1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/scatterlist.h> 6 #include <linux/memregion.h> 7 #include <linux/highmem.h> 8 #include <linux/sched.h> 9 #include <linux/slab.h> 10 #include <linux/hash.h> 11 #include <linux/sort.h> 12 #include <linux/io.h> 13 #include <linux/nd.h> 14 #include "nd-core.h" 15 #include "nd.h" 16 17 /* 18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 19 * irrelevant. 20 */ 21 #include <linux/io-64-nonatomic-hi-lo.h> 22 23 static DEFINE_PER_CPU(int, flush_idx); 24 25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 26 struct nd_region_data *ndrd) 27 { 28 int i, j; 29 30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 32 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 33 struct resource *res = &nvdimm->flush_wpq[i]; 34 unsigned long pfn = PHYS_PFN(res->start); 35 void __iomem *flush_page; 36 37 /* check if flush hints share a page */ 38 for (j = 0; j < i; j++) { 39 struct resource *res_j = &nvdimm->flush_wpq[j]; 40 unsigned long pfn_j = PHYS_PFN(res_j->start); 41 42 if (pfn == pfn_j) 43 break; 44 } 45 46 if (j < i) 47 flush_page = (void __iomem *) ((unsigned long) 48 ndrd_get_flush_wpq(ndrd, dimm, j) 49 & PAGE_MASK); 50 else 51 flush_page = devm_nvdimm_ioremap(dev, 52 PFN_PHYS(pfn), PAGE_SIZE); 53 if (!flush_page) 54 return -ENXIO; 55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 56 + (res->start & ~PAGE_MASK)); 57 } 58 59 return 0; 60 } 61 62 int nd_region_activate(struct nd_region *nd_region) 63 { 64 int i, j, num_flush = 0; 65 struct nd_region_data *ndrd; 66 struct device *dev = &nd_region->dev; 67 size_t flush_data_size = sizeof(void *); 68 69 nvdimm_bus_lock(&nd_region->dev); 70 for (i = 0; i < nd_region->ndr_mappings; i++) { 71 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 72 struct nvdimm *nvdimm = nd_mapping->nvdimm; 73 74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 75 nvdimm_bus_unlock(&nd_region->dev); 76 return -EBUSY; 77 } 78 79 /* at least one null hint slot per-dimm for the "no-hint" case */ 80 flush_data_size += sizeof(void *); 81 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 82 if (!nvdimm->num_flush) 83 continue; 84 flush_data_size += nvdimm->num_flush * sizeof(void *); 85 } 86 nvdimm_bus_unlock(&nd_region->dev); 87 88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 89 if (!ndrd) 90 return -ENOMEM; 91 dev_set_drvdata(dev, ndrd); 92 93 if (!num_flush) 94 return 0; 95 96 ndrd->hints_shift = ilog2(num_flush); 97 for (i = 0; i < nd_region->ndr_mappings; i++) { 98 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 99 struct nvdimm *nvdimm = nd_mapping->nvdimm; 100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 101 102 if (rc) 103 return rc; 104 } 105 106 /* 107 * Clear out entries that are duplicates. This should prevent the 108 * extra flushings. 109 */ 110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 111 /* ignore if NULL already */ 112 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 113 continue; 114 115 for (j = i + 1; j < nd_region->ndr_mappings; j++) 116 if (ndrd_get_flush_wpq(ndrd, i, 0) == 117 ndrd_get_flush_wpq(ndrd, j, 0)) 118 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 119 } 120 121 return 0; 122 } 123 124 static void nd_region_release(struct device *dev) 125 { 126 struct nd_region *nd_region = to_nd_region(dev); 127 u16 i; 128 129 for (i = 0; i < nd_region->ndr_mappings; i++) { 130 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 131 struct nvdimm *nvdimm = nd_mapping->nvdimm; 132 133 put_device(&nvdimm->dev); 134 } 135 free_percpu(nd_region->lane); 136 if (!test_bit(ND_REGION_CXL, &nd_region->flags)) 137 memregion_free(nd_region->id); 138 kfree(nd_region); 139 } 140 141 struct nd_region *to_nd_region(struct device *dev) 142 { 143 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 144 145 WARN_ON(dev->type->release != nd_region_release); 146 return nd_region; 147 } 148 EXPORT_SYMBOL_GPL(to_nd_region); 149 150 struct device *nd_region_dev(struct nd_region *nd_region) 151 { 152 if (!nd_region) 153 return NULL; 154 return &nd_region->dev; 155 } 156 EXPORT_SYMBOL_GPL(nd_region_dev); 157 158 void *nd_region_provider_data(struct nd_region *nd_region) 159 { 160 return nd_region->provider_data; 161 } 162 EXPORT_SYMBOL_GPL(nd_region_provider_data); 163 164 /** 165 * nd_region_to_nstype() - region to an integer namespace type 166 * @nd_region: region-device to interrogate 167 * 168 * This is the 'nstype' attribute of a region as well, an input to the 169 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 170 * namespace devices with namespace drivers. 171 */ 172 int nd_region_to_nstype(struct nd_region *nd_region) 173 { 174 if (is_memory(&nd_region->dev)) { 175 u16 i, label; 176 177 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) { 178 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 179 struct nvdimm *nvdimm = nd_mapping->nvdimm; 180 181 if (test_bit(NDD_LABELING, &nvdimm->flags)) 182 label++; 183 } 184 if (label) 185 return ND_DEVICE_NAMESPACE_PMEM; 186 else 187 return ND_DEVICE_NAMESPACE_IO; 188 } 189 190 return 0; 191 } 192 EXPORT_SYMBOL(nd_region_to_nstype); 193 194 static unsigned long long region_size(struct nd_region *nd_region) 195 { 196 if (is_memory(&nd_region->dev)) { 197 return nd_region->ndr_size; 198 } else if (nd_region->ndr_mappings == 1) { 199 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 200 201 return nd_mapping->size; 202 } 203 204 return 0; 205 } 206 207 static ssize_t size_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 struct nd_region *nd_region = to_nd_region(dev); 211 212 return sprintf(buf, "%llu\n", region_size(nd_region)); 213 } 214 static DEVICE_ATTR_RO(size); 215 216 static ssize_t deep_flush_show(struct device *dev, 217 struct device_attribute *attr, char *buf) 218 { 219 struct nd_region *nd_region = to_nd_region(dev); 220 221 /* 222 * NOTE: in the nvdimm_has_flush() error case this attribute is 223 * not visible. 224 */ 225 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 226 } 227 228 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 229 const char *buf, size_t len) 230 { 231 bool flush; 232 int rc = strtobool(buf, &flush); 233 struct nd_region *nd_region = to_nd_region(dev); 234 235 if (rc) 236 return rc; 237 if (!flush) 238 return -EINVAL; 239 rc = nvdimm_flush(nd_region, NULL); 240 if (rc) 241 return rc; 242 243 return len; 244 } 245 static DEVICE_ATTR_RW(deep_flush); 246 247 static ssize_t mappings_show(struct device *dev, 248 struct device_attribute *attr, char *buf) 249 { 250 struct nd_region *nd_region = to_nd_region(dev); 251 252 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 253 } 254 static DEVICE_ATTR_RO(mappings); 255 256 static ssize_t nstype_show(struct device *dev, 257 struct device_attribute *attr, char *buf) 258 { 259 struct nd_region *nd_region = to_nd_region(dev); 260 261 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 262 } 263 static DEVICE_ATTR_RO(nstype); 264 265 static ssize_t set_cookie_show(struct device *dev, 266 struct device_attribute *attr, char *buf) 267 { 268 struct nd_region *nd_region = to_nd_region(dev); 269 struct nd_interleave_set *nd_set = nd_region->nd_set; 270 ssize_t rc = 0; 271 272 if (is_memory(dev) && nd_set) 273 /* pass, should be precluded by region_visible */; 274 else 275 return -ENXIO; 276 277 /* 278 * The cookie to show depends on which specification of the 279 * labels we are using. If there are not labels then default to 280 * the v1.1 namespace label cookie definition. To read all this 281 * data we need to wait for probing to settle. 282 */ 283 device_lock(dev); 284 nvdimm_bus_lock(dev); 285 wait_nvdimm_bus_probe_idle(dev); 286 if (nd_region->ndr_mappings) { 287 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 288 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 289 290 if (ndd) { 291 struct nd_namespace_index *nsindex; 292 293 nsindex = to_namespace_index(ndd, ndd->ns_current); 294 rc = sprintf(buf, "%#llx\n", 295 nd_region_interleave_set_cookie(nd_region, 296 nsindex)); 297 } 298 } 299 nvdimm_bus_unlock(dev); 300 device_unlock(dev); 301 302 if (rc) 303 return rc; 304 return sprintf(buf, "%#llx\n", nd_set->cookie1); 305 } 306 static DEVICE_ATTR_RO(set_cookie); 307 308 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 309 { 310 resource_size_t available; 311 int i; 312 313 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 314 315 available = 0; 316 for (i = 0; i < nd_region->ndr_mappings; i++) { 317 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 318 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 319 320 /* if a dimm is disabled the available capacity is zero */ 321 if (!ndd) 322 return 0; 323 324 available += nd_pmem_available_dpa(nd_region, nd_mapping); 325 } 326 327 return available; 328 } 329 330 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 331 { 332 resource_size_t avail = 0; 333 int i; 334 335 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 336 for (i = 0; i < nd_region->ndr_mappings; i++) { 337 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 338 339 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa( 340 nd_region, nd_mapping)); 341 } 342 return avail * nd_region->ndr_mappings; 343 } 344 345 static ssize_t available_size_show(struct device *dev, 346 struct device_attribute *attr, char *buf) 347 { 348 struct nd_region *nd_region = to_nd_region(dev); 349 unsigned long long available = 0; 350 351 /* 352 * Flush in-flight updates and grab a snapshot of the available 353 * size. Of course, this value is potentially invalidated the 354 * memory nvdimm_bus_lock() is dropped, but that's userspace's 355 * problem to not race itself. 356 */ 357 device_lock(dev); 358 nvdimm_bus_lock(dev); 359 wait_nvdimm_bus_probe_idle(dev); 360 available = nd_region_available_dpa(nd_region); 361 nvdimm_bus_unlock(dev); 362 device_unlock(dev); 363 364 return sprintf(buf, "%llu\n", available); 365 } 366 static DEVICE_ATTR_RO(available_size); 367 368 static ssize_t max_available_extent_show(struct device *dev, 369 struct device_attribute *attr, char *buf) 370 { 371 struct nd_region *nd_region = to_nd_region(dev); 372 unsigned long long available = 0; 373 374 device_lock(dev); 375 nvdimm_bus_lock(dev); 376 wait_nvdimm_bus_probe_idle(dev); 377 available = nd_region_allocatable_dpa(nd_region); 378 nvdimm_bus_unlock(dev); 379 device_unlock(dev); 380 381 return sprintf(buf, "%llu\n", available); 382 } 383 static DEVICE_ATTR_RO(max_available_extent); 384 385 static ssize_t init_namespaces_show(struct device *dev, 386 struct device_attribute *attr, char *buf) 387 { 388 struct nd_region_data *ndrd = dev_get_drvdata(dev); 389 ssize_t rc; 390 391 nvdimm_bus_lock(dev); 392 if (ndrd) 393 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 394 else 395 rc = -ENXIO; 396 nvdimm_bus_unlock(dev); 397 398 return rc; 399 } 400 static DEVICE_ATTR_RO(init_namespaces); 401 402 static ssize_t namespace_seed_show(struct device *dev, 403 struct device_attribute *attr, char *buf) 404 { 405 struct nd_region *nd_region = to_nd_region(dev); 406 ssize_t rc; 407 408 nvdimm_bus_lock(dev); 409 if (nd_region->ns_seed) 410 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 411 else 412 rc = sprintf(buf, "\n"); 413 nvdimm_bus_unlock(dev); 414 return rc; 415 } 416 static DEVICE_ATTR_RO(namespace_seed); 417 418 static ssize_t btt_seed_show(struct device *dev, 419 struct device_attribute *attr, char *buf) 420 { 421 struct nd_region *nd_region = to_nd_region(dev); 422 ssize_t rc; 423 424 nvdimm_bus_lock(dev); 425 if (nd_region->btt_seed) 426 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 427 else 428 rc = sprintf(buf, "\n"); 429 nvdimm_bus_unlock(dev); 430 431 return rc; 432 } 433 static DEVICE_ATTR_RO(btt_seed); 434 435 static ssize_t pfn_seed_show(struct device *dev, 436 struct device_attribute *attr, char *buf) 437 { 438 struct nd_region *nd_region = to_nd_region(dev); 439 ssize_t rc; 440 441 nvdimm_bus_lock(dev); 442 if (nd_region->pfn_seed) 443 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 444 else 445 rc = sprintf(buf, "\n"); 446 nvdimm_bus_unlock(dev); 447 448 return rc; 449 } 450 static DEVICE_ATTR_RO(pfn_seed); 451 452 static ssize_t dax_seed_show(struct device *dev, 453 struct device_attribute *attr, char *buf) 454 { 455 struct nd_region *nd_region = to_nd_region(dev); 456 ssize_t rc; 457 458 nvdimm_bus_lock(dev); 459 if (nd_region->dax_seed) 460 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 461 else 462 rc = sprintf(buf, "\n"); 463 nvdimm_bus_unlock(dev); 464 465 return rc; 466 } 467 static DEVICE_ATTR_RO(dax_seed); 468 469 static ssize_t read_only_show(struct device *dev, 470 struct device_attribute *attr, char *buf) 471 { 472 struct nd_region *nd_region = to_nd_region(dev); 473 474 return sprintf(buf, "%d\n", nd_region->ro); 475 } 476 477 static int revalidate_read_only(struct device *dev, void *data) 478 { 479 nd_device_notify(dev, NVDIMM_REVALIDATE_REGION); 480 return 0; 481 } 482 483 static ssize_t read_only_store(struct device *dev, 484 struct device_attribute *attr, const char *buf, size_t len) 485 { 486 bool ro; 487 int rc = strtobool(buf, &ro); 488 struct nd_region *nd_region = to_nd_region(dev); 489 490 if (rc) 491 return rc; 492 493 nd_region->ro = ro; 494 device_for_each_child(dev, NULL, revalidate_read_only); 495 return len; 496 } 497 static DEVICE_ATTR_RW(read_only); 498 499 static ssize_t align_show(struct device *dev, 500 struct device_attribute *attr, char *buf) 501 { 502 struct nd_region *nd_region = to_nd_region(dev); 503 504 return sprintf(buf, "%#lx\n", nd_region->align); 505 } 506 507 static ssize_t align_store(struct device *dev, 508 struct device_attribute *attr, const char *buf, size_t len) 509 { 510 struct nd_region *nd_region = to_nd_region(dev); 511 unsigned long val, dpa; 512 u32 remainder; 513 int rc; 514 515 rc = kstrtoul(buf, 0, &val); 516 if (rc) 517 return rc; 518 519 if (!nd_region->ndr_mappings) 520 return -ENXIO; 521 522 /* 523 * Ensure space-align is evenly divisible by the region 524 * interleave-width because the kernel typically has no facility 525 * to determine which DIMM(s), dimm-physical-addresses, would 526 * contribute to the tail capacity in system-physical-address 527 * space for the namespace. 528 */ 529 dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder); 530 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE 531 || val > region_size(nd_region) || remainder) 532 return -EINVAL; 533 534 /* 535 * Given that space allocation consults this value multiple 536 * times ensure it does not change for the duration of the 537 * allocation. 538 */ 539 nvdimm_bus_lock(dev); 540 nd_region->align = val; 541 nvdimm_bus_unlock(dev); 542 543 return len; 544 } 545 static DEVICE_ATTR_RW(align); 546 547 static ssize_t region_badblocks_show(struct device *dev, 548 struct device_attribute *attr, char *buf) 549 { 550 struct nd_region *nd_region = to_nd_region(dev); 551 ssize_t rc; 552 553 device_lock(dev); 554 if (dev->driver) 555 rc = badblocks_show(&nd_region->bb, buf, 0); 556 else 557 rc = -ENXIO; 558 device_unlock(dev); 559 560 return rc; 561 } 562 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 563 564 static ssize_t resource_show(struct device *dev, 565 struct device_attribute *attr, char *buf) 566 { 567 struct nd_region *nd_region = to_nd_region(dev); 568 569 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 570 } 571 static DEVICE_ATTR_ADMIN_RO(resource); 572 573 static ssize_t persistence_domain_show(struct device *dev, 574 struct device_attribute *attr, char *buf) 575 { 576 struct nd_region *nd_region = to_nd_region(dev); 577 578 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 579 return sprintf(buf, "cpu_cache\n"); 580 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 581 return sprintf(buf, "memory_controller\n"); 582 else 583 return sprintf(buf, "\n"); 584 } 585 static DEVICE_ATTR_RO(persistence_domain); 586 587 static struct attribute *nd_region_attributes[] = { 588 &dev_attr_size.attr, 589 &dev_attr_align.attr, 590 &dev_attr_nstype.attr, 591 &dev_attr_mappings.attr, 592 &dev_attr_btt_seed.attr, 593 &dev_attr_pfn_seed.attr, 594 &dev_attr_dax_seed.attr, 595 &dev_attr_deep_flush.attr, 596 &dev_attr_read_only.attr, 597 &dev_attr_set_cookie.attr, 598 &dev_attr_available_size.attr, 599 &dev_attr_max_available_extent.attr, 600 &dev_attr_namespace_seed.attr, 601 &dev_attr_init_namespaces.attr, 602 &dev_attr_badblocks.attr, 603 &dev_attr_resource.attr, 604 &dev_attr_persistence_domain.attr, 605 NULL, 606 }; 607 608 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 609 { 610 struct device *dev = container_of(kobj, typeof(*dev), kobj); 611 struct nd_region *nd_region = to_nd_region(dev); 612 struct nd_interleave_set *nd_set = nd_region->nd_set; 613 int type = nd_region_to_nstype(nd_region); 614 615 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 616 return 0; 617 618 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 619 return 0; 620 621 if (!is_memory(dev) && a == &dev_attr_badblocks.attr) 622 return 0; 623 624 if (a == &dev_attr_resource.attr && !is_memory(dev)) 625 return 0; 626 627 if (a == &dev_attr_deep_flush.attr) { 628 int has_flush = nvdimm_has_flush(nd_region); 629 630 if (has_flush == 1) 631 return a->mode; 632 else if (has_flush == 0) 633 return 0444; 634 else 635 return 0; 636 } 637 638 if (a == &dev_attr_persistence_domain.attr) { 639 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 640 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 641 return 0; 642 return a->mode; 643 } 644 645 if (a == &dev_attr_align.attr) 646 return a->mode; 647 648 if (a != &dev_attr_set_cookie.attr 649 && a != &dev_attr_available_size.attr) 650 return a->mode; 651 652 if (type == ND_DEVICE_NAMESPACE_PMEM && 653 a == &dev_attr_available_size.attr) 654 return a->mode; 655 else if (is_memory(dev) && nd_set) 656 return a->mode; 657 658 return 0; 659 } 660 661 static ssize_t mappingN(struct device *dev, char *buf, int n) 662 { 663 struct nd_region *nd_region = to_nd_region(dev); 664 struct nd_mapping *nd_mapping; 665 struct nvdimm *nvdimm; 666 667 if (n >= nd_region->ndr_mappings) 668 return -ENXIO; 669 nd_mapping = &nd_region->mapping[n]; 670 nvdimm = nd_mapping->nvdimm; 671 672 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 673 nd_mapping->start, nd_mapping->size, 674 nd_mapping->position); 675 } 676 677 #define REGION_MAPPING(idx) \ 678 static ssize_t mapping##idx##_show(struct device *dev, \ 679 struct device_attribute *attr, char *buf) \ 680 { \ 681 return mappingN(dev, buf, idx); \ 682 } \ 683 static DEVICE_ATTR_RO(mapping##idx) 684 685 /* 686 * 32 should be enough for a while, even in the presence of socket 687 * interleave a 32-way interleave set is a degenerate case. 688 */ 689 REGION_MAPPING(0); 690 REGION_MAPPING(1); 691 REGION_MAPPING(2); 692 REGION_MAPPING(3); 693 REGION_MAPPING(4); 694 REGION_MAPPING(5); 695 REGION_MAPPING(6); 696 REGION_MAPPING(7); 697 REGION_MAPPING(8); 698 REGION_MAPPING(9); 699 REGION_MAPPING(10); 700 REGION_MAPPING(11); 701 REGION_MAPPING(12); 702 REGION_MAPPING(13); 703 REGION_MAPPING(14); 704 REGION_MAPPING(15); 705 REGION_MAPPING(16); 706 REGION_MAPPING(17); 707 REGION_MAPPING(18); 708 REGION_MAPPING(19); 709 REGION_MAPPING(20); 710 REGION_MAPPING(21); 711 REGION_MAPPING(22); 712 REGION_MAPPING(23); 713 REGION_MAPPING(24); 714 REGION_MAPPING(25); 715 REGION_MAPPING(26); 716 REGION_MAPPING(27); 717 REGION_MAPPING(28); 718 REGION_MAPPING(29); 719 REGION_MAPPING(30); 720 REGION_MAPPING(31); 721 722 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 723 { 724 struct device *dev = container_of(kobj, struct device, kobj); 725 struct nd_region *nd_region = to_nd_region(dev); 726 727 if (n < nd_region->ndr_mappings) 728 return a->mode; 729 return 0; 730 } 731 732 static struct attribute *mapping_attributes[] = { 733 &dev_attr_mapping0.attr, 734 &dev_attr_mapping1.attr, 735 &dev_attr_mapping2.attr, 736 &dev_attr_mapping3.attr, 737 &dev_attr_mapping4.attr, 738 &dev_attr_mapping5.attr, 739 &dev_attr_mapping6.attr, 740 &dev_attr_mapping7.attr, 741 &dev_attr_mapping8.attr, 742 &dev_attr_mapping9.attr, 743 &dev_attr_mapping10.attr, 744 &dev_attr_mapping11.attr, 745 &dev_attr_mapping12.attr, 746 &dev_attr_mapping13.attr, 747 &dev_attr_mapping14.attr, 748 &dev_attr_mapping15.attr, 749 &dev_attr_mapping16.attr, 750 &dev_attr_mapping17.attr, 751 &dev_attr_mapping18.attr, 752 &dev_attr_mapping19.attr, 753 &dev_attr_mapping20.attr, 754 &dev_attr_mapping21.attr, 755 &dev_attr_mapping22.attr, 756 &dev_attr_mapping23.attr, 757 &dev_attr_mapping24.attr, 758 &dev_attr_mapping25.attr, 759 &dev_attr_mapping26.attr, 760 &dev_attr_mapping27.attr, 761 &dev_attr_mapping28.attr, 762 &dev_attr_mapping29.attr, 763 &dev_attr_mapping30.attr, 764 &dev_attr_mapping31.attr, 765 NULL, 766 }; 767 768 static const struct attribute_group nd_mapping_attribute_group = { 769 .is_visible = mapping_visible, 770 .attrs = mapping_attributes, 771 }; 772 773 static const struct attribute_group nd_region_attribute_group = { 774 .attrs = nd_region_attributes, 775 .is_visible = region_visible, 776 }; 777 778 static const struct attribute_group *nd_region_attribute_groups[] = { 779 &nd_device_attribute_group, 780 &nd_region_attribute_group, 781 &nd_numa_attribute_group, 782 &nd_mapping_attribute_group, 783 NULL, 784 }; 785 786 static const struct device_type nd_pmem_device_type = { 787 .name = "nd_pmem", 788 .release = nd_region_release, 789 .groups = nd_region_attribute_groups, 790 }; 791 792 static const struct device_type nd_volatile_device_type = { 793 .name = "nd_volatile", 794 .release = nd_region_release, 795 .groups = nd_region_attribute_groups, 796 }; 797 798 bool is_nd_pmem(struct device *dev) 799 { 800 return dev ? dev->type == &nd_pmem_device_type : false; 801 } 802 803 bool is_nd_volatile(struct device *dev) 804 { 805 return dev ? dev->type == &nd_volatile_device_type : false; 806 } 807 808 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 809 struct nd_namespace_index *nsindex) 810 { 811 struct nd_interleave_set *nd_set = nd_region->nd_set; 812 813 if (!nd_set) 814 return 0; 815 816 if (nsindex && __le16_to_cpu(nsindex->major) == 1 817 && __le16_to_cpu(nsindex->minor) == 1) 818 return nd_set->cookie1; 819 return nd_set->cookie2; 820 } 821 822 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 823 { 824 struct nd_interleave_set *nd_set = nd_region->nd_set; 825 826 if (nd_set) 827 return nd_set->altcookie; 828 return 0; 829 } 830 831 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 832 { 833 struct nd_label_ent *label_ent, *e; 834 835 lockdep_assert_held(&nd_mapping->lock); 836 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 837 list_del(&label_ent->list); 838 kfree(label_ent); 839 } 840 } 841 842 /* 843 * When a namespace is activated create new seeds for the next 844 * namespace, or namespace-personality to be configured. 845 */ 846 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev) 847 { 848 nvdimm_bus_lock(dev); 849 if (nd_region->ns_seed == dev) { 850 nd_region_create_ns_seed(nd_region); 851 } else if (is_nd_btt(dev)) { 852 struct nd_btt *nd_btt = to_nd_btt(dev); 853 854 if (nd_region->btt_seed == dev) 855 nd_region_create_btt_seed(nd_region); 856 if (nd_region->ns_seed == &nd_btt->ndns->dev) 857 nd_region_create_ns_seed(nd_region); 858 } else if (is_nd_pfn(dev)) { 859 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 860 861 if (nd_region->pfn_seed == dev) 862 nd_region_create_pfn_seed(nd_region); 863 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 864 nd_region_create_ns_seed(nd_region); 865 } else if (is_nd_dax(dev)) { 866 struct nd_dax *nd_dax = to_nd_dax(dev); 867 868 if (nd_region->dax_seed == dev) 869 nd_region_create_dax_seed(nd_region); 870 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 871 nd_region_create_ns_seed(nd_region); 872 } 873 nvdimm_bus_unlock(dev); 874 } 875 876 /** 877 * nd_region_acquire_lane - allocate and lock a lane 878 * @nd_region: region id and number of lanes possible 879 * 880 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 881 * We optimize for the common case where there are 256 lanes, one 882 * per-cpu. For larger systems we need to lock to share lanes. For now 883 * this implementation assumes the cost of maintaining an allocator for 884 * free lanes is on the order of the lock hold time, so it implements a 885 * static lane = cpu % num_lanes mapping. 886 * 887 * In the case of a BTT instance on top of a BLK namespace a lane may be 888 * acquired recursively. We lock on the first instance. 889 * 890 * In the case of a BTT instance on top of PMEM, we only acquire a lane 891 * for the BTT metadata updates. 892 */ 893 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 894 { 895 unsigned int cpu, lane; 896 897 cpu = get_cpu(); 898 if (nd_region->num_lanes < nr_cpu_ids) { 899 struct nd_percpu_lane *ndl_lock, *ndl_count; 900 901 lane = cpu % nd_region->num_lanes; 902 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 903 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 904 if (ndl_count->count++ == 0) 905 spin_lock(&ndl_lock->lock); 906 } else 907 lane = cpu; 908 909 return lane; 910 } 911 EXPORT_SYMBOL(nd_region_acquire_lane); 912 913 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 914 { 915 if (nd_region->num_lanes < nr_cpu_ids) { 916 unsigned int cpu = get_cpu(); 917 struct nd_percpu_lane *ndl_lock, *ndl_count; 918 919 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 920 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 921 if (--ndl_count->count == 0) 922 spin_unlock(&ndl_lock->lock); 923 put_cpu(); 924 } 925 put_cpu(); 926 } 927 EXPORT_SYMBOL(nd_region_release_lane); 928 929 /* 930 * PowerPC requires this alignment for memremap_pages(). All other archs 931 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()). 932 */ 933 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M 934 935 static unsigned long default_align(struct nd_region *nd_region) 936 { 937 unsigned long align; 938 u32 remainder; 939 int mappings; 940 941 align = MEMREMAP_COMPAT_ALIGN_MAX; 942 if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX) 943 align = PAGE_SIZE; 944 945 mappings = max_t(u16, 1, nd_region->ndr_mappings); 946 div_u64_rem(align, mappings, &remainder); 947 if (remainder) 948 align *= mappings; 949 950 return align; 951 } 952 953 static struct lock_class_key nvdimm_region_key; 954 955 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 956 struct nd_region_desc *ndr_desc, 957 const struct device_type *dev_type, const char *caller) 958 { 959 struct nd_region *nd_region; 960 struct device *dev; 961 unsigned int i; 962 int ro = 0; 963 964 for (i = 0; i < ndr_desc->num_mappings; i++) { 965 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 966 struct nvdimm *nvdimm = mapping->nvdimm; 967 968 if ((mapping->start | mapping->size) % PAGE_SIZE) { 969 dev_err(&nvdimm_bus->dev, 970 "%s: %s mapping%d is not %ld aligned\n", 971 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE); 972 return NULL; 973 } 974 975 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 976 ro = 1; 977 978 } 979 980 nd_region = 981 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings), 982 GFP_KERNEL); 983 984 if (!nd_region) 985 return NULL; 986 /* CXL pre-assigns memregion ids before creating nvdimm regions */ 987 if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) { 988 nd_region->id = ndr_desc->memregion; 989 } else { 990 nd_region->id = memregion_alloc(GFP_KERNEL); 991 if (nd_region->id < 0) 992 goto err_id; 993 } 994 995 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 996 if (!nd_region->lane) 997 goto err_percpu; 998 999 for (i = 0; i < nr_cpu_ids; i++) { 1000 struct nd_percpu_lane *ndl; 1001 1002 ndl = per_cpu_ptr(nd_region->lane, i); 1003 spin_lock_init(&ndl->lock); 1004 ndl->count = 0; 1005 } 1006 1007 for (i = 0; i < ndr_desc->num_mappings; i++) { 1008 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1009 struct nvdimm *nvdimm = mapping->nvdimm; 1010 1011 nd_region->mapping[i].nvdimm = nvdimm; 1012 nd_region->mapping[i].start = mapping->start; 1013 nd_region->mapping[i].size = mapping->size; 1014 nd_region->mapping[i].position = mapping->position; 1015 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1016 mutex_init(&nd_region->mapping[i].lock); 1017 1018 get_device(&nvdimm->dev); 1019 } 1020 nd_region->ndr_mappings = ndr_desc->num_mappings; 1021 nd_region->provider_data = ndr_desc->provider_data; 1022 nd_region->nd_set = ndr_desc->nd_set; 1023 nd_region->num_lanes = ndr_desc->num_lanes; 1024 nd_region->flags = ndr_desc->flags; 1025 nd_region->ro = ro; 1026 nd_region->numa_node = ndr_desc->numa_node; 1027 nd_region->target_node = ndr_desc->target_node; 1028 ida_init(&nd_region->ns_ida); 1029 ida_init(&nd_region->btt_ida); 1030 ida_init(&nd_region->pfn_ida); 1031 ida_init(&nd_region->dax_ida); 1032 dev = &nd_region->dev; 1033 dev_set_name(dev, "region%d", nd_region->id); 1034 dev->parent = &nvdimm_bus->dev; 1035 dev->type = dev_type; 1036 dev->groups = ndr_desc->attr_groups; 1037 dev->of_node = ndr_desc->of_node; 1038 nd_region->ndr_size = resource_size(ndr_desc->res); 1039 nd_region->ndr_start = ndr_desc->res->start; 1040 nd_region->align = default_align(nd_region); 1041 if (ndr_desc->flush) 1042 nd_region->flush = ndr_desc->flush; 1043 else 1044 nd_region->flush = NULL; 1045 1046 device_initialize(dev); 1047 lockdep_set_class(&dev->mutex, &nvdimm_region_key); 1048 nd_device_register(dev); 1049 1050 return nd_region; 1051 1052 err_percpu: 1053 if (!test_bit(ND_REGION_CXL, &ndr_desc->flags)) 1054 memregion_free(nd_region->id); 1055 err_id: 1056 kfree(nd_region); 1057 return NULL; 1058 } 1059 1060 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1061 struct nd_region_desc *ndr_desc) 1062 { 1063 ndr_desc->num_lanes = ND_MAX_LANES; 1064 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1065 __func__); 1066 } 1067 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1068 1069 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1070 struct nd_region_desc *ndr_desc) 1071 { 1072 ndr_desc->num_lanes = ND_MAX_LANES; 1073 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1074 __func__); 1075 } 1076 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1077 1078 void nvdimm_region_delete(struct nd_region *nd_region) 1079 { 1080 if (nd_region) 1081 nd_device_unregister(&nd_region->dev, ND_SYNC); 1082 } 1083 EXPORT_SYMBOL_GPL(nvdimm_region_delete); 1084 1085 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) 1086 { 1087 int rc = 0; 1088 1089 if (!nd_region->flush) 1090 rc = generic_nvdimm_flush(nd_region); 1091 else { 1092 if (nd_region->flush(nd_region, bio)) 1093 rc = -EIO; 1094 } 1095 1096 return rc; 1097 } 1098 /** 1099 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 1100 * @nd_region: interleaved pmem region 1101 */ 1102 int generic_nvdimm_flush(struct nd_region *nd_region) 1103 { 1104 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1105 int i, idx; 1106 1107 /* 1108 * Try to encourage some diversity in flush hint addresses 1109 * across cpus assuming a limited number of flush hints. 1110 */ 1111 idx = this_cpu_read(flush_idx); 1112 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1113 1114 /* 1115 * The pmem_wmb() is needed to 'sfence' all 1116 * previous writes such that they are architecturally visible for 1117 * the platform buffer flush. Note that we've already arranged for pmem 1118 * writes to avoid the cache via memcpy_flushcache(). The final 1119 * wmb() ensures ordering for the NVDIMM flush write. 1120 */ 1121 pmem_wmb(); 1122 for (i = 0; i < nd_region->ndr_mappings; i++) 1123 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1124 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1125 wmb(); 1126 1127 return 0; 1128 } 1129 EXPORT_SYMBOL_GPL(nvdimm_flush); 1130 1131 /** 1132 * nvdimm_has_flush - determine write flushing requirements 1133 * @nd_region: interleaved pmem region 1134 * 1135 * Returns 1 if writes require flushing 1136 * Returns 0 if writes do not require flushing 1137 * Returns -ENXIO if flushing capability can not be determined 1138 */ 1139 int nvdimm_has_flush(struct nd_region *nd_region) 1140 { 1141 int i; 1142 1143 /* no nvdimm or pmem api == flushing capability unknown */ 1144 if (nd_region->ndr_mappings == 0 1145 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1146 return -ENXIO; 1147 1148 /* Test if an explicit flush function is defined */ 1149 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush) 1150 return 1; 1151 1152 /* Test if any flush hints for the region are available */ 1153 for (i = 0; i < nd_region->ndr_mappings; i++) { 1154 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1155 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1156 1157 /* flush hints present / available */ 1158 if (nvdimm->num_flush) 1159 return 1; 1160 } 1161 1162 /* 1163 * The platform defines dimm devices without hints nor explicit flush, 1164 * assume platform persistence mechanism like ADR 1165 */ 1166 return 0; 1167 } 1168 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1169 1170 int nvdimm_has_cache(struct nd_region *nd_region) 1171 { 1172 return is_nd_pmem(&nd_region->dev) && 1173 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1174 } 1175 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1176 1177 bool is_nvdimm_sync(struct nd_region *nd_region) 1178 { 1179 if (is_nd_volatile(&nd_region->dev)) 1180 return true; 1181 1182 return is_nd_pmem(&nd_region->dev) && 1183 !test_bit(ND_REGION_ASYNC, &nd_region->flags); 1184 } 1185 EXPORT_SYMBOL_GPL(is_nvdimm_sync); 1186 1187 struct conflict_context { 1188 struct nd_region *nd_region; 1189 resource_size_t start, size; 1190 }; 1191 1192 static int region_conflict(struct device *dev, void *data) 1193 { 1194 struct nd_region *nd_region; 1195 struct conflict_context *ctx = data; 1196 resource_size_t res_end, region_end, region_start; 1197 1198 if (!is_memory(dev)) 1199 return 0; 1200 1201 nd_region = to_nd_region(dev); 1202 if (nd_region == ctx->nd_region) 1203 return 0; 1204 1205 res_end = ctx->start + ctx->size; 1206 region_start = nd_region->ndr_start; 1207 region_end = region_start + nd_region->ndr_size; 1208 if (ctx->start >= region_start && ctx->start < region_end) 1209 return -EBUSY; 1210 if (res_end > region_start && res_end <= region_end) 1211 return -EBUSY; 1212 return 0; 1213 } 1214 1215 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, 1216 resource_size_t size) 1217 { 1218 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 1219 struct conflict_context ctx = { 1220 .nd_region = nd_region, 1221 .start = start, 1222 .size = size, 1223 }; 1224 1225 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); 1226 } 1227