xref: /linux/drivers/nvme/host/core.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31 
32 #include "nvme.h"
33 #include "fabrics.h"
34 
35 #define NVME_MINORS		(1U << MINORBITS)
36 
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41 
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46 
47 unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50 
51 unsigned int nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, uint, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 EXPORT_SYMBOL_GPL(nvme_max_retries);
55 
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58 
59 static LIST_HEAD(nvme_ctrl_list);
60 static DEFINE_SPINLOCK(dev_list_lock);
61 
62 static struct class *nvme_class;
63 
64 void nvme_cancel_request(struct request *req, void *data, bool reserved)
65 {
66 	int status;
67 
68 	if (!blk_mq_request_started(req))
69 		return;
70 
71 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
72 				"Cancelling I/O %d", req->tag);
73 
74 	status = NVME_SC_ABORT_REQ;
75 	if (blk_queue_dying(req->q))
76 		status |= NVME_SC_DNR;
77 	blk_mq_complete_request(req, status);
78 }
79 EXPORT_SYMBOL_GPL(nvme_cancel_request);
80 
81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
82 		enum nvme_ctrl_state new_state)
83 {
84 	enum nvme_ctrl_state old_state = ctrl->state;
85 	bool changed = false;
86 
87 	spin_lock_irq(&ctrl->lock);
88 	switch (new_state) {
89 	case NVME_CTRL_LIVE:
90 		switch (old_state) {
91 		case NVME_CTRL_NEW:
92 		case NVME_CTRL_RESETTING:
93 		case NVME_CTRL_RECONNECTING:
94 			changed = true;
95 			/* FALLTHRU */
96 		default:
97 			break;
98 		}
99 		break;
100 	case NVME_CTRL_RESETTING:
101 		switch (old_state) {
102 		case NVME_CTRL_NEW:
103 		case NVME_CTRL_LIVE:
104 		case NVME_CTRL_RECONNECTING:
105 			changed = true;
106 			/* FALLTHRU */
107 		default:
108 			break;
109 		}
110 		break;
111 	case NVME_CTRL_RECONNECTING:
112 		switch (old_state) {
113 		case NVME_CTRL_LIVE:
114 			changed = true;
115 			/* FALLTHRU */
116 		default:
117 			break;
118 		}
119 		break;
120 	case NVME_CTRL_DELETING:
121 		switch (old_state) {
122 		case NVME_CTRL_LIVE:
123 		case NVME_CTRL_RESETTING:
124 		case NVME_CTRL_RECONNECTING:
125 			changed = true;
126 			/* FALLTHRU */
127 		default:
128 			break;
129 		}
130 		break;
131 	case NVME_CTRL_DEAD:
132 		switch (old_state) {
133 		case NVME_CTRL_DELETING:
134 			changed = true;
135 			/* FALLTHRU */
136 		default:
137 			break;
138 		}
139 		break;
140 	default:
141 		break;
142 	}
143 	spin_unlock_irq(&ctrl->lock);
144 
145 	if (changed)
146 		ctrl->state = new_state;
147 
148 	return changed;
149 }
150 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
151 
152 static void nvme_free_ns(struct kref *kref)
153 {
154 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
155 
156 	if (ns->type == NVME_NS_LIGHTNVM)
157 		nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
158 
159 	spin_lock(&dev_list_lock);
160 	ns->disk->private_data = NULL;
161 	spin_unlock(&dev_list_lock);
162 
163 	put_disk(ns->disk);
164 	ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
165 	nvme_put_ctrl(ns->ctrl);
166 	kfree(ns);
167 }
168 
169 static void nvme_put_ns(struct nvme_ns *ns)
170 {
171 	kref_put(&ns->kref, nvme_free_ns);
172 }
173 
174 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
175 {
176 	struct nvme_ns *ns;
177 
178 	spin_lock(&dev_list_lock);
179 	ns = disk->private_data;
180 	if (ns) {
181 		if (!kref_get_unless_zero(&ns->kref))
182 			goto fail;
183 		if (!try_module_get(ns->ctrl->ops->module))
184 			goto fail_put_ns;
185 	}
186 	spin_unlock(&dev_list_lock);
187 
188 	return ns;
189 
190 fail_put_ns:
191 	kref_put(&ns->kref, nvme_free_ns);
192 fail:
193 	spin_unlock(&dev_list_lock);
194 	return NULL;
195 }
196 
197 void nvme_requeue_req(struct request *req)
198 {
199 	unsigned long flags;
200 
201 	blk_mq_requeue_request(req);
202 	spin_lock_irqsave(req->q->queue_lock, flags);
203 	if (!blk_queue_stopped(req->q))
204 		blk_mq_kick_requeue_list(req->q);
205 	spin_unlock_irqrestore(req->q->queue_lock, flags);
206 }
207 EXPORT_SYMBOL_GPL(nvme_requeue_req);
208 
209 struct request *nvme_alloc_request(struct request_queue *q,
210 		struct nvme_command *cmd, unsigned int flags, int qid)
211 {
212 	struct request *req;
213 
214 	if (qid == NVME_QID_ANY) {
215 		req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
216 	} else {
217 		req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
218 				qid ? qid - 1 : 0);
219 	}
220 	if (IS_ERR(req))
221 		return req;
222 
223 	req->cmd_type = REQ_TYPE_DRV_PRIV;
224 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
225 	req->cmd = (unsigned char *)cmd;
226 	req->cmd_len = sizeof(struct nvme_command);
227 
228 	return req;
229 }
230 EXPORT_SYMBOL_GPL(nvme_alloc_request);
231 
232 static inline void nvme_setup_flush(struct nvme_ns *ns,
233 		struct nvme_command *cmnd)
234 {
235 	memset(cmnd, 0, sizeof(*cmnd));
236 	cmnd->common.opcode = nvme_cmd_flush;
237 	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
238 }
239 
240 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
241 		struct nvme_command *cmnd)
242 {
243 	struct nvme_dsm_range *range;
244 	struct page *page;
245 	int offset;
246 	unsigned int nr_bytes = blk_rq_bytes(req);
247 
248 	range = kmalloc(sizeof(*range), GFP_ATOMIC);
249 	if (!range)
250 		return BLK_MQ_RQ_QUEUE_BUSY;
251 
252 	range->cattr = cpu_to_le32(0);
253 	range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
254 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
255 
256 	memset(cmnd, 0, sizeof(*cmnd));
257 	cmnd->dsm.opcode = nvme_cmd_dsm;
258 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
259 	cmnd->dsm.nr = 0;
260 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
261 
262 	req->completion_data = range;
263 	page = virt_to_page(range);
264 	offset = offset_in_page(range);
265 	blk_add_request_payload(req, page, offset, sizeof(*range));
266 
267 	/*
268 	 * we set __data_len back to the size of the area to be discarded
269 	 * on disk. This allows us to report completion on the full amount
270 	 * of blocks described by the request.
271 	 */
272 	req->__data_len = nr_bytes;
273 
274 	return 0;
275 }
276 
277 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
278 		struct nvme_command *cmnd)
279 {
280 	u16 control = 0;
281 	u32 dsmgmt = 0;
282 
283 	if (req->cmd_flags & REQ_FUA)
284 		control |= NVME_RW_FUA;
285 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
286 		control |= NVME_RW_LR;
287 
288 	if (req->cmd_flags & REQ_RAHEAD)
289 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
290 
291 	memset(cmnd, 0, sizeof(*cmnd));
292 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
293 	cmnd->rw.command_id = req->tag;
294 	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
295 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
296 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
297 
298 	if (ns->ms) {
299 		switch (ns->pi_type) {
300 		case NVME_NS_DPS_PI_TYPE3:
301 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
302 			break;
303 		case NVME_NS_DPS_PI_TYPE1:
304 		case NVME_NS_DPS_PI_TYPE2:
305 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
306 					NVME_RW_PRINFO_PRCHK_REF;
307 			cmnd->rw.reftag = cpu_to_le32(
308 					nvme_block_nr(ns, blk_rq_pos(req)));
309 			break;
310 		}
311 		if (!blk_integrity_rq(req))
312 			control |= NVME_RW_PRINFO_PRACT;
313 	}
314 
315 	cmnd->rw.control = cpu_to_le16(control);
316 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
317 }
318 
319 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
320 		struct nvme_command *cmd)
321 {
322 	int ret = 0;
323 
324 	if (req->cmd_type == REQ_TYPE_DRV_PRIV)
325 		memcpy(cmd, req->cmd, sizeof(*cmd));
326 	else if (req_op(req) == REQ_OP_FLUSH)
327 		nvme_setup_flush(ns, cmd);
328 	else if (req_op(req) == REQ_OP_DISCARD)
329 		ret = nvme_setup_discard(ns, req, cmd);
330 	else
331 		nvme_setup_rw(ns, req, cmd);
332 
333 	return ret;
334 }
335 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
336 
337 /*
338  * Returns 0 on success.  If the result is negative, it's a Linux error code;
339  * if the result is positive, it's an NVM Express status code
340  */
341 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
342 		struct nvme_completion *cqe, void *buffer, unsigned bufflen,
343 		unsigned timeout, int qid, int at_head, int flags)
344 {
345 	struct request *req;
346 	int ret;
347 
348 	req = nvme_alloc_request(q, cmd, flags, qid);
349 	if (IS_ERR(req))
350 		return PTR_ERR(req);
351 
352 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
353 	req->special = cqe;
354 
355 	if (buffer && bufflen) {
356 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
357 		if (ret)
358 			goto out;
359 	}
360 
361 	blk_execute_rq(req->q, NULL, req, at_head);
362 	ret = req->errors;
363  out:
364 	blk_mq_free_request(req);
365 	return ret;
366 }
367 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
368 
369 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
370 		void *buffer, unsigned bufflen)
371 {
372 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
373 			NVME_QID_ANY, 0, 0);
374 }
375 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
376 
377 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
378 		void __user *ubuffer, unsigned bufflen,
379 		void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
380 		u32 *result, unsigned timeout)
381 {
382 	bool write = nvme_is_write(cmd);
383 	struct nvme_completion cqe;
384 	struct nvme_ns *ns = q->queuedata;
385 	struct gendisk *disk = ns ? ns->disk : NULL;
386 	struct request *req;
387 	struct bio *bio = NULL;
388 	void *meta = NULL;
389 	int ret;
390 
391 	req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
392 	if (IS_ERR(req))
393 		return PTR_ERR(req);
394 
395 	req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
396 	req->special = &cqe;
397 
398 	if (ubuffer && bufflen) {
399 		ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
400 				GFP_KERNEL);
401 		if (ret)
402 			goto out;
403 		bio = req->bio;
404 
405 		if (!disk)
406 			goto submit;
407 		bio->bi_bdev = bdget_disk(disk, 0);
408 		if (!bio->bi_bdev) {
409 			ret = -ENODEV;
410 			goto out_unmap;
411 		}
412 
413 		if (meta_buffer && meta_len) {
414 			struct bio_integrity_payload *bip;
415 
416 			meta = kmalloc(meta_len, GFP_KERNEL);
417 			if (!meta) {
418 				ret = -ENOMEM;
419 				goto out_unmap;
420 			}
421 
422 			if (write) {
423 				if (copy_from_user(meta, meta_buffer,
424 						meta_len)) {
425 					ret = -EFAULT;
426 					goto out_free_meta;
427 				}
428 			}
429 
430 			bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
431 			if (IS_ERR(bip)) {
432 				ret = PTR_ERR(bip);
433 				goto out_free_meta;
434 			}
435 
436 			bip->bip_iter.bi_size = meta_len;
437 			bip->bip_iter.bi_sector = meta_seed;
438 
439 			ret = bio_integrity_add_page(bio, virt_to_page(meta),
440 					meta_len, offset_in_page(meta));
441 			if (ret != meta_len) {
442 				ret = -ENOMEM;
443 				goto out_free_meta;
444 			}
445 		}
446 	}
447  submit:
448 	blk_execute_rq(req->q, disk, req, 0);
449 	ret = req->errors;
450 	if (result)
451 		*result = le32_to_cpu(cqe.result);
452 	if (meta && !ret && !write) {
453 		if (copy_to_user(meta_buffer, meta, meta_len))
454 			ret = -EFAULT;
455 	}
456  out_free_meta:
457 	kfree(meta);
458  out_unmap:
459 	if (bio) {
460 		if (disk && bio->bi_bdev)
461 			bdput(bio->bi_bdev);
462 		blk_rq_unmap_user(bio);
463 	}
464  out:
465 	blk_mq_free_request(req);
466 	return ret;
467 }
468 
469 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
470 		void __user *ubuffer, unsigned bufflen, u32 *result,
471 		unsigned timeout)
472 {
473 	return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
474 			result, timeout);
475 }
476 
477 static void nvme_keep_alive_end_io(struct request *rq, int error)
478 {
479 	struct nvme_ctrl *ctrl = rq->end_io_data;
480 
481 	blk_mq_free_request(rq);
482 
483 	if (error) {
484 		dev_err(ctrl->device,
485 			"failed nvme_keep_alive_end_io error=%d\n", error);
486 		return;
487 	}
488 
489 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
490 }
491 
492 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
493 {
494 	struct nvme_command c;
495 	struct request *rq;
496 
497 	memset(&c, 0, sizeof(c));
498 	c.common.opcode = nvme_admin_keep_alive;
499 
500 	rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
501 			NVME_QID_ANY);
502 	if (IS_ERR(rq))
503 		return PTR_ERR(rq);
504 
505 	rq->timeout = ctrl->kato * HZ;
506 	rq->end_io_data = ctrl;
507 
508 	blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
509 
510 	return 0;
511 }
512 
513 static void nvme_keep_alive_work(struct work_struct *work)
514 {
515 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
516 			struct nvme_ctrl, ka_work);
517 
518 	if (nvme_keep_alive(ctrl)) {
519 		/* allocation failure, reset the controller */
520 		dev_err(ctrl->device, "keep-alive failed\n");
521 		ctrl->ops->reset_ctrl(ctrl);
522 		return;
523 	}
524 }
525 
526 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
527 {
528 	if (unlikely(ctrl->kato == 0))
529 		return;
530 
531 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
532 	schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
533 }
534 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
535 
536 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
537 {
538 	if (unlikely(ctrl->kato == 0))
539 		return;
540 
541 	cancel_delayed_work_sync(&ctrl->ka_work);
542 }
543 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
544 
545 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
546 {
547 	struct nvme_command c = { };
548 	int error;
549 
550 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
551 	c.identify.opcode = nvme_admin_identify;
552 	c.identify.cns = cpu_to_le32(1);
553 
554 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
555 	if (!*id)
556 		return -ENOMEM;
557 
558 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
559 			sizeof(struct nvme_id_ctrl));
560 	if (error)
561 		kfree(*id);
562 	return error;
563 }
564 
565 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
566 {
567 	struct nvme_command c = { };
568 
569 	c.identify.opcode = nvme_admin_identify;
570 	c.identify.cns = cpu_to_le32(2);
571 	c.identify.nsid = cpu_to_le32(nsid);
572 	return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
573 }
574 
575 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
576 		struct nvme_id_ns **id)
577 {
578 	struct nvme_command c = { };
579 	int error;
580 
581 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
582 	c.identify.opcode = nvme_admin_identify,
583 	c.identify.nsid = cpu_to_le32(nsid),
584 
585 	*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
586 	if (!*id)
587 		return -ENOMEM;
588 
589 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
590 			sizeof(struct nvme_id_ns));
591 	if (error)
592 		kfree(*id);
593 	return error;
594 }
595 
596 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
597 					dma_addr_t dma_addr, u32 *result)
598 {
599 	struct nvme_command c;
600 	struct nvme_completion cqe;
601 	int ret;
602 
603 	memset(&c, 0, sizeof(c));
604 	c.features.opcode = nvme_admin_get_features;
605 	c.features.nsid = cpu_to_le32(nsid);
606 	c.features.dptr.prp1 = cpu_to_le64(dma_addr);
607 	c.features.fid = cpu_to_le32(fid);
608 
609 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
610 			NVME_QID_ANY, 0, 0);
611 	if (ret >= 0)
612 		*result = le32_to_cpu(cqe.result);
613 	return ret;
614 }
615 
616 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
617 					dma_addr_t dma_addr, u32 *result)
618 {
619 	struct nvme_command c;
620 	struct nvme_completion cqe;
621 	int ret;
622 
623 	memset(&c, 0, sizeof(c));
624 	c.features.opcode = nvme_admin_set_features;
625 	c.features.dptr.prp1 = cpu_to_le64(dma_addr);
626 	c.features.fid = cpu_to_le32(fid);
627 	c.features.dword11 = cpu_to_le32(dword11);
628 
629 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
630 			NVME_QID_ANY, 0, 0);
631 	if (ret >= 0)
632 		*result = le32_to_cpu(cqe.result);
633 	return ret;
634 }
635 
636 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
637 {
638 	struct nvme_command c = { };
639 	int error;
640 
641 	c.common.opcode = nvme_admin_get_log_page,
642 	c.common.nsid = cpu_to_le32(0xFFFFFFFF),
643 	c.common.cdw10[0] = cpu_to_le32(
644 			(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
645 			 NVME_LOG_SMART),
646 
647 	*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
648 	if (!*log)
649 		return -ENOMEM;
650 
651 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
652 			sizeof(struct nvme_smart_log));
653 	if (error)
654 		kfree(*log);
655 	return error;
656 }
657 
658 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
659 {
660 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
661 	u32 result;
662 	int status, nr_io_queues;
663 
664 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
665 			&result);
666 	if (status < 0)
667 		return status;
668 
669 	/*
670 	 * Degraded controllers might return an error when setting the queue
671 	 * count.  We still want to be able to bring them online and offer
672 	 * access to the admin queue, as that might be only way to fix them up.
673 	 */
674 	if (status > 0) {
675 		dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
676 		*count = 0;
677 	} else {
678 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
679 		*count = min(*count, nr_io_queues);
680 	}
681 
682 	return 0;
683 }
684 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
685 
686 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
687 {
688 	struct nvme_user_io io;
689 	struct nvme_command c;
690 	unsigned length, meta_len;
691 	void __user *metadata;
692 
693 	if (copy_from_user(&io, uio, sizeof(io)))
694 		return -EFAULT;
695 	if (io.flags)
696 		return -EINVAL;
697 
698 	switch (io.opcode) {
699 	case nvme_cmd_write:
700 	case nvme_cmd_read:
701 	case nvme_cmd_compare:
702 		break;
703 	default:
704 		return -EINVAL;
705 	}
706 
707 	length = (io.nblocks + 1) << ns->lba_shift;
708 	meta_len = (io.nblocks + 1) * ns->ms;
709 	metadata = (void __user *)(uintptr_t)io.metadata;
710 
711 	if (ns->ext) {
712 		length += meta_len;
713 		meta_len = 0;
714 	} else if (meta_len) {
715 		if ((io.metadata & 3) || !io.metadata)
716 			return -EINVAL;
717 	}
718 
719 	memset(&c, 0, sizeof(c));
720 	c.rw.opcode = io.opcode;
721 	c.rw.flags = io.flags;
722 	c.rw.nsid = cpu_to_le32(ns->ns_id);
723 	c.rw.slba = cpu_to_le64(io.slba);
724 	c.rw.length = cpu_to_le16(io.nblocks);
725 	c.rw.control = cpu_to_le16(io.control);
726 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
727 	c.rw.reftag = cpu_to_le32(io.reftag);
728 	c.rw.apptag = cpu_to_le16(io.apptag);
729 	c.rw.appmask = cpu_to_le16(io.appmask);
730 
731 	return __nvme_submit_user_cmd(ns->queue, &c,
732 			(void __user *)(uintptr_t)io.addr, length,
733 			metadata, meta_len, io.slba, NULL, 0);
734 }
735 
736 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
737 			struct nvme_passthru_cmd __user *ucmd)
738 {
739 	struct nvme_passthru_cmd cmd;
740 	struct nvme_command c;
741 	unsigned timeout = 0;
742 	int status;
743 
744 	if (!capable(CAP_SYS_ADMIN))
745 		return -EACCES;
746 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
747 		return -EFAULT;
748 	if (cmd.flags)
749 		return -EINVAL;
750 
751 	memset(&c, 0, sizeof(c));
752 	c.common.opcode = cmd.opcode;
753 	c.common.flags = cmd.flags;
754 	c.common.nsid = cpu_to_le32(cmd.nsid);
755 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
756 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
757 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
758 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
759 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
760 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
761 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
762 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
763 
764 	if (cmd.timeout_ms)
765 		timeout = msecs_to_jiffies(cmd.timeout_ms);
766 
767 	status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
768 			(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
769 			&cmd.result, timeout);
770 	if (status >= 0) {
771 		if (put_user(cmd.result, &ucmd->result))
772 			return -EFAULT;
773 	}
774 
775 	return status;
776 }
777 
778 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
779 		unsigned int cmd, unsigned long arg)
780 {
781 	struct nvme_ns *ns = bdev->bd_disk->private_data;
782 
783 	switch (cmd) {
784 	case NVME_IOCTL_ID:
785 		force_successful_syscall_return();
786 		return ns->ns_id;
787 	case NVME_IOCTL_ADMIN_CMD:
788 		return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
789 	case NVME_IOCTL_IO_CMD:
790 		return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
791 	case NVME_IOCTL_SUBMIT_IO:
792 		return nvme_submit_io(ns, (void __user *)arg);
793 #ifdef CONFIG_BLK_DEV_NVME_SCSI
794 	case SG_GET_VERSION_NUM:
795 		return nvme_sg_get_version_num((void __user *)arg);
796 	case SG_IO:
797 		return nvme_sg_io(ns, (void __user *)arg);
798 #endif
799 	default:
800 		return -ENOTTY;
801 	}
802 }
803 
804 #ifdef CONFIG_COMPAT
805 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
806 			unsigned int cmd, unsigned long arg)
807 {
808 	switch (cmd) {
809 	case SG_IO:
810 		return -ENOIOCTLCMD;
811 	}
812 	return nvme_ioctl(bdev, mode, cmd, arg);
813 }
814 #else
815 #define nvme_compat_ioctl	NULL
816 #endif
817 
818 static int nvme_open(struct block_device *bdev, fmode_t mode)
819 {
820 	return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
821 }
822 
823 static void nvme_release(struct gendisk *disk, fmode_t mode)
824 {
825 	struct nvme_ns *ns = disk->private_data;
826 
827 	module_put(ns->ctrl->ops->module);
828 	nvme_put_ns(ns);
829 }
830 
831 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
832 {
833 	/* some standard values */
834 	geo->heads = 1 << 6;
835 	geo->sectors = 1 << 5;
836 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
837 	return 0;
838 }
839 
840 #ifdef CONFIG_BLK_DEV_INTEGRITY
841 static void nvme_init_integrity(struct nvme_ns *ns)
842 {
843 	struct blk_integrity integrity;
844 
845 	memset(&integrity, 0, sizeof(integrity));
846 	switch (ns->pi_type) {
847 	case NVME_NS_DPS_PI_TYPE3:
848 		integrity.profile = &t10_pi_type3_crc;
849 		integrity.tag_size = sizeof(u16) + sizeof(u32);
850 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
851 		break;
852 	case NVME_NS_DPS_PI_TYPE1:
853 	case NVME_NS_DPS_PI_TYPE2:
854 		integrity.profile = &t10_pi_type1_crc;
855 		integrity.tag_size = sizeof(u16);
856 		integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
857 		break;
858 	default:
859 		integrity.profile = NULL;
860 		break;
861 	}
862 	integrity.tuple_size = ns->ms;
863 	blk_integrity_register(ns->disk, &integrity);
864 	blk_queue_max_integrity_segments(ns->queue, 1);
865 }
866 #else
867 static void nvme_init_integrity(struct nvme_ns *ns)
868 {
869 }
870 #endif /* CONFIG_BLK_DEV_INTEGRITY */
871 
872 static void nvme_config_discard(struct nvme_ns *ns)
873 {
874 	struct nvme_ctrl *ctrl = ns->ctrl;
875 	u32 logical_block_size = queue_logical_block_size(ns->queue);
876 
877 	if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
878 		ns->queue->limits.discard_zeroes_data = 1;
879 	else
880 		ns->queue->limits.discard_zeroes_data = 0;
881 
882 	ns->queue->limits.discard_alignment = logical_block_size;
883 	ns->queue->limits.discard_granularity = logical_block_size;
884 	blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
885 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
886 }
887 
888 static int nvme_revalidate_disk(struct gendisk *disk)
889 {
890 	struct nvme_ns *ns = disk->private_data;
891 	struct nvme_id_ns *id;
892 	u8 lbaf, pi_type;
893 	u16 old_ms;
894 	unsigned short bs;
895 
896 	if (test_bit(NVME_NS_DEAD, &ns->flags)) {
897 		set_capacity(disk, 0);
898 		return -ENODEV;
899 	}
900 	if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
901 		dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
902 				__func__);
903 		return -ENODEV;
904 	}
905 	if (id->ncap == 0) {
906 		kfree(id);
907 		return -ENODEV;
908 	}
909 
910 	if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
911 		if (nvme_nvm_register(ns->queue, disk->disk_name)) {
912 			dev_warn(disk_to_dev(ns->disk),
913 				"%s: LightNVM init failure\n", __func__);
914 			kfree(id);
915 			return -ENODEV;
916 		}
917 		ns->type = NVME_NS_LIGHTNVM;
918 	}
919 
920 	if (ns->ctrl->vs >= NVME_VS(1, 1))
921 		memcpy(ns->eui, id->eui64, sizeof(ns->eui));
922 	if (ns->ctrl->vs >= NVME_VS(1, 2))
923 		memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
924 
925 	old_ms = ns->ms;
926 	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
927 	ns->lba_shift = id->lbaf[lbaf].ds;
928 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
929 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
930 
931 	/*
932 	 * If identify namespace failed, use default 512 byte block size so
933 	 * block layer can use before failing read/write for 0 capacity.
934 	 */
935 	if (ns->lba_shift == 0)
936 		ns->lba_shift = 9;
937 	bs = 1 << ns->lba_shift;
938 	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
939 	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
940 					id->dps & NVME_NS_DPS_PI_MASK : 0;
941 
942 	blk_mq_freeze_queue(disk->queue);
943 	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
944 				ns->ms != old_ms ||
945 				bs != queue_logical_block_size(disk->queue) ||
946 				(ns->ms && ns->ext)))
947 		blk_integrity_unregister(disk);
948 
949 	ns->pi_type = pi_type;
950 	blk_queue_logical_block_size(ns->queue, bs);
951 
952 	if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
953 		nvme_init_integrity(ns);
954 	if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
955 		set_capacity(disk, 0);
956 	else
957 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
958 
959 	if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
960 		nvme_config_discard(ns);
961 	blk_mq_unfreeze_queue(disk->queue);
962 
963 	kfree(id);
964 	return 0;
965 }
966 
967 static char nvme_pr_type(enum pr_type type)
968 {
969 	switch (type) {
970 	case PR_WRITE_EXCLUSIVE:
971 		return 1;
972 	case PR_EXCLUSIVE_ACCESS:
973 		return 2;
974 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
975 		return 3;
976 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
977 		return 4;
978 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
979 		return 5;
980 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
981 		return 6;
982 	default:
983 		return 0;
984 	}
985 };
986 
987 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
988 				u64 key, u64 sa_key, u8 op)
989 {
990 	struct nvme_ns *ns = bdev->bd_disk->private_data;
991 	struct nvme_command c;
992 	u8 data[16] = { 0, };
993 
994 	put_unaligned_le64(key, &data[0]);
995 	put_unaligned_le64(sa_key, &data[8]);
996 
997 	memset(&c, 0, sizeof(c));
998 	c.common.opcode = op;
999 	c.common.nsid = cpu_to_le32(ns->ns_id);
1000 	c.common.cdw10[0] = cpu_to_le32(cdw10);
1001 
1002 	return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1003 }
1004 
1005 static int nvme_pr_register(struct block_device *bdev, u64 old,
1006 		u64 new, unsigned flags)
1007 {
1008 	u32 cdw10;
1009 
1010 	if (flags & ~PR_FL_IGNORE_KEY)
1011 		return -EOPNOTSUPP;
1012 
1013 	cdw10 = old ? 2 : 0;
1014 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1015 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1016 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1017 }
1018 
1019 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1020 		enum pr_type type, unsigned flags)
1021 {
1022 	u32 cdw10;
1023 
1024 	if (flags & ~PR_FL_IGNORE_KEY)
1025 		return -EOPNOTSUPP;
1026 
1027 	cdw10 = nvme_pr_type(type) << 8;
1028 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1029 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1030 }
1031 
1032 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1033 		enum pr_type type, bool abort)
1034 {
1035 	u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1036 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1037 }
1038 
1039 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1040 {
1041 	u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1042 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1043 }
1044 
1045 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1046 {
1047 	u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1048 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1049 }
1050 
1051 static const struct pr_ops nvme_pr_ops = {
1052 	.pr_register	= nvme_pr_register,
1053 	.pr_reserve	= nvme_pr_reserve,
1054 	.pr_release	= nvme_pr_release,
1055 	.pr_preempt	= nvme_pr_preempt,
1056 	.pr_clear	= nvme_pr_clear,
1057 };
1058 
1059 static const struct block_device_operations nvme_fops = {
1060 	.owner		= THIS_MODULE,
1061 	.ioctl		= nvme_ioctl,
1062 	.compat_ioctl	= nvme_compat_ioctl,
1063 	.open		= nvme_open,
1064 	.release	= nvme_release,
1065 	.getgeo		= nvme_getgeo,
1066 	.revalidate_disk= nvme_revalidate_disk,
1067 	.pr_ops		= &nvme_pr_ops,
1068 };
1069 
1070 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1071 {
1072 	unsigned long timeout =
1073 		((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1074 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1075 	int ret;
1076 
1077 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1078 		if ((csts & NVME_CSTS_RDY) == bit)
1079 			break;
1080 
1081 		msleep(100);
1082 		if (fatal_signal_pending(current))
1083 			return -EINTR;
1084 		if (time_after(jiffies, timeout)) {
1085 			dev_err(ctrl->device,
1086 				"Device not ready; aborting %s\n", enabled ?
1087 						"initialisation" : "reset");
1088 			return -ENODEV;
1089 		}
1090 	}
1091 
1092 	return ret;
1093 }
1094 
1095 /*
1096  * If the device has been passed off to us in an enabled state, just clear
1097  * the enabled bit.  The spec says we should set the 'shutdown notification
1098  * bits', but doing so may cause the device to complete commands to the
1099  * admin queue ... and we don't know what memory that might be pointing at!
1100  */
1101 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1102 {
1103 	int ret;
1104 
1105 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1106 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1107 
1108 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1109 	if (ret)
1110 		return ret;
1111 
1112 	/* Checking for ctrl->tagset is a trick to avoid sleeping on module
1113 	 * load, since we only need the quirk on reset_controller. Notice
1114 	 * that the HGST device needs this delay only in firmware activation
1115 	 * procedure; unfortunately we have no (easy) way to verify this.
1116 	 */
1117 	if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset)
1118 		msleep(NVME_QUIRK_DELAY_AMOUNT);
1119 
1120 	return nvme_wait_ready(ctrl, cap, false);
1121 }
1122 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1123 
1124 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1125 {
1126 	/*
1127 	 * Default to a 4K page size, with the intention to update this
1128 	 * path in the future to accomodate architectures with differing
1129 	 * kernel and IO page sizes.
1130 	 */
1131 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1132 	int ret;
1133 
1134 	if (page_shift < dev_page_min) {
1135 		dev_err(ctrl->device,
1136 			"Minimum device page size %u too large for host (%u)\n",
1137 			1 << dev_page_min, 1 << page_shift);
1138 		return -ENODEV;
1139 	}
1140 
1141 	ctrl->page_size = 1 << page_shift;
1142 
1143 	ctrl->ctrl_config = NVME_CC_CSS_NVM;
1144 	ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1145 	ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1146 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1147 	ctrl->ctrl_config |= NVME_CC_ENABLE;
1148 
1149 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1150 	if (ret)
1151 		return ret;
1152 	return nvme_wait_ready(ctrl, cap, true);
1153 }
1154 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1155 
1156 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1157 {
1158 	unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1159 	u32 csts;
1160 	int ret;
1161 
1162 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1163 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1164 
1165 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1166 	if (ret)
1167 		return ret;
1168 
1169 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1170 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1171 			break;
1172 
1173 		msleep(100);
1174 		if (fatal_signal_pending(current))
1175 			return -EINTR;
1176 		if (time_after(jiffies, timeout)) {
1177 			dev_err(ctrl->device,
1178 				"Device shutdown incomplete; abort shutdown\n");
1179 			return -ENODEV;
1180 		}
1181 	}
1182 
1183 	return ret;
1184 }
1185 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1186 
1187 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1188 		struct request_queue *q)
1189 {
1190 	bool vwc = false;
1191 
1192 	if (ctrl->max_hw_sectors) {
1193 		u32 max_segments =
1194 			(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1195 
1196 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1197 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1198 	}
1199 	if (ctrl->stripe_size)
1200 		blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1201 	blk_queue_virt_boundary(q, ctrl->page_size - 1);
1202 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1203 		vwc = true;
1204 	blk_queue_write_cache(q, vwc, vwc);
1205 }
1206 
1207 /*
1208  * Initialize the cached copies of the Identify data and various controller
1209  * register in our nvme_ctrl structure.  This should be called as soon as
1210  * the admin queue is fully up and running.
1211  */
1212 int nvme_init_identify(struct nvme_ctrl *ctrl)
1213 {
1214 	struct nvme_id_ctrl *id;
1215 	u64 cap;
1216 	int ret, page_shift;
1217 	u32 max_hw_sectors;
1218 
1219 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1220 	if (ret) {
1221 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1222 		return ret;
1223 	}
1224 
1225 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1226 	if (ret) {
1227 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1228 		return ret;
1229 	}
1230 	page_shift = NVME_CAP_MPSMIN(cap) + 12;
1231 
1232 	if (ctrl->vs >= NVME_VS(1, 1))
1233 		ctrl->subsystem = NVME_CAP_NSSRC(cap);
1234 
1235 	ret = nvme_identify_ctrl(ctrl, &id);
1236 	if (ret) {
1237 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1238 		return -EIO;
1239 	}
1240 
1241 	ctrl->vid = le16_to_cpu(id->vid);
1242 	ctrl->oncs = le16_to_cpup(&id->oncs);
1243 	atomic_set(&ctrl->abort_limit, id->acl + 1);
1244 	ctrl->vwc = id->vwc;
1245 	ctrl->cntlid = le16_to_cpup(&id->cntlid);
1246 	memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1247 	memcpy(ctrl->model, id->mn, sizeof(id->mn));
1248 	memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1249 	if (id->mdts)
1250 		max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1251 	else
1252 		max_hw_sectors = UINT_MAX;
1253 	ctrl->max_hw_sectors =
1254 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1255 
1256 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1257 		unsigned int max_hw_sectors;
1258 
1259 		ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1260 		max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1261 		if (ctrl->max_hw_sectors) {
1262 			ctrl->max_hw_sectors = min(max_hw_sectors,
1263 							ctrl->max_hw_sectors);
1264 		} else {
1265 			ctrl->max_hw_sectors = max_hw_sectors;
1266 		}
1267 	}
1268 
1269 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
1270 	ctrl->sgls = le32_to_cpu(id->sgls);
1271 	ctrl->kas = le16_to_cpu(id->kas);
1272 
1273 	if (ctrl->ops->is_fabrics) {
1274 		ctrl->icdoff = le16_to_cpu(id->icdoff);
1275 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1276 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1277 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1278 
1279 		/*
1280 		 * In fabrics we need to verify the cntlid matches the
1281 		 * admin connect
1282 		 */
1283 		if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1284 			ret = -EINVAL;
1285 
1286 		if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1287 			dev_err(ctrl->dev,
1288 				"keep-alive support is mandatory for fabrics\n");
1289 			ret = -EINVAL;
1290 		}
1291 	} else {
1292 		ctrl->cntlid = le16_to_cpu(id->cntlid);
1293 	}
1294 
1295 	kfree(id);
1296 	return ret;
1297 }
1298 EXPORT_SYMBOL_GPL(nvme_init_identify);
1299 
1300 static int nvme_dev_open(struct inode *inode, struct file *file)
1301 {
1302 	struct nvme_ctrl *ctrl;
1303 	int instance = iminor(inode);
1304 	int ret = -ENODEV;
1305 
1306 	spin_lock(&dev_list_lock);
1307 	list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1308 		if (ctrl->instance != instance)
1309 			continue;
1310 
1311 		if (!ctrl->admin_q) {
1312 			ret = -EWOULDBLOCK;
1313 			break;
1314 		}
1315 		if (!kref_get_unless_zero(&ctrl->kref))
1316 			break;
1317 		file->private_data = ctrl;
1318 		ret = 0;
1319 		break;
1320 	}
1321 	spin_unlock(&dev_list_lock);
1322 
1323 	return ret;
1324 }
1325 
1326 static int nvme_dev_release(struct inode *inode, struct file *file)
1327 {
1328 	nvme_put_ctrl(file->private_data);
1329 	return 0;
1330 }
1331 
1332 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1333 {
1334 	struct nvme_ns *ns;
1335 	int ret;
1336 
1337 	mutex_lock(&ctrl->namespaces_mutex);
1338 	if (list_empty(&ctrl->namespaces)) {
1339 		ret = -ENOTTY;
1340 		goto out_unlock;
1341 	}
1342 
1343 	ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1344 	if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1345 		dev_warn(ctrl->device,
1346 			"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1347 		ret = -EINVAL;
1348 		goto out_unlock;
1349 	}
1350 
1351 	dev_warn(ctrl->device,
1352 		"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1353 	kref_get(&ns->kref);
1354 	mutex_unlock(&ctrl->namespaces_mutex);
1355 
1356 	ret = nvme_user_cmd(ctrl, ns, argp);
1357 	nvme_put_ns(ns);
1358 	return ret;
1359 
1360 out_unlock:
1361 	mutex_unlock(&ctrl->namespaces_mutex);
1362 	return ret;
1363 }
1364 
1365 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1366 		unsigned long arg)
1367 {
1368 	struct nvme_ctrl *ctrl = file->private_data;
1369 	void __user *argp = (void __user *)arg;
1370 
1371 	switch (cmd) {
1372 	case NVME_IOCTL_ADMIN_CMD:
1373 		return nvme_user_cmd(ctrl, NULL, argp);
1374 	case NVME_IOCTL_IO_CMD:
1375 		return nvme_dev_user_cmd(ctrl, argp);
1376 	case NVME_IOCTL_RESET:
1377 		dev_warn(ctrl->device, "resetting controller\n");
1378 		return ctrl->ops->reset_ctrl(ctrl);
1379 	case NVME_IOCTL_SUBSYS_RESET:
1380 		return nvme_reset_subsystem(ctrl);
1381 	case NVME_IOCTL_RESCAN:
1382 		nvme_queue_scan(ctrl);
1383 		return 0;
1384 	default:
1385 		return -ENOTTY;
1386 	}
1387 }
1388 
1389 static const struct file_operations nvme_dev_fops = {
1390 	.owner		= THIS_MODULE,
1391 	.open		= nvme_dev_open,
1392 	.release	= nvme_dev_release,
1393 	.unlocked_ioctl	= nvme_dev_ioctl,
1394 	.compat_ioctl	= nvme_dev_ioctl,
1395 };
1396 
1397 static ssize_t nvme_sysfs_reset(struct device *dev,
1398 				struct device_attribute *attr, const char *buf,
1399 				size_t count)
1400 {
1401 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1402 	int ret;
1403 
1404 	ret = ctrl->ops->reset_ctrl(ctrl);
1405 	if (ret < 0)
1406 		return ret;
1407 	return count;
1408 }
1409 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1410 
1411 static ssize_t nvme_sysfs_rescan(struct device *dev,
1412 				struct device_attribute *attr, const char *buf,
1413 				size_t count)
1414 {
1415 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1416 
1417 	nvme_queue_scan(ctrl);
1418 	return count;
1419 }
1420 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1421 
1422 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1423 								char *buf)
1424 {
1425 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1426 	struct nvme_ctrl *ctrl = ns->ctrl;
1427 	int serial_len = sizeof(ctrl->serial);
1428 	int model_len = sizeof(ctrl->model);
1429 
1430 	if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1431 		return sprintf(buf, "eui.%16phN\n", ns->uuid);
1432 
1433 	if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1434 		return sprintf(buf, "eui.%8phN\n", ns->eui);
1435 
1436 	while (ctrl->serial[serial_len - 1] == ' ')
1437 		serial_len--;
1438 	while (ctrl->model[model_len - 1] == ' ')
1439 		model_len--;
1440 
1441 	return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1442 		serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1443 }
1444 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1445 
1446 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1447 								char *buf)
1448 {
1449 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1450 	return sprintf(buf, "%pU\n", ns->uuid);
1451 }
1452 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1453 
1454 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1455 								char *buf)
1456 {
1457 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1458 	return sprintf(buf, "%8phd\n", ns->eui);
1459 }
1460 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1461 
1462 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1463 								char *buf)
1464 {
1465 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1466 	return sprintf(buf, "%d\n", ns->ns_id);
1467 }
1468 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1469 
1470 static struct attribute *nvme_ns_attrs[] = {
1471 	&dev_attr_wwid.attr,
1472 	&dev_attr_uuid.attr,
1473 	&dev_attr_eui.attr,
1474 	&dev_attr_nsid.attr,
1475 	NULL,
1476 };
1477 
1478 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1479 		struct attribute *a, int n)
1480 {
1481 	struct device *dev = container_of(kobj, struct device, kobj);
1482 	struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1483 
1484 	if (a == &dev_attr_uuid.attr) {
1485 		if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1486 			return 0;
1487 	}
1488 	if (a == &dev_attr_eui.attr) {
1489 		if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1490 			return 0;
1491 	}
1492 	return a->mode;
1493 }
1494 
1495 static const struct attribute_group nvme_ns_attr_group = {
1496 	.attrs		= nvme_ns_attrs,
1497 	.is_visible	= nvme_ns_attrs_are_visible,
1498 };
1499 
1500 #define nvme_show_str_function(field)						\
1501 static ssize_t  field##_show(struct device *dev,				\
1502 			    struct device_attribute *attr, char *buf)		\
1503 {										\
1504         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1505         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);	\
1506 }										\
1507 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1508 
1509 #define nvme_show_int_function(field)						\
1510 static ssize_t  field##_show(struct device *dev,				\
1511 			    struct device_attribute *attr, char *buf)		\
1512 {										\
1513         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
1514         return sprintf(buf, "%d\n", ctrl->field);	\
1515 }										\
1516 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1517 
1518 nvme_show_str_function(model);
1519 nvme_show_str_function(serial);
1520 nvme_show_str_function(firmware_rev);
1521 nvme_show_int_function(cntlid);
1522 
1523 static ssize_t nvme_sysfs_delete(struct device *dev,
1524 				struct device_attribute *attr, const char *buf,
1525 				size_t count)
1526 {
1527 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1528 
1529 	if (device_remove_file_self(dev, attr))
1530 		ctrl->ops->delete_ctrl(ctrl);
1531 	return count;
1532 }
1533 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1534 
1535 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1536 					 struct device_attribute *attr,
1537 					 char *buf)
1538 {
1539 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1540 
1541 	return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1542 }
1543 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1544 
1545 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1546 					 struct device_attribute *attr,
1547 					 char *buf)
1548 {
1549 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1550 
1551 	return snprintf(buf, PAGE_SIZE, "%s\n",
1552 			ctrl->ops->get_subsysnqn(ctrl));
1553 }
1554 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1555 
1556 static ssize_t nvme_sysfs_show_address(struct device *dev,
1557 					 struct device_attribute *attr,
1558 					 char *buf)
1559 {
1560 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1561 
1562 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1563 }
1564 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1565 
1566 static struct attribute *nvme_dev_attrs[] = {
1567 	&dev_attr_reset_controller.attr,
1568 	&dev_attr_rescan_controller.attr,
1569 	&dev_attr_model.attr,
1570 	&dev_attr_serial.attr,
1571 	&dev_attr_firmware_rev.attr,
1572 	&dev_attr_cntlid.attr,
1573 	&dev_attr_delete_controller.attr,
1574 	&dev_attr_transport.attr,
1575 	&dev_attr_subsysnqn.attr,
1576 	&dev_attr_address.attr,
1577 	NULL
1578 };
1579 
1580 #define CHECK_ATTR(ctrl, a, name)		\
1581 	if ((a) == &dev_attr_##name.attr &&	\
1582 	    !(ctrl)->ops->get_##name)		\
1583 		return 0
1584 
1585 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1586 		struct attribute *a, int n)
1587 {
1588 	struct device *dev = container_of(kobj, struct device, kobj);
1589 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1590 
1591 	if (a == &dev_attr_delete_controller.attr) {
1592 		if (!ctrl->ops->delete_ctrl)
1593 			return 0;
1594 	}
1595 
1596 	CHECK_ATTR(ctrl, a, subsysnqn);
1597 	CHECK_ATTR(ctrl, a, address);
1598 
1599 	return a->mode;
1600 }
1601 
1602 static struct attribute_group nvme_dev_attrs_group = {
1603 	.attrs		= nvme_dev_attrs,
1604 	.is_visible	= nvme_dev_attrs_are_visible,
1605 };
1606 
1607 static const struct attribute_group *nvme_dev_attr_groups[] = {
1608 	&nvme_dev_attrs_group,
1609 	NULL,
1610 };
1611 
1612 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1613 {
1614 	struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1615 	struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1616 
1617 	return nsa->ns_id - nsb->ns_id;
1618 }
1619 
1620 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1621 {
1622 	struct nvme_ns *ns, *ret = NULL;
1623 
1624 	mutex_lock(&ctrl->namespaces_mutex);
1625 	list_for_each_entry(ns, &ctrl->namespaces, list) {
1626 		if (ns->ns_id == nsid) {
1627 			kref_get(&ns->kref);
1628 			ret = ns;
1629 			break;
1630 		}
1631 		if (ns->ns_id > nsid)
1632 			break;
1633 	}
1634 	mutex_unlock(&ctrl->namespaces_mutex);
1635 	return ret;
1636 }
1637 
1638 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1639 {
1640 	struct nvme_ns *ns;
1641 	struct gendisk *disk;
1642 	int node = dev_to_node(ctrl->dev);
1643 
1644 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1645 	if (!ns)
1646 		return;
1647 
1648 	ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1649 	if (ns->instance < 0)
1650 		goto out_free_ns;
1651 
1652 	ns->queue = blk_mq_init_queue(ctrl->tagset);
1653 	if (IS_ERR(ns->queue))
1654 		goto out_release_instance;
1655 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1656 	ns->queue->queuedata = ns;
1657 	ns->ctrl = ctrl;
1658 
1659 	disk = alloc_disk_node(0, node);
1660 	if (!disk)
1661 		goto out_free_queue;
1662 
1663 	kref_init(&ns->kref);
1664 	ns->ns_id = nsid;
1665 	ns->disk = disk;
1666 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1667 
1668 
1669 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1670 	nvme_set_queue_limits(ctrl, ns->queue);
1671 
1672 	disk->fops = &nvme_fops;
1673 	disk->private_data = ns;
1674 	disk->queue = ns->queue;
1675 	disk->flags = GENHD_FL_EXT_DEVT;
1676 	sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1677 
1678 	if (nvme_revalidate_disk(ns->disk))
1679 		goto out_free_disk;
1680 
1681 	mutex_lock(&ctrl->namespaces_mutex);
1682 	list_add_tail(&ns->list, &ctrl->namespaces);
1683 	mutex_unlock(&ctrl->namespaces_mutex);
1684 
1685 	kref_get(&ctrl->kref);
1686 	if (ns->type == NVME_NS_LIGHTNVM)
1687 		return;
1688 
1689 	device_add_disk(ctrl->device, ns->disk);
1690 	if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1691 					&nvme_ns_attr_group))
1692 		pr_warn("%s: failed to create sysfs group for identification\n",
1693 			ns->disk->disk_name);
1694 	return;
1695  out_free_disk:
1696 	kfree(disk);
1697  out_free_queue:
1698 	blk_cleanup_queue(ns->queue);
1699  out_release_instance:
1700 	ida_simple_remove(&ctrl->ns_ida, ns->instance);
1701  out_free_ns:
1702 	kfree(ns);
1703 }
1704 
1705 static void nvme_ns_remove(struct nvme_ns *ns)
1706 {
1707 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1708 		return;
1709 
1710 	if (ns->disk->flags & GENHD_FL_UP) {
1711 		if (blk_get_integrity(ns->disk))
1712 			blk_integrity_unregister(ns->disk);
1713 		sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1714 					&nvme_ns_attr_group);
1715 		del_gendisk(ns->disk);
1716 		blk_mq_abort_requeue_list(ns->queue);
1717 		blk_cleanup_queue(ns->queue);
1718 	}
1719 
1720 	mutex_lock(&ns->ctrl->namespaces_mutex);
1721 	list_del_init(&ns->list);
1722 	mutex_unlock(&ns->ctrl->namespaces_mutex);
1723 
1724 	nvme_put_ns(ns);
1725 }
1726 
1727 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1728 {
1729 	struct nvme_ns *ns;
1730 
1731 	ns = nvme_find_get_ns(ctrl, nsid);
1732 	if (ns) {
1733 		if (revalidate_disk(ns->disk))
1734 			nvme_ns_remove(ns);
1735 		nvme_put_ns(ns);
1736 	} else
1737 		nvme_alloc_ns(ctrl, nsid);
1738 }
1739 
1740 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1741 					unsigned nsid)
1742 {
1743 	struct nvme_ns *ns, *next;
1744 
1745 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1746 		if (ns->ns_id > nsid)
1747 			nvme_ns_remove(ns);
1748 	}
1749 }
1750 
1751 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1752 {
1753 	struct nvme_ns *ns;
1754 	__le32 *ns_list;
1755 	unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1756 	int ret = 0;
1757 
1758 	ns_list = kzalloc(0x1000, GFP_KERNEL);
1759 	if (!ns_list)
1760 		return -ENOMEM;
1761 
1762 	for (i = 0; i < num_lists; i++) {
1763 		ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1764 		if (ret)
1765 			goto free;
1766 
1767 		for (j = 0; j < min(nn, 1024U); j++) {
1768 			nsid = le32_to_cpu(ns_list[j]);
1769 			if (!nsid)
1770 				goto out;
1771 
1772 			nvme_validate_ns(ctrl, nsid);
1773 
1774 			while (++prev < nsid) {
1775 				ns = nvme_find_get_ns(ctrl, prev);
1776 				if (ns) {
1777 					nvme_ns_remove(ns);
1778 					nvme_put_ns(ns);
1779 				}
1780 			}
1781 		}
1782 		nn -= j;
1783 	}
1784  out:
1785 	nvme_remove_invalid_namespaces(ctrl, prev);
1786  free:
1787 	kfree(ns_list);
1788 	return ret;
1789 }
1790 
1791 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1792 {
1793 	unsigned i;
1794 
1795 	for (i = 1; i <= nn; i++)
1796 		nvme_validate_ns(ctrl, i);
1797 
1798 	nvme_remove_invalid_namespaces(ctrl, nn);
1799 }
1800 
1801 static void nvme_scan_work(struct work_struct *work)
1802 {
1803 	struct nvme_ctrl *ctrl =
1804 		container_of(work, struct nvme_ctrl, scan_work);
1805 	struct nvme_id_ctrl *id;
1806 	unsigned nn;
1807 
1808 	if (ctrl->state != NVME_CTRL_LIVE)
1809 		return;
1810 
1811 	if (nvme_identify_ctrl(ctrl, &id))
1812 		return;
1813 
1814 	nn = le32_to_cpu(id->nn);
1815 	if (ctrl->vs >= NVME_VS(1, 1) &&
1816 	    !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1817 		if (!nvme_scan_ns_list(ctrl, nn))
1818 			goto done;
1819 	}
1820 	nvme_scan_ns_sequential(ctrl, nn);
1821  done:
1822 	mutex_lock(&ctrl->namespaces_mutex);
1823 	list_sort(NULL, &ctrl->namespaces, ns_cmp);
1824 	mutex_unlock(&ctrl->namespaces_mutex);
1825 	kfree(id);
1826 
1827 	if (ctrl->ops->post_scan)
1828 		ctrl->ops->post_scan(ctrl);
1829 }
1830 
1831 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1832 {
1833 	/*
1834 	 * Do not queue new scan work when a controller is reset during
1835 	 * removal.
1836 	 */
1837 	if (ctrl->state == NVME_CTRL_LIVE)
1838 		schedule_work(&ctrl->scan_work);
1839 }
1840 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1841 
1842 /*
1843  * This function iterates the namespace list unlocked to allow recovery from
1844  * controller failure. It is up to the caller to ensure the namespace list is
1845  * not modified by scan work while this function is executing.
1846  */
1847 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1848 {
1849 	struct nvme_ns *ns, *next;
1850 
1851 	/*
1852 	 * The dead states indicates the controller was not gracefully
1853 	 * disconnected. In that case, we won't be able to flush any data while
1854 	 * removing the namespaces' disks; fail all the queues now to avoid
1855 	 * potentially having to clean up the failed sync later.
1856 	 */
1857 	if (ctrl->state == NVME_CTRL_DEAD)
1858 		nvme_kill_queues(ctrl);
1859 
1860 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1861 		nvme_ns_remove(ns);
1862 }
1863 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1864 
1865 static void nvme_async_event_work(struct work_struct *work)
1866 {
1867 	struct nvme_ctrl *ctrl =
1868 		container_of(work, struct nvme_ctrl, async_event_work);
1869 
1870 	spin_lock_irq(&ctrl->lock);
1871 	while (ctrl->event_limit > 0) {
1872 		int aer_idx = --ctrl->event_limit;
1873 
1874 		spin_unlock_irq(&ctrl->lock);
1875 		ctrl->ops->submit_async_event(ctrl, aer_idx);
1876 		spin_lock_irq(&ctrl->lock);
1877 	}
1878 	spin_unlock_irq(&ctrl->lock);
1879 }
1880 
1881 void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1882 		struct nvme_completion *cqe)
1883 {
1884 	u16 status = le16_to_cpu(cqe->status) >> 1;
1885 	u32 result = le32_to_cpu(cqe->result);
1886 
1887 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1888 		++ctrl->event_limit;
1889 		schedule_work(&ctrl->async_event_work);
1890 	}
1891 
1892 	if (status != NVME_SC_SUCCESS)
1893 		return;
1894 
1895 	switch (result & 0xff07) {
1896 	case NVME_AER_NOTICE_NS_CHANGED:
1897 		dev_info(ctrl->device, "rescanning\n");
1898 		nvme_queue_scan(ctrl);
1899 		break;
1900 	default:
1901 		dev_warn(ctrl->device, "async event result %08x\n", result);
1902 	}
1903 }
1904 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1905 
1906 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1907 {
1908 	ctrl->event_limit = NVME_NR_AERS;
1909 	schedule_work(&ctrl->async_event_work);
1910 }
1911 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1912 
1913 static DEFINE_IDA(nvme_instance_ida);
1914 
1915 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1916 {
1917 	int instance, error;
1918 
1919 	do {
1920 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1921 			return -ENODEV;
1922 
1923 		spin_lock(&dev_list_lock);
1924 		error = ida_get_new(&nvme_instance_ida, &instance);
1925 		spin_unlock(&dev_list_lock);
1926 	} while (error == -EAGAIN);
1927 
1928 	if (error)
1929 		return -ENODEV;
1930 
1931 	ctrl->instance = instance;
1932 	return 0;
1933 }
1934 
1935 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1936 {
1937 	spin_lock(&dev_list_lock);
1938 	ida_remove(&nvme_instance_ida, ctrl->instance);
1939 	spin_unlock(&dev_list_lock);
1940 }
1941 
1942 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1943 {
1944 	flush_work(&ctrl->async_event_work);
1945 	flush_work(&ctrl->scan_work);
1946 	nvme_remove_namespaces(ctrl);
1947 
1948 	device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1949 
1950 	spin_lock(&dev_list_lock);
1951 	list_del(&ctrl->node);
1952 	spin_unlock(&dev_list_lock);
1953 }
1954 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1955 
1956 static void nvme_free_ctrl(struct kref *kref)
1957 {
1958 	struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1959 
1960 	put_device(ctrl->device);
1961 	nvme_release_instance(ctrl);
1962 	ida_destroy(&ctrl->ns_ida);
1963 
1964 	ctrl->ops->free_ctrl(ctrl);
1965 }
1966 
1967 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1968 {
1969 	kref_put(&ctrl->kref, nvme_free_ctrl);
1970 }
1971 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1972 
1973 /*
1974  * Initialize a NVMe controller structures.  This needs to be called during
1975  * earliest initialization so that we have the initialized structured around
1976  * during probing.
1977  */
1978 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1979 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
1980 {
1981 	int ret;
1982 
1983 	ctrl->state = NVME_CTRL_NEW;
1984 	spin_lock_init(&ctrl->lock);
1985 	INIT_LIST_HEAD(&ctrl->namespaces);
1986 	mutex_init(&ctrl->namespaces_mutex);
1987 	kref_init(&ctrl->kref);
1988 	ctrl->dev = dev;
1989 	ctrl->ops = ops;
1990 	ctrl->quirks = quirks;
1991 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1992 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1993 
1994 	ret = nvme_set_instance(ctrl);
1995 	if (ret)
1996 		goto out;
1997 
1998 	ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1999 				MKDEV(nvme_char_major, ctrl->instance),
2000 				ctrl, nvme_dev_attr_groups,
2001 				"nvme%d", ctrl->instance);
2002 	if (IS_ERR(ctrl->device)) {
2003 		ret = PTR_ERR(ctrl->device);
2004 		goto out_release_instance;
2005 	}
2006 	get_device(ctrl->device);
2007 	ida_init(&ctrl->ns_ida);
2008 
2009 	spin_lock(&dev_list_lock);
2010 	list_add_tail(&ctrl->node, &nvme_ctrl_list);
2011 	spin_unlock(&dev_list_lock);
2012 
2013 	return 0;
2014 out_release_instance:
2015 	nvme_release_instance(ctrl);
2016 out:
2017 	return ret;
2018 }
2019 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2020 
2021 /**
2022  * nvme_kill_queues(): Ends all namespace queues
2023  * @ctrl: the dead controller that needs to end
2024  *
2025  * Call this function when the driver determines it is unable to get the
2026  * controller in a state capable of servicing IO.
2027  */
2028 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2029 {
2030 	struct nvme_ns *ns;
2031 
2032 	mutex_lock(&ctrl->namespaces_mutex);
2033 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2034 		/*
2035 		 * Revalidating a dead namespace sets capacity to 0. This will
2036 		 * end buffered writers dirtying pages that can't be synced.
2037 		 */
2038 		if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2039 			revalidate_disk(ns->disk);
2040 
2041 		blk_set_queue_dying(ns->queue);
2042 		blk_mq_abort_requeue_list(ns->queue);
2043 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2044 	}
2045 	mutex_unlock(&ctrl->namespaces_mutex);
2046 }
2047 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2048 
2049 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2050 {
2051 	struct nvme_ns *ns;
2052 
2053 	mutex_lock(&ctrl->namespaces_mutex);
2054 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2055 		spin_lock_irq(ns->queue->queue_lock);
2056 		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2057 		spin_unlock_irq(ns->queue->queue_lock);
2058 
2059 		blk_mq_cancel_requeue_work(ns->queue);
2060 		blk_mq_stop_hw_queues(ns->queue);
2061 	}
2062 	mutex_unlock(&ctrl->namespaces_mutex);
2063 }
2064 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2065 
2066 void nvme_start_queues(struct nvme_ctrl *ctrl)
2067 {
2068 	struct nvme_ns *ns;
2069 
2070 	mutex_lock(&ctrl->namespaces_mutex);
2071 	list_for_each_entry(ns, &ctrl->namespaces, list) {
2072 		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2073 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2074 		blk_mq_kick_requeue_list(ns->queue);
2075 	}
2076 	mutex_unlock(&ctrl->namespaces_mutex);
2077 }
2078 EXPORT_SYMBOL_GPL(nvme_start_queues);
2079 
2080 int __init nvme_core_init(void)
2081 {
2082 	int result;
2083 
2084 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2085 							&nvme_dev_fops);
2086 	if (result < 0)
2087 		return result;
2088 	else if (result > 0)
2089 		nvme_char_major = result;
2090 
2091 	nvme_class = class_create(THIS_MODULE, "nvme");
2092 	if (IS_ERR(nvme_class)) {
2093 		result = PTR_ERR(nvme_class);
2094 		goto unregister_chrdev;
2095 	}
2096 
2097 	return 0;
2098 
2099  unregister_chrdev:
2100 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2101 	return result;
2102 }
2103 
2104 void nvme_core_exit(void)
2105 {
2106 	class_destroy(nvme_class);
2107 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2108 }
2109 
2110 MODULE_LICENSE("GPL");
2111 MODULE_VERSION("1.0");
2112 module_init(nvme_core_init);
2113 module_exit(nvme_core_exit);
2114