xref: /linux/drivers/nvdimm/region_devs.c (revision b60a5b8dcf49af9f2c60ae82e0383ee8e62a9a52)
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/sort.h>
19 #include <linux/io.h>
20 #include <linux/nd.h>
21 #include "nd-core.h"
22 #include "nd.h"
23 
24 /*
25  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
26  * irrelevant.
27  */
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 
30 static DEFINE_IDA(region_ida);
31 static DEFINE_PER_CPU(int, flush_idx);
32 
33 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
34 		struct nd_region_data *ndrd)
35 {
36 	int i, j;
37 
38 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
39 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
40 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
41 		struct resource *res = &nvdimm->flush_wpq[i];
42 		unsigned long pfn = PHYS_PFN(res->start);
43 		void __iomem *flush_page;
44 
45 		/* check if flush hints share a page */
46 		for (j = 0; j < i; j++) {
47 			struct resource *res_j = &nvdimm->flush_wpq[j];
48 			unsigned long pfn_j = PHYS_PFN(res_j->start);
49 
50 			if (pfn == pfn_j)
51 				break;
52 		}
53 
54 		if (j < i)
55 			flush_page = (void __iomem *) ((unsigned long)
56 					ndrd_get_flush_wpq(ndrd, dimm, j)
57 					& PAGE_MASK);
58 		else
59 			flush_page = devm_nvdimm_ioremap(dev,
60 					PFN_PHYS(pfn), PAGE_SIZE);
61 		if (!flush_page)
62 			return -ENXIO;
63 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
64 				+ (res->start & ~PAGE_MASK));
65 	}
66 
67 	return 0;
68 }
69 
70 int nd_region_activate(struct nd_region *nd_region)
71 {
72 	int i, j, num_flush = 0;
73 	struct nd_region_data *ndrd;
74 	struct device *dev = &nd_region->dev;
75 	size_t flush_data_size = sizeof(void *);
76 
77 	nvdimm_bus_lock(&nd_region->dev);
78 	for (i = 0; i < nd_region->ndr_mappings; i++) {
79 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
81 
82 		if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
83 			nvdimm_bus_unlock(&nd_region->dev);
84 			return -EBUSY;
85 		}
86 
87 		/* at least one null hint slot per-dimm for the "no-hint" case */
88 		flush_data_size += sizeof(void *);
89 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
90 		if (!nvdimm->num_flush)
91 			continue;
92 		flush_data_size += nvdimm->num_flush * sizeof(void *);
93 	}
94 	nvdimm_bus_unlock(&nd_region->dev);
95 
96 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
97 	if (!ndrd)
98 		return -ENOMEM;
99 	dev_set_drvdata(dev, ndrd);
100 
101 	if (!num_flush)
102 		return 0;
103 
104 	ndrd->hints_shift = ilog2(num_flush);
105 	for (i = 0; i < nd_region->ndr_mappings; i++) {
106 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
107 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
108 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
109 
110 		if (rc)
111 			return rc;
112 	}
113 
114 	/*
115 	 * Clear out entries that are duplicates. This should prevent the
116 	 * extra flushings.
117 	 */
118 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
119 		/* ignore if NULL already */
120 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
121 			continue;
122 
123 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
124 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
125 			    ndrd_get_flush_wpq(ndrd, j, 0))
126 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
127 	}
128 
129 	return 0;
130 }
131 
132 static void nd_region_release(struct device *dev)
133 {
134 	struct nd_region *nd_region = to_nd_region(dev);
135 	u16 i;
136 
137 	for (i = 0; i < nd_region->ndr_mappings; i++) {
138 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
139 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
140 
141 		put_device(&nvdimm->dev);
142 	}
143 	free_percpu(nd_region->lane);
144 	ida_simple_remove(&region_ida, nd_region->id);
145 	if (is_nd_blk(dev))
146 		kfree(to_nd_blk_region(dev));
147 	else
148 		kfree(nd_region);
149 }
150 
151 static struct device_type nd_blk_device_type = {
152 	.name = "nd_blk",
153 	.release = nd_region_release,
154 };
155 
156 static struct device_type nd_pmem_device_type = {
157 	.name = "nd_pmem",
158 	.release = nd_region_release,
159 };
160 
161 static struct device_type nd_volatile_device_type = {
162 	.name = "nd_volatile",
163 	.release = nd_region_release,
164 };
165 
166 bool is_nd_pmem(struct device *dev)
167 {
168 	return dev ? dev->type == &nd_pmem_device_type : false;
169 }
170 
171 bool is_nd_blk(struct device *dev)
172 {
173 	return dev ? dev->type == &nd_blk_device_type : false;
174 }
175 
176 bool is_nd_volatile(struct device *dev)
177 {
178 	return dev ? dev->type == &nd_volatile_device_type : false;
179 }
180 
181 struct nd_region *to_nd_region(struct device *dev)
182 {
183 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
184 
185 	WARN_ON(dev->type->release != nd_region_release);
186 	return nd_region;
187 }
188 EXPORT_SYMBOL_GPL(to_nd_region);
189 
190 struct device *nd_region_dev(struct nd_region *nd_region)
191 {
192 	if (!nd_region)
193 		return NULL;
194 	return &nd_region->dev;
195 }
196 EXPORT_SYMBOL_GPL(nd_region_dev);
197 
198 struct nd_blk_region *to_nd_blk_region(struct device *dev)
199 {
200 	struct nd_region *nd_region = to_nd_region(dev);
201 
202 	WARN_ON(!is_nd_blk(dev));
203 	return container_of(nd_region, struct nd_blk_region, nd_region);
204 }
205 EXPORT_SYMBOL_GPL(to_nd_blk_region);
206 
207 void *nd_region_provider_data(struct nd_region *nd_region)
208 {
209 	return nd_region->provider_data;
210 }
211 EXPORT_SYMBOL_GPL(nd_region_provider_data);
212 
213 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
214 {
215 	return ndbr->blk_provider_data;
216 }
217 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
218 
219 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
220 {
221 	ndbr->blk_provider_data = data;
222 }
223 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
224 
225 /**
226  * nd_region_to_nstype() - region to an integer namespace type
227  * @nd_region: region-device to interrogate
228  *
229  * This is the 'nstype' attribute of a region as well, an input to the
230  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
231  * namespace devices with namespace drivers.
232  */
233 int nd_region_to_nstype(struct nd_region *nd_region)
234 {
235 	if (is_memory(&nd_region->dev)) {
236 		u16 i, alias;
237 
238 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
239 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
240 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
241 
242 			if (test_bit(NDD_ALIASING, &nvdimm->flags))
243 				alias++;
244 		}
245 		if (alias)
246 			return ND_DEVICE_NAMESPACE_PMEM;
247 		else
248 			return ND_DEVICE_NAMESPACE_IO;
249 	} else if (is_nd_blk(&nd_region->dev)) {
250 		return ND_DEVICE_NAMESPACE_BLK;
251 	}
252 
253 	return 0;
254 }
255 EXPORT_SYMBOL(nd_region_to_nstype);
256 
257 static ssize_t size_show(struct device *dev,
258 		struct device_attribute *attr, char *buf)
259 {
260 	struct nd_region *nd_region = to_nd_region(dev);
261 	unsigned long long size = 0;
262 
263 	if (is_memory(dev)) {
264 		size = nd_region->ndr_size;
265 	} else if (nd_region->ndr_mappings == 1) {
266 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
267 
268 		size = nd_mapping->size;
269 	}
270 
271 	return sprintf(buf, "%llu\n", size);
272 }
273 static DEVICE_ATTR_RO(size);
274 
275 static ssize_t deep_flush_show(struct device *dev,
276 		struct device_attribute *attr, char *buf)
277 {
278 	struct nd_region *nd_region = to_nd_region(dev);
279 
280 	/*
281 	 * NOTE: in the nvdimm_has_flush() error case this attribute is
282 	 * not visible.
283 	 */
284 	return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
285 }
286 
287 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
288 		const char *buf, size_t len)
289 {
290 	bool flush;
291 	int rc = strtobool(buf, &flush);
292 	struct nd_region *nd_region = to_nd_region(dev);
293 
294 	if (rc)
295 		return rc;
296 	if (!flush)
297 		return -EINVAL;
298 	nvdimm_flush(nd_region);
299 
300 	return len;
301 }
302 static DEVICE_ATTR_RW(deep_flush);
303 
304 static ssize_t mappings_show(struct device *dev,
305 		struct device_attribute *attr, char *buf)
306 {
307 	struct nd_region *nd_region = to_nd_region(dev);
308 
309 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
310 }
311 static DEVICE_ATTR_RO(mappings);
312 
313 static ssize_t nstype_show(struct device *dev,
314 		struct device_attribute *attr, char *buf)
315 {
316 	struct nd_region *nd_region = to_nd_region(dev);
317 
318 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
319 }
320 static DEVICE_ATTR_RO(nstype);
321 
322 static ssize_t set_cookie_show(struct device *dev,
323 		struct device_attribute *attr, char *buf)
324 {
325 	struct nd_region *nd_region = to_nd_region(dev);
326 	struct nd_interleave_set *nd_set = nd_region->nd_set;
327 	ssize_t rc = 0;
328 
329 	if (is_memory(dev) && nd_set)
330 		/* pass, should be precluded by region_visible */;
331 	else
332 		return -ENXIO;
333 
334 	/*
335 	 * The cookie to show depends on which specification of the
336 	 * labels we are using. If there are not labels then default to
337 	 * the v1.1 namespace label cookie definition. To read all this
338 	 * data we need to wait for probing to settle.
339 	 */
340 	device_lock(dev);
341 	nvdimm_bus_lock(dev);
342 	wait_nvdimm_bus_probe_idle(dev);
343 	if (nd_region->ndr_mappings) {
344 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
345 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
346 
347 		if (ndd) {
348 			struct nd_namespace_index *nsindex;
349 
350 			nsindex = to_namespace_index(ndd, ndd->ns_current);
351 			rc = sprintf(buf, "%#llx\n",
352 					nd_region_interleave_set_cookie(nd_region,
353 						nsindex));
354 		}
355 	}
356 	nvdimm_bus_unlock(dev);
357 	device_unlock(dev);
358 
359 	if (rc)
360 		return rc;
361 	return sprintf(buf, "%#llx\n", nd_set->cookie1);
362 }
363 static DEVICE_ATTR_RO(set_cookie);
364 
365 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
366 {
367 	resource_size_t blk_max_overlap = 0, available, overlap;
368 	int i;
369 
370 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
371 
372  retry:
373 	available = 0;
374 	overlap = blk_max_overlap;
375 	for (i = 0; i < nd_region->ndr_mappings; i++) {
376 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
377 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
378 
379 		/* if a dimm is disabled the available capacity is zero */
380 		if (!ndd)
381 			return 0;
382 
383 		if (is_memory(&nd_region->dev)) {
384 			available += nd_pmem_available_dpa(nd_region,
385 					nd_mapping, &overlap);
386 			if (overlap > blk_max_overlap) {
387 				blk_max_overlap = overlap;
388 				goto retry;
389 			}
390 		} else if (is_nd_blk(&nd_region->dev))
391 			available += nd_blk_available_dpa(nd_region);
392 	}
393 
394 	return available;
395 }
396 
397 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
398 {
399 	resource_size_t available = 0;
400 	int i;
401 
402 	if (is_memory(&nd_region->dev))
403 		available = PHYS_ADDR_MAX;
404 
405 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
406 	for (i = 0; i < nd_region->ndr_mappings; i++) {
407 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
408 
409 		if (is_memory(&nd_region->dev))
410 			available = min(available,
411 					nd_pmem_max_contiguous_dpa(nd_region,
412 								   nd_mapping));
413 		else if (is_nd_blk(&nd_region->dev))
414 			available += nd_blk_available_dpa(nd_region);
415 	}
416 	if (is_memory(&nd_region->dev))
417 		return available * nd_region->ndr_mappings;
418 	return available;
419 }
420 
421 static ssize_t available_size_show(struct device *dev,
422 		struct device_attribute *attr, char *buf)
423 {
424 	struct nd_region *nd_region = to_nd_region(dev);
425 	unsigned long long available = 0;
426 
427 	/*
428 	 * Flush in-flight updates and grab a snapshot of the available
429 	 * size.  Of course, this value is potentially invalidated the
430 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
431 	 * problem to not race itself.
432 	 */
433 	nvdimm_bus_lock(dev);
434 	wait_nvdimm_bus_probe_idle(dev);
435 	available = nd_region_available_dpa(nd_region);
436 	nvdimm_bus_unlock(dev);
437 
438 	return sprintf(buf, "%llu\n", available);
439 }
440 static DEVICE_ATTR_RO(available_size);
441 
442 static ssize_t max_available_extent_show(struct device *dev,
443 		struct device_attribute *attr, char *buf)
444 {
445 	struct nd_region *nd_region = to_nd_region(dev);
446 	unsigned long long available = 0;
447 
448 	nvdimm_bus_lock(dev);
449 	wait_nvdimm_bus_probe_idle(dev);
450 	available = nd_region_allocatable_dpa(nd_region);
451 	nvdimm_bus_unlock(dev);
452 
453 	return sprintf(buf, "%llu\n", available);
454 }
455 static DEVICE_ATTR_RO(max_available_extent);
456 
457 static ssize_t init_namespaces_show(struct device *dev,
458 		struct device_attribute *attr, char *buf)
459 {
460 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
461 	ssize_t rc;
462 
463 	nvdimm_bus_lock(dev);
464 	if (ndrd)
465 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
466 	else
467 		rc = -ENXIO;
468 	nvdimm_bus_unlock(dev);
469 
470 	return rc;
471 }
472 static DEVICE_ATTR_RO(init_namespaces);
473 
474 static ssize_t namespace_seed_show(struct device *dev,
475 		struct device_attribute *attr, char *buf)
476 {
477 	struct nd_region *nd_region = to_nd_region(dev);
478 	ssize_t rc;
479 
480 	nvdimm_bus_lock(dev);
481 	if (nd_region->ns_seed)
482 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
483 	else
484 		rc = sprintf(buf, "\n");
485 	nvdimm_bus_unlock(dev);
486 	return rc;
487 }
488 static DEVICE_ATTR_RO(namespace_seed);
489 
490 static ssize_t btt_seed_show(struct device *dev,
491 		struct device_attribute *attr, char *buf)
492 {
493 	struct nd_region *nd_region = to_nd_region(dev);
494 	ssize_t rc;
495 
496 	nvdimm_bus_lock(dev);
497 	if (nd_region->btt_seed)
498 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
499 	else
500 		rc = sprintf(buf, "\n");
501 	nvdimm_bus_unlock(dev);
502 
503 	return rc;
504 }
505 static DEVICE_ATTR_RO(btt_seed);
506 
507 static ssize_t pfn_seed_show(struct device *dev,
508 		struct device_attribute *attr, char *buf)
509 {
510 	struct nd_region *nd_region = to_nd_region(dev);
511 	ssize_t rc;
512 
513 	nvdimm_bus_lock(dev);
514 	if (nd_region->pfn_seed)
515 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
516 	else
517 		rc = sprintf(buf, "\n");
518 	nvdimm_bus_unlock(dev);
519 
520 	return rc;
521 }
522 static DEVICE_ATTR_RO(pfn_seed);
523 
524 static ssize_t dax_seed_show(struct device *dev,
525 		struct device_attribute *attr, char *buf)
526 {
527 	struct nd_region *nd_region = to_nd_region(dev);
528 	ssize_t rc;
529 
530 	nvdimm_bus_lock(dev);
531 	if (nd_region->dax_seed)
532 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
533 	else
534 		rc = sprintf(buf, "\n");
535 	nvdimm_bus_unlock(dev);
536 
537 	return rc;
538 }
539 static DEVICE_ATTR_RO(dax_seed);
540 
541 static ssize_t read_only_show(struct device *dev,
542 		struct device_attribute *attr, char *buf)
543 {
544 	struct nd_region *nd_region = to_nd_region(dev);
545 
546 	return sprintf(buf, "%d\n", nd_region->ro);
547 }
548 
549 static ssize_t read_only_store(struct device *dev,
550 		struct device_attribute *attr, const char *buf, size_t len)
551 {
552 	bool ro;
553 	int rc = strtobool(buf, &ro);
554 	struct nd_region *nd_region = to_nd_region(dev);
555 
556 	if (rc)
557 		return rc;
558 
559 	nd_region->ro = ro;
560 	return len;
561 }
562 static DEVICE_ATTR_RW(read_only);
563 
564 static ssize_t region_badblocks_show(struct device *dev,
565 		struct device_attribute *attr, char *buf)
566 {
567 	struct nd_region *nd_region = to_nd_region(dev);
568 	ssize_t rc;
569 
570 	device_lock(dev);
571 	if (dev->driver)
572 		rc = badblocks_show(&nd_region->bb, buf, 0);
573 	else
574 		rc = -ENXIO;
575 	device_unlock(dev);
576 
577 	return rc;
578 }
579 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
580 
581 static ssize_t resource_show(struct device *dev,
582 		struct device_attribute *attr, char *buf)
583 {
584 	struct nd_region *nd_region = to_nd_region(dev);
585 
586 	return sprintf(buf, "%#llx\n", nd_region->ndr_start);
587 }
588 static DEVICE_ATTR_RO(resource);
589 
590 static ssize_t persistence_domain_show(struct device *dev,
591 		struct device_attribute *attr, char *buf)
592 {
593 	struct nd_region *nd_region = to_nd_region(dev);
594 
595 	if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
596 		return sprintf(buf, "cpu_cache\n");
597 	else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
598 		return sprintf(buf, "memory_controller\n");
599 	else
600 		return sprintf(buf, "\n");
601 }
602 static DEVICE_ATTR_RO(persistence_domain);
603 
604 static struct attribute *nd_region_attributes[] = {
605 	&dev_attr_size.attr,
606 	&dev_attr_nstype.attr,
607 	&dev_attr_mappings.attr,
608 	&dev_attr_btt_seed.attr,
609 	&dev_attr_pfn_seed.attr,
610 	&dev_attr_dax_seed.attr,
611 	&dev_attr_deep_flush.attr,
612 	&dev_attr_read_only.attr,
613 	&dev_attr_set_cookie.attr,
614 	&dev_attr_available_size.attr,
615 	&dev_attr_max_available_extent.attr,
616 	&dev_attr_namespace_seed.attr,
617 	&dev_attr_init_namespaces.attr,
618 	&dev_attr_badblocks.attr,
619 	&dev_attr_resource.attr,
620 	&dev_attr_persistence_domain.attr,
621 	NULL,
622 };
623 
624 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
625 {
626 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
627 	struct nd_region *nd_region = to_nd_region(dev);
628 	struct nd_interleave_set *nd_set = nd_region->nd_set;
629 	int type = nd_region_to_nstype(nd_region);
630 
631 	if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
632 		return 0;
633 
634 	if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
635 		return 0;
636 
637 	if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
638 		return 0;
639 
640 	if (a == &dev_attr_resource.attr) {
641 		if (is_nd_pmem(dev))
642 			return 0400;
643 		else
644 			return 0;
645 	}
646 
647 	if (a == &dev_attr_deep_flush.attr) {
648 		int has_flush = nvdimm_has_flush(nd_region);
649 
650 		if (has_flush == 1)
651 			return a->mode;
652 		else if (has_flush == 0)
653 			return 0444;
654 		else
655 			return 0;
656 	}
657 
658 	if (a == &dev_attr_persistence_domain.attr) {
659 		if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
660 					| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
661 			return 0;
662 		return a->mode;
663 	}
664 
665 	if (a != &dev_attr_set_cookie.attr
666 			&& a != &dev_attr_available_size.attr)
667 		return a->mode;
668 
669 	if ((type == ND_DEVICE_NAMESPACE_PMEM
670 				|| type == ND_DEVICE_NAMESPACE_BLK)
671 			&& a == &dev_attr_available_size.attr)
672 		return a->mode;
673 	else if (is_memory(dev) && nd_set)
674 		return a->mode;
675 
676 	return 0;
677 }
678 
679 struct attribute_group nd_region_attribute_group = {
680 	.attrs = nd_region_attributes,
681 	.is_visible = region_visible,
682 };
683 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
684 
685 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
686 		struct nd_namespace_index *nsindex)
687 {
688 	struct nd_interleave_set *nd_set = nd_region->nd_set;
689 
690 	if (!nd_set)
691 		return 0;
692 
693 	if (nsindex && __le16_to_cpu(nsindex->major) == 1
694 			&& __le16_to_cpu(nsindex->minor) == 1)
695 		return nd_set->cookie1;
696 	return nd_set->cookie2;
697 }
698 
699 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
700 {
701 	struct nd_interleave_set *nd_set = nd_region->nd_set;
702 
703 	if (nd_set)
704 		return nd_set->altcookie;
705 	return 0;
706 }
707 
708 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
709 {
710 	struct nd_label_ent *label_ent, *e;
711 
712 	lockdep_assert_held(&nd_mapping->lock);
713 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
714 		list_del(&label_ent->list);
715 		kfree(label_ent);
716 	}
717 }
718 
719 /*
720  * Upon successful probe/remove, take/release a reference on the
721  * associated interleave set (if present), and plant new btt + namespace
722  * seeds.  Also, on the removal of a BLK region, notify the provider to
723  * disable the region.
724  */
725 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
726 		struct device *dev, bool probe)
727 {
728 	struct nd_region *nd_region;
729 
730 	if (!probe && is_nd_region(dev)) {
731 		int i;
732 
733 		nd_region = to_nd_region(dev);
734 		for (i = 0; i < nd_region->ndr_mappings; i++) {
735 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
736 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
737 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
738 
739 			mutex_lock(&nd_mapping->lock);
740 			nd_mapping_free_labels(nd_mapping);
741 			mutex_unlock(&nd_mapping->lock);
742 
743 			put_ndd(ndd);
744 			nd_mapping->ndd = NULL;
745 			if (ndd)
746 				atomic_dec(&nvdimm->busy);
747 		}
748 	}
749 	if (dev->parent && is_nd_region(dev->parent) && probe) {
750 		nd_region = to_nd_region(dev->parent);
751 		nvdimm_bus_lock(dev);
752 		if (nd_region->ns_seed == dev)
753 			nd_region_create_ns_seed(nd_region);
754 		nvdimm_bus_unlock(dev);
755 	}
756 	if (is_nd_btt(dev) && probe) {
757 		struct nd_btt *nd_btt = to_nd_btt(dev);
758 
759 		nd_region = to_nd_region(dev->parent);
760 		nvdimm_bus_lock(dev);
761 		if (nd_region->btt_seed == dev)
762 			nd_region_create_btt_seed(nd_region);
763 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
764 			nd_region_create_ns_seed(nd_region);
765 		nvdimm_bus_unlock(dev);
766 	}
767 	if (is_nd_pfn(dev) && probe) {
768 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
769 
770 		nd_region = to_nd_region(dev->parent);
771 		nvdimm_bus_lock(dev);
772 		if (nd_region->pfn_seed == dev)
773 			nd_region_create_pfn_seed(nd_region);
774 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
775 			nd_region_create_ns_seed(nd_region);
776 		nvdimm_bus_unlock(dev);
777 	}
778 	if (is_nd_dax(dev) && probe) {
779 		struct nd_dax *nd_dax = to_nd_dax(dev);
780 
781 		nd_region = to_nd_region(dev->parent);
782 		nvdimm_bus_lock(dev);
783 		if (nd_region->dax_seed == dev)
784 			nd_region_create_dax_seed(nd_region);
785 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
786 			nd_region_create_ns_seed(nd_region);
787 		nvdimm_bus_unlock(dev);
788 	}
789 }
790 
791 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
792 {
793 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
794 }
795 
796 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
797 {
798 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
799 }
800 
801 static ssize_t mappingN(struct device *dev, char *buf, int n)
802 {
803 	struct nd_region *nd_region = to_nd_region(dev);
804 	struct nd_mapping *nd_mapping;
805 	struct nvdimm *nvdimm;
806 
807 	if (n >= nd_region->ndr_mappings)
808 		return -ENXIO;
809 	nd_mapping = &nd_region->mapping[n];
810 	nvdimm = nd_mapping->nvdimm;
811 
812 	return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
813 			nd_mapping->start, nd_mapping->size,
814 			nd_mapping->position);
815 }
816 
817 #define REGION_MAPPING(idx) \
818 static ssize_t mapping##idx##_show(struct device *dev,		\
819 		struct device_attribute *attr, char *buf)	\
820 {								\
821 	return mappingN(dev, buf, idx);				\
822 }								\
823 static DEVICE_ATTR_RO(mapping##idx)
824 
825 /*
826  * 32 should be enough for a while, even in the presence of socket
827  * interleave a 32-way interleave set is a degenerate case.
828  */
829 REGION_MAPPING(0);
830 REGION_MAPPING(1);
831 REGION_MAPPING(2);
832 REGION_MAPPING(3);
833 REGION_MAPPING(4);
834 REGION_MAPPING(5);
835 REGION_MAPPING(6);
836 REGION_MAPPING(7);
837 REGION_MAPPING(8);
838 REGION_MAPPING(9);
839 REGION_MAPPING(10);
840 REGION_MAPPING(11);
841 REGION_MAPPING(12);
842 REGION_MAPPING(13);
843 REGION_MAPPING(14);
844 REGION_MAPPING(15);
845 REGION_MAPPING(16);
846 REGION_MAPPING(17);
847 REGION_MAPPING(18);
848 REGION_MAPPING(19);
849 REGION_MAPPING(20);
850 REGION_MAPPING(21);
851 REGION_MAPPING(22);
852 REGION_MAPPING(23);
853 REGION_MAPPING(24);
854 REGION_MAPPING(25);
855 REGION_MAPPING(26);
856 REGION_MAPPING(27);
857 REGION_MAPPING(28);
858 REGION_MAPPING(29);
859 REGION_MAPPING(30);
860 REGION_MAPPING(31);
861 
862 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
863 {
864 	struct device *dev = container_of(kobj, struct device, kobj);
865 	struct nd_region *nd_region = to_nd_region(dev);
866 
867 	if (n < nd_region->ndr_mappings)
868 		return a->mode;
869 	return 0;
870 }
871 
872 static struct attribute *mapping_attributes[] = {
873 	&dev_attr_mapping0.attr,
874 	&dev_attr_mapping1.attr,
875 	&dev_attr_mapping2.attr,
876 	&dev_attr_mapping3.attr,
877 	&dev_attr_mapping4.attr,
878 	&dev_attr_mapping5.attr,
879 	&dev_attr_mapping6.attr,
880 	&dev_attr_mapping7.attr,
881 	&dev_attr_mapping8.attr,
882 	&dev_attr_mapping9.attr,
883 	&dev_attr_mapping10.attr,
884 	&dev_attr_mapping11.attr,
885 	&dev_attr_mapping12.attr,
886 	&dev_attr_mapping13.attr,
887 	&dev_attr_mapping14.attr,
888 	&dev_attr_mapping15.attr,
889 	&dev_attr_mapping16.attr,
890 	&dev_attr_mapping17.attr,
891 	&dev_attr_mapping18.attr,
892 	&dev_attr_mapping19.attr,
893 	&dev_attr_mapping20.attr,
894 	&dev_attr_mapping21.attr,
895 	&dev_attr_mapping22.attr,
896 	&dev_attr_mapping23.attr,
897 	&dev_attr_mapping24.attr,
898 	&dev_attr_mapping25.attr,
899 	&dev_attr_mapping26.attr,
900 	&dev_attr_mapping27.attr,
901 	&dev_attr_mapping28.attr,
902 	&dev_attr_mapping29.attr,
903 	&dev_attr_mapping30.attr,
904 	&dev_attr_mapping31.attr,
905 	NULL,
906 };
907 
908 struct attribute_group nd_mapping_attribute_group = {
909 	.is_visible = mapping_visible,
910 	.attrs = mapping_attributes,
911 };
912 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
913 
914 int nd_blk_region_init(struct nd_region *nd_region)
915 {
916 	struct device *dev = &nd_region->dev;
917 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
918 
919 	if (!is_nd_blk(dev))
920 		return 0;
921 
922 	if (nd_region->ndr_mappings < 1) {
923 		dev_dbg(dev, "invalid BLK region\n");
924 		return -ENXIO;
925 	}
926 
927 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
928 }
929 
930 /**
931  * nd_region_acquire_lane - allocate and lock a lane
932  * @nd_region: region id and number of lanes possible
933  *
934  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
935  * We optimize for the common case where there are 256 lanes, one
936  * per-cpu.  For larger systems we need to lock to share lanes.  For now
937  * this implementation assumes the cost of maintaining an allocator for
938  * free lanes is on the order of the lock hold time, so it implements a
939  * static lane = cpu % num_lanes mapping.
940  *
941  * In the case of a BTT instance on top of a BLK namespace a lane may be
942  * acquired recursively.  We lock on the first instance.
943  *
944  * In the case of a BTT instance on top of PMEM, we only acquire a lane
945  * for the BTT metadata updates.
946  */
947 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
948 {
949 	unsigned int cpu, lane;
950 
951 	cpu = get_cpu();
952 	if (nd_region->num_lanes < nr_cpu_ids) {
953 		struct nd_percpu_lane *ndl_lock, *ndl_count;
954 
955 		lane = cpu % nd_region->num_lanes;
956 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
957 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
958 		if (ndl_count->count++ == 0)
959 			spin_lock(&ndl_lock->lock);
960 	} else
961 		lane = cpu;
962 
963 	return lane;
964 }
965 EXPORT_SYMBOL(nd_region_acquire_lane);
966 
967 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
968 {
969 	if (nd_region->num_lanes < nr_cpu_ids) {
970 		unsigned int cpu = get_cpu();
971 		struct nd_percpu_lane *ndl_lock, *ndl_count;
972 
973 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
974 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
975 		if (--ndl_count->count == 0)
976 			spin_unlock(&ndl_lock->lock);
977 		put_cpu();
978 	}
979 	put_cpu();
980 }
981 EXPORT_SYMBOL(nd_region_release_lane);
982 
983 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
984 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
985 		const char *caller)
986 {
987 	struct nd_region *nd_region;
988 	struct device *dev;
989 	void *region_buf;
990 	unsigned int i;
991 	int ro = 0;
992 
993 	for (i = 0; i < ndr_desc->num_mappings; i++) {
994 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
995 		struct nvdimm *nvdimm = mapping->nvdimm;
996 
997 		if ((mapping->start | mapping->size) % SZ_4K) {
998 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
999 					caller, dev_name(&nvdimm->dev), i);
1000 
1001 			return NULL;
1002 		}
1003 
1004 		if (test_bit(NDD_UNARMED, &nvdimm->flags))
1005 			ro = 1;
1006 
1007 		if (test_bit(NDD_NOBLK, &nvdimm->flags)
1008 				&& dev_type == &nd_blk_device_type) {
1009 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
1010 					caller, dev_name(&nvdimm->dev), i);
1011 			return NULL;
1012 		}
1013 	}
1014 
1015 	if (dev_type == &nd_blk_device_type) {
1016 		struct nd_blk_region_desc *ndbr_desc;
1017 		struct nd_blk_region *ndbr;
1018 
1019 		ndbr_desc = to_blk_region_desc(ndr_desc);
1020 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1021 				* ndr_desc->num_mappings,
1022 				GFP_KERNEL);
1023 		if (ndbr) {
1024 			nd_region = &ndbr->nd_region;
1025 			ndbr->enable = ndbr_desc->enable;
1026 			ndbr->do_io = ndbr_desc->do_io;
1027 		}
1028 		region_buf = ndbr;
1029 	} else {
1030 		nd_region = kzalloc(sizeof(struct nd_region)
1031 				+ sizeof(struct nd_mapping)
1032 				* ndr_desc->num_mappings,
1033 				GFP_KERNEL);
1034 		region_buf = nd_region;
1035 	}
1036 
1037 	if (!region_buf)
1038 		return NULL;
1039 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
1040 	if (nd_region->id < 0)
1041 		goto err_id;
1042 
1043 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1044 	if (!nd_region->lane)
1045 		goto err_percpu;
1046 
1047         for (i = 0; i < nr_cpu_ids; i++) {
1048 		struct nd_percpu_lane *ndl;
1049 
1050 		ndl = per_cpu_ptr(nd_region->lane, i);
1051 		spin_lock_init(&ndl->lock);
1052 		ndl->count = 0;
1053 	}
1054 
1055 	for (i = 0; i < ndr_desc->num_mappings; i++) {
1056 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1057 		struct nvdimm *nvdimm = mapping->nvdimm;
1058 
1059 		nd_region->mapping[i].nvdimm = nvdimm;
1060 		nd_region->mapping[i].start = mapping->start;
1061 		nd_region->mapping[i].size = mapping->size;
1062 		nd_region->mapping[i].position = mapping->position;
1063 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1064 		mutex_init(&nd_region->mapping[i].lock);
1065 
1066 		get_device(&nvdimm->dev);
1067 	}
1068 	nd_region->ndr_mappings = ndr_desc->num_mappings;
1069 	nd_region->provider_data = ndr_desc->provider_data;
1070 	nd_region->nd_set = ndr_desc->nd_set;
1071 	nd_region->num_lanes = ndr_desc->num_lanes;
1072 	nd_region->flags = ndr_desc->flags;
1073 	nd_region->ro = ro;
1074 	nd_region->numa_node = ndr_desc->numa_node;
1075 	nd_region->target_node = ndr_desc->target_node;
1076 	ida_init(&nd_region->ns_ida);
1077 	ida_init(&nd_region->btt_ida);
1078 	ida_init(&nd_region->pfn_ida);
1079 	ida_init(&nd_region->dax_ida);
1080 	dev = &nd_region->dev;
1081 	dev_set_name(dev, "region%d", nd_region->id);
1082 	dev->parent = &nvdimm_bus->dev;
1083 	dev->type = dev_type;
1084 	dev->groups = ndr_desc->attr_groups;
1085 	dev->of_node = ndr_desc->of_node;
1086 	nd_region->ndr_size = resource_size(ndr_desc->res);
1087 	nd_region->ndr_start = ndr_desc->res->start;
1088 	nd_device_register(dev);
1089 
1090 	return nd_region;
1091 
1092  err_percpu:
1093 	ida_simple_remove(&region_ida, nd_region->id);
1094  err_id:
1095 	kfree(region_buf);
1096 	return NULL;
1097 }
1098 
1099 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1100 		struct nd_region_desc *ndr_desc)
1101 {
1102 	ndr_desc->num_lanes = ND_MAX_LANES;
1103 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1104 			__func__);
1105 }
1106 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1107 
1108 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1109 		struct nd_region_desc *ndr_desc)
1110 {
1111 	if (ndr_desc->num_mappings > 1)
1112 		return NULL;
1113 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1114 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1115 			__func__);
1116 }
1117 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1118 
1119 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1120 		struct nd_region_desc *ndr_desc)
1121 {
1122 	ndr_desc->num_lanes = ND_MAX_LANES;
1123 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1124 			__func__);
1125 }
1126 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1127 
1128 /**
1129  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1130  * @nd_region: blk or interleaved pmem region
1131  */
1132 void nvdimm_flush(struct nd_region *nd_region)
1133 {
1134 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1135 	int i, idx;
1136 
1137 	/*
1138 	 * Try to encourage some diversity in flush hint addresses
1139 	 * across cpus assuming a limited number of flush hints.
1140 	 */
1141 	idx = this_cpu_read(flush_idx);
1142 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1143 
1144 	/*
1145 	 * The first wmb() is needed to 'sfence' all previous writes
1146 	 * such that they are architecturally visible for the platform
1147 	 * buffer flush.  Note that we've already arranged for pmem
1148 	 * writes to avoid the cache via memcpy_flushcache().  The final
1149 	 * wmb() ensures ordering for the NVDIMM flush write.
1150 	 */
1151 	wmb();
1152 	for (i = 0; i < nd_region->ndr_mappings; i++)
1153 		if (ndrd_get_flush_wpq(ndrd, i, 0))
1154 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1155 	wmb();
1156 }
1157 EXPORT_SYMBOL_GPL(nvdimm_flush);
1158 
1159 /**
1160  * nvdimm_has_flush - determine write flushing requirements
1161  * @nd_region: blk or interleaved pmem region
1162  *
1163  * Returns 1 if writes require flushing
1164  * Returns 0 if writes do not require flushing
1165  * Returns -ENXIO if flushing capability can not be determined
1166  */
1167 int nvdimm_has_flush(struct nd_region *nd_region)
1168 {
1169 	int i;
1170 
1171 	/* no nvdimm or pmem api == flushing capability unknown */
1172 	if (nd_region->ndr_mappings == 0
1173 			|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1174 		return -ENXIO;
1175 
1176 	for (i = 0; i < nd_region->ndr_mappings; i++) {
1177 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1178 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
1179 
1180 		/* flush hints present / available */
1181 		if (nvdimm->num_flush)
1182 			return 1;
1183 	}
1184 
1185 	/*
1186 	 * The platform defines dimm devices without hints, assume
1187 	 * platform persistence mechanism like ADR
1188 	 */
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1192 
1193 int nvdimm_has_cache(struct nd_region *nd_region)
1194 {
1195 	return is_nd_pmem(&nd_region->dev) &&
1196 		!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1197 }
1198 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1199 
1200 struct conflict_context {
1201 	struct nd_region *nd_region;
1202 	resource_size_t start, size;
1203 };
1204 
1205 static int region_conflict(struct device *dev, void *data)
1206 {
1207 	struct nd_region *nd_region;
1208 	struct conflict_context *ctx = data;
1209 	resource_size_t res_end, region_end, region_start;
1210 
1211 	if (!is_memory(dev))
1212 		return 0;
1213 
1214 	nd_region = to_nd_region(dev);
1215 	if (nd_region == ctx->nd_region)
1216 		return 0;
1217 
1218 	res_end = ctx->start + ctx->size;
1219 	region_start = nd_region->ndr_start;
1220 	region_end = region_start + nd_region->ndr_size;
1221 	if (ctx->start >= region_start && ctx->start < region_end)
1222 		return -EBUSY;
1223 	if (res_end > region_start && res_end <= region_end)
1224 		return -EBUSY;
1225 	return 0;
1226 }
1227 
1228 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1229 		resource_size_t size)
1230 {
1231 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1232 	struct conflict_context ctx = {
1233 		.nd_region = nd_region,
1234 		.start = start,
1235 		.size = size,
1236 	};
1237 
1238 	return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1239 }
1240 
1241 void __exit nd_region_devs_exit(void)
1242 {
1243 	ida_destroy(&region_ida);
1244 }
1245