1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/scatterlist.h> 6 #include <linux/memregion.h> 7 #include <linux/highmem.h> 8 #include <linux/sched.h> 9 #include <linux/slab.h> 10 #include <linux/hash.h> 11 #include <linux/sort.h> 12 #include <linux/io.h> 13 #include <linux/nd.h> 14 #include "nd-core.h" 15 #include "nd.h" 16 17 /* 18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 19 * irrelevant. 20 */ 21 #include <linux/io-64-nonatomic-hi-lo.h> 22 23 static DEFINE_PER_CPU(int, flush_idx); 24 25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 26 struct nd_region_data *ndrd) 27 { 28 int i, j; 29 30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 32 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 33 struct resource *res = &nvdimm->flush_wpq[i]; 34 unsigned long pfn = PHYS_PFN(res->start); 35 void __iomem *flush_page; 36 37 /* check if flush hints share a page */ 38 for (j = 0; j < i; j++) { 39 struct resource *res_j = &nvdimm->flush_wpq[j]; 40 unsigned long pfn_j = PHYS_PFN(res_j->start); 41 42 if (pfn == pfn_j) 43 break; 44 } 45 46 if (j < i) 47 flush_page = (void __iomem *) ((unsigned long) 48 ndrd_get_flush_wpq(ndrd, dimm, j) 49 & PAGE_MASK); 50 else 51 flush_page = devm_nvdimm_ioremap(dev, 52 PFN_PHYS(pfn), PAGE_SIZE); 53 if (!flush_page) 54 return -ENXIO; 55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 56 + (res->start & ~PAGE_MASK)); 57 } 58 59 return 0; 60 } 61 62 static int nd_region_invalidate_memregion(struct nd_region *nd_region) 63 { 64 int i, incoherent = 0; 65 66 for (i = 0; i < nd_region->ndr_mappings; i++) { 67 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 68 struct nvdimm *nvdimm = nd_mapping->nvdimm; 69 70 if (test_bit(NDD_INCOHERENT, &nvdimm->flags)) { 71 incoherent++; 72 break; 73 } 74 } 75 76 if (!incoherent) 77 return 0; 78 79 if (!cpu_cache_has_invalidate_memregion()) { 80 if (IS_ENABLED(CONFIG_NVDIMM_SECURITY_TEST)) { 81 dev_warn( 82 &nd_region->dev, 83 "Bypassing cpu_cache_invalidate_memergion() for testing!\n"); 84 goto out; 85 } else { 86 dev_err(&nd_region->dev, 87 "Failed to synchronize CPU cache state\n"); 88 return -ENXIO; 89 } 90 } 91 92 cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY); 93 out: 94 for (i = 0; i < nd_region->ndr_mappings; i++) { 95 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 96 struct nvdimm *nvdimm = nd_mapping->nvdimm; 97 98 clear_bit(NDD_INCOHERENT, &nvdimm->flags); 99 } 100 101 return 0; 102 } 103 104 int nd_region_activate(struct nd_region *nd_region) 105 { 106 int i, j, rc, num_flush = 0; 107 struct nd_region_data *ndrd; 108 struct device *dev = &nd_region->dev; 109 size_t flush_data_size = sizeof(void *); 110 111 nvdimm_bus_lock(&nd_region->dev); 112 for (i = 0; i < nd_region->ndr_mappings; i++) { 113 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 114 struct nvdimm *nvdimm = nd_mapping->nvdimm; 115 116 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { 117 nvdimm_bus_unlock(&nd_region->dev); 118 return -EBUSY; 119 } 120 121 /* at least one null hint slot per-dimm for the "no-hint" case */ 122 flush_data_size += sizeof(void *); 123 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 124 if (!nvdimm->num_flush) 125 continue; 126 flush_data_size += nvdimm->num_flush * sizeof(void *); 127 } 128 nvdimm_bus_unlock(&nd_region->dev); 129 130 rc = nd_region_invalidate_memregion(nd_region); 131 if (rc) 132 return rc; 133 134 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 135 if (!ndrd) 136 return -ENOMEM; 137 dev_set_drvdata(dev, ndrd); 138 139 if (!num_flush) 140 return 0; 141 142 ndrd->hints_shift = ilog2(num_flush); 143 for (i = 0; i < nd_region->ndr_mappings; i++) { 144 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 145 struct nvdimm *nvdimm = nd_mapping->nvdimm; 146 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 147 148 if (rc) 149 return rc; 150 } 151 152 /* 153 * Clear out entries that are duplicates. This should prevent the 154 * extra flushings. 155 */ 156 for (i = 0; i < nd_region->ndr_mappings - 1; i++) { 157 /* ignore if NULL already */ 158 if (!ndrd_get_flush_wpq(ndrd, i, 0)) 159 continue; 160 161 for (j = i + 1; j < nd_region->ndr_mappings; j++) 162 if (ndrd_get_flush_wpq(ndrd, i, 0) == 163 ndrd_get_flush_wpq(ndrd, j, 0)) 164 ndrd_set_flush_wpq(ndrd, j, 0, NULL); 165 } 166 167 return 0; 168 } 169 170 static void nd_region_release(struct device *dev) 171 { 172 struct nd_region *nd_region = to_nd_region(dev); 173 u16 i; 174 175 for (i = 0; i < nd_region->ndr_mappings; i++) { 176 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 177 struct nvdimm *nvdimm = nd_mapping->nvdimm; 178 179 put_device(&nvdimm->dev); 180 } 181 free_percpu(nd_region->lane); 182 if (!test_bit(ND_REGION_CXL, &nd_region->flags)) 183 memregion_free(nd_region->id); 184 kfree(nd_region); 185 } 186 187 struct nd_region *to_nd_region(struct device *dev) 188 { 189 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 190 191 WARN_ON(dev->type->release != nd_region_release); 192 return nd_region; 193 } 194 EXPORT_SYMBOL_GPL(to_nd_region); 195 196 struct device *nd_region_dev(struct nd_region *nd_region) 197 { 198 if (!nd_region) 199 return NULL; 200 return &nd_region->dev; 201 } 202 EXPORT_SYMBOL_GPL(nd_region_dev); 203 204 void *nd_region_provider_data(struct nd_region *nd_region) 205 { 206 return nd_region->provider_data; 207 } 208 EXPORT_SYMBOL_GPL(nd_region_provider_data); 209 210 /** 211 * nd_region_to_nstype() - region to an integer namespace type 212 * @nd_region: region-device to interrogate 213 * 214 * This is the 'nstype' attribute of a region as well, an input to the 215 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 216 * namespace devices with namespace drivers. 217 */ 218 int nd_region_to_nstype(struct nd_region *nd_region) 219 { 220 if (is_memory(&nd_region->dev)) { 221 u16 i, label; 222 223 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) { 224 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 225 struct nvdimm *nvdimm = nd_mapping->nvdimm; 226 227 if (test_bit(NDD_LABELING, &nvdimm->flags)) 228 label++; 229 } 230 if (label) 231 return ND_DEVICE_NAMESPACE_PMEM; 232 else 233 return ND_DEVICE_NAMESPACE_IO; 234 } 235 236 return 0; 237 } 238 EXPORT_SYMBOL(nd_region_to_nstype); 239 240 static unsigned long long region_size(struct nd_region *nd_region) 241 { 242 if (is_memory(&nd_region->dev)) { 243 return nd_region->ndr_size; 244 } else if (nd_region->ndr_mappings == 1) { 245 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 246 247 return nd_mapping->size; 248 } 249 250 return 0; 251 } 252 253 static ssize_t size_show(struct device *dev, 254 struct device_attribute *attr, char *buf) 255 { 256 struct nd_region *nd_region = to_nd_region(dev); 257 258 return sprintf(buf, "%llu\n", region_size(nd_region)); 259 } 260 static DEVICE_ATTR_RO(size); 261 262 static ssize_t deep_flush_show(struct device *dev, 263 struct device_attribute *attr, char *buf) 264 { 265 struct nd_region *nd_region = to_nd_region(dev); 266 267 /* 268 * NOTE: in the nvdimm_has_flush() error case this attribute is 269 * not visible. 270 */ 271 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); 272 } 273 274 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, 275 const char *buf, size_t len) 276 { 277 bool flush; 278 int rc = strtobool(buf, &flush); 279 struct nd_region *nd_region = to_nd_region(dev); 280 281 if (rc) 282 return rc; 283 if (!flush) 284 return -EINVAL; 285 rc = nvdimm_flush(nd_region, NULL); 286 if (rc) 287 return rc; 288 289 return len; 290 } 291 static DEVICE_ATTR_RW(deep_flush); 292 293 static ssize_t mappings_show(struct device *dev, 294 struct device_attribute *attr, char *buf) 295 { 296 struct nd_region *nd_region = to_nd_region(dev); 297 298 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 299 } 300 static DEVICE_ATTR_RO(mappings); 301 302 static ssize_t nstype_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct nd_region *nd_region = to_nd_region(dev); 306 307 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 308 } 309 static DEVICE_ATTR_RO(nstype); 310 311 static ssize_t set_cookie_show(struct device *dev, 312 struct device_attribute *attr, char *buf) 313 { 314 struct nd_region *nd_region = to_nd_region(dev); 315 struct nd_interleave_set *nd_set = nd_region->nd_set; 316 ssize_t rc = 0; 317 318 if (is_memory(dev) && nd_set) 319 /* pass, should be precluded by region_visible */; 320 else 321 return -ENXIO; 322 323 /* 324 * The cookie to show depends on which specification of the 325 * labels we are using. If there are not labels then default to 326 * the v1.1 namespace label cookie definition. To read all this 327 * data we need to wait for probing to settle. 328 */ 329 device_lock(dev); 330 nvdimm_bus_lock(dev); 331 wait_nvdimm_bus_probe_idle(dev); 332 if (nd_region->ndr_mappings) { 333 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 334 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 335 336 if (ndd) { 337 struct nd_namespace_index *nsindex; 338 339 nsindex = to_namespace_index(ndd, ndd->ns_current); 340 rc = sprintf(buf, "%#llx\n", 341 nd_region_interleave_set_cookie(nd_region, 342 nsindex)); 343 } 344 } 345 nvdimm_bus_unlock(dev); 346 device_unlock(dev); 347 348 if (rc) 349 return rc; 350 return sprintf(buf, "%#llx\n", nd_set->cookie1); 351 } 352 static DEVICE_ATTR_RO(set_cookie); 353 354 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 355 { 356 resource_size_t available; 357 int i; 358 359 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 360 361 available = 0; 362 for (i = 0; i < nd_region->ndr_mappings; i++) { 363 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 364 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 365 366 /* if a dimm is disabled the available capacity is zero */ 367 if (!ndd) 368 return 0; 369 370 available += nd_pmem_available_dpa(nd_region, nd_mapping); 371 } 372 373 return available; 374 } 375 376 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) 377 { 378 resource_size_t avail = 0; 379 int i; 380 381 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 382 for (i = 0; i < nd_region->ndr_mappings; i++) { 383 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 384 385 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa( 386 nd_region, nd_mapping)); 387 } 388 return avail * nd_region->ndr_mappings; 389 } 390 391 static ssize_t available_size_show(struct device *dev, 392 struct device_attribute *attr, char *buf) 393 { 394 struct nd_region *nd_region = to_nd_region(dev); 395 unsigned long long available = 0; 396 397 /* 398 * Flush in-flight updates and grab a snapshot of the available 399 * size. Of course, this value is potentially invalidated the 400 * memory nvdimm_bus_lock() is dropped, but that's userspace's 401 * problem to not race itself. 402 */ 403 device_lock(dev); 404 nvdimm_bus_lock(dev); 405 wait_nvdimm_bus_probe_idle(dev); 406 available = nd_region_available_dpa(nd_region); 407 nvdimm_bus_unlock(dev); 408 device_unlock(dev); 409 410 return sprintf(buf, "%llu\n", available); 411 } 412 static DEVICE_ATTR_RO(available_size); 413 414 static ssize_t max_available_extent_show(struct device *dev, 415 struct device_attribute *attr, char *buf) 416 { 417 struct nd_region *nd_region = to_nd_region(dev); 418 unsigned long long available = 0; 419 420 device_lock(dev); 421 nvdimm_bus_lock(dev); 422 wait_nvdimm_bus_probe_idle(dev); 423 available = nd_region_allocatable_dpa(nd_region); 424 nvdimm_bus_unlock(dev); 425 device_unlock(dev); 426 427 return sprintf(buf, "%llu\n", available); 428 } 429 static DEVICE_ATTR_RO(max_available_extent); 430 431 static ssize_t init_namespaces_show(struct device *dev, 432 struct device_attribute *attr, char *buf) 433 { 434 struct nd_region_data *ndrd = dev_get_drvdata(dev); 435 ssize_t rc; 436 437 nvdimm_bus_lock(dev); 438 if (ndrd) 439 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 440 else 441 rc = -ENXIO; 442 nvdimm_bus_unlock(dev); 443 444 return rc; 445 } 446 static DEVICE_ATTR_RO(init_namespaces); 447 448 static ssize_t namespace_seed_show(struct device *dev, 449 struct device_attribute *attr, char *buf) 450 { 451 struct nd_region *nd_region = to_nd_region(dev); 452 ssize_t rc; 453 454 nvdimm_bus_lock(dev); 455 if (nd_region->ns_seed) 456 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 457 else 458 rc = sprintf(buf, "\n"); 459 nvdimm_bus_unlock(dev); 460 return rc; 461 } 462 static DEVICE_ATTR_RO(namespace_seed); 463 464 static ssize_t btt_seed_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct nd_region *nd_region = to_nd_region(dev); 468 ssize_t rc; 469 470 nvdimm_bus_lock(dev); 471 if (nd_region->btt_seed) 472 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 473 else 474 rc = sprintf(buf, "\n"); 475 nvdimm_bus_unlock(dev); 476 477 return rc; 478 } 479 static DEVICE_ATTR_RO(btt_seed); 480 481 static ssize_t pfn_seed_show(struct device *dev, 482 struct device_attribute *attr, char *buf) 483 { 484 struct nd_region *nd_region = to_nd_region(dev); 485 ssize_t rc; 486 487 nvdimm_bus_lock(dev); 488 if (nd_region->pfn_seed) 489 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 490 else 491 rc = sprintf(buf, "\n"); 492 nvdimm_bus_unlock(dev); 493 494 return rc; 495 } 496 static DEVICE_ATTR_RO(pfn_seed); 497 498 static ssize_t dax_seed_show(struct device *dev, 499 struct device_attribute *attr, char *buf) 500 { 501 struct nd_region *nd_region = to_nd_region(dev); 502 ssize_t rc; 503 504 nvdimm_bus_lock(dev); 505 if (nd_region->dax_seed) 506 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 507 else 508 rc = sprintf(buf, "\n"); 509 nvdimm_bus_unlock(dev); 510 511 return rc; 512 } 513 static DEVICE_ATTR_RO(dax_seed); 514 515 static ssize_t read_only_show(struct device *dev, 516 struct device_attribute *attr, char *buf) 517 { 518 struct nd_region *nd_region = to_nd_region(dev); 519 520 return sprintf(buf, "%d\n", nd_region->ro); 521 } 522 523 static int revalidate_read_only(struct device *dev, void *data) 524 { 525 nd_device_notify(dev, NVDIMM_REVALIDATE_REGION); 526 return 0; 527 } 528 529 static ssize_t read_only_store(struct device *dev, 530 struct device_attribute *attr, const char *buf, size_t len) 531 { 532 bool ro; 533 int rc = strtobool(buf, &ro); 534 struct nd_region *nd_region = to_nd_region(dev); 535 536 if (rc) 537 return rc; 538 539 nd_region->ro = ro; 540 device_for_each_child(dev, NULL, revalidate_read_only); 541 return len; 542 } 543 static DEVICE_ATTR_RW(read_only); 544 545 static ssize_t align_show(struct device *dev, 546 struct device_attribute *attr, char *buf) 547 { 548 struct nd_region *nd_region = to_nd_region(dev); 549 550 return sprintf(buf, "%#lx\n", nd_region->align); 551 } 552 553 static ssize_t align_store(struct device *dev, 554 struct device_attribute *attr, const char *buf, size_t len) 555 { 556 struct nd_region *nd_region = to_nd_region(dev); 557 unsigned long val, dpa; 558 u32 mappings, remainder; 559 int rc; 560 561 rc = kstrtoul(buf, 0, &val); 562 if (rc) 563 return rc; 564 565 /* 566 * Ensure space-align is evenly divisible by the region 567 * interleave-width because the kernel typically has no facility 568 * to determine which DIMM(s), dimm-physical-addresses, would 569 * contribute to the tail capacity in system-physical-address 570 * space for the namespace. 571 */ 572 mappings = max_t(u32, 1, nd_region->ndr_mappings); 573 dpa = div_u64_rem(val, mappings, &remainder); 574 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE 575 || val > region_size(nd_region) || remainder) 576 return -EINVAL; 577 578 /* 579 * Given that space allocation consults this value multiple 580 * times ensure it does not change for the duration of the 581 * allocation. 582 */ 583 nvdimm_bus_lock(dev); 584 nd_region->align = val; 585 nvdimm_bus_unlock(dev); 586 587 return len; 588 } 589 static DEVICE_ATTR_RW(align); 590 591 static ssize_t region_badblocks_show(struct device *dev, 592 struct device_attribute *attr, char *buf) 593 { 594 struct nd_region *nd_region = to_nd_region(dev); 595 ssize_t rc; 596 597 device_lock(dev); 598 if (dev->driver) 599 rc = badblocks_show(&nd_region->bb, buf, 0); 600 else 601 rc = -ENXIO; 602 device_unlock(dev); 603 604 return rc; 605 } 606 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); 607 608 static ssize_t resource_show(struct device *dev, 609 struct device_attribute *attr, char *buf) 610 { 611 struct nd_region *nd_region = to_nd_region(dev); 612 613 return sprintf(buf, "%#llx\n", nd_region->ndr_start); 614 } 615 static DEVICE_ATTR_ADMIN_RO(resource); 616 617 static ssize_t persistence_domain_show(struct device *dev, 618 struct device_attribute *attr, char *buf) 619 { 620 struct nd_region *nd_region = to_nd_region(dev); 621 622 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) 623 return sprintf(buf, "cpu_cache\n"); 624 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) 625 return sprintf(buf, "memory_controller\n"); 626 else 627 return sprintf(buf, "\n"); 628 } 629 static DEVICE_ATTR_RO(persistence_domain); 630 631 static struct attribute *nd_region_attributes[] = { 632 &dev_attr_size.attr, 633 &dev_attr_align.attr, 634 &dev_attr_nstype.attr, 635 &dev_attr_mappings.attr, 636 &dev_attr_btt_seed.attr, 637 &dev_attr_pfn_seed.attr, 638 &dev_attr_dax_seed.attr, 639 &dev_attr_deep_flush.attr, 640 &dev_attr_read_only.attr, 641 &dev_attr_set_cookie.attr, 642 &dev_attr_available_size.attr, 643 &dev_attr_max_available_extent.attr, 644 &dev_attr_namespace_seed.attr, 645 &dev_attr_init_namespaces.attr, 646 &dev_attr_badblocks.attr, 647 &dev_attr_resource.attr, 648 &dev_attr_persistence_domain.attr, 649 NULL, 650 }; 651 652 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 653 { 654 struct device *dev = container_of(kobj, typeof(*dev), kobj); 655 struct nd_region *nd_region = to_nd_region(dev); 656 struct nd_interleave_set *nd_set = nd_region->nd_set; 657 int type = nd_region_to_nstype(nd_region); 658 659 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) 660 return 0; 661 662 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) 663 return 0; 664 665 if (!is_memory(dev) && a == &dev_attr_badblocks.attr) 666 return 0; 667 668 if (a == &dev_attr_resource.attr && !is_memory(dev)) 669 return 0; 670 671 if (a == &dev_attr_deep_flush.attr) { 672 int has_flush = nvdimm_has_flush(nd_region); 673 674 if (has_flush == 1) 675 return a->mode; 676 else if (has_flush == 0) 677 return 0444; 678 else 679 return 0; 680 } 681 682 if (a == &dev_attr_persistence_domain.attr) { 683 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) 684 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) 685 return 0; 686 return a->mode; 687 } 688 689 if (a == &dev_attr_align.attr) 690 return a->mode; 691 692 if (a != &dev_attr_set_cookie.attr 693 && a != &dev_attr_available_size.attr) 694 return a->mode; 695 696 if (type == ND_DEVICE_NAMESPACE_PMEM && 697 a == &dev_attr_available_size.attr) 698 return a->mode; 699 else if (is_memory(dev) && nd_set) 700 return a->mode; 701 702 return 0; 703 } 704 705 static ssize_t mappingN(struct device *dev, char *buf, int n) 706 { 707 struct nd_region *nd_region = to_nd_region(dev); 708 struct nd_mapping *nd_mapping; 709 struct nvdimm *nvdimm; 710 711 if (n >= nd_region->ndr_mappings) 712 return -ENXIO; 713 nd_mapping = &nd_region->mapping[n]; 714 nvdimm = nd_mapping->nvdimm; 715 716 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), 717 nd_mapping->start, nd_mapping->size, 718 nd_mapping->position); 719 } 720 721 #define REGION_MAPPING(idx) \ 722 static ssize_t mapping##idx##_show(struct device *dev, \ 723 struct device_attribute *attr, char *buf) \ 724 { \ 725 return mappingN(dev, buf, idx); \ 726 } \ 727 static DEVICE_ATTR_RO(mapping##idx) 728 729 /* 730 * 32 should be enough for a while, even in the presence of socket 731 * interleave a 32-way interleave set is a degenerate case. 732 */ 733 REGION_MAPPING(0); 734 REGION_MAPPING(1); 735 REGION_MAPPING(2); 736 REGION_MAPPING(3); 737 REGION_MAPPING(4); 738 REGION_MAPPING(5); 739 REGION_MAPPING(6); 740 REGION_MAPPING(7); 741 REGION_MAPPING(8); 742 REGION_MAPPING(9); 743 REGION_MAPPING(10); 744 REGION_MAPPING(11); 745 REGION_MAPPING(12); 746 REGION_MAPPING(13); 747 REGION_MAPPING(14); 748 REGION_MAPPING(15); 749 REGION_MAPPING(16); 750 REGION_MAPPING(17); 751 REGION_MAPPING(18); 752 REGION_MAPPING(19); 753 REGION_MAPPING(20); 754 REGION_MAPPING(21); 755 REGION_MAPPING(22); 756 REGION_MAPPING(23); 757 REGION_MAPPING(24); 758 REGION_MAPPING(25); 759 REGION_MAPPING(26); 760 REGION_MAPPING(27); 761 REGION_MAPPING(28); 762 REGION_MAPPING(29); 763 REGION_MAPPING(30); 764 REGION_MAPPING(31); 765 766 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 767 { 768 struct device *dev = container_of(kobj, struct device, kobj); 769 struct nd_region *nd_region = to_nd_region(dev); 770 771 if (n < nd_region->ndr_mappings) 772 return a->mode; 773 return 0; 774 } 775 776 static struct attribute *mapping_attributes[] = { 777 &dev_attr_mapping0.attr, 778 &dev_attr_mapping1.attr, 779 &dev_attr_mapping2.attr, 780 &dev_attr_mapping3.attr, 781 &dev_attr_mapping4.attr, 782 &dev_attr_mapping5.attr, 783 &dev_attr_mapping6.attr, 784 &dev_attr_mapping7.attr, 785 &dev_attr_mapping8.attr, 786 &dev_attr_mapping9.attr, 787 &dev_attr_mapping10.attr, 788 &dev_attr_mapping11.attr, 789 &dev_attr_mapping12.attr, 790 &dev_attr_mapping13.attr, 791 &dev_attr_mapping14.attr, 792 &dev_attr_mapping15.attr, 793 &dev_attr_mapping16.attr, 794 &dev_attr_mapping17.attr, 795 &dev_attr_mapping18.attr, 796 &dev_attr_mapping19.attr, 797 &dev_attr_mapping20.attr, 798 &dev_attr_mapping21.attr, 799 &dev_attr_mapping22.attr, 800 &dev_attr_mapping23.attr, 801 &dev_attr_mapping24.attr, 802 &dev_attr_mapping25.attr, 803 &dev_attr_mapping26.attr, 804 &dev_attr_mapping27.attr, 805 &dev_attr_mapping28.attr, 806 &dev_attr_mapping29.attr, 807 &dev_attr_mapping30.attr, 808 &dev_attr_mapping31.attr, 809 NULL, 810 }; 811 812 static const struct attribute_group nd_mapping_attribute_group = { 813 .is_visible = mapping_visible, 814 .attrs = mapping_attributes, 815 }; 816 817 static const struct attribute_group nd_region_attribute_group = { 818 .attrs = nd_region_attributes, 819 .is_visible = region_visible, 820 }; 821 822 static const struct attribute_group *nd_region_attribute_groups[] = { 823 &nd_device_attribute_group, 824 &nd_region_attribute_group, 825 &nd_numa_attribute_group, 826 &nd_mapping_attribute_group, 827 NULL, 828 }; 829 830 static const struct device_type nd_pmem_device_type = { 831 .name = "nd_pmem", 832 .release = nd_region_release, 833 .groups = nd_region_attribute_groups, 834 }; 835 836 static const struct device_type nd_volatile_device_type = { 837 .name = "nd_volatile", 838 .release = nd_region_release, 839 .groups = nd_region_attribute_groups, 840 }; 841 842 bool is_nd_pmem(const struct device *dev) 843 { 844 return dev ? dev->type == &nd_pmem_device_type : false; 845 } 846 847 bool is_nd_volatile(const struct device *dev) 848 { 849 return dev ? dev->type == &nd_volatile_device_type : false; 850 } 851 852 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, 853 struct nd_namespace_index *nsindex) 854 { 855 struct nd_interleave_set *nd_set = nd_region->nd_set; 856 857 if (!nd_set) 858 return 0; 859 860 if (nsindex && __le16_to_cpu(nsindex->major) == 1 861 && __le16_to_cpu(nsindex->minor) == 1) 862 return nd_set->cookie1; 863 return nd_set->cookie2; 864 } 865 866 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) 867 { 868 struct nd_interleave_set *nd_set = nd_region->nd_set; 869 870 if (nd_set) 871 return nd_set->altcookie; 872 return 0; 873 } 874 875 void nd_mapping_free_labels(struct nd_mapping *nd_mapping) 876 { 877 struct nd_label_ent *label_ent, *e; 878 879 lockdep_assert_held(&nd_mapping->lock); 880 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { 881 list_del(&label_ent->list); 882 kfree(label_ent); 883 } 884 } 885 886 /* 887 * When a namespace is activated create new seeds for the next 888 * namespace, or namespace-personality to be configured. 889 */ 890 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev) 891 { 892 nvdimm_bus_lock(dev); 893 if (nd_region->ns_seed == dev) { 894 nd_region_create_ns_seed(nd_region); 895 } else if (is_nd_btt(dev)) { 896 struct nd_btt *nd_btt = to_nd_btt(dev); 897 898 if (nd_region->btt_seed == dev) 899 nd_region_create_btt_seed(nd_region); 900 if (nd_region->ns_seed == &nd_btt->ndns->dev) 901 nd_region_create_ns_seed(nd_region); 902 } else if (is_nd_pfn(dev)) { 903 struct nd_pfn *nd_pfn = to_nd_pfn(dev); 904 905 if (nd_region->pfn_seed == dev) 906 nd_region_create_pfn_seed(nd_region); 907 if (nd_region->ns_seed == &nd_pfn->ndns->dev) 908 nd_region_create_ns_seed(nd_region); 909 } else if (is_nd_dax(dev)) { 910 struct nd_dax *nd_dax = to_nd_dax(dev); 911 912 if (nd_region->dax_seed == dev) 913 nd_region_create_dax_seed(nd_region); 914 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) 915 nd_region_create_ns_seed(nd_region); 916 } 917 nvdimm_bus_unlock(dev); 918 } 919 920 /** 921 * nd_region_acquire_lane - allocate and lock a lane 922 * @nd_region: region id and number of lanes possible 923 * 924 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 925 * We optimize for the common case where there are 256 lanes, one 926 * per-cpu. For larger systems we need to lock to share lanes. For now 927 * this implementation assumes the cost of maintaining an allocator for 928 * free lanes is on the order of the lock hold time, so it implements a 929 * static lane = cpu % num_lanes mapping. 930 * 931 * In the case of a BTT instance on top of a BLK namespace a lane may be 932 * acquired recursively. We lock on the first instance. 933 * 934 * In the case of a BTT instance on top of PMEM, we only acquire a lane 935 * for the BTT metadata updates. 936 */ 937 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 938 { 939 unsigned int cpu, lane; 940 941 cpu = get_cpu(); 942 if (nd_region->num_lanes < nr_cpu_ids) { 943 struct nd_percpu_lane *ndl_lock, *ndl_count; 944 945 lane = cpu % nd_region->num_lanes; 946 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 947 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 948 if (ndl_count->count++ == 0) 949 spin_lock(&ndl_lock->lock); 950 } else 951 lane = cpu; 952 953 return lane; 954 } 955 EXPORT_SYMBOL(nd_region_acquire_lane); 956 957 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 958 { 959 if (nd_region->num_lanes < nr_cpu_ids) { 960 unsigned int cpu = get_cpu(); 961 struct nd_percpu_lane *ndl_lock, *ndl_count; 962 963 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 964 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 965 if (--ndl_count->count == 0) 966 spin_unlock(&ndl_lock->lock); 967 put_cpu(); 968 } 969 put_cpu(); 970 } 971 EXPORT_SYMBOL(nd_region_release_lane); 972 973 /* 974 * PowerPC requires this alignment for memremap_pages(). All other archs 975 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()). 976 */ 977 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M 978 979 static unsigned long default_align(struct nd_region *nd_region) 980 { 981 unsigned long align; 982 u32 remainder; 983 int mappings; 984 985 align = MEMREMAP_COMPAT_ALIGN_MAX; 986 if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX) 987 align = PAGE_SIZE; 988 989 mappings = max_t(u16, 1, nd_region->ndr_mappings); 990 div_u64_rem(align, mappings, &remainder); 991 if (remainder) 992 align *= mappings; 993 994 return align; 995 } 996 997 static struct lock_class_key nvdimm_region_key; 998 999 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 1000 struct nd_region_desc *ndr_desc, 1001 const struct device_type *dev_type, const char *caller) 1002 { 1003 struct nd_region *nd_region; 1004 struct device *dev; 1005 unsigned int i; 1006 int ro = 0; 1007 1008 for (i = 0; i < ndr_desc->num_mappings; i++) { 1009 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1010 struct nvdimm *nvdimm = mapping->nvdimm; 1011 1012 if ((mapping->start | mapping->size) % PAGE_SIZE) { 1013 dev_err(&nvdimm_bus->dev, 1014 "%s: %s mapping%d is not %ld aligned\n", 1015 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE); 1016 return NULL; 1017 } 1018 1019 if (test_bit(NDD_UNARMED, &nvdimm->flags)) 1020 ro = 1; 1021 1022 } 1023 1024 nd_region = 1025 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings), 1026 GFP_KERNEL); 1027 1028 if (!nd_region) 1029 return NULL; 1030 /* CXL pre-assigns memregion ids before creating nvdimm regions */ 1031 if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) { 1032 nd_region->id = ndr_desc->memregion; 1033 } else { 1034 nd_region->id = memregion_alloc(GFP_KERNEL); 1035 if (nd_region->id < 0) 1036 goto err_id; 1037 } 1038 1039 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 1040 if (!nd_region->lane) 1041 goto err_percpu; 1042 1043 for (i = 0; i < nr_cpu_ids; i++) { 1044 struct nd_percpu_lane *ndl; 1045 1046 ndl = per_cpu_ptr(nd_region->lane, i); 1047 spin_lock_init(&ndl->lock); 1048 ndl->count = 0; 1049 } 1050 1051 for (i = 0; i < ndr_desc->num_mappings; i++) { 1052 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; 1053 struct nvdimm *nvdimm = mapping->nvdimm; 1054 1055 nd_region->mapping[i].nvdimm = nvdimm; 1056 nd_region->mapping[i].start = mapping->start; 1057 nd_region->mapping[i].size = mapping->size; 1058 nd_region->mapping[i].position = mapping->position; 1059 INIT_LIST_HEAD(&nd_region->mapping[i].labels); 1060 mutex_init(&nd_region->mapping[i].lock); 1061 1062 get_device(&nvdimm->dev); 1063 } 1064 nd_region->ndr_mappings = ndr_desc->num_mappings; 1065 nd_region->provider_data = ndr_desc->provider_data; 1066 nd_region->nd_set = ndr_desc->nd_set; 1067 nd_region->num_lanes = ndr_desc->num_lanes; 1068 nd_region->flags = ndr_desc->flags; 1069 nd_region->ro = ro; 1070 nd_region->numa_node = ndr_desc->numa_node; 1071 nd_region->target_node = ndr_desc->target_node; 1072 ida_init(&nd_region->ns_ida); 1073 ida_init(&nd_region->btt_ida); 1074 ida_init(&nd_region->pfn_ida); 1075 ida_init(&nd_region->dax_ida); 1076 dev = &nd_region->dev; 1077 dev_set_name(dev, "region%d", nd_region->id); 1078 dev->parent = &nvdimm_bus->dev; 1079 dev->type = dev_type; 1080 dev->groups = ndr_desc->attr_groups; 1081 dev->of_node = ndr_desc->of_node; 1082 nd_region->ndr_size = resource_size(ndr_desc->res); 1083 nd_region->ndr_start = ndr_desc->res->start; 1084 nd_region->align = default_align(nd_region); 1085 if (ndr_desc->flush) 1086 nd_region->flush = ndr_desc->flush; 1087 else 1088 nd_region->flush = NULL; 1089 1090 device_initialize(dev); 1091 lockdep_set_class(&dev->mutex, &nvdimm_region_key); 1092 nd_device_register(dev); 1093 1094 return nd_region; 1095 1096 err_percpu: 1097 if (!test_bit(ND_REGION_CXL, &ndr_desc->flags)) 1098 memregion_free(nd_region->id); 1099 err_id: 1100 kfree(nd_region); 1101 return NULL; 1102 } 1103 1104 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 1105 struct nd_region_desc *ndr_desc) 1106 { 1107 ndr_desc->num_lanes = ND_MAX_LANES; 1108 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 1109 __func__); 1110 } 1111 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 1112 1113 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 1114 struct nd_region_desc *ndr_desc) 1115 { 1116 ndr_desc->num_lanes = ND_MAX_LANES; 1117 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 1118 __func__); 1119 } 1120 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 1121 1122 void nvdimm_region_delete(struct nd_region *nd_region) 1123 { 1124 if (nd_region) 1125 nd_device_unregister(&nd_region->dev, ND_SYNC); 1126 } 1127 EXPORT_SYMBOL_GPL(nvdimm_region_delete); 1128 1129 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) 1130 { 1131 int rc = 0; 1132 1133 if (!nd_region->flush) 1134 rc = generic_nvdimm_flush(nd_region); 1135 else { 1136 if (nd_region->flush(nd_region, bio)) 1137 rc = -EIO; 1138 } 1139 1140 return rc; 1141 } 1142 /** 1143 * generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media 1144 * @nd_region: interleaved pmem region 1145 */ 1146 int generic_nvdimm_flush(struct nd_region *nd_region) 1147 { 1148 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 1149 int i, idx; 1150 1151 /* 1152 * Try to encourage some diversity in flush hint addresses 1153 * across cpus assuming a limited number of flush hints. 1154 */ 1155 idx = this_cpu_read(flush_idx); 1156 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 1157 1158 /* 1159 * The pmem_wmb() is needed to 'sfence' all 1160 * previous writes such that they are architecturally visible for 1161 * the platform buffer flush. Note that we've already arranged for pmem 1162 * writes to avoid the cache via memcpy_flushcache(). The final 1163 * wmb() ensures ordering for the NVDIMM flush write. 1164 */ 1165 pmem_wmb(); 1166 for (i = 0; i < nd_region->ndr_mappings; i++) 1167 if (ndrd_get_flush_wpq(ndrd, i, 0)) 1168 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 1169 wmb(); 1170 1171 return 0; 1172 } 1173 EXPORT_SYMBOL_GPL(nvdimm_flush); 1174 1175 /** 1176 * nvdimm_has_flush - determine write flushing requirements 1177 * @nd_region: interleaved pmem region 1178 * 1179 * Returns 1 if writes require flushing 1180 * Returns 0 if writes do not require flushing 1181 * Returns -ENXIO if flushing capability can not be determined 1182 */ 1183 int nvdimm_has_flush(struct nd_region *nd_region) 1184 { 1185 int i; 1186 1187 /* no nvdimm or pmem api == flushing capability unknown */ 1188 if (nd_region->ndr_mappings == 0 1189 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) 1190 return -ENXIO; 1191 1192 /* Test if an explicit flush function is defined */ 1193 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush) 1194 return 1; 1195 1196 /* Test if any flush hints for the region are available */ 1197 for (i = 0; i < nd_region->ndr_mappings; i++) { 1198 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 1199 struct nvdimm *nvdimm = nd_mapping->nvdimm; 1200 1201 /* flush hints present / available */ 1202 if (nvdimm->num_flush) 1203 return 1; 1204 } 1205 1206 /* 1207 * The platform defines dimm devices without hints nor explicit flush, 1208 * assume platform persistence mechanism like ADR 1209 */ 1210 return 0; 1211 } 1212 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 1213 1214 int nvdimm_has_cache(struct nd_region *nd_region) 1215 { 1216 return is_nd_pmem(&nd_region->dev) && 1217 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); 1218 } 1219 EXPORT_SYMBOL_GPL(nvdimm_has_cache); 1220 1221 bool is_nvdimm_sync(struct nd_region *nd_region) 1222 { 1223 if (is_nd_volatile(&nd_region->dev)) 1224 return true; 1225 1226 return is_nd_pmem(&nd_region->dev) && 1227 !test_bit(ND_REGION_ASYNC, &nd_region->flags); 1228 } 1229 EXPORT_SYMBOL_GPL(is_nvdimm_sync); 1230 1231 struct conflict_context { 1232 struct nd_region *nd_region; 1233 resource_size_t start, size; 1234 }; 1235 1236 static int region_conflict(struct device *dev, void *data) 1237 { 1238 struct nd_region *nd_region; 1239 struct conflict_context *ctx = data; 1240 resource_size_t res_end, region_end, region_start; 1241 1242 if (!is_memory(dev)) 1243 return 0; 1244 1245 nd_region = to_nd_region(dev); 1246 if (nd_region == ctx->nd_region) 1247 return 0; 1248 1249 res_end = ctx->start + ctx->size; 1250 region_start = nd_region->ndr_start; 1251 region_end = region_start + nd_region->ndr_size; 1252 if (ctx->start >= region_start && ctx->start < region_end) 1253 return -EBUSY; 1254 if (res_end > region_start && res_end <= region_end) 1255 return -EBUSY; 1256 return 0; 1257 } 1258 1259 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, 1260 resource_size_t size) 1261 { 1262 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); 1263 struct conflict_context ctx = { 1264 .nd_region = nd_region, 1265 .start = start, 1266 .size = size, 1267 }; 1268 1269 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); 1270 } 1271 1272 MODULE_IMPORT_NS(DEVMEM); 1273