1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NVM Express device driver 4 * Copyright (c) 2011-2014, Intel Corporation. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/blk-mq.h> 9 #include <linux/blk-integrity.h> 10 #include <linux/compat.h> 11 #include <linux/delay.h> 12 #include <linux/errno.h> 13 #include <linux/hdreg.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/slab.h> 18 #include <linux/types.h> 19 #include <linux/pr.h> 20 #include <linux/ptrace.h> 21 #include <linux/nvme_ioctl.h> 22 #include <linux/pm_qos.h> 23 #include <linux/ratelimit.h> 24 #include <asm/unaligned.h> 25 26 #include "nvme.h" 27 #include "fabrics.h" 28 #include <linux/nvme-auth.h> 29 30 #define CREATE_TRACE_POINTS 31 #include "trace.h" 32 33 #define NVME_MINORS (1U << MINORBITS) 34 35 struct nvme_ns_info { 36 struct nvme_ns_ids ids; 37 u32 nsid; 38 __le32 anagrpid; 39 bool is_shared; 40 bool is_readonly; 41 bool is_ready; 42 bool is_removed; 43 }; 44 45 unsigned int admin_timeout = 60; 46 module_param(admin_timeout, uint, 0644); 47 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); 48 EXPORT_SYMBOL_GPL(admin_timeout); 49 50 unsigned int nvme_io_timeout = 30; 51 module_param_named(io_timeout, nvme_io_timeout, uint, 0644); 52 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); 53 EXPORT_SYMBOL_GPL(nvme_io_timeout); 54 55 static unsigned char shutdown_timeout = 5; 56 module_param(shutdown_timeout, byte, 0644); 57 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); 58 59 static u8 nvme_max_retries = 5; 60 module_param_named(max_retries, nvme_max_retries, byte, 0644); 61 MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); 62 63 static unsigned long default_ps_max_latency_us = 100000; 64 module_param(default_ps_max_latency_us, ulong, 0644); 65 MODULE_PARM_DESC(default_ps_max_latency_us, 66 "max power saving latency for new devices; use PM QOS to change per device"); 67 68 static bool force_apst; 69 module_param(force_apst, bool, 0644); 70 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); 71 72 static unsigned long apst_primary_timeout_ms = 100; 73 module_param(apst_primary_timeout_ms, ulong, 0644); 74 MODULE_PARM_DESC(apst_primary_timeout_ms, 75 "primary APST timeout in ms"); 76 77 static unsigned long apst_secondary_timeout_ms = 2000; 78 module_param(apst_secondary_timeout_ms, ulong, 0644); 79 MODULE_PARM_DESC(apst_secondary_timeout_ms, 80 "secondary APST timeout in ms"); 81 82 static unsigned long apst_primary_latency_tol_us = 15000; 83 module_param(apst_primary_latency_tol_us, ulong, 0644); 84 MODULE_PARM_DESC(apst_primary_latency_tol_us, 85 "primary APST latency tolerance in us"); 86 87 static unsigned long apst_secondary_latency_tol_us = 100000; 88 module_param(apst_secondary_latency_tol_us, ulong, 0644); 89 MODULE_PARM_DESC(apst_secondary_latency_tol_us, 90 "secondary APST latency tolerance in us"); 91 92 /* 93 * nvme_wq - hosts nvme related works that are not reset or delete 94 * nvme_reset_wq - hosts nvme reset works 95 * nvme_delete_wq - hosts nvme delete works 96 * 97 * nvme_wq will host works such as scan, aen handling, fw activation, 98 * keep-alive, periodic reconnects etc. nvme_reset_wq 99 * runs reset works which also flush works hosted on nvme_wq for 100 * serialization purposes. nvme_delete_wq host controller deletion 101 * works which flush reset works for serialization. 102 */ 103 struct workqueue_struct *nvme_wq; 104 EXPORT_SYMBOL_GPL(nvme_wq); 105 106 struct workqueue_struct *nvme_reset_wq; 107 EXPORT_SYMBOL_GPL(nvme_reset_wq); 108 109 struct workqueue_struct *nvme_delete_wq; 110 EXPORT_SYMBOL_GPL(nvme_delete_wq); 111 112 static LIST_HEAD(nvme_subsystems); 113 static DEFINE_MUTEX(nvme_subsystems_lock); 114 115 static DEFINE_IDA(nvme_instance_ida); 116 static dev_t nvme_ctrl_base_chr_devt; 117 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); 118 static const struct class nvme_class = { 119 .name = "nvme", 120 .dev_uevent = nvme_class_uevent, 121 }; 122 123 static const struct class nvme_subsys_class = { 124 .name = "nvme-subsystem", 125 }; 126 127 static DEFINE_IDA(nvme_ns_chr_minor_ida); 128 static dev_t nvme_ns_chr_devt; 129 static const struct class nvme_ns_chr_class = { 130 .name = "nvme-generic", 131 }; 132 133 static void nvme_put_subsystem(struct nvme_subsystem *subsys); 134 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 135 unsigned nsid); 136 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 137 struct nvme_command *cmd); 138 139 void nvme_queue_scan(struct nvme_ctrl *ctrl) 140 { 141 /* 142 * Only new queue scan work when admin and IO queues are both alive 143 */ 144 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) 145 queue_work(nvme_wq, &ctrl->scan_work); 146 } 147 148 /* 149 * Use this function to proceed with scheduling reset_work for a controller 150 * that had previously been set to the resetting state. This is intended for 151 * code paths that can't be interrupted by other reset attempts. A hot removal 152 * may prevent this from succeeding. 153 */ 154 int nvme_try_sched_reset(struct nvme_ctrl *ctrl) 155 { 156 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) 157 return -EBUSY; 158 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 159 return -EBUSY; 160 return 0; 161 } 162 EXPORT_SYMBOL_GPL(nvme_try_sched_reset); 163 164 static void nvme_failfast_work(struct work_struct *work) 165 { 166 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 167 struct nvme_ctrl, failfast_work); 168 169 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) 170 return; 171 172 set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 173 dev_info(ctrl->device, "failfast expired\n"); 174 nvme_kick_requeue_lists(ctrl); 175 } 176 177 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) 178 { 179 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) 180 return; 181 182 schedule_delayed_work(&ctrl->failfast_work, 183 ctrl->opts->fast_io_fail_tmo * HZ); 184 } 185 186 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) 187 { 188 if (!ctrl->opts) 189 return; 190 191 cancel_delayed_work_sync(&ctrl->failfast_work); 192 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 193 } 194 195 196 int nvme_reset_ctrl(struct nvme_ctrl *ctrl) 197 { 198 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) 199 return -EBUSY; 200 if (!queue_work(nvme_reset_wq, &ctrl->reset_work)) 201 return -EBUSY; 202 return 0; 203 } 204 EXPORT_SYMBOL_GPL(nvme_reset_ctrl); 205 206 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) 207 { 208 int ret; 209 210 ret = nvme_reset_ctrl(ctrl); 211 if (!ret) { 212 flush_work(&ctrl->reset_work); 213 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) 214 ret = -ENETRESET; 215 } 216 217 return ret; 218 } 219 220 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) 221 { 222 dev_info(ctrl->device, 223 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); 224 225 flush_work(&ctrl->reset_work); 226 nvme_stop_ctrl(ctrl); 227 nvme_remove_namespaces(ctrl); 228 ctrl->ops->delete_ctrl(ctrl); 229 nvme_uninit_ctrl(ctrl); 230 } 231 232 static void nvme_delete_ctrl_work(struct work_struct *work) 233 { 234 struct nvme_ctrl *ctrl = 235 container_of(work, struct nvme_ctrl, delete_work); 236 237 nvme_do_delete_ctrl(ctrl); 238 } 239 240 int nvme_delete_ctrl(struct nvme_ctrl *ctrl) 241 { 242 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 243 return -EBUSY; 244 if (!queue_work(nvme_delete_wq, &ctrl->delete_work)) 245 return -EBUSY; 246 return 0; 247 } 248 EXPORT_SYMBOL_GPL(nvme_delete_ctrl); 249 250 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) 251 { 252 /* 253 * Keep a reference until nvme_do_delete_ctrl() complete, 254 * since ->delete_ctrl can free the controller. 255 */ 256 nvme_get_ctrl(ctrl); 257 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING)) 258 nvme_do_delete_ctrl(ctrl); 259 nvme_put_ctrl(ctrl); 260 } 261 262 static blk_status_t nvme_error_status(u16 status) 263 { 264 switch (status & 0x7ff) { 265 case NVME_SC_SUCCESS: 266 return BLK_STS_OK; 267 case NVME_SC_CAP_EXCEEDED: 268 return BLK_STS_NOSPC; 269 case NVME_SC_LBA_RANGE: 270 case NVME_SC_CMD_INTERRUPTED: 271 case NVME_SC_NS_NOT_READY: 272 return BLK_STS_TARGET; 273 case NVME_SC_BAD_ATTRIBUTES: 274 case NVME_SC_ONCS_NOT_SUPPORTED: 275 case NVME_SC_INVALID_OPCODE: 276 case NVME_SC_INVALID_FIELD: 277 case NVME_SC_INVALID_NS: 278 return BLK_STS_NOTSUPP; 279 case NVME_SC_WRITE_FAULT: 280 case NVME_SC_READ_ERROR: 281 case NVME_SC_UNWRITTEN_BLOCK: 282 case NVME_SC_ACCESS_DENIED: 283 case NVME_SC_READ_ONLY: 284 case NVME_SC_COMPARE_FAILED: 285 return BLK_STS_MEDIUM; 286 case NVME_SC_GUARD_CHECK: 287 case NVME_SC_APPTAG_CHECK: 288 case NVME_SC_REFTAG_CHECK: 289 case NVME_SC_INVALID_PI: 290 return BLK_STS_PROTECTION; 291 case NVME_SC_RESERVATION_CONFLICT: 292 return BLK_STS_RESV_CONFLICT; 293 case NVME_SC_HOST_PATH_ERROR: 294 return BLK_STS_TRANSPORT; 295 case NVME_SC_ZONE_TOO_MANY_ACTIVE: 296 return BLK_STS_ZONE_ACTIVE_RESOURCE; 297 case NVME_SC_ZONE_TOO_MANY_OPEN: 298 return BLK_STS_ZONE_OPEN_RESOURCE; 299 default: 300 return BLK_STS_IOERR; 301 } 302 } 303 304 static void nvme_retry_req(struct request *req) 305 { 306 unsigned long delay = 0; 307 u16 crd; 308 309 /* The mask and shift result must be <= 3 */ 310 crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; 311 if (crd) 312 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; 313 314 nvme_req(req)->retries++; 315 blk_mq_requeue_request(req, false); 316 blk_mq_delay_kick_requeue_list(req->q, delay); 317 } 318 319 static void nvme_log_error(struct request *req) 320 { 321 struct nvme_ns *ns = req->q->queuedata; 322 struct nvme_request *nr = nvme_req(req); 323 324 if (ns) { 325 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", 326 ns->disk ? ns->disk->disk_name : "?", 327 nvme_get_opcode_str(nr->cmd->common.opcode), 328 nr->cmd->common.opcode, 329 nvme_sect_to_lba(ns->head, blk_rq_pos(req)), 330 blk_rq_bytes(req) >> ns->head->lba_shift, 331 nvme_get_error_status_str(nr->status), 332 nr->status >> 8 & 7, /* Status Code Type */ 333 nr->status & 0xff, /* Status Code */ 334 nr->status & NVME_SC_MORE ? "MORE " : "", 335 nr->status & NVME_SC_DNR ? "DNR " : ""); 336 return; 337 } 338 339 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", 340 dev_name(nr->ctrl->device), 341 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 342 nr->cmd->common.opcode, 343 nvme_get_error_status_str(nr->status), 344 nr->status >> 8 & 7, /* Status Code Type */ 345 nr->status & 0xff, /* Status Code */ 346 nr->status & NVME_SC_MORE ? "MORE " : "", 347 nr->status & NVME_SC_DNR ? "DNR " : ""); 348 } 349 350 static void nvme_log_err_passthru(struct request *req) 351 { 352 struct nvme_ns *ns = req->q->queuedata; 353 struct nvme_request *nr = nvme_req(req); 354 355 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" 356 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", 357 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), 358 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : 359 nvme_get_admin_opcode_str(nr->cmd->common.opcode), 360 nr->cmd->common.opcode, 361 nvme_get_error_status_str(nr->status), 362 nr->status >> 8 & 7, /* Status Code Type */ 363 nr->status & 0xff, /* Status Code */ 364 nr->status & NVME_SC_MORE ? "MORE " : "", 365 nr->status & NVME_SC_DNR ? "DNR " : "", 366 nr->cmd->common.cdw10, 367 nr->cmd->common.cdw11, 368 nr->cmd->common.cdw12, 369 nr->cmd->common.cdw13, 370 nr->cmd->common.cdw14, 371 nr->cmd->common.cdw14); 372 } 373 374 enum nvme_disposition { 375 COMPLETE, 376 RETRY, 377 FAILOVER, 378 AUTHENTICATE, 379 }; 380 381 static inline enum nvme_disposition nvme_decide_disposition(struct request *req) 382 { 383 if (likely(nvme_req(req)->status == 0)) 384 return COMPLETE; 385 386 if (blk_noretry_request(req) || 387 (nvme_req(req)->status & NVME_SC_DNR) || 388 nvme_req(req)->retries >= nvme_max_retries) 389 return COMPLETE; 390 391 if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) 392 return AUTHENTICATE; 393 394 if (req->cmd_flags & REQ_NVME_MPATH) { 395 if (nvme_is_path_error(nvme_req(req)->status) || 396 blk_queue_dying(req->q)) 397 return FAILOVER; 398 } else { 399 if (blk_queue_dying(req->q)) 400 return COMPLETE; 401 } 402 403 return RETRY; 404 } 405 406 static inline void nvme_end_req_zoned(struct request *req) 407 { 408 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 409 req_op(req) == REQ_OP_ZONE_APPEND) { 410 struct nvme_ns *ns = req->q->queuedata; 411 412 req->__sector = nvme_lba_to_sect(ns->head, 413 le64_to_cpu(nvme_req(req)->result.u64)); 414 } 415 } 416 417 static inline void nvme_end_req(struct request *req) 418 { 419 blk_status_t status = nvme_error_status(nvme_req(req)->status); 420 421 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { 422 if (blk_rq_is_passthrough(req)) 423 nvme_log_err_passthru(req); 424 else 425 nvme_log_error(req); 426 } 427 nvme_end_req_zoned(req); 428 nvme_trace_bio_complete(req); 429 if (req->cmd_flags & REQ_NVME_MPATH) 430 nvme_mpath_end_request(req); 431 blk_mq_end_request(req, status); 432 } 433 434 void nvme_complete_rq(struct request *req) 435 { 436 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 437 438 trace_nvme_complete_rq(req); 439 nvme_cleanup_cmd(req); 440 441 /* 442 * Completions of long-running commands should not be able to 443 * defer sending of periodic keep alives, since the controller 444 * may have completed processing such commands a long time ago 445 * (arbitrarily close to command submission time). 446 * req->deadline - req->timeout is the command submission time 447 * in jiffies. 448 */ 449 if (ctrl->kas && 450 req->deadline - req->timeout >= ctrl->ka_last_check_time) 451 ctrl->comp_seen = true; 452 453 switch (nvme_decide_disposition(req)) { 454 case COMPLETE: 455 nvme_end_req(req); 456 return; 457 case RETRY: 458 nvme_retry_req(req); 459 return; 460 case FAILOVER: 461 nvme_failover_req(req); 462 return; 463 case AUTHENTICATE: 464 #ifdef CONFIG_NVME_HOST_AUTH 465 queue_work(nvme_wq, &ctrl->dhchap_auth_work); 466 nvme_retry_req(req); 467 #else 468 nvme_end_req(req); 469 #endif 470 return; 471 } 472 } 473 EXPORT_SYMBOL_GPL(nvme_complete_rq); 474 475 void nvme_complete_batch_req(struct request *req) 476 { 477 trace_nvme_complete_rq(req); 478 nvme_cleanup_cmd(req); 479 nvme_end_req_zoned(req); 480 } 481 EXPORT_SYMBOL_GPL(nvme_complete_batch_req); 482 483 /* 484 * Called to unwind from ->queue_rq on a failed command submission so that the 485 * multipathing code gets called to potentially failover to another path. 486 * The caller needs to unwind all transport specific resource allocations and 487 * must return propagate the return value. 488 */ 489 blk_status_t nvme_host_path_error(struct request *req) 490 { 491 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; 492 blk_mq_set_request_complete(req); 493 nvme_complete_rq(req); 494 return BLK_STS_OK; 495 } 496 EXPORT_SYMBOL_GPL(nvme_host_path_error); 497 498 bool nvme_cancel_request(struct request *req, void *data) 499 { 500 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, 501 "Cancelling I/O %d", req->tag); 502 503 /* don't abort one completed or idle request */ 504 if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT) 505 return true; 506 507 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; 508 nvme_req(req)->flags |= NVME_REQ_CANCELLED; 509 blk_mq_complete_request(req); 510 return true; 511 } 512 EXPORT_SYMBOL_GPL(nvme_cancel_request); 513 514 void nvme_cancel_tagset(struct nvme_ctrl *ctrl) 515 { 516 if (ctrl->tagset) { 517 blk_mq_tagset_busy_iter(ctrl->tagset, 518 nvme_cancel_request, ctrl); 519 blk_mq_tagset_wait_completed_request(ctrl->tagset); 520 } 521 } 522 EXPORT_SYMBOL_GPL(nvme_cancel_tagset); 523 524 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) 525 { 526 if (ctrl->admin_tagset) { 527 blk_mq_tagset_busy_iter(ctrl->admin_tagset, 528 nvme_cancel_request, ctrl); 529 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset); 530 } 531 } 532 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); 533 534 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, 535 enum nvme_ctrl_state new_state) 536 { 537 enum nvme_ctrl_state old_state; 538 unsigned long flags; 539 bool changed = false; 540 541 spin_lock_irqsave(&ctrl->lock, flags); 542 543 old_state = nvme_ctrl_state(ctrl); 544 switch (new_state) { 545 case NVME_CTRL_LIVE: 546 switch (old_state) { 547 case NVME_CTRL_NEW: 548 case NVME_CTRL_RESETTING: 549 case NVME_CTRL_CONNECTING: 550 changed = true; 551 fallthrough; 552 default: 553 break; 554 } 555 break; 556 case NVME_CTRL_RESETTING: 557 switch (old_state) { 558 case NVME_CTRL_NEW: 559 case NVME_CTRL_LIVE: 560 changed = true; 561 fallthrough; 562 default: 563 break; 564 } 565 break; 566 case NVME_CTRL_CONNECTING: 567 switch (old_state) { 568 case NVME_CTRL_NEW: 569 case NVME_CTRL_RESETTING: 570 changed = true; 571 fallthrough; 572 default: 573 break; 574 } 575 break; 576 case NVME_CTRL_DELETING: 577 switch (old_state) { 578 case NVME_CTRL_LIVE: 579 case NVME_CTRL_RESETTING: 580 case NVME_CTRL_CONNECTING: 581 changed = true; 582 fallthrough; 583 default: 584 break; 585 } 586 break; 587 case NVME_CTRL_DELETING_NOIO: 588 switch (old_state) { 589 case NVME_CTRL_DELETING: 590 case NVME_CTRL_DEAD: 591 changed = true; 592 fallthrough; 593 default: 594 break; 595 } 596 break; 597 case NVME_CTRL_DEAD: 598 switch (old_state) { 599 case NVME_CTRL_DELETING: 600 changed = true; 601 fallthrough; 602 default: 603 break; 604 } 605 break; 606 default: 607 break; 608 } 609 610 if (changed) { 611 WRITE_ONCE(ctrl->state, new_state); 612 wake_up_all(&ctrl->state_wq); 613 } 614 615 spin_unlock_irqrestore(&ctrl->lock, flags); 616 if (!changed) 617 return false; 618 619 if (new_state == NVME_CTRL_LIVE) { 620 if (old_state == NVME_CTRL_CONNECTING) 621 nvme_stop_failfast_work(ctrl); 622 nvme_kick_requeue_lists(ctrl); 623 } else if (new_state == NVME_CTRL_CONNECTING && 624 old_state == NVME_CTRL_RESETTING) { 625 nvme_start_failfast_work(ctrl); 626 } 627 return changed; 628 } 629 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); 630 631 /* 632 * Waits for the controller state to be resetting, or returns false if it is 633 * not possible to ever transition to that state. 634 */ 635 bool nvme_wait_reset(struct nvme_ctrl *ctrl) 636 { 637 wait_event(ctrl->state_wq, 638 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || 639 nvme_state_terminal(ctrl)); 640 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; 641 } 642 EXPORT_SYMBOL_GPL(nvme_wait_reset); 643 644 static void nvme_free_ns_head(struct kref *ref) 645 { 646 struct nvme_ns_head *head = 647 container_of(ref, struct nvme_ns_head, ref); 648 649 nvme_mpath_remove_disk(head); 650 ida_free(&head->subsys->ns_ida, head->instance); 651 cleanup_srcu_struct(&head->srcu); 652 nvme_put_subsystem(head->subsys); 653 kfree(head); 654 } 655 656 bool nvme_tryget_ns_head(struct nvme_ns_head *head) 657 { 658 return kref_get_unless_zero(&head->ref); 659 } 660 661 void nvme_put_ns_head(struct nvme_ns_head *head) 662 { 663 kref_put(&head->ref, nvme_free_ns_head); 664 } 665 666 static void nvme_free_ns(struct kref *kref) 667 { 668 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); 669 670 put_disk(ns->disk); 671 nvme_put_ns_head(ns->head); 672 nvme_put_ctrl(ns->ctrl); 673 kfree(ns); 674 } 675 676 static inline bool nvme_get_ns(struct nvme_ns *ns) 677 { 678 return kref_get_unless_zero(&ns->kref); 679 } 680 681 void nvme_put_ns(struct nvme_ns *ns) 682 { 683 kref_put(&ns->kref, nvme_free_ns); 684 } 685 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); 686 687 static inline void nvme_clear_nvme_request(struct request *req) 688 { 689 nvme_req(req)->status = 0; 690 nvme_req(req)->retries = 0; 691 nvme_req(req)->flags = 0; 692 req->rq_flags |= RQF_DONTPREP; 693 } 694 695 /* initialize a passthrough request */ 696 void nvme_init_request(struct request *req, struct nvme_command *cmd) 697 { 698 struct nvme_request *nr = nvme_req(req); 699 bool logging_enabled; 700 701 if (req->q->queuedata) { 702 struct nvme_ns *ns = req->q->disk->private_data; 703 704 logging_enabled = ns->head->passthru_err_log_enabled; 705 req->timeout = NVME_IO_TIMEOUT; 706 } else { /* no queuedata implies admin queue */ 707 logging_enabled = nr->ctrl->passthru_err_log_enabled; 708 req->timeout = NVME_ADMIN_TIMEOUT; 709 } 710 711 if (!logging_enabled) 712 req->rq_flags |= RQF_QUIET; 713 714 /* passthru commands should let the driver set the SGL flags */ 715 cmd->common.flags &= ~NVME_CMD_SGL_ALL; 716 717 req->cmd_flags |= REQ_FAILFAST_DRIVER; 718 if (req->mq_hctx->type == HCTX_TYPE_POLL) 719 req->cmd_flags |= REQ_POLLED; 720 nvme_clear_nvme_request(req); 721 memcpy(nr->cmd, cmd, sizeof(*cmd)); 722 } 723 EXPORT_SYMBOL_GPL(nvme_init_request); 724 725 /* 726 * For something we're not in a state to send to the device the default action 727 * is to busy it and retry it after the controller state is recovered. However, 728 * if the controller is deleting or if anything is marked for failfast or 729 * nvme multipath it is immediately failed. 730 * 731 * Note: commands used to initialize the controller will be marked for failfast. 732 * Note: nvme cli/ioctl commands are marked for failfast. 733 */ 734 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, 735 struct request *rq) 736 { 737 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); 738 739 if (state != NVME_CTRL_DELETING_NOIO && 740 state != NVME_CTRL_DELETING && 741 state != NVME_CTRL_DEAD && 742 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && 743 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) 744 return BLK_STS_RESOURCE; 745 return nvme_host_path_error(rq); 746 } 747 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); 748 749 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, 750 bool queue_live, enum nvme_ctrl_state state) 751 { 752 struct nvme_request *req = nvme_req(rq); 753 754 /* 755 * currently we have a problem sending passthru commands 756 * on the admin_q if the controller is not LIVE because we can't 757 * make sure that they are going out after the admin connect, 758 * controller enable and/or other commands in the initialization 759 * sequence. until the controller will be LIVE, fail with 760 * BLK_STS_RESOURCE so that they will be rescheduled. 761 */ 762 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) 763 return false; 764 765 if (ctrl->ops->flags & NVME_F_FABRICS) { 766 /* 767 * Only allow commands on a live queue, except for the connect 768 * command, which is require to set the queue live in the 769 * appropinquate states. 770 */ 771 switch (state) { 772 case NVME_CTRL_CONNECTING: 773 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) && 774 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || 775 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || 776 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) 777 return true; 778 break; 779 default: 780 break; 781 case NVME_CTRL_DEAD: 782 return false; 783 } 784 } 785 786 return queue_live; 787 } 788 EXPORT_SYMBOL_GPL(__nvme_check_ready); 789 790 static inline void nvme_setup_flush(struct nvme_ns *ns, 791 struct nvme_command *cmnd) 792 { 793 memset(cmnd, 0, sizeof(*cmnd)); 794 cmnd->common.opcode = nvme_cmd_flush; 795 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); 796 } 797 798 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, 799 struct nvme_command *cmnd) 800 { 801 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; 802 struct nvme_dsm_range *range; 803 struct bio *bio; 804 805 /* 806 * Some devices do not consider the DSM 'Number of Ranges' field when 807 * determining how much data to DMA. Always allocate memory for maximum 808 * number of segments to prevent device reading beyond end of buffer. 809 */ 810 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; 811 812 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); 813 if (!range) { 814 /* 815 * If we fail allocation our range, fallback to the controller 816 * discard page. If that's also busy, it's safe to return 817 * busy, as we know we can make progress once that's freed. 818 */ 819 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy)) 820 return BLK_STS_RESOURCE; 821 822 range = page_address(ns->ctrl->discard_page); 823 } 824 825 if (queue_max_discard_segments(req->q) == 1) { 826 u64 slba = nvme_sect_to_lba(ns->head, blk_rq_pos(req)); 827 u32 nlb = blk_rq_sectors(req) >> (ns->head->lba_shift - 9); 828 829 range[0].cattr = cpu_to_le32(0); 830 range[0].nlb = cpu_to_le32(nlb); 831 range[0].slba = cpu_to_le64(slba); 832 n = 1; 833 } else { 834 __rq_for_each_bio(bio, req) { 835 u64 slba = nvme_sect_to_lba(ns->head, 836 bio->bi_iter.bi_sector); 837 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; 838 839 if (n < segments) { 840 range[n].cattr = cpu_to_le32(0); 841 range[n].nlb = cpu_to_le32(nlb); 842 range[n].slba = cpu_to_le64(slba); 843 } 844 n++; 845 } 846 } 847 848 if (WARN_ON_ONCE(n != segments)) { 849 if (virt_to_page(range) == ns->ctrl->discard_page) 850 clear_bit_unlock(0, &ns->ctrl->discard_page_busy); 851 else 852 kfree(range); 853 return BLK_STS_IOERR; 854 } 855 856 memset(cmnd, 0, sizeof(*cmnd)); 857 cmnd->dsm.opcode = nvme_cmd_dsm; 858 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); 859 cmnd->dsm.nr = cpu_to_le32(segments - 1); 860 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); 861 862 bvec_set_virt(&req->special_vec, range, alloc_size); 863 req->rq_flags |= RQF_SPECIAL_PAYLOAD; 864 865 return BLK_STS_OK; 866 } 867 868 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, 869 struct request *req) 870 { 871 u32 upper, lower; 872 u64 ref48; 873 874 /* both rw and write zeroes share the same reftag format */ 875 switch (ns->head->guard_type) { 876 case NVME_NVM_NS_16B_GUARD: 877 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); 878 break; 879 case NVME_NVM_NS_64B_GUARD: 880 ref48 = ext_pi_ref_tag(req); 881 lower = lower_32_bits(ref48); 882 upper = upper_32_bits(ref48); 883 884 cmnd->rw.reftag = cpu_to_le32(lower); 885 cmnd->rw.cdw3 = cpu_to_le32(upper); 886 break; 887 default: 888 break; 889 } 890 } 891 892 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, 893 struct request *req, struct nvme_command *cmnd) 894 { 895 memset(cmnd, 0, sizeof(*cmnd)); 896 897 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 898 return nvme_setup_discard(ns, req, cmnd); 899 900 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; 901 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); 902 cmnd->write_zeroes.slba = 903 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 904 cmnd->write_zeroes.length = 905 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 906 907 if (!(req->cmd_flags & REQ_NOUNMAP) && 908 (ns->head->features & NVME_NS_DEAC)) 909 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); 910 911 if (nvme_ns_has_pi(ns->head)) { 912 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); 913 914 switch (ns->head->pi_type) { 915 case NVME_NS_DPS_PI_TYPE1: 916 case NVME_NS_DPS_PI_TYPE2: 917 nvme_set_ref_tag(ns, cmnd, req); 918 break; 919 } 920 } 921 922 return BLK_STS_OK; 923 } 924 925 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, 926 struct request *req, struct nvme_command *cmnd, 927 enum nvme_opcode op) 928 { 929 u16 control = 0; 930 u32 dsmgmt = 0; 931 932 if (req->cmd_flags & REQ_FUA) 933 control |= NVME_RW_FUA; 934 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) 935 control |= NVME_RW_LR; 936 937 if (req->cmd_flags & REQ_RAHEAD) 938 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; 939 940 cmnd->rw.opcode = op; 941 cmnd->rw.flags = 0; 942 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); 943 cmnd->rw.cdw2 = 0; 944 cmnd->rw.cdw3 = 0; 945 cmnd->rw.metadata = 0; 946 cmnd->rw.slba = 947 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); 948 cmnd->rw.length = 949 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); 950 cmnd->rw.reftag = 0; 951 cmnd->rw.apptag = 0; 952 cmnd->rw.appmask = 0; 953 954 if (ns->head->ms) { 955 /* 956 * If formated with metadata, the block layer always provides a 957 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else 958 * we enable the PRACT bit for protection information or set the 959 * namespace capacity to zero to prevent any I/O. 960 */ 961 if (!blk_integrity_rq(req)) { 962 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) 963 return BLK_STS_NOTSUPP; 964 control |= NVME_RW_PRINFO_PRACT; 965 } 966 967 switch (ns->head->pi_type) { 968 case NVME_NS_DPS_PI_TYPE3: 969 control |= NVME_RW_PRINFO_PRCHK_GUARD; 970 break; 971 case NVME_NS_DPS_PI_TYPE1: 972 case NVME_NS_DPS_PI_TYPE2: 973 control |= NVME_RW_PRINFO_PRCHK_GUARD | 974 NVME_RW_PRINFO_PRCHK_REF; 975 if (op == nvme_cmd_zone_append) 976 control |= NVME_RW_APPEND_PIREMAP; 977 nvme_set_ref_tag(ns, cmnd, req); 978 break; 979 } 980 } 981 982 cmnd->rw.control = cpu_to_le16(control); 983 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); 984 return 0; 985 } 986 987 void nvme_cleanup_cmd(struct request *req) 988 { 989 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { 990 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; 991 992 if (req->special_vec.bv_page == ctrl->discard_page) 993 clear_bit_unlock(0, &ctrl->discard_page_busy); 994 else 995 kfree(bvec_virt(&req->special_vec)); 996 } 997 } 998 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); 999 1000 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) 1001 { 1002 struct nvme_command *cmd = nvme_req(req)->cmd; 1003 blk_status_t ret = BLK_STS_OK; 1004 1005 if (!(req->rq_flags & RQF_DONTPREP)) 1006 nvme_clear_nvme_request(req); 1007 1008 switch (req_op(req)) { 1009 case REQ_OP_DRV_IN: 1010 case REQ_OP_DRV_OUT: 1011 /* these are setup prior to execution in nvme_init_request() */ 1012 break; 1013 case REQ_OP_FLUSH: 1014 nvme_setup_flush(ns, cmd); 1015 break; 1016 case REQ_OP_ZONE_RESET_ALL: 1017 case REQ_OP_ZONE_RESET: 1018 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET); 1019 break; 1020 case REQ_OP_ZONE_OPEN: 1021 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN); 1022 break; 1023 case REQ_OP_ZONE_CLOSE: 1024 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE); 1025 break; 1026 case REQ_OP_ZONE_FINISH: 1027 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH); 1028 break; 1029 case REQ_OP_WRITE_ZEROES: 1030 ret = nvme_setup_write_zeroes(ns, req, cmd); 1031 break; 1032 case REQ_OP_DISCARD: 1033 ret = nvme_setup_discard(ns, req, cmd); 1034 break; 1035 case REQ_OP_READ: 1036 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read); 1037 break; 1038 case REQ_OP_WRITE: 1039 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write); 1040 break; 1041 case REQ_OP_ZONE_APPEND: 1042 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append); 1043 break; 1044 default: 1045 WARN_ON_ONCE(1); 1046 return BLK_STS_IOERR; 1047 } 1048 1049 cmd->common.command_id = nvme_cid(req); 1050 trace_nvme_setup_cmd(req, cmd); 1051 return ret; 1052 } 1053 EXPORT_SYMBOL_GPL(nvme_setup_cmd); 1054 1055 /* 1056 * Return values: 1057 * 0: success 1058 * >0: nvme controller's cqe status response 1059 * <0: kernel error in lieu of controller response 1060 */ 1061 int nvme_execute_rq(struct request *rq, bool at_head) 1062 { 1063 blk_status_t status; 1064 1065 status = blk_execute_rq(rq, at_head); 1066 if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) 1067 return -EINTR; 1068 if (nvme_req(rq)->status) 1069 return nvme_req(rq)->status; 1070 return blk_status_to_errno(status); 1071 } 1072 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); 1073 1074 /* 1075 * Returns 0 on success. If the result is negative, it's a Linux error code; 1076 * if the result is positive, it's an NVM Express status code 1077 */ 1078 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1079 union nvme_result *result, void *buffer, unsigned bufflen, 1080 int qid, nvme_submit_flags_t flags) 1081 { 1082 struct request *req; 1083 int ret; 1084 blk_mq_req_flags_t blk_flags = 0; 1085 1086 if (flags & NVME_SUBMIT_NOWAIT) 1087 blk_flags |= BLK_MQ_REQ_NOWAIT; 1088 if (flags & NVME_SUBMIT_RESERVED) 1089 blk_flags |= BLK_MQ_REQ_RESERVED; 1090 if (qid == NVME_QID_ANY) 1091 req = blk_mq_alloc_request(q, nvme_req_op(cmd), blk_flags); 1092 else 1093 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), blk_flags, 1094 qid - 1); 1095 1096 if (IS_ERR(req)) 1097 return PTR_ERR(req); 1098 nvme_init_request(req, cmd); 1099 if (flags & NVME_SUBMIT_RETRY) 1100 req->cmd_flags &= ~REQ_FAILFAST_DRIVER; 1101 1102 if (buffer && bufflen) { 1103 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); 1104 if (ret) 1105 goto out; 1106 } 1107 1108 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); 1109 if (result && ret >= 0) 1110 *result = nvme_req(req)->result; 1111 out: 1112 blk_mq_free_request(req); 1113 return ret; 1114 } 1115 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); 1116 1117 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, 1118 void *buffer, unsigned bufflen) 1119 { 1120 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 1121 NVME_QID_ANY, 0); 1122 } 1123 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); 1124 1125 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1126 { 1127 u32 effects = 0; 1128 1129 if (ns) { 1130 effects = le32_to_cpu(ns->head->effects->iocs[opcode]); 1131 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) 1132 dev_warn_once(ctrl->device, 1133 "IO command:%02x has unusual effects:%08x\n", 1134 opcode, effects); 1135 1136 /* 1137 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, 1138 * which would deadlock when done on an I/O command. Note that 1139 * We already warn about an unusual effect above. 1140 */ 1141 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1142 } else { 1143 effects = le32_to_cpu(ctrl->effects->acs[opcode]); 1144 1145 /* Ignore execution restrictions if any relaxation bits are set */ 1146 if (effects & NVME_CMD_EFFECTS_CSER_MASK) 1147 effects &= ~NVME_CMD_EFFECTS_CSE_MASK; 1148 } 1149 1150 return effects; 1151 } 1152 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); 1153 1154 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) 1155 { 1156 u32 effects = nvme_command_effects(ctrl, ns, opcode); 1157 1158 /* 1159 * For simplicity, IO to all namespaces is quiesced even if the command 1160 * effects say only one namespace is affected. 1161 */ 1162 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1163 mutex_lock(&ctrl->scan_lock); 1164 mutex_lock(&ctrl->subsys->lock); 1165 nvme_mpath_start_freeze(ctrl->subsys); 1166 nvme_mpath_wait_freeze(ctrl->subsys); 1167 nvme_start_freeze(ctrl); 1168 nvme_wait_freeze(ctrl); 1169 } 1170 return effects; 1171 } 1172 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); 1173 1174 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, 1175 struct nvme_command *cmd, int status) 1176 { 1177 if (effects & NVME_CMD_EFFECTS_CSE_MASK) { 1178 nvme_unfreeze(ctrl); 1179 nvme_mpath_unfreeze(ctrl->subsys); 1180 mutex_unlock(&ctrl->subsys->lock); 1181 mutex_unlock(&ctrl->scan_lock); 1182 } 1183 if (effects & NVME_CMD_EFFECTS_CCC) { 1184 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY, 1185 &ctrl->flags)) { 1186 dev_info(ctrl->device, 1187 "controller capabilities changed, reset may be required to take effect.\n"); 1188 } 1189 } 1190 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { 1191 nvme_queue_scan(ctrl); 1192 flush_work(&ctrl->scan_work); 1193 } 1194 if (ns) 1195 return; 1196 1197 switch (cmd->common.opcode) { 1198 case nvme_admin_set_features: 1199 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { 1200 case NVME_FEAT_KATO: 1201 /* 1202 * Keep alive commands interval on the host should be 1203 * updated when KATO is modified by Set Features 1204 * commands. 1205 */ 1206 if (!status) 1207 nvme_update_keep_alive(ctrl, cmd); 1208 break; 1209 default: 1210 break; 1211 } 1212 break; 1213 default: 1214 break; 1215 } 1216 } 1217 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); 1218 1219 /* 1220 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: 1221 * 1222 * The host should send Keep Alive commands at half of the Keep Alive Timeout 1223 * accounting for transport roundtrip times [..]. 1224 */ 1225 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) 1226 { 1227 unsigned long delay = ctrl->kato * HZ / 2; 1228 1229 /* 1230 * When using Traffic Based Keep Alive, we need to run 1231 * nvme_keep_alive_work at twice the normal frequency, as one 1232 * command completion can postpone sending a keep alive command 1233 * by up to twice the delay between runs. 1234 */ 1235 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) 1236 delay /= 2; 1237 return delay; 1238 } 1239 1240 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) 1241 { 1242 unsigned long now = jiffies; 1243 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1244 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; 1245 1246 if (time_after(now, ka_next_check_tm)) 1247 delay = 0; 1248 else 1249 delay = ka_next_check_tm - now; 1250 1251 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1252 } 1253 1254 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, 1255 blk_status_t status) 1256 { 1257 struct nvme_ctrl *ctrl = rq->end_io_data; 1258 unsigned long flags; 1259 bool startka = false; 1260 unsigned long rtt = jiffies - (rq->deadline - rq->timeout); 1261 unsigned long delay = nvme_keep_alive_work_period(ctrl); 1262 1263 /* 1264 * Subtract off the keepalive RTT so nvme_keep_alive_work runs 1265 * at the desired frequency. 1266 */ 1267 if (rtt <= delay) { 1268 delay -= rtt; 1269 } else { 1270 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", 1271 jiffies_to_msecs(rtt)); 1272 delay = 0; 1273 } 1274 1275 blk_mq_free_request(rq); 1276 1277 if (status) { 1278 dev_err(ctrl->device, 1279 "failed nvme_keep_alive_end_io error=%d\n", 1280 status); 1281 return RQ_END_IO_NONE; 1282 } 1283 1284 ctrl->ka_last_check_time = jiffies; 1285 ctrl->comp_seen = false; 1286 spin_lock_irqsave(&ctrl->lock, flags); 1287 if (ctrl->state == NVME_CTRL_LIVE || 1288 ctrl->state == NVME_CTRL_CONNECTING) 1289 startka = true; 1290 spin_unlock_irqrestore(&ctrl->lock, flags); 1291 if (startka) 1292 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay); 1293 return RQ_END_IO_NONE; 1294 } 1295 1296 static void nvme_keep_alive_work(struct work_struct *work) 1297 { 1298 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), 1299 struct nvme_ctrl, ka_work); 1300 bool comp_seen = ctrl->comp_seen; 1301 struct request *rq; 1302 1303 ctrl->ka_last_check_time = jiffies; 1304 1305 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { 1306 dev_dbg(ctrl->device, 1307 "reschedule traffic based keep-alive timer\n"); 1308 ctrl->comp_seen = false; 1309 nvme_queue_keep_alive_work(ctrl); 1310 return; 1311 } 1312 1313 rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd), 1314 BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); 1315 if (IS_ERR(rq)) { 1316 /* allocation failure, reset the controller */ 1317 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); 1318 nvme_reset_ctrl(ctrl); 1319 return; 1320 } 1321 nvme_init_request(rq, &ctrl->ka_cmd); 1322 1323 rq->timeout = ctrl->kato * HZ; 1324 rq->end_io = nvme_keep_alive_end_io; 1325 rq->end_io_data = ctrl; 1326 blk_execute_rq_nowait(rq, false); 1327 } 1328 1329 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) 1330 { 1331 if (unlikely(ctrl->kato == 0)) 1332 return; 1333 1334 nvme_queue_keep_alive_work(ctrl); 1335 } 1336 1337 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) 1338 { 1339 if (unlikely(ctrl->kato == 0)) 1340 return; 1341 1342 cancel_delayed_work_sync(&ctrl->ka_work); 1343 } 1344 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); 1345 1346 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, 1347 struct nvme_command *cmd) 1348 { 1349 unsigned int new_kato = 1350 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); 1351 1352 dev_info(ctrl->device, 1353 "keep alive interval updated from %u ms to %u ms\n", 1354 ctrl->kato * 1000 / 2, new_kato * 1000 / 2); 1355 1356 nvme_stop_keep_alive(ctrl); 1357 ctrl->kato = new_kato; 1358 nvme_start_keep_alive(ctrl); 1359 } 1360 1361 /* 1362 * In NVMe 1.0 the CNS field was just a binary controller or namespace 1363 * flag, thus sending any new CNS opcodes has a big chance of not working. 1364 * Qemu unfortunately had that bug after reporting a 1.1 version compliance 1365 * (but not for any later version). 1366 */ 1367 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) 1368 { 1369 if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) 1370 return ctrl->vs < NVME_VS(1, 2, 0); 1371 return ctrl->vs < NVME_VS(1, 1, 0); 1372 } 1373 1374 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) 1375 { 1376 struct nvme_command c = { }; 1377 int error; 1378 1379 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1380 c.identify.opcode = nvme_admin_identify; 1381 c.identify.cns = NVME_ID_CNS_CTRL; 1382 1383 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); 1384 if (!*id) 1385 return -ENOMEM; 1386 1387 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, 1388 sizeof(struct nvme_id_ctrl)); 1389 if (error) { 1390 kfree(*id); 1391 *id = NULL; 1392 } 1393 return error; 1394 } 1395 1396 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, 1397 struct nvme_ns_id_desc *cur, bool *csi_seen) 1398 { 1399 const char *warn_str = "ctrl returned bogus length:"; 1400 void *data = cur; 1401 1402 switch (cur->nidt) { 1403 case NVME_NIDT_EUI64: 1404 if (cur->nidl != NVME_NIDT_EUI64_LEN) { 1405 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", 1406 warn_str, cur->nidl); 1407 return -1; 1408 } 1409 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1410 return NVME_NIDT_EUI64_LEN; 1411 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); 1412 return NVME_NIDT_EUI64_LEN; 1413 case NVME_NIDT_NGUID: 1414 if (cur->nidl != NVME_NIDT_NGUID_LEN) { 1415 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", 1416 warn_str, cur->nidl); 1417 return -1; 1418 } 1419 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1420 return NVME_NIDT_NGUID_LEN; 1421 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); 1422 return NVME_NIDT_NGUID_LEN; 1423 case NVME_NIDT_UUID: 1424 if (cur->nidl != NVME_NIDT_UUID_LEN) { 1425 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", 1426 warn_str, cur->nidl); 1427 return -1; 1428 } 1429 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) 1430 return NVME_NIDT_UUID_LEN; 1431 uuid_copy(&ids->uuid, data + sizeof(*cur)); 1432 return NVME_NIDT_UUID_LEN; 1433 case NVME_NIDT_CSI: 1434 if (cur->nidl != NVME_NIDT_CSI_LEN) { 1435 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", 1436 warn_str, cur->nidl); 1437 return -1; 1438 } 1439 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); 1440 *csi_seen = true; 1441 return NVME_NIDT_CSI_LEN; 1442 default: 1443 /* Skip unknown types */ 1444 return cur->nidl; 1445 } 1446 } 1447 1448 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, 1449 struct nvme_ns_info *info) 1450 { 1451 struct nvme_command c = { }; 1452 bool csi_seen = false; 1453 int status, pos, len; 1454 void *data; 1455 1456 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) 1457 return 0; 1458 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) 1459 return 0; 1460 1461 c.identify.opcode = nvme_admin_identify; 1462 c.identify.nsid = cpu_to_le32(info->nsid); 1463 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; 1464 1465 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 1466 if (!data) 1467 return -ENOMEM; 1468 1469 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, 1470 NVME_IDENTIFY_DATA_SIZE); 1471 if (status) { 1472 dev_warn(ctrl->device, 1473 "Identify Descriptors failed (nsid=%u, status=0x%x)\n", 1474 info->nsid, status); 1475 goto free_data; 1476 } 1477 1478 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { 1479 struct nvme_ns_id_desc *cur = data + pos; 1480 1481 if (cur->nidl == 0) 1482 break; 1483 1484 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen); 1485 if (len < 0) 1486 break; 1487 1488 len += sizeof(*cur); 1489 } 1490 1491 if (nvme_multi_css(ctrl) && !csi_seen) { 1492 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", 1493 info->nsid); 1494 status = -EINVAL; 1495 } 1496 1497 free_data: 1498 kfree(data); 1499 return status; 1500 } 1501 1502 int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, 1503 struct nvme_id_ns **id) 1504 { 1505 struct nvme_command c = { }; 1506 int error; 1507 1508 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ 1509 c.identify.opcode = nvme_admin_identify; 1510 c.identify.nsid = cpu_to_le32(nsid); 1511 c.identify.cns = NVME_ID_CNS_NS; 1512 1513 *id = kmalloc(sizeof(**id), GFP_KERNEL); 1514 if (!*id) 1515 return -ENOMEM; 1516 1517 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); 1518 if (error) { 1519 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); 1520 kfree(*id); 1521 *id = NULL; 1522 } 1523 return error; 1524 } 1525 1526 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, 1527 struct nvme_ns_info *info) 1528 { 1529 struct nvme_ns_ids *ids = &info->ids; 1530 struct nvme_id_ns *id; 1531 int ret; 1532 1533 ret = nvme_identify_ns(ctrl, info->nsid, &id); 1534 if (ret) 1535 return ret; 1536 1537 if (id->ncap == 0) { 1538 /* namespace not allocated or attached */ 1539 info->is_removed = true; 1540 ret = -ENODEV; 1541 goto error; 1542 } 1543 1544 info->anagrpid = id->anagrpid; 1545 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1546 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1547 info->is_ready = true; 1548 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { 1549 dev_info(ctrl->device, 1550 "Ignoring bogus Namespace Identifiers\n"); 1551 } else { 1552 if (ctrl->vs >= NVME_VS(1, 1, 0) && 1553 !memchr_inv(ids->eui64, 0, sizeof(ids->eui64))) 1554 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); 1555 if (ctrl->vs >= NVME_VS(1, 2, 0) && 1556 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid))) 1557 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); 1558 } 1559 1560 error: 1561 kfree(id); 1562 return ret; 1563 } 1564 1565 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, 1566 struct nvme_ns_info *info) 1567 { 1568 struct nvme_id_ns_cs_indep *id; 1569 struct nvme_command c = { 1570 .identify.opcode = nvme_admin_identify, 1571 .identify.nsid = cpu_to_le32(info->nsid), 1572 .identify.cns = NVME_ID_CNS_NS_CS_INDEP, 1573 }; 1574 int ret; 1575 1576 id = kmalloc(sizeof(*id), GFP_KERNEL); 1577 if (!id) 1578 return -ENOMEM; 1579 1580 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 1581 if (!ret) { 1582 info->anagrpid = id->anagrpid; 1583 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; 1584 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; 1585 info->is_ready = id->nstat & NVME_NSTAT_NRDY; 1586 } 1587 kfree(id); 1588 return ret; 1589 } 1590 1591 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, 1592 unsigned int dword11, void *buffer, size_t buflen, u32 *result) 1593 { 1594 union nvme_result res = { 0 }; 1595 struct nvme_command c = { }; 1596 int ret; 1597 1598 c.features.opcode = op; 1599 c.features.fid = cpu_to_le32(fid); 1600 c.features.dword11 = cpu_to_le32(dword11); 1601 1602 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, 1603 buffer, buflen, NVME_QID_ANY, 0); 1604 if (ret >= 0 && result) 1605 *result = le32_to_cpu(res.u32); 1606 return ret; 1607 } 1608 1609 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, 1610 unsigned int dword11, void *buffer, size_t buflen, 1611 u32 *result) 1612 { 1613 return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer, 1614 buflen, result); 1615 } 1616 EXPORT_SYMBOL_GPL(nvme_set_features); 1617 1618 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, 1619 unsigned int dword11, void *buffer, size_t buflen, 1620 u32 *result) 1621 { 1622 return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer, 1623 buflen, result); 1624 } 1625 EXPORT_SYMBOL_GPL(nvme_get_features); 1626 1627 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) 1628 { 1629 u32 q_count = (*count - 1) | ((*count - 1) << 16); 1630 u32 result; 1631 int status, nr_io_queues; 1632 1633 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, 1634 &result); 1635 if (status < 0) 1636 return status; 1637 1638 /* 1639 * Degraded controllers might return an error when setting the queue 1640 * count. We still want to be able to bring them online and offer 1641 * access to the admin queue, as that might be only way to fix them up. 1642 */ 1643 if (status > 0) { 1644 dev_err(ctrl->device, "Could not set queue count (%d)\n", status); 1645 *count = 0; 1646 } else { 1647 nr_io_queues = min(result & 0xffff, result >> 16) + 1; 1648 *count = min(*count, nr_io_queues); 1649 } 1650 1651 return 0; 1652 } 1653 EXPORT_SYMBOL_GPL(nvme_set_queue_count); 1654 1655 #define NVME_AEN_SUPPORTED \ 1656 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ 1657 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) 1658 1659 static void nvme_enable_aen(struct nvme_ctrl *ctrl) 1660 { 1661 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; 1662 int status; 1663 1664 if (!supported_aens) 1665 return; 1666 1667 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, 1668 NULL, 0, &result); 1669 if (status) 1670 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", 1671 supported_aens); 1672 1673 queue_work(nvme_wq, &ctrl->async_event_work); 1674 } 1675 1676 static int nvme_ns_open(struct nvme_ns *ns) 1677 { 1678 1679 /* should never be called due to GENHD_FL_HIDDEN */ 1680 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) 1681 goto fail; 1682 if (!nvme_get_ns(ns)) 1683 goto fail; 1684 if (!try_module_get(ns->ctrl->ops->module)) 1685 goto fail_put_ns; 1686 1687 return 0; 1688 1689 fail_put_ns: 1690 nvme_put_ns(ns); 1691 fail: 1692 return -ENXIO; 1693 } 1694 1695 static void nvme_ns_release(struct nvme_ns *ns) 1696 { 1697 1698 module_put(ns->ctrl->ops->module); 1699 nvme_put_ns(ns); 1700 } 1701 1702 static int nvme_open(struct gendisk *disk, blk_mode_t mode) 1703 { 1704 return nvme_ns_open(disk->private_data); 1705 } 1706 1707 static void nvme_release(struct gendisk *disk) 1708 { 1709 nvme_ns_release(disk->private_data); 1710 } 1711 1712 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1713 { 1714 /* some standard values */ 1715 geo->heads = 1 << 6; 1716 geo->sectors = 1 << 5; 1717 geo->cylinders = get_capacity(bdev->bd_disk) >> 11; 1718 return 0; 1719 } 1720 1721 static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head) 1722 { 1723 struct blk_integrity integrity = { }; 1724 1725 blk_integrity_unregister(disk); 1726 1727 if (!head->ms) 1728 return true; 1729 1730 /* 1731 * PI can always be supported as we can ask the controller to simply 1732 * insert/strip it, which is not possible for other kinds of metadata. 1733 */ 1734 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || 1735 !(head->features & NVME_NS_METADATA_SUPPORTED)) 1736 return nvme_ns_has_pi(head); 1737 1738 switch (head->pi_type) { 1739 case NVME_NS_DPS_PI_TYPE3: 1740 switch (head->guard_type) { 1741 case NVME_NVM_NS_16B_GUARD: 1742 integrity.profile = &t10_pi_type3_crc; 1743 integrity.tag_size = sizeof(u16) + sizeof(u32); 1744 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1745 break; 1746 case NVME_NVM_NS_64B_GUARD: 1747 integrity.profile = &ext_pi_type3_crc64; 1748 integrity.tag_size = sizeof(u16) + 6; 1749 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1750 break; 1751 default: 1752 integrity.profile = NULL; 1753 break; 1754 } 1755 break; 1756 case NVME_NS_DPS_PI_TYPE1: 1757 case NVME_NS_DPS_PI_TYPE2: 1758 switch (head->guard_type) { 1759 case NVME_NVM_NS_16B_GUARD: 1760 integrity.profile = &t10_pi_type1_crc; 1761 integrity.tag_size = sizeof(u16); 1762 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1763 break; 1764 case NVME_NVM_NS_64B_GUARD: 1765 integrity.profile = &ext_pi_type1_crc64; 1766 integrity.tag_size = sizeof(u16); 1767 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; 1768 break; 1769 default: 1770 integrity.profile = NULL; 1771 break; 1772 } 1773 break; 1774 default: 1775 integrity.profile = NULL; 1776 break; 1777 } 1778 1779 integrity.tuple_size = head->ms; 1780 integrity.pi_offset = head->pi_offset; 1781 blk_integrity_register(disk, &integrity); 1782 return true; 1783 } 1784 1785 static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) 1786 { 1787 struct nvme_ctrl *ctrl = ns->ctrl; 1788 1789 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns->head, UINT_MAX)) 1790 lim->max_hw_discard_sectors = 1791 nvme_lba_to_sect(ns->head, ctrl->dmrsl); 1792 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) 1793 lim->max_hw_discard_sectors = UINT_MAX; 1794 else 1795 lim->max_hw_discard_sectors = 0; 1796 1797 lim->discard_granularity = lim->logical_block_size; 1798 1799 if (ctrl->dmrl) 1800 lim->max_discard_segments = ctrl->dmrl; 1801 else 1802 lim->max_discard_segments = NVME_DSM_MAX_RANGES; 1803 } 1804 1805 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) 1806 { 1807 return uuid_equal(&a->uuid, &b->uuid) && 1808 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 && 1809 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 && 1810 a->csi == b->csi; 1811 } 1812 1813 static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, 1814 struct nvme_id_ns_nvm **nvmp) 1815 { 1816 struct nvme_command c = { 1817 .identify.opcode = nvme_admin_identify, 1818 .identify.nsid = cpu_to_le32(nsid), 1819 .identify.cns = NVME_ID_CNS_CS_NS, 1820 .identify.csi = NVME_CSI_NVM, 1821 }; 1822 struct nvme_id_ns_nvm *nvm; 1823 int ret; 1824 1825 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); 1826 if (!nvm) 1827 return -ENOMEM; 1828 1829 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); 1830 if (ret) 1831 kfree(nvm); 1832 else 1833 *nvmp = nvm; 1834 return ret; 1835 } 1836 1837 static void nvme_configure_pi_elbas(struct nvme_ns_head *head, 1838 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) 1839 { 1840 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); 1841 1842 /* no support for storage tag formats right now */ 1843 if (nvme_elbaf_sts(elbaf)) 1844 return; 1845 1846 head->guard_type = nvme_elbaf_guard_type(elbaf); 1847 switch (head->guard_type) { 1848 case NVME_NVM_NS_64B_GUARD: 1849 head->pi_size = sizeof(struct crc64_pi_tuple); 1850 break; 1851 case NVME_NVM_NS_16B_GUARD: 1852 head->pi_size = sizeof(struct t10_pi_tuple); 1853 break; 1854 default: 1855 break; 1856 } 1857 } 1858 1859 static void nvme_configure_metadata(struct nvme_ctrl *ctrl, 1860 struct nvme_ns_head *head, struct nvme_id_ns *id, 1861 struct nvme_id_ns_nvm *nvm) 1862 { 1863 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); 1864 head->pi_type = 0; 1865 head->pi_size = 0; 1866 head->pi_offset = 0; 1867 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); 1868 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) 1869 return; 1870 1871 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { 1872 nvme_configure_pi_elbas(head, id, nvm); 1873 } else { 1874 head->pi_size = sizeof(struct t10_pi_tuple); 1875 head->guard_type = NVME_NVM_NS_16B_GUARD; 1876 } 1877 1878 if (head->pi_size && head->ms >= head->pi_size) 1879 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; 1880 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) 1881 head->pi_offset = head->ms - head->pi_size; 1882 1883 if (ctrl->ops->flags & NVME_F_FABRICS) { 1884 /* 1885 * The NVMe over Fabrics specification only supports metadata as 1886 * part of the extended data LBA. We rely on HCA/HBA support to 1887 * remap the separate metadata buffer from the block layer. 1888 */ 1889 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) 1890 return; 1891 1892 head->features |= NVME_NS_EXT_LBAS; 1893 1894 /* 1895 * The current fabrics transport drivers support namespace 1896 * metadata formats only if nvme_ns_has_pi() returns true. 1897 * Suppress support for all other formats so the namespace will 1898 * have a 0 capacity and not be usable through the block stack. 1899 * 1900 * Note, this check will need to be modified if any drivers 1901 * gain the ability to use other metadata formats. 1902 */ 1903 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) 1904 head->features |= NVME_NS_METADATA_SUPPORTED; 1905 } else { 1906 /* 1907 * For PCIe controllers, we can't easily remap the separate 1908 * metadata buffer from the block layer and thus require a 1909 * separate metadata buffer for block layer metadata/PI support. 1910 * We allow extended LBAs for the passthrough interface, though. 1911 */ 1912 if (id->flbas & NVME_NS_FLBAS_META_EXT) 1913 head->features |= NVME_NS_EXT_LBAS; 1914 else 1915 head->features |= NVME_NS_METADATA_SUPPORTED; 1916 } 1917 } 1918 1919 static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) 1920 { 1921 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; 1922 } 1923 1924 static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, 1925 struct queue_limits *lim) 1926 { 1927 lim->max_hw_sectors = ctrl->max_hw_sectors; 1928 lim->max_segments = min_t(u32, USHRT_MAX, 1929 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); 1930 lim->max_integrity_segments = ctrl->max_integrity_segments; 1931 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; 1932 lim->max_segment_size = UINT_MAX; 1933 lim->dma_alignment = 3; 1934 } 1935 1936 static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, 1937 struct queue_limits *lim) 1938 { 1939 struct nvme_ns_head *head = ns->head; 1940 u32 bs = 1U << head->lba_shift; 1941 u32 atomic_bs, phys_bs, io_opt = 0; 1942 bool valid = true; 1943 1944 /* 1945 * The block layer can't support LBA sizes larger than the page size 1946 * or smaller than a sector size yet, so catch this early and don't 1947 * allow block I/O. 1948 */ 1949 if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { 1950 bs = (1 << 9); 1951 valid = false; 1952 } 1953 1954 atomic_bs = phys_bs = bs; 1955 if (id->nabo == 0) { 1956 /* 1957 * Bit 1 indicates whether NAWUPF is defined for this namespace 1958 * and whether it should be used instead of AWUPF. If NAWUPF == 1959 * 0 then AWUPF must be used instead. 1960 */ 1961 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) 1962 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; 1963 else 1964 atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; 1965 } 1966 1967 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { 1968 /* NPWG = Namespace Preferred Write Granularity */ 1969 phys_bs = bs * (1 + le16_to_cpu(id->npwg)); 1970 /* NOWS = Namespace Optimal Write Size */ 1971 io_opt = bs * (1 + le16_to_cpu(id->nows)); 1972 } 1973 1974 /* 1975 * Linux filesystems assume writing a single physical block is 1976 * an atomic operation. Hence limit the physical block size to the 1977 * value of the Atomic Write Unit Power Fail parameter. 1978 */ 1979 lim->logical_block_size = bs; 1980 lim->physical_block_size = min(phys_bs, atomic_bs); 1981 lim->io_min = phys_bs; 1982 lim->io_opt = io_opt; 1983 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) 1984 lim->max_write_zeroes_sectors = UINT_MAX; 1985 else 1986 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; 1987 return valid; 1988 } 1989 1990 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) 1991 { 1992 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); 1993 } 1994 1995 static inline bool nvme_first_scan(struct gendisk *disk) 1996 { 1997 /* nvme_alloc_ns() scans the disk prior to adding it */ 1998 return !disk_live(disk); 1999 } 2000 2001 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, 2002 struct queue_limits *lim) 2003 { 2004 struct nvme_ctrl *ctrl = ns->ctrl; 2005 u32 iob; 2006 2007 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && 2008 is_power_of_2(ctrl->max_hw_sectors)) 2009 iob = ctrl->max_hw_sectors; 2010 else 2011 iob = nvme_lba_to_sect(ns->head, le16_to_cpu(id->noiob)); 2012 2013 if (!iob) 2014 return; 2015 2016 if (!is_power_of_2(iob)) { 2017 if (nvme_first_scan(ns->disk)) 2018 pr_warn("%s: ignoring unaligned IO boundary:%u\n", 2019 ns->disk->disk_name, iob); 2020 return; 2021 } 2022 2023 if (blk_queue_is_zoned(ns->disk->queue)) { 2024 if (nvme_first_scan(ns->disk)) 2025 pr_warn("%s: ignoring zoned namespace IO boundary\n", 2026 ns->disk->disk_name); 2027 return; 2028 } 2029 2030 lim->chunk_sectors = iob; 2031 } 2032 2033 static int nvme_update_ns_info_generic(struct nvme_ns *ns, 2034 struct nvme_ns_info *info) 2035 { 2036 struct queue_limits lim; 2037 int ret; 2038 2039 blk_mq_freeze_queue(ns->disk->queue); 2040 lim = queue_limits_start_update(ns->disk->queue); 2041 nvme_set_ctrl_limits(ns->ctrl, &lim); 2042 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2043 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2044 blk_mq_unfreeze_queue(ns->disk->queue); 2045 2046 /* Hide the block-interface for these devices */ 2047 if (!ret) 2048 ret = -ENODEV; 2049 return ret; 2050 } 2051 2052 static int nvme_update_ns_info_block(struct nvme_ns *ns, 2053 struct nvme_ns_info *info) 2054 { 2055 bool vwc = ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT; 2056 struct queue_limits lim; 2057 struct nvme_id_ns_nvm *nvm = NULL; 2058 struct nvme_zone_info zi = {}; 2059 struct nvme_id_ns *id; 2060 sector_t capacity; 2061 unsigned lbaf; 2062 int ret; 2063 2064 ret = nvme_identify_ns(ns->ctrl, info->nsid, &id); 2065 if (ret) 2066 return ret; 2067 2068 if (id->ncap == 0) { 2069 /* namespace not allocated or attached */ 2070 info->is_removed = true; 2071 ret = -ENXIO; 2072 goto out; 2073 } 2074 lbaf = nvme_lbaf_index(id->flbas); 2075 2076 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { 2077 ret = nvme_identify_ns_nvm(ns->ctrl, info->nsid, &nvm); 2078 if (ret < 0) 2079 goto out; 2080 } 2081 2082 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2083 ns->head->ids.csi == NVME_CSI_ZNS) { 2084 ret = nvme_query_zone_info(ns, lbaf, &zi); 2085 if (ret < 0) 2086 goto out; 2087 } 2088 2089 blk_mq_freeze_queue(ns->disk->queue); 2090 ns->head->lba_shift = id->lbaf[lbaf].ds; 2091 ns->head->nuse = le64_to_cpu(id->nuse); 2092 capacity = nvme_lba_to_sect(ns->head, le64_to_cpu(id->nsze)); 2093 2094 lim = queue_limits_start_update(ns->disk->queue); 2095 nvme_set_ctrl_limits(ns->ctrl, &lim); 2096 nvme_configure_metadata(ns->ctrl, ns->head, id, nvm); 2097 nvme_set_chunk_sectors(ns, id, &lim); 2098 if (!nvme_update_disk_info(ns, id, &lim)) 2099 capacity = 0; 2100 nvme_config_discard(ns, &lim); 2101 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && 2102 ns->head->ids.csi == NVME_CSI_ZNS) 2103 nvme_update_zone_info(ns, &lim, &zi); 2104 ret = queue_limits_commit_update(ns->disk->queue, &lim); 2105 if (ret) { 2106 blk_mq_unfreeze_queue(ns->disk->queue); 2107 goto out; 2108 } 2109 2110 /* 2111 * Register a metadata profile for PI, or the plain non-integrity NVMe 2112 * metadata masquerading as Type 0 if supported, otherwise reject block 2113 * I/O to namespaces with metadata except when the namespace supports 2114 * PI, as it can strip/insert in that case. 2115 */ 2116 if (!nvme_init_integrity(ns->disk, ns->head)) 2117 capacity = 0; 2118 2119 set_capacity_and_notify(ns->disk, capacity); 2120 2121 /* 2122 * Only set the DEAC bit if the device guarantees that reads from 2123 * deallocated data return zeroes. While the DEAC bit does not 2124 * require that, it must be a no-op if reads from deallocated data 2125 * do not return zeroes. 2126 */ 2127 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) 2128 ns->head->features |= NVME_NS_DEAC; 2129 set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info)); 2130 blk_queue_write_cache(ns->disk->queue, vwc, vwc); 2131 set_bit(NVME_NS_READY, &ns->flags); 2132 blk_mq_unfreeze_queue(ns->disk->queue); 2133 2134 if (blk_queue_is_zoned(ns->queue)) { 2135 ret = blk_revalidate_disk_zones(ns->disk); 2136 if (ret && !nvme_first_scan(ns->disk)) 2137 goto out; 2138 } 2139 2140 ret = 0; 2141 out: 2142 kfree(nvm); 2143 kfree(id); 2144 return ret; 2145 } 2146 2147 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) 2148 { 2149 bool unsupported = false; 2150 int ret; 2151 2152 switch (info->ids.csi) { 2153 case NVME_CSI_ZNS: 2154 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { 2155 dev_info(ns->ctrl->device, 2156 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", 2157 info->nsid); 2158 ret = nvme_update_ns_info_generic(ns, info); 2159 break; 2160 } 2161 ret = nvme_update_ns_info_block(ns, info); 2162 break; 2163 case NVME_CSI_NVM: 2164 ret = nvme_update_ns_info_block(ns, info); 2165 break; 2166 default: 2167 dev_info(ns->ctrl->device, 2168 "block device for nsid %u not supported (csi %u)\n", 2169 info->nsid, info->ids.csi); 2170 ret = nvme_update_ns_info_generic(ns, info); 2171 break; 2172 } 2173 2174 /* 2175 * If probing fails due an unsupported feature, hide the block device, 2176 * but still allow other access. 2177 */ 2178 if (ret == -ENODEV) { 2179 ns->disk->flags |= GENHD_FL_HIDDEN; 2180 set_bit(NVME_NS_READY, &ns->flags); 2181 unsupported = true; 2182 ret = 0; 2183 } 2184 2185 if (!ret && nvme_ns_head_multipath(ns->head)) { 2186 struct queue_limits *ns_lim = &ns->disk->queue->limits; 2187 struct queue_limits lim; 2188 2189 blk_mq_freeze_queue(ns->head->disk->queue); 2190 if (unsupported) 2191 ns->head->disk->flags |= GENHD_FL_HIDDEN; 2192 else 2193 nvme_init_integrity(ns->head->disk, ns->head); 2194 set_capacity_and_notify(ns->head->disk, get_capacity(ns->disk)); 2195 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info)); 2196 nvme_mpath_revalidate_paths(ns); 2197 2198 /* 2199 * queue_limits mixes values that are the hardware limitations 2200 * for bio splitting with what is the device configuration. 2201 * 2202 * For NVMe the device configuration can change after e.g. a 2203 * Format command, and we really want to pick up the new format 2204 * value here. But we must still stack the queue limits to the 2205 * least common denominator for multipathing to split the bios 2206 * properly. 2207 * 2208 * To work around this, we explicitly set the device 2209 * configuration to those that we just queried, but only stack 2210 * the splitting limits in to make sure we still obey possibly 2211 * lower limitations of other controllers. 2212 */ 2213 lim = queue_limits_start_update(ns->head->disk->queue); 2214 lim.logical_block_size = ns_lim->logical_block_size; 2215 lim.physical_block_size = ns_lim->physical_block_size; 2216 lim.io_min = ns_lim->io_min; 2217 lim.io_opt = ns_lim->io_opt; 2218 queue_limits_stack_bdev(&lim, ns->disk->part0, 0, 2219 ns->head->disk->disk_name); 2220 ret = queue_limits_commit_update(ns->head->disk->queue, &lim); 2221 blk_mq_unfreeze_queue(ns->head->disk->queue); 2222 } 2223 2224 return ret; 2225 } 2226 2227 #ifdef CONFIG_BLK_SED_OPAL 2228 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, 2229 bool send) 2230 { 2231 struct nvme_ctrl *ctrl = data; 2232 struct nvme_command cmd = { }; 2233 2234 if (send) 2235 cmd.common.opcode = nvme_admin_security_send; 2236 else 2237 cmd.common.opcode = nvme_admin_security_recv; 2238 cmd.common.nsid = 0; 2239 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); 2240 cmd.common.cdw11 = cpu_to_le32(len); 2241 2242 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 2243 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); 2244 } 2245 2246 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2247 { 2248 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { 2249 if (!ctrl->opal_dev) 2250 ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit); 2251 else if (was_suspended) 2252 opal_unlock_from_suspend(ctrl->opal_dev); 2253 } else { 2254 free_opal_dev(ctrl->opal_dev); 2255 ctrl->opal_dev = NULL; 2256 } 2257 } 2258 #else 2259 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) 2260 { 2261 } 2262 #endif /* CONFIG_BLK_SED_OPAL */ 2263 2264 #ifdef CONFIG_BLK_DEV_ZONED 2265 static int nvme_report_zones(struct gendisk *disk, sector_t sector, 2266 unsigned int nr_zones, report_zones_cb cb, void *data) 2267 { 2268 return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb, 2269 data); 2270 } 2271 #else 2272 #define nvme_report_zones NULL 2273 #endif /* CONFIG_BLK_DEV_ZONED */ 2274 2275 const struct block_device_operations nvme_bdev_ops = { 2276 .owner = THIS_MODULE, 2277 .ioctl = nvme_ioctl, 2278 .compat_ioctl = blkdev_compat_ptr_ioctl, 2279 .open = nvme_open, 2280 .release = nvme_release, 2281 .getgeo = nvme_getgeo, 2282 .report_zones = nvme_report_zones, 2283 .pr_ops = &nvme_pr_ops, 2284 }; 2285 2286 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, 2287 u32 timeout, const char *op) 2288 { 2289 unsigned long timeout_jiffies = jiffies + timeout * HZ; 2290 u32 csts; 2291 int ret; 2292 2293 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { 2294 if (csts == ~0) 2295 return -ENODEV; 2296 if ((csts & mask) == val) 2297 break; 2298 2299 usleep_range(1000, 2000); 2300 if (fatal_signal_pending(current)) 2301 return -EINTR; 2302 if (time_after(jiffies, timeout_jiffies)) { 2303 dev_err(ctrl->device, 2304 "Device not ready; aborting %s, CSTS=0x%x\n", 2305 op, csts); 2306 return -ENODEV; 2307 } 2308 } 2309 2310 return ret; 2311 } 2312 2313 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) 2314 { 2315 int ret; 2316 2317 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; 2318 if (shutdown) 2319 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; 2320 else 2321 ctrl->ctrl_config &= ~NVME_CC_ENABLE; 2322 2323 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2324 if (ret) 2325 return ret; 2326 2327 if (shutdown) { 2328 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK, 2329 NVME_CSTS_SHST_CMPLT, 2330 ctrl->shutdown_timeout, "shutdown"); 2331 } 2332 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) 2333 msleep(NVME_QUIRK_DELAY_AMOUNT); 2334 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0, 2335 (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset"); 2336 } 2337 EXPORT_SYMBOL_GPL(nvme_disable_ctrl); 2338 2339 int nvme_enable_ctrl(struct nvme_ctrl *ctrl) 2340 { 2341 unsigned dev_page_min; 2342 u32 timeout; 2343 int ret; 2344 2345 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2346 if (ret) { 2347 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); 2348 return ret; 2349 } 2350 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; 2351 2352 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { 2353 dev_err(ctrl->device, 2354 "Minimum device page size %u too large for host (%u)\n", 2355 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); 2356 return -ENODEV; 2357 } 2358 2359 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) 2360 ctrl->ctrl_config = NVME_CC_CSS_CSI; 2361 else 2362 ctrl->ctrl_config = NVME_CC_CSS_NVM; 2363 2364 if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) 2365 ctrl->ctrl_config |= NVME_CC_CRIME; 2366 2367 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; 2368 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; 2369 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; 2370 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2371 if (ret) 2372 return ret; 2373 2374 /* Flush write to device (required if transport is PCI) */ 2375 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); 2376 if (ret) 2377 return ret; 2378 2379 /* CAP value may change after initial CC write */ 2380 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); 2381 if (ret) 2382 return ret; 2383 2384 timeout = NVME_CAP_TIMEOUT(ctrl->cap); 2385 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { 2386 u32 crto, ready_timeout; 2387 2388 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); 2389 if (ret) { 2390 dev_err(ctrl->device, "Reading CRTO failed (%d)\n", 2391 ret); 2392 return ret; 2393 } 2394 2395 /* 2396 * CRTO should always be greater or equal to CAP.TO, but some 2397 * devices are known to get this wrong. Use the larger of the 2398 * two values. 2399 */ 2400 if (ctrl->ctrl_config & NVME_CC_CRIME) 2401 ready_timeout = NVME_CRTO_CRIMT(crto); 2402 else 2403 ready_timeout = NVME_CRTO_CRWMT(crto); 2404 2405 if (ready_timeout < timeout) 2406 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", 2407 crto, ctrl->cap); 2408 else 2409 timeout = ready_timeout; 2410 } 2411 2412 ctrl->ctrl_config |= NVME_CC_ENABLE; 2413 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); 2414 if (ret) 2415 return ret; 2416 return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY, 2417 (timeout + 1) / 2, "initialisation"); 2418 } 2419 EXPORT_SYMBOL_GPL(nvme_enable_ctrl); 2420 2421 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) 2422 { 2423 __le64 ts; 2424 int ret; 2425 2426 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) 2427 return 0; 2428 2429 ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); 2430 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), 2431 NULL); 2432 if (ret) 2433 dev_warn_once(ctrl->device, 2434 "could not set timestamp (%d)\n", ret); 2435 return ret; 2436 } 2437 2438 static int nvme_configure_host_options(struct nvme_ctrl *ctrl) 2439 { 2440 struct nvme_feat_host_behavior *host; 2441 u8 acre = 0, lbafee = 0; 2442 int ret; 2443 2444 /* Don't bother enabling the feature if retry delay is not reported */ 2445 if (ctrl->crdt[0]) 2446 acre = NVME_ENABLE_ACRE; 2447 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) 2448 lbafee = NVME_ENABLE_LBAFEE; 2449 2450 if (!acre && !lbafee) 2451 return 0; 2452 2453 host = kzalloc(sizeof(*host), GFP_KERNEL); 2454 if (!host) 2455 return 0; 2456 2457 host->acre = acre; 2458 host->lbafee = lbafee; 2459 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, 2460 host, sizeof(*host), NULL); 2461 kfree(host); 2462 return ret; 2463 } 2464 2465 /* 2466 * The function checks whether the given total (exlat + enlat) latency of 2467 * a power state allows the latter to be used as an APST transition target. 2468 * It does so by comparing the latency to the primary and secondary latency 2469 * tolerances defined by module params. If there's a match, the corresponding 2470 * timeout value is returned and the matching tolerance index (1 or 2) is 2471 * reported. 2472 */ 2473 static bool nvme_apst_get_transition_time(u64 total_latency, 2474 u64 *transition_time, unsigned *last_index) 2475 { 2476 if (total_latency <= apst_primary_latency_tol_us) { 2477 if (*last_index == 1) 2478 return false; 2479 *last_index = 1; 2480 *transition_time = apst_primary_timeout_ms; 2481 return true; 2482 } 2483 if (apst_secondary_timeout_ms && 2484 total_latency <= apst_secondary_latency_tol_us) { 2485 if (*last_index <= 2) 2486 return false; 2487 *last_index = 2; 2488 *transition_time = apst_secondary_timeout_ms; 2489 return true; 2490 } 2491 return false; 2492 } 2493 2494 /* 2495 * APST (Autonomous Power State Transition) lets us program a table of power 2496 * state transitions that the controller will perform automatically. 2497 * 2498 * Depending on module params, one of the two supported techniques will be used: 2499 * 2500 * - If the parameters provide explicit timeouts and tolerances, they will be 2501 * used to build a table with up to 2 non-operational states to transition to. 2502 * The default parameter values were selected based on the values used by 2503 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic 2504 * regeneration of the APST table in the event of switching between external 2505 * and battery power, the timeouts and tolerances reflect a compromise 2506 * between values used by Microsoft for AC and battery scenarios. 2507 * - If not, we'll configure the table with a simple heuristic: we are willing 2508 * to spend at most 2% of the time transitioning between power states. 2509 * Therefore, when running in any given state, we will enter the next 2510 * lower-power non-operational state after waiting 50 * (enlat + exlat) 2511 * microseconds, as long as that state's exit latency is under the requested 2512 * maximum latency. 2513 * 2514 * We will not autonomously enter any non-operational state for which the total 2515 * latency exceeds ps_max_latency_us. 2516 * 2517 * Users can set ps_max_latency_us to zero to turn off APST. 2518 */ 2519 static int nvme_configure_apst(struct nvme_ctrl *ctrl) 2520 { 2521 struct nvme_feat_auto_pst *table; 2522 unsigned apste = 0; 2523 u64 max_lat_us = 0; 2524 __le64 target = 0; 2525 int max_ps = -1; 2526 int state; 2527 int ret; 2528 unsigned last_lt_index = UINT_MAX; 2529 2530 /* 2531 * If APST isn't supported or if we haven't been initialized yet, 2532 * then don't do anything. 2533 */ 2534 if (!ctrl->apsta) 2535 return 0; 2536 2537 if (ctrl->npss > 31) { 2538 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); 2539 return 0; 2540 } 2541 2542 table = kzalloc(sizeof(*table), GFP_KERNEL); 2543 if (!table) 2544 return 0; 2545 2546 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { 2547 /* Turn off APST. */ 2548 dev_dbg(ctrl->device, "APST disabled\n"); 2549 goto done; 2550 } 2551 2552 /* 2553 * Walk through all states from lowest- to highest-power. 2554 * According to the spec, lower-numbered states use more power. NPSS, 2555 * despite the name, is the index of the lowest-power state, not the 2556 * number of states. 2557 */ 2558 for (state = (int)ctrl->npss; state >= 0; state--) { 2559 u64 total_latency_us, exit_latency_us, transition_ms; 2560 2561 if (target) 2562 table->entries[state] = target; 2563 2564 /* 2565 * Don't allow transitions to the deepest state if it's quirked 2566 * off. 2567 */ 2568 if (state == ctrl->npss && 2569 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) 2570 continue; 2571 2572 /* 2573 * Is this state a useful non-operational state for higher-power 2574 * states to autonomously transition to? 2575 */ 2576 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) 2577 continue; 2578 2579 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); 2580 if (exit_latency_us > ctrl->ps_max_latency_us) 2581 continue; 2582 2583 total_latency_us = exit_latency_us + 2584 le32_to_cpu(ctrl->psd[state].entry_lat); 2585 2586 /* 2587 * This state is good. It can be used as the APST idle target 2588 * for higher power states. 2589 */ 2590 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { 2591 if (!nvme_apst_get_transition_time(total_latency_us, 2592 &transition_ms, &last_lt_index)) 2593 continue; 2594 } else { 2595 transition_ms = total_latency_us + 19; 2596 do_div(transition_ms, 20); 2597 if (transition_ms > (1 << 24) - 1) 2598 transition_ms = (1 << 24) - 1; 2599 } 2600 2601 target = cpu_to_le64((state << 3) | (transition_ms << 8)); 2602 if (max_ps == -1) 2603 max_ps = state; 2604 if (total_latency_us > max_lat_us) 2605 max_lat_us = total_latency_us; 2606 } 2607 2608 if (max_ps == -1) 2609 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); 2610 else 2611 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", 2612 max_ps, max_lat_us, (int)sizeof(*table), table); 2613 apste = 1; 2614 2615 done: 2616 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, 2617 table, sizeof(*table), NULL); 2618 if (ret) 2619 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); 2620 kfree(table); 2621 return ret; 2622 } 2623 2624 static void nvme_set_latency_tolerance(struct device *dev, s32 val) 2625 { 2626 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); 2627 u64 latency; 2628 2629 switch (val) { 2630 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: 2631 case PM_QOS_LATENCY_ANY: 2632 latency = U64_MAX; 2633 break; 2634 2635 default: 2636 latency = val; 2637 } 2638 2639 if (ctrl->ps_max_latency_us != latency) { 2640 ctrl->ps_max_latency_us = latency; 2641 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 2642 nvme_configure_apst(ctrl); 2643 } 2644 } 2645 2646 struct nvme_core_quirk_entry { 2647 /* 2648 * NVMe model and firmware strings are padded with spaces. For 2649 * simplicity, strings in the quirk table are padded with NULLs 2650 * instead. 2651 */ 2652 u16 vid; 2653 const char *mn; 2654 const char *fr; 2655 unsigned long quirks; 2656 }; 2657 2658 static const struct nvme_core_quirk_entry core_quirks[] = { 2659 { 2660 /* 2661 * This Toshiba device seems to die using any APST states. See: 2662 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 2663 */ 2664 .vid = 0x1179, 2665 .mn = "THNSF5256GPUK TOSHIBA", 2666 .quirks = NVME_QUIRK_NO_APST, 2667 }, 2668 { 2669 /* 2670 * This LiteON CL1-3D*-Q11 firmware version has a race 2671 * condition associated with actions related to suspend to idle 2672 * LiteON has resolved the problem in future firmware 2673 */ 2674 .vid = 0x14a4, 2675 .fr = "22301111", 2676 .quirks = NVME_QUIRK_SIMPLE_SUSPEND, 2677 }, 2678 { 2679 /* 2680 * This Kioxia CD6-V Series / HPE PE8030 device times out and 2681 * aborts I/O during any load, but more easily reproducible 2682 * with discards (fstrim). 2683 * 2684 * The device is left in a state where it is also not possible 2685 * to use "nvme set-feature" to disable APST, but booting with 2686 * nvme_core.default_ps_max_latency=0 works. 2687 */ 2688 .vid = 0x1e0f, 2689 .mn = "KCD6XVUL6T40", 2690 .quirks = NVME_QUIRK_NO_APST, 2691 }, 2692 { 2693 /* 2694 * The external Samsung X5 SSD fails initialization without a 2695 * delay before checking if it is ready and has a whole set of 2696 * other problems. To make this even more interesting, it 2697 * shares the PCI ID with internal Samsung 970 Evo Plus that 2698 * does not need or want these quirks. 2699 */ 2700 .vid = 0x144d, 2701 .mn = "Samsung Portable SSD X5", 2702 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | 2703 NVME_QUIRK_NO_DEEPEST_PS | 2704 NVME_QUIRK_IGNORE_DEV_SUBNQN, 2705 } 2706 }; 2707 2708 /* match is null-terminated but idstr is space-padded. */ 2709 static bool string_matches(const char *idstr, const char *match, size_t len) 2710 { 2711 size_t matchlen; 2712 2713 if (!match) 2714 return true; 2715 2716 matchlen = strlen(match); 2717 WARN_ON_ONCE(matchlen > len); 2718 2719 if (memcmp(idstr, match, matchlen)) 2720 return false; 2721 2722 for (; matchlen < len; matchlen++) 2723 if (idstr[matchlen] != ' ') 2724 return false; 2725 2726 return true; 2727 } 2728 2729 static bool quirk_matches(const struct nvme_id_ctrl *id, 2730 const struct nvme_core_quirk_entry *q) 2731 { 2732 return q->vid == le16_to_cpu(id->vid) && 2733 string_matches(id->mn, q->mn, sizeof(id->mn)) && 2734 string_matches(id->fr, q->fr, sizeof(id->fr)); 2735 } 2736 2737 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, 2738 struct nvme_id_ctrl *id) 2739 { 2740 size_t nqnlen; 2741 int off; 2742 2743 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { 2744 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE); 2745 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { 2746 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); 2747 return; 2748 } 2749 2750 if (ctrl->vs >= NVME_VS(1, 2, 1)) 2751 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); 2752 } 2753 2754 /* 2755 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe 2756 * Base Specification 2.0. It is slightly different from the format 2757 * specified there due to historic reasons, and we can't change it now. 2758 */ 2759 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE, 2760 "nqn.2014.08.org.nvmexpress:%04x%04x", 2761 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); 2762 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); 2763 off += sizeof(id->sn); 2764 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); 2765 off += sizeof(id->mn); 2766 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); 2767 } 2768 2769 static void nvme_release_subsystem(struct device *dev) 2770 { 2771 struct nvme_subsystem *subsys = 2772 container_of(dev, struct nvme_subsystem, dev); 2773 2774 if (subsys->instance >= 0) 2775 ida_free(&nvme_instance_ida, subsys->instance); 2776 kfree(subsys); 2777 } 2778 2779 static void nvme_destroy_subsystem(struct kref *ref) 2780 { 2781 struct nvme_subsystem *subsys = 2782 container_of(ref, struct nvme_subsystem, ref); 2783 2784 mutex_lock(&nvme_subsystems_lock); 2785 list_del(&subsys->entry); 2786 mutex_unlock(&nvme_subsystems_lock); 2787 2788 ida_destroy(&subsys->ns_ida); 2789 device_del(&subsys->dev); 2790 put_device(&subsys->dev); 2791 } 2792 2793 static void nvme_put_subsystem(struct nvme_subsystem *subsys) 2794 { 2795 kref_put(&subsys->ref, nvme_destroy_subsystem); 2796 } 2797 2798 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) 2799 { 2800 struct nvme_subsystem *subsys; 2801 2802 lockdep_assert_held(&nvme_subsystems_lock); 2803 2804 /* 2805 * Fail matches for discovery subsystems. This results 2806 * in each discovery controller bound to a unique subsystem. 2807 * This avoids issues with validating controller values 2808 * that can only be true when there is a single unique subsystem. 2809 * There may be multiple and completely independent entities 2810 * that provide discovery controllers. 2811 */ 2812 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) 2813 return NULL; 2814 2815 list_for_each_entry(subsys, &nvme_subsystems, entry) { 2816 if (strcmp(subsys->subnqn, subsysnqn)) 2817 continue; 2818 if (!kref_get_unless_zero(&subsys->ref)) 2819 continue; 2820 return subsys; 2821 } 2822 2823 return NULL; 2824 } 2825 2826 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) 2827 { 2828 return ctrl->opts && ctrl->opts->discovery_nqn; 2829 } 2830 2831 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, 2832 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2833 { 2834 struct nvme_ctrl *tmp; 2835 2836 lockdep_assert_held(&nvme_subsystems_lock); 2837 2838 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { 2839 if (nvme_state_terminal(tmp)) 2840 continue; 2841 2842 if (tmp->cntlid == ctrl->cntlid) { 2843 dev_err(ctrl->device, 2844 "Duplicate cntlid %u with %s, subsys %s, rejecting\n", 2845 ctrl->cntlid, dev_name(tmp->device), 2846 subsys->subnqn); 2847 return false; 2848 } 2849 2850 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || 2851 nvme_discovery_ctrl(ctrl)) 2852 continue; 2853 2854 dev_err(ctrl->device, 2855 "Subsystem does not support multiple controllers\n"); 2856 return false; 2857 } 2858 2859 return true; 2860 } 2861 2862 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 2863 { 2864 struct nvme_subsystem *subsys, *found; 2865 int ret; 2866 2867 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); 2868 if (!subsys) 2869 return -ENOMEM; 2870 2871 subsys->instance = -1; 2872 mutex_init(&subsys->lock); 2873 kref_init(&subsys->ref); 2874 INIT_LIST_HEAD(&subsys->ctrls); 2875 INIT_LIST_HEAD(&subsys->nsheads); 2876 nvme_init_subnqn(subsys, ctrl, id); 2877 memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); 2878 memcpy(subsys->model, id->mn, sizeof(subsys->model)); 2879 subsys->vendor_id = le16_to_cpu(id->vid); 2880 subsys->cmic = id->cmic; 2881 2882 /* Versions prior to 1.4 don't necessarily report a valid type */ 2883 if (id->cntrltype == NVME_CTRL_DISC || 2884 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) 2885 subsys->subtype = NVME_NQN_DISC; 2886 else 2887 subsys->subtype = NVME_NQN_NVME; 2888 2889 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { 2890 dev_err(ctrl->device, 2891 "Subsystem %s is not a discovery controller", 2892 subsys->subnqn); 2893 kfree(subsys); 2894 return -EINVAL; 2895 } 2896 subsys->awupf = le16_to_cpu(id->awupf); 2897 nvme_mpath_default_iopolicy(subsys); 2898 2899 subsys->dev.class = &nvme_subsys_class; 2900 subsys->dev.release = nvme_release_subsystem; 2901 subsys->dev.groups = nvme_subsys_attrs_groups; 2902 dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance); 2903 device_initialize(&subsys->dev); 2904 2905 mutex_lock(&nvme_subsystems_lock); 2906 found = __nvme_find_get_subsystem(subsys->subnqn); 2907 if (found) { 2908 put_device(&subsys->dev); 2909 subsys = found; 2910 2911 if (!nvme_validate_cntlid(subsys, ctrl, id)) { 2912 ret = -EINVAL; 2913 goto out_put_subsystem; 2914 } 2915 } else { 2916 ret = device_add(&subsys->dev); 2917 if (ret) { 2918 dev_err(ctrl->device, 2919 "failed to register subsystem device.\n"); 2920 put_device(&subsys->dev); 2921 goto out_unlock; 2922 } 2923 ida_init(&subsys->ns_ida); 2924 list_add_tail(&subsys->entry, &nvme_subsystems); 2925 } 2926 2927 ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj, 2928 dev_name(ctrl->device)); 2929 if (ret) { 2930 dev_err(ctrl->device, 2931 "failed to create sysfs link from subsystem.\n"); 2932 goto out_put_subsystem; 2933 } 2934 2935 if (!found) 2936 subsys->instance = ctrl->instance; 2937 ctrl->subsys = subsys; 2938 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); 2939 mutex_unlock(&nvme_subsystems_lock); 2940 return 0; 2941 2942 out_put_subsystem: 2943 nvme_put_subsystem(subsys); 2944 out_unlock: 2945 mutex_unlock(&nvme_subsystems_lock); 2946 return ret; 2947 } 2948 2949 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, 2950 void *log, size_t size, u64 offset) 2951 { 2952 struct nvme_command c = { }; 2953 u32 dwlen = nvme_bytes_to_numd(size); 2954 2955 c.get_log_page.opcode = nvme_admin_get_log_page; 2956 c.get_log_page.nsid = cpu_to_le32(nsid); 2957 c.get_log_page.lid = log_page; 2958 c.get_log_page.lsp = lsp; 2959 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); 2960 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); 2961 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); 2962 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); 2963 c.get_log_page.csi = csi; 2964 2965 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); 2966 } 2967 2968 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, 2969 struct nvme_effects_log **log) 2970 { 2971 struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi); 2972 int ret; 2973 2974 if (cel) 2975 goto out; 2976 2977 cel = kzalloc(sizeof(*cel), GFP_KERNEL); 2978 if (!cel) 2979 return -ENOMEM; 2980 2981 ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi, 2982 cel, sizeof(*cel), 0); 2983 if (ret) { 2984 kfree(cel); 2985 return ret; 2986 } 2987 2988 xa_store(&ctrl->cels, csi, cel, GFP_KERNEL); 2989 out: 2990 *log = cel; 2991 return 0; 2992 } 2993 2994 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) 2995 { 2996 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; 2997 2998 if (check_shl_overflow(1U, units + page_shift - 9, &val)) 2999 return UINT_MAX; 3000 return val; 3001 } 3002 3003 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) 3004 { 3005 struct nvme_command c = { }; 3006 struct nvme_id_ctrl_nvm *id; 3007 int ret; 3008 3009 /* 3010 * Even though NVMe spec explicitly states that MDTS is not applicable 3011 * to the write-zeroes, we are cautious and limit the size to the 3012 * controllers max_hw_sectors value, which is based on the MDTS field 3013 * and possibly other limiting factors. 3014 */ 3015 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && 3016 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) 3017 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; 3018 else 3019 ctrl->max_zeroes_sectors = 0; 3020 3021 if (ctrl->subsys->subtype != NVME_NQN_NVME || 3022 nvme_ctrl_limited_cns(ctrl) || 3023 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) 3024 return 0; 3025 3026 id = kzalloc(sizeof(*id), GFP_KERNEL); 3027 if (!id) 3028 return -ENOMEM; 3029 3030 c.identify.opcode = nvme_admin_identify; 3031 c.identify.cns = NVME_ID_CNS_CS_CTRL; 3032 c.identify.csi = NVME_CSI_NVM; 3033 3034 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); 3035 if (ret) 3036 goto free_data; 3037 3038 ctrl->dmrl = id->dmrl; 3039 ctrl->dmrsl = le32_to_cpu(id->dmrsl); 3040 if (id->wzsl) 3041 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl); 3042 3043 free_data: 3044 if (ret > 0) 3045 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags); 3046 kfree(id); 3047 return ret; 3048 } 3049 3050 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) 3051 { 3052 struct nvme_effects_log *log = ctrl->effects; 3053 3054 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3055 NVME_CMD_EFFECTS_NCC | 3056 NVME_CMD_EFFECTS_CSE_MASK); 3057 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | 3058 NVME_CMD_EFFECTS_CSE_MASK); 3059 3060 /* 3061 * The spec says the result of a security receive command depends on 3062 * the previous security send command. As such, many vendors log this 3063 * command as one to submitted only when no other commands to the same 3064 * namespace are outstanding. The intention is to tell the host to 3065 * prevent mixing security send and receive. 3066 * 3067 * This driver can only enforce such exclusive access against IO 3068 * queues, though. We are not readily able to enforce such a rule for 3069 * two commands to the admin queue, which is the only queue that 3070 * matters for this command. 3071 * 3072 * Rather than blindly freezing the IO queues for this effect that 3073 * doesn't even apply to IO, mask it off. 3074 */ 3075 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); 3076 3077 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3078 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3079 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); 3080 } 3081 3082 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3083 { 3084 int ret = 0; 3085 3086 if (ctrl->effects) 3087 return 0; 3088 3089 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { 3090 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects); 3091 if (ret < 0) 3092 return ret; 3093 } 3094 3095 if (!ctrl->effects) { 3096 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL); 3097 if (!ctrl->effects) 3098 return -ENOMEM; 3099 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL); 3100 } 3101 3102 nvme_init_known_nvm_effects(ctrl); 3103 return 0; 3104 } 3105 3106 static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) 3107 { 3108 /* 3109 * In fabrics we need to verify the cntlid matches the 3110 * admin connect 3111 */ 3112 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { 3113 dev_err(ctrl->device, 3114 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", 3115 ctrl->cntlid, le16_to_cpu(id->cntlid)); 3116 return -EINVAL; 3117 } 3118 3119 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { 3120 dev_err(ctrl->device, 3121 "keep-alive support is mandatory for fabrics\n"); 3122 return -EINVAL; 3123 } 3124 3125 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { 3126 dev_err(ctrl->device, 3127 "I/O queue command capsule supported size %d < 4\n", 3128 ctrl->ioccsz); 3129 return -EINVAL; 3130 } 3131 3132 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { 3133 dev_err(ctrl->device, 3134 "I/O queue response capsule supported size %d < 1\n", 3135 ctrl->iorcsz); 3136 return -EINVAL; 3137 } 3138 3139 if (!ctrl->maxcmd) { 3140 dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); 3141 return -EINVAL; 3142 } 3143 3144 return 0; 3145 } 3146 3147 static int nvme_init_identify(struct nvme_ctrl *ctrl) 3148 { 3149 struct queue_limits lim; 3150 struct nvme_id_ctrl *id; 3151 u32 max_hw_sectors; 3152 bool prev_apst_enabled; 3153 int ret; 3154 3155 ret = nvme_identify_ctrl(ctrl, &id); 3156 if (ret) { 3157 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); 3158 return -EIO; 3159 } 3160 3161 if (!(ctrl->ops->flags & NVME_F_FABRICS)) 3162 ctrl->cntlid = le16_to_cpu(id->cntlid); 3163 3164 if (!ctrl->identified) { 3165 unsigned int i; 3166 3167 /* 3168 * Check for quirks. Quirk can depend on firmware version, 3169 * so, in principle, the set of quirks present can change 3170 * across a reset. As a possible future enhancement, we 3171 * could re-scan for quirks every time we reinitialize 3172 * the device, but we'd have to make sure that the driver 3173 * behaves intelligently if the quirks change. 3174 */ 3175 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { 3176 if (quirk_matches(id, &core_quirks[i])) 3177 ctrl->quirks |= core_quirks[i].quirks; 3178 } 3179 3180 ret = nvme_init_subsystem(ctrl, id); 3181 if (ret) 3182 goto out_free; 3183 3184 ret = nvme_init_effects(ctrl, id); 3185 if (ret) 3186 goto out_free; 3187 } 3188 memcpy(ctrl->subsys->firmware_rev, id->fr, 3189 sizeof(ctrl->subsys->firmware_rev)); 3190 3191 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { 3192 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); 3193 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; 3194 } 3195 3196 ctrl->crdt[0] = le16_to_cpu(id->crdt1); 3197 ctrl->crdt[1] = le16_to_cpu(id->crdt2); 3198 ctrl->crdt[2] = le16_to_cpu(id->crdt3); 3199 3200 ctrl->oacs = le16_to_cpu(id->oacs); 3201 ctrl->oncs = le16_to_cpu(id->oncs); 3202 ctrl->mtfa = le16_to_cpu(id->mtfa); 3203 ctrl->oaes = le32_to_cpu(id->oaes); 3204 ctrl->wctemp = le16_to_cpu(id->wctemp); 3205 ctrl->cctemp = le16_to_cpu(id->cctemp); 3206 3207 atomic_set(&ctrl->abort_limit, id->acl + 1); 3208 ctrl->vwc = id->vwc; 3209 if (id->mdts) 3210 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts); 3211 else 3212 max_hw_sectors = UINT_MAX; 3213 ctrl->max_hw_sectors = 3214 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); 3215 3216 lim = queue_limits_start_update(ctrl->admin_q); 3217 nvme_set_ctrl_limits(ctrl, &lim); 3218 ret = queue_limits_commit_update(ctrl->admin_q, &lim); 3219 if (ret) 3220 goto out_free; 3221 3222 ctrl->sgls = le32_to_cpu(id->sgls); 3223 ctrl->kas = le16_to_cpu(id->kas); 3224 ctrl->max_namespaces = le32_to_cpu(id->mnan); 3225 ctrl->ctratt = le32_to_cpu(id->ctratt); 3226 3227 ctrl->cntrltype = id->cntrltype; 3228 ctrl->dctype = id->dctype; 3229 3230 if (id->rtd3e) { 3231 /* us -> s */ 3232 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; 3233 3234 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, 3235 shutdown_timeout, 60); 3236 3237 if (ctrl->shutdown_timeout != shutdown_timeout) 3238 dev_info(ctrl->device, 3239 "D3 entry latency set to %u seconds\n", 3240 ctrl->shutdown_timeout); 3241 } else 3242 ctrl->shutdown_timeout = shutdown_timeout; 3243 3244 ctrl->npss = id->npss; 3245 ctrl->apsta = id->apsta; 3246 prev_apst_enabled = ctrl->apst_enabled; 3247 if (ctrl->quirks & NVME_QUIRK_NO_APST) { 3248 if (force_apst && id->apsta) { 3249 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); 3250 ctrl->apst_enabled = true; 3251 } else { 3252 ctrl->apst_enabled = false; 3253 } 3254 } else { 3255 ctrl->apst_enabled = id->apsta; 3256 } 3257 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); 3258 3259 if (ctrl->ops->flags & NVME_F_FABRICS) { 3260 ctrl->icdoff = le16_to_cpu(id->icdoff); 3261 ctrl->ioccsz = le32_to_cpu(id->ioccsz); 3262 ctrl->iorcsz = le32_to_cpu(id->iorcsz); 3263 ctrl->maxcmd = le16_to_cpu(id->maxcmd); 3264 3265 ret = nvme_check_ctrl_fabric_info(ctrl, id); 3266 if (ret) 3267 goto out_free; 3268 } else { 3269 ctrl->hmpre = le32_to_cpu(id->hmpre); 3270 ctrl->hmmin = le32_to_cpu(id->hmmin); 3271 ctrl->hmminds = le32_to_cpu(id->hmminds); 3272 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); 3273 } 3274 3275 ret = nvme_mpath_init_identify(ctrl, id); 3276 if (ret < 0) 3277 goto out_free; 3278 3279 if (ctrl->apst_enabled && !prev_apst_enabled) 3280 dev_pm_qos_expose_latency_tolerance(ctrl->device); 3281 else if (!ctrl->apst_enabled && prev_apst_enabled) 3282 dev_pm_qos_hide_latency_tolerance(ctrl->device); 3283 3284 out_free: 3285 kfree(id); 3286 return ret; 3287 } 3288 3289 /* 3290 * Initialize the cached copies of the Identify data and various controller 3291 * register in our nvme_ctrl structure. This should be called as soon as 3292 * the admin queue is fully up and running. 3293 */ 3294 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) 3295 { 3296 int ret; 3297 3298 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); 3299 if (ret) { 3300 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); 3301 return ret; 3302 } 3303 3304 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); 3305 3306 if (ctrl->vs >= NVME_VS(1, 1, 0)) 3307 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); 3308 3309 ret = nvme_init_identify(ctrl); 3310 if (ret) 3311 return ret; 3312 3313 ret = nvme_configure_apst(ctrl); 3314 if (ret < 0) 3315 return ret; 3316 3317 ret = nvme_configure_timestamp(ctrl); 3318 if (ret < 0) 3319 return ret; 3320 3321 ret = nvme_configure_host_options(ctrl); 3322 if (ret < 0) 3323 return ret; 3324 3325 nvme_configure_opal(ctrl, was_suspended); 3326 3327 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { 3328 /* 3329 * Do not return errors unless we are in a controller reset, 3330 * the controller works perfectly fine without hwmon. 3331 */ 3332 ret = nvme_hwmon_init(ctrl); 3333 if (ret == -EINTR) 3334 return ret; 3335 } 3336 3337 clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags); 3338 ctrl->identified = true; 3339 3340 nvme_start_keep_alive(ctrl); 3341 3342 return 0; 3343 } 3344 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); 3345 3346 static int nvme_dev_open(struct inode *inode, struct file *file) 3347 { 3348 struct nvme_ctrl *ctrl = 3349 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3350 3351 switch (nvme_ctrl_state(ctrl)) { 3352 case NVME_CTRL_LIVE: 3353 break; 3354 default: 3355 return -EWOULDBLOCK; 3356 } 3357 3358 nvme_get_ctrl(ctrl); 3359 if (!try_module_get(ctrl->ops->module)) { 3360 nvme_put_ctrl(ctrl); 3361 return -EINVAL; 3362 } 3363 3364 file->private_data = ctrl; 3365 return 0; 3366 } 3367 3368 static int nvme_dev_release(struct inode *inode, struct file *file) 3369 { 3370 struct nvme_ctrl *ctrl = 3371 container_of(inode->i_cdev, struct nvme_ctrl, cdev); 3372 3373 module_put(ctrl->ops->module); 3374 nvme_put_ctrl(ctrl); 3375 return 0; 3376 } 3377 3378 static const struct file_operations nvme_dev_fops = { 3379 .owner = THIS_MODULE, 3380 .open = nvme_dev_open, 3381 .release = nvme_dev_release, 3382 .unlocked_ioctl = nvme_dev_ioctl, 3383 .compat_ioctl = compat_ptr_ioctl, 3384 .uring_cmd = nvme_dev_uring_cmd, 3385 }; 3386 3387 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, 3388 unsigned nsid) 3389 { 3390 struct nvme_ns_head *h; 3391 3392 lockdep_assert_held(&ctrl->subsys->lock); 3393 3394 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { 3395 /* 3396 * Private namespaces can share NSIDs under some conditions. 3397 * In that case we can't use the same ns_head for namespaces 3398 * with the same NSID. 3399 */ 3400 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h)) 3401 continue; 3402 if (!list_empty(&h->list) && nvme_tryget_ns_head(h)) 3403 return h; 3404 } 3405 3406 return NULL; 3407 } 3408 3409 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, 3410 struct nvme_ns_ids *ids) 3411 { 3412 bool has_uuid = !uuid_is_null(&ids->uuid); 3413 bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid)); 3414 bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64)); 3415 struct nvme_ns_head *h; 3416 3417 lockdep_assert_held(&subsys->lock); 3418 3419 list_for_each_entry(h, &subsys->nsheads, entry) { 3420 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid)) 3421 return -EINVAL; 3422 if (has_nguid && 3423 memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0) 3424 return -EINVAL; 3425 if (has_eui64 && 3426 memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0) 3427 return -EINVAL; 3428 } 3429 3430 return 0; 3431 } 3432 3433 static void nvme_cdev_rel(struct device *dev) 3434 { 3435 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); 3436 } 3437 3438 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) 3439 { 3440 cdev_device_del(cdev, cdev_device); 3441 put_device(cdev_device); 3442 } 3443 3444 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, 3445 const struct file_operations *fops, struct module *owner) 3446 { 3447 int minor, ret; 3448 3449 minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL); 3450 if (minor < 0) 3451 return minor; 3452 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); 3453 cdev_device->class = &nvme_ns_chr_class; 3454 cdev_device->release = nvme_cdev_rel; 3455 device_initialize(cdev_device); 3456 cdev_init(cdev, fops); 3457 cdev->owner = owner; 3458 ret = cdev_device_add(cdev, cdev_device); 3459 if (ret) 3460 put_device(cdev_device); 3461 3462 return ret; 3463 } 3464 3465 static int nvme_ns_chr_open(struct inode *inode, struct file *file) 3466 { 3467 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3468 } 3469 3470 static int nvme_ns_chr_release(struct inode *inode, struct file *file) 3471 { 3472 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); 3473 return 0; 3474 } 3475 3476 static const struct file_operations nvme_ns_chr_fops = { 3477 .owner = THIS_MODULE, 3478 .open = nvme_ns_chr_open, 3479 .release = nvme_ns_chr_release, 3480 .unlocked_ioctl = nvme_ns_chr_ioctl, 3481 .compat_ioctl = compat_ptr_ioctl, 3482 .uring_cmd = nvme_ns_chr_uring_cmd, 3483 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, 3484 }; 3485 3486 static int nvme_add_ns_cdev(struct nvme_ns *ns) 3487 { 3488 int ret; 3489 3490 ns->cdev_device.parent = ns->ctrl->device; 3491 ret = dev_set_name(&ns->cdev_device, "ng%dn%d", 3492 ns->ctrl->instance, ns->head->instance); 3493 if (ret) 3494 return ret; 3495 3496 return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops, 3497 ns->ctrl->ops->module); 3498 } 3499 3500 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, 3501 struct nvme_ns_info *info) 3502 { 3503 struct nvme_ns_head *head; 3504 size_t size = sizeof(*head); 3505 int ret = -ENOMEM; 3506 3507 #ifdef CONFIG_NVME_MULTIPATH 3508 size += num_possible_nodes() * sizeof(struct nvme_ns *); 3509 #endif 3510 3511 head = kzalloc(size, GFP_KERNEL); 3512 if (!head) 3513 goto out; 3514 ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL); 3515 if (ret < 0) 3516 goto out_free_head; 3517 head->instance = ret; 3518 INIT_LIST_HEAD(&head->list); 3519 ret = init_srcu_struct(&head->srcu); 3520 if (ret) 3521 goto out_ida_remove; 3522 head->subsys = ctrl->subsys; 3523 head->ns_id = info->nsid; 3524 head->ids = info->ids; 3525 head->shared = info->is_shared; 3526 ratelimit_state_init(&head->rs_nuse, 5 * HZ, 1); 3527 ratelimit_set_flags(&head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); 3528 kref_init(&head->ref); 3529 3530 if (head->ids.csi) { 3531 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects); 3532 if (ret) 3533 goto out_cleanup_srcu; 3534 } else 3535 head->effects = ctrl->effects; 3536 3537 ret = nvme_mpath_alloc_disk(ctrl, head); 3538 if (ret) 3539 goto out_cleanup_srcu; 3540 3541 list_add_tail(&head->entry, &ctrl->subsys->nsheads); 3542 3543 kref_get(&ctrl->subsys->ref); 3544 3545 return head; 3546 out_cleanup_srcu: 3547 cleanup_srcu_struct(&head->srcu); 3548 out_ida_remove: 3549 ida_free(&ctrl->subsys->ns_ida, head->instance); 3550 out_free_head: 3551 kfree(head); 3552 out: 3553 if (ret > 0) 3554 ret = blk_status_to_errno(nvme_error_status(ret)); 3555 return ERR_PTR(ret); 3556 } 3557 3558 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, 3559 struct nvme_ns_ids *ids) 3560 { 3561 struct nvme_subsystem *s; 3562 int ret = 0; 3563 3564 /* 3565 * Note that this check is racy as we try to avoid holding the global 3566 * lock over the whole ns_head creation. But it is only intended as 3567 * a sanity check anyway. 3568 */ 3569 mutex_lock(&nvme_subsystems_lock); 3570 list_for_each_entry(s, &nvme_subsystems, entry) { 3571 if (s == this) 3572 continue; 3573 mutex_lock(&s->lock); 3574 ret = nvme_subsys_check_duplicate_ids(s, ids); 3575 mutex_unlock(&s->lock); 3576 if (ret) 3577 break; 3578 } 3579 mutex_unlock(&nvme_subsystems_lock); 3580 3581 return ret; 3582 } 3583 3584 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) 3585 { 3586 struct nvme_ctrl *ctrl = ns->ctrl; 3587 struct nvme_ns_head *head = NULL; 3588 int ret; 3589 3590 ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids); 3591 if (ret) { 3592 /* 3593 * We've found two different namespaces on two different 3594 * subsystems that report the same ID. This is pretty nasty 3595 * for anything that actually requires unique device 3596 * identification. In the kernel we need this for multipathing, 3597 * and in user space the /dev/disk/by-id/ links rely on it. 3598 * 3599 * If the device also claims to be multi-path capable back off 3600 * here now and refuse the probe the second device as this is a 3601 * recipe for data corruption. If not this is probably a 3602 * cheap consumer device if on the PCIe bus, so let the user 3603 * proceed and use the shiny toy, but warn that with changing 3604 * probing order (which due to our async probing could just be 3605 * device taking longer to startup) the other device could show 3606 * up at any time. 3607 */ 3608 nvme_print_device_info(ctrl); 3609 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ 3610 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && 3611 info->is_shared)) { 3612 dev_err(ctrl->device, 3613 "ignoring nsid %d because of duplicate IDs\n", 3614 info->nsid); 3615 return ret; 3616 } 3617 3618 dev_err(ctrl->device, 3619 "clearing duplicate IDs for nsid %d\n", info->nsid); 3620 dev_err(ctrl->device, 3621 "use of /dev/disk/by-id/ may cause data corruption\n"); 3622 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); 3623 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); 3624 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); 3625 ctrl->quirks |= NVME_QUIRK_BOGUS_NID; 3626 } 3627 3628 mutex_lock(&ctrl->subsys->lock); 3629 head = nvme_find_ns_head(ctrl, info->nsid); 3630 if (!head) { 3631 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids); 3632 if (ret) { 3633 dev_err(ctrl->device, 3634 "duplicate IDs in subsystem for nsid %d\n", 3635 info->nsid); 3636 goto out_unlock; 3637 } 3638 head = nvme_alloc_ns_head(ctrl, info); 3639 if (IS_ERR(head)) { 3640 ret = PTR_ERR(head); 3641 goto out_unlock; 3642 } 3643 } else { 3644 ret = -EINVAL; 3645 if (!info->is_shared || !head->shared) { 3646 dev_err(ctrl->device, 3647 "Duplicate unshared namespace %d\n", 3648 info->nsid); 3649 goto out_put_ns_head; 3650 } 3651 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) { 3652 dev_err(ctrl->device, 3653 "IDs don't match for shared namespace %d\n", 3654 info->nsid); 3655 goto out_put_ns_head; 3656 } 3657 3658 if (!multipath) { 3659 dev_warn(ctrl->device, 3660 "Found shared namespace %d, but multipathing not supported.\n", 3661 info->nsid); 3662 dev_warn_once(ctrl->device, 3663 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0.\n"); 3664 } 3665 } 3666 3667 list_add_tail_rcu(&ns->siblings, &head->list); 3668 ns->head = head; 3669 mutex_unlock(&ctrl->subsys->lock); 3670 return 0; 3671 3672 out_put_ns_head: 3673 nvme_put_ns_head(head); 3674 out_unlock: 3675 mutex_unlock(&ctrl->subsys->lock); 3676 return ret; 3677 } 3678 3679 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3680 { 3681 struct nvme_ns *ns, *ret = NULL; 3682 3683 down_read(&ctrl->namespaces_rwsem); 3684 list_for_each_entry(ns, &ctrl->namespaces, list) { 3685 if (ns->head->ns_id == nsid) { 3686 if (!nvme_get_ns(ns)) 3687 continue; 3688 ret = ns; 3689 break; 3690 } 3691 if (ns->head->ns_id > nsid) 3692 break; 3693 } 3694 up_read(&ctrl->namespaces_rwsem); 3695 return ret; 3696 } 3697 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); 3698 3699 /* 3700 * Add the namespace to the controller list while keeping the list ordered. 3701 */ 3702 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) 3703 { 3704 struct nvme_ns *tmp; 3705 3706 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { 3707 if (tmp->head->ns_id < ns->head->ns_id) { 3708 list_add(&ns->list, &tmp->list); 3709 return; 3710 } 3711 } 3712 list_add(&ns->list, &ns->ctrl->namespaces); 3713 } 3714 3715 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) 3716 { 3717 struct nvme_ns *ns; 3718 struct gendisk *disk; 3719 int node = ctrl->numa_node; 3720 3721 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); 3722 if (!ns) 3723 return; 3724 3725 disk = blk_mq_alloc_disk(ctrl->tagset, NULL, ns); 3726 if (IS_ERR(disk)) 3727 goto out_free_ns; 3728 disk->fops = &nvme_bdev_ops; 3729 disk->private_data = ns; 3730 3731 ns->disk = disk; 3732 ns->queue = disk->queue; 3733 3734 if (ctrl->opts && ctrl->opts->data_digest) 3735 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue); 3736 3737 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue); 3738 if (ctrl->ops->supports_pci_p2pdma && 3739 ctrl->ops->supports_pci_p2pdma(ctrl)) 3740 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue); 3741 3742 ns->ctrl = ctrl; 3743 kref_init(&ns->kref); 3744 3745 if (nvme_init_ns_head(ns, info)) 3746 goto out_cleanup_disk; 3747 3748 /* 3749 * If multipathing is enabled, the device name for all disks and not 3750 * just those that represent shared namespaces needs to be based on the 3751 * subsystem instance. Using the controller instance for private 3752 * namespaces could lead to naming collisions between shared and private 3753 * namespaces if they don't use a common numbering scheme. 3754 * 3755 * If multipathing is not enabled, disk names must use the controller 3756 * instance as shared namespaces will show up as multiple block 3757 * devices. 3758 */ 3759 if (nvme_ns_head_multipath(ns->head)) { 3760 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance, 3761 ctrl->instance, ns->head->instance); 3762 disk->flags |= GENHD_FL_HIDDEN; 3763 } else if (multipath) { 3764 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, 3765 ns->head->instance); 3766 } else { 3767 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, 3768 ns->head->instance); 3769 } 3770 3771 if (nvme_update_ns_info(ns, info)) 3772 goto out_unlink_ns; 3773 3774 down_write(&ctrl->namespaces_rwsem); 3775 /* 3776 * Ensure that no namespaces are added to the ctrl list after the queues 3777 * are frozen, thereby avoiding a deadlock between scan and reset. 3778 */ 3779 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { 3780 up_write(&ctrl->namespaces_rwsem); 3781 goto out_unlink_ns; 3782 } 3783 nvme_ns_add_to_ctrl_list(ns); 3784 up_write(&ctrl->namespaces_rwsem); 3785 nvme_get_ctrl(ctrl); 3786 3787 if (device_add_disk(ctrl->device, ns->disk, nvme_ns_attr_groups)) 3788 goto out_cleanup_ns_from_list; 3789 3790 if (!nvme_ns_head_multipath(ns->head)) 3791 nvme_add_ns_cdev(ns); 3792 3793 nvme_mpath_add_disk(ns, info->anagrpid); 3794 nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name); 3795 3796 /* 3797 * Set ns->disk->device->driver_data to ns so we can access 3798 * ns->head->passthru_err_log_enabled in 3799 * nvme_io_passthru_err_log_enabled_[store | show](). 3800 */ 3801 dev_set_drvdata(disk_to_dev(ns->disk), ns); 3802 3803 return; 3804 3805 out_cleanup_ns_from_list: 3806 nvme_put_ctrl(ctrl); 3807 down_write(&ctrl->namespaces_rwsem); 3808 list_del_init(&ns->list); 3809 up_write(&ctrl->namespaces_rwsem); 3810 out_unlink_ns: 3811 mutex_lock(&ctrl->subsys->lock); 3812 list_del_rcu(&ns->siblings); 3813 if (list_empty(&ns->head->list)) 3814 list_del_init(&ns->head->entry); 3815 mutex_unlock(&ctrl->subsys->lock); 3816 nvme_put_ns_head(ns->head); 3817 out_cleanup_disk: 3818 put_disk(disk); 3819 out_free_ns: 3820 kfree(ns); 3821 } 3822 3823 static void nvme_ns_remove(struct nvme_ns *ns) 3824 { 3825 bool last_path = false; 3826 3827 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) 3828 return; 3829 3830 clear_bit(NVME_NS_READY, &ns->flags); 3831 set_capacity(ns->disk, 0); 3832 nvme_fault_inject_fini(&ns->fault_inject); 3833 3834 /* 3835 * Ensure that !NVME_NS_READY is seen by other threads to prevent 3836 * this ns going back into current_path. 3837 */ 3838 synchronize_srcu(&ns->head->srcu); 3839 3840 /* wait for concurrent submissions */ 3841 if (nvme_mpath_clear_current_path(ns)) 3842 synchronize_srcu(&ns->head->srcu); 3843 3844 mutex_lock(&ns->ctrl->subsys->lock); 3845 list_del_rcu(&ns->siblings); 3846 if (list_empty(&ns->head->list)) { 3847 list_del_init(&ns->head->entry); 3848 last_path = true; 3849 } 3850 mutex_unlock(&ns->ctrl->subsys->lock); 3851 3852 /* guarantee not available in head->list */ 3853 synchronize_srcu(&ns->head->srcu); 3854 3855 if (!nvme_ns_head_multipath(ns->head)) 3856 nvme_cdev_del(&ns->cdev, &ns->cdev_device); 3857 del_gendisk(ns->disk); 3858 3859 down_write(&ns->ctrl->namespaces_rwsem); 3860 list_del_init(&ns->list); 3861 up_write(&ns->ctrl->namespaces_rwsem); 3862 3863 if (last_path) 3864 nvme_mpath_shutdown_disk(ns->head); 3865 nvme_put_ns(ns); 3866 } 3867 3868 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) 3869 { 3870 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); 3871 3872 if (ns) { 3873 nvme_ns_remove(ns); 3874 nvme_put_ns(ns); 3875 } 3876 } 3877 3878 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) 3879 { 3880 int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; 3881 3882 if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) { 3883 dev_err(ns->ctrl->device, 3884 "identifiers changed for nsid %d\n", ns->head->ns_id); 3885 goto out; 3886 } 3887 3888 ret = nvme_update_ns_info(ns, info); 3889 out: 3890 /* 3891 * Only remove the namespace if we got a fatal error back from the 3892 * device, otherwise ignore the error and just move on. 3893 * 3894 * TODO: we should probably schedule a delayed retry here. 3895 */ 3896 if (ret > 0 && (ret & NVME_SC_DNR)) 3897 nvme_ns_remove(ns); 3898 } 3899 3900 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) 3901 { 3902 struct nvme_ns_info info = { .nsid = nsid }; 3903 struct nvme_ns *ns; 3904 int ret; 3905 3906 if (nvme_identify_ns_descs(ctrl, &info)) 3907 return; 3908 3909 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { 3910 dev_warn(ctrl->device, 3911 "command set not reported for nsid: %d\n", nsid); 3912 return; 3913 } 3914 3915 /* 3916 * If available try to use the Command Set Idependent Identify Namespace 3917 * data structure to find all the generic information that is needed to 3918 * set up a namespace. If not fall back to the legacy version. 3919 */ 3920 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || 3921 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) 3922 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info); 3923 else 3924 ret = nvme_ns_info_from_identify(ctrl, &info); 3925 3926 if (info.is_removed) 3927 nvme_ns_remove_by_nsid(ctrl, nsid); 3928 3929 /* 3930 * Ignore the namespace if it is not ready. We will get an AEN once it 3931 * becomes ready and restart the scan. 3932 */ 3933 if (ret || !info.is_ready) 3934 return; 3935 3936 ns = nvme_find_get_ns(ctrl, nsid); 3937 if (ns) { 3938 nvme_validate_ns(ns, &info); 3939 nvme_put_ns(ns); 3940 } else { 3941 nvme_alloc_ns(ctrl, &info); 3942 } 3943 } 3944 3945 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, 3946 unsigned nsid) 3947 { 3948 struct nvme_ns *ns, *next; 3949 LIST_HEAD(rm_list); 3950 3951 down_write(&ctrl->namespaces_rwsem); 3952 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { 3953 if (ns->head->ns_id > nsid) 3954 list_move_tail(&ns->list, &rm_list); 3955 } 3956 up_write(&ctrl->namespaces_rwsem); 3957 3958 list_for_each_entry_safe(ns, next, &rm_list, list) 3959 nvme_ns_remove(ns); 3960 3961 } 3962 3963 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) 3964 { 3965 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); 3966 __le32 *ns_list; 3967 u32 prev = 0; 3968 int ret = 0, i; 3969 3970 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); 3971 if (!ns_list) 3972 return -ENOMEM; 3973 3974 for (;;) { 3975 struct nvme_command cmd = { 3976 .identify.opcode = nvme_admin_identify, 3977 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, 3978 .identify.nsid = cpu_to_le32(prev), 3979 }; 3980 3981 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, 3982 NVME_IDENTIFY_DATA_SIZE); 3983 if (ret) { 3984 dev_warn(ctrl->device, 3985 "Identify NS List failed (status=0x%x)\n", ret); 3986 goto free; 3987 } 3988 3989 for (i = 0; i < nr_entries; i++) { 3990 u32 nsid = le32_to_cpu(ns_list[i]); 3991 3992 if (!nsid) /* end of the list? */ 3993 goto out; 3994 nvme_scan_ns(ctrl, nsid); 3995 while (++prev < nsid) 3996 nvme_ns_remove_by_nsid(ctrl, prev); 3997 } 3998 } 3999 out: 4000 nvme_remove_invalid_namespaces(ctrl, prev); 4001 free: 4002 kfree(ns_list); 4003 return ret; 4004 } 4005 4006 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) 4007 { 4008 struct nvme_id_ctrl *id; 4009 u32 nn, i; 4010 4011 if (nvme_identify_ctrl(ctrl, &id)) 4012 return; 4013 nn = le32_to_cpu(id->nn); 4014 kfree(id); 4015 4016 for (i = 1; i <= nn; i++) 4017 nvme_scan_ns(ctrl, i); 4018 4019 nvme_remove_invalid_namespaces(ctrl, nn); 4020 } 4021 4022 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) 4023 { 4024 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); 4025 __le32 *log; 4026 int error; 4027 4028 log = kzalloc(log_size, GFP_KERNEL); 4029 if (!log) 4030 return; 4031 4032 /* 4033 * We need to read the log to clear the AEN, but we don't want to rely 4034 * on it for the changed namespace information as userspace could have 4035 * raced with us in reading the log page, which could cause us to miss 4036 * updates. 4037 */ 4038 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, 4039 NVME_CSI_NVM, log, log_size, 0); 4040 if (error) 4041 dev_warn(ctrl->device, 4042 "reading changed ns log failed: %d\n", error); 4043 4044 kfree(log); 4045 } 4046 4047 static void nvme_scan_work(struct work_struct *work) 4048 { 4049 struct nvme_ctrl *ctrl = 4050 container_of(work, struct nvme_ctrl, scan_work); 4051 int ret; 4052 4053 /* No tagset on a live ctrl means IO queues could not created */ 4054 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) 4055 return; 4056 4057 /* 4058 * Identify controller limits can change at controller reset due to 4059 * new firmware download, even though it is not common we cannot ignore 4060 * such scenario. Controller's non-mdts limits are reported in the unit 4061 * of logical blocks that is dependent on the format of attached 4062 * namespace. Hence re-read the limits at the time of ns allocation. 4063 */ 4064 ret = nvme_init_non_mdts_limits(ctrl); 4065 if (ret < 0) { 4066 dev_warn(ctrl->device, 4067 "reading non-mdts-limits failed: %d\n", ret); 4068 return; 4069 } 4070 4071 if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) { 4072 dev_info(ctrl->device, "rescanning namespaces.\n"); 4073 nvme_clear_changed_ns_log(ctrl); 4074 } 4075 4076 mutex_lock(&ctrl->scan_lock); 4077 if (nvme_ctrl_limited_cns(ctrl)) { 4078 nvme_scan_ns_sequential(ctrl); 4079 } else { 4080 /* 4081 * Fall back to sequential scan if DNR is set to handle broken 4082 * devices which should support Identify NS List (as per the VS 4083 * they report) but don't actually support it. 4084 */ 4085 ret = nvme_scan_ns_list(ctrl); 4086 if (ret > 0 && ret & NVME_SC_DNR) 4087 nvme_scan_ns_sequential(ctrl); 4088 } 4089 mutex_unlock(&ctrl->scan_lock); 4090 } 4091 4092 /* 4093 * This function iterates the namespace list unlocked to allow recovery from 4094 * controller failure. It is up to the caller to ensure the namespace list is 4095 * not modified by scan work while this function is executing. 4096 */ 4097 void nvme_remove_namespaces(struct nvme_ctrl *ctrl) 4098 { 4099 struct nvme_ns *ns, *next; 4100 LIST_HEAD(ns_list); 4101 4102 /* 4103 * make sure to requeue I/O to all namespaces as these 4104 * might result from the scan itself and must complete 4105 * for the scan_work to make progress 4106 */ 4107 nvme_mpath_clear_ctrl_paths(ctrl); 4108 4109 /* 4110 * Unquiesce io queues so any pending IO won't hang, especially 4111 * those submitted from scan work 4112 */ 4113 nvme_unquiesce_io_queues(ctrl); 4114 4115 /* prevent racing with ns scanning */ 4116 flush_work(&ctrl->scan_work); 4117 4118 /* 4119 * The dead states indicates the controller was not gracefully 4120 * disconnected. In that case, we won't be able to flush any data while 4121 * removing the namespaces' disks; fail all the queues now to avoid 4122 * potentially having to clean up the failed sync later. 4123 */ 4124 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) 4125 nvme_mark_namespaces_dead(ctrl); 4126 4127 /* this is a no-op when called from the controller reset handler */ 4128 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); 4129 4130 down_write(&ctrl->namespaces_rwsem); 4131 list_splice_init(&ctrl->namespaces, &ns_list); 4132 up_write(&ctrl->namespaces_rwsem); 4133 4134 list_for_each_entry_safe(ns, next, &ns_list, list) 4135 nvme_ns_remove(ns); 4136 } 4137 EXPORT_SYMBOL_GPL(nvme_remove_namespaces); 4138 4139 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) 4140 { 4141 const struct nvme_ctrl *ctrl = 4142 container_of(dev, struct nvme_ctrl, ctrl_device); 4143 struct nvmf_ctrl_options *opts = ctrl->opts; 4144 int ret; 4145 4146 ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name); 4147 if (ret) 4148 return ret; 4149 4150 if (opts) { 4151 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr); 4152 if (ret) 4153 return ret; 4154 4155 ret = add_uevent_var(env, "NVME_TRSVCID=%s", 4156 opts->trsvcid ?: "none"); 4157 if (ret) 4158 return ret; 4159 4160 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s", 4161 opts->host_traddr ?: "none"); 4162 if (ret) 4163 return ret; 4164 4165 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s", 4166 opts->host_iface ?: "none"); 4167 } 4168 return ret; 4169 } 4170 4171 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) 4172 { 4173 char *envp[2] = { envdata, NULL }; 4174 4175 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4176 } 4177 4178 static void nvme_aen_uevent(struct nvme_ctrl *ctrl) 4179 { 4180 char *envp[2] = { NULL, NULL }; 4181 u32 aen_result = ctrl->aen_result; 4182 4183 ctrl->aen_result = 0; 4184 if (!aen_result) 4185 return; 4186 4187 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result); 4188 if (!envp[0]) 4189 return; 4190 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp); 4191 kfree(envp[0]); 4192 } 4193 4194 static void nvme_async_event_work(struct work_struct *work) 4195 { 4196 struct nvme_ctrl *ctrl = 4197 container_of(work, struct nvme_ctrl, async_event_work); 4198 4199 nvme_aen_uevent(ctrl); 4200 4201 /* 4202 * The transport drivers must guarantee AER submission here is safe by 4203 * flushing ctrl async_event_work after changing the controller state 4204 * from LIVE and before freeing the admin queue. 4205 */ 4206 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) 4207 ctrl->ops->submit_async_event(ctrl); 4208 } 4209 4210 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) 4211 { 4212 4213 u32 csts; 4214 4215 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) 4216 return false; 4217 4218 if (csts == ~0) 4219 return false; 4220 4221 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); 4222 } 4223 4224 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) 4225 { 4226 struct nvme_fw_slot_info_log *log; 4227 u8 next_fw_slot, cur_fw_slot; 4228 4229 log = kmalloc(sizeof(*log), GFP_KERNEL); 4230 if (!log) 4231 return; 4232 4233 if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM, 4234 log, sizeof(*log), 0)) { 4235 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); 4236 goto out_free_log; 4237 } 4238 4239 cur_fw_slot = log->afi & 0x7; 4240 next_fw_slot = (log->afi & 0x70) >> 4; 4241 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { 4242 dev_info(ctrl->device, 4243 "Firmware is activated after next Controller Level Reset\n"); 4244 goto out_free_log; 4245 } 4246 4247 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], 4248 sizeof(ctrl->subsys->firmware_rev)); 4249 4250 out_free_log: 4251 kfree(log); 4252 } 4253 4254 static void nvme_fw_act_work(struct work_struct *work) 4255 { 4256 struct nvme_ctrl *ctrl = container_of(work, 4257 struct nvme_ctrl, fw_act_work); 4258 unsigned long fw_act_timeout; 4259 4260 nvme_auth_stop(ctrl); 4261 4262 if (ctrl->mtfa) 4263 fw_act_timeout = jiffies + 4264 msecs_to_jiffies(ctrl->mtfa * 100); 4265 else 4266 fw_act_timeout = jiffies + 4267 msecs_to_jiffies(admin_timeout * 1000); 4268 4269 nvme_quiesce_io_queues(ctrl); 4270 while (nvme_ctrl_pp_status(ctrl)) { 4271 if (time_after(jiffies, fw_act_timeout)) { 4272 dev_warn(ctrl->device, 4273 "Fw activation timeout, reset controller\n"); 4274 nvme_try_sched_reset(ctrl); 4275 return; 4276 } 4277 msleep(100); 4278 } 4279 4280 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) 4281 return; 4282 4283 nvme_unquiesce_io_queues(ctrl); 4284 /* read FW slot information to clear the AER */ 4285 nvme_get_fw_slot_info(ctrl); 4286 4287 queue_work(nvme_wq, &ctrl->async_event_work); 4288 } 4289 4290 static u32 nvme_aer_type(u32 result) 4291 { 4292 return result & 0x7; 4293 } 4294 4295 static u32 nvme_aer_subtype(u32 result) 4296 { 4297 return (result & 0xff00) >> 8; 4298 } 4299 4300 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) 4301 { 4302 u32 aer_notice_type = nvme_aer_subtype(result); 4303 bool requeue = true; 4304 4305 switch (aer_notice_type) { 4306 case NVME_AER_NOTICE_NS_CHANGED: 4307 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events); 4308 nvme_queue_scan(ctrl); 4309 break; 4310 case NVME_AER_NOTICE_FW_ACT_STARTING: 4311 /* 4312 * We are (ab)using the RESETTING state to prevent subsequent 4313 * recovery actions from interfering with the controller's 4314 * firmware activation. 4315 */ 4316 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { 4317 requeue = false; 4318 queue_work(nvme_wq, &ctrl->fw_act_work); 4319 } 4320 break; 4321 #ifdef CONFIG_NVME_MULTIPATH 4322 case NVME_AER_NOTICE_ANA: 4323 if (!ctrl->ana_log_buf) 4324 break; 4325 queue_work(nvme_wq, &ctrl->ana_work); 4326 break; 4327 #endif 4328 case NVME_AER_NOTICE_DISC_CHANGED: 4329 ctrl->aen_result = result; 4330 break; 4331 default: 4332 dev_warn(ctrl->device, "async event result %08x\n", result); 4333 } 4334 return requeue; 4335 } 4336 4337 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) 4338 { 4339 dev_warn(ctrl->device, "resetting controller due to AER\n"); 4340 nvme_reset_ctrl(ctrl); 4341 } 4342 4343 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, 4344 volatile union nvme_result *res) 4345 { 4346 u32 result = le32_to_cpu(res->u32); 4347 u32 aer_type = nvme_aer_type(result); 4348 u32 aer_subtype = nvme_aer_subtype(result); 4349 bool requeue = true; 4350 4351 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) 4352 return; 4353 4354 trace_nvme_async_event(ctrl, result); 4355 switch (aer_type) { 4356 case NVME_AER_NOTICE: 4357 requeue = nvme_handle_aen_notice(ctrl, result); 4358 break; 4359 case NVME_AER_ERROR: 4360 /* 4361 * For a persistent internal error, don't run async_event_work 4362 * to submit a new AER. The controller reset will do it. 4363 */ 4364 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { 4365 nvme_handle_aer_persistent_error(ctrl); 4366 return; 4367 } 4368 fallthrough; 4369 case NVME_AER_SMART: 4370 case NVME_AER_CSS: 4371 case NVME_AER_VS: 4372 ctrl->aen_result = result; 4373 break; 4374 default: 4375 break; 4376 } 4377 4378 if (requeue) 4379 queue_work(nvme_wq, &ctrl->async_event_work); 4380 } 4381 EXPORT_SYMBOL_GPL(nvme_complete_async_event); 4382 4383 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4384 const struct blk_mq_ops *ops, unsigned int cmd_size) 4385 { 4386 struct queue_limits lim = {}; 4387 int ret; 4388 4389 memset(set, 0, sizeof(*set)); 4390 set->ops = ops; 4391 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; 4392 if (ctrl->ops->flags & NVME_F_FABRICS) 4393 /* Reserved for fabric connect and keep alive */ 4394 set->reserved_tags = 2; 4395 set->numa_node = ctrl->numa_node; 4396 set->flags = BLK_MQ_F_NO_SCHED; 4397 if (ctrl->ops->flags & NVME_F_BLOCKING) 4398 set->flags |= BLK_MQ_F_BLOCKING; 4399 set->cmd_size = cmd_size; 4400 set->driver_data = ctrl; 4401 set->nr_hw_queues = 1; 4402 set->timeout = NVME_ADMIN_TIMEOUT; 4403 ret = blk_mq_alloc_tag_set(set); 4404 if (ret) 4405 return ret; 4406 4407 ctrl->admin_q = blk_mq_alloc_queue(set, &lim, NULL); 4408 if (IS_ERR(ctrl->admin_q)) { 4409 ret = PTR_ERR(ctrl->admin_q); 4410 goto out_free_tagset; 4411 } 4412 4413 if (ctrl->ops->flags & NVME_F_FABRICS) { 4414 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); 4415 if (IS_ERR(ctrl->fabrics_q)) { 4416 ret = PTR_ERR(ctrl->fabrics_q); 4417 goto out_cleanup_admin_q; 4418 } 4419 } 4420 4421 ctrl->admin_tagset = set; 4422 return 0; 4423 4424 out_cleanup_admin_q: 4425 blk_mq_destroy_queue(ctrl->admin_q); 4426 blk_put_queue(ctrl->admin_q); 4427 out_free_tagset: 4428 blk_mq_free_tag_set(set); 4429 ctrl->admin_q = NULL; 4430 ctrl->fabrics_q = NULL; 4431 return ret; 4432 } 4433 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); 4434 4435 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) 4436 { 4437 blk_mq_destroy_queue(ctrl->admin_q); 4438 blk_put_queue(ctrl->admin_q); 4439 if (ctrl->ops->flags & NVME_F_FABRICS) { 4440 blk_mq_destroy_queue(ctrl->fabrics_q); 4441 blk_put_queue(ctrl->fabrics_q); 4442 } 4443 blk_mq_free_tag_set(ctrl->admin_tagset); 4444 } 4445 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); 4446 4447 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, 4448 const struct blk_mq_ops *ops, unsigned int nr_maps, 4449 unsigned int cmd_size) 4450 { 4451 int ret; 4452 4453 memset(set, 0, sizeof(*set)); 4454 set->ops = ops; 4455 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); 4456 /* 4457 * Some Apple controllers requires tags to be unique across admin and 4458 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. 4459 */ 4460 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) 4461 set->reserved_tags = NVME_AQ_DEPTH; 4462 else if (ctrl->ops->flags & NVME_F_FABRICS) 4463 /* Reserved for fabric connect */ 4464 set->reserved_tags = 1; 4465 set->numa_node = ctrl->numa_node; 4466 set->flags = BLK_MQ_F_SHOULD_MERGE; 4467 if (ctrl->ops->flags & NVME_F_BLOCKING) 4468 set->flags |= BLK_MQ_F_BLOCKING; 4469 set->cmd_size = cmd_size, 4470 set->driver_data = ctrl; 4471 set->nr_hw_queues = ctrl->queue_count - 1; 4472 set->timeout = NVME_IO_TIMEOUT; 4473 set->nr_maps = nr_maps; 4474 ret = blk_mq_alloc_tag_set(set); 4475 if (ret) 4476 return ret; 4477 4478 if (ctrl->ops->flags & NVME_F_FABRICS) { 4479 ctrl->connect_q = blk_mq_alloc_queue(set, NULL, NULL); 4480 if (IS_ERR(ctrl->connect_q)) { 4481 ret = PTR_ERR(ctrl->connect_q); 4482 goto out_free_tag_set; 4483 } 4484 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, 4485 ctrl->connect_q); 4486 } 4487 4488 ctrl->tagset = set; 4489 return 0; 4490 4491 out_free_tag_set: 4492 blk_mq_free_tag_set(set); 4493 ctrl->connect_q = NULL; 4494 return ret; 4495 } 4496 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); 4497 4498 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) 4499 { 4500 if (ctrl->ops->flags & NVME_F_FABRICS) { 4501 blk_mq_destroy_queue(ctrl->connect_q); 4502 blk_put_queue(ctrl->connect_q); 4503 } 4504 blk_mq_free_tag_set(ctrl->tagset); 4505 } 4506 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); 4507 4508 void nvme_stop_ctrl(struct nvme_ctrl *ctrl) 4509 { 4510 nvme_mpath_stop(ctrl); 4511 nvme_auth_stop(ctrl); 4512 nvme_stop_keep_alive(ctrl); 4513 nvme_stop_failfast_work(ctrl); 4514 flush_work(&ctrl->async_event_work); 4515 cancel_work_sync(&ctrl->fw_act_work); 4516 if (ctrl->ops->stop_ctrl) 4517 ctrl->ops->stop_ctrl(ctrl); 4518 } 4519 EXPORT_SYMBOL_GPL(nvme_stop_ctrl); 4520 4521 void nvme_start_ctrl(struct nvme_ctrl *ctrl) 4522 { 4523 nvme_enable_aen(ctrl); 4524 4525 /* 4526 * persistent discovery controllers need to send indication to userspace 4527 * to re-read the discovery log page to learn about possible changes 4528 * that were missed. We identify persistent discovery controllers by 4529 * checking that they started once before, hence are reconnecting back. 4530 */ 4531 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && 4532 nvme_discovery_ctrl(ctrl)) 4533 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover"); 4534 4535 if (ctrl->queue_count > 1) { 4536 nvme_queue_scan(ctrl); 4537 nvme_unquiesce_io_queues(ctrl); 4538 nvme_mpath_update(ctrl); 4539 } 4540 4541 nvme_change_uevent(ctrl, "NVME_EVENT=connected"); 4542 set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags); 4543 } 4544 EXPORT_SYMBOL_GPL(nvme_start_ctrl); 4545 4546 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) 4547 { 4548 nvme_hwmon_exit(ctrl); 4549 nvme_fault_inject_fini(&ctrl->fault_inject); 4550 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4551 cdev_device_del(&ctrl->cdev, ctrl->device); 4552 nvme_put_ctrl(ctrl); 4553 } 4554 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); 4555 4556 static void nvme_free_cels(struct nvme_ctrl *ctrl) 4557 { 4558 struct nvme_effects_log *cel; 4559 unsigned long i; 4560 4561 xa_for_each(&ctrl->cels, i, cel) { 4562 xa_erase(&ctrl->cels, i); 4563 kfree(cel); 4564 } 4565 4566 xa_destroy(&ctrl->cels); 4567 } 4568 4569 static void nvme_free_ctrl(struct device *dev) 4570 { 4571 struct nvme_ctrl *ctrl = 4572 container_of(dev, struct nvme_ctrl, ctrl_device); 4573 struct nvme_subsystem *subsys = ctrl->subsys; 4574 4575 if (!subsys || ctrl->instance != subsys->instance) 4576 ida_free(&nvme_instance_ida, ctrl->instance); 4577 key_put(ctrl->tls_key); 4578 nvme_free_cels(ctrl); 4579 nvme_mpath_uninit(ctrl); 4580 nvme_auth_stop(ctrl); 4581 nvme_auth_free(ctrl); 4582 __free_page(ctrl->discard_page); 4583 free_opal_dev(ctrl->opal_dev); 4584 4585 if (subsys) { 4586 mutex_lock(&nvme_subsystems_lock); 4587 list_del(&ctrl->subsys_entry); 4588 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device)); 4589 mutex_unlock(&nvme_subsystems_lock); 4590 } 4591 4592 ctrl->ops->free_ctrl(ctrl); 4593 4594 if (subsys) 4595 nvme_put_subsystem(subsys); 4596 } 4597 4598 /* 4599 * Initialize a NVMe controller structures. This needs to be called during 4600 * earliest initialization so that we have the initialized structured around 4601 * during probing. 4602 */ 4603 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, 4604 const struct nvme_ctrl_ops *ops, unsigned long quirks) 4605 { 4606 int ret; 4607 4608 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); 4609 ctrl->passthru_err_log_enabled = false; 4610 clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags); 4611 spin_lock_init(&ctrl->lock); 4612 mutex_init(&ctrl->scan_lock); 4613 INIT_LIST_HEAD(&ctrl->namespaces); 4614 xa_init(&ctrl->cels); 4615 init_rwsem(&ctrl->namespaces_rwsem); 4616 ctrl->dev = dev; 4617 ctrl->ops = ops; 4618 ctrl->quirks = quirks; 4619 ctrl->numa_node = NUMA_NO_NODE; 4620 INIT_WORK(&ctrl->scan_work, nvme_scan_work); 4621 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); 4622 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); 4623 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); 4624 init_waitqueue_head(&ctrl->state_wq); 4625 4626 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); 4627 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); 4628 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); 4629 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; 4630 ctrl->ka_last_check_time = jiffies; 4631 4632 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > 4633 PAGE_SIZE); 4634 ctrl->discard_page = alloc_page(GFP_KERNEL); 4635 if (!ctrl->discard_page) { 4636 ret = -ENOMEM; 4637 goto out; 4638 } 4639 4640 ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL); 4641 if (ret < 0) 4642 goto out; 4643 ctrl->instance = ret; 4644 4645 device_initialize(&ctrl->ctrl_device); 4646 ctrl->device = &ctrl->ctrl_device; 4647 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), 4648 ctrl->instance); 4649 ctrl->device->class = &nvme_class; 4650 ctrl->device->parent = ctrl->dev; 4651 if (ops->dev_attr_groups) 4652 ctrl->device->groups = ops->dev_attr_groups; 4653 else 4654 ctrl->device->groups = nvme_dev_attr_groups; 4655 ctrl->device->release = nvme_free_ctrl; 4656 dev_set_drvdata(ctrl->device, ctrl); 4657 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance); 4658 if (ret) 4659 goto out_release_instance; 4660 4661 nvme_get_ctrl(ctrl); 4662 cdev_init(&ctrl->cdev, &nvme_dev_fops); 4663 ctrl->cdev.owner = ops->module; 4664 ret = cdev_device_add(&ctrl->cdev, ctrl->device); 4665 if (ret) 4666 goto out_free_name; 4667 4668 /* 4669 * Initialize latency tolerance controls. The sysfs files won't 4670 * be visible to userspace unless the device actually supports APST. 4671 */ 4672 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; 4673 dev_pm_qos_update_user_latency_tolerance(ctrl->device, 4674 min(default_ps_max_latency_us, (unsigned long)S32_MAX)); 4675 4676 nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device)); 4677 nvme_mpath_init_ctrl(ctrl); 4678 ret = nvme_auth_init_ctrl(ctrl); 4679 if (ret) 4680 goto out_free_cdev; 4681 4682 return 0; 4683 out_free_cdev: 4684 nvme_fault_inject_fini(&ctrl->fault_inject); 4685 dev_pm_qos_hide_latency_tolerance(ctrl->device); 4686 cdev_device_del(&ctrl->cdev, ctrl->device); 4687 out_free_name: 4688 nvme_put_ctrl(ctrl); 4689 kfree_const(ctrl->device->kobj.name); 4690 out_release_instance: 4691 ida_free(&nvme_instance_ida, ctrl->instance); 4692 out: 4693 if (ctrl->discard_page) 4694 __free_page(ctrl->discard_page); 4695 return ret; 4696 } 4697 EXPORT_SYMBOL_GPL(nvme_init_ctrl); 4698 4699 /* let I/O to all namespaces fail in preparation for surprise removal */ 4700 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) 4701 { 4702 struct nvme_ns *ns; 4703 4704 down_read(&ctrl->namespaces_rwsem); 4705 list_for_each_entry(ns, &ctrl->namespaces, list) 4706 blk_mark_disk_dead(ns->disk); 4707 up_read(&ctrl->namespaces_rwsem); 4708 } 4709 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); 4710 4711 void nvme_unfreeze(struct nvme_ctrl *ctrl) 4712 { 4713 struct nvme_ns *ns; 4714 4715 down_read(&ctrl->namespaces_rwsem); 4716 list_for_each_entry(ns, &ctrl->namespaces, list) 4717 blk_mq_unfreeze_queue(ns->queue); 4718 up_read(&ctrl->namespaces_rwsem); 4719 clear_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4720 } 4721 EXPORT_SYMBOL_GPL(nvme_unfreeze); 4722 4723 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) 4724 { 4725 struct nvme_ns *ns; 4726 4727 down_read(&ctrl->namespaces_rwsem); 4728 list_for_each_entry(ns, &ctrl->namespaces, list) { 4729 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); 4730 if (timeout <= 0) 4731 break; 4732 } 4733 up_read(&ctrl->namespaces_rwsem); 4734 return timeout; 4735 } 4736 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); 4737 4738 void nvme_wait_freeze(struct nvme_ctrl *ctrl) 4739 { 4740 struct nvme_ns *ns; 4741 4742 down_read(&ctrl->namespaces_rwsem); 4743 list_for_each_entry(ns, &ctrl->namespaces, list) 4744 blk_mq_freeze_queue_wait(ns->queue); 4745 up_read(&ctrl->namespaces_rwsem); 4746 } 4747 EXPORT_SYMBOL_GPL(nvme_wait_freeze); 4748 4749 void nvme_start_freeze(struct nvme_ctrl *ctrl) 4750 { 4751 struct nvme_ns *ns; 4752 4753 set_bit(NVME_CTRL_FROZEN, &ctrl->flags); 4754 down_read(&ctrl->namespaces_rwsem); 4755 list_for_each_entry(ns, &ctrl->namespaces, list) 4756 blk_freeze_queue_start(ns->queue); 4757 up_read(&ctrl->namespaces_rwsem); 4758 } 4759 EXPORT_SYMBOL_GPL(nvme_start_freeze); 4760 4761 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) 4762 { 4763 if (!ctrl->tagset) 4764 return; 4765 if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4766 blk_mq_quiesce_tagset(ctrl->tagset); 4767 else 4768 blk_mq_wait_quiesce_done(ctrl->tagset); 4769 } 4770 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); 4771 4772 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) 4773 { 4774 if (!ctrl->tagset) 4775 return; 4776 if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags)) 4777 blk_mq_unquiesce_tagset(ctrl->tagset); 4778 } 4779 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); 4780 4781 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) 4782 { 4783 if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4784 blk_mq_quiesce_queue(ctrl->admin_q); 4785 else 4786 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set); 4787 } 4788 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); 4789 4790 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) 4791 { 4792 if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags)) 4793 blk_mq_unquiesce_queue(ctrl->admin_q); 4794 } 4795 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); 4796 4797 void nvme_sync_io_queues(struct nvme_ctrl *ctrl) 4798 { 4799 struct nvme_ns *ns; 4800 4801 down_read(&ctrl->namespaces_rwsem); 4802 list_for_each_entry(ns, &ctrl->namespaces, list) 4803 blk_sync_queue(ns->queue); 4804 up_read(&ctrl->namespaces_rwsem); 4805 } 4806 EXPORT_SYMBOL_GPL(nvme_sync_io_queues); 4807 4808 void nvme_sync_queues(struct nvme_ctrl *ctrl) 4809 { 4810 nvme_sync_io_queues(ctrl); 4811 if (ctrl->admin_q) 4812 blk_sync_queue(ctrl->admin_q); 4813 } 4814 EXPORT_SYMBOL_GPL(nvme_sync_queues); 4815 4816 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) 4817 { 4818 if (file->f_op != &nvme_dev_fops) 4819 return NULL; 4820 return file->private_data; 4821 } 4822 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); 4823 4824 /* 4825 * Check we didn't inadvertently grow the command structure sizes: 4826 */ 4827 static inline void _nvme_check_size(void) 4828 { 4829 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); 4830 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); 4831 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); 4832 BUILD_BUG_ON(sizeof(struct nvme_features) != 64); 4833 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); 4834 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); 4835 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); 4836 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); 4837 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); 4838 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); 4839 BUILD_BUG_ON(sizeof(struct nvme_command) != 64); 4840 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); 4841 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); 4842 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != 4843 NVME_IDENTIFY_DATA_SIZE); 4844 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); 4845 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); 4846 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); 4847 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); 4848 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); 4849 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); 4850 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); 4851 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); 4852 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); 4853 } 4854 4855 4856 static int __init nvme_core_init(void) 4857 { 4858 int result = -ENOMEM; 4859 4860 _nvme_check_size(); 4861 4862 nvme_wq = alloc_workqueue("nvme-wq", 4863 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4864 if (!nvme_wq) 4865 goto out; 4866 4867 nvme_reset_wq = alloc_workqueue("nvme-reset-wq", 4868 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4869 if (!nvme_reset_wq) 4870 goto destroy_wq; 4871 4872 nvme_delete_wq = alloc_workqueue("nvme-delete-wq", 4873 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); 4874 if (!nvme_delete_wq) 4875 goto destroy_reset_wq; 4876 4877 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, 4878 NVME_MINORS, "nvme"); 4879 if (result < 0) 4880 goto destroy_delete_wq; 4881 4882 result = class_register(&nvme_class); 4883 if (result) 4884 goto unregister_chrdev; 4885 4886 result = class_register(&nvme_subsys_class); 4887 if (result) 4888 goto destroy_class; 4889 4890 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, 4891 "nvme-generic"); 4892 if (result < 0) 4893 goto destroy_subsys_class; 4894 4895 result = class_register(&nvme_ns_chr_class); 4896 if (result) 4897 goto unregister_generic_ns; 4898 4899 result = nvme_init_auth(); 4900 if (result) 4901 goto destroy_ns_chr; 4902 return 0; 4903 4904 destroy_ns_chr: 4905 class_unregister(&nvme_ns_chr_class); 4906 unregister_generic_ns: 4907 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4908 destroy_subsys_class: 4909 class_unregister(&nvme_subsys_class); 4910 destroy_class: 4911 class_unregister(&nvme_class); 4912 unregister_chrdev: 4913 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4914 destroy_delete_wq: 4915 destroy_workqueue(nvme_delete_wq); 4916 destroy_reset_wq: 4917 destroy_workqueue(nvme_reset_wq); 4918 destroy_wq: 4919 destroy_workqueue(nvme_wq); 4920 out: 4921 return result; 4922 } 4923 4924 static void __exit nvme_core_exit(void) 4925 { 4926 nvme_exit_auth(); 4927 class_unregister(&nvme_ns_chr_class); 4928 class_unregister(&nvme_subsys_class); 4929 class_unregister(&nvme_class); 4930 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); 4931 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); 4932 destroy_workqueue(nvme_delete_wq); 4933 destroy_workqueue(nvme_reset_wq); 4934 destroy_workqueue(nvme_wq); 4935 ida_destroy(&nvme_ns_chr_minor_ida); 4936 ida_destroy(&nvme_instance_ida); 4937 } 4938 4939 MODULE_LICENSE("GPL"); 4940 MODULE_VERSION("1.0"); 4941 MODULE_DESCRIPTION("NVMe host core framework"); 4942 module_init(nvme_core_init); 4943 module_exit(nvme_core_exit); 4944