756 {
2757 	__le64 ts;
2758 	int ret;
2759 
2760 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2761 		return 0;
2762 
2763 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2764 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2765 			NULL);
2766 	if (ret)
2767 		dev_warn_once(ctrl->device,
2768 			"could not set timestamp (%d)\n", ret);
2769 	return ret;
2770 }
2771 
2772 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2773 {
2774 	struct nvme_feat_host_behavior *host;
2775 	u8 acre = 0, lbafee = 0;
2776 	int ret;
2777 
2778 	/* Don't bother enabling the feature if retry delay is not reported */
2779 	if (ctrl->crdt[0])
2780 		acre = NVME_ENABLE_ACRE;
2781 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2782 		lbafee = NVME_ENABLE_LBAFEE;
2783 
2784 	if (!acre && !lbafee)
2785 		return 0;
2786 
2787 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2788 	if (!host)
2789 		return 0;
2790 
2791 	host->acre = acre;
2792 	host->lbafee = lbafee;
2793 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2794 				host, sizeof(*host), NULL);
2795 	kfree(host);
2796 	return ret;
2797 }
2798 
2799 /*
2800  * The function checks whether the given total (exlat + enlat) latency of
2801  * a power state allows the latter to be used as an APST transition target.
2802  * It does so by comparing the latency to the primary and secondary latency
2803  * tolerances defined by module params. If there's a match, the corresponding
2804  * timeout value is returned and the matching tolerance index (1 or 2) is
2805  * reported.
2806  */
2807 static bool nvme_apst_get_transition_time(u64 total_latency,
2808 		u64 *transition_time, unsigned *last_index)
2809 {
2810 	if (total_latency <= apst_primary_latency_tol_us) {
2811 		if (*last_index == 1)
2812 			return false;
2813 		*last_index = 1;
2814 		*transition_time = apst_primary_timeout_ms;
2815 		return true;
2816 	}
2817 	if (apst_secondary_timeout_ms &&
2818 		total_latency <= apst_secondary_latency_tol_us) {
2819 		if (*last_index <= 2)
2820 			return false;
2821 		*last_index = 2;
2822 		*transition_time = apst_secondary_timeout_ms;
2823 		return true;
2824 	}
2825 	return false;
2826 }
2827 
2828 /*
2829  * APST (Autonomous Power State Transition) lets us program a table of power
2830  * state transitions that the controller will perform automatically.
2831  *
2832  * Depending on module params, one of the two supported techniques will be used:
2833  *
2834  * - If the parameters provide explicit timeouts and tolerances, they will be
2835  *   used to build a table with up to 2 non-operational states to transition to.
2836  *   The default parameter values were selected based on the values used by
2837  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2838  *   regeneration of the APST table in the event of switching between external
2839  *   and battery power, the timeouts and tolerances reflect a compromise
2840  *   between values used by Microsoft for AC and battery scenarios.
2841  * - If not, we'll configure the table with a simple heuristic: we are willing
2842  *   to spend at most 2% of the time transitioning between power states.
2843  *   Therefore, when running in any given state, we will enter the next
2844  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2845  *   microseconds, as long as that state's exit latency is under the requested
2846  *   maximum latency.
2847  *
2848  * We will not autonomously enter any non-operational state for which the total
2849  * latency exceeds ps_max_latency_us.
2850  *
2851  * Users can set ps_max_latency_us to zero to turn off APST.
2852  */
2853 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2854 {
2855 	struct nvme_feat_auto_pst *table;
2856 	unsigned apste = 0;
2857 	u64 max_lat_us = 0;
2858 	__le64 target = 0;
2859 	int max_ps = -1;
2860 	int state;
2861 	int ret;
2862 	unsigned last_lt_index = UINT_MAX;
2863 
2864 	/*
2865 	 * If APST isn't supported or if we haven't been initialized yet,
2866 	 * then don't do anything.
2867 	 */
2868 	if (!ctrl->apsta)
2869 		return 0;
2870 
2871 	if (ctrl->npss > 31) {
2872 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2873 		return 0;
2874 	}
2875 
2876 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2877 	if (!table)
2878 		return 0;
2879 
2880 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2881 		/* Turn off APST. */
2882 		dev_dbg(ctrl->device, "APST disabled\n");
2883 		goto done;
2884 	}
2885 
2886 	/*
2887 	 * Walk through all states from lowest- to highest-power.
2888 	 * According to the spec, lower-numbered states use more power.  NPSS,
2889 	 * despite the name, is the index of the lowest-power state, not the
2890 	 * number of states.
2891 	 */
2892 	for (state = (int)ctrl->npss; state >= 0; state--) {
2893 		u64 total_latency_us, exit_latency_us, transition_ms;
2894 
2895 		if (target)
2896 			table->entries[state] = target;
2897 
2898 		/*
2899 		 * Don't allow transitions to the deepest state if it's quirked
2900 		 * off.
2901 		 */
2902 		if (state == ctrl->npss &&
2903 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2904 			continue;
2905 
2906 		/*
2907 		 * Is this state a useful non-operational state for higher-power
2908 		 * states to autonomously transition to?
2909 		 */
2910 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2911 			continue;
2912 
2913 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2914 		if (exit_latency_us > ctrl->ps_max_latency_us)
2915 			continue;
2916 
2917 		total_latency_us = exit_latency_us +
2918 			le32_to_cpu(ctrl->psd[state].entry_lat);
2919 
2920 		/*
2921 		 * This state is good. It can be used as the APST idle target
2922 		 * for higher power states.
2923 		 */
2924 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2925 			if (!nvme_apst_get_transition_time(total_latency_us,
2926 					&transition_ms, &last_lt_index))
2927 				continue;
2928 		} else {
2929 			transition_ms = total_latency_us + 19;
2930 			do_div(transition_ms, 20);
2931 			if (transition_ms > (1 << 24) - 1)
2932 				transition_ms = (1 << 24) - 1;
2933 		}
2934 
2935 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2936 		if (max_ps == -1)
2937 			max_ps = state;
2938 		if (total_latency_us > max_lat_us)
2939 			max_lat_us = total_latency_us;
2940 	}
2941 
2942 	if (max_ps == -1)
2943 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2944 	else
2945 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2946 			max_ps, max_lat_us, (int)sizeof(*table), table);
2947 	apste = 1;
2948 
2949 done:
2950 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2951 				table, sizeof(*table), NULL);
2952 	if (ret)
2953 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2954 	kfree(table);
2955 	return ret;
2956 }
2957 
2958 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2959 {
2960 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2961 	u64 latency;
2962 
2963 	switch (val) {
2964 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2965 	case PM_QOS_LATENCY_ANY:
2966 		latency = U64_MAX;
2967 		break;
2968 
2969 	default:
2970 		latency = val;
2971 	}
2972 
2973 	if (ctrl->ps_max_latency_us != latency) {
2974 		ctrl->ps_max_latency_us = latency;
2975 		if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2976 			nvme_configure_apst(ctrl);
2977 	}
2978 }
2979 
2980 struct nvme_core_quirk_entry {
2981 	/*
2982 	 * NVMe model and firmware strings are padded with spaces.  For
2983 	 * simplicity, strings in the quirk table are padded with NULLs
2984 	 * instead.
2985 	 */
2986 	u16 vid;
2987 	const char *mn;
2988 	const char *fr;
2989 	unsigned long quirks;
2990 };
2991 
2992 static const struct nvme_core_quirk_entry core_quirks[] = {
2993 	{
2994 		/*
2995 		 * This Toshiba device seems to die using any APST states.  See:
2996 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2997 		 */
2998 		.vid = 0x1179,
2999 		.mn = "THNSF5256GPUK TOSHIBA",
3000 		.quirks = NVME_QUIRK_NO_APST,
3001 	},
3002 	{
3003 		/*
3004 		 * This LiteON CL1-3D*-Q11 firmware version has a race
3005 		 * condition associated with actions related to suspend to idle
3006 		 * LiteON has resolved the problem in future firmware
3007 		 */
3008 		.vid = 0x14a4,
3009 		.fr = "22301111",
3010 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
3011 	},
3012 	{
3013 		/*
3014 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
3015 		 * aborts I/O during any load, but more easily reproducible
3016 		 * with discards (fstrim).
3017 		 *
3018 		 * The device is left in a state where it is also not possible
3019 		 * to use "nvme set-feature" to disable APST, but booting with
3020 		 * nvme_core.default_ps_max_latency=0 works.
3021 		 */
3022 		.vid = 0x1e0f,
3023 		.mn = "KCD6XVUL6T40",
3024 		.quirks = NVME_QUIRK_NO_APST,
3025 	},
3026 	{
3027 		/*
3028 		 * The external Samsung X5 SSD fails initialization without a
3029 		 * delay before checking if it is ready and has a whole set of
3030 		 * other problems.  To make this even more interesting, it
3031 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
3032 		 * does not need or want these quirks.
3033 		 */
3034 		.vid = 0x144d,
3035 		.mn = "Samsung Portable SSD X5",
3036 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3037 			  NVME_QUIRK_NO_DEEPEST_PS |
3038 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
3039 	}
3040 };
3041 
3042 /* match is null-terminated but idstr is space-padded. */
3043 static bool string_matches(const char *idstr, const char *match, size_t len)
3044 {
3045 	size_t matchlen;
3046 
3047 	if (!match)
3048 		return true;
3049 
3050 	matchlen = strlen(match);
3051 	WARN_ON_ONCE(matchlen > len);
3052 
3053 	if (memcmp(idstr, match, matchlen))
3054 		return false;
3055 
3056 	for (; matchlen < len; matchlen++)
3057 		if (idstr[matchlen] != ' ')
3058 			return false;
3059 
3060 	return true;
3061 }
3062 
3063 static bool quirk_matches(const struct nvme_id_ctrl *id,
3064 			  const struct nvme_core_quirk_entry *q)
3065 {
3066 	return q->vid == le16_to_cpu(id->vid) &&
3067 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
3068 		string_matches(id->fr, q->fr, sizeof(id->fr));
3069 }
3070 
3071 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
3072 		struct nvme_id_ctrl *id)
3073 {
3074 	size_t nqnlen;
3075 	int off;
3076 
3077 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
3078 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
3079 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
3080 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
3081 			return;
3082 		}
3083 
3084 		if (ctrl->vs >= NVME_VS(1, 2, 1))
3085 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
3086 	}
3087 
3088 	/*
3089 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
3090 	 * Base Specification 2.0.  It is slightly different from the format
3091 	 * specified there due to historic reasons, and we can't change it now.
3092 	 */
3093 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
3094 			"nqn.2014.08.org.nvmexpress:%04x%04x",
3095 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
3096 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
3097 	off += sizeof(id->sn);
3098 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
3099 	off += sizeof(id->mn);
3100 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
3101 }
3102 
3103 static void nvme_release_subsystem(struct device *dev)
3104 {
3105 	struct nvme_subsystem *subsys =
3106 		container_of(dev, struct nvme_subsystem, dev);
3107 
3108 	if (subsys->instance >= 0)
3109 		ida_free(&nvme_instance_ida, subsys->instance);
3110 	kfree(subsys);
3111 }
3112 
3113 static void nvme_destroy_subsystem(struct kref *ref)
3114 {
3115 	struct nvme_subsystem *subsys =
3116 			container_of(ref, struct nvme_subsystem, ref);
3117 
3118 	mutex_lock(&nvme_subsystems_lock);
3119 	list_del(&subsys->entry);
3120 	mutex_unlock(&nvme_subsystems_lock);
3121 
3122 	ida_destroy(&subsys->ns_ida);
3123 	device_del(&subsys->dev);
3124 	put_device(&subsys->dev);
3125 }
3126 
3127 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
3128 {
3129 	kref_put(&subsys->ref, nvme_destroy_subsystem);
3130 }
3131 
3132 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
3133 {
3134 	struct nvme_subsystem *subsys;
3135 
3136 	lockdep_assert_held(&nvme_subsystems_lock);
3137 
3138 	/*
3139 	 * Fail matches for discovery subsystems. This results
3140 	 * in each discovery controller bound to a unique subsystem.
3141 	 * This avoids issues with validating controller values
3142 	 * that can only be true when there is a single unique subsystem.
3143 	 * There may be multiple and completely independent entities
3144 	 * that provide discovery controllers.
3145 	 */
3146 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
3147 		return NULL;
3148 
3149 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
3150 		if (strcmp(subsys->subnqn, subsysnqn))
3151 			continue;
3152 		if (!kref_get_unless_zero(&subsys->ref))
3153 			continue;
3154 		return subsys;
3155 	}
3156 
3157 	return NULL;
3158 }
3159 
3160 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
3161 {
3162 	return ctrl->opts && ctrl->opts->discovery_nqn;
3163 }
3164 
3165 static inline bool nvme_admin_ctrl(struct nvme_ctrl *ctrl)
3166 {
3167 	return ctrl->cntrltype == NVME_CTRL_ADMIN;
3168 }
3169 
3170 static inline bool nvme_is_io_ctrl(struct nvme_ctrl *ctrl)
3171 {
3172 	return !nvme_discovery_ctrl(ctrl) && !nvme_admin_ctrl(ctrl);
3173 }
3174 
3175 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
3176 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3177 {
3178 	struct nvme_ctrl *tmp;
3179 
3180 	lockdep_assert_held(&nvme_subsystems_lock);
3181 
3182 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
3183 		if (nvme_state_terminal(tmp))
3184 			continue;
3185 
3186 		if (tmp->cntlid == ctrl->cntlid) {
3187 			dev_err(ctrl->device,
3188 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
3189 				ctrl->cntlid, dev_name(tmp->device),
3190 				subsys->subnqn);
3191 			return false;
3192 		}
3193 
3194 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
3195 		    nvme_discovery_ctrl(ctrl))
3196 			continue;
3197 
3198 		dev_err(ctrl->device,
3199 			"Subsystem does not support multiple controllers\n");
3200 		return false;
3201 	}
3202 
3203 	return true;
3204 }
3205 
3206 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3207 {
3208 	struct nvme_subsystem *subsys, *found;
3209 	int ret;
3210 
3211 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3212 	if (!subsys)
3213 		return -ENOMEM;
3214 
3215 	subsys->instance = -1;
3216 	mutex_init(&subsys->lock);
3217 	kref_init(&subsys->ref);
3218 	INIT_LIST_HEAD(&subsys->ctrls);
3219 	INIT_LIST_HEAD(&subsys->nsheads);
3220 	nvme_init_subnqn(subsys, ctrl, id);
3221 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3222 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
3223 	subsys->vendor_id = le16_to_cpu(id->vid);
3224 	subsys->cmic = id->cmic;
3225 	subsys->awupf = le16_to_cpu(id->awupf);
3226 
3227 	/* Versions prior to 1.4 don't necessarily report a valid type */
3228 	if (id->cntrltype == NVME_CTRL_DISC ||
3229 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3230 		subsys->subtype = NVME_NQN_DISC;
3231 	else
3232 		subsys->subtype = NVME_NQN_NVME;
3233 
3234 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3235 		dev_err(ctrl->device,
3236 			"Subsystem %s is not a discovery controller",
3237 			subsys->subnqn);
3238 		kfree(subsys);
3239 		return -EINVAL;
3240 	}
3241 	nvme_mpath_default_iopolicy(subsys);
3242 
3243 	subsys->dev.class = &nvme_subsys_class;
3244 	subsys->dev.release = nvme_release_subsystem;
3245 	subsys->dev.groups = nvme_subsys_attrs_groups;
3246 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
3247 	device_initialize(&subsys->dev);
3248 
3249 	mutex_lock(&nvme_subsystems_lock);
3250 	found = __nvme_find_get_subsystem(subsys->subnqn);
3251 	if (found) {
3252 		put_device(&subsys->dev);
3253 		subsys = found;
3254 
3255 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3256 			ret = -EINVAL;
3257 			goto out_put_subsystem;
3258 		}
3259 	} else {
3260 		ret = device_add(&subsys->dev);
3261 		if (ret) {
3262 			dev_err(ctrl->device,
3263 				"failed to register subsystem device.\n");
3264 			put_device(&subsys->dev);
3265 			goto out_unlock;
3266 		}
3267 		ida_init(&subsys->ns_ida);
3268 		list_add_tail(&subsys->entry, &nvme_subsystems);
3269 	}
3270 
3271 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
3272 				dev_name(ctrl->device));
3273 	if (ret) {
3274 		dev_err(ctrl->device,
3275 			"failed to create sysfs link from subsystem.\n");
3276 		goto out_put_subsystem;
3277 	}
3278 
3279 	if (!found)
3280 		subsys->instance = ctrl->instance;
3281 	ctrl->subsys = subsys;
3282 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
3283 	mutex_unlock(&nvme_subsystems_lock);
3284 	return 0;
3285 
3286 out_put_subsystem:
3287 	nvme_put_subsystem(subsys);
3288 out_unlock:
3289 	mutex_unlock(&nvme_subsystems_lock);
3290 	return ret;
3291 }
3292 
3293 static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
3294 		u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi)
3295 {
3296 	struct nvme_command c = { };
3297 	u32 dwlen = nvme_bytes_to_numd(size);
3298 
3299 	c.get_log_page.opcode = nvme_admin_get_log_page;
3300 	c.get_log_page.nsid = cpu_to_le32(nsid);
3301 	c.get_log_page.lid = log_page;
3302 	c.get_log_page.lsp = lsp;
3303 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3304 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3305 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3306 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3307 	c.get_log_page.csi = csi;
3308 	c.get_log_page.lsi = cpu_to_le16(lsi);
3309 
3310 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3311 }
3312 
3313 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3314 		void *log, size_t size, u64 offset)
3315 {
3316 	return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size,
3317 			offset, 0);
3318 }
3319 
3320 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3321 				struct nvme_effects_log **log)
3322 {
3323 	struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, csi);
3324 	int ret;
3325 
3326 	if (cel)
3327 		goto out;
3328 
3329 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3330 	if (!cel)
3331 		return -ENOMEM;
3332 
3333 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3334 			cel, sizeof(*cel), 0);
3335 	if (ret) {
3336 		kfree(cel);
3337 		return ret;
3338 	}
3339 
3340 	old = xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3341 	if (xa_is_err(old)) {
3342 		kfree(cel);
3343 		return xa_err(old);
3344 	}
3345 out:
3346 	*log = cel;
3347 	return 0;
3348 }
3349 
3350 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3351 {
3352 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3353 
3354 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3355 		return UINT_MAX;
3356 	return val;
3357 }
3358 
3359 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3360 {
3361 	struct nvme_command c = { };
3362 	struct nvme_id_ctrl_nvm *id;
3363 	int ret;
3364 
3365 	/*
3366 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3367 	 * to the write-zeroes, we are cautious and limit the size to the
3368 	 * controllers max_hw_sectors value, which is based on the MDTS field
3369 	 * and possibly other limiting factors.
3370 	 */
3371 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3372 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3373 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3374 	else
3375 		ctrl->max_zeroes_sectors = 0;
3376 
3377 	if (!nvme_is_io_ctrl(ctrl) ||
3378 	    !nvme_id_cns_ok(ctrl, NVME_ID_CNS_CS_CTRL) ||
3379 	    test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3380 		return 0;
3381 
3382 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3383 	if (!id)
3384 		return -ENOMEM;
3385 
3386 	c.identify.opcode = nvme_admin_identify;
3387 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3388 	c.identify.csi = NVME_CSI_NVM;
3389 
3390 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3391 	if (ret)
3392 		goto free_data;
3393 
3394 	ctrl->dmrl = id->dmrl;
3395 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3396 	if (id->wzsl)
3397 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3398 
3399 free_data:
3400 	if (ret > 0)
3401 		set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
3402 	kfree(id);
3403 	return ret;
3404 }
3405 
3406 static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3407 		u8 csi, struct nvme_effects_log **log)
3408 {
3409 	struct nvme_effects_log *effects, *old;
3410 
3411 	effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3412 	if (!effects)
3413 		return -ENOMEM;
3414 
3415 	old = xa_store(&ctrl->cels, csi, effects, GFP_KERNEL);
3416 	if (xa_is_err(old)) {
3417 		kfree(effects);
3418 		return xa_err(old);
3419 	}
3420 
3421 	*log = effects;
3422 	return 0;
3423 }
3424 
3425 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3426 {
3427 	struct nvme_effects_log	*log = ctrl->effects;
3428 
3429 	log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3430 						NVME_CMD_EFFECTS_NCC |
3431 						NVME_CMD_EFFECTS_CSE_MASK);
3432 	log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3433 						NVME_CMD_EFFECTS_CSE_MASK);
3434 
3435 	/*
3436 	 * The spec says the result of a security receive command depends on
3437 	 * the previous security send command. As such, many vendors log this
3438 	 * command as one to submitted only when no other commands to the same
3439 	 * namespace are outstanding. The intention is to tell the host to
3440 	 * prevent mixing security send and receive.
3441 	 *
3442 	 * This driver can only enforce such exclusive access against IO
3443 	 * queues, though. We are not readily able to enforce such a rule for
3444 	 * two commands to the admin queue, which is the only queue that
3445 	 * matters for this command.
3446 	 *
3447 	 * Rather than blindly freezing the IO queues for this effect that
3448 	 * doesn't even apply to IO, mask it off.
3449 	 */
3450 	log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3451 
3452 	log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3453 	log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3454 	log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3455 }
3456 
3457 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3458 {
3459 	int ret = 0;
3460 
3461 	if (ctrl->effects)
3462 		return 0;
3463 
3464 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3465 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3466 		if (ret < 0)
3467 			return ret;
3468 	}
3469 
3470 	if (!ctrl->effects) {
3471 		ret = nvme_init_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3472 		if (ret < 0)
3473 			return ret;
3474 	}
3475 
3476 	nvme_init_known_nvm_effects(ctrl);
3477 	return 0;
3478 }
3479 
3480 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3481 {
3482 	/*
3483 	 * In fabrics we need to verify the cntlid matches the
3484 	 * admin connect
3485 	 */
3486 	if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3487 		dev_err(ctrl->device,
3488 			"Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3489 			ctrl->cntlid, le16_to_cpu(id->cntlid));
3490 		return -EINVAL;
3491 	}
3492 
3493 	if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3494 		dev_err(ctrl->device,
3495 			"keep-alive support is mandatory for fabrics\n");
3496 		return -EINVAL;
3497 	}
3498 
3499 	if (nvme_is_io_ctrl(ctrl) && ctrl->ioccsz < 4) {
3500 		dev_err(ctrl->device,
3501 			"I/O queue command capsule supported size %d < 4\n",
3502 			ctrl->ioccsz);
3503 		return -EINVAL;
3504 	}
3505 
3506 	if (nvme_is_io_ctrl(ctrl) && ctrl->iorcsz < 1) {
3507 		dev_err(ctrl->device,
3508 			"I/O queue response capsule supported size %d < 1\n",
3509 			ctrl->iorcsz);
3510 		return -EINVAL;
3511 	}
3512 
3513 	if (!ctrl->maxcmd) {
3514 		dev_warn(ctrl->device,
3515 			"Firmware bug: maximum outstanding commands is 0\n");
3516 		ctrl->maxcmd = ctrl->sqsize + 1;
3517 	}
3518 
3519 	return 0;
3520 }
3521 
3522 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3523 {
3524 	struct queue_limits lim;
3525 	struct nvme_id_ctrl *id;
3526 	u32 max_hw_sectors;
3527 	bool prev_apst_enabled;
3528 	int ret;
3529 
3530 	ret = nvme_identify_ctrl(ctrl, &id);
3531 	if (ret) {
3532 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3533 		return -EIO;
3534 	}
3535 
3536 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3537 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3538 
3539 	if (!ctrl->identified) {
3540 		unsigned int i;
3541 
3542 		/*
3543 		 * Check for quirks.  Quirk can depend on firmware version,
3544 		 * so, in principle, the set of quirks present can change
3545 		 * across a reset.  As a possible future enhancement, we
3546 		 * could re-scan for quirks every time we reinitialize
3547 		 * the device, but we'd have to make sure that the driver
3548 		 * behaves intelligently if the quirks change.
3549 		 */
3550 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3551 			if (quirk_matches(id, &core_quirks[i]))
3552 				ctrl->quirks |= core_quirks[i].quirks;
3553 		}
3554 
3555 		ret = nvme_init_subsystem(ctrl, id);
3556 		if (ret)
3557 			goto out_free;
3558 
3559 		ret = nvme_init_effects(ctrl, id);
3560 		if (ret)
3561 			goto out_free;
3562 	}
3563 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3564 	       sizeof(ctrl->subsys->firmware_rev));
3565 
3566 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3567 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3568 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3569 	}
3570 
3571 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3572 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3573 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3574 
3575 	ctrl->oacs = le16_to_cpu(id->oacs);
3576 	ctrl->oncs = le16_to_cpu(id->oncs);
3577 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3578 	ctrl->oaes = le32_to_cpu(id->oaes);
3579 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3580 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3581 
3582 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3583 	ctrl->vwc = id->vwc;
3584 	if (id->mdts)
3585 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3586 	else
3587 		max_hw_sectors = UINT_MAX;
3588 	ctrl->max_hw_sectors =
3589 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3590 
3591 	lim = queue_limits_start_update(ctrl->admin_q);
3592 	nvme_set_ctrl_limits(ctrl, &lim);
3593 	ret = queue_limits_commit_update(ctrl->admin_q, &lim);
3594 	if (ret)
3595 		goto out_free;
3596 
3597 	ctrl->sgls = le32_to_cpu(id->sgls);
3598 	ctrl->kas = le16_to_cpu(id->kas);
3599 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3600 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3601 
3602 	ctrl->cntrltype = id->cntrltype;
3603 	ctrl->dctype = id->dctype;
3604 
3605 	if (id->rtd3e) {
3606 		/* us -> s */
3607 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3608 
3609 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3610 						 shutdown_timeout, 60);
3611 
3612 		if (ctrl->shutdown_timeout != shutdown_timeout)
3613 			dev_info(ctrl->device,
3614 				 "D3 entry latency set to %u seconds\n",
3615 				 ctrl->shutdown_timeout);
3616 	} else
3617 		ctrl->shutdown_timeout = shutdown_timeout;
3618 
3619 	ctrl->npss = id->npss;
3620 	ctrl->apsta = id->apsta;
3621 	prev_apst_enabled = ctrl->apst_enabled;
3622 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3623 		if (force_apst && id->apsta) {
3624 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3625 			ctrl->apst_enabled = true;
3626 		} else {
3627 			ctrl->apst_enabled = false;
3628 		}
3629 	} else {
3630 		ctrl->apst_enabled = id->apsta;
3631 	}
3632 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3633 
3634 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3635 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3636 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3637 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3638 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3639 
3640 		ret = nvme_check_ctrl_fabric_info(ctrl, id);
3641 		if (ret)
3642 			goto out_free;
3643 	} else {
3644 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3645 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3646 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3647 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3648 	}
3649 
3650 	ret = nvme_mpath_init_identify(ctrl, id);
3651 	if (ret < 0)
3652 		goto out_free;
3653 
3654 	if (ctrl->apst_enabled && !prev_apst_enabled)
3655 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3656 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3657 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3658 out_free:
3659 	kfree(id);
3660 	return ret;
3661 }
3662 
3663 /*
3664  * Initialize the cached copies of the Identify data and various controller
3665  * register in our nvme_ctrl structure.  This should be called as soon as
3666  * the admin queue is fully up and running.
3667  */
3668 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3669 {
3670 	int ret;
3671 
3672 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3673 	if (ret) {
3674 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3675 		return ret;
3676 	}
3677 
3678 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3679 
3680 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3681 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3682 
3683 	ret = nvme_init_identify(ctrl);
3684 	if (ret)
3685 		return ret;
3686 
3687 	if (nvme_admin_ctrl(ctrl)) {
3688 		/*
3689 		 * An admin controller has one admin queue, but no I/O queues.
3690 		 * Override queue_count so it only creates an admin queue.
3691 		 */
3692 		dev_dbg(ctrl->device,
3693 			"Subsystem %s is an administrative controller",
3694 			ctrl->subsys->subnqn);
3695 		ctrl->queue_count = 1;
3696 	}
3697 
3698 	ret = nvme_configure_apst(ctrl);
3699 	if (ret < 0)
3700 		return ret;
3701 
3702 	ret = nvme_configure_timestamp(ctrl);
3703 	if (ret < 0)
3704 		return ret;
3705 
3706 	ret = nvme_configure_host_options(ctrl);
3707 	if (ret < 0)
3708 		return ret;
3709 
3710 	nvme_configure_opal(ctrl, was_suspended);
3711 
3712 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3713 		/*
3714 		 * Do not return errors unless we are in a controller reset,
3715 		 * the controller works perfectly fine without hwmon.
3716 		 */
3717 		ret = nvme_hwmon_init(ctrl);
3718 		if (ret == -EINTR)
3719 			return ret;
3720 	}
3721 
3722 	clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3723 	ctrl->identified = true;
3724 
3725 	nvme_start_keep_alive(ctrl);
3726 
3727 	return 0;
3728 }
3729 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3730 
3731 static int nvme_dev_open(struct inode *inode, struct file *file)
3732 {
3733 	struct nvme_ctrl *ctrl =
3734 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3735 
3736 	switch (nvme_ctrl_state(ctrl)) {
3737 	case NVME_CTRL_LIVE:
3738 		break;
3739 	default:
3740 		return -EWOULDBLOCK;
3741 	}
3742 
3743 	nvme_get_ctrl(ctrl);
3744 	if (!try_module_get(ctrl->ops->module)) {
3745 		nvme_put_ctrl(ctrl);
3746 		return -EINVAL;
3747 	}
3748 
3749 	file->private_data = ctrl;
3750 	return 0;
3751 }
3752 
3753 static int nvme_dev_release(struct inode *inode, struct file *file)
3754 {
3755 	struct nvme_ctrl *ctrl =
3756 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3757 
3758 	module_put(ctrl->ops->module);
3759 	nvme_put_ctrl(ctrl);
3760 	return 0;
3761 }
3762 
3763 static const struct file_operations nvme_dev_fops = {
3764 	.owner		= THIS_MODULE,
3765 	.open		= nvme_dev_open,
3766 	.release	= nvme_dev_release,
3767 	.unlocked_ioctl	= nvme_dev_ioctl,
3768 	.compat_ioctl	= compat_ptr_ioctl,
3769 	.uring_cmd	= nvme_dev_uring_cmd,
3770 };
3771 
3772 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3773 		unsigned nsid)
3774 {
3775 	struct nvme_ns_head *h;
3776 
3777 	lockdep_assert_held(&ctrl->subsys->lock);
3778 
3779 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3780 		/*
3781 		 * Private namespaces can share NSIDs under some conditions.
3782 		 * In that case we can't use the same ns_head for namespaces
3783 		 * with the same NSID.
3784 		 */
3785 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3786 			continue;
3787 		if (nvme_tryget_ns_head(h))
3788 			return h;
3789 	}
3790 
3791 	return NULL;
3792 }
3793 
3794 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3795 		struct nvme_ns_ids *ids)
3796 {
3797 	bool has_uuid = !uuid_is_null(&ids->uuid);
3798 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3799 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3800 	struct nvme_ns_head *h;
3801 
3802 	lockdep_assert_held(&subsys->lock);
3803 
3804 	list_for_each_entry(h, &subsys->nsheads, entry) {
3805 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3806 			return -EINVAL;
3807 		if (has_nguid &&
3808 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3809 			return -EINVAL;
3810 		if (has_eui64 &&
3811 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3812 			return -EINVAL;
3813 	}
3814 
3815 	return 0;
3816 }
3817 
3818 static void nvme_cdev_rel(struct device *dev)
3819 {
3820 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3821 }
3822 
3823 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3824 {
3825 	cdev_device_del(cdev, cdev_device);
3826 	put_device(cdev_device);
3827 }
3828 
3829 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3830 		const struct file_operations *fops, struct module *owner)
3831 {
3832 	int minor, ret;
3833 
3834 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3835 	if (minor < 0)
3836 		return minor;
3837 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3838 	cdev_device->class = &nvme_ns_chr_class;
3839 	cdev_device->release = nvme_cdev_rel;
3840 	device_initialize(cdev_device);
3841 	cdev_init(cdev, fops);
3842 	cdev->owner = owner;
3843 	ret = cdev_device_add(cdev, cdev_device);
3844 	if (ret)
3845 		put_device(cdev_device);
3846 
3847 	return ret;
3848 }
3849 
3850 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3851 {
3852 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3853 }
3854 
3855 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3856 {
3857 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3858 	return 0;
3859 }
3860 
3861 static const struct file_operations nvme_ns_chr_fops = {
3862 	.owner		= THIS_MODULE,
3863 	.open		= nvme_ns_chr_open,
3864 	.release	= nvme_ns_chr_release,
3865 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
3866 	.compat_ioctl	= compat_ptr_ioctl,
3867 	.uring_cmd	= nvme_ns_chr_uring_cmd,
3868 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3869 };
3870 
3871 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3872 {
3873 	int ret;
3874 
3875 	ns->cdev_device.parent = ns->ctrl->device;
3876 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3877 			   ns->ctrl->instance, ns->head->instance);
3878 	if (ret)
3879 		return ret;
3880 
3881 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3882 			     ns->ctrl->ops->module);
3883 }
3884 
3885 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3886 		struct nvme_ns_info *info)
3887 {
3888 	struct nvme_ns_head *head;
3889 	size_t size = sizeof(*head);
3890 	int ret = -ENOMEM;
3891 
3892 #ifdef CONFIG_NVME_MULTIPATH
3893 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
3894 #endif
3895 
3896 	head = kzalloc(size, GFP_KERNEL);
3897 	if (!head)
3898 		goto out;
3899 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3900 	if (ret < 0)
3901 		goto out_free_head;
3902 	head->instance = ret;
3903 	INIT_LIST_HEAD(&head->list);
3904 	ret = init_srcu_struct(&head->srcu);
3905 	if (ret)
3906 		goto out_ida_remove;
3907 	head->subsys = ctrl->subsys;
3908 	head->ns_id = info->nsid;
3909 	head->ids = info->ids;
3910 	head->shared = info->is_shared;
3911 	head->rotational = info->is_rotational;
3912 	ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1);
3913 	ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3914 	kref_init(&head->ref);
3915 
3916 	if (head->ids.csi) {
3917 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3918 		if (ret)
3919 			goto out_cleanup_srcu;
3920 	} else
3921 		head->effects = ctrl->effects;
3922 
3923 	ret = nvme_mpath_alloc_disk(ctrl, head);
3924 	if (ret)
3925 		goto out_cleanup_srcu;
3926 
3927 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3928 
3929 	kref_get(&ctrl->subsys->ref);
3930 
3931 	return head;
3932 out_cleanup_srcu:
3933 	cleanup_srcu_struct(&head->srcu);
3934 out_ida_remove:
3935 	ida_free(&ctrl->subsys->ns_ida, head->instance);
3936 out_free_head:
3937 	kfree(head);
3938 out:
3939 	if (ret > 0)
3940 		ret = blk_status_to_errno(nvme_error_status(ret));
3941 	return ERR_PTR(ret);
3942 }
3943 
3944 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3945 		struct nvme_ns_ids *ids)
3946 {
3947 	struct nvme_subsystem *s;
3948 	int ret = 0;
3949 
3950 	/*
3951 	 * Note that this check is racy as we try to avoid holding the global
3952 	 * lock over the whole ns_head creation.  But it is only intended as
3953 	 * a sanity check anyway.
3954 	 */
3955 	mutex_lock(&nvme_subsystems_lock);
3956 	list_for_each_entry(s, &nvme_subsystems, entry) {
3957 		if (s == this)
3958 			continue;
3959 		mutex_lock(&s->lock);
3960 		ret = nvme_subsys_check_duplicate_ids(s, ids);
3961 		mutex_unlock(&s->lock);
3962 		if (ret)
3963 			break;
3964 	}
3965 	mutex_unlock(&nvme_subsystems_lock);
3966 
3967 	return ret;
3968 }
3969 
3970 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3971 {
3972 	struct nvme_ctrl *ctrl = ns->ctrl;
3973 	struct nvme_ns_head *head = NULL;
3974 	int ret;
3975 
3976 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3977 	if (ret) {
3978 		/*
3979 		 * We've found two different namespaces on two different
3980 		 * subsystems that report the same ID.  This is pretty nasty
3981 		 * for anything that actually requires unique device
3982 		 * identification.  In the kernel we need this for multipathing,
3983 		 * and in user space the /dev/disk/by-id/ links rely on it.
3984 		 *
3985 		 * If the device also claims to be multi-path capable back off
3986 		 * here now and refuse the probe the second device as this is a
3987 		 * recipe for data corruption.  If not this is probably a
3988 		 * cheap consumer device if on the PCIe bus, so let the user
3989 		 * proceed and use the shiny toy, but warn that with changing
3990 		 * probing order (which due to our async probing could just be
3991 		 * device taking longer to startup) the other device could show
3992 		 * up at any time.
3993 		 */
3994 		nvme_print_device_info(ctrl);
3995 		if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3996 		    ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3997 		     info->is_shared)) {
3998 			dev_err(ctrl->device,
3999 				"ignoring nsid %d because of duplicate IDs\n",
4000 				info->nsid);
4001 			return ret;
4002 		}
4003 
4004 		dev_err(ctrl->device,
4005 			"clearing duplicate IDs for nsid %d\n", info->nsid);
4006 		dev_err(ctrl->device,
4007 			"use of /dev/disk/by-id/ may cause data corruption\n");
4008 		memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
4009 		memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
4010 		memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
4011 		ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
4012 	}
4013 
4014 	mutex_lock(&ctrl->subsys->lock);
4015 	head = nvme_find_ns_head(ctrl, info->nsid);
4016 	if (!head) {
4017 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4018 		if (ret) {
4019 			dev_err(ctrl->device,
4020 				"duplicate IDs in subsystem for nsid %d\n",
4021 				info->nsid);
4022 			goto out_unlock;
4023 		}
4024 		head = nvme_alloc_ns_head(ctrl, info);
4025 		if (IS_ERR(head)) {
4026 			ret = PTR_ERR(head);
4027 			goto out_unlock;
4028 		}
4029 	} else {
4030 		ret = -EINVAL;
4031 		if ((!info->is_shared || !head->shared) &&
4032 		    !list_empty(&head->list)) {
4033 			dev_err(ctrl->device,
4034 				"Duplicate unshared namespace %d\n",
4035 				info->nsid);
4036 			goto out_put_ns_head;
4037 		}
4038 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4039 			dev_err(ctrl->device,
4040 				"IDs don't match for shared namespace %d\n",
4041 					info->nsid);
4042 			goto out_put_ns_head;
4043 		}
4044 
4045 		if (!multipath) {
4046 			dev_warn(ctrl->device,
4047 				"Found shared namespace %d, but multipathing not supported.\n",
4048 				info->nsid);
4049 			dev_warn_once(ctrl->device,
4050 				"Shared namespace support requires core_nvme.multipath=Y.\n");
4051 		}
4052 	}
4053 
4054 	list_add_tail_rcu(&ns->siblings, &head->list);
4055 	ns->head = head;
4056 	mutex_unlock(&ctrl->subsys->lock);
4057 
4058 #ifdef CONFIG_NVME_MULTIPATH
4059 	cancel_delayed_work(&head->remove_work);
4060 #endif
4061 	return 0;
4062 
4063 out_put_ns_head:
4064 	nvme_put_ns_head(head);
4065 out_unlock:
4066 	mutex_unlock(&ctrl->subsys->lock);
4067 	return ret;
4068 }
4069 
4070 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4071 {
4072 	struct nvme_ns *ns, *ret = NULL;
4073 	int srcu_idx;
4074 
4075 	srcu_idx = srcu_read_lock(&ctrl->srcu);
4076 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4077 				 srcu_read_lock_held(&ctrl->srcu)) {
4078 		if (ns->head->ns_id == nsid) {
4079 			if (!nvme_get_ns(ns))
4080 				continue;
4081 			ret = ns;
4082 			break;
4083 		}
4084 		if (ns->head->ns_id > nsid)
4085 			break;
4086 	}
4087 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
4088 	return ret;
4089 }
4090 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
4091 
4092 /*
4093  * Add the namespace to the controller list while keeping the list ordered.
4094  */
4095 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4096 {
4097 	struct nvme_ns *tmp;
4098 
4099 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4100 		if (tmp->head->ns_id < ns->head->ns_id) {
4101 			list_add_rcu(&ns->list, &tmp->list);
4102 			return;
4103 		}
4104 	}
4105 	list_add_rcu(&ns->list, &ns->ctrl->namespaces);
4106 }
4107 
4108 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4109 {
4110 	struct queue_limits lim = { };
4111 	struct nvme_ns *ns;
4112 	struct gendisk *disk;
4113 	int node = ctrl->numa_node;
4114 	bool last_path = false;
4115 
4116 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4117 	if (!ns)
4118 		return;
4119 
4120 	if (ctrl->opts && ctrl->opts->data_digest)
4121 		lim.features |= BLK_FEAT_STABLE_WRITES;
4122 	if (ctrl->ops->supports_pci_p2pdma &&
4123 	    ctrl->ops->supports_pci_p2pdma(ctrl))
4124 		lim.features |= BLK_FEAT_PCI_P2PDMA;
4125 
4126 	disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
4127 	if (IS_ERR(disk))
4128 		goto out_free_ns;
4129 	disk->fops = &nvme_bdev_ops;
4130 	disk->private_data = ns;
4131 
4132 	ns->disk = disk;
4133 	ns->queue = disk->queue;
4134 	ns->ctrl = ctrl;
4135 	kref_init(&ns->kref);
4136 
4137 	if (nvme_init_ns_head(ns, info))
4138 		goto out_cleanup_disk;
4139 
4140 	/*
4141 	 * If multipathing is enabled, the device name for all disks and not
4142 	 * just those that represent shared namespaces needs to be based on the
4143 	 * subsystem instance.  Using the controller instance for private
4144 	 * namespaces could lead to naming collisions between shared and private
4145 	 * namespaces if they don't use a common numbering scheme.
4146 	 *
4147 	 * If multipathing is not enabled, disk names must use the controller
4148 	 * instance as shared namespaces will show up as multiple block
4149 	 * devices.
4150 	 */
4151 	if (nvme_ns_head_multipath(ns->head)) {
4152 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4153 			ctrl->instance, ns->head->instance);
4154 		disk->flags |= GENHD_FL_HIDDEN;
4155 	} else if (multipath) {
4156 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4157 			ns->head->instance);
4158 	} else {
4159 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4160 			ns->head->instance);
4161 	}
4162 
4163 	if (nvme_update_ns_info(ns, info))
4164 		goto out_unlink_ns;
4165 
4166 	mutex_lock(&ctrl->namespaces_lock);
4167 	/*
4168 	 * Ensure that no namespaces are added to the ctrl list after the queues
4169 	 * are frozen, thereby avoiding a deadlock between scan and reset.
4170 	 */
4171 	if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
4172 		mutex_unlock(&ctrl->namespaces_lock);
4173 		goto out_unlink_ns;
4174 	}
4175 	nvme_ns_add_to_ctrl_list(ns);
4176 	mutex_unlock(&ctrl->namespaces_lock);
4177 	synchronize_srcu(&ctrl->srcu);
4178 	nvme_get_ctrl(ctrl);
4179 
4180 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups))
4181 		goto out_cleanup_ns_from_list;
4182 
4183 	if (!nvme_ns_head_multipath(ns->head))
4184 		nvme_add_ns_cdev(ns);
4185 
4186 	nvme_mpath_add_disk(ns, info->anagrpid);
4187 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4188 
4189 	/*
4190 	 * Set ns->disk->device->driver_data to ns so we can access
4191 	 * ns->head->passthru_err_log_enabled in
4192 	 * nvme_io_passthru_err_log_enabled_[store | show]().
4193 	 */
4194 	dev_set_drvdata(disk_to_dev(ns->disk), ns);
4195 
4196 	return;
4197 
4198  out_cleanup_ns_from_list:
4199 	nvme_put_ctrl(ctrl);
4200 	mutex_lock(&ctrl->namespaces_lock);
4201 	list_del_rcu(&ns->list);
4202 	mutex_unlock(&ctrl->namespaces_lock);
4203 	synchronize_srcu(&ctrl->srcu);
4204  out_unlink_ns:
4205 	mutex_lock(&ctrl->subsys->lock);
4206 	list_del_rcu(&ns->siblings);
4207 	if (list_empty(&ns->head->list)) {
4208 		list_del_init(&ns->head->entry);
4209 		/*
4210 		 * If multipath is not configured, we still create a namespace
4211 		 * head (nshead), but head->disk is not initialized in that
4212 		 * case.  As a result, only a single reference to nshead is held
4213 		 * (via kref_init()) when it is created. Therefore, ensure that
4214 		 * we do not release the reference to nshead twice if head->disk
4215 		 * is not present.
4216 		 */
4217 		if (ns->head->disk)
4218 			last_path = true;
4219 	}
4220 	mutex_unlock(&ctrl->subsys->lock);
4221 	if (last_path)
4222 		nvme_put_ns_head(ns->head);
4223 	nvme_put_ns_head(ns->head);
4224  out_cleanup_disk:
4225 	put_disk(disk);
4226  out_free_ns:
4227 	kfree(ns);
4228 }
4229 
4230 static void nvme_ns_remove(struct nvme_ns *ns)
4231 {
4232 	bool last_path = false;
4233 
4234 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4235 		return;
4236 
4237 	clear_bit(NVME_NS_READY, &ns->flags);
4238 	set_capacity(ns->disk, 0);
4239 	nvme_fault_inject_fini(&ns->fault_inject);
4240 
4241 	/*
4242 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4243 	 * this ns going back into current_path.
4244 	 */
4245 	synchronize_srcu(&ns->head->srcu);
4246 
4247 	/* wait for concurrent submissions */
4248 	if (nvme_mpath_clear_current_path(ns))
4249 		synchronize_srcu(&ns->head->srcu);
4250 
4251 	mutex_lock(&ns->ctrl->subsys->lock);
4252 	list_del_rcu(&ns->siblings);
4253 	if (list_empty(&ns->head->list)) {
4254 		if (!nvme_mpath_queue_if_no_path(ns->head))
4255 			list_del_init(&ns->head->entry);
4256 		last_path = true;
4257 	}
4258 	mutex_unlock(&ns->ctrl->subsys->lock);
4259 
4260 	/* guarantee not available in head->list */
4261 	synchronize_srcu(&ns->head->srcu);
4262 
4263 	if (!nvme_ns_head_multipath(ns->head))
4264 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4265 
4266 	nvme_mpath_remove_sysfs_link(ns);
4267 
4268 	del_gendisk(ns->disk);
4269 
4270 	mutex_lock(&ns->ctrl->namespaces_lock);
4271 	list_del_rcu(&ns->list);
4272 	mutex_unlock(&ns->ctrl->namespaces_lock);
4273 	synchronize_srcu(&ns->ctrl->srcu);
4274 
4275 	if (last_path)
4276 		nvme_mpath_remove_disk(ns->head);
4277 	nvme_put_ns(ns);
4278 }
4279 
4280 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4281 {
4282 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4283 
4284 	if (ns) {
4285 		nvme_ns_remove(ns);
4286 		nvme_put_ns(ns);
4287 	}
4288 }
4289 
4290 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4291 {
4292 	int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4293 
4294 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4295 		dev_err(ns->ctrl->device,
4296 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4297 		goto out;
4298 	}
4299 
4300 	ret = nvme_update_ns_info(ns, info);
4301 out:
4302 	/*
4303 	 * Only remove the namespace if we got a fatal error back from the
4304 	 * device, otherwise ignore the error and just move on.
4305 	 *
4306 	 * TODO: we should probably schedule a delayed retry here.
4307 	 */
4308 	if (ret > 0 && (ret & NVME_STATUS_DNR))
4309 		nvme_ns_remove(ns);
4310 }
4311 
4312 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4313 {
4314 	struct nvme_ns_info info = { .nsid = nsid };
4315 	struct nvme_ns *ns;
4316 	int ret = 1;
4317 
4318 	if (nvme_identify_ns_descs(ctrl, &info))
4319 		return;
4320 
4321 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4322 		dev_warn(ctrl->device,
4323 			"command set not reported for nsid: %d\n", nsid);
4324 		return;
4325 	}
4326 
4327 	/*
4328 	 * If available try to use the Command Set Independent Identify Namespace
4329 	 * data structure to find all the generic information that is needed to
4330 	 * set up a namespace.  If not fall back to the legacy version.
4331 	 */
4332 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4333 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4334 	    ctrl->vs >= NVME_VS(2, 0, 0))
4335 		ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
4336 	if (ret > 0)
4337 		ret = nvme_ns_info_from_identify(ctrl, &info);
4338 
4339 	if (info.is_removed)
4340 		nvme_ns_remove_by_nsid(ctrl, nsid);
4341 
4342 	/*
4343 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4344 	 * becomes ready and restart the scan.
4345 	 */
4346 	if (ret || !info.is_ready)
4347 		return;
4348 
4349 	ns = nvme_find_get_ns(ctrl, nsid);
4350 	if (ns) {
4351 		nvme_validate_ns(ns, &info);
4352 		nvme_put_ns(ns);
4353 	} else {
4354 		nvme_alloc_ns(ctrl, &info);
4355 	}
4356 }
4357 
4358 /**
4359  * struct async_scan_info - keeps track of controller & NSIDs to scan
4360  * @ctrl:	Controller on which namespaces are being scanned
4361  * @next_nsid:	Index of next NSID to scan in ns_list
4362  * @ns_list:	Pointer to list of NSIDs to scan
4363  *
4364  * Note: There is a single async_scan_info structure shared by all instances
4365  * of nvme_scan_ns_async() scanning a given controller, so the atomic
4366  * operations on next_nsid are critical to ensure each instance scans a unique
4367  * NSID.
4368  */
4369 struct async_scan_info {
4370 	struct nvme_ctrl *ctrl;
4371 	atomic_t next_nsid;
4372 	__le32 *ns_list;
4373 };
4374 
4375 static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4376 {
4377 	struct async_scan_info *scan_info = data;
4378 	int idx;
4379 	u32 nsid;
4380 
4381 	idx = (u32)atomic_fetch_inc(&scan_info->next_nsid);
4382 	nsid = le32_to_cpu(scan_info->ns_list[idx]);
4383 
4384 	nvme_scan_ns(scan_info->ctrl, nsid);
4385 }
4386 
4387 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4388 					unsigned nsid)
4389 {
4390 	struct nvme_ns *ns, *next;
4391 	LIST_HEAD(rm_list);
4392 
4393 	mutex_lock(&ctrl->namespaces_lock);
4394 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4395 		if (ns->head->ns_id > nsid) {
4396 			list_del_rcu(&ns->list);
4397 			synchronize_srcu(&ctrl->srcu);
4398 			list_add_tail_rcu(&ns->list, &rm_list);
4399 		}
4400 	}
4401 	mutex_unlock(&ctrl->namespaces_lock);
4402 
4403 	list_for_each_entry_safe(ns, next, &rm_list, list)
4404 		nvme_ns_remove(ns);
4405 }
4406 
4407 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4408 {
4409 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4410 	__le32 *ns_list;
4411 	u32 prev = 0;
4412 	int ret = 0, i;
4413 	ASYNC_DOMAIN(domain);
4414 	struct async_scan_info scan_info;
4415 
4416 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4417 	if (!ns_list)
4418 		return -ENOMEM;
4419 
4420 	scan_info.ctrl = ctrl;
4421 	scan_info.ns_list = ns_list;
4422 	for (;;) {
4423 		struct nvme_command cmd = {
4424 			.identify.opcode	= nvme_admin_identify,
4425 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4426 			.identify.nsid		= cpu_to_le32(prev),
4427 		};
4428 
4429 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4430 					    NVME_IDENTIFY_DATA_SIZE);
4431 		if (ret) {
4432 			dev_warn(ctrl->device,
4433 				"Identify NS List failed (status=0x%x)\n", ret);
4434 			goto free;
4435 		}
4436 
4437 		atomic_set(&scan_info.next_nsid, 0);
4438 		for (i = 0; i < nr_entries; i++) {
4439 			u32 nsid = le32_to_cpu(ns_list[i]);
4440 
4441 			if (!nsid)	/* end of the list? */
4442 				goto out;
4443 			async_schedule_domain(nvme_scan_ns_async, &scan_info,
4444 						&domain);
4445 			while (++prev < nsid)
4446 				nvme_ns_remove_by_nsid(ctrl, prev);
4447 		}
4448 		async_synchronize_full_domain(&domain);
4449 	}
4450  out:
4451 	nvme_remove_invalid_namespaces(ctrl, prev);
4452  free:
4453 	async_synchronize_full_domain(&domain);
4454 	kfree(ns_list);
4455 	return ret;
4456 }
4457 
4458 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4459 {
4460 	struct nvme_id_ctrl *id;
4461 	u32 nn, i;
4462 
4463 	if (nvme_identify_ctrl(ctrl, &id))
4464 		return;
4465 	nn = le32_to_cpu(id->nn);
4466 	kfree(id);
4467 
4468 	for (i = 1; i <= nn; i++)
4469 		nvme_scan_ns(ctrl, i);
4470 
4471 	nvme_remove_invalid_namespaces(ctrl, nn);
4472 }
4473 
4474 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4475 {
4476 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4477 	__le32 *log;
4478 	int error;
4479 
4480 	log = kzalloc(log_size, GFP_KERNEL);
4481 	if (!log)
4482 		return;
4483 
4484 	/*
4485 	 * We need to read the log to clear the AEN, but we don't want to rely
4486 	 * on it for the changed namespace information as userspace could have
4487 	 * raced with us in reading the log page, which could cause us to miss
4488 	 * updates.
4489 	 */
4490 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4491 			NVME_CSI_NVM, log, log_size, 0);
4492 	if (error)
4493 		dev_warn(ctrl->device,
4494 			"reading changed ns log failed: %d\n", error);
4495 
4496 	kfree(log);
4497 }
4498 
4499 static void nvme_scan_work(struct work_struct *work)
4500 {
4501 	struct nvme_ctrl *ctrl =
4502 		container_of(work, struct nvme_ctrl, scan_work);
4503 	int ret;
4504 
4505 	/* No tagset on a live ctrl means IO queues could not created */
4506 	if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4507 		return;
4508 
4509 	/*
4510 	 * Identify controller limits can change at controller reset due to
4511 	 * new firmware download, even though it is not common we cannot ignore
4512 	 * such scenario. Controller's non-mdts limits are reported in the unit
4513 	 * of logical blocks that is dependent on the format of attached
4514 	 * namespace. Hence re-read the limits at the time of ns allocation.
4515 	 */
4516 	ret = nvme_init_non_mdts_limits(ctrl);
4517 	if (ret < 0) {
4518 		dev_warn(ctrl->device,
4519 			"reading non-mdts-limits failed: %d\n", ret);
4520 		return;
4521 	}
4522 
4523 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4524 		dev_info(ctrl->device, "rescanning namespaces.\n");
4525 		nvme_clear_changed_ns_log(ctrl);
4526 	}
4527 
4528 	mutex_lock(&ctrl->scan_lock);
4529 	if (!nvme_id_cns_ok(ctrl, NVME_ID_CNS_NS_ACTIVE_LIST)) {
4530 		nvme_scan_ns_sequential(ctrl);
4531 	} else {
4532 		/*
4533 		 * Fall back to sequential scan if DNR is set to handle broken
4534 		 * devices which should support Identify NS List (as per the VS
4535 		 * they report) but don't actually support it.
4536 		 */
4537 		ret = nvme_scan_ns_list(ctrl);
4538 		if (ret > 0 && ret & NVME_STATUS_DNR)
4539 			nvme_scan_ns_sequential(ctrl);
4540 	}
4541 	mutex_unlock(&ctrl->scan_lock);
4542 
4543 	/* Requeue if we have missed AENs */
4544 	if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events))
4545 		nvme_queue_scan(ctrl);
4546 #ifdef CONFIG_NVME_MULTIPATH
4547 	else if (ctrl->ana_log_buf)
4548 		/* Re-read the ANA log page to not miss updates */
4549 		queue_work(nvme_wq, &ctrl->ana_work);
4550 #endif
4551 }
4552 
4553 /*
4554  * This function iterates the namespace list unlocked to allow recovery from
4555  * controller failure. It is up to the caller to ensure the namespace list is
4556  * not modified by scan work while this function is executing.
4557  */
4558 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4559 {
4560 	struct nvme_ns *ns, *next;
4561 	LIST_HEAD(ns_list);
4562 
4563 	/*
4564 	 * make sure to requeue I/O to all namespaces as these
4565 	 * might result from the scan itself and must complete
4566 	 * for the scan_work to make progress
4567 	 */
4568 	nvme_mpath_clear_ctrl_paths(ctrl);
4569 
4570 	/*
4571 	 * Unquiesce io queues so any pending IO won't hang, especially
4572 	 * those submitted from scan work
4573 	 */
4574 	nvme_unquiesce_io_queues(ctrl);
4575 
4576 	/* prevent racing with ns scanning */
4577 	flush_work(&ctrl->scan_work);
4578 
4579 	/*
4580 	 * The dead states indicates the controller was not gracefully
4581 	 * disconnected. In that case, we won't be able to flush any data while
4582 	 * removing the namespaces' disks; fail all the queues now to avoid
4583 	 * potentially having to clean up the failed sync later.
4584 	 */
4585 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4586 		nvme_mark_namespaces_dead(ctrl);
4587 
4588 	/* this is a no-op when called from the controller reset handler */
4589 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4590 
4591 	mutex_lock(&ctrl->namespaces_lock);
4592 	list_splice_init_rcu(&ctrl->namespaces, &ns_list, synchronize_rcu);
4593 	mutex_unlock(&ctrl->namespaces_lock);
4594 	synchronize_srcu(&ctrl->srcu);
4595 
4596 	list_for_each_entry_safe(ns, next, &ns_list, list)
4597 		nvme_ns_remove(ns);
4598 }
4599 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4600 
4601 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4602 {
4603 	const struct nvme_ctrl *ctrl =
4604 		container_of(dev, struct nvme_ctrl, ctrl_device);
4605 	struct nvmf_ctrl_options *opts = ctrl->opts;
4606 	int ret;
4607 
4608 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4609 	if (ret)
4610 		return ret;
4611 
4612 	if (opts) {
4613 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4614 		if (ret)
4615 			return ret;
4616 
4617 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4618 				opts->trsvcid ?: "none");
4619 		if (ret)
4620 			return ret;
4621 
4622 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4623 				opts->host_traddr ?: "none");
4624 		if (ret)
4625 			return ret;
4626 
4627 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4628 				opts->host_iface ?: "none");
4629 	}
4630 	return ret;
4631 }
4632 
4633 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4634 {
4635 	char *envp[2] = { envdata, NULL };
4636 
4637 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4638 }
4639 
4640 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4641 {
4642 	char *envp[2] = { NULL, NULL };
4643 	u32 aen_result = ctrl->aen_result;
4644 
4645 	ctrl->aen_result = 0;
4646 	if (!aen_result)
4647 		return;
4648 
4649 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4650 	if (!envp[0])
4651 		return;
4652 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4653 	kfree(envp[0]);
4654 }
4655 
4656 static void nvme_async_event_work(struct work_struct *work)
4657 {
4658 	struct nvme_ctrl *ctrl =
4659 		container_of(work, struct nvme_ctrl, async_event_work);
4660 
4661 	nvme_aen_uevent(ctrl);
4662 
4663 	/*
4664 	 * The transport drivers must guarantee AER submission here is safe by
4665 	 * flushing ctrl async_event_work after changing the controller state
4666 	 * from LIVE and before freeing the admin queue.
4667 	*/
4668 	if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4669 		ctrl->ops->submit_async_event(ctrl);
4670 }
4671 
4672 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4673 {
4674 
4675 	u32 csts;
4676 
4677 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4678 		return false;
4679 
4680 	if (csts == ~0)
4681 		return false;
4682 
4683 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4684 }
4685 
4686 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4687 {
4688 	struct nvme_fw_slot_info_log *log;
4689 	u8 next_fw_slot, cur_fw_slot;
4690 
4691 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4692 	if (!log)
4693 		return;
4694 
4695 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4696 			 log, sizeof(*log), 0)) {
4697 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4698 		goto out_free_log;
4699 	}
4700 
4701 	cur_fw_slot = log->afi & 0x7;
4702 	next_fw_slot = (log->afi & 0x70) >> 4;
4703 	if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4704 		dev_info(ctrl->device,
4705 			 "Firmware is activated after next Controller Level Reset\n");
4706 		goto out_free_log;
4707 	}
4708 
4709 	memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4710 		sizeof(ctrl->subsys->firmware_rev));
4711 
4712 out_free_log:
4713 	kfree(log);
4714 }
4715 
4716 static void nvme_fw_act_work(struct work_struct *work)
4717 {
4718 	struct nvme_ctrl *ctrl = container_of(work,
4719 				struct nvme_ctrl, fw_act_work);
4720 	unsigned long fw_act_timeout;
4721 
4722 	nvme_auth_stop(ctrl);
4723 
4724 	if (ctrl->mtfa)
4725 		fw_act_timeout = jiffies + msecs_to_jiffies(ctrl->mtfa * 100);
4726 	else
4727 		fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout);
4728 
4729 	nvme_quiesce_io_queues(ctrl);
4730 	while (nvme_ctrl_pp_status(ctrl)) {
4731 		if (time_after(jiffies, fw_act_timeout)) {
4732 			dev_warn(ctrl->device,
4733 				"Fw activation timeout, reset controller\n");
4734 			nvme_try_sched_reset(ctrl);
4735 			return;
4736 		}
4737 		msleep(100);
4738 	}
4739 
4740 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
4741 	    !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4742 		return;
4743 
4744 	nvme_unquiesce_io_queues(ctrl);
4745 	/* read FW slot information to clear the AER */
4746 	nvme_get_fw_slot_info(ctrl);
4747 
4748 	queue_work(nvme_wq, &ctrl->async_event_work);
4749 }
4750 
4751 static u32 nvme_aer_type(u32 result)
4752 {
4753 	return result & 0x7;
4754 }
4755 
4756 static u32 nvme_aer_subtype(u32 result)
4757 {
4758 	return (result & 0xff00) >> 8;
4759 }
4760 
4761 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4762 {
4763 	u32 aer_notice_type = nvme_aer_subtype(result);
4764 	bool requeue = true;
4765 
4766 	switch (aer_notice_type) {
4767 	case NVME_AER_NOTICE_NS_CHANGED:
4768 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4769 		nvme_queue_scan(ctrl);
4770 		break;
4771 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4772 		/*
4773 		 * We are (ab)using the RESETTING state to prevent subsequent
4774 		 * recovery actions from interfering with the controller's
4775 		 * firmware activation.
4776 		 */
4777 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4778 			requeue = false;
4779 			queue_work(nvme_wq, &ctrl->fw_act_work);
4780 		}
4781 		break;
4782 #ifdef CONFIG_NVME_MULTIPATH
4783 	case NVME_AER_NOTICE_ANA:
4784 		if (!ctrl->ana_log_buf)
4785 			break;
4786 		queue_work(nvme_wq, &ctrl->ana_work);
4787 		break;
4788 #endif
4789 	case NVME_AER_NOTICE_DISC_CHANGED:
4790 		ctrl->aen_result = result;
4791 		break;
4792 	default:
4793 		dev_warn(ctrl->device, "async event result %08x\n", result);
4794 	}
4795 	return requeue;
4796 }
4797 
4798 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4799 {
4800 	dev_warn(ctrl->device,
4801 		"resetting controller due to persistent internal error\n");
4802 	nvme_reset_ctrl(ctrl);
4803 }
4804 
4805 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4806 		volatile union nvme_result *res)
4807 {
4808 	u32 result = le32_to_cpu(res->u32);
4809 	u32 aer_type = nvme_aer_type(result);
4810 	u32 aer_subtype = nvme_aer_subtype(result);
4811 	bool requeue = true;
4812 
4813 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4814 		return;
4815 
4816 	trace_nvme_async_event(ctrl, result);
4817 	switch (aer_type) {
4818 	case NVME_AER_NOTICE:
4819 		requeue = nvme_handle_aen_notice(ctrl, result);
4820 		break;
4821 	case NVME_AER_ERROR:
4822 		/*
4823 		 * For a persistent internal error, don't run async_event_work
4824 		 * to submit a new AER. The controller reset will do it.
4825 		 */
4826 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4827 			nvme_handle_aer_persistent_error(ctrl);
4828 			return;
4829 		}
4830 		fallthrough;
4831 	case NVME_AER_SMART:
4832 	case NVME_AER_CSS:
4833 	case NVME_AER_VS:
4834 		ctrl->aen_result = result;
4835 		break;
4836 	default:
4837 		break;
4838 	}
4839 
4840 	if (requeue)
4841 		queue_work(nvme_wq, &ctrl->async_event_work);
4842 }
4843 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4844 
4845 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4846 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4847 {
4848 	struct queue_limits lim = {};
4849 	int ret;
4850 
4851 	memset(set, 0, sizeof(*set));
4852 	set->ops = ops;
4853 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4854 	if (ctrl->ops->flags & NVME_F_FABRICS)
4855 		/* Reserved for fabric connect and keep alive */
4856 		set->reserved_tags = 2;
4857 	set->numa_node = ctrl->numa_node;
4858 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4859 		set->flags |= BLK_MQ_F_BLOCKING;
4860 	set->cmd_size = cmd_size;
4861 	set->driver_data = ctrl;
4862 	set->nr_hw_queues = 1;
4863 	set->timeout = NVME_ADMIN_TIMEOUT;
4864 	ret = blk_mq_alloc_tag_set(set);
4865 	if (ret)
4866 		return ret;
4867 
4868 	ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL);
4869 	if (IS_ERR(ctrl->admin_q)) {
4870 		ret = PTR_ERR(ctrl->admin_q);
4871 		goto out_free_tagset;
4872 	}
4873 
4874 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4875 		ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4876 		if (IS_ERR(ctrl->fabrics_q)) {
4877 			ret = PTR_ERR(ctrl->fabrics_q);
4878 			goto out_cleanup_admin_q;
4879 		}
4880 	}
4881 
4882 	ctrl->admin_tagset = set;
4883 	return 0;
4884 
4885 out_cleanup_admin_q:
4886 	blk_mq_destroy_queue(ctrl->admin_q);
4887 	blk_put_queue(ctrl->admin_q);
4888 out_free_tagset:
4889 	blk_mq_free_tag_set(set);
4890 	ctrl->admin_q = NULL;
4891 	ctrl->fabrics_q = NULL;
4892 	return ret;
4893 }
4894 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4895 
4896 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4897 {
4898 	/*
4899 	 * As we're about to destroy the queue and free tagset
4900 	 * we can not have keep-alive work running.
4901 	 */
4902 	nvme_stop_keep_alive(ctrl);
4903 	blk_mq_destroy_queue(ctrl->admin_q);
4904 	blk_put_queue(ctrl->admin_q);
4905 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4906 		blk_mq_destroy_queue(ctrl->fabrics_q);
4907 		blk_put_queue(ctrl->fabrics_q);
4908 	}
4909 	blk_mq_free_tag_set(ctrl->admin_tagset);
4910 }
4911 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4912 
4913 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4914 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4915 		unsigned int cmd_size)
4916 {
4917 	int ret;
4918 
4919 	memset(set, 0, sizeof(*set));
4920 	set->ops = ops;
4921 	set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4922 	/*
4923 	 * Some Apple controllers requires tags to be unique across admin and
4924 	 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4925 	 */
4926 	if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4927 		set->reserved_tags = NVME_AQ_DEPTH;
4928 	else if (ctrl->ops->flags & NVME_F_FABRICS)
4929 		/* Reserved for fabric connect */
4930 		set->reserved_tags = 1;
4931 	set->numa_node = ctrl->numa_node;
4932 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4933 		set->flags |= BLK_MQ_F_BLOCKING;
4934 	set->cmd_size = cmd_size;
4935 	set->driver_data = ctrl;
4936 	set->nr_hw_queues = ctrl->queue_count - 1;
4937 	set->timeout = NVME_IO_TIMEOUT;
4938 	set->nr_maps = nr_maps;
4939 	ret = blk_mq_alloc_tag_set(set);
4940 	if (ret)
4941 		return ret;
4942 
4943 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4944 		struct queue_limits lim = {
4945 			.features	= BLK_FEAT_SKIP_TAGSET_QUIESCE,
4946 		};
4947 
4948 		ctrl->connect_q = blk_mq_alloc_queue(set, &lim, NULL);
4949         	if (IS_ERR(ctrl->connect_q)) {
4950 			ret = PTR_ERR(ctrl->connect_q);
4951 			goto out_free_tag_set;
4952 		}
4953 	}
4954 
4955 	ctrl->tagset = set;
4956 	return 0;
4957 
4958 out_free_tag_set:
4959 	blk_mq_free_tag_set(set);
4960 	ctrl->connect_q = NULL;
4961 	return ret;
4962 }
4963 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4964 
4965 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4966 {
4967 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4968 		blk_mq_destroy_queue(ctrl->connect_q);
4969 		blk_put_queue(ctrl->connect_q);
4970 	}
4971 	blk_mq_free_tag_set(ctrl->tagset);
4972 }
4973 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4974 
4975 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4976 {
4977 	nvme_mpath_stop(ctrl);
4978 	nvme_auth_stop(ctrl);
4979 	nvme_stop_failfast_work(ctrl);
4980 	flush_work(&ctrl->async_event_work);
4981 	cancel_work_sync(&ctrl->fw_act_work);
4982 	if (ctrl->ops->stop_ctrl)
4983 		ctrl->ops->stop_ctrl(ctrl);
4984 }
4985 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4986 
4987 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4988 {
4989 	nvme_enable_aen(ctrl);
4990 
4991 	/*
4992 	 * persistent discovery controllers need to send indication to userspace
4993 	 * to re-read the discovery log page to learn about possible changes
4994 	 * that were missed. We identify persistent discovery controllers by
4995 	 * checking that they started once before, hence are reconnecting back.
4996 	 */
4997 	if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4998 	    nvme_discovery_ctrl(ctrl)) {
4999 		if (!ctrl->kato) {
5000 			nvme_stop_keep_alive(ctrl);
5001 			ctrl->kato = NVME_DEFAULT_KATO;
5002 			nvme_start_keep_alive(ctrl);
5003 		}
5004 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
5005 	}
5006 
5007 	if (ctrl->queue_count > 1) {
5008 		nvme_queue_scan(ctrl);
5009 		nvme_unquiesce_io_queues(ctrl);
5010 		nvme_mpath_update(ctrl);
5011 	}
5012 
5013 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
5014 	set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
5015 }
5016 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
5017 
5018 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
5019 {
5020 	nvme_stop_keep_alive(ctrl);
5021 	nvme_hwmon_exit(ctrl);
5022 	nvme_fault_inject_fini(&ctrl->fault_inject);
5023 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
5024 	cdev_device_del(&ctrl->cdev, ctrl->device);
5025 	nvme_put_ctrl(ctrl);
5026 }
5027 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
5028 
5029 static void nvme_free_cels(struct nvme_ctrl *ctrl)
5030 {
5031 	struct nvme_effects_log	*cel;
5032 	unsigned long i;
5033 
5034 	xa_for_each(&ctrl->cels, i, cel) {
5035 		xa_erase(&ctrl->cels, i);
5036 		kfree(cel);
5037 	}
5038 
5039 	xa_destroy(&ctrl->cels);
5040 }
5041 
5042 static void nvme_free_ctrl(struct device *dev)
5043 {
5044 	struct nvme_ctrl *ctrl =
5045 		container_of(dev, struct nvme_ctrl, ctrl_device);
5046 	struct nvme_subsystem *subsys = ctrl->subsys;
5047 
5048 	if (!subsys || ctrl->instance != subsys->instance)
5049 		ida_free(&nvme_instance_ida, ctrl->instance);
5050 	nvme_free_cels(ctrl);
5051 	nvme_mpath_uninit(ctrl);
5052 	cleanup_srcu_struct(&ctrl->srcu);
5053 	nvme_auth_stop(ctrl);
5054 	nvme_auth_free(ctrl);
5055 	__free_page(ctrl->discard_page);
5056 	free_opal_dev(ctrl->opal_dev);
5057 
5058 	if (subsys) {
5059 		mutex_lock(&nvme_subsystems_lock);
5060 		list_del(&ctrl->subsys_entry);
5061 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5062 		mutex_unlock(&nvme_subsystems_lock);
5063 	}
5064 
5065 	ctrl->ops->free_ctrl(ctrl);
5066 
5067 	if (subsys)
5068 		nvme_put_subsystem(subsys);
5069 }
5070 
5071 /*
5072  * Initialize a NVMe controller structures.  This needs to be called during
5073  * earliest initialization so that we have the initialized structured around
5074  * during probing.
5075  *
5076  * On success, the caller must use the nvme_put_ctrl() to release this when
5077  * needed, which also invokes the ops->free_ctrl() callback.
5078  */
5079 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5080 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
5081 {
5082 	int ret;
5083 
5084 	WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
5085 	ctrl->passthru_err_log_enabled = false;
5086 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5087 	spin_lock_init(&ctrl->lock);
5088 	mutex_init(&ctrl->namespaces_lock);
5089 
5090 	ret = init_srcu_struct(&ctrl->srcu);
5091 	if (ret)
5092 		return ret;
5093 
5094 	mutex_init(&ctrl->scan_lock);
5095 	INIT_LIST_HEAD(&ctrl->namespaces);
5096 	xa_init(&ctrl->cels);
5097 	ctrl->dev = dev;
5098 	ctrl->ops = ops;
5099 	ctrl->quirks = quirks;
5100 	ctrl->numa_node = NUMA_NO_NODE;
5101 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5102 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5103 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5104 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5105 	init_waitqueue_head(&ctrl->state_wq);
5106 
5107 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5108 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5109 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5110 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5111 	ctrl->ka_last_check_time = jiffies;
5112 
5113 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5114 			PAGE_SIZE);
5115 	ctrl->discard_page = alloc_page(GFP_KERNEL);
5116 	if (!ctrl->discard_page) {
5117 		ret = -ENOMEM;
5118 		goto out;
5119 	}
5120 
5121 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5122 	if (ret < 0)
5123 		goto out;
5124 	ctrl->instance = ret;
5125 
5126 	ret = nvme_auth_init_ctrl(ctrl);
5127 	if (ret)
5128 		goto out_release_instance;
5129 
5130 	nvme_mpath_init_ctrl(ctrl);
5131 
5132 	device_initialize(&ctrl->ctrl_device);
5133 	ctrl->device = &ctrl->ctrl_device;
5134 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5135 			ctrl->instance);
5136 	ctrl->device->class = &nvme_class;
5137 	ctrl->device->parent = ctrl->dev;
5138 	if (ops->dev_attr_groups)
5139 		ctrl->device->groups = ops->dev_attr_groups;
5140 	else
5141 		ctrl->device->groups = nvme_dev_attr_groups;
5142 	ctrl->device->release = nvme_free_ctrl;
5143 	dev_set_drvdata(ctrl->device, ctrl);
5144 
5145 	return ret;
5146 
5147 out_release_instance:
5148 	ida_free(&nvme_instance_ida, ctrl->instance);
5149 out:
5150 	if (ctrl->discard_page)
5151 		__free_page(ctrl->discard_page);
5152 	cleanup_srcu_struct(&ctrl->srcu);
5153 	return ret;
5154 }
5155 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5156 
5157 /*
5158  * On success, returns with an elevated controller reference and caller must
5159  * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
5160  */
5161 int nvme_add_ctrl(struct nvme_ctrl *ctrl)
5162 {
5163 	int ret;
5164 
5165 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5166 	if (ret)
5167 		return ret;
5168 
5169 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
5170 	ctrl->cdev.owner = ctrl->ops->module;
5171 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5172 	if (ret)
5173 		return ret;
5174 
5175 	/*
5176 	 * Initialize latency tolerance controls.  The sysfs files won't
5177 	 * be visible to userspace unless the device actually supports APST.
5178 	 */
5179 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5180 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5181 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5182 
5183 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5184 	nvme_get_ctrl(ctrl);
5185 
5186 	return 0;
5187 }
5188 EXPORT_SYMBOL_GPL(nvme_add_ctrl);
5189 
5190 /* let I/O to all namespaces fail in preparation for surprise removal */
5191 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5192 {
5193 	struct nvme_ns *ns;
5194 	int srcu_idx;
5195 
5196 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5197 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5198 				 srcu_read_lock_held(&ctrl->srcu))
5199 		blk_mark_disk_dead(ns->disk);
5200 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5201 }
5202 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5203 
5204 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5205 {
5206 	struct nvme_ns *ns;
5207 	int srcu_idx;
5208 
5209 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5210 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5211 				 srcu_read_lock_held(&ctrl->srcu))
5212 		blk_mq_unfreeze_queue_non_owner(ns->queue);
5213 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5214 	clear_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5215 }
5216 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5217 
5218 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5219 {
5220 	struct nvme_ns *ns;
5221 	int srcu_idx;
5222 
5223 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5224 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5225 				 srcu_read_lock_held(&ctrl->srcu)) {
5226 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5227 		if (timeout <= 0)
5228 			break;
5229 	}
5230 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5231 	return timeout;
5232 }
5233 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5234 
5235 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5236 {
5237 	struct nvme_ns *ns;
5238 	int srcu_idx;
5239 
5240 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5241 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5242 				 srcu_read_lock_held(&ctrl->srcu))
5243 		blk_mq_freeze_queue_wait(ns->queue);
5244 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5245 }
5246 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5247 
5248 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5249 {
5250 	struct nvme_ns *ns;
5251 	int srcu_idx;
5252 
5253 	set_bit(NVME_CTRL_FROZEN, &ctrl->flags);
5254 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5255 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5256 				 srcu_read_lock_held(&ctrl->srcu))
5257 		/*
5258 		 * Typical non_owner use case is from pci driver, in which
5259 		 * start_freeze is called from timeout work function, but
5260 		 * unfreeze is done in reset work context
5261 		 */
5262 		blk_freeze_queue_start_non_owner(ns->queue);
5263 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5264 }
5265 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5266 
5267 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5268 {
5269 	if (!ctrl->tagset)
5270 		return;
5271 	if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5272 		blk_mq_quiesce_tagset(ctrl->tagset);
5273 	else
5274 		blk_mq_wait_quiesce_done(ctrl->tagset);
5275 }
5276 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5277 
5278 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5279 {
5280 	if (!ctrl->tagset)
5281 		return;
5282 	if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
5283 		blk_mq_unquiesce_tagset(ctrl->tagset);
5284 }
5285 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5286 
5287 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5288 {
5289 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5290 		blk_mq_quiesce_queue(ctrl->admin_q);
5291 	else
5292 		blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
5293 }
5294 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5295 
5296 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5297 {
5298 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5299 		blk_mq_unquiesce_queue(ctrl->admin_q);
5300 }
5301 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5302 
5303 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5304 {
5305 	struct nvme_ns *ns;
5306 	int srcu_idx;
5307 
5308 	srcu_idx = srcu_read_lock(&ctrl->srcu);
5309 	list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5310 				 srcu_read_lock_held(&ctrl->srcu))
5311 		blk_sync_queue(ns->queue);
5312 	srcu_read_unlock(&ctrl->srcu, srcu_idx);
5313 }
5314 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5315 
5316 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5317 {
5318 	nvme_sync_io_queues(ctrl);
5319 	if (ctrl->admin_q)
5320 		blk_sync_queue(ctrl->admin_q);
5321 }
5322 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5323 
5324 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5325 {
5326 	if (file->f_op != &nvme_dev_fops)
5327 		return NULL;
5328 	return file->private_data;
5329 }
5330 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5331 
5332 /*
5333  * Check we didn't inadvertently grow the command structure sizes:
5334  */
5335 static inline void _nvme_check_size(void)
5336 {
5337 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5338 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5339 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5340 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5341 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5342 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5343 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5344 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5345 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5346 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5347 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5348 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5349 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5350 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5351 			NVME_IDENTIFY_DATA_SIZE);
5352 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5353 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5354 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5355 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5356 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5357 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5358 	BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5359 	BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5360 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5361 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5362 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5363 }
5364 
5365 
5366 static int __init nvme_core_init(void)
5367 {
5368 	unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5369 	int result = -ENOMEM;
5370 
5371 	_nvme_check_size();
5372 
5373 	nvme_wq = alloc_workqueue("nvme-wq", wq_flags, 0);
5374 	if (!nvme_wq)
5375 		goto out;
5376 
5377 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq", wq_flags, 0);
5378 	if (!nvme_reset_wq)
5379 		goto destroy_wq;
5380 
5381 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq", wq_flags, 0);
5382 	if (!nvme_delete_wq)
5383 		goto destroy_reset_wq;
5384 
5385 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5386 			NVME_MINORS, "nvme");
5387 	if (result < 0)
5388 		goto destroy_delete_wq;
5389 
5390 	result = class_register(&nvme_class);
5391 	if (result)
5392 		goto unregister_chrdev;
5393 
5394 	result = class_register(&nvme_subsys_class);
5395 	if (result)
5396 		goto destroy_class;
5397 
5398 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5399 				     "nvme-generic");
5400 	if (result < 0)
5401 		goto destroy_subsys_class;
5402 
5403 	result = class_register(&nvme_ns_chr_class);
5404 	if (result)
5405 		goto unregister_generic_ns;
5406 
5407 	result = nvme_init_auth();
5408 	if (result)
5409 		goto destroy_ns_chr;
5410 	return 0;
5411 
5412 destroy_ns_chr:
5413 	class_unregister(&nvme_ns_chr_class);
5414 unregister_generic_ns:
5415 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5416 destroy_subsys_class:
5417 	class_unregister(&nvme_subsys_class);
5418 destroy_class:
5419 	class_unregister(&nvme_class);
5420 unregister_chrdev:
5421 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5422 destroy_delete_wq:
5423 	destroy_workqueue(nvme_delete_wq);
5424 destroy_reset_wq:
5425 	destroy_workqueue(nvme_reset_wq);
5426 destroy_wq:
5427 	destroy_workqueue(nvme_wq);
5428 out:
5429 	return result;
5430 }
5431 
5432 static void __exit nvme_core_exit(void)
5433 {
5434 	nvme_exit_auth();
5435 	class_unregister(&nvme_ns_chr_class);
5436 	class_unregister(&nvme_subsys_class);
5437 	class_unregister(&nvme_class);
5438 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5439 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5440 	destroy_workqueue(nvme_delete_wq);
5441 	destroy_workqueue(nvme_reset_wq);
5442 	destroy_workqueue(nvme_wq);
5443 	ida_destroy(&nvme_ns_chr_minor_ida);
5444 	ida_destroy(&nvme_instance_ida);
5445 }
5446 
5447 MODULE_LICENSE("GPL");
5448 MODULE_VERSION("1.0");
5449 MODULE_DESCRIPTION("NVMe host core framework");
5450 module_init(nvme_core_init);
5451 module_exit(nvme_core_exit);
5452