1 /* 2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of version 2 of the GNU General Public License as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 #include <linux/scatterlist.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/hash.h> 18 #include <linux/pmem.h> 19 #include <linux/sort.h> 20 #include <linux/io.h> 21 #include <linux/nd.h> 22 #include "nd-core.h" 23 #include "nd.h" 24 25 /* 26 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is 27 * irrelevant. 28 */ 29 #include <linux/io-64-nonatomic-hi-lo.h> 30 31 static DEFINE_IDA(region_ida); 32 static DEFINE_PER_CPU(int, flush_idx); 33 34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, 35 struct nd_region_data *ndrd) 36 { 37 int i, j; 38 39 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), 40 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); 41 for (i = 0; i < (1 << ndrd->hints_shift); i++) { 42 struct resource *res = &nvdimm->flush_wpq[i]; 43 unsigned long pfn = PHYS_PFN(res->start); 44 void __iomem *flush_page; 45 46 /* check if flush hints share a page */ 47 for (j = 0; j < i; j++) { 48 struct resource *res_j = &nvdimm->flush_wpq[j]; 49 unsigned long pfn_j = PHYS_PFN(res_j->start); 50 51 if (pfn == pfn_j) 52 break; 53 } 54 55 if (j < i) 56 flush_page = (void __iomem *) ((unsigned long) 57 ndrd_get_flush_wpq(ndrd, dimm, j) 58 & PAGE_MASK); 59 else 60 flush_page = devm_nvdimm_ioremap(dev, 61 PFN_PHYS(pfn), PAGE_SIZE); 62 if (!flush_page) 63 return -ENXIO; 64 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page 65 + (res->start & ~PAGE_MASK)); 66 } 67 68 return 0; 69 } 70 71 int nd_region_activate(struct nd_region *nd_region) 72 { 73 int i, num_flush = 0; 74 struct nd_region_data *ndrd; 75 struct device *dev = &nd_region->dev; 76 size_t flush_data_size = sizeof(void *); 77 78 nvdimm_bus_lock(&nd_region->dev); 79 for (i = 0; i < nd_region->ndr_mappings; i++) { 80 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 81 struct nvdimm *nvdimm = nd_mapping->nvdimm; 82 83 /* at least one null hint slot per-dimm for the "no-hint" case */ 84 flush_data_size += sizeof(void *); 85 num_flush = min_not_zero(num_flush, nvdimm->num_flush); 86 if (!nvdimm->num_flush) 87 continue; 88 flush_data_size += nvdimm->num_flush * sizeof(void *); 89 } 90 nvdimm_bus_unlock(&nd_region->dev); 91 92 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); 93 if (!ndrd) 94 return -ENOMEM; 95 dev_set_drvdata(dev, ndrd); 96 97 if (!num_flush) 98 return 0; 99 100 ndrd->hints_shift = ilog2(num_flush); 101 for (i = 0; i < nd_region->ndr_mappings; i++) { 102 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 103 struct nvdimm *nvdimm = nd_mapping->nvdimm; 104 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); 105 106 if (rc) 107 return rc; 108 } 109 110 return 0; 111 } 112 113 static void nd_region_release(struct device *dev) 114 { 115 struct nd_region *nd_region = to_nd_region(dev); 116 u16 i; 117 118 for (i = 0; i < nd_region->ndr_mappings; i++) { 119 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 120 struct nvdimm *nvdimm = nd_mapping->nvdimm; 121 122 put_device(&nvdimm->dev); 123 } 124 free_percpu(nd_region->lane); 125 ida_simple_remove(®ion_ida, nd_region->id); 126 if (is_nd_blk(dev)) 127 kfree(to_nd_blk_region(dev)); 128 else 129 kfree(nd_region); 130 } 131 132 static struct device_type nd_blk_device_type = { 133 .name = "nd_blk", 134 .release = nd_region_release, 135 }; 136 137 static struct device_type nd_pmem_device_type = { 138 .name = "nd_pmem", 139 .release = nd_region_release, 140 }; 141 142 static struct device_type nd_volatile_device_type = { 143 .name = "nd_volatile", 144 .release = nd_region_release, 145 }; 146 147 bool is_nd_pmem(struct device *dev) 148 { 149 return dev ? dev->type == &nd_pmem_device_type : false; 150 } 151 152 bool is_nd_blk(struct device *dev) 153 { 154 return dev ? dev->type == &nd_blk_device_type : false; 155 } 156 157 struct nd_region *to_nd_region(struct device *dev) 158 { 159 struct nd_region *nd_region = container_of(dev, struct nd_region, dev); 160 161 WARN_ON(dev->type->release != nd_region_release); 162 return nd_region; 163 } 164 EXPORT_SYMBOL_GPL(to_nd_region); 165 166 struct nd_blk_region *to_nd_blk_region(struct device *dev) 167 { 168 struct nd_region *nd_region = to_nd_region(dev); 169 170 WARN_ON(!is_nd_blk(dev)); 171 return container_of(nd_region, struct nd_blk_region, nd_region); 172 } 173 EXPORT_SYMBOL_GPL(to_nd_blk_region); 174 175 void *nd_region_provider_data(struct nd_region *nd_region) 176 { 177 return nd_region->provider_data; 178 } 179 EXPORT_SYMBOL_GPL(nd_region_provider_data); 180 181 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) 182 { 183 return ndbr->blk_provider_data; 184 } 185 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); 186 187 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) 188 { 189 ndbr->blk_provider_data = data; 190 } 191 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); 192 193 /** 194 * nd_region_to_nstype() - region to an integer namespace type 195 * @nd_region: region-device to interrogate 196 * 197 * This is the 'nstype' attribute of a region as well, an input to the 198 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match 199 * namespace devices with namespace drivers. 200 */ 201 int nd_region_to_nstype(struct nd_region *nd_region) 202 { 203 if (is_nd_pmem(&nd_region->dev)) { 204 u16 i, alias; 205 206 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) { 207 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 208 struct nvdimm *nvdimm = nd_mapping->nvdimm; 209 210 if (nvdimm->flags & NDD_ALIASING) 211 alias++; 212 } 213 if (alias) 214 return ND_DEVICE_NAMESPACE_PMEM; 215 else 216 return ND_DEVICE_NAMESPACE_IO; 217 } else if (is_nd_blk(&nd_region->dev)) { 218 return ND_DEVICE_NAMESPACE_BLK; 219 } 220 221 return 0; 222 } 223 EXPORT_SYMBOL(nd_region_to_nstype); 224 225 static ssize_t size_show(struct device *dev, 226 struct device_attribute *attr, char *buf) 227 { 228 struct nd_region *nd_region = to_nd_region(dev); 229 unsigned long long size = 0; 230 231 if (is_nd_pmem(dev)) { 232 size = nd_region->ndr_size; 233 } else if (nd_region->ndr_mappings == 1) { 234 struct nd_mapping *nd_mapping = &nd_region->mapping[0]; 235 236 size = nd_mapping->size; 237 } 238 239 return sprintf(buf, "%llu\n", size); 240 } 241 static DEVICE_ATTR_RO(size); 242 243 static ssize_t mappings_show(struct device *dev, 244 struct device_attribute *attr, char *buf) 245 { 246 struct nd_region *nd_region = to_nd_region(dev); 247 248 return sprintf(buf, "%d\n", nd_region->ndr_mappings); 249 } 250 static DEVICE_ATTR_RO(mappings); 251 252 static ssize_t nstype_show(struct device *dev, 253 struct device_attribute *attr, char *buf) 254 { 255 struct nd_region *nd_region = to_nd_region(dev); 256 257 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); 258 } 259 static DEVICE_ATTR_RO(nstype); 260 261 static ssize_t set_cookie_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct nd_region *nd_region = to_nd_region(dev); 265 struct nd_interleave_set *nd_set = nd_region->nd_set; 266 267 if (is_nd_pmem(dev) && nd_set) 268 /* pass, should be precluded by region_visible */; 269 else 270 return -ENXIO; 271 272 return sprintf(buf, "%#llx\n", nd_set->cookie); 273 } 274 static DEVICE_ATTR_RO(set_cookie); 275 276 resource_size_t nd_region_available_dpa(struct nd_region *nd_region) 277 { 278 resource_size_t blk_max_overlap = 0, available, overlap; 279 int i; 280 281 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); 282 283 retry: 284 available = 0; 285 overlap = blk_max_overlap; 286 for (i = 0; i < nd_region->ndr_mappings; i++) { 287 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 288 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); 289 290 /* if a dimm is disabled the available capacity is zero */ 291 if (!ndd) 292 return 0; 293 294 if (is_nd_pmem(&nd_region->dev)) { 295 available += nd_pmem_available_dpa(nd_region, 296 nd_mapping, &overlap); 297 if (overlap > blk_max_overlap) { 298 blk_max_overlap = overlap; 299 goto retry; 300 } 301 } else if (is_nd_blk(&nd_region->dev)) { 302 available += nd_blk_available_dpa(nd_mapping); 303 } 304 } 305 306 return available; 307 } 308 309 static ssize_t available_size_show(struct device *dev, 310 struct device_attribute *attr, char *buf) 311 { 312 struct nd_region *nd_region = to_nd_region(dev); 313 unsigned long long available = 0; 314 315 /* 316 * Flush in-flight updates and grab a snapshot of the available 317 * size. Of course, this value is potentially invalidated the 318 * memory nvdimm_bus_lock() is dropped, but that's userspace's 319 * problem to not race itself. 320 */ 321 nvdimm_bus_lock(dev); 322 wait_nvdimm_bus_probe_idle(dev); 323 available = nd_region_available_dpa(nd_region); 324 nvdimm_bus_unlock(dev); 325 326 return sprintf(buf, "%llu\n", available); 327 } 328 static DEVICE_ATTR_RO(available_size); 329 330 static ssize_t init_namespaces_show(struct device *dev, 331 struct device_attribute *attr, char *buf) 332 { 333 struct nd_region_data *ndrd = dev_get_drvdata(dev); 334 ssize_t rc; 335 336 nvdimm_bus_lock(dev); 337 if (ndrd) 338 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); 339 else 340 rc = -ENXIO; 341 nvdimm_bus_unlock(dev); 342 343 return rc; 344 } 345 static DEVICE_ATTR_RO(init_namespaces); 346 347 static ssize_t namespace_seed_show(struct device *dev, 348 struct device_attribute *attr, char *buf) 349 { 350 struct nd_region *nd_region = to_nd_region(dev); 351 ssize_t rc; 352 353 nvdimm_bus_lock(dev); 354 if (nd_region->ns_seed) 355 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); 356 else 357 rc = sprintf(buf, "\n"); 358 nvdimm_bus_unlock(dev); 359 return rc; 360 } 361 static DEVICE_ATTR_RO(namespace_seed); 362 363 static ssize_t btt_seed_show(struct device *dev, 364 struct device_attribute *attr, char *buf) 365 { 366 struct nd_region *nd_region = to_nd_region(dev); 367 ssize_t rc; 368 369 nvdimm_bus_lock(dev); 370 if (nd_region->btt_seed) 371 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); 372 else 373 rc = sprintf(buf, "\n"); 374 nvdimm_bus_unlock(dev); 375 376 return rc; 377 } 378 static DEVICE_ATTR_RO(btt_seed); 379 380 static ssize_t pfn_seed_show(struct device *dev, 381 struct device_attribute *attr, char *buf) 382 { 383 struct nd_region *nd_region = to_nd_region(dev); 384 ssize_t rc; 385 386 nvdimm_bus_lock(dev); 387 if (nd_region->pfn_seed) 388 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); 389 else 390 rc = sprintf(buf, "\n"); 391 nvdimm_bus_unlock(dev); 392 393 return rc; 394 } 395 static DEVICE_ATTR_RO(pfn_seed); 396 397 static ssize_t dax_seed_show(struct device *dev, 398 struct device_attribute *attr, char *buf) 399 { 400 struct nd_region *nd_region = to_nd_region(dev); 401 ssize_t rc; 402 403 nvdimm_bus_lock(dev); 404 if (nd_region->dax_seed) 405 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); 406 else 407 rc = sprintf(buf, "\n"); 408 nvdimm_bus_unlock(dev); 409 410 return rc; 411 } 412 static DEVICE_ATTR_RO(dax_seed); 413 414 static ssize_t read_only_show(struct device *dev, 415 struct device_attribute *attr, char *buf) 416 { 417 struct nd_region *nd_region = to_nd_region(dev); 418 419 return sprintf(buf, "%d\n", nd_region->ro); 420 } 421 422 static ssize_t read_only_store(struct device *dev, 423 struct device_attribute *attr, const char *buf, size_t len) 424 { 425 bool ro; 426 int rc = strtobool(buf, &ro); 427 struct nd_region *nd_region = to_nd_region(dev); 428 429 if (rc) 430 return rc; 431 432 nd_region->ro = ro; 433 return len; 434 } 435 static DEVICE_ATTR_RW(read_only); 436 437 static struct attribute *nd_region_attributes[] = { 438 &dev_attr_size.attr, 439 &dev_attr_nstype.attr, 440 &dev_attr_mappings.attr, 441 &dev_attr_btt_seed.attr, 442 &dev_attr_pfn_seed.attr, 443 &dev_attr_dax_seed.attr, 444 &dev_attr_read_only.attr, 445 &dev_attr_set_cookie.attr, 446 &dev_attr_available_size.attr, 447 &dev_attr_namespace_seed.attr, 448 &dev_attr_init_namespaces.attr, 449 NULL, 450 }; 451 452 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) 453 { 454 struct device *dev = container_of(kobj, typeof(*dev), kobj); 455 struct nd_region *nd_region = to_nd_region(dev); 456 struct nd_interleave_set *nd_set = nd_region->nd_set; 457 int type = nd_region_to_nstype(nd_region); 458 459 if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr) 460 return 0; 461 462 if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr) 463 return 0; 464 465 if (a != &dev_attr_set_cookie.attr 466 && a != &dev_attr_available_size.attr) 467 return a->mode; 468 469 if ((type == ND_DEVICE_NAMESPACE_PMEM 470 || type == ND_DEVICE_NAMESPACE_BLK) 471 && a == &dev_attr_available_size.attr) 472 return a->mode; 473 else if (is_nd_pmem(dev) && nd_set) 474 return a->mode; 475 476 return 0; 477 } 478 479 struct attribute_group nd_region_attribute_group = { 480 .attrs = nd_region_attributes, 481 .is_visible = region_visible, 482 }; 483 EXPORT_SYMBOL_GPL(nd_region_attribute_group); 484 485 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region) 486 { 487 struct nd_interleave_set *nd_set = nd_region->nd_set; 488 489 if (nd_set) 490 return nd_set->cookie; 491 return 0; 492 } 493 494 /* 495 * Upon successful probe/remove, take/release a reference on the 496 * associated interleave set (if present), and plant new btt + namespace 497 * seeds. Also, on the removal of a BLK region, notify the provider to 498 * disable the region. 499 */ 500 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus, 501 struct device *dev, bool probe) 502 { 503 struct nd_region *nd_region; 504 505 if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) { 506 int i; 507 508 nd_region = to_nd_region(dev); 509 for (i = 0; i < nd_region->ndr_mappings; i++) { 510 struct nd_mapping *nd_mapping = &nd_region->mapping[i]; 511 struct nvdimm_drvdata *ndd = nd_mapping->ndd; 512 struct nvdimm *nvdimm = nd_mapping->nvdimm; 513 514 kfree(nd_mapping->labels); 515 nd_mapping->labels = NULL; 516 put_ndd(ndd); 517 nd_mapping->ndd = NULL; 518 if (ndd) 519 atomic_dec(&nvdimm->busy); 520 } 521 522 if (is_nd_pmem(dev)) 523 return; 524 } 525 if (dev->parent && is_nd_blk(dev->parent) && probe) { 526 nd_region = to_nd_region(dev->parent); 527 nvdimm_bus_lock(dev); 528 if (nd_region->ns_seed == dev) 529 nd_region_create_blk_seed(nd_region); 530 nvdimm_bus_unlock(dev); 531 } 532 if (is_nd_btt(dev) && probe) { 533 struct nd_btt *nd_btt = to_nd_btt(dev); 534 535 nd_region = to_nd_region(dev->parent); 536 nvdimm_bus_lock(dev); 537 if (nd_region->btt_seed == dev) 538 nd_region_create_btt_seed(nd_region); 539 if (nd_region->ns_seed == &nd_btt->ndns->dev && 540 is_nd_blk(dev->parent)) 541 nd_region_create_blk_seed(nd_region); 542 nvdimm_bus_unlock(dev); 543 } 544 if (is_nd_pfn(dev) && probe) { 545 nd_region = to_nd_region(dev->parent); 546 nvdimm_bus_lock(dev); 547 if (nd_region->pfn_seed == dev) 548 nd_region_create_pfn_seed(nd_region); 549 nvdimm_bus_unlock(dev); 550 } 551 if (is_nd_dax(dev) && probe) { 552 nd_region = to_nd_region(dev->parent); 553 nvdimm_bus_lock(dev); 554 if (nd_region->dax_seed == dev) 555 nd_region_create_dax_seed(nd_region); 556 nvdimm_bus_unlock(dev); 557 } 558 } 559 560 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev) 561 { 562 nd_region_notify_driver_action(nvdimm_bus, dev, true); 563 } 564 565 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev) 566 { 567 nd_region_notify_driver_action(nvdimm_bus, dev, false); 568 } 569 570 static ssize_t mappingN(struct device *dev, char *buf, int n) 571 { 572 struct nd_region *nd_region = to_nd_region(dev); 573 struct nd_mapping *nd_mapping; 574 struct nvdimm *nvdimm; 575 576 if (n >= nd_region->ndr_mappings) 577 return -ENXIO; 578 nd_mapping = &nd_region->mapping[n]; 579 nvdimm = nd_mapping->nvdimm; 580 581 return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev), 582 nd_mapping->start, nd_mapping->size); 583 } 584 585 #define REGION_MAPPING(idx) \ 586 static ssize_t mapping##idx##_show(struct device *dev, \ 587 struct device_attribute *attr, char *buf) \ 588 { \ 589 return mappingN(dev, buf, idx); \ 590 } \ 591 static DEVICE_ATTR_RO(mapping##idx) 592 593 /* 594 * 32 should be enough for a while, even in the presence of socket 595 * interleave a 32-way interleave set is a degenerate case. 596 */ 597 REGION_MAPPING(0); 598 REGION_MAPPING(1); 599 REGION_MAPPING(2); 600 REGION_MAPPING(3); 601 REGION_MAPPING(4); 602 REGION_MAPPING(5); 603 REGION_MAPPING(6); 604 REGION_MAPPING(7); 605 REGION_MAPPING(8); 606 REGION_MAPPING(9); 607 REGION_MAPPING(10); 608 REGION_MAPPING(11); 609 REGION_MAPPING(12); 610 REGION_MAPPING(13); 611 REGION_MAPPING(14); 612 REGION_MAPPING(15); 613 REGION_MAPPING(16); 614 REGION_MAPPING(17); 615 REGION_MAPPING(18); 616 REGION_MAPPING(19); 617 REGION_MAPPING(20); 618 REGION_MAPPING(21); 619 REGION_MAPPING(22); 620 REGION_MAPPING(23); 621 REGION_MAPPING(24); 622 REGION_MAPPING(25); 623 REGION_MAPPING(26); 624 REGION_MAPPING(27); 625 REGION_MAPPING(28); 626 REGION_MAPPING(29); 627 REGION_MAPPING(30); 628 REGION_MAPPING(31); 629 630 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) 631 { 632 struct device *dev = container_of(kobj, struct device, kobj); 633 struct nd_region *nd_region = to_nd_region(dev); 634 635 if (n < nd_region->ndr_mappings) 636 return a->mode; 637 return 0; 638 } 639 640 static struct attribute *mapping_attributes[] = { 641 &dev_attr_mapping0.attr, 642 &dev_attr_mapping1.attr, 643 &dev_attr_mapping2.attr, 644 &dev_attr_mapping3.attr, 645 &dev_attr_mapping4.attr, 646 &dev_attr_mapping5.attr, 647 &dev_attr_mapping6.attr, 648 &dev_attr_mapping7.attr, 649 &dev_attr_mapping8.attr, 650 &dev_attr_mapping9.attr, 651 &dev_attr_mapping10.attr, 652 &dev_attr_mapping11.attr, 653 &dev_attr_mapping12.attr, 654 &dev_attr_mapping13.attr, 655 &dev_attr_mapping14.attr, 656 &dev_attr_mapping15.attr, 657 &dev_attr_mapping16.attr, 658 &dev_attr_mapping17.attr, 659 &dev_attr_mapping18.attr, 660 &dev_attr_mapping19.attr, 661 &dev_attr_mapping20.attr, 662 &dev_attr_mapping21.attr, 663 &dev_attr_mapping22.attr, 664 &dev_attr_mapping23.attr, 665 &dev_attr_mapping24.attr, 666 &dev_attr_mapping25.attr, 667 &dev_attr_mapping26.attr, 668 &dev_attr_mapping27.attr, 669 &dev_attr_mapping28.attr, 670 &dev_attr_mapping29.attr, 671 &dev_attr_mapping30.attr, 672 &dev_attr_mapping31.attr, 673 NULL, 674 }; 675 676 struct attribute_group nd_mapping_attribute_group = { 677 .is_visible = mapping_visible, 678 .attrs = mapping_attributes, 679 }; 680 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group); 681 682 int nd_blk_region_init(struct nd_region *nd_region) 683 { 684 struct device *dev = &nd_region->dev; 685 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); 686 687 if (!is_nd_blk(dev)) 688 return 0; 689 690 if (nd_region->ndr_mappings < 1) { 691 dev_err(dev, "invalid BLK region\n"); 692 return -ENXIO; 693 } 694 695 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); 696 } 697 698 /** 699 * nd_region_acquire_lane - allocate and lock a lane 700 * @nd_region: region id and number of lanes possible 701 * 702 * A lane correlates to a BLK-data-window and/or a log slot in the BTT. 703 * We optimize for the common case where there are 256 lanes, one 704 * per-cpu. For larger systems we need to lock to share lanes. For now 705 * this implementation assumes the cost of maintaining an allocator for 706 * free lanes is on the order of the lock hold time, so it implements a 707 * static lane = cpu % num_lanes mapping. 708 * 709 * In the case of a BTT instance on top of a BLK namespace a lane may be 710 * acquired recursively. We lock on the first instance. 711 * 712 * In the case of a BTT instance on top of PMEM, we only acquire a lane 713 * for the BTT metadata updates. 714 */ 715 unsigned int nd_region_acquire_lane(struct nd_region *nd_region) 716 { 717 unsigned int cpu, lane; 718 719 cpu = get_cpu(); 720 if (nd_region->num_lanes < nr_cpu_ids) { 721 struct nd_percpu_lane *ndl_lock, *ndl_count; 722 723 lane = cpu % nd_region->num_lanes; 724 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 725 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 726 if (ndl_count->count++ == 0) 727 spin_lock(&ndl_lock->lock); 728 } else 729 lane = cpu; 730 731 return lane; 732 } 733 EXPORT_SYMBOL(nd_region_acquire_lane); 734 735 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) 736 { 737 if (nd_region->num_lanes < nr_cpu_ids) { 738 unsigned int cpu = get_cpu(); 739 struct nd_percpu_lane *ndl_lock, *ndl_count; 740 741 ndl_count = per_cpu_ptr(nd_region->lane, cpu); 742 ndl_lock = per_cpu_ptr(nd_region->lane, lane); 743 if (--ndl_count->count == 0) 744 spin_unlock(&ndl_lock->lock); 745 put_cpu(); 746 } 747 put_cpu(); 748 } 749 EXPORT_SYMBOL(nd_region_release_lane); 750 751 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, 752 struct nd_region_desc *ndr_desc, struct device_type *dev_type, 753 const char *caller) 754 { 755 struct nd_region *nd_region; 756 struct device *dev; 757 void *region_buf; 758 unsigned int i; 759 int ro = 0; 760 761 for (i = 0; i < ndr_desc->num_mappings; i++) { 762 struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i]; 763 struct nvdimm *nvdimm = nd_mapping->nvdimm; 764 765 if ((nd_mapping->start | nd_mapping->size) % SZ_4K) { 766 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n", 767 caller, dev_name(&nvdimm->dev), i); 768 769 return NULL; 770 } 771 772 if (nvdimm->flags & NDD_UNARMED) 773 ro = 1; 774 } 775 776 if (dev_type == &nd_blk_device_type) { 777 struct nd_blk_region_desc *ndbr_desc; 778 struct nd_blk_region *ndbr; 779 780 ndbr_desc = to_blk_region_desc(ndr_desc); 781 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) 782 * ndr_desc->num_mappings, 783 GFP_KERNEL); 784 if (ndbr) { 785 nd_region = &ndbr->nd_region; 786 ndbr->enable = ndbr_desc->enable; 787 ndbr->do_io = ndbr_desc->do_io; 788 } 789 region_buf = ndbr; 790 } else { 791 nd_region = kzalloc(sizeof(struct nd_region) 792 + sizeof(struct nd_mapping) 793 * ndr_desc->num_mappings, 794 GFP_KERNEL); 795 region_buf = nd_region; 796 } 797 798 if (!region_buf) 799 return NULL; 800 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL); 801 if (nd_region->id < 0) 802 goto err_id; 803 804 nd_region->lane = alloc_percpu(struct nd_percpu_lane); 805 if (!nd_region->lane) 806 goto err_percpu; 807 808 for (i = 0; i < nr_cpu_ids; i++) { 809 struct nd_percpu_lane *ndl; 810 811 ndl = per_cpu_ptr(nd_region->lane, i); 812 spin_lock_init(&ndl->lock); 813 ndl->count = 0; 814 } 815 816 memcpy(nd_region->mapping, ndr_desc->nd_mapping, 817 sizeof(struct nd_mapping) * ndr_desc->num_mappings); 818 for (i = 0; i < ndr_desc->num_mappings; i++) { 819 struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i]; 820 struct nvdimm *nvdimm = nd_mapping->nvdimm; 821 822 get_device(&nvdimm->dev); 823 } 824 nd_region->ndr_mappings = ndr_desc->num_mappings; 825 nd_region->provider_data = ndr_desc->provider_data; 826 nd_region->nd_set = ndr_desc->nd_set; 827 nd_region->num_lanes = ndr_desc->num_lanes; 828 nd_region->flags = ndr_desc->flags; 829 nd_region->ro = ro; 830 nd_region->numa_node = ndr_desc->numa_node; 831 ida_init(&nd_region->ns_ida); 832 ida_init(&nd_region->btt_ida); 833 ida_init(&nd_region->pfn_ida); 834 ida_init(&nd_region->dax_ida); 835 dev = &nd_region->dev; 836 dev_set_name(dev, "region%d", nd_region->id); 837 dev->parent = &nvdimm_bus->dev; 838 dev->type = dev_type; 839 dev->groups = ndr_desc->attr_groups; 840 nd_region->ndr_size = resource_size(ndr_desc->res); 841 nd_region->ndr_start = ndr_desc->res->start; 842 nd_device_register(dev); 843 844 return nd_region; 845 846 err_percpu: 847 ida_simple_remove(®ion_ida, nd_region->id); 848 err_id: 849 kfree(region_buf); 850 return NULL; 851 } 852 853 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, 854 struct nd_region_desc *ndr_desc) 855 { 856 ndr_desc->num_lanes = ND_MAX_LANES; 857 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, 858 __func__); 859 } 860 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); 861 862 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, 863 struct nd_region_desc *ndr_desc) 864 { 865 if (ndr_desc->num_mappings > 1) 866 return NULL; 867 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); 868 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, 869 __func__); 870 } 871 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); 872 873 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, 874 struct nd_region_desc *ndr_desc) 875 { 876 ndr_desc->num_lanes = ND_MAX_LANES; 877 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, 878 __func__); 879 } 880 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); 881 882 /** 883 * nvdimm_flush - flush any posted write queues between the cpu and pmem media 884 * @nd_region: blk or interleaved pmem region 885 */ 886 void nvdimm_flush(struct nd_region *nd_region) 887 { 888 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 889 int i, idx; 890 891 /* 892 * Try to encourage some diversity in flush hint addresses 893 * across cpus assuming a limited number of flush hints. 894 */ 895 idx = this_cpu_read(flush_idx); 896 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); 897 898 /* 899 * The first wmb() is needed to 'sfence' all previous writes 900 * such that they are architecturally visible for the platform 901 * buffer flush. Note that we've already arranged for pmem 902 * writes to avoid the cache via arch_memcpy_to_pmem(). The 903 * final wmb() ensures ordering for the NVDIMM flush write. 904 */ 905 wmb(); 906 for (i = 0; i < nd_region->ndr_mappings; i++) 907 if (ndrd_get_flush_wpq(ndrd, i, 0)) 908 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); 909 wmb(); 910 } 911 EXPORT_SYMBOL_GPL(nvdimm_flush); 912 913 /** 914 * nvdimm_has_flush - determine write flushing requirements 915 * @nd_region: blk or interleaved pmem region 916 * 917 * Returns 1 if writes require flushing 918 * Returns 0 if writes do not require flushing 919 * Returns -ENXIO if flushing capability can not be determined 920 */ 921 int nvdimm_has_flush(struct nd_region *nd_region) 922 { 923 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); 924 int i; 925 926 /* no nvdimm == flushing capability unknown */ 927 if (nd_region->ndr_mappings == 0) 928 return -ENXIO; 929 930 for (i = 0; i < nd_region->ndr_mappings; i++) 931 /* flush hints present, flushing required */ 932 if (ndrd_get_flush_wpq(ndrd, i, 0)) 933 return 1; 934 935 /* 936 * The platform defines dimm devices without hints, assume 937 * platform persistence mechanism like ADR 938 */ 939 return 0; 940 } 941 EXPORT_SYMBOL_GPL(nvdimm_has_flush); 942 943 void __exit nd_region_devs_exit(void) 944 { 945 ida_destroy(®ion_ida); 946 } 947